
8th GRACM International Congress on Computational Mechanics,
Volos, 12 July - 15 July 2015

SHAPE OPTIMIZATION USING THE CONTINUOUS ADJOINT METHOD AND
VOLUMETRIC NURBS ON GPUS

Konstantinos T. Tsiakas1, Xenofon S. Trompoukis2, Varvara G. Asouti3, Mehdi S. Ghavami Nejad4 and
Kyriakos C. Giannakoglou5

1,2,3,4,5Parallel CFD & Optimization Unit, School of Mechanical Engineering
National Technical University of Athens

Athens, Greece
e-mail: {tsiakost,xeftro}@gmail.com, {vasouti,mehdi}@mail.ntua.gr, kgianna@central.ntua.gr;

web page: http://velos0.ltt.mech.ntua.gr/research

Keywords: Continuous Adjoint, Computational Fluid Dynamics, NURBS, GPU cluster, Shape Optimization.

Abstract: This paper is concerned with the development of the continuous adjoint method for aerodynamic shape
optimization problems on Graphics Processing Units (GPUs). The primal and adjoint solvers are implemented on
parallel GPUs of many computational nodes using CUDA and the MPI protocol. In turbulent flow problems, the
differentiation of the turbulence model is included in the adjoint formulation and this improves the accuracy of the
computed objective function gradient. The latter are computed with respect to the coordinates of the control points
of volumetric NURBS. The same volumetric NURBS are also used to deform the computational mesh during the
optimization. Implementation details of the primal and adjoint solvers as well as the parameterization software on
GPUs are discussed. The aforementioned tools are used for the shape optimization of a U–bend duct and a linear
compressor cascade, aiming at minimum total pressure losses.

1 INTRODUCTION

The use of gradient–based techniques assisted by the adjoint methods is the most efficcient way to solve large–
scale aerodynamic shape optimization problems governed by the flow equations. Compared to methods such as
finite differences, the adjoint method computes the gradient of the objective function at cost almost equal to that of
the solution of the Navier–Stokes (NS) equations, irrespective of the number of design variables.

In this paper, to further reduce the optimization turnaround time, the solution of both the primal (NS) and adjoint
equations is carried out on a many–GPU cluster. In particular, this paper deals with the continuous adjoint method
for incompressible flows running on GPUs. For turbulent flows, the differentiation of the Spalart–Allmaras (SA)
turbulence model is also considered as presented for the first time in [4], and is herein ported to GPUs.

During the last decade, GPUs became more and more programmable which allowed scientists to use them for
their applications. The latter include GPU implementations of CFD codes for both structured [9, 10, 12] and
unstructured [11, 5, 13] meshes. Given that memory access/handling plays a significant role in the parallel effi-
ciency of any GPU implementation, the mesh type affects a lot the performance of the GPU–enabled algorithm.
GPU–enabled CFD codes for structured meshes may profit from the organized topology and memory access and
exhibit high speed–ups. Working with unstructured meshes, the lack of structure in mesh connectivity affects the
parallel speed–up, which is also sensitive to the discretization schemes. In general, the cell–centered finite volume
scheme can be considered more advantageous in terms of memory access compared to the vertex–centered one.
This is because the number of neighbors to each cell barycenter is constant and known a priori. In contrast, in a
vertex–centered scheme where the number of the adjacent nodes to any node may vary a lot, a customized memory
handling is necessary.

The authors group has addressed various ways to achieve high speed-ups of GPU–enabled codes for unstructured
meshes with the vertex–centered finite volume scheme. These include the optimal use of GPU memory, the use of a
Mixed Precision Arithmetics (MPA) scheme and different schemes for the computation of numerical fluxes [5, 6].

K. Tsiakas, X. Trompoukis, V. Asouti, M. Ghavami Nejad and K. Giannakoglou

In this paper, the practicalities of running the primal and adjoint solvers on GPUs are discussed. Applications
to the shape optimization of a U–bend duct and a linear compressor cascade aiming at the minimization of total
pressure losses are presented.

