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Abstract. This paper presents the development and application of the Truncated Newton (TN)
method for shape optimization problems based on continuous adjoint. The method is presented
for laminar, incompressible flows. OpenFOAM R© is chosen as the CFD toolbox in which the
method is developed. The Newton equations are solved using the restarted linear GMRES al-
gorithm which requires only the product of the Hessian matrix of the objective function (with
respect to the design variables) with a vector. This overcomes the cost for computing the Hes-
sian matrix itself, which unfortunately scales with the number of design variables. The compu-
tation of Hessian-vector products is conducted via the combination of continuous adjoint and
direct differentiation that gives the minimum cost. The developed method is used for the shape
optimization of two 3D ducts and the speed-up gained compared to rival methods is showcased.
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1 INTRODUCTION TO THE TRUNCATED NEWTON METHOD

An unconstrained optimization problem, in which the target is to minimize the objective
function F by controlling the design variables bi , i = 1, ...,N can be solved by means of the
Newton method, according to which the design variables are updated (bn+1

i = bn
i + δbi) after

solving the Newton equations

δ 2F
δbiδb j

n

δb j =−
δF
δbi

n

(1)

where n is the Newton iteration counter, to be omitted hereafter. The direct solution of eq. 1
requires the computation of the Hessian of F , with a computational cost that scales with N [4].

Considering eq. 1 as a linear system of equations of the form Ax= q, a possible way to
solve it is through an iterative solver which requires only the computation of matrix-vector
products. Since the Hessian matrix is symmetric, a popular choice is the Conjugate Gradient
(CG) method, [5, 1]. For reasons to be discussed in sections 8 and 9.1, the linear restarted
GMRES method, [9], schematically given in Algorithm 1, is used herein instead.

Algorithm 1 : The Linear Restarted GMRES Method for the Solution of Ax = q

r0 = Ax0−q, s1 = r0

‖r0‖2
for j = 1,2, . . . ,M do

w j = As j

for i = 1,2, . . . , j do
hi, j = (w j,si)

end for

s j+1 = w j−
j

∑
i=1

hi, jsi

h j+1, j = ‖s j+1‖2

s j+1 = s j+1

h j+1, j

end for
Compute β1, . . . ,βM by solving the minimization problem min‖AxM−q‖2

xM = x0 +
M

∑
i=1

βisi

Based on Algorithm 1, the cost of each GMRES iteration is dominated by the cost of com-
puting the matrix–vector product (As), M times during the Arnoldi process, where M is the
chosen number of basis vectors. Regarding eq. 1, since the Hessian matrix stands for A, the
use of the Truncated Newton (TN) method in aerodynamic shape optimization problems means
that the Hessian matrix itself is no more needed and only its product with a vector must be
computed. On the other hand, for the r.h.s. of eq. 1, the gradient of F must be available and the
(continuous) adjoint method, [6], is the less expensive way to compute it, at a CPU cost which
is practically independent of N.
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2 FLOW MODEL & OBJECTIVE FUNCTION

3D laminar flows of incompressible fluids are governed by the continuity and momentum
equations,

Rp=−
∂v j

∂x j
=0 (2)

Rv
i =v j

∂vi

∂x j
−

∂τi j

∂x j
+

∂ p
∂xi

=0 , i = 1,2,3 (3)

where vi are the velocity components, p the static pressure divided by the constant density,
τi j=ν

(
∂vi
∂x j

+
∂v j
∂xi

)
the stress tensor and ν the constant viscosity.

In this paper, the development of the TN method will be demonstrated for the objective
function

F =−
∫

SI,O

(
p+

1
2

v2
k

)
vinidS (4)

where S= SI∪SO∪SW is the domain boundary with SI being the inlet, SO the outlet, SW the solid
wall and n the outward unit normal vector to the surface. F stands for the volume–averaged total
pressure losses of the flow inside a duct; the optimal duct shape is the one yielding the minimal
value that F may take on, given the parameterization of SW .

