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Abstract In this paper, an unsteady aerodynamic/aeroacoustic optimization frame-
work is presented. This is based on the continuous adjointmethod to a hybrid acoustic
prediction tool, in which the near-field flow solution results from an unsteady CFD
simulation while the acoustic propagation to far-field makes use of an acoustic anal-
ogy. The CFD simulation is performed using the in-house GPU-enabled URANS
equations’ solver for which a continuous adjoint solver is available. The noise pre-
diction tool and its adjoint are developed based on the permeable version of the
Ffowcs Williams and Hawkings (FW-H) analogy, solved in the frequency domain.
Its implementation is verified w.r.t. the analytical solution of the sound field from a
monopole source in uniform flow. Then, the accuracy of the hybrid solver is verified
by comparing the sound directivity computed by the FW-H analogy with that of
a CFD run, for a 2D pitching airfoil in a subsonic inviscid flow. The accuracy of
the sensitivities computed using the unsteady adjoint solver is verified w.r.t. those
computed by finite differences. Finally, the programmed software is used to optimize
the shape of the pitching airfoil, aiming at min. noise with an equality constraint for
the lift.

1 Introduction

During the last decades, there have been tight regulations regarding noise pollution
which underline the importance of an effective noise source mitigation strategy. For
example, based on the Flightpath 2050 report of the European Commission [1], it is
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mandated to reduce the perceived noise by 65% from its level in 2000, by the year
2050. This means designers must investigate innovative methods to further improve
the process of designing quieter and more efficient systems. Among the various
existing methods performing numerical optimization, adjoint methods [2, 3], are
advantageous since their computational cost is independent of the number of design
variables.

Although adjoint methods have a strong background in aerodynamic shape
optimization [4], they are relatively new in the field of aeroacoustic optimiza-
tion [5, 6, 7, 8, 9, 10, 11, 12]. In [5], a steady continuous adjoint method was
presented for the reduction of the noise perceived by the car driver due to its side
mirror using a turbulence-based surrogate objective function. With this model, the
omission of the adjoint to the turbulence model equations would merely lead to
zero sensitivities, since the objective depends only on turbulence. In [6], a discrete
adjoint to a hybrid URANS-FW-H solver was developed for inverse shape design
and turbulent blunt trailing edge noise reduction. Recently, the same method has
been used to perform shape optimization to reduce the far-field noise from a pitching
airfoil in an inviscid flow [7], a 2D wing-flap in laminar flow [8], a rod-airfoil in
turbulent flow [9] and a jet-flap interaction in turbulent flow [10]. In these works
[6, 7, 8, 9, 10], discrete adjoint was used with the help of automatic differentiation.
Regarding continuous adjoint, the permeable FW-H formula is solved using a finite
element method, leading to the necessary adjoint conditions at the interface between
the Computational Fluid Dynamics (CFD) and Computational Aeroacoustics (CAA)
domains [11]. The continuous adjoint for a hybrid solver for incompressible flow
models and the Kirchhoff integral, for automotive applications, can also be found
in the literature [12]. To the author’s knowledge, the continuous adjoint method to
compressible flows based on the FW-H analogy appears, for the first time, in this
paper.

For the first verification of the method presented in this paper, the CFD model is
restricted to the Euler equations. A hybrid aeroacoustic noise prediction tool is built
on the in-house GPU-enabled flow solver [13, 14], by additionally implementing the
FW-H analogy. For its verification, numerical results are compared with the ana-
lytical solution of a monopole sound source in a flow-stream, and CFD results for
a 2D pitching isolated airfoil. Then, the continuous adjoint method is verified and
used to perform shape optimization, with an aeroacoustic objective function and an
aerodynamic equality constraint.

2 Governing Equations

2.1 Flow Equations

The 2D unsteady inviscid flow equations of a compressible fluid are discretized using
a dual-time steppingmethod, being second-order accurate in time. Spatial discretiza-
tion is based on vertex-centered finite volume. Convective fluxes are computed using
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the upwind Roe scheme, with second-order accuracy in space. The discretization
of the governing equations in the pitching airfoil case takes the geometrical conser-
vation law into account. Along the far-field boundary, a non-reflecting condition is
applied [15].

