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Abstract

Two issues regarding the efficiency and robustness of the adjoint method applied to shape opti-
mization problems for steady and unsteady flows are being addressed in the present work. The first
one, deals with the convergence difficulties of steady adjoint solvers, for which the Recursive Pro-
jection Method (RPM), is implemented to stabilize its iterative solver. The second one addresses
the significant storage requirements of the flow solution in the unsteady adjoint method for which
a compression strategy is implemented based on the ZFP compression library. Both methods have
been implemented cojoined to the latest version of OpenFOAM’s adjointOptimisation library.

1 Introduction

The recent version of OpenFOAM, v2006, contains an optimization library (adjointOptimisation)
based on the continuous adjoint method, developed by the Parallel CFD & Optimization Unit
(PCOpt) of NTUA. The adjoint method, as a tool for computing the gradient of an objective
function in CFD-based shape optimization, has proven to be attractive for use in real-world appli-
cations as the cost for computing the gradient is independent of the number of design variables.
Next to the (primal) flow problem, an adjoint problem must be solved within each optimization
cycle.

Depending on the case, significant difficulties in the numerical solution of the adjoint problem, in
either steady or unsteady flows may appear. The system of PDEs is stiff and the adjoint transpose-
convection (ATC) term, emerging in the adjoint momentum equations, is often responsible for
divergence issues [12]. Widely used ”remedies” to this problem are the masking of the ATC or its
neglection close to the wall, either totally or selectively on a cell-by-cell basis using an appropriate
sensor [8, 12]. Another usual cause of stalling or divergence of the adjoint problem might be the
inadequate convergence of the preceding flow solver.

In addition to the above, in the adjoint optimization of unsteady flows, the adjoint equations
must be solved backwards in time, requiring the instantaneous primal fields to be available at
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each time-step of the adjoint solver; this noticeably increases storage requirements for industrial
applications. Various techniques have been proposed to deal with this, including the check-pointing
technique [4, 19] or the use of a lower order model [18].

Convergence difficulties of the adjoint equations compromise the robustness of the overall
method and getting the optimized solution becomes challenging. Among other, this is the case
for solving flow problems where mild unsteadiness is present using a steady solver. Eliminating
or smoothing the ATC term, as previousely mentioned, may lead to suboptimal results since er-
roneous sensitivity derivatives (SDs) might be computed. In this work, the Recursive Projection
Method (RPM) [15] is used to alleviate the aforementioned convergence difficulties of the primal
and adjoint equations governing incompressible steady flows.

On the other hand, to relax the storage requirements of the unsteady adjoint optimization, a
compressed full storage strategy is implemented and assessed. To this end, the ZFP compression
library [9, 11] is integrated within OpenFOAM as part of the adjointOptimisation library.

2 Flow and Adjoint PDEs

Equations governing the steady/unsteady flow of an incompressible fluid (primal problem), in
turbulent flows with the Spalart-Allmaras [16] one-equation turbulence model PDE and the Eikonal
equation to compute distances ∆ from the walls, are:

Rp=− ∂vj
∂xj

=0 (1a)
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∂vi
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+vj
∂vi
∂xj
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=0 , i = 1, 2(, 3) (1b)
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where vi are the velocity components, p is the pressure divided by the fluid density, τij =

(ν + νt)
(
∂vi
∂xj

+
∂vj
∂xi

)
, ν and νt are the bulk and eddy viscocity coefficients respectively and P (ν̃)

and D (ν̃) are the production and dissipation terms, respectively, [20]. The temporal terms ∂vi
∂t

and ∂ν̃
∂t , in eq. 1b and 1c respectively, are ommited for steady-state flows. Spalding’s law of the

wall is used in order to model the near wall behavior of the flow [17]. Coefficients in eq. 1c can be
found in [20].

