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Abstract This paper presents the development and application of the continuous
adjoint method for the shape optimization of wind turbine blades aiming at maxi-
mum power output. A RANS solver, coupled with the Spalart–Allmaras turbulence
model, is the flow (primal) model based on which the adjoint system of equations
is derived. The latter includes the adjoint to the turbulence model equation. The
primal and adjoint fields are used for the computation of the objective function
gradient w.r.t. the design variables. A volumetric Non-Uniform Rational B–Splines
(NURBS) model is used to parameterize the shape to be designed. The latter is also
used for deforming the computational mesh at each optimization cycle. In order to
reduce the computational cost, the aforementioned tools, developed in the CUDA
environment, run on a cluster of Graphics Processing Units (GPUs) using the MPI
protocol. Optimized GPU memory handling and GPU dedicated algorithmic tech-
niques make the overall optimization process up to 50x faster than the same process
running on a CPU. The developed software is used for the shape optimization of an
horizontal axis wind turbine blade for maximum power output.

1 Introduction

Wind turbines design, and in particular their blade shapes, is a major application
field in CFD. Though CFD methods are widely used for the aerodynamic analysis
of wind turbines [3], their use in shape optimization optimization of their bladings
is still limited. The major drawback of CFD based optimization is its computational
cost, especially when dealing with turbulent flows around complex geometries. The
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huge meshes (with millions of nodes) needed for the aerodynamic analysis of wind
turbine blades make the use of stochastic, population-based optimization methods
rather prohibitive. An alternative is the use of gradient-based optimization methods,
such as steepest descent or quasi–Newton methods. In such a case, the computation
of the gradient of the objective function is required. To do so, the adjoint method
can be used and this makes the cost of computing the gradient independent of the
number of design variables and approximately equal to that for solving the primal
equations.

Over and above to any gain from the use of the less costly methods to compute the
objective function gradient, a good way to reduce the optimization turnaround time
is by accelerating the solution of the primal and adjoint equation using GPUs. Both
the flow and adjoint solvers are ported on GPUs, exhibiting a noticeable speed–up
compared to their CPU implementations [4, 1]. Though the use of a modern GPU
can greatly accelerate CFD computations, its memory capacity is limited compared
to a modern CPU RAM, posing a limitation when using GPUs for industrial appli-
cations. To overcome this problem, many GPUs, on different computational nodes
if necessary, can be used to perform the computation in parallel, by making use of
the CUDA environment together with the MPI protocol.

The geometry of wind turbine blades is quite complex, consisting of airfoil pro-
files varying largely along the spanwise direction. As a result, employing a scheme
that parameterizes the exact geometry of the blade and incorporating it within the
optimization process is not an easy task. Here, a volumetric NURBS model is used
to parameterize the space around the blade over and above of the blade itself [5]. This
model additionally undertakes mesh deformation, which would have to be carried
out by a different method if a direct surface parameterization model was used. The
main cost of the parameterization model is the computation of the B–Spline basis
functions and their derivatives, which are herein required for the objective function
gradient, according to the chain rule. In order to reduce this cost, their computation
is also carried out on the GPUs.

The aforementioned methods and the corresponding software is applied for the
shape optimization of the blades of a horizontal axis wind turbine.

2 Navier-Stokes, Adjoint Equations and Sensitivity Derivatives

The flow model is based on the incompressible flow equations using the Spalart-
Allmaras turbulence model. The derivation of the adjoint equations along with the
discretization of the resulting equations follows.
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2.1 Flow (primal) equations

The flow equations used are the incompressible Navier-Stokes equations by apply-
ing the pseudo-compressibility approach, as introduced by Chorin [2]. In order to
predict the flow around the rotating blades in steady state, a multiple reference frame
technique is used, where the equations are solved in a moving frame for the absolute
velocity components. The flow equations read

RUn =
∂ f inv

nk
∂xk

−
∂ f vis

nk
∂xk

+Sn = 0 (1)

where Un = [p υA
1 υA

2 υA
3 ]

T is the vector of the state variables, υA
i , i= 1,2,3 are

the absolute velocity components and p is the pressure divided by the density. The
inviscid and viscous fluxes fnk and source terms Sn are given as
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with ω the blade rotational velocity and the stresses are

τmk = (ν +νt)

(
∂υA

m

∂xk
+

∂υA
k

∂xm

)
where ν and νt stand for the kinematic and turbulent viscosity. In equation 2, υR

i
denote the relative velocity components. The absolute and relative velocity vectors
are linked through υA

i = υR
i − υF

i , with υF
i = εi jkω jdk and dk = xk − xC

k are the
components of the position vector from the origin (xC

k ) which lies on the rotation
axis.

Equations 1 are solved together with the Spalart-Allmaras turbulence model [9]
PDE (Rν̃ = 0) according to a decoupled time–marching scheme.