2.2 Noise prediction using the FW-H analogy

Based on the assumption that sound is perceived as pressure fluctuations, acoustic
noise can be computed using CFD simulations. However, a purely CFD-based ap-
proach may become very expensive when the acoustic noise at a far-field location
is of interest, because the fine CFD mesh should be extended far away, up to the
receiver’s location. The combination of CFD methods and acoustic analogies rely
upon the computationally cheaper wave equation. Such methods are usually referred
to as hybridmethods and their origin can be traced back to the Lighthill analogy [16] ;
this was later extended by Curle [17] to account for the presence of stationary solid
surface and Ffowcs Williams and Hawkings to include moving surfaces [18]. In this
paper, the permeable version of FW-H analogy is used. The resulting wave equation,
a.k.a. the FW-H equation, reads:(
∂2

∂t2 − c2
∞

∂2

∂xi∂xi

)
(H( f )p′) =

∂

∂t
(Qδ( f )) −

∂

∂xi
(Fiδ( f )) +

∂2

∂xi∂xj
(H( f )Ti j) (1)

and for bodies in motion (such as a pitching airfoil in uniform flow), the Galilean
transformation can be used to transform Eq. 1 into a relative system associated with
the moving body, as follows [19] :

(
∂2

∂t2 + υ∞iυ∞ j
∂2

∂xi∂x j
+ 2υ∞i

∂2

∂xi∂t
− c2
∞

∂2

∂xi∂xi

)
(H( f )p′) (2)

= ∂
∂t (Qδ( f )) − ∂

∂xi
(Fiδ( f )) + ∂2

∂xi∂x j
(H( f )Ti j)

where f is the signed distance from the interface of the CFD and CAA domains,
as shown in fig.1. This interface will be referred to as the FW-H surface. The FW-
H surface lays inside the CFD domain though far away from the body in order
for this not to be affected by changes in the body shape to be designed. H is the
Heaviside function, δ is the Dirac delta function and c∞ is the free-stream sound
speed.Q(~x, t) = (ρυi−ρ∞υ∞i)ni , Fi(~x, t) = (ρ(υi−2υ∞i)+ρ∞υ∞iυ∞ j+pδi j−τi j)nj

and Ti j(~x, t) = ρ(υi − υ∞i)(υj − υ∞ j) + (p − c2
∞ρ)δi j are known as the monopole,

dipole and quadrupole source terms, respectively, defined along the FW-H surface.
ρ = ρ∞ + ρ

′, p = p∞ + p′ and υi = υ∞i + υ
′
i are local density, pressure and velocity

components, respectively, and τi j is the viscous stress tensor. Free-stream quantities
are indexed by∞. ~n is the unit normal vector to the FW-H surface pointing towards
the CAA domain. δi j is the Kronecker delta.
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For 3D problems, integral solutions to the FW-H equation are available in the
time domain. However, in 2D problems, to avoid tail effects, an infinitely long time
integration range must be used. To avoid this, Eq. 2 is transformed into the frequency
domain using the Fourier transformation as follows:

(
∂2

∂xi∂xi
+ k2 − 2iM∞ik ∂

∂xi
− M∞iM∞ j

∂2

∂xi∂x j

)
(H( f )p̂′) (3)

= −iωQ̂δ( f ) + ∂
∂xi
(F̂iδ( f )) − ∂2

∂xi∂x j
(H( f )T̂i j)

where the hat symbol (ˆ) denotes frequency domain variables andω is the frequency.
M∞i = υ∞i/c∞ and the wave number is k = ω/c∞. Eq. 3 is solved by convolving it
with the appropriate Green function. Then, the pressure fluctuation in the frequency
domain, at the receiver’s location, results from:

H( f )p̂′(~xo, ω) = −
∮
f=0

iωQ̂(~xs, ω)Ĝ(~xo, ~xs, ω)ds (4)