Although the adjoint method provides all the necessary means for computing sensitivities of the objective function
w.r.t. the aerodynamic shape, in order to perform a complete optimization a shape parameterization and a mesh
deformation method are needed. In this paper, volumetric NURBS, [16] are used to fulfill these purposes. Unlike
direct shape parameterization techniques, volumetric NURBS parameterize a part of the volume domain in which
the shape to be optimized is embedded. Concerning the shape of the surface, this approach is equivalent to a
free form deformation (FFD) method. However, the use of volumetric NURBS is extended to also deform the
computational mesh. This allows for fast and robust mesh deformation within the optimization loop, without
the need of using other specific mesh deformation tools (solving PDEs, spring analogy solvers etc). In order to
minimize the wall clock time needed for the objective function gradient computation and the mesh deformation,
volumetric NURBS are implemented on GPUs.

2 OPTIMIZATION ALGORITHM

The gradient–based optimization algorithm consists of the following steps within each cycle:

Step 1: Solve the primal (flow) equations.
Step 2: Solve the adjoint equations.
Step 3: Compute the objective function gradients.
Step 4: Update the design variables (NURBS control points) by descending using the gradient (steepest

descent).
Step 5: Update the computational mesh in accordance/comformity with the already modified NURBS

control grid shape.
Step 6: Compute the objective function values. If convergence criteria are not met return to step 1.

The main steps of the optimization algorithm are discussed in the following sections.

2.1 Flow Model

The flow model comprises the Navier–Stokes equations for incompressible fluid flows. The pseudo-compressibility
method introduced by Chorin, [1], is used for satisfying the divergence–free velocity constraint. The mean flow
equations read

RUn =
∂f inv

nk

∂xk
− ∂fvis

nk

∂xk
= 0 (1)

where Un = [p υ1 υ2 υ3]
T is the vector of the unknowns, with υi, i=1, 2, 3 being the velocity components and p

being the kinematic pressure. The inviscid and viscous fluxes as well as the stresses are given as

f inv
nk =

βυk

υkυ1 + pδ1n
υkυ2 + pδ2n
υkυ3 + pδ3n

 , fvis
nk =

0
τ1k
τ2k
τ3k

 , τmk = (ν+νt)

(
∂υm
∂xk

+
∂υk
∂xm

)
(2)

where ν and νt stand for the kinematic and turbulent viscosity and β is the pseudo-compressibility parameter. The
Jacobian matrix Anmk is

Anmk =

0 βδ1k βδ2k βδ3k
δ1k υ1 + υ1δ1k υ1δ2k υ1δ3k
δ2k υ2δ1k υ2 + υ2δ2k υ2δ3k
δ3k υ3δ1k υ3δ2k υ3 + υ3δ3k

 (3)

For turbulent flows, the low–Reynolds number Spalart–Almaras turbulence model [2] is used . The model equation
is

Rν̃ =
∂

∂xk
(υkν̃)︸ ︷︷ ︸

conv(ν̃)

−1 + cb2
σ

∂

∂xk

[
(ν + νt)

∂ν̃

∂xk

]
+

cb2
σ

(ν + ν̃)
∂

∂xk

(
∂ν̃

∂xk

)
︸ ︷︷ ︸

diff(ν̃)

−cb1S̃ν̃ + cw1fw

(
ν̃

∆

)2

︸ ︷︷ ︸
source(ν̃)

(4)

K. Tsiakas, X. Trompoukis, V. Asouti, M. Ghavami Nejad and K. Giannakoglou

where, ν̃ is the model unknown linked with νt by νt = ν̃fv1. S̃ is defined as S̃ = fv3S + ν̃
k2∆2 fv2, S being

the vorticity magnitude S =
∣∣∣ϵklm ∂υm

∂xl

∣∣∣ and ∆ the distance of each node from the nearest wall boundary. The
definition of any auxiliary function or quantity can be found in [2].

Along the solid walls, zero velocity components as well as a zero value for ν̃ are specified; in addition a Neumann
boundary condition is used for p. Along the inlet (SI), fixed values are used for both the velocity components and
ν̃ and a Neumann condition for p; along the outlet (SO), the p value is defined together with Neumann conditions
for the rest of the flow quantities.