2.2 Continuous Adjoint Formulation

For the wind turbine application under consideration, the objective function F is the
power output of the turbine blading for constant rotational velocity.

Its maximization is, in fact, equivalent to the maximization of the torque w.r.t.
the axis of the wind turbine shaft. If rk denotes the components of the unit vector
aligned with the shaft, F can be expressed as

F =
∫

SBlade

εklm
(
xl − xC

l
)
(pnm − τmqnq)rkdS (2)
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where SBlade denotes the blade surface. In equation 2, nq are the components of the
unit vector normal to the blade surface, pointing towards the blade.

By introducing the adjoint mean–flow variables Ψn (n = 1, . . . ,4) and the adjoint
turbulent variable ν̃a, the augmented objective function is defined as

Faug = F +
∫

Ω
ΨnRUn dΩ +

∫
Ω

ν̃aRν̃ dΩ (3)

Upon convergence of the primal equations, Faug is equal to F . To compute the vari-
ations of Faug w.r.t. the design variables bi, we start by differentiating equation 3,
which yields

δFaug

δbi
=

δF
δbi

+
δ

δbi

∫
Ω

ΨnRUn dΩ +
δ

δbi

∫
Ω

ν̃aRν̃ dΩ (4)

By developing and eliminating the integrals including the variations in the flow
quantities w.r.t. bi, the field adjoint equations and their boundary conditions arise.
The remaining integrals form the expression of the gradient of F w.r.t. bi. The field
adjoint equations read

RΨn =−Amnk
∂Ψm

∂xk︸ ︷︷ ︸
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where δi j is the Kronecker’s symbol and

τa
mk = (ν +νt)

(
∂Ψm+1

∂xk
+

∂Ψk+1

∂xm

)
(6)

are the adjoint stresses.
In equation 5, the terms marked as Conv(Ψ) and Di f f (Ψ) correspond to the

adjoint convection and diffusion respectively, Source1(Ψ) corresponds to the ad-
joint source terms resulting from the frame rotation and Source2(ν̃a) includes the
contribution of the adjoint turbulence model to the adjoint mean–flow equations.
The derivation of the adjoint turbulence model equation can be found in a previous
work[10] published from the same group and will not be repeated here.
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After solving the primal and adjoint equations, δF
δbi can be computed once the

geometric sensitivities δxl
δbi

and ∂
∂xk

(
δxl
δbi

)
at the mesh nodes become available. The

final expression of the sensitivity derivatives reads
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∫
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l
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δ

δbi
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where the terms T MF and T SA correspond to the differentiation of the flow equations
and the turbulence model respectively. These terms are herein omitted in the interest
of space. The reader may find them in [10] irrespective of the objective function
used.

2.3 Discretization and Numerical Solution

The primal and adjoint equations are discretized on hybrid meshes (consisting of
tetrahedra, pyramids, prisms or hexahedra) using the vertex–centered finite volume
method and solved using a time–marching scheme. The numerical fluxes crossing
the finite volume interfaces are computed with second–order accuracy. The primal
inviscid numerical flux crossing the interface between nodes P and Q reads

ΦPQ =
1
2

(
f inv,P
nk + f inv,Q

nk

)
nPQ

k − 1
2

∣∣∣APQ
nmknk

∣∣∣(UR
m −UL

m
)

where nPQ
k are the components of the unit vector normal to the finite volume in-

terface between nodes P and Q and pointing to node Q and the Jacobian APQ is
computed based on the Roe–averaged [7] flow variables. UR and UL are the flow
variables on the right and left sides of the finite volume interface, obtained by ex-
trapolating UQ and UP respectively.

On the other side, the adjoint inviscid numerical fluxes are computed using a
non–conservative scheme,

Φad j,PQ
n =−1

2
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mnk
(
Ψ P

n +Ψ Q
n
)
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1
2

∣∣∣APQ
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n
)
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n
)
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1
2
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n
)

For the viscous fluxes, the derivatives of any primal flow or adjoint quantity W
on the finite volumes interface (between nodes P and Q) are computed as



6 Konstantinos T. Tsiakas et al.(
∂W
∂xk

)PQ

=

(
∂W
∂xk

)
−

(∂W
∂xk

)
tPQ
m − W Q −W P√

(xQ
m − xP

m)
2

 tPQ
k (8)
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The discretized equations are linearized and solved iteratively w.r.t. the correc-
tion of the primal/adjoint variables (delta formulation) using a point–implicit Jacobi
method.