−
∮
f=0

F̂i(~xs, ω)
∂Ĝ(~xo,~xs,ω)

∂xs i
ds −

∮
f>0

T̂i j(~xs, ω)
∂2Ĝ(~xo,~xs,ω)
∂xs i∂xs j

dV

where ~xo and ~xs are the receiver and sources’ (sources are located on the FW-H
surface) positions, respectively. Ĝ(~xo, ~xs, ω) is the 2D Green function for subsonic
flows in the frequency domain, which is defined as:

Ĝ(~xo, ~xs, ω) = i
4β exp(iM∞k x̄1/β

2)H(2)0

(
k
β2

√
x̄2

1 + β
2 x̄2

2

)
(5)

x̄1 = (xo1 − xs1) cos θ + (xo2 − xs2) sin θ (6)

x̄2 = −(xo1 − xs1) sin θ + (xo2 − xs2) cos θ (7)

In the above equations, θ is the free-stream flow angle, such that tan θ = υ∞2/υ∞1,
M∞ is the free-streamMach number and the Prandtl-Glauert factor is β =

√
1 − M2

∞.
H(2)0 stands for Hankel function of the second kind of zero order.

Fig. 1 Schematic of per-
meable FW-H surface. The
dashed-line shows the inter-
face between the CFD and
CAA domains.
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For the low-speed cases this paper is dealing with, the contribution of quadrupole
terms can be neglected, avoiding thus the computation of a volume integral. The
noise predictionmodule is combinedwith the in-house flow solver as follows: first, an
unsteady flow solution is performed in the CFD domain and, at the end of each time
step, source terms Q and Fi are computed over the FW-H surface. Upon completion
of the unsteady CFD simulation, the mean value of each source is subtracted from
instantaneous values since the mean value corresponds to zero frequency that does
not generate noise. Since it is hard to achieve pure periodic results, aHanningwindow
is applied to the sources to eliminate discontinuity between the first and last points,
followed by a Fourier transform. At the end, pressure fluctuations in the frequency
domain are computed using Eq. 4.

3 Formulation of the continuous adjoint method

In aerodynamic shape optimization, adjoint methods compute the gradient of an
objective function w.r.t. the design variables. The objective functions, such as the
lift, drag etc. are integral quantities defined along the solid boundaries and contribute
to either the adjoint boundary conditions or the adjoint sensitivities. On the other
hand, in aeroacoustic problems, the objective function is defined at the remote
receiver’s location, ~xo, and affects neither the adjoint boundary conditions nor the
sensitivities; instead this contributes to the adjoint equations in the form of source
terms applied along the FW-H surface. An objective function J, originally written
as a time integral of p′, can also be expressed in the frequency domain as:

J =
∫
ω

| p̂′(~xo, ω)|dω (8)

where p̂′(~xo, ω) is the outcome of Eq. 4 and | p̂′ | =
√

p̂′2Re + p̂′2Im, where subscripts
Re and Im refer to the real and imaginary parts of complex variables. Here, the
integration range is over the whole frequency domain.

To formulate the continuous adjoint problem, an augmented objective function
is defined as Faug = J +

∫
T

∫
Ω

ψnRndΩdt, where n = 1, 4 and ψn, Rn, Ω and T are

the adjoint variable fields, the residuals of the unsteady Euler equations, the CFD
domain and the solution period, respectively. By differentiating Faug w.r.t. the design
variables bn and setting the multipliers of the variations in the flow variables to zero,
the unsteady adjoint equations are obtained as:

−
∂ψm

∂t − Anmk
∂ψn

∂xk
+ SFW−Hmδ( f ) = 0 (9)

where Anmk =
δgnk

δUm
. Um and gnk are the conservative flow variables and invis-

cid fluxes, respectively. The adjoint boundary condition along the solid walls is
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ψm+1nwm + (u
grid
m nwm )ψ4 = 0, where ~nw is the unit normal to the wall and ugrid

m

is the grid velocity at each node on the pitching airfoil. bn are the coordinates of
the control points of the shape parameterization method which is based on Bezier
polynomials.

