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Abstract. In CFD-based applications, propagating uncertainties associated with the op-
erating conditions or shape imperfections from the system input to its output, a.k.a. un-
certainty quantification (UQ), and optimization under uncertainties (robust design) are
at the cutting edge of research. In gradient-based robust design, the computation of
the gradient of an objective function which accounts for all uncertainties is required. In
this paper, two UQ methods are developed and presented; the first one is based on the
Method of Moments (MoM, [7]) and the second on the intrusive Polynomial Chaos Expan-
sion (iPCE), both for incompressible fluid flows. Regarding optimization, a combination
of the mean value and standard deviation of a quantity of interest (QoI, for instance drag
or lift) forms the objective function to be minimized; in this paper, continuous adjoint-
enabled, gradient-based methods will be used to minimize it. The adjoint to both UQ
methods is presented. The iPCE-based method requires the development and validation
of the adjoint to the iPCE PDEs. With the MoM and, in particular, its first-order variant,
the objective function includes the first derivatives of the QoI with respect to (w.r.t.) the
uncertain variables which are then differentiated w.r.t. the design variables to minimize
it. To avoid costly computations, this paper proposes the computation of projections of
the second-order b-c mixed derivatives to vectors, instead of the Hessian matrix itself. A
combination of the continuous adjoint and direct differentiation can efficiently compute
this projection, leading to an overall cost per optimization cycle that is independent from
the number of both the uncertain and the design variables. The flow problem around an
isolated airfoil is studied with all methods; the validation of the computed derivatives is
presented.
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1 Introduction

Most shape optimization techniques consider all inputs known with absolute certainty.
As a result, the solution optimality refers exclusively to a single operating point. However,
in real problems, the environmental conditions may vary within a certain range. These
varying conditions are usually referred to as uncertain variables and follow a certain
statistical distribution (normal, Weibull etc.) which is either known or assumed to be
known and expressed through their mean values and standard deviations. Therefore,
there is a need to develop UQ tools in order to propagate the flow uncertainties from the
system input to its output; the latter is, herein, referred to as the QoI and is, practically,
the one that would have been optimized in case uncertainties were ignored. In case the
target is to optimize an aerodynamic shape, by also considering uncertainties, the new
objective function should be expressed in terms of the mean value and standard deviation
of the QoI. Usually, combining the first two statistical moments of the QoI is enough. In
case a gradient-based optimization method is to be used, the gradient of this objective
function w.r.t. the design variables should be computed, too.

Some methods that are often used to propagate uncertainties are the Monte-Carlo (MC)
or Quasi-MC, MoM and PCE ones ([?],[7],[1]). The latter appears in two variants, namely
the intrusive and the non-intrusive one. All methods based on Monte-Carlo techniques are
straightforward and demand a considerably high number of CFD evaluations which make
them unaffordable. This paper presents the mathematical formulation and assessment of
iPCE and MoM, both of which have a significantly lower computational cost than MC.
The computed mean values and standard deviations are firstly validated with Monte-
Carlo, which is used only as a reference. The next step is to proceed to the optimization
of an objective function built by concatenating the mean value and standard deviation
of the QoI. The optimization runs are done using gradient-based methods supported by
continuous adjoint. Although PCE is frequently used during the last years ([4], [1], [2]),
the adjoint to the iPCE PDEs for laminar, incompressible flows is presented for the first
time in the literature. The advantage of iPCE compared to the non-intrusive approach is
that the former is more accurate ([8]); hence, a lower chaos order can be used to obtain
the same level of accuracy, eventually leading to a lower cost. Regarding the optimization
with the first-order variant of the MoM, an idea borrowed from truncated Newton methods
is used to avoid the computation of second-order derivatives; instead, their projections to
certain vectors are computed at a much lower CPU cost. This optimization method will
be referred to as the projected First Order-Second Moment (pFOSM) one.

