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Abstract

[Summary]This paper proposes and evaluates an approximation model based on an incremental Singular
Value Decomposition (iSVD) algorithm, for unsteady flow field reconstructions, needed for integrating the
unsteady adjoint equations backward in time, within a gradient-based optimization loop. Thanks to the iSVD
algorithm, the computational cost of solving the unsteady adjoint equations is reduced considerably, without
practically affecting the accuracy of the computed gradient. Approximations to the unsteady flow fields are
constructed while solving the time-varying flow equations (moving forward in time) and used to reconstruct
these fields during the backward-in-time integration of the continuous adjoint equations. Optimization results
obtained using the proposed method are compared to those computed using the binomial checkpointing
technique, which acts as the reference method. Test cases for both flow control and shape optimization
problems are presented.

Keywords: incremental SVD, adjoint optimization, unsteady continuous adjoint, approximation model,
flow control, shape optimization

1 Introduction

In many applications, numerical solvers to predict time-varying phenomena (e.g. flows around bluff bodies)
are used. In gradient-based optimization assisted by the adjoint method, such an unsteady flow (primal)
solver is associated with the numerical solution of the unsteady adjoint PDEs, which need to be solved
backward in time. During the numerical solution of the latter, the primal fields must be available at each
time-step. To do so, either the re-computation of each primal field at each time-step, starting from the
initial state, or the storage of all the instantaneous primal field solutions can be used. The former leads to
substantial additional computational cost whereas the latter is memory-intensive.

As a remedy to this problem, various methods have been proposed to overcome the aforementioned
limitations. These can be categorized as exact or sub-optimal control methods1. The most known represen-
tatives of the exact methods are the checkpointing techniques2,3, being nowadays in widespread use. A fixed
number of checkpoints is allocated along the time span of the primal solution and the fields of the primal
variables are stored at these instants. When the adjoint PDEs are solved at a time instant at which the
primal variables are not available, the primal solver starts from the nearest/previous available checkpoint,
marching forward until this time instant. The number of checkpoints is decided by considering the available
memory. The most efficient checkpointing variant is the dynamic binomial one4, which ensures that, for
the predefined number of checkpoints, the minimum number of re-computations is performed. It involves a
binomial distribution of checkpoints in time and their dynamic (re-)allocation during the adjoint run. Even
though binomial checkpointing has the minimal cost for a given memory allocation, its computational time
could be proven to be substantial when compared with full storage. In5, the solution of the adjoint PDEs
takes 5 times more than that of the primal equations, though, this number may vary depending on the
problem and the number of checkpoints.

Industrial unsteady optimization problems often involve small time-steps and large computational grids.
In order to overcome limitations regarding memory and computational time, alternatives based on approxi-
mations to the time-varying flow field can be devised. Examples are the receding horizon control, nonlinear
frequency domain and order reduction methods6. The idea of the receding horizon techniques is to break
the original time-dependent optimization problem expressed in the elongated time horizon to a number of
optimization (sub-)problems defined in shorter time intervals. In an optimization problem involving an un-
steady supersonic flow6, it was demonstrated that the computed gradients were in good agreement with
those computed by an exact method.
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In nonlinear frequency domain methods, also known as Harmonic Balance methods7, the flow equations
are expressed in the frequency domain, through a Fourier series transformation. Then, the solution of the
flow equations takes place in the frequency domain or, through an inverse Fourier transformation, in the
time domain, by converting them to a system of coupled steady-state PDEs. The adjoint to this system
is, then, derived and solved. The method has been tested in the optimization of compressible viscous flows
around airfoil configurations using the discrete adjoint method8. A Harmonic-Balance-based optimization
solver was also used to increase the aero-thermal and aero-elastic performance of a transonic compressor
stage rotor9. In addition, a frequency domain method was applied for the minimization of an helicopter
rotor torque, using the initial values of the thrust level and drag force as constraints10.

Models which aim at decreasing the degrees of freedom of the flow problem under consideration11, known
as Reduced Order Models (ROMs), can be viewed as sub-optimal control methods. The order-reduction
is achieved by projecting the flow equations to a properly generated subspace, created by means of pre-
computed flow snapshots. Among the available methods, Proper Orthogonal Decomposition (POD) has
been widely used in fluid problems11,12,13. POD applies to the aforementioned set of snapshots and keeps
only the predominant part of the underlying information. A POD method for generating an aerodynamic
database through a parameter variation for several test cases, analyzing the number of modes required, was
presented in12. In13, ‘gappy’ data sets are considered before being used for an inverse airfoil design. POD
in conjunction with Galerkin projection is used for constrained optimization problems in14. In15, the POD
projection subspace is built by using data from a single state and sensitivity analysis, thus alleviating the
computational cost for the construction of the POD basis.