In Eq. 9, SFW−Hm is a term that includes contributions from the FW-H analogy
to the adjoint equations. To find this term, Eq. 8 is differentiated w.r.t. bn, as follows:

δJ
δbn
=

∫
ω

1
| p̂′ |

(
p̂′Re

δ p̂′Re
δbn

)
dω +

∫
ω

1
| p̂′ |

(
p̂′Im

δ p̂′Im
δbn

)
dω (10)

For the sake of simplicity, starting from Eq. 10, p̂′(~xo, ω), Ĝ(~xo, ~xs, ω), F̂k(~xs, ω)
and Q̂(~xs, ω) are shorted to p̂′, Ĝ, F̂k and Q̂, respectively. The real and imaginary part
of the p̂′ can be found based on Eq. 4. Since the grid does not change at the FW-H
surface location during the optimization, the derivatives of the Green function and
its spatial derivatives as well as those of the surface element ds, w.r.t. bn are zero.
So, the variation of the real and imaginary part of p̂′ w.r.t. bn read:

δ p̂′Re
δbn
=−

∮
f=0

[(
δF̂k

δbn

)
Re

(
δĜ
δxsk

)
Re
−

(
δF̂k

δbn

)
Im

(
δĜ
δxsk

)
Im

]
ds (11)

+
∮
f=0

ω
[(

δQ̂
δbn

)
Re

ĜIm +
(
δQ̂
δbn

)
Im

ĜRe

]
ds

and
δ p̂′Im
δbn
=−

∮
f=0

[(
δF̂k

δbn

)
Re

(
δĜ
δxsk

)
Im
+

(
δF̂k

δbn

)
Im

(
δĜ
δxsk

)
Re

]
ds (12)

−
∮
f=0

[
ω

((
δQ̂
δbn

)
Re

ĜRe −
(
δQ̂
δbn

)
Im

ĜIm

)]
ds

By introducing Eqs. 11 and 12 in Eq. 10, the derivatives of J become:

δJ
δbn
= −

∫
ω

∮
f=0

[
1
| p̂′ |

(
p̂′Re

(
δĜ
δxsk

)
Re
+ p̂′Im

(
δĜ
δxsk

)
Im

) (
δF̂k

δbn

)
Re

]
dsdω (13)

−
∫
ω

∮
f=0

[
1
| p̂′ |

(
p̂′Im

(
δĜ
δxsk

)
Re
− p̂′Re

(
δĜ
δxsk

)
Im

) (
δF̂k

δbn

)
Im

]
dsdω

−
∫
ω

∮
f=0

ω 1
| p̂′ |

[(
−p̂′ReĜIm + p̂′ImĜRe

) (
δQ̂
δbn

)
Re

]
dsdω

−
∫
ω

∮
f=0

ω 1
| p̂′ |

[(
p̂′ReĜRe − p̂′ImĜIm

) (
δQ̂
δbn

)
Im

]
dsdω

In Eq. 13, δF̂k

δbn
and δQ̂

δbn
include derivatives of the flow variables w.r.t. the design

variables in the frequency domain. However, these variations should be expressed in
the time domain for them to contribute to the adjoint flow equations. To do so, the
Fourier transformation needs to be included in Eq. 13, by considering the subtraction
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of the time-averaged value of Fk and Q from their instantaneous values, along with
a multiplication with the Hanning window H(t) before transforming them into the
frequency domain. Hence, the Fourier transformation for an arbitrary signal s(t) is
performed as follows:

ŝ(ω) =
1
T

∫
T

H(t)
[
s(t) −

1
T

∫
T

s(t)dt
]
e−2iπωtdt (14)

Including Eq. 14 into Eq. 13 and permuting time and frequency integrals, δJ
δbn

reads:

δJ
δbn
= − 1

T

∫
T

∮
f=0

[
(Ak + Bk)

δFk

δbn
+ (C + D) δQδbn

]
dsdt (15)

where

Ak =
∫
ω

(
p̂′Re
| p̂′ |

(
∂Ĝ
∂xsk

)
Re
+

p̂′Im
| p̂′ |

(
∂Ĝ
∂xsk

)
Im

)
(H(t) cos(2πωt) − Hc(ω))dω (16)