The adjoint boundary conditions are omitted in the interest of space, since they also depend
on the flow boundary conditions (omitted too) and the objective function J of the problem under
consideration. In the present studies, all objective functions consist of boundary integrals and do
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not, thus, affect the field adjoint equations, which are [13]
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=0 (2a)
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where ui are the adjoint velocity components, q the adjoint pressure, ν̃a the adjoint to the turbu-

lence model variable, ταij = (ν+νt)
(
∂ui
∂xj

+
∂uj
∂xi

)
are the adjoint stresses and ∆α the adjoint distance

from the walls. Terms Cν̃ , CY and C∆ can be found in [20]. The temporal terms ∂ui
∂t and ∂ν̃a

∂t in
eq. 2b and 2c respectively are ommited for steady-state flows. The term uj

vj
xi

is the so-called ATC
term, the main culprit responsible for the divergence of the adjoint equations. The adjoint system
includes the differentiated Spalding’s law, as described in [13]. Both sets of equations are solved
numerically using the OpenFOAM library which makes use of a cell-centered finite volume scheme.
The SIMPLE and PISO algorithms were used to solve the steady and unsteady flow equations,
respectively. In all cases demonstrated within this work, the surfaces to be optimized and the grid
around them were parameterized with volumetric B-splines, the coordinates of the control points
of which stand for the design variables b.

3 The Recursive Projection Method (RPM)

The RPM is a stabilization method developed for the purpose of treating the convergence difficulties
of a fixed-point iteration scheme UUU (n+1) = F (UUU (n)), where UUU is the array of (primal or adjoint)
unknowns, n the iteration counter and F : RN → RN . The convergence of the scheme is determined
by the magnitudes of the eigenvalues of the Jacobian matrix FU . If all of them are less than unity,
the iterative scheme converges to a fixed-point solution. If one, or more, eigenvalues are greater
than unity, the scheme diverges. The RPM may assist in getting a converged solution, provided that
the number of eigenvalues that are larger than one (i.e. the dominant eigenvalues) is relatively
low, compared to the size of the system at hand. First, the method needs to approximate the
eigenvectors associated with the dominant eigenvalues, to be referred to as the diverging modes.
Once these are known, and suppose that they are m in total, a basis Z ∈ RN×m is formed,
spanned by these m eigenvectors and two subspaces of RN are defined: the unstable subspace P
and its orthogonal complement Q. Within the RPM algorithm, this basis is formed incrementally
throughout the solution of the primal/adjoint equations. Projection matrices, from RN onto these
subspaces, using the basis Z are defined as P = ZZT and Q = I − ZZT and the solution UUU is
decomposed into p = PUUU and q = QUUU , namely the unstable and stable parts respectively.

The core idea of the RPM is to use a Newton-Raphson method to solve for p while retaining
the standard solver for q. More details about its implementation and the method for constucting
Z in an efficient manner can be found in [15, 3]. The RPM has been developed as a shell code
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around the solvers of the adjointOptimisation library of OpenFOAM. Depending on the case, the
RPM could be applied to the two sets of equations, primal and adjoint, excluding eqs. 1d and 2d
which are solved decoupled from the rest.

4 Data Compression in Unsteady Adjoint Optimization

For the adjoint optimization of unsteady flows, the unsteady adjoint equations must be solved
backwards in time. The storage of the primal solution at all time-steps (full storage strategy)
can become memory intensive in real-world applications. The check-pointing technique [4, 19]
may efficiently relax the memory requirements of the adjoint computation, but at the expense
of computational overhead. This paper proposes a compressed full storage strategy, in which, at
all time-steps, the instantaneous primal fields are compressed (in a lossy manner) using the ZFP
[9, 10] compression package and then appended to the database. One of the purposes of this study
is to assess the lossy compression offset between data reduction and compression accuracy.

ZFP is a state-of-the-art compression package, developed in C/C++, to compress integer and
floating-point data stored in d-dimensional arrays, with d ∈ [1, 4]. These arrays are partitioned
into independent blocks of 4d values each. In each block, the data values are converted to a block-
floating-point representation and the resulting 63-bit signed integer values are decorrelated using
a near orthogonal transform. The transform coefficients are reordered in roughly monotonically
decreasing order and, then, losslessly compressed using embedded coding. A thorough analysis of
the ZFP algorithm can be found in [9, 10].