Here, a model based on the incremental variant of Singular Value Decomposition (iSVD) is proposed as
a CPU and memory efficient way to approximate the instantaneous flow fields during the solution of the
unsteady adjoint PDEs. The application of the SVD to the snapshots matrix containing the flow solutions of
all time-steps would require the storage of the complete time-series for all flow variables at each computational
node (full storage). However, this is not possible for most industrial applications. Therefore, in this work,
the incremental variant of the SVD is used, alongside with an order-reduction scheme. In brief, the proposed
algorithm involves the following: The left and right singular vector matrices as well as the diagonal matrix
containing the singular values are updated “incrementally” at each time-step of the primal solver, based on
the user-defined (reduced) rank. Thus, the projection subspace is constructed during the numerical solution
of the time-varying Navier–Stokes equations and, then, used for the primal field reconstruction during the
adjoint loop. This process significantly reduces the computational cost of a checkpoint-based optimization.
By using the proposed model, very good approximations of the flow fields are generated and the optimization
results are in good agreement with those computed by an exact method.

The paper is organized as follows; First, the derivation of the unsteady continuous adjoint method is
given in brief. Then, the iSVD model is presented by focusing on its implementation within the optimization
process. Finally, relevant results are discussed, demonstrating that the proposed model could indeed support
unsteady adjoint-based optimization at a low computational cost. All flows considered in this work are
periodic. Therefore, it is straightforward to define the objective function within a period. Nevertheless, the
proposed method could also be used in conjunction with non-periodic flows, like the ones often emerging
from the usage of DES or LES. There, however, the definition of the objective function window requires some
investigation which was not within the scope of the paper.

2 The Unsteady Continuous Adjoint Method

This section presents in brief the development of the unsteady continuous adjoint method for periodic laminar
flows of incompressible fluids. The interested reader can find more on continuous adjoint to turbulence models
in16. In general, when an objective function is defined along the boundaries S of the domain Ω, it can be
written as

J=

∫
T

∫
S

jSdSdt=

∫
T

∫
S

jS,inidSdt (1)

with ni standing for the components of the unit normal vector pointing to S, and T for the period of the
flow phenomenon. Then, its differentiation w.r.t. the vector of design variables b yields

δJ

δb
=

∫
T

∫
S

δjS,i
δb

nidSdt+

∫
T

∫
S

jS,i
δ(nidS)

δb
dt (2)

or by using the chain rule to develop
δjS,i

δb w.r.t. the primal variables,

δJ

δb
=

∫
T

∫
S

∂jS,i
∂vk

ni
δvk
δb

dSdt+

∫
T

∫
S

∂jS,i
∂p

ni
δp

δb
dSdt+

∫
T

∫
S

∂jS,i
∂τkj

ni
δτkj
δb

dSdt+

∫
T

∫
S

jS,i
δ(nidS)

δb
dt (3)

where vi, i = 1, 2(, 3) are the velocity vector components, p is the pressure divided by the constant density

and τij = ν
(
∂vi
∂xj

+
∂vj
∂xi

)
the stress tensor components.
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For periodic flows, the augmented objective function is defined as

L=J+

∫
T

∫
Ω

uiR
v
i dΩdt+

∫
T

∫
Ω

qRp dΩdt (4)

where ui are the adjoint velocity components, q is the adjoint pressure and Rvi and Rp are the residuals of
the unsteady Navier–Stokes equations of an incompressible fluid flow, given by

Rp = − ∂vj
∂xj

= 0

Rvi =
∂vi
∂t

+ vj
∂vi
∂xj

+
∂p

∂xi
− ∂τij
∂xj

= 0

(5)

The differentiation of eq. (4) yields

δL

δb
=
δJ

δb
+

∫
T

∫
Ω

(
ui
δRvi
δb

+q
δRp

δb

)
dΩdt+

∫
T

∫
Ω

(uiR
v
i +qRp)

δ (dΩ)

δb
dt (6)

The residuals of the primal equations over the computational domain Ω are zero, thus the last term on the
RHS of eq. (6) is eliminated.

Since δ
δb includes the effect of changes in the computational domain due a change in b, δ

δb and ∂
∂xj

do

not permute. Instead, they are linked through17,18

δ

δb

(
∂(·)
∂xj

)
=

∂

∂xj

(
δ(·)
δb

)
− ∂(·)
∂xk

∂

∂xj

(
δxk
δb

)
(7)

After applying eq. (7) and the Gauss divergence theorem to the developed form of eq. (6), the unsteady
adjoint field equations are derived by setting the field integral multipliers of δvi

δb and δp
δb to zero. Their

expressions are16

Rq=−∂ui
∂xi

= 0

Rui=−
∂ui
∂t

+ uj
∂vj
∂xi
− ∂ (vjui)

∂xj
−
∂τaij
∂xj

+
∂q

∂xi
= 0

(8)

with τaij = ν
(
∂ui

∂xj
+
∂uj

∂xi

)
being the adjoint stress tensor components.