Bk =
∫
ω

(
p̂′Re
| p̂′ |

(
∂Ĝ
∂xsk

)
Im
+

p̂′Im
| p̂′ |

(
∂Ĝ
∂xsk

)
Re

)
(H(t) sin(2πωt) − Hs(ω))dω (17)

C =
∫
ω

(
p̂′Im
| p̂′ | ĜRe −

p̂′Re
| p̂′ | ĜIm

)
(H(t) cos(2πωt) − Hc(ω))dω (18)

D =
∫
ω

(
p̂′Im
| p̂′ | ĜIm −

p̂′Re
| p̂′ | ĜRe

)
(H(t) sin(2πωt) − Hs(ω))dω (19)

Hc(ω) =
1
T

∫
T

H(t)cos(2πωt)dt (20)

Hs(ω) =
1
T

∫
T

H(t)sin(2πωt)dt (21)

Equation 15 contains a double time/surface integral over the FW-H surface. There-
fore, in order to eliminate the derivatives of the flow variables w.r.t. bn, this equation
is taken into account as source terms (SFW−Hm in Eq. 9) at the cells lying along the
FW-H surface, when solving the adjoint equations. Since the in-house code solves
for the conservative variables, Fk andQ must be expressed in terms of these variables
before differentiation, yielding:

δFk

δbn
= δk j(γ − 1)

[
|~υ |2

2
δU1
δbn
− (υj

δUj+1
δbn
) +

δU4
δbn

]
nj (22)

+(υk − 2υ∞k)
[
δUj+1
δbn

nj

]
+ (υjnj)

δUk+1
δbn
− (υjnj)υk

δU1
δbn

δQ
δbn
= nk

δUk+1
δbn

(23)

where k = 1, 2 and j = 1, 2 are the Cartesian directions; γ is the heat capacity
ratio. Since the FW-H surface remains invariant during the optimization, for the
FW-H surface nodes, total and partial derivatives of flow variable are identical or
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δ
δbn
= ∂

∂bn
. Using Eqs. 22 and 23 in Eq. 15, replacing total with partial derivatives

and canceling all derivatives of the flow variables w.r.t. bn, the SFW−Hm term reads:

SFW−H =


{
(γ−1)

2 |υ |
2nk − (υini)υk

}
(Ak + Bk)

{(1−γ)υ1nk+(υk−2υ∞k)n1}(Ak+Bk)+(υini)(A1+B1)+n1(C+D)
{(1−γ)υ2nk+(υk−2υ∞k)n2}(Ak+Bk)+(υini)(A2+B2)+n2(C+D)

(γ − 1)nk(Ak + Bk)


(24)

and the J sensitivities are computed as follows:

δJ
δbn
=−

∫
T

∫
Ω

ψi
∂Ui

∂xk
∂
∂t (

δxk
δbn
)dΩdt−

∫
T

∫
Ω

ψi
∂gik
∂xe

∂
∂xk
(
δxe
δbn
)dΩdt −

∫
T

∫
s

ψigik
δnk
δbn

dsdt (25)

where s is the solid wall which in this case is the airfoil surface.
A single cycle of the CFD-CAA optimization framework is shown in fig. 2.

CFD solution and
computation of
Q & Fi on the
FW-H surface

Fourier
transform
of Q & Fi

FW-H
integral, Eq. 4

Objective
function, Eq. 8

Adjoint to
FW-H integral
(computation
of SFW−Hm ,

Eq. 24)

Solution of
the adjoint
equations,

Eq. 9

Computation
of the

gradient of
J, Eq. 25

Solution of the adjoint
eqs for the constraint

Updating the
design variables
by considering
the constraints

(gradient projection &
deferred correction)

Computation of
the gradient of
the constraint

Fig. 2 A single cycle of the CFD-CAA Optimization. Primal and adjoint workflow in blue and
orange, respectively.