3 COMPUTATION OF δF
δbi

VIA CONTINUOUS ADJOINT

It is beyond the scope of this paper to present the continuous adjoint method for the compu-
tation of δF/δbi; the interested reader should refer to [6]. The adjoint continuity and adjoint
momentum equations are

Rq=−
∂u j

∂x j
=0 (5)

Ru
i =u j

∂v j

∂xi
−

∂
(
uiv j
)

∂x j
−

∂τa
i j

∂x j
+

∂q
∂xi

=0 , i=1,2,3 (6)

where ui are the adjoint velocity components, q the adjoint pressure and τa
i j =ν

(
∂ui
∂x j

+
∂u j
∂xi

)
the

adjoint stress tensor. By satisfying eqs. 5 and 6, δF/δbn becomes independent of δvi/δbn and
δ p/δbn at the interior of the computational domain, [6].

Using the continuous adjoint method, the gradient of the F w.r.t. bn becomes

δF
δbn

=
∫

Ω

A jk
∂

∂x j

(
δxk

δbn

)
dΩ (7)

where

A jk=−uiv j
∂vi

∂xk
−u j

∂ p
∂xk
−τ

a
i j

∂vi

∂xk
+ui

∂τi j

∂xk
+q

∂v j

∂xk
(8)

A few comments on eq. 7 are due. According to [2], δF/δbi can either be expressed exclusively
in terms of surface integrals or may also include field integrals. The two formulations are
referred to as SI (Surface Integral) and FI (Field Integral), respectively. Eq. 7 is obviously based
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on the FI formulation. A noticeable advantage of the latter is that it avoids the computation of
second-order spatial derivatives along S which might become a source of error. The proposed
TN method relies upon the FI formulation since, following this approach, the computation of
even higher spatial gradients at the boundary is avoided during the evaluation of δ 2F

δbnδbm
sm.

4 BACKGROUND EXPRESSIONS

First of all, a clear distinction between total and partial derivatives should be made. For any
flow quantity Φ, the total derivative δΦ/δbn, which represents the total change in Φ caused by
variations in bn, is

δΦ

δbn
=

∂Φ

∂bn
+

∂Φ

∂xk

δxk

δbn
(9)

where the partial derivative ∂Φ/∂bn includes only the variation in Φ caused due to changes in
the design variables, without considering space deformations.

The TN method makes extensive use of the products of total derivatives and any vector sm.
So, it is convenient to define

Φ=
δΦ

δbm
sm (10)

Eq. 10 is also valid for the grid coordinates, so xk=
δxk
δbm

sm. Starting from

δ

δbm

(
∂Φ

∂x j

)
sm=

∂

∂bm

(
∂Φ

∂x j

)
sm+

∂

∂xk

(
∂Φ

∂x j

)
δxk

δbm
sm=

∂

∂x j

(
∂Φ

∂bm

)
sm+

∂

∂xk

(
∂Φ

∂x j

)
xk

it can easily be proved that

∂Φ

∂x j
=

δ

δbm

(
∂Φ

∂x j

)
sm=

∂Φ

∂x j
− ∂Φ

∂xk

∂xk

∂x j
(11)

It can also be proved that, if Φ, Ψ is any pair of quantities, the following equation is also valid

δ

δbm

(
Ψ

∂Φ

∂x j

)
sm=Ψ

∂Φ

∂x j
+Ψ

∂Φ

∂x j
−Ψ

∂Φ

∂xk

∂xk

∂x j
(12)

Also, as shown in [4], for either structured or unstructured grids,

δ (dΩ)

δbm
=

∂

∂xλ

(
δxλ

δbm

)
dΩ (13)

from which we get
δ (dΩ)

δbm
sm=

∂

∂xλ

(
δxλ

δbm
sm

)
dΩ=

∂xλ

∂xλ

dΩ (14)

In what follows, the following abbreviation

xk,n=
δ 2xk

δbnδbm
sm (15)

will also be used.
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5 COMPUTATION OF HESSIAN(F)–VECTOR PRODUCTS

The TN method requires the computation of δ 2F
δbnδbm

sm. Based on the background expressions
presented in section 4, it is a matter of a rather lengthy development to show that

δ 2F
δbnδbm

sm =
∫

Ω

A jk
∂

∂x j

(
δxk

δbn

)
dΩ+

∫
Ω

A jk
δ

δbm

[
∂

∂x j

(
δxk

δbn

)]
smdΩ

+
∫

Ω

A jk
∂

∂x j

(
δxk

δbn

)
sm

δ (dΩ)