3 Parameterization through volumetric NURBS

Volumetric NURBS are rational trivariate (in 3D) B–Splines defined on non-uniform
knot vectors, used to parameterize the volume around the blade. Let (ξ ,η ,ζ ) be the
three parametric directions and X i jk

m and wi jk the (i jk)th control point coordinates
and weight. Given the parameteric coordinates of a point as well as the knot vectors
and control points coordinates/weights, its physical coordinates xm(m = 1,2,3) can
be computed as

xm(ξ ,η ,ζ ) =

Nξ

∑
i

Nη
∑
j

Nζ

∑
k

Ξi,pξ (ξ )H j,pη (η)Zk,pζ (ζ )X
i jk
m wi jk

Nξ

∑
i

Nη
∑
j

Nζ

∑
k

Ξi,pξ (ξ )H j,pη (η)Zk,pζ (ζ )wi jk

(9)

where, Ξi,pξ is the ith B-Spline basis function of degree pξ defined on the knot
vector Kξ = {ξ0, . . . ,ξmξ } (H j,pη and Zk,pζ are defined similarly), Nξ is the number
of control points in the ξ direction and it must hold that mξ= Nξ+pξ+1 [6]. Knots
must be arranged in non-decreasing order.

Specifying the control points, weights and knot vectors, a point inversion, via
the Newton-Raphson method, is used to calculate the parametric coordinates of the
mesh nodes. The so–computed parametric coordinates as well as the knot vectors
remain fixed during the optimization. All variations in geometric quantities, such as
δxl
δbi

and ∂
∂xk

(
δxl
δbi

)
, involved in the computation of the objective function gradient

are given by closed–form expressions resulting from the differentiation of equation
9.

During the optimization loop, the control point coordinates and weights are up-
dated and equation 9 is used to deform the computational mesh and the blade shape.
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4 Implementation on GPUs

Nowadays, GPUs have become powerful parallel co–processors to CPUs, offer-
ing more than one order of magnitude more floating point operations per second
(FLOPS) with lower memory latency compared to modern CPUs.

Although the GPU hardware capabilities are superior to the CPU ones, directly
porting a CPU code on a GPU does not necessarily yields the desired high speed-
ups, due to different architecture features. The Navier-Stokes/adjoint equations
solver this paper makes use of, efficiently exploits the high computing capabili-
ties that modern GPUs have, running on a GPU at least 50 times faster than the
equivalent CPU solver. Such high parallel efficiency mainly results from (a) the use
of Mixed Precision Arithmetics (MPA), which allows the l.h.s. matrices to be com-
puted using double-precision and stored using single-precision arithmetics[4], with-
out harming the accuracy of the solver and (b) the minimization of random accesses
to the relatively high latency device memory by concurrently running threads.

For maximum speed–up, the primal and adjoint solvers employ different algo-
rithmic techniques for the computation of the nodal residuals and l.h.s. coefficients.
In previous work of the authors[1], it is shown that, when processing large amount of
data on a GPU, minimizing memory usage and non–coalesced memory accesses is
more important than minimizing the number of (rather redundant) re–computations
of the same quantity. Thus, the primal solver, in which the memory consuming Ja-
cobians per finite volume interface need to be computed for the l.h.s. coefficients
at each pseudo–iteration, uses a one–kernel scheme. According to this scheme, a
single kernel is launched, associating each GPU thread with a mesh node. Each
thread computes and accumulates the numerical fluxes crossing all boundaries of
this node’s finite volume and their Jacobians and, thus, forms residuals and l.h.s.
coefficients. On the contrary, since for the solution of the adjoint equations the l.h.s.
coefficients depend only on the primal solution, the Jacobians are computed once,
before the iterative solution of the adjoint equations. Thus, the adjoint solver em-
ploys a two–kernel scheme in which the less memory consuming adjoint numerical
fluxes are computed by the first kernel (GPU threads associated with finite volume
interfaces) and accumulated by the second kernel (GPU threads associated with
mesh nodes).

The primal/adjoint solvers run on a cluster of GPUs. In order to run a case
in many GPUs, the mesh is partitioned in overlapped sub-domains and each sub-
domain is associated with one GPU. For instance, figure 1 (left) shows a triangu-
lar mesh generated around an isolated airfoil partitioned in three overlapped sub-
domains. The shared regions of the mesh sub-domains are marked in white in figure
1. The whole mesh (i.e. including the overlapped regions) of the 3rd sub-domain,
with the boundaries shared with sub-domains 1, 2, can be seen in figure 1 (right).
To further reduce the wall–clock time, computations and data transfers overlap. For
instance, when computing the primal/adjoint spatial gradients, each GPU associated
with a sub-domain performs the same sequence of steps. As an example, the GPU
associated with the 3rd sub-domain performs the following steps:
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Step A: Launches a kernel only for the computation of the gradients at the nodes
interface with sub-domains 1 and 2 (i.e. nodes lying on the blue and red
lines of figure 1 (right)).

Step B: Performs the data interchange between the sub-domains (assigned to dif-
ferent GPUs).

Step C: Launches a kernel for the computation of the gradients at the remaining
nodes of the sub-domain.