In this study, the data are compressed as 2D arrays using the fixed-precision mode of ZFP.
To do so, each data list of size N is (optionally) reordered using the ZFP-sorting technique, then
transformed into a 4×m matrix, where m=dN/4e and, finally, compressed. The primal fields that
must be stored are the cell-centered p, vi, the fluxes φ at the cell-faces and, for turbulent flows ν̃. νt
can be re-computed based on the decompressed ν̃ using an algebraic expression. In parallel runs, p,
vi and ν̃ along the subdomain interfaces are not stored and the corresponding values are restored
upon decompression based on the neighbouring cell-center values of the internal domain, whereas
in 2D cases, only the values corresponding to the two solution directions are stored. Each scalar
list, that holds the scalar or vector primal field values at the internal and the domain boundary,
is compressed independently and stored as binary data [6]. Hereafter, each of these lists will be
referred to simply as the ’list’. In view of the contradicting objectives of data reduction and
compression accuracy and since ZFP is designed for structured data whose values vary reasonably
smoothly, the ZFP-sorting variant in which the data are sorted in ascending or descending order
before compressed is tried first. Since the rearrangement is value-based, in each time-step, each field
must be sorted anew, increasing potentially the computational cost and the storage requirements
since extra indexing lists (different for each list) must also be stored. As a middle ground solution,
the same indexing lists are retained for a number of consecutive time-steps, exploiting the fact that,
to a large extent, the ordering of the sorted data stream is similar between adjacent time-steps.

To evaluate the reduction in memory size, two compression ratio metrics are considered. The
overall compression ratio CR0 is defined as the ratio of the memory size for storing all the primal
fields to be compressed and that of the compressed streams including the indexing lists. CR0

reflects the total reduction in memory footprint and helps concluding whether an unsteady adjoint
simulation fits into the available system memory or not. On the other hand, the ZFP compression
ratio CRZFP is the ratio of the memory size of all the primal fields to be compressed and that
of the compressed streams, reflecting the real performance of the ZFP algorithm. SDs (δJ/δb)
computed when the primal solution is stored uncompressed will be referred to as “SDs without

compression” and those
(
δJ

′
/δb

)
computed using the lossy compressed primal solution as “ZFP
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SDs”. To assess them, the peak-signal-to-noise-ratio (PSNR or Q) [9, 5, 1, 7] is used. For a discrete
uncompressed signal φ, standing for an array of N floating-point numbers, and its approximation
φ

′
, Q reads

Q
(
φ, φ

′
)

=10 log10

(φmax−φmin)
2

1
N

∑N
i=1

(
φi − φ

′
i

)2 (3)

The higher the value of the PSNR, the lower the overall error of the second dataset, indicating
compression of higher quality. Next to Q, the angle θ between δJ/δb and δJ

′
/δb vectors in the

multidimensional space and the difference ∆ (δJ/δb)

θ=cos−1
δJ
δb ·

δJ
′

δb∥∥ δJ
δb

∥∥∥∥∥ δJ ′

δb

∥∥∥ , ∆

(
δJ

δb

)
=

∥∥∥ δJδb− δJ
′

δb

∥∥∥∥∥ δJ
δb

∥∥ (4)

are also computed.

5 Shape Optimization of a Cylinder in a Periodic Flow

The flow around a circular cylinder is periodic beyond Re ≈ 47 [2]. Thus, when attempting to
optimize the initially cylindrical shape, for any objective function J , it would be necessary to use
an unsteady simulation of the periodic flow and integrate the objective function in time. Next to
this, an unsteady adjoint formulation would have been necessary. Considering that the selected
objective is to reduce the (mean) drag exerted on the surface, the optimization is expected to
minimize the frontal area of the body, squeezing it in the transversal direction as a means to
suppress the vortex shedding. By doing so, after a certain point, the suppresion of vortices would
lead to a steady flow around the optimized shape. Therefore, one might start the optimization
with a steady solver and treat any convergence difficulties that may occur (using the RPM in this
study).