2 Primal Equations, QoI and Objective Function

The governing equations are the steady state Navier-Stokes ones, for 2D laminar flows
of an incompressible fluid

Rp = −∂vj
∂xj

= 0 (1a)

Rv
i = vj

∂vi
∂xj
− ∂τij
∂xj

+
∂p

∂xi
= 0, i = 1, 2 (1b)
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where vi are the velocity components, τij =ν
(
∂vi
∂xj

+
∂vj
∂xi

)
the stress tensor components, p

the static pressure divided by the fluid density and ν the kinematic viscosity of the fluid.
Without loss in generality, the drag force

F =

∫
Sw

(pδji − τij)njridS (2)

is the QoI throughout this paper, where ri is the farfield velocity direction. The ob-
jective function, to be minimized, for the optimization under uncertainties is the linear
combination of the mean value (µF ) and standard deviation (σF ) of the QoI

J = w0µF + w1σF (3)

where w0, w1 are appropriate weights.

3 Uncertainty Quantification (UQ)

3.1 Method of Moments (MoM)

According to the method of statistical moments, the mean value and standard deviation
of the QoI w.r.t. the uncertain variables ci, i ∈ [1,M ], can be written, by taking into
account only the first-order Taylor expansion term (First-Order Second-Moment, FOSM)
([7]), as,

µF (c) = F |c̄, σF (c) =

√[
δF

δcµ

]2

c̃

σ2
µ (4)

From eq. 4, it can be seen that in FOSM, the mean value of the QoI is not taking into con-
sideration the standard deviation of ~c and is computed at its mean value; this is not true,
however, for the standard deviation of the QoI. The computation of J requires, apart from
the flow field, the first-order derivatives of the QoI w.r.t. the uncertain variables, which
are, herein, computed using the continuous adjoint method. Following the methodology
presented in [6], the adjoint equations read

Rq = −∂uj
∂xj

= 0 (5a)

Ru
i = uj

∂vj
∂xi
− ∂(vjui)

∂xj
−
∂τaij
∂xj

+
∂q

∂xi
= 0, i = 1, 2 (5b)

where ui are the adjoint velocity components, q the adjoint pressure and τaij the adjoint
stress tensor. The adjoint boundary conditions are omitted in the interest of space.

In this paper, uncertainties are associated with the flow conditions and, in specific,
the only uncertain variable is the free-stream flow angle a∞, which is considered enough
for demonstrating the proposed methods. So, after satisfying the adjoint PDEs and their
boundary conditions, the gradient of F w.r.t. cµ is computed through an integral along
the inlet to the flow domain as follows

δF

δcµ
=

∫
SI

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)
nj − qni

]
δvi
δcµ

dS (6)
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The δvi/δcµ term is, thus, computed analytically. It is assumed that the solution of the
adjoint equations costs as much as the one of the primal equations. Each of the primal
and adjoint fields is computed at the cost of one Equivalent Flow Solution (EFS), where
EFS is the most appropriate time unit when comparing methods. Thus, with the FOSM
approach, the computational cost for UQ is 2 Equivalent Flow Solutions (EFS).

3.2 The iPCE Method

According to the PCE method, each uncertain flow variable (e.g. pressure, velocity) is
expressed as the sum of the products of deterministic coefficient fields pl(~x) and orthogonal

polynomials Hl(~ξ). For example, for the pressure p,

p(~x, ~ξ) =
L−1∑
l=0

pl(~x)Hl(~ξ) (7)

where ~ξ is the vector of uncertain variables. The total number of terms (L) depends
on the number of the uncertain variables (M) and the chaos order (γ) and is equal to

L = (M+γ)!
M !γ!

. The higher the chaos order, the more accurate the UQ, at the expense though
of a higher computational cost. In this paper, a normal distribution is assumed for each
uncertain variable and, this is why, Hl stands for the Hermite polynomials.

In intrusive PCE, the expansions of the (uncertain) flow fields (eq. 7) are introduced
to the governing equations; therefore, new PDEs are derived through Galerkin projec-
tions. The Galerkin projection of any orthogonal polynomial is defined as 〈Hi, Hj〉 =∫
Hi(~ξ)Hj(~ξ)w(~ξ)d~ξ, where w(~ξ) is the product of the probability density functions (PDF)

of the normal distribution for each independent uncertain variable (ξ). By making use of
the properties of Galerkin projections, L systems of PDEs similar to the Navier-Stokes
ones are derived; the cost for solving them is ≈ L EFS. The new set of PDEs is

lRp = −∂vim
∂xi
〈Hm, Hl〉 = 0 (8a)

lRv
i = vjm

∂vis
∂xj
〈Hm, Hs, Hl〉+

∂pm
∂xi
〈Hm, Hl〉−

∂

∂xj

[
ν

(
∂vjm
∂xi

+
∂vim
∂xj

)]
〈Hm, Hl〉 = 0 (8b)