Steps A, B can be performed simultaneously with step C so that computations and
data transfers overlap. Data transfers among GPUs on different computational nodes
use the MPI protocol. The communication of GPUs on the same node is performed
through the shared (on–node) CPU memory.

�
�

�

Fig. 1 Mesh with triangular elements around an isolated airfoil partitioned in three overlapped
subdomains.

The computations of the parametric coordinates of the mesh nodes and the objec-
tive function gradients, which are computationally intensive and memory demand-
ing, also run on the GPUs. Since δxl

δbi
, which is needed for δF

δbi
, are geometric quan-

tities independent of the primal/adjoint solution, they could be computed and stored
just once. However, the memory needed for storing δxl

δbi
often exceeds that required

for the solution of the primal and adjoint equations. Hence, their storage is avoided
and they are re–computed at the end of each optimization cycle using pre–allocated
GPU memory.

The optimization flowchart is shown in figure 2. Steps performed exclusively on
CPU or GPU are clearly marked. Expensive processes associated with the compu-
tation/update of the mesh geometrical data, such as computing node distances from
the nearest wall, are performed on the GPU, while others such as computing the
cells volumes are performed at the same time on the CPU. Thus, all available com-
puting resources are exploited and the wall clock time needed to perform these tasks
is reduced.
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Fig. 2 Flowchart demonstrating the optimization algorithm steps. Steps performed on the CPU
and the GPU are distinguished.

5 Optimization of the Wind Turbine Blade

The developed software described in the previous sections, was used for the shape
optimization of the MEXICO[8] horizontal axis wind turbine (HAWT) blade for
maximum power output, when operating at 10 m

s farfield velocity and 0o yaw angle.
For the parameterization of the blade, a 5×5×5 NURBS control volume is used, as
shown in figure 3. All boundary control points are kept fixed in order to ensure C1

continuity while the remaining ones are allowed to move along the z axis (figure 3)
leading to 27 (3×3×3) design variables in total. The computational mesh consists
of about 2.5×106 nodes and both the primal and adjoint solvers run on 4 NVIDIA
Kepler K20 GPUs, lying on two different nodes. On this platform each optimization
cycle needs approximately 25min, 15min for the solution of the primal equations and
10min for the adjoint. The convergence history of the optimization is shown in figure
4. The optimized blade yields 3% increased torque compared to the reference blade.
The improvement is minor due to the degrees of freedom used, i.e. the NURBS
control points were allowed to move only in the z direction.
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Fig. 3 Parameterization of the HAWT blade.

Since the differences between the optimized and the reference blade are not visi-
ble in a 3D surface comparison, the blade profiles at three spanwise positions of the
blade are compared instead (figure 6).

Figure 6 presents the comparison of the chordwise distribution of the pressure
coefficient for the starting and the optimized blade, along with the experimental
results (from [8]) for the same spanwise positions. It is clear that most differences
appear in the lower part of the blade.

The relative velocity streamlines in the tip vortex region are plotted in figure 7.
Figures 8 and 9 show the axial velocity and turbulent viscosity in a transversal

slice through the wing turbine origin.
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Fig. 4 Optimization convergence history. On the vertical axis, the objective function (power output
to be maximized) is divided by the value this function takes on for the starting blade geometry.

Fig. 5 Comparison of the optimized blade profile (solid/red line) with the starting (dashed/blue) at
35%, 60% and 82% (from bottom to top) of the wind turbine blade span.

6 Conclusions

This paper presented the development and use of the continuous adjoint method
for the shape optimization of a HAWT blade for maximum torque. Since wind tur-
bine blades are complex geometries, the parameterization was based on volumetric
NURBS method, which also contributes to the mesh deformation at each optimiza-
tion cycle. In order to reduce the optimization turnaround time, the solution of both
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Fig. 6 Comparison of the pressure coefficient for the starting (red circles) and the optimized blade
(blue triangles), along with the available experimental data (black squares) on the starting geome-
try, [8] at 35%, 60% and 82% (from bottom to top) of the wind turbine blade span. The pressure
coefficient is defined as cp =

p−p f ar
1
2 (V

2
f ar+ω2R2)

, with R the local radius and f ar indexing farfield flow

quantities.

the flow and the adjoint equations is carried out on 4 Nvidia Tesla K20 GPUs. In
particular, each optimization cycle requires approximately 15min for the primal and
10min for the adjoint equations solution.



Wind Turbine Blade Shape Optimization 13

Fig. 7 Relative velocity streamlines (coloured based on the relative velocity magnitude) in the tip
vortex region.
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Fig. 8 Axial velocity in a transversal slice through the wing turbine origin. The velocity values are
normalized with respect to the farfield velocity magnitude.

Fig. 9 Turbulent viscosity in a transversal slice through the wing turbine origin.
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