3.1 Constraint imposition methods

In the constrained case, a gradient projection method with an additional correction
term is used to impose an equality constraint on the lift force. Although gradient
projection methods are very effective when the constraint function is linear w.r.t. bn,
they lack efficiency otherwise. In case of a non-linear constraint, the optimization
is not able to follow the constraint line and gradually deviates from it. To overcome
this, the standard gradient projection method is enhanced with a deferred correction.
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Let J be the objective function to beminimized subjected to the constraint L = L1.
The design variables ~b are updated using a constant step η. Instead of updating each
design variable by adding

δ~bprojected = −η
[
~∇J − (~∇J · ~∇L)~∇L∗

]
(26)

where ~∇ = δ
δbi

and ~∇L∗ = ~∇L���~∇L��� , an additional correction is applied as follows:

δ~bcorrected = δ~bprojected − γ~∇L∗ (27)

where γ = ∆L
~∇L ·~∇L∗

, and ∆L is the difference between the current and the threshold
value of the constraint function.

4 Verification of the hybrid CFD/FW-H solver

This section is focusing on the verification of the coupled CFD-CAA solver, given
that the background CFD tool has adequately been validated in the past [13, 14].

4.1 Monopole in uniform flow

In the first case, results of the FW-H integral are compared to a well-known analytical
solution of the sound field generated by a monopole source in a uniform flow. The
stationary monopole source is located at the origin of the coordinate system and
there is a uniform flow υ∞ along the +x direction. The complex velocity potential of
the case is [19] :

φ(~xo, ~xs, ω) =
Ai
4β

exp i(ωt + M∞k x̄1/β
2)H(2)0

(
k
β2

√
x̄2

1 + β
2 x̄2

2

)
(28)

where x̄1 and x̄2 are the same as in Eq. 6 and 7. The perturbation field of flow
variables and variables needed to compute the Fi and Q in the FW-H integral are
obtained from the real parts of p′ = −ρ0(

∂φ
∂t + υ∞1

∂φ
∂x ), u′ = ∇φ and ρ′ = p′/c0

2.
In this case, M∞ = 0.6, A = 0.02 m2/s and ω = 0.162 rad/s. Fig. 3 compares the
directivity plot at the radius of R = 500m and fig. 4 shows the time history of p′ at a
receiver located at (500m, 0m). The results of the FW-H integral exactly match the
analytical solution. This is a convincing verification of the implementation of the 2D
FW-H formulation, in problems with a uniform mean flow.
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Fig. 3 Monopole source in
uniform flow with M∞ = 0.6.
Comparison of the directivity
plots at R = 500m.

Fig. 4 Monopole source in
uniform flow with M∞ = 0.6.
Comparison of the time
history of pressure fluctuation
within a period, for a receiver
located at (500m, 0m).

4.2 Pitching airfoil in inviscid flow

In the second case, a comparison between the hybrid solver and the outcome of a
pure CFD simulation is performed. A RAE2822 isolated airfoil is pitching about
the quarter-chord point in an inviscid flow, with a 2 deg. amplitude and period
equal to 0.114 sec. The free-stream Mach number is M∞ = 0.6 and the simulation
computes 40 time steps per period. A 2D unstructured grid that extends 50 chords
away from the airfoil is used, with 51000 nodes overall, among which 202 nodes on
the airfoil contour and 151 nodes on the FW-H surface. The FW-H surface is placed
at R=4C from the airfoil mid-chord (0.5C, 0), where C is the airfoil chord length.
The directivity pattern at R=9C is plotted in fig. 5 and shows a very good agreement
between results of the unsteady CFD (incl. post-processing of the computed pressure
time-series along a circle with R=9C) and the application of the FW-H integral on
the flow time-series computed along the FW-H surface.
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Fig. 5 Pitching isolated air-
foil. Comparision of the
directivity plots (p′rms ) at
radius R=9C.