For instance for, M=1 and γ=2, eqs. 8 give rise to 9 PDEs, for 2D incompressible flows,
as follows

lRp = −∂vil
∂xi

= 0, l = 0, 1, 2

0Rv
i = vj0

∂vi0
∂xj

+ vj1
∂vi1
∂xj

+ 2vj2
∂vi2
∂xj

+
∂p0

∂xi
− ∂

∂xj

[
ν

(
∂vj0
∂xi

+
∂vi0
∂xj

)]
= 0

1Rv
i = vj1

∂vi0
∂xj

+ vj0
∂vi1
∂xj

+ 2vj1
∂vi2
∂xj

+ 2vj2
∂vi1
∂xj

+
∂p1

∂xi
− ∂

∂xj

[
ν

(
∂vj1
∂xi

+
∂vi1
∂xj

)]
= 0

2Rv
i = 4vj2

∂vi2
∂xj

+ vj1
∂vi1
∂xj

+ vj2
∂vi0
∂xj

+ vj0
∂vi2
∂xj

+
∂p2

∂xi
− ∂

∂xj

[
ν

(
∂vj2
∂xi

+
∂vi2
∂xj

)]
= 0

(9)
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The expansions of the uncertain flow variables are introduced into the QoI in order to
compute the deterministic coefficients of the QoI. These are

Fl =

∫
S

(
− ν
(
∂vil
∂xj

+
∂vjl
∂xi

)
nj + plni

)
ridS (10)

These coefficients are necessary in order to compute the mean value and standard devia-
tion of the QoI, which are

µF = F0, σF =

√√√√L−1∑
l=0

Fi〈Hi, Hl〉 (11)

For M = 1 and γ = 2, σF =
√
F 2

1 + 2F 2
2 . Once eqs. 8 have been solved, these integrals

can be computed at a negligible CPU cost. The cost of solving eqs. 8 and, hence, of
computing the mean value and the standard deviation is L EFS.

3.3 Assessment of the MoM and iPCE Methods

As already mentioned, the case examined is an isolated airfoil exanined in laminar,
incompressible flow conditions. The uncertainty is introduced by the farfield flow angle,
which has a mean value α∞ = 4o and a standard deviation σα∞ = 0.3o. The Reynolds
number of the flow is Re = 3000. In order to validate the UQ results, 3000 CFD evalua-
tions were first performed with the Monte-Carlo method. The mean value and standard
deviation computed by the expensive MC method are considered as reference values. Con-
sequently, the statistical moments computed with FOSM and iPCE are compared with
these reference values in table 1. Both methods estimate µF and σF without significant
error (less than 0.01% for µF and 0.1% for σF ).

Table 1: Comparison of the mean value and standard deviation of the QoI (drag) com-
puted using MC, FOSM, iPCE.

MC FOSM iPCE
µF 0.034999 0.035030 0.035003

σF (10−4) 1.5401 1.5507 1.5340
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4 Gradient Computation and Optimization

4.1 Method of Moments (MoM)

A gradient-based shape optimization procedure requires the computation of δJ
δbn

, where
bn (n ∈ [1, N ]) are the design variables. The differentiation of eq. (3) gives

δJ

δbn
= w0

δF

δbn
+ w1

∑M
µ=1

δF
δcµ

δ2F
δcµδbn

σ2
µ√∑M

µ=1

[
δF
δcµ

]2

σ2
µ

(12)

In order to compute the sensitivity derivatives of the objective function w.r.t. the design
variables, it is necessary to compute three different groups of derivatives, specifically

δF

δbn
,

[
δF

δcµ

]2

σ2
µ,

M∑
µ=1

δ2F

δcµδbn

δF

δcµ
σ2
µ

The first-order derivatives can be computed from the solution of the continuous ad-
joint equations, section 3.1. The third term includes the second order derivatives δ2F