The adjoint boundary conditions are derived by setting the multipliers of δvi
δb , δpδb and

δτij
δb in the surface

integrals of the developed form of eq. (6) to zero, where necessary. The interested reader may refer to16

for the detailed derivation. Here, due to the time-varying nature of the flow problems, in addition to the
boundary conditions, an initialization for the unsteady adjoint problem needs to be determined. The term
containing the time derivative in eq. (6) can be developed as

∫
T

∫
Ω

ui
δ

δb

(
∂vi
∂t

)
dΩdt=

∫
Ω

ui
δvi
δb

dΩ

t=T
t=0

−
∫
T

∫
Ω

∂ui
∂t

δvi
δb

dΩdt (9)

The second integral on the RHS of eq. (9) gives rise to the time derivative present in eq. (8). For t = 0, the
initial conditions for the primal velocity are imposed, resulting in δvi

δb = 0. Since no information is known
for vi at t = T , the initial condition for the adjoint velocity field needs to be set as

ui|T = 0 (10)

Eq. (10) implies that the initial condition for the adjoint problem is defined at the end-time of the primal
problem, thus the unsteady adjoint equations are integrated backward in time.

Having satisfied the adjoint field equations and the corresponding adjoint initial and boundary conditions,
any terms remaining in eq. (6), in addition to the last term on the RHS of eq. (3), yield the sensitivity
derivatives. Their expression reads18

δL

δb
=

∫
T

∫
SW

jSW ,i
δ(nidS)

δb
+

∫
T

∫
Ω

Ajk
∂

∂xj

(
δxk
δb

)
dΩdt−

∫
T

∫
SW

(
−uknk+

∂jSW ,k

∂τlz
nknlnz

)
τij
δ(ninj)

δb
dSdt

−
∫
T

∫
SW

∂jSW ,k

∂τlz
nkt

I
l t
I
zτij

δ(tIi t
I
j )

δb
dSdt−

∫
T

∫
SW

∂jSW ,k

∂τlz
nkt

II
l t

II
z τij

δ(tIIi t
II
j )

δb
dSdt

−
∫
T

∫
SW

[
∂jSW ,k

∂τlz
nk(tIIl t

I
z + tIl t

II
z )

]
τij
δ(tIIi t

I
j )

δb
dSdt+

∫
T

∫
Sjet
W

(
vjnjui + τaijnj−qni+

∂JSW ,l

∂vi
nl

)
δvi
δb
dSdt

(11)
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where

Ajk=−uivj
∂vi
∂xk
−uj

∂p

∂xk
−τaij

∂vi
∂xk

+ui
∂τij
∂xk

+q
∂vj
∂xk

(12)

jSW ,i is the part of jS,i defined along the wall boundary SW , tI, tII are the two tangential unit vectors

along SW forming a Frenet system with n and SjetW is the part of SW where the jets are defined. In shape
optimization problems, where the domain and thus the CFD grid, change whenever the shape undergoes
modifications, the second term on the RHS of eq. (11) containing grid sensitivities δxk

δb does not vanish18. This
term is computed analytically since a volumetric B-Splines parameterization is used for both the geometry
and the computational grid19. For flow control problems, the wall geometry and the computational grid are
not altered, nullifying all but the last integral on the RHS of eq. (11).

Having derived the final expression for the sensitivity derivatives, eq. (11), some general remarks regarding
the adjoint problem should be made. The unsteady primal set of equations constitutes a hyperbolic problem
in time, for which the initial conditions are defined at t = 0. The unsteady adjoint equations comprise a
hyperbolic problem in time, though the propagation of information occurs in the reverse direction in time.
The adjoint equations, eqs. (8), include primal variables which need to be available at every time instant. As
previously mentioned, possible solutions are to fully store every primal variable needed or apply the binomial
checkpointing method. In the following section, an approach that utilizes a reduced-order SVD to lower
memory requirements, maintaining, to a large extend, the accuracy of the optimization result, is proposed.
The reduced-order SVD method is presented and used in its incremental variant.

Throughout this work, for the discretization of the Navier–Stokes equations, a second-order upwind
scheme is selected for the convection term, a central scheme for the diffusion term, a second-order central
differencing scheme for the pressure term and a second-order, backward Euler scheme for the time derivative.
Similar numerical schemes are used for the adjoint PDEs. Regarding the update of the design variables, this
is conducted using steepest descent with a constant step.

3 Incremental Singular Value Decomposition (iSVD)

Let [y1, . . . ,yn] be a data set20, with yj ∈ Rm, 1 ≤ j ≤ n. Then, Y = [y1, . . . ,yn] forms a m × n matrix
with real values, of rank(Y ) = d ≤ min{m,n}. In CFD based on cell-centered finite-volumes, m is equal to
the number of grid cells and n to the number of time-steps.