5 Optimization results

Before proceeding to the aeroacoustic optimization, the computed gradients using
the adjoint solver are verified w.r.t. those obtained by Finite Difference (FD) for the
time-averaged lift force. The case and the computational grid are the same as the
pitching RAE2822 isolated airfoil presented in section 4.2. The airfoil pressure and
suction sides are parameterized using two Bezier curves, with 20 control points each,
which are free to move in the y direction. Since the first and last control points are
fixed, this case has 36 design variables. Figure 6 shows a good agreement between
the gradients of the time-averaged lift force obtained by the two methods. Then, the
so-computed adjoint sensitivities are used to run a shape optimization loop. Figure 7
shows the gradual increase in the lift force from its initial value after 7 optimization
cycles, by changing the shape basically at the trailing edge, fig. 8.

Fig. 6 Pitching isolated air-
foil. Comparison of the time-
averaged lift sensitivities for
some control points, using the
proposed adjoint method and
FD.

Next, the optimization framework is used for aeroacoustic noise reduction. Start-
ing geometry and flow conditions are the same as in the lift maximization problem,
by minimizing the objective function of Eq. 8. In this case, a lift constraint is addi-
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Fig. 7 Optimization of a
pitching isolated airfoil (target
lift). Evolution of the time-
averaged lift force during the
optimization loop.

Fig. 8 Optimization of a
pitching isolated airfoil (target
lift). Shapes of the baseline
and optimized airfoils.

tionally imposed using a gradient projection method based on a deferred correction
scheme. The receiver is located at ~xo = (0, −20C). To verify the computed gradients
using the adjoint solver, these are compared with those obtained by FD in fig. 9. It
shows a good agreement between the gradients obtained by the two methods. There
are discrepancies at the trailing and leading edge areas; however, even for those
control points, the gradients obtained by the two methods have the same signs.

Then, the adjoint-based shape optimization takes place. As illustrated in fig. 10,
after 18 design cycles, the noise objective function, Eq. 8, is reduced by more than
60%. This figure also shows that the proposed constraint imposition method with the
deferred correction keeps the time-averaged lift value almost constant, as it changes
about 3% at the end. As expected, the reduction in the objective value results in a
lower amplitude in pressure fluctuations, as shown in fig. 11. Figure 12 compares the
directivity plot of the baseline and the optimized airfoils at the radius of R=20C and
shows that the reduction in noise is omnidirectional. Figure 13 compares the baseline
and the optimized airfoil shapes. It shows that the airfoil’s shape is changed mainly
close to the trailing edge while the rest of it remains almost intact. This practically
reconfirms the important role of the airfoil trailing edge shape on noise generation.

6 Conclusions

The in-house flow/adjoint solver is extended to include an aeroacoustic noise pre-
diction tool and its adjoint counterpart, based on the permeable version of the FW-H
analogy in the frequency domain. The design sensitivities obtained by the continu-
ous adjoint method are verified versus FD, for the noise objective function and the
time-averaged lift for a pitching airfoil. Then, aerodynamic and aeroacoustic shape
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Fig. 9 Lift-constrained aeroa-
coustic optimization of a
pitching isolated airfoil. Com-
parison of the noise (J as in
Eq. 8) sensitivities for some
control points, using the pro-
posed adjoint method and FD.

Fig. 10 Lift-constrained
aeroacoustic optimization
of a pitching isolated airfoil.
Convergence of the objective
and constraint functions.

Fig. 11 Lift-constrained
aeroacoustic optimization
of a pitching isolated airfoil.
Time history of pressure fluc-
tuation within a period at the
receiver’s location.

optimization is performed and the results show that the objective values are signifi-
cantly improved. The aeroacoustic optimization is subjected to an equality constraint
on the lift. Results of the aeroacoustic optimization highlighted the importance of
the trailing edge shape in airfoil self-noise generation.
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Fig. 12 Lift-constrained
aeroacoustic optimization
of a pitching isolated airfoil.
Comparison of the directivity
plots of the baseline and opti-
mized airfoils at R=20C.

Fig. 13 Lift-constrained
aeroacoustic optimization
of a pitching isolated airfoil.
Shapes of the baseline and
optimized airfoils.
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