δcµδbn
,

which will hereafter be referred to as mixed b−c derivatives, multiplied by the vector
zµ = { δF

δcµ
σ2
µ}; the curly brackets indicate no summation over repeated indices. Hence,

δJ

δbn
= w0

δF

δbn
+ w1

∑M
µ=1

δ2F
δcµδbn

zµ√∑M
µ=1

[
δF
δcµ

]2

σ2
µ

= w0
δF

δbn
+ w1

δ2F
δcµδbn

zµ√[
δF
δcµ

]2

σ2
µ

(13)

The concept of pFOSM is inspired from the truncated Newton technique presented in [5].
Instead of separately computing the components of δ2F

δcµδbn
and performing the contrac-

tion with zµ, the method proposes to directly compute the projection of the b−c mixed
derivatives onto ~z.

After satisfying eqs. (5), apart from computing δF
δcµ

, δF
δbn

can be expressed as, [3],

δF

δbn
=

∫
Ω

(
q
∂vj
∂xk
− uivj

∂vi
∂xk
− τaij

∂vi
∂xk

+ ui
∂τij
∂xk
− uj

∂p

∂xk

)
∂

∂xj

(
δxk
δbn

)
dΩ

+

∫
Sw

(
pδji − τij

)
ri
δ (njdS)

δbn
=

∫
Ω

Ajk
∂

∂xj

(
δxk
δbn

)
dΩ +

∫
Sw

(
pδji − τij

)
ri
δ (njdS)

δbn
(14)

Computing δ2F
δcµδbn

by using a combination of adjoint and direct differentiation would result

to a cost that scales with M , [7]. Instead, eq. 14 is differentiated w.r.t. cµ and the result is
projected to ~z. Hence, only the projected derivatives of the primal and adjoint variables
(e.g. ṽi = δvi

δcµ
zµ) have to be computed, instead of the M fields (e.g. δvi

δcµ
, µ ∈ [1,M ])

that would have to be computed otherwise. The projected fields can be computed by

6
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differentiating eqs.1 and 5 w.r.t. cµ and projecting the result onto ~z, i.e. by solving

R̃p = −δR
p

δcµ
zµ = −∂ṽj

∂xj
= 0

R̃v
i =

δRv
i

δcµ
zµ = ṽj

∂vi
∂xj

+ vj
∂ṽi
∂xj
− ∂τ̃i,j
∂xj

+
∂p̃

∂xi
= 0, i = 1, 2

R̃q =
δRq

δcµ
zµ = −∂ũj

∂xj
= 0

R̃u
i =

δRu

δcµ
zµ = ũj

∂vj
∂xi

+ uj
∂ṽj
∂xi
− ṽj

∂ui
∂xj
− vj

∂ũi
∂xj
−
∂τ̃ai,j
∂xj

+
∂q̃

∂xi
= 0, i = 1, 2 (15)

Once eqs. 15 are satisfied, the projected b−c mixed derivatives are computed through

δ2F

δcµδbn
zµ=

∫
Ω

(
q̃
∂vj
∂xk

+ q
∂ṽj
∂xk
− vjũi

∂vi
∂xk
− uiṽj

∂vi
∂xk
− uivj

∂ṽi
∂xk
− τ̃aij

∂vi
∂xk
− τaij

∂ṽi
∂xk

+ ũi
∂τij
∂xk

+ ui
∂τ̃ij
∂xk
− ũj

∂p

∂xk
− uj

∂p̃

∂xk

)
∂

∂xj

(
δxk
δbn

)
dΩ +

∫
Sw

(
p̃δji − τ̃ij

)
ri
δ (njdS)

δbn
(16)

The total cost of pFOSM is 4 EFS per cycle, independent from both M and N .
The three groups of derivatives necessary for the final computation of the SD, i.e. δF

δcµ
, δF
δbn

and δ2F
δcµδbn

zµ are validated against Finite Differences (FD). Regarding δF
δa∞

, its value is com-

puted as −0.02919 with FD and −0.02973 using adjoint (1.89% difference). The validation
of the other two groups of derivatives is presented in fig. 1.