δbm
(16)

where

A jk = −uiv j
∂vi

∂xk
−uiv j

∂vi

∂xk
−uiv j

∂vi

∂xk
+uiv j

∂vi

∂xλ

∂xλ

∂xk
−u j

∂ p
∂xk
−u j

∂ p
∂xk

+ u j
∂ p
∂xλ

∂xλ

∂xk
−ν

(
∂ui

∂x j
+

∂u j

∂xi

)
∂vi

∂xk
+ν

(
∂ui

∂xλ

∂xλ

∂x j
+

∂u j

∂xλ

∂xλ

∂xi

)
∂vi

∂xk

− ν

(
∂ui

∂x j
+

∂u j

∂xi

)
∂vi

∂xk
+ν

(
∂ui

∂x j
+

∂u j

∂xi

)
∂vi

∂xλ

∂xλ

∂xk

+ ui
∂

∂xk

[
ν

(
∂vi

∂x j
+

∂v j

∂xi

)]
+ui

∂

∂xk

[
ν

(
∂vi

∂x j
+

∂v j

∂xi

)]
− ui

∂

∂xk

[
ν

(
∂vi

∂xλ

∂xλ

∂x j
+

∂v j

∂xλ

∂xλ

∂xi

)]
−ui

∂

∂xλ

[
ν

(
∂vi

∂x j
+

∂v j

∂xi

)]
∂xλ

∂xk

+ q
∂v j

∂xk
+q

∂v j

∂xk
−q

∂v j

∂xλ

∂xλ

∂xk
(17)

Based on eq. 15, the second integral on the r.h.s. of eq. 16 becomes∫
Ω

A jk
δ

δbm

[
∂

∂x j

(
δxk

δbn

)]
smdΩ=

∫
Ω

A jk
∂xk,n

∂x j
dΩ−

∫
Ω

A jk
∂

∂xλ

(
δxk

δbn

)
∂xλ

∂x j
dΩ (18)

Computing vi and p is straightforward since these are equal to the product of the directly differ-
entiated flow variables and sm. So, vi and p result from

Rp=
∂v j

∂x j
−

∂v j

∂xk

∂xk

∂x j
=0 (19)

and

Rv
i =

∂ (viv j)

∂x j
+

∂ (viv j)

∂x j
− ∂

∂x j

[
ν

(
∂vi

∂x j
+

∂v j

∂xi

)]
+

∂ p
∂xi

−
∂ (viv j)

∂xk

∂xk

∂x j
+

∂

∂x j

[
ν

(
∂vi

∂xk

∂xk

∂x j
+

∂v j

∂xk

∂xk

∂xi

)]
+

∂

∂xk

[
ν

(
∂vi

∂x j
+

∂v j

∂xi

)]
∂xk

∂x j
− ∂ p

∂xk

∂xk

∂xi
=0 (20)

Also, the product of the DD of the adjoint equations and sm yields

Rq=
∂u j

∂x j
−

∂u j

∂xk

∂xk

∂x j
=0 (21)



M. Ghavami Nejad, E.M. Papoutsis-Kiachagias and K.C. Giannakoglou

and

Ru
i = u j

∂v j

∂xi
+u j

∂v j

∂xi
−

∂ (uiv j)

∂x j
−

∂ (uiv j)

∂x j

− ∂

∂x j

[
ν

(
∂ui

∂x j
+

∂u j

∂xi

)]
+

∂q
∂xi
−u j

∂v j

∂xk

∂xk

∂xi

+
∂ (v jui)

∂xk

∂xk

∂x j
+

∂

∂x j

[
ν

(
∂ui

∂xk

∂xk

∂x j
+

∂u j

∂xk

∂xk

∂xi

)]
+

∂

∂xk

[
ν

(
∂ui

∂x j
+

∂u j

∂xi

)]
∂xk

∂x j
− ∂q

∂xk

∂xk

∂xi
=0 (22)

from which q and ui can be computed.