In the selected demo case, Re = 90 and a grid with 12880 cells was used. Although the flow
was solved as purely 2D, OpenFOAM uses a 3D grid with one cell in the spanwise direction and
the volumetric B-splines control lattice consisted of 11 × 10 × 3 CPs. The objective function J is
the time-averaged (averaged over a period, in case of vortex shedding) drag exerted on the solid
wall. An equality constraint on the body area/volume (to be kept equal to its initial value) was
imposed using the projection technique of [14].

When solving the primal equations, on the baseline geometry, using a steady solver and without
the RPM, the residuals ended up in limit cycle oscillations. The RPM made them converge
adequately and the so-computed primal fields were used to solve the adjoint equations. When the
RPM was not used for the adjoint equations, these failed to converge. Before using the RPM on
the adjoint solver, a couple of simple, yet widely used, ”tricks” were also tried. The ATC term was
explicitly zeroed out on the cylinder patch, however, the adjoint equations could not yet converge.
It was then cancelled completely, in which case the adjoint equations converged. Finally, the RPM
was used to converge the adjoint equations, without arbitrarily altering the adjoint equations.
Since the complete set of adjoint equations is solved herein, these SDs are considered to be the
correct ones and are compared with finite differences (FD) in fig. 1.

The shape optimization loop discussed below used the RPM during the numerical solution of
both the steady primal and adjoint equations. Apart from the first optimization cycle, both sets of
equations could converge without ”assistance’, however, the RPM remained active and accelerated
convergence by identifying slowly-decaying modes and adding them to Z. The convergence of both
sets of equations can be seen in fig. 2. 15 cycles were performed in total before reaching a local
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Figure 1: 2D flow around a cylinder. Computed SDs w.r.t. the x (a) and y (b) coordinates of the
CPs using the adjoint method (blue) are compared against reference FD (red). The RPM was
used to stabilize both the primal and adjoint solver in the case of adjoint and to make the primal
equations converge when computing SDs with FD for every movement of the CPs.

minimum and, thereafter, no further reduction was possible. Streamlines and the pressure and
velocity magnitude fields, computed with the baseline and optimized shapes are shown in fig. 3.
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Figure 2: 2D flow around a cylinder. Residuals of the primal (left) and adjoint (right) pressure
equations. Red color indicates residuals without implementing the RPM for the primal solution
(left) and, using the RPM on the primal but not the adjoint equations (right). Vertical black lines
distinguish between successive optimization cycles. On the second optimization cycle, the primal
equations initially converge, then the RPM makes a bad approximation to the unstable subspace
leading to divergence and, after a number of iterations, the basis is augmented again leading to
convergence again.

The flows around the initial and optimized geometries were recomputed using an unsteady
solver, with the PISO algorithm for which a constant time-step of ∆t=10−3s was used. Since the
flow period around the initial geometry (cylinder) is T ∼ 0.68s,∼ 680 time-steps per period were
performed. On the initial geometry, the RPM-assisted steady solver computed J = 1.17 and the
unsteady solver a mean J = 1.41. For the shape produced by the steady optimization, J = 0.769,
whereas its unsteady analysis gave J = 0.771, clearly indicating that the flow around the optimized
shape had become steady.

Finally, the shape optimization was performed anew, this time using an unsteady adjoint. The
evolution of the J value is plotted in fig. 4a. Although the steady and unsteady optimization runs
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Figure 3: 2D flow around a cylinder. Streamlines around the baseline and optimized geometries,
coloured based on the pressure (left) and velocity magnitude fields (right). The optimization
eliminated the vortices behind the body and reduced the adverse pressure gradient.

do not lead to identical shapes, fig. 4b, the drag is practically the same.
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Figure 4: 2D flow around a cylinder. (a) Descent of J using a steady solver assisted by the RPM
(red) and an unsteady one (blue). (b) Comparison between the initial and optimized cylinder
shapes produced by the steady and unsteady optimizations.