Assuming that the Y matrix is available, SVD ensures21,22 the existence of sorted real numbers, σ1 ≥
. . . ≥ σd > 0 as well as orthogonal matrices Ud and Vd, such that

Y = UdΣV
T
d (13)

with Σ = diag(σ1, . . . , σd) ∈ Rd×d, U ∈ Rm×d and V ∈ Rn×d with UTU = IU , IU ∈ Rd×d and V V T =
IV , IV ∈ Rn×n, with IU,V being the identity matrices.

Starting from eq. (13), a reduced-order representation of the data set matrix can be obtained. Indeed,
for a user-defined SVD basis of rank r, with r ≤ d, it holds,

Y r = UrΣrV rT (14)

where superscript r denotes the first r ≤ d columns of the U and V matrices and singular values of Σ on the
RHS in eq. (13) and Y r ≈ Y . Practically, the reduced-order representation of the snapshot matrix is given
by r ≪ d, with substantial advantages in terms of memory allocation. A visual representation for both the
SVD and the reduced-order SVD is given in figure 1.

Typical SVD algorithms require the complete snapshot matrix to be available beforehand. This require-
ment makes the method inappropriate for an unsteady adjoint computation in which the snapshot matrix
contains the solution of the primal variables, at each cell center of the computational grid and for all time-
steps. Therefore, having the snapshot matrix available is equivalent to full storage. If the latter can be
afforded, applying SVD offers no competitive advantage. However, since this is rarely the case, it is prefer-
able to use an incremental variant of the SVD algorithm23,24. By doing so, the reduced-order representation
of the snapshot matrix is updated immediately after a new instantaneous flow field becomes available.

Let us assume that, during the time-integration of the unsteady flow equations, a new instantaneous
solution field y ∈ Rm×1 has just been computed and that the iSVD method has properly been used in the
previous time-steps, resulting in a decomposition as in eq. (13). In order to incorporate the just computed
vector into the already available reduced-order SVD, a ‘thin’ SVD update23,24,25 is performed. For the
snapshot matrix Y r = UrΣrV rT , the problem is mathematically formulated as

[
UΣV T y

]
= [U f ]︸ ︷︷ ︸

Û

[
Σ h
0 k

]
︸ ︷︷ ︸

Ŝ

[
V 0
0 1

]T
︸ ︷︷ ︸

V̂

(15)
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where f ∈ Rm×1, h ∈ Rr×1 and k ∈ R. The decomposition in eq. (15) does not represent an SVD, since Ŝ
is no more a diagonal matrix. Let

h = UTy (16)

From eq. (15) it can be written

y = Uh + kf =⇒ kf =
(
I − UUT

)
y (17)

By setting ‖f‖L2
= 1, eq. (17) becomes

k = ‖
(
I − UUT

)
y‖L2 (18)

Finally, combining eq. (17) and (18),
f =

(
I − UUT

)
y/k (19)

Having derived expressions for the computation of f , h and k, in eq. (19), (16) and (18), respectively,
matrix Ŝ in eq. (15) must be re-diagonalized. Therefore, by the SVD of Ŝ, we obtain

Ŝ = UsΣsV
T
s (20)

with Us, diag(Σs), Vs ∈ R(r+1)×(r+1). It follows that the updated matrix Y ′ = [ Y r | y ] from eq. (15) is

Y ′ = U ′Σ′V ′T (21)

where

U ′ ← ÛUs (22)

Σ′ ← Σs (23)

V ′T ← V Ts V̂
T (24)

with U ′ ∈ Rm×(r+1), Σ′ ∈ R(r+1), being diagonal, and V ′ ∈ R(n+1)×(r+1). This procedure increases the
dimension of each matrix, which should be avoided. Therefore, in order to preserve the dimensions of
U ′, Σ′, V ′, only the first r rows and columns are retained. It holds

U ′ ← ÛUs[1:r,1:r] (25)

Σ′ ← Σs[1:r] (26)

V ′T ← Vs
T
[1:r,1:r]V

T (27)

with U ′ ∈ Rm×r, Σ′ ∈ Rr, and V ′ ∈ R(n+1)×r.
Apart from maintaining the dimensions of all the matrices constant, the incremental variant of the SVD

is resolved in O
(
(m+ n)r2 +m

)
operations. These are mainly allocated to the matrix multiplication, in

eqs. (22) and (24), instead of O(mnr) operations of a standard SVD23,24.
Even though the selection of the reduced order r is important, there is no transparent way to predetermine

it. A heuristic which evaluates the energy content of the reduced order to the total energy content of the
snapshot matrix is used. This is expressed as

E(r) =
r∑

i=1

σ2
i/

d∑
i=1

σ2
i (28)

An optimization cycle (with focus on the iSVD model incorporation) can be seen in algorithm 1. For
the results presented in the following sections, the iSVD methodology described in this section is applied for
each flow variable (i.e. pressure, velocity components and turbulence model variables) separately.

4 Active Flow Control Optimization: Flow Around A Cylinder

The flow around a circular cylinder is a well-documented flow case26,27,28,29,30,31,32,33; among others, para-
metric analyses regarding the Reynolds number, flow conditions and numerical schemes, exist. The periodic
behavior of the flow around the cylinder, beyond a Reynolds number threshold, makes it an ideal test case
to apply the unsteady adjoint-based optimization method. For the Re≈ 40 case, the periodic in time von-
Karman vortex street is generated, inducing periodic forces on the cylinder surface. The suppression of these
forces, by means of active flow control jets placed over the surface of the body has been extensively studied
in various works34,35,36,37.

Here, the infinite velocity value is U∞ = 0.1m/s, the cylinder diameter D = 0.01m and ν=10−5, resulting
in a Reynolds number of Re = 100. The computed Strouhal number1 of the flow is St = 0.169, based on
the period of the lift coefficient, which is in good agreement with the value of St∼ 0.165, proposed in the

1St = fD
U∞

, with f being the frequency of vortex shedding
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Algorithm 1 Optimization cycle of the unsteady adjoint method using the iSVD (for a primal field y(x, t))

1: t← 0
2: Read r
3: while t ≤ T do . Primal loop
4: Solve for the new instantaneous primal variable field(s) y
5: iSVD update, eq. (15)
6: if ti ≤ r then
7: Update U ′, Σ′, V ′, eqs. (22) to (24)
8: else
9: Update U ′, Σ′, V ′, eqs. (25) to (27)

10: end if
11: t← t+ ∆t
12: end while
13: while t ≥ 0 do . Adjoint loop
14: Reconstruct: yr ← U ′Σ′V ′T , computed in O (r(m+ 1)) operations
15: Solve the instantaneous adjoint equations using approximating field yr
16: t← t−∆t
17: end while
18: Update design variable(s)
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Figure 1: a) Application of the SVD on the snapshot matrix Y ∈ Rm×n, n� m, rank(Y )=n. b) Reconstruction
of the reduced-order Y r, Y u Y r for a user-defined rank r. Gray area stands for the omitted elements of the
U, Σ and V matrices.

literature38. For this optimization, a 2D computational grid is used, figure 2a, with ∼ 104 quadrilateral
elements. The grid extends for 20D upstream and downstream and 5D up and down. A constant time-step
of ∆t = 10−3s is considered and since the period of the phenomenon prior to the optimization is T∼0.59s,
∼600 time-steps per period are performed. The periodic behaviour of the drag (Cd) and lift (Cl) coefficients
when no flow control is applied can be seen in figure 3.

The objective function is the time-averaged squared drag force, which reads

J1 =
1

2T

∫
T

D(t)2dt (29)

D(t)=

∫
SW

(pni−τijnj−|vjnj | vi) ri dS (30)

The last term in the integrand of eq. (30) is the extra force exerted by the jet streams on the body. For the
purposes of this work, pulsating jets placed along the surface of the body are used to control the flow. For
each jet, a periodic velocity is employed, given by

vmi = (Am sin (2πft− f0)−Am)ni (31)

where m = 1, . . . ,M is the jet counter, Am are the amplitudes, f the frequency and f0 the phase of each jet.
All jets are aligned with the outward, normal to the wall, unit vector ni, i = 1, 2. In the present work, all
jets have the same frequency and phase, thus, only the jet amplitudes Am are considered as design variables.
Positive and negative Am correspond to blowing and suction, respectively39,40.
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(a) (b)

Figure 2: Flow around a cylinder. a) Computational grid, with ∼ 104 quadrilateral elements. b) Fixed jet
locations along the surface of the cylinder; five pairs of jets (0-4) and two single jets (5 and 6) are used, making
12 jets in total.
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Figure 3: Flow around a cylinder. Time-series of the drag (Cd) and lift (Cl) coefficients.

Following the derivation described in section 2 the sensitivity derivatives expression reads

δL

δb
=

∫
T

∫
Sjet
W

(
vjnjui + τaijnj−qni−

vknk
|vmnm|

vlrlni − |vknk| ri
)

[sin (2πft+f0)−1]ni dSdt (32)

For the flow control optimization 12 jets, are used. Their position along the cylinder circumference can
be seen in figure 2b. There are five pairs of jets (IDs 0-4) with the same amplitude and two individual jets
(IDs 5 and 6) which are controlled separately. The jet frequency and phase in eq. (31) are predefined as
fm = 10Hz and fm0 = 0 rad/sec. Before the optimization starts, the flow equations are solved for a sufficient
time to establish periodicity and discard the transient phase. Then, each optimization cycle consists of 10
periods and starts from this flow solution. During the adjoint loop, the first 4 periods are solved to establish
periodicity of the adjoint field (i.e., periods 10 to 7), while the sensitivities are computed for 4 subsequent
periods (i.e., period 6 to 3). In the first optimization cycle (i.e., uncontrolled case), the flow period is
T0 = 0.59s; from then onward, it is assumed that the jets predominantly influence the flow, thus, the period
of the flow is assumed to be equal to that assigned to the jets, i.e. T = 0.1s.

The convergence of the optimization is presented in figure 4a. There, it is observed that the objective
function is reduced by ∼ 67% after 11 optimization cycles. The Cd time-series after the optimization (i.e.,
termed as ‘controlled’), although displaying an oscillation with a higher amplitude, has a mean value that is
by ∼40% lower than the uncontrolled case, figure 4b. Thus far, optimization results have been obtained by
using the checkpointing method to reconstruct the primal fields.

Using the total energy content heuristic, eq. (28), and asking for the energy content to be ∼99.99%, only
the first 15 singular values need to be kept, figure 5. Such a high energy content is a good indication that a
reduced-order rank r=15 is sufficient to provide a good approximation.

Let us now investigate the accuracy of the approximation that the iSVD model achieves. In figure 6a, the
Cd time-series, when the iSVD model is used for the flow fields reconstruction, is shown. The reduced order
model uses a rank which ranges from 5 to 15. It can be noticed that r=5 results in a poor approximation,
though the addition of one more singular value (r=6) produces a time-series that matches the exact one in
terms of amplitude but has a shift in phase, figure 6b. Further increasing the rank to r=15 results in a Cd
approximation which is very close to the exact time-series.
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Figure 4: Flow around a cylinder. Optimization results. a) Computed objective function throughout the opti-
mization cycles when the checkpointing and the iSVD models are used. b) Cd time-series for the uncontrolled
and controlled cases.
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Figure 5: Flow around a cylinder. Close-up view of the singular values for the pressure full-rank snapshot
matrix. The total energy content, eq. (28), is shown for a few selected ranks. The plot resulted after applying
SVD to the full storage matrix.
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Figure 6: Flow around a cylinder. a) Approximation to the Cd time-series when the iSVD model, with r=5,
r=6 and r=15, is used, b) Close-up view of the time-series.
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Table 1: Flow around a cylinder. Optimal jet amplitudes Am, when checkpointing and the iSVD models are
used in the optimization procedure. For the iSVD model, the rank is r=15.

Jet Checkpointing iSVD Difference

0 0.027738 0.027691 0.17%
1 -0.039552 -0.038994 1.43%
2 -0.126804 -0.126539 0.21%
3 -0.085423 -0.086517 −1.26%
4 -0.017046 -0.018128 −5.97%
5 0.082419 0.081828 0.72%
6 0.023486 0.023401 0.36%

It should be noted that, during an optimization loop, all geometries are evaluated using the time-accurate
CFD solver. The comparisons depicted in figure 6 serve only as a means to evaluate the accuracy of the iSVD
reconstruction. Arguably, however, for the computation of the adjoint-based sensitivity derivatives, what
plays a significant role is the reconstruction error of the flow field, rather than that of the objective function.
In figure 7, the error between the exact and approximated primal fields is depicted for three equidistant
snapshots over one period. To quantify the error, the absolute difference between the magnitudes of the
exact and approximated primal velocities is used; regarding pressure, the absolute difference between the
exact and approximated primal fields is used. From figures 7a-7e, it is observed that the deviation of the
approximated fields produced by the iSVD model is in the order of ∼0.1% for the velocity (when U∞ is used
for the normalization).

A new optimization loop is then executed, based on the rank 15 iSVD (i.e., using algorithm 1), which
has been demonstrated to approximate the primal fields with great accuracy. At each optimization cycle,
the Cd value obtained when the iSVD model is used is practically identical to the one computed by using
checkpointing, figure 4a. There, it can be noticed that for the 12th optimization cycle, the iSVD model
and checkpointing method result in an objective value of approximately 0.1919 and 0.1923, respectively.
Therefore, the difference between the two models is approximately 0.2%. This observation is confirmed also
in table 1, where it can be seen that the difference of the optimal jet amplitudes, as computed based on the
iSVD and checkpointing, is in the order of ∼1.45% on average.

Having showcased that the use of the rank 15 iSVD model leads to, practically, the same optimization
results obtained by the exact approach, the next step is to compare the two approaches in terms of compu-
tational cost. For the following results, two cores of an Intel Xeon CPU E5-2630 processor at 2.40 GHz are
used. The computational node used is equipped with 32 GB of memory. When the full-storage approach is
considered, the first optimization cycle (T0∼0.59s) is completed in 728s using 11.39 GB of the total memory
of the node. Using the iSVD model with r= 15, the first optimization cycle finishes after 811s, with excess
time being primarily allocated for the subspace rotations (i.e., matrix update U ′ and V ′ in eqs. (25) and
(27)) needed at each time-step of the unsteady solver. After the first optimization cycle, the period changes
to T = 0.1s, thus, 100 time-steps are resolved in each period. Then, each optimization cycle takes ∼ 153.5s
and ∼192.5s for the full-storage approach and the iSVD model, respectively. Overall, the iSVD-based opti-
mization takes 20.9% more computational time and requires only 1.15% of the memory allocation, compared
to the full-storage approach.

Although the approximation model is more expensive in terms of total computational cost when compared
to the full-storage approach, the latter is hardly ever an alternative in large scale cases due to its high memory
requirements. Thus, two more ‘realistic’ configurations involving checkpointing are tested. For the first one,
500 checkpoints are used. A complete optimization loop based on this approach is by 7.4% faster and 12%
slower than the iSVD and full-storage alternatives, respectively. For the second configuration, 15 checkpoints
are stored, which translates into the same amount of memory required by the approximation model. In this
configuration, the optimization process is by 46.7% and 77.3% slower than the iSVD and the full-storage
alternative, respectively.
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Figure 7: Flow around a cylinder. Three snapshots of the approximation errors in the velocity (left) and
pressure (right) fields, over one period T0, resolved with ∼ 600 time-steps. For the approximation, the iSVD
model with r=15 is used.

Table 2: Flow around a cylinder. Comparison, in terms of computational cost and memory, of the first and
remaining optimization cycles, for a number of approaches used to obtain the primal fields during the solution
of the adjoint equations.

Primal comp. time (s) Adjoint comp. time (s)

Approach 1st Cycle Cycle¿1 1st Cycle Cycle¿1 Memory (GB)

Full storage 350.00 77.50 378.00 76.00 11.39
Check/ing: 500 355.00 80.00 598.00 78.00 1.28
Check/ing: 15 350.00 77.50 1128.00 176.00 0.13
iSVD (r=15) 415.00 102.50 396.00 90.00 0.13
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5 Shape Optimization of a Centrifugal Pump

This test case pertains to the European Research Community On Flow, Turbulence and Combustion (ER-
COFTAC) centrifugal pump, first presented at an ERCOFTAC turbomachinery flow prediction workshop41.
Here, a simplified 2D model, figure 8a, comprising 7 impeller blades, 12 diffuser vanes and a 6% vaneless
radial gap, is used. The computational grid is block-structured, consists of ∼105 cells, with an average value
of y+∼35 for the first cell-centers off the wall and is illustrated in figure 8b. The rotational speed is 2000 rpm,
thus, we consider a period2 of 0.03s. The rotor tip speed is equal to Ut = 43.98ms , resulting in a Re∼6.5·106

and the k−ε turbulence model is used. A sliding grid interface42 is used for the interaction between the rotor
and the stator (Rotor-Stator Interface, RSI), SRSI ≡ SR ≡ SS , where, SRSI is the interface, SR and SS
the surfaces on the rotor and stator side, respectively. If the two ends of the RSI are treated as conforming
boundaries with opposite normals and taking into consideration that the flow fields on these two ends are
the same, developing the adjoint boundary conditions there leads to an equality of the adjoint fields across
the two ends of the RSI. Hence, the interpolation scheme used in the primal solver can also be used in the
adjoint one as well.

(a) (b)

Figure 8: Centrifugal pump. a) Geometry and control points of the volumetric B-splines parameterization. The
control points of the rotor and stator blades are depicted as red and green squares, respectively. b) Close-up
view of the computational grid for the initial geometry. The rotor and stator blades are represented with red
and green lines, respectively. The locations of the two probes, P1 (left) and P2 (right), used to monitor the
pressure and velocity, are shown.
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Figure 9: Centrifugal pump. Close-up view of the singular values for the pressure full-rank snapshot matrix.
The total energy content, eq. (28), is shown for a few selected ranks. The plot resulted after applying SVD to
the full storage matrix.

2The period is defined as a complete revolution of the rotor blades
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Figure 10: Centrifugal pump. Pressure computed by the unsteady solver (primal solution) at the two probe
locations (probe 1 on the left and probe 2 on the right), figure 8b, and its approximation by the iSVD model,
with r = 16 and r = 50.

The objective function to be maximized is the hydraulic efficiency; defined as

J2 = 1− H

P
(33)

H =
1

T

∫
T

∫
SI,O

ptvknk dSdt=
1

T

∫
T

∫
SI,O

HSk
I,O
nk dSdt

P =
1

T

∫
T

∫
SW

ωiNi dSdt=
1

T

∫
T

∫
SW

ωieijmdj (τmk − pδmk )nk dSdt

(34)

where the subscripts I,O refer to the inlet and outlet of the computational domain, respectively, pt is the
total pressure, ω is the angular velocity, N the shaft torque, d a position vector, measured from an origin
on the axis of rotation and eijk the Levi-Civita symbol.

Before considering the iSVD model for the retrieval of the primal fields in the adjoint solver, it is useful to
use eq. (28) to get the most appropriate value for r. Figure 9 shows that the first 16 modes hold an energy
content of E(16) = 99.95%, whereas E(50) = 99.99%, which only marginally improves the approximation.
Indeed, examining figures 10a and 10b verifies that 16 modes provide sufficient accuracy for the primal
fields retrieval. These figures correspond to the pressure reconstruction by the iSVD model, for r = 16 and
r = 50, at the points seen in figure 8b. Figure 11 illustrates the error in the velocity and pressure fields for 3
equidistant time instants over one period. It can be observed that the approximated fields accurately match
the primal ones in the computational grid of the rotor. In the computational domain of the stator, some
discrepancies can be observed.

For the optimization, a volumetric B-splines morpher19 is used to parameterize both the rotor and stator
blades as well as the computational grid; the corresponding control points are shown in figure 8a. For the
following results, 11 cores of an Intel Xeon CPU E5620 processor at 2.40 GHz are used. The primal PDEs
are solved for 5 periods (periods 1 to 5); during the solution of the adjoint PDEs, the first two periods
(periods 5 to 4) are used to discard the transient phase of the adjoint solution while sensitivity derivatives
are computed during period 3. A constant time-step of ∆t = 10−5s is used, thus, 9000 primal fields are
needed for the adjoint loop. Three models are considered; the checkpointing model with 3000 checkpoints
and the iSVD with r = 16 and r = 50. In figure 12, it can be seen that optimizations based on all three
models result in practically the same objective function value. The objective function values for the 13th cycle
read as 0.92782, 0.92787 and 0.92794 for the checkpointing and iSVD with r = 50 and r = 16, respectively.
Therefore, the difference of the iSVD model with r = 50 and r = 16 compared to the checkpointing exact
solution is approximately 0.006% and 0.013%, respectively. Overall, the optimization increased the efficiency
by ∼ 0.5%. The optimized design for the rotor blade is illustrated in figure 13a and the one for the stator
blade in figure 13b.

As discussed in the previous section, the iSVD model results in a considerable saving in computational
resources. This is reconfirmed in the present case as well. Using the iSVD with r = 16 leads to an overall
CPU cost of 70267s for 12 optimization cycles; note that 5188s are needed for the iSVD model computations,
predominantly for the multiplications in eqs. (25) and (27). When r = 50, the time needed for the same
optimization is 108835s, with iSVD taking considerably longer in this setup (38610s). Running the same
optimization using 3000 checkpoints (i.e. 1/3 of the total amount that would be needed for full-storage),
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Figure 11: Centrifugal pump. Three snapshots of the approximation errors in the velocity (left) and pressure
(right) fields, over a single period T =0.03sec. For the flow field reconstruction, the iSVD model with r=16 is
used.

leads to a CPU cost of 99039s. Therefore, in this test case, the iSVD model with r = 16 resulted in ∼29%
lower computational cost than checkpointing, with ∼0.55% of the memory requirements.
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Figure 13: Centrifugal pump. Comparison between the initial and optimized geometries for the a) rotor and
b) stator blades. It can be observed that the blades designed using the checkpointing and iSVD methods are,
practically, identical.

6 Conclusions - Discussion

This paper proposes an approximation model for the primal field reconstruction, needed while integrating
the unsteady adjoint equations backward in time, within an optimization loop; this model can be used as
an alternative to the widely employed checkpointing method. The approximation model is based on an
incremental Singular Value Decomposition of the primal solution, allowing for the on-line approximation
of the flow fields while resolving the primal equations. When a new instantaneous field of the primal
variables becomes available at each time-step, the incremental algorithm combines it to the (pre-)computed
decomposition. Moreover, the implemented algorithm considers a reduced-order decomposition. By doing
so, it results in a considerable reduction in computational memory and time. In the cylinder case, a max
rank of 15 was used, allowing the flow control optimization run to be only by ∼ 2.5% slower while using
just ∼ 10% of the memory that checkpoinitng (with 500 checkpoints) requires. When, the same memory
allocation is selected for both the iSVD and checkpointing, the latter is by 51.6% slower than the former. In
the centrifugal pump case, it was shown that a max rank of 16 is sufficient for the accurate shape optimization
of the rotor and stator blades. In this case, the iSVD model resulted in ∼29% less computational cost, while
using ∼0.55% of the memory that the selected checkpointing model (with 3000 checkpoints) uses. In both
test cases, the optimization loop produced practically identical results when based on the proposed iSVD
model and checkpointing. This tends to indicate that iSVD can efficiently support adjoint-based flow control
and shape optimization processes with reduced CPU cost and memory requirements. A reliable way for
a-priori choosing an appropriate iSVD rank remains an open challenge. It should be noted that the proposed
method, though applied in test cases which exhibit a periodic behaviour, does not require periodicity (in
contrast to Fourier series or spectral methods). Thus, the method can also be used in (purely) transient
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flows.
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