6 COMPUTATION OF xk AND xk,n

In order to compute the Hessian-vector product of eq. 16, the grid sensitivities δxk/δbn
as well as their first-(xk) and second-order (xk,n) projections to s must be computed. These
computations depend upon the method used to deform the computational grid after the update
of the design variables. In [1], the Laplace equation was used as the grid displacement model
and the corresponding PDEs for computing the aforementioned terms were presented. Here,
a different grid displacement model is employed, based on volumetric B–Splines, details for
which can be found in [7, 3]. In brief, the grid points coordinates xl are given by

xl(u,v,w) =Ui,pu(u)Vj,pv(v)Wk,pw(w)B
i jk
l (23)

Here, Bi jk
l , l ∈ [1,3], i ∈ [0, I], j ∈ [0,J],k ∈ [0,K] are the Cartesian coordinates of the i jk-th

control point of a 3D structured control grid (acting also as the design variables of the opti-
mization problem), I,J and K stand the number of control points per control grid direction,
u=[u1,u2,u3]

T =[u,v,w]T are the CFD grid point parametric coordinates, U,V,W are the B–
Splines basis functions and pu, pv, pw their respective degrees, which may be different per con-
trol grid direction. Details about B–Splines basis definitions and properties can be found in
[8].

Obtaining grid sensitivities and their projections to s is just a matter of analytically differen-
tiating eq. 23 w.r.t. the coordinates of the control grid points. Let bm = Bλ µξ

t . Then, the grid
sensitivities are given by

δxl(u,v,w)
δbm

=Uλ ,pu(u)Vµ,pv(v)Wξ ,pw(w)δ
t
l (24)

where δ t
l is the Kronecker symbol. Eq. 24 states that grid sensitivities for each CFD grid point

with parametric coordinates u are given by the product of the basis functions, evaluated at
u, corresponding to the λ µξ control point. After computing the N components of δxl/δbm,
computing xl is a matter of a simple summation. It should be noted that xl,n=0, since the grid
displacement model depends linearly on the design variables. This further simplifies eq. 18, by
eliminating the first term on its r.h.s.

7 THE TN ALGORITHM – COMMENTS ON THE CPU COST

Using eqs. 14 to 18, eq. 16 can be written as

δ 2F
δbnδbm

sm =
∫

Ω

[
A jk+A jk

∂xλ

∂xλ

−Aλk
∂x j

∂xλ

]
∂

∂x j

(
δxk

δbn

)
dΩ (25)
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where A jk is given by eq. 17. To compute A jk, apart from the flow and adjoint fields, the
”overbar“ fields (vi,ui, p,q), as well as xi and their spatial derivatives must be available.

So, in each Newton cycle, the numerical solution of Rp=0 and Rv
i =0 (eqs. 2 and 3) yields

the flow fields (p,vi). The solution of Rq=0 and Ru
i =0 (eqs. 5 and 6) yields the adjoint fields

(q,ui). So far, the computational cost is approximately equal to that of twice solving the flow
equations or 2 EFS (EFS stands for an Equivalent Flow Solution, i.e. the cost for solving the
flow equations).

Before solving for p and vi, xk must be computed by evaluating eq. 24 for m ∈ [1,N] and
contracting with the components of the projection vector s. The latter has a cost of N GDE (GDE
stands for Grid Displacement Evaluations, i.e. the cost of evaluating δxk/δbm for a single m),
since δxk/δbm has to be evaluated separately for each design variable. It should be mentioned
that 1 GDE is significantly cheaper than 1 EFS since δxk/δbm is computed analytically through
eq. 24. xk has to be evaluated once per GMRES iteration, contributing a total cost of MN GDE
per optimization cycle.

Computing p and vi requires the numerical solution of eqs. 19 and 20. Similarly, to compute
q and ui requires the numerical solution of eqs. 21 and 22. Both systems of equations should be
solved within the GMRES loop (i.e. M times) and contribute 2M EFS to the overall cost of a
Newton iteration or cycle.

Within each GMRES iteration, the computation of A jk also requires the availability of the
δxk/δbn. These fields, however, have already been computed for the evaluation of xk and
contribute no extra cost.

Based on the above, the overall CPU cost per Newton iteration is equal to 2+2M EFS plus
NM GDE. However, since the cost of a GDE is significantly lower than that of an EFS, the GDE
part can be considered negligible for a moderate number of design variables. This leads to a
cost per Newton cycle that is, practically, independent of the number of design variables N.