2.2 Continuous Adjoint Formulation

The objective function F to be minimized is the volume–averaged total pressure losses between SI (inlet) and SO

(outlet) boundaries of the computational domain, expressed as

F = −
∫
SI

(
p+

1

2
υ2
m

)
υknkdS −

∫
SO

(
p+

1

2
υ2
m

)
υknkdS (5)

where nk are the components of the unit vector normal to the inlet/outlet boundaries and pointing outside of the
computational domain. By introducing the adjoint variable field Ψn(i.e. the adjoint to the mean-flow variables),
ν̃a (i.e. the adjoint to the turbulence model variable ν̃), the augmented objective functions is defined as

Faug. = F +

∫
Ω

ΨnRUndΩ+

∫
Ω

ν̃aRν̃dΩ (6)

Upon convergence of the primal equations Faug = F , so computing the sensitivity derivatives (δFδbi) of F w.r.t. the

design variables bi is equivalent to computing δFaug.

δbi
. By differentiating eq. 6, we get

δFaug

δbi
=

δF

δbi
+

∫
Ω

δ

δbi
(ΨnRUn)dΩ+

∫
Ω

ΨnRUn

δ

δbi
(dΩ) +

∫
Ω

δ

δbi
(ν̃aRν̃)dΩ+

∫
Ω

ν̃aRν̃
δ

δbi
(dΩ) (7)

For any geometric or flow quantity Φ defined over Ω it can be proved, [3], that

δΦ

δbi
=

∂Φ

∂bi
+

∂Φ

∂xl

δxl

δbi
,

δ

δbi

(
∂Φ

∂xk

)
=

∂

∂xk

(
δΦ

δbi

)
− ∂Φ

∂xl

∂

∂xk

(
δxl

δbi

)
(8)

Applying the divergence theorem and using eqs. 8, eq. 7 can be expressed in terms of field and boundary integrals
containing variations in the flow quantities (δUn

δbi
, δν̃
δbi

) and variations in geometric quantities (δxl

δbi
, ∂
∂xk

(
δxl

δbi

)
and

δ
δbi

(nkdS)). Then, the volume integrals containing δUn

δbi
and δν̃

δbi
are eliminated by satisfying the adjoint mean flow

PDEs 9 and the adjoint turbulence model PDE 10, namely

RΨn
=−Amnk

∂Ψm

∂xk︸ ︷︷ ︸
conv(Ψn)

− ∂ϕvis
nk

∂xk︸ ︷︷ ︸
diff(Ψn)

+ T a
n︸︷︷︸

source1(ν̃a)

= 0 (9)

Rν̃a =− υk
∂ν̃a

∂xk︸ ︷︷ ︸
conv(ν̃a)

−1 + cb2
σ

∂

∂xk

[
(ν + ν̃)

∂ν̃a

∂xk

]
+

cb2
σ

∂2

∂x2
k

[ν̃a(ν + ν̃)]︸ ︷︷ ︸
diff(ν̃a)

+
1 + cb2

σ

∂ν̃a

∂xk

∂ν̃

∂xk︸ ︷︷ ︸
grad(ν̃a)

+
∂Ψm+1

∂xk

(
∂υk
∂xm

+
∂υm
∂xk

)(
∂νt
∂ν̃

+
∂νt
∂fv1

∂fv1
∂χ

∂χ

∂ν̃

)
︸ ︷︷ ︸

source1(ν̃a)

(10)

−cb1ν̃
aν̃

∂S

∂ν̃
− cb1ν̃

aS̃ + cw1ν̃
a

(
∂ν̃

∆

)2
∂fw
∂ν̃

+ 2cw1ν̃
a fw
∆︸ ︷︷ ︸

source2(ν̃a)

where

ϕvis
nk = [0 τa1k τa2k τa3k]

T
τamk = (ν + νt)

(
∂Ψm+1

∂xk
+

∂Ψk+1

∂xm

)
(11)

K. Tsiakas, X. Trompoukis, V. Asouti, M. Ghavami Nejad and K. Giannakoglou

and source1(ν̃a) are terