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Abstract This paper presents the development and application of the truncated
Newton (TN) method in aerodynamic shape optimization problems. The develop-
ment is presented for problems governed by the laminar flow equations of incom-
pressible fluids. The method was developed in OpenFOAM c©with the aim to stress
its advantages over standard gradient-based optimization algorithms. The Newton
equations are solved using the conjugate gradient (CG) method which requires the
computation of the product of the Hessian of the objective function and a vector,
escaping thus the need for computing the Hessian matrix itself. The latter would
have a computational cost that scales with the number of design variables and, thus,
becomes unaffordable in large-scale problems with many design variables. A com-
bination of the continuous adjoint method and the direct differentiation of the flow
and adjoint PDEs is used to compute all Hessian-vector products. A grid displace-
ment PDE (Laplace equation) is also used to compute the necessary derivatives of
grid displacements w.r.t. the design variables. The programmed method is used to
optimize the sidewall shapes of 2D ducts for minimum total pressure losses.

1 Introduction to the Truncated Newton Method

An unconstrained optimization problem, in which the target is to minimize the ob-
jective function F by controlling the design variables bi , i = 1, ...,N can be solved
by means of the Newton method, according to which the design variables are up-
dated as follows
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bn+1
i = bn

i +δbi (1a)

δ 2F
δbiδb j

n

δb j =−
δF
δbi

n

(1b)

where n is the Newton iteration counter, to be omitted hereafter. The direct solution
of eq. 1b requires the computation of the Hessian of F , with computational cost that
scales with N [3].

Considering eq. 1b as a linear system of equations of the form Ax=q, a possible
way to solve it is through the Conjugate Gradient (CG) method, which is schemati-
cally given in Algorithm 1.

Algorithm 1 : The CG Method for the Solution of Ax = q
m← 0
x← init()
rm← Ax−q; s←−rm

while |rm|< ε,(CG Iterations) do
η ← (rm)T rm

sT As
x← x+ηs
rm+1← rm +ηAs
β ← (rm+1)T rm+1

(rm)T rm

s←−rm+1 +β s
m← m+1

end while

Based on Algorithm 1, the cost of each CG iteration is dominated by the cost
of computing the matrix–vector product (As). In its truncated variant (Truncated
Newton, TN, [4]), the stopping criterion in Algorithm 1 becomes m ≤MCG, where
MCG is a user–defined small integer (to be used instead of |rm| < ε). Regarding
eq. 1b, since the Hessian matrix stands for A, the use of the TN method in aerody-
namic shape optimization problems means that the Hessian matrix itself is no more
needed and only its product with a vector must be computed. On the other hand, the
gradient of F must be available and the (continuous) adjoint method, [5], is the less
expensive way to compute it, at a CPU cost which is independent of N.

2 The Continuous Adjoint Method for the Computation of δF
δbi

The continuous adjoint method, [5], starts by differentiating the objective function
F augmented by the field integral of the flow equations multiplied by the so–called
adjoint fields, in order to derive the adjoint PDEs. The latter are, then, discretized
and numerically solved to compute the adjoint fields. The gradient of F is expressed
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in the form of field or boundary integrals of quantities involving the previously
computed flow and adjoint fields.

Let us assume a 2D laminar flow of an incompressible fluid governed by the
continuity (Rp=0) and the momentum (Rv

i =0) equations, where

Rp=−
∂v j

∂x j
(2)

Rv
i =v j

∂vi

∂x j
−

∂τi j

∂x j
+

∂ p
∂xi

, i = 1,2 (3)

Here, vi are the velocity components, p the static pressure divided by the constant
density, τi j =ν

(
∂vi
∂x j

+
∂v j
∂xi

)
the stress tensor and ν the constant viscosity.