8 CHOICE OF THE LINEAR SOLVER

The TN method can be coupled with any iterative linear solver that relies on the computa-
tion of matrix-vector products, without requiring the knowledge of the Hessian matrix itself. In
previous publications, [5, 1], the CG method was used as the linear solver, since the Hessian
matrix is symmetric in theory. However, the Hessian expression obtained through the use of
the AV-DD approach (i.e., use the adjoint variable (AV) method for the computation of δF/δbn
and DD for the computation of the variations of the primal and adjoint fields; the equivalent
of tangent-on-reverse in the Automatic Differentiation terminology) is not symmetric (eq. 16,
neglecting the multiplication with sm) and produces a symmetric matrix only upon the conver-
gence of all equations to machine accuracy (as discussed in Appendix A). This non-symmetry
of the Hessian expression is essential for the application of TN methods, since it allows the
computation of Hessian-vector products at a cost which is independent of N. In CFD-based
optimization, it is quite common not to converge the primal and adjoint equations to machine
accuracy in each optimization cycle in order to reduce the total CPU cost. This can deteriorate,
to an extent, the symmetry of the Hessian matrix, rendering CG inappropriate for the solution
of the Newton equations. To avoid this inconsistency, the linear GMRES solver can be used in
the context of TN methods. The impact of the linear solver is investigated in section 9.1.
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9 APPLICATIONS

The applications section consists of two parts. In the first, the impact of the linear solver used
to iteratively solve the Newton equations is investigated. In the second, optimization problems
concerning the total pressure losses minimization in two 3D duct geometries are tackled; the
results obtained by using the TN approach are compared to those computed by using Steepest
Descent (SD), the Fletcher-Rives Conjugate Gradient (CG) and BFGS methods for updating the
design variables.

9.1 Impact of the linear solver

To investigate the impact of the linear solver, an optimization problem with only 5 design
variables was devised, making the computation of the Hessian matrix feasible. The shape op-
timization of a 2D U-bend duct is considered, targeting minimum total pressure losses. The
upper part of the U-bend is parameterized using Bézier–Bernstein polynomials and the y co-
ordinates of 5 control points are used as the design variables, fig. 1. The flow is laminar with
Re=667 based on the inlet length. The update of the design variables is driven by a number
of different methods, among which the TN method coupled with the CG and GMRES solvers.
Their convergence histories are presented in fig. 2. It can be seen that as the number of linear
solver iterations M increases, the GMRES-based TN method greatly outperforms the CG-based
one. If fact, when M is chosen to be equal to the Hessian matrix dimension, the GMRES-based
TN method has exactly the same convergence with the pure Hessian method, as expected. On
the contrary, the CG-based TN method requires approximately 4 times more EFS in order to
reach the optimal solution. This can be attributed to the fact that CG is used to iteratively solve
a slightly non-symmetric system. In detail, the symmetric, in theory, elements of the Hessian
matrix computed using the AV-DD approach have a maximum difference of 0.8%, a mean dif-
ference of 0.1% and a standard deviation of 0.2%. Based on the above, for the remainder of this
article, the GMRES solver is used in conjunction with the TN method.
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Figure 1: 2D U-bend duct optimization: dust shape and the Bézier–Bernstein control points parameterizing it.
Only the y coordinates of the top 5 control points (CP) are allowed to vary during the optimization.
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Figure 2: 2D U-bend duct optimization: Convergence of the BFGS, Newton and TN optimization algorithms.
Convergence of the TN method is included with both CG and GMRES, with linear solver iterations in the range of
M ∈ [1,5]. Results of GMRES-based TN are plotted with a continuous line while CG-based results with a dashed
one. As expected, the convergence of the GMRES-based TN with M=5 coincides with the convergence of the
Newton method (the two curves are hardly distinguishable) since the dimension of the problem is N=5.

9.2 3D shape optimization

In this section, two applications of the developed TN optimization algorithm are presented.
The first one deals with the shape optimization of a 3D S-bend duct. The geometry and flow
conditions are provided as one of the cases of the AboutFLOW ITN programme. The flow is
laminar with a Reynolds number of Re=400 based on the inlet hydraulic diameter and the mesh
is comprised of 474000 hexahedrals. A 9×7×9 control grid is used to parameterize part of the
duct which, after disregarding fixed control points, results to 375 design variables, fig. 3. In
fig. 4, the convergence history of the developed TN algorithm is compared to those of the SD,
CG and BFGS methods. Comparisons are presented twice, in terms of the cycles required to
reach the minimum and the corresponding EFS. It can be observed that TN outperforms the
other methods, since it computes the optimized duct shape using less optimization cycles and,
especially, by requiring slightly less EFS. In fig. 5, the flow streamlines on the reference and
optimized geometries are compared, indicating the significant reduction of the flow recirculation
that leads to a total pressure losses reduction of ∼ 60%.