To reduce the memory footprint of the unsteady adjoint, the compressed full storage strategy
was afterwards implemented. Based on table 1, the use of lossless compression resulted to a
small compression ratio (CR0 = 1.08), whereas the additional cost due to the fields’ compression
and decompression was ∼ 1.2 times the cost of the optimization cycle when the data were stored
uncompressed. On the other hand, the lossy compression reduced the data size by more than one
order of magnitude, increasing the cost by only ∼35%. The indexing lists were updated every 50
time-steps, their compression ratio was equal to ∼1.7 and their total compressed size corresponds
to 6 to 11% of the total compressed data in memory.

The correlation of the user-defined accuracy in bits with the overall compression ratio and
the PSNR of the SDs is shown in fig. 5, whereas the uncompressed and absolute error of the
reconstructed vi magnitude is shown in fig. 6. The convergence of the objective function and
the optimal shapes after 14 optimization cycles are shown in fig. 7, whereas the SDs without
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Table 1: 2D flow around a cylinder, CR0 and CRZFP , uncompressed and compressed size of the
primal solution at the first optimization cycle. The indexing lists were updated every 50 time-steps,
their CR was equal to ∼1.7 and their total compressed size corresponds to 6 to 11% of the total
compressed data in memory.

Compression
CPU
cost

Precision
p/φ/vi

(bits)
CR0 CRZFP

Uncomp.
/Comp.

size (MB)

SDs

Q(dB) θ(deg) ∆
(
δJ
δb

) Wrong
signs
/total

no 100%

lossless 215.9% 1.09

lossy 136.5%

12/12/12 8.59 9.14 1092/127.1 72.14 0.24 0.43% 3/144

10/10/10 11.40 12.38 1092/95.8 59.00 1.07 1.94% 13/144

08/08/08 16.14 18.19 1092/67.7 38.09 12.43 21.53% 28/144

compression and the ZFP SDs of the first cycle are shown in fig. 8.
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Figure 5: 2D flow around a cylinder. Left: CR0 and CRZFP w.r.t. to the indexing lists’ renewal
rate using 10 bits of precision for all fields; right: CR0 and the PSNR of the SDs at the first
optimization cycle w.r.t. the compression’s precision in bits. The indexing lists were updated every
50 time-steps.

Figure 6: 2D flow around a cylinder. Left: uncompressed ‖vi‖; right: absolute error (reconstructed
- uncompressed) of ‖vi‖ at t=T/2 of the first optimization cycle. The PSNR value of the vi field
was equal to 51.52dB. Compression performed using 10 bits of precision for all fields.
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Figure 8: 2D flow around a cylinder, SDs without compression at the first optimization cycle,
sorted in descending order for visualization purposes, paired with the corresponding ZFP SDs.
Zero-valued SDs are omitted. Compression performed using 10 bits of precision for all fields.
Plots 8b, 8c and 8d are close up views of 8a. The PSNR of the SDs is equal to 59.0 dB and
∆(δJ/δb)=1.94%.

6 Closure - Other Applications

In section 5, shape optimization was performed in a typical flow problem with the goal of de-
mostrating the implementation of the RPM (as a stabilization and, occassionally, acceleration
method) and a compressed full storage strategy based on the ZFP-sorting variant of the ZFP com-
pression package to reduce the memory requirements of the backwards in time integrated unsteady
adjoint. The RPM was used to overcome the divergence of the adjoint equations in a case with
an unsteady flow. Both the primal and adjoint equations were converged using the RPM and the
results of the optimization were compared with the solutions provided by an unsteady solver. In
a case in which the optimization is expected to suppress the flow unsteadiness, it is reasonable to
use a steady solver and numerically treat any convergence difficulties even though the original flow
problem would have required an unsteady solver. The compressed full storage strategy was im-
plemented both in its lossless mode, which proved non profitable to support the unsteady adjoint,
and in its error-bounded lossy mode, which successfully reduced the memory requirements of the
unsteady adjoint by more than one order of magnitude at a small computational overhead, while
the compression error does not affect the outcome of the optimization.

For the sake of completeness, two more cases, which are much closer to real-world applications,
are presented (fig. 9 and fig. 10) and discussed in the corresponding captions.
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Figure 9: Motorbike tutorial case of the OpenFOAM library. The goal of the optimization is
to minimize the whole drag by controlling the shape of the motorbike’s fairing. The 3D grid
consisted of approximately 106 cells and the shape was parameterized with volumetric B-Splines
using a control lattice of 7× 7× 7 CPs, 216 of which are active, yielding a total of 216× 3 = 648
design variables. The turbulent flow and exhibited unsteadiness so that the steady-state flow solver
was unable to converge leading to stagnated, oscillating residuals. In this study, a less intrusive
treatment to the ATC term was used, compared to the one used in the tutorial and, consequently,
the adjoint equations diverged. The RPM was used to stabilize the adjoint solver and its effect
can be seen on the left where, after its activation, the adjoint equations converged. The divergence
on the baseline geometry is due to 6 eigenvalues residing outside the unit circle. In all subsequent
optimization cycles, the use of the RPM revealed eigenvalues with moduli greater than unity
causing divergence of the adjoint equations in all subsequent optimization cycles, rendering its use
mandatory. The cumulative normal displacement field computed on the final geometry is plotted
on the right. Red/blue color indicates the points on the fairing surface that need to be pushed
outwards/ pulled inwards in order for the drag to decrease. Given that the primal equations did
not fully converge and, without the RPM, the adjoint solver diverged, the use of the RPM allowed
for the optimization to continue.
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Figure 10: 3D S-bend, unsteady adjoint optimization. The unsteady flow is due to a periodic
inlet boundary condition for vi with Re=∼8500 and∼104 (constant) time-steps per period. The
grid having∼92000 hexahedra was parameterized using volumetric B-Splines with 360 active CPs.
Target of the optimization was the minimization of the total pressure losses between the inlet and
outlet boundaries of the fluid domain. Left: J was reduced by ∼46% after 13 optimization cycles
and its convergence was almost unaffected by the lossy compression error; right: initial (top) and
optimized (bottom) shape of the duct.
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Table 2: 3D S-bend: for the lossy compression, the indexing lists were updated every 50 time-steps
for the first case and every 100 for the second one; their CR was equal to ∼ 1.6 and their total
compressed size corresponds to 8 to 10% of the total compressed data in memory. The ZFP SDs
were evaluated at the first optimization cycle. A maximum CR0 = 25.56 was achieved without
affecting the outcome of the optimization.

Compression
CPU
cost

Precision
p/φ/vi/ν̃
(bits)

CR0

Uncomp.
/Comp.

size (GB)

SDs

Q(dB) θ(deg) ∆
(
δJ
δb

) Wrong
signs /total

no 100%

lossless 149% 1.12

lossy 136%
12/12/12/12 15.99 190.7/11.9 84.14 0.07 0.14% 2/1080

10/09/09/10 25.56 190.7/7.46 59.54 1.26 2.24% 39/1080

The RPM was used to deal primarily with the convergence difficulties of the adjoint equations
due to the ATC term. Shape optimization of a motorbike’s fairing fig. 9 for drag minimization
was performed. In this case the primal equations could not fully converge and the adjoint solver
diverged. Even though the RPM could not overcome the convergence difficulties of the primal
solver it was successfull in stabilizing the adjoint one and the optimization loop, overall. Overall,
the RPM has been succesful in stabilizing the steady adjoint solver, provided that the diverging
modes are small in number. Indeed, in both cases discussed herein, divergence occured due to the
appearance of 2 to 6 diverging modes.

The compressed full storage strategy, based on the ZFP algorithm, was implemented on a 3D
S-bend duct, showing that lossless compression is expensive and ineffective in data reduction, in
contrast to the lossy compression, which can achieve a data reduction by more than an order of
magnitude at a small/affordable computational overhead (∼ 35%), table 2. The achieved com-
pression ratios ranging between 16 and 25, lead to acceptable errors in the SDs values, so that
the convergence of the objective function and the optimal shapes were almost unaffected by the
compression error, fig. 10.
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