Dealing with internal aerodynamics, we assume that the objective function F to
be minimized is the volume–averaged total pressure losses (for the flow inside a
duct) which is written as

F =
∫

SI,O

FS,inidS , FS,i=−
(

p+
1
2

v2
k

)
vi (4)

where S = SI∪SO∪SW is the domain boundary with SI being the inlet, SO the outlet,
SW the wall boundary and n the outward unit normal vector to the surface. Recall
that, for any flow quantity Φ , the total derivative δΦ/δbn, which represents the total
change in Φ caused by variations in bn, is

δΦ
δbn

=
∂Φ
∂bn

+
∂Φ
∂xk

δxk

δbn
(5)

In eq. 5, the partial derivative ∂Φ/∂bn represents only the variation in Φ caused
due to changes in the design variables, without considering space deformations.

The development of the augmented objective function

Faug=F+
∫

Ω
uiRv

i dΩ+
∫

Ω
qRpdΩ (6)

leads to the adjoint continuity (Rq=0) and adjoint momentum (Ru
i =0) equations,

Rq=−
∂u j

∂x j
(7)

Ru
i =u j

∂v j

∂xi
−

∂ (uiv j)

∂x j
−

∂τa
i j

∂x j
+

∂q
∂xi

, i=1,2 (8)

where τa
i j =ν

(
∂ui
∂x j

+
∂u j
∂xi

)
are the components of the adjoint stress tensor. By satis-

fying eqs. 7 and 8, all field integrals in δFaug/δbn which depend on δvi/δbn and
δ p/δbn are eliminated. The adjoint boundary conditions are derived by eliminat-
ing the total derivatives of the flow variables along the boundaries, while also con-



4 E.M. Papoutsis-Kiachagias, M. Ghavami Nejad and K.C. Giannakoglou

sidering the flow boundary conditions. In this paper, we will refrain from further
developing the adjoint boundary conditions, see [5].

After satisfying the adjoint PDEs, eqs. 7 and 8, the expression for the gradient of
F (i.e. the rhs term in eq. 1b)is

δF
δbn

=
∫

Ω
A jk

∂
∂x j

(
δxk

δbn

)
dΩ (9)

where

A jk =−uiv j
∂vi

∂xk
−u j

∂ p
∂xk
−τa

i j
∂vi

∂xk
+ui

∂τi j

∂xk
+q

∂v j

∂xk
(10)

3 Computation of Hessian(F)–Vector Products

As explained in Section 1, the TN method requires the computation of δ 2F
δbnδbm

sm,
where sm might be the components of any vector.

Let us use overbar to denote the product of the total gradient δΦ
δbm

of any quantity
Φ and sm, namely

Φ =
δΦ
δbm

sm (11)

It can be proved that

∂Φ
∂x j

=
δ

δbm

(
∂Φ
∂x j

)
sm=

∂Φ
∂x j
−∂Φ

∂xk

∂xk

∂x j
(12)

Also, for any pair of Φ and Ψ ,

δ
δbm

(
Ψ

∂Φ
∂x j

)
sm=Ψ

∂Φ
∂x j

+Ψ
∂Φ
∂x j
−Ψ

∂Φ
∂xk

∂xk

∂x j
(13)

Based on the above, it is a matter of mathematical development to show that

δ 2F
δbnδbm

sm =
∫

Ω
A jk

∂
∂x j

(
δxk

δbn

)
dΩ+

∫
Ω

A jk
δ

δbm

[
∂

∂x j

(
δxk

δbn

)]
smdΩ

+
∫

Ω
A jk

∂
∂x j

(
δxk

δbn

)
sm

δ (dΩ)

δbm
(14)

where



Shape Optimization Using the Adjoint-based Truncated Newton 5

A jk =−uiv j
∂vi

∂xk
−uiv j

∂vi

∂xk
−uiv j

∂vi

∂xk
+uiv j

∂vi

∂xλ

∂xλ
∂xk
−u j

∂ p
∂xk
−u j

∂ p
∂xk

+ u j
∂ p
∂xλ

∂xλ
∂xk
−ν

(
∂ui

∂x j
+

∂u j

∂xi

)
∂vi

∂xk
+ν

(
∂ui

∂xλ

∂xλ
∂x j

+
∂u j

∂xλ

∂xλ
∂xi

)
∂vi

∂xk

− ν
(

∂ui

∂x j
+

∂u j

∂xi

)
∂vi

∂xk
+ν

(
∂ui

∂x j
+

∂u j

∂xi

)
∂vi

∂xλ

∂xλ
∂xk

+ ui
∂

∂xk

[
ν
(

∂vi

∂x j
+

∂v j

∂xi

)]
+ui

∂
∂xk

[
ν
(

∂vi

∂x j
+

∂v j

∂xi

)]
− ui

∂
∂xk

[
ν
(

∂vi

∂xλ

∂xλ
∂x j

+
∂v j

∂xλ

∂xλ
∂xi

)]
−ui

∂
∂xλ

[
ν
(

∂vi

∂x j
+

∂v j

∂xi

)]
∂xλ
∂xk

+ q
∂v j

∂xk
+q

∂v j

∂xk
−q

∂v j

∂xλ

∂xλ
∂xk

(15)

and, [2],
δ (dΩ)

δbm
sm=

∂
∂xλ

(
δxλ
δbm

sm

)
dΩ =

∂xλ
∂xλ

dΩ (16)

since xλ =
δxλ
δbm

. By denoting

xk,n=
δ 2xk

δbnδbm
sn (17)

it can be proved that∫
Ω

A jk
δ

δbm

[
∂

∂x j

(
δxk

δbn

)]
smdΩ =

∫
Ω

A jk
∂xk,n

∂x j
dΩ−

∫
Ω

A jk
∂

∂xλ

(
δxk

δbn

)
∂xλ
∂x j

dΩ

(18)

4 Computation of vi and p

Computing vi and p is straightforward and can be done by formulating the product
of the direct differentiation (DD, i.e. derivation w.r.t. bn) of the flow equations and
sm. It is

Rp=
δRp

δbm
sm=0 , Rv

i =
δRv

i
δbm

sm=0 (19)

where

Rp=
∂v j

∂x j
−

∂v j

∂xk

∂xk

∂x j
(20)

and
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Rv
i =

∂ (viv j)

∂x j
+

∂ (viv j)

∂x j
− ∂

∂x j

[
ν
(

∂vi

∂x j
+

∂v j

∂xi

)]
+

∂ p
∂xi

−
∂ (viv j)

∂xk

∂xk

∂x j
+

∂
∂x j

[
ν
(

∂vi

∂xk

∂xk

∂x j
+

∂v j

∂xk

∂xk

∂xi

)]
+

∂
∂xk

[
ν
(

∂vi

∂x j
+

∂v j

∂xi

)]
∂xk

∂x j
− ∂ p

∂xk

∂xk

∂xi
(21)

5 Computation of ui and q

Similarly, the product of the DD of the adjoint equations and sm yields

Rq=
δRq

δbm
sm=0 , Ru

i =
δRu

i
δbm

sm=0 (22)

where

Rq=
∂u j

∂x j
−

∂u j

∂xk

∂xk

∂x j
(23)

and

Ru
i = u j

∂v j

∂xi
+u j

∂v j

∂xi
−

∂ (uiv j)

∂x j
−

∂ (uiv j)

∂x j

− ∂
∂x j

[
ν
(

∂ui

∂x j
+

∂u j

∂xi

)]
+

∂q
∂xi
−u j

∂v j

∂xk

∂xk

∂xi

+
∂ (v jui)

∂xk

∂xk

∂x j
+

∂
∂x j

[
ν
(

∂ui

∂xk

∂xk

∂x j
+

∂u j

∂xk

∂xk

∂xi

)]
+

∂
∂xk

[
ν
(

∂ui

∂x j
+

∂u j

∂xi

)]
∂xk

∂x j
− ∂q

∂xk

∂xk

∂xi
(24)