The second case is concerned with the optimization of a 3D U-bend duct. The flow Reynolds
number is Re=400 and a mesh consisting of 7×105 hexahedrals is used. The reference geome-
try and the 4×5×2 control grid parameterizing it are depicted in fig. 6. Since only two rows of
control points are used in the z direction and the reference geometry was generated by stacking
a 2D profile, the shape parameterization is practically 2D. In fig. 7, the total pressure field along
with velocity vectors are plotted for two slices, located at 10% and 50% of the duct height. It can
be seen that the flow recirculation downstream of the U-shaped formation has been suppressed,
leading to a reduction of about 18% in the objective function value. In fig. 8, the convergence
histories of the TN, SD and CG methods are illustrated. For this case, TN and CG reach the
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optimal solution at approximately the same CPU cost. The TN method outperforms CG during
the initial phase of the optimization run, providing a better solution if the entire CPU cost of the
optimization can not be afforded.

(a) (b)

Figure 3: S-bend duct optimization: (a) duct shape and the control grid parameterizing it. Control points in red
are allowed to vary during the optimization while blue ones are kept fixed, (b) optimal shape coloured based on
the cumulative displacement. Flow from right to left.
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Figure 4: S-bend duct optimization: comparison of the convergence of SD, CG, BFGS and TN w.r.t. (a) optimiza-
tion cycles and (b) EFS. The TN method outperforms all other methods in both comparisons.

10 CONCLUSIONS

A Truncated Newton method for computing an approximation to the second-order correc-
tion of the design variables by iteratively solving the Newton equations using GMRES was
presented. The method builds on previous work of the authors, by extending the mathematical
formulation for a different grid displacement model and investigating the impact of the linear
solver used to iteratively solve the Newton equations. It was observed that due to a slight non-
symmetry of the Hessian matrix, caused by the lack of convergence of the adjoint equations
to machine accuracy, CG may become inefficient when computing the solution of the New-
ton equations. Using GMRES as the linear solver within the TN loop significantly accelerated



M. Ghavami Nejad, E.M. Papoutsis-Kiachagias and K.C. Giannakoglou

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: S-bend duct optimization: Velocity streamlines plotted for the reference (left column) and optimized
(right column) geometries. In the top four figures, streamlines are coloured based on the flow velocity while, in the
bottom four, on the total pressure values. The intense flow recirculation close to the bottom side of the wall (figs.
c and g) has drastically been reduced (figs. d and h), leading to a reduction of about 60% in the objective function.

Figure 6: 3D U-bend optimization: Part of the duct shape along with one of two iso-z control point planes. Red
control points are allowed to vary while blue ones are kept fixed during the optimization.

the convergence. The proposed TN method computes the required Hessian-vector products by
utilizing a combination of (continuous) adjoint and direct differentiation. The cost per optimiza-
tion cycle is approximately equal to 2+2M equivalent flow solutions, where M is the number of
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(a) reference, 10% thickness (b) optimized, 10% thickness

(c) reference, 50% thickness (d) optimized, 50% thickness

Figure 7: 3D U-bend optimization: Total pressure field plotted for the reference (left column) and optimized (right
column) geometries, for a slice residing at 10% (top) and 50% of the duct height.

GMRES iterations used to approximate the solution of the Newton equations; this cost is prac-
tically independent of the design variables number. In the two applications presented, it was
shown that TN outperforms other optimization methods in terms of optimization cycles and is,
at least, as fast in terms of CPU cost. On going research, including the preconditioning of the
Newton system and appropriate initialization, for further improving the TN method speed-up is
performed.
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Figure 8: 3D U-bend optimization: Convergence of the SD, CG and TN methods wrt (a) optimization cycles and
(b) EFS. For this case, M=2 has to be used for TN to outperform the CG method.

A ON THE SYMMETRY OF THE HESSIAN MATRIX

In this appendix, the symmetry of the Hessian matrix computed using the AV-DD approach
(i.e. the approach used to also compute the Hessian-vector product in the TN approach) is
examined. Since the continuous gradient and Hessian expressions are quite lengthy, the discrete
approach is going to be used in this appendix. The conclusions, however, can be extended to
the continuous formulation as well.