Figure 1: Results obtained with FD (blue filled squares) and the proposed method (red
empty circles) for dF

dbn
(top) and δ2F

δcµδbn
zµ (bottom).
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4.2 Continuous Adjoint to the iPCE

Having formulated and validated the iPCE equations (M = 1, γ = 2), the next step
is to compute the gradient of the objective function w.r.t. the design variables ( dJ

dbn
).

For this computation, the continuous adjoint method is also used, thus, the new field
adjoint equations should be formulated, along with boundary conditions and sensitivity
derivatives. The cost of solving the adjoint equations is L EFS; hence, for the optimization
loop, the total cost per cycle is 2L EFS (6 for M = 1, γ = 2). The augmented objective
function is

Jaug = J+

∫
Ω

0Rv
i ui0dΩ+

∫
Ω

0Rpq0dΩ+

∫
Ω

1Rv
i ui1dΩ+

∫
Ω

1Rpq1dΩ+

∫
Ω

2Rv
i ui2dΩ+

∫
Ω

2Rpq2dΩ

(17)
where uil and ql are the adjoint iPCE velocity and pressure fields, respectively. The
continuous adjoint development, which is omitted here in the interest of space, yields the
field adjoint equations

∂uil
∂xi

= 0, l = 0, 1, 2

uj0
∂vj0
∂xi
− ∂(ui0vj0)

∂xj
+ uj1

∂vj1
∂xi
− ∂(ui1vj1)

∂xj
+ 2uj2

∂vj2
∂xi
− 2

∂(ui2vj2)

∂xj
+
∂q0

∂xi
−
∂τaij0
∂xj

= 0

uj1
∂vj0
∂xi
− ∂(ui1vj0)

∂xj
+ uj0

∂vj1
∂xi
− ∂(ui0vj1)

∂xj
+ 2uj1

∂vj2
∂xi
− ∂(ui1vj2)

∂xj
+ 2uj2

∂vj1
∂xi
− 2

∂(ui2vj1)

∂xj

+
∂q1

∂xi
−
∂τaij1
∂xj

= 0

4uj2
∂vj2
∂xi
− 4

∂(ui2vj2)

∂xj
+ uj1

∂vj1
∂xi
− ∂(ui1vj1)

∂xj
+ uj0

∂vj2
∂xi
− ∂(ui0vj2)

∂xj
+ uj2

∂vj0
∂xi
− ∂(ui2vj0)

∂xj

+
∂q2

∂xi
−
∂τaij2
∂xj

= 0 (18)

where τaijk is the adjoint stress tensor of the kth iPCE field. As far as the boundary
conditions are concerned, at the inlet of the domain, zero Dirichlet condition is imposed
to ui and zero Neumann to qi. Along the parameterized walls zero Neumann to qi and
Dirichlet to ui equal to u0 = −w0ri, u1 = − w1F1ri√

(F 2
1 +2F 2

2 )
, u2 = − 2w1F2ri√

(F 2
1 +2F 2

2 )
. Finally, for the

outlet, Dirichlet boundary condition is imposed to ql = uni v
n
j 〈Hi, Hj, Hl〉+ 2ν

∂uni
∂n
〈Hi, Hl〉.

For ul: v
n
i u

t
j〈Hi, Hj, Hl〉+ ν(

∂uti
∂n

+
∂uni
∂t

)〈Hi, Hl〉 = 0, where superscripts n, t stand for the
normal and the tangential component of the velocity respectively.

8
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Once eqs. 18 are solved, the SD are computed by

δJ

δbn
=

∫
Sw

(
w0(−τij0 + p0δ

j
i ) +

w1F1(−τij1 + p1δ
j
i )√

F 2
1 + 2F 2

2

+
2w1F2(−τij2 + p2δ

j
i )√

F 2
1 + 2F 2

2

)
ri
δ(njdS)