6 Computation of xk and xk,n

In aerodynamic shape optimization problems, a widely used grid displacement
model, i.e. a mathematical model that propagates known displacements of the
boundary grid nodes to the internal nodes, is based on the Laplace equation with
Dirichlet boundary conditions. Written for the derivatives of the grid coordinates xK
w.r.t. the design variables, it takes the form

Rx
i =

∂ 2

∂x2
j

(
δxk

δbn

)
=0 (25)

from which it can readily be deduced that



Shape Optimization Using the Adjoint-based Truncated Newton 7

∂ 2xk

∂x2
j
=0 (26)

It can also be proved that

∂ 2xk,n

∂x2
j

=2
∂ 2

∂x j∂xλ

(
δxk

δbm

)
∂xλ
∂x j

(27)

which can numerically be solved to compute xk,n with appropriate boundary condi-
tions depending also on the adopted parameterization model.

7 The TN Algorithm – Comments on the CPU Cost

Using eqs. 16 to 18, eq. 14 can be written as

δ 2F
δbnδbm

sm =
∫

Ω

[
A jk+A jk

∂xλ
∂xλ
−Aλk

∂x j

∂xλ

]
∂

∂x j

(
δxk

δbn

)
dΩ

+
∫

Ω
A jk

∂xk,n

∂x j
dΩ (28)

where A jk is given by eq. 15. To compute A jk, apart from the flow and adjoint fields,
the ”overbar“ fields (vi,ui, p,q), as well as xi and their spatial derivatives must be
available.

So, in each Newton cycle, the numerical solution of Rp = 0 and Rv
i = 0 (where

Rp and Rv
i are given by eqs. 2 and 3) yields the flow fields (p,vi). The solution of

Rq = 0 and Ru
i = 0 (where Rq and Ru

i are given by eqs. 7 and 8) yields the adjoint
fields (q,ui). So, far, the computational cost is approximately equal to that of twice
solving the flow equations or 2 EFS (EFS stands for an Equivalent Flow Solution,
i.e. the cost for solving the flow equations).

Before solving for p and vi, xk must be computed by solving eq. 26 at the cost of 1
GDS (GDS stands for Grid Displacement Solutions, i.e. the cost of solving the grid
displacement PDE or any of the PDEs that result from its differentiation). It should
be mentioned that 1 GDS is significantly cheaper than 1 EFS. Eq. 26 has to be solved
once per CG iteration, contributing a total cost of MCG GDS per optimization cycle.

Computing p and vi requires the numerical solution of equations 19 (considering
also eqs. 20 and 21). Similarly, to compute q and ui requires the numerical solution
of equations 22 (considering also eqs. 23 and 24). Both systems of equations should
be solved within the CG loop (i.e. MCG times) and contribute 2MCG EFS to the
overall cost of a Newton iteration or cycle.

Within each CG iteration, the computation of A jk also requires the availability of
the δxk/δbn and xk,n fields. To this end, eqs. 25 and 27 must be solved for n∈ [1,N].
This results to 2MCGN GDS per optimization cycle.



8 E.M. Papoutsis-Kiachagias, M. Ghavami Nejad and K.C. Giannakoglou

Based on the above, the overall CPU cost per Newton iteration is equal to 2+
2MCG EFS and (1+2N)MCG GDS. However, since the cost of a GDS is significantly
lower than that of an EFS, the GDS part can be considered negligible for a moderate
number of design variables. This leads to a cost per Newton cycle that is, practically,
independent of the number of design variables N.

8 Applications

In this section, two applications of the developed TN optimization algorithm are
presented.