Let the objective function F and discretized residuals R be functions of the design, b, and
flow variables, U(b), i.e. F=F(b,U(b)) and R=R(b,U(b)). After introducing the augmented
objective function as Faug=F +ΨkRk and differentiating it w.r.t. to b, we get

dFaug

dbi
=

∂F
∂bi

+Ψk
∂Rk

∂bi
+

(
∂F

∂Um
+Ψk

∂Rk

∂Um

)
dUm

dbi
(26)

from which the adjoint equations and sensitivity derivatives are derived as

RΨ
m =

∂F
∂Um

+Ψk
∂Rk

∂Um
=0 (27)

dF
dbi

=
∂F
∂bi

+Ψk
∂Rk

∂bi
(28)

Differentiating eq. 28 once more w.r.t. the components of b gives

d2F
dbidb j

=
∂ 2F

∂bi∂b j
+Ψk

∂ 2Rk

∂bi∂b j
+

∂ 2F
∂bi∂Uk

dUk

db j
+Ψk

∂ 2Rk

∂bi∂Um

dUm

db j
+

∂Rk

∂bi

dΨk

db j
(29)

The Hessian expression given by eq. 29 is not symmetric, since permuting i and j does not yield
d2F

dbidb j
= d2F

db jdbi
. This non-symmetric expression actually allows the computation of Hessian-

vector products with a cost that does not depend on the design variables number in TN methods.
However, since eq. 26 and eq. 28 are equivalent (upon the convergence of the residuals of the
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adjoint equations to machine accuracy) for computing dF/dbi, differentiating eq. 26 yields

d2F
dbidb j

=
∂ 2F

∂bi∂b j
+Ψk

∂ 2Rk

∂bi∂b j
+

∂ 2F
∂bi∂Uk

dUk

db j
+

∂ 2F
∂b j∂Uk

dUk

dbi
+Ψk

∂ 2Rk

∂bi∂Um

dUm

db j

+Ψk
∂ 2Rk

∂b j∂Um

dUm

dbi
+

∂ 2F
∂Um∂Uk

dUm

dbi

dUk

db j
+Ψk

∂ 2Rk

∂Um∂Ul

dUm

dbi

dUl

db j

+

(
∂Rk

∂bi
+

∂Rk

∂Um

∂Um

∂bi

)
dΨk

db j
+

(
∂F

∂Um
+Ψk

∂Rk

∂Um

)
d2Um

dbidb j
(30)

The sum of the first eight terms on the r.h.s. of eq. 30 is symmetric while the last two terms are
zero since they include dRk/dbi and RΨ

k , respectively. Hence, since the expression in eq. 30 is
symmetric and eqs. 29 and 30 are equivalent, upon the convergence of the adjoint equations to
machine accuracy, the Hessian matrix obtained through eq. 29 is symmetric as well.

However, if eq. 27 is not converged to machine accuracy, i.e. if

R̃Ψ̃
m =

∂F
∂Um

+Ψ̃k
∂Rk

∂Um
+ ra

m=0, , ra
m 6=0 (31)

where Ψ̃k is the slightly non-converged adjoint solution and ra
k the adjoint residual, differentia-

tion of the equivalent of eq. 26 would yield

d2F
dbidb j

=
∂ 2F

∂bi∂b j
+Ψ̃k

∂ 2Rk

∂bi∂b j
+

∂ 2F
∂bi∂Uk

dUk

db j
+

∂ 2F
∂b j∂Uk

dUk

dbi
+Ψ̃k

∂ 2Rk

∂bi∂Um

dUm

db j

+Ψ̃k
∂ 2Rk

∂b j∂Um

dUm

dbi
+

∂ 2F
∂Um∂Uk

dUm

dbi

dUk

db j
+Ψk

∂ 2Rk

∂Um∂Ul

dUm

dbi

dUl

db j

+
dRk

dbi

dΨ̃k

db j
+R̃Ψ̃

m
d2Um

dbidb j
+

dra
k

dbi

dΨ̃k

db j
(32)

Eq. 32 states that if the adjoint equations are not converged to machine accuracy, eqs. 29 and 30
are no longer equivalent due to the last, non-symmetric term in eq. 32.
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