δbn

−
∫

Ω

(
ui0vj0

∂vi0
∂xk

+ ui0vj1
∂vi1
∂xk

+ 2ui0vj2
∂vi2
∂xk

+ ui1vj1
∂vi0
∂xk

+ ui1vj0
∂vi1
∂xk

+ 2ui1vj2
∂vi1
∂xk

+ 2ui1vj1
∂vi2
∂xk

+ 8ui2vj2
∂vi2
∂xk

+ 2ui2vj1
∂vi1
∂xk

+ 2ui2vj0
∂vi2
∂xk

+ 2ui2vj2
∂vi0
∂xk

+ uj0
∂p0

xk

+ uj1
∂p1

xk
+ 2uj2

∂p2

xk
+ τaij0

∂vi0
∂xk
− ui0

∂τij0
∂xk

+ τaij1
∂vi1
∂xk
− ui1

∂τij1
∂xk

+ 2τaij2
∂vi2
∂xk

− 2ui2
∂τij2
∂xk

− q0
vj0
∂xk
− q1

vj1
∂xk
− 2q2

vj2
∂xk

)
∂

∂xj

(
δxk
δbn

)
(19)

The SD computed through eq. 19 are validated against FD, fig. 2. Two different sets of
weights are used (w0 = 1, w1 = 0 and w0 = 0, w1 = 1), corresponding to µF and σF and
the derivatives of both are in close agreement with FD.

Figure 2: dJ
dbn

computed with FD (blue filled squares) and the adjoint iPCE (red empty
circles) for w0 = 1, w1 = 0 (top) and w0 = 1, w1 = 0 (bottom).

4.3 Optimization Results

The Volumetric B-Splines control box depicted in fig. 3 was used to parameterize
the airfoil. A number of optimization runs was performed in order to form a Pareto
front of non-dominated solutions, fig. 4. All optimization runs were conducted under
the constraint of constant volume for the airfoil, implemented through the constraint
projection method.

9
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Depending on the correlation between the different weight values, more importance was
given to either µF or σF . For the cases with weights (1,6) and (1,7), the final geometry has
both µF and σF improved, which is a very desirable feature. In general, the results of both
methods are quite similar and the optimization had a great impact on the σF reduction
(up to 80% reduction). The initial geometry and the final optimized shapes produced by
iPCE and pFOSM for weights (1,0) and (0,1) are presented in fig. 1. The geometrical
tendencies between the methods are similar too. Due to volume constraints, displacements
are limited, making it impossible to present all geometries in the same figure, however,
one should imagine that they are bounded by the green and red geometries.

Figure 3: Airfoil shape and control box, with active control points colored in red and
inactive in blue (left) and velocity magnitude for Re = 3000 and α∞ = 4o (right).

Figure 4: Pareto front for µF and σF . All values are normalized with the ones corre-
sponding to the initial geometry (filled squares iPCE, empty triangles pFOSM).
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Figure 5: Comparison of the initial (red curve), µF optimal (blue curve) and σF optimal
(green curve) geometries designed by pFOSM (left) and iPCE (right).

5 Summary - Conclusions

This paper presents two different methods for quantifying uncertainty in incompressible
flows, FOSM and iPCE. For the problem examined, the results concerning UQ were very
satisfactory for both methods, even if the former is a first-order one. Both require the
development of additional equations and solvers (the adjoint and iPCE ones, respectively),
though for the former, the adjoint solver was already available.

Moreover, computational tools for aerodynamic optimization under uncertainties were
developed using continuous adjoint to compute the gradients of the FOSM- and iPCE-
based UQ metrics and the latter were validated against FD. The adjoint to the iPCE
equations and a novel method for computing the projected second-order derivatives (the
pFOSM approach), emerging when using FOSM in a gradient-based optimization, were
developed for the first time in the literature; the latter led to the developed of a robust
design algorithm with a cost that does not scale with either the number of design or the
uncertain variables. Applying the developed methods for minimizing the weighted sum
of the mean value and standard deviation of the drag force exerted on an airfoil led to a
Pareto front of non-dominated solutions; the cost per optimization cycle along with the
cost for UQ is presented in table 2. Regarding future work, the extension to turbulent
flows for both methods or the development of a second order MoM (SOSM), is foreseen.

Table 2: Computational cost for UQ and optimization with pFOSM and iPCE methods.

UQ Cost (EFS) Optimization Cost (EFS)
pFOSM 2 4

iPCE (2+M)!
2M !

(2+M)!
M !
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