The first one deals with the shape optimization of an S-bend duct. The flow is
laminar with a Reynolds number of Re=785 based on the inlet height and a mesh
consisting of 27500 quadrilaterals is used. Each of the upper and lower sides are
parameterized using 9 Bézier–Bernstein control points, fig. 1. The first and last two
control points per side are kept fixed while the x and y coordinates of the rest are
allowed to vary, giving rise to a total of 20 design variables. In fig. 2, the con-
vergence history of the developed TN algorithm is compared to those of steepest
descent (SD) and the Fletcher-Rives Conjugate Gradient (CG), [1], method. Com-
parisons are presented twice, in terms of the cycles required to reach the minimum
and the corresponding EFS. In addition, an investigation of the effect of the MCG
number can be seen in the same figures. It can be observed that TN outperforms SD
and CG, since it computes the optimized duct shape using less optimization cycles
and, especially, by requiring less EFS. In addition, it can be seen that, even though
increasing MCG reduces the number of optimization cycles required to reach the
minimum, there is no obvious gain from the EFS point of view. In fig. 3, the flow
velocity magnitude in the initial and optimized ducts is presented.

The second case is concerned with the optimization of a divergent duct. The flow
Reynolds number is Re=475 and a mesh consisting of 20000 quadrilaterals is used.
The initial and optimized geometries along with the Bézier–Bernstein control points
used to parameterize the duct shape are depicted in fig. 4. In fig. 5, the flow velocity
magnitude in the initial and optimized ducts is presented. In fig. 6, the convergence
history of the TN, SD and CG are illustrated. In this case as well, TN outperforms
SD and CG from the optimization cycles point of view; regarding EFS, TN and
CG compute the optimal solution almost at the same cost. Increasing MCG has the
same effect as in the first case, i.e. the optimized geometry is computed in less
optimization cycles but without a significant advantage in CPU cost. This seems to
indicate that, at least for the cases studied, a low MCG number should be chosen.
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Fig. 1 S-bend duct optimization: dust shape and the Bézier–Bernstein control points parameteriz-
ing it. Axes not in scale. Control points depicted with a dark cycle remain fixed during the opti-
mization.

9 Conclusions

A Truncated Newton method for computing an approximation to the second-order
correction of the design variables by iteratively solving Newton’s equation using
Conjugate Gradient was presented. The method built on previous work of the au-
thors for Euler flows and extended the mathematical background for incompress-
ible, laminar flows. The proposed Truncated Newton method computes the required
Hessian-vector products by utilizing a combination of (continuous) adjoint and
direct differentiation. The cost per optimization cycle is approximately equal to
2 + 2MCG equivalent flow solutions, where MCG is the number of CG iterations
used to approximate the solution of Newton’s equation; this cost is practically inde-
pendent of the design variables number. In contrast to previous work, the new for-
mulation is solving for the projected total derivatives of the flow quantities ( δΦ

δbm
sm)

instead of the partial ones ( ∂Φ
∂bm

sm) by also involving a grid displacement model and
its differentiation. In the two applications presented, each with a moderate number
of design variables, it was shown that Truncated Newton outperforms other opti-
mization methods in terms of optimization cycles and is, at least, as fast as Conju-
gate Gradient in terms of CPU cost. A parametric study for MCG has also shown that
its value should remain as low as possible. On going research on further improving
the Truncated Newton method speed-up is performed.
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Fig. 2 S-bend duct optimization: Convergence of the steepest descent (SD), Conjugate Gradient
(CG) and Truncated Newton (TN) optimization algorithms, w.r.t. optimization cycles (a) and EFS
(b). As explained in the text, the part of the CPU cost which is due to GDS is neglected.
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Fig. 3 S-bend duct optimization: Velocity magnitude for the initial (a) and optimized (b) geome-
tries.
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shapes and the Bézier–Bernstein control points parameterizing them. Axes not in scale. Control
points depicted with dark marks remain fixed during the optimization.
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(a)
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Fig. 5 Divergent duct optimization: Velocity magnitude for the initial (a) and optimized (b) ge-
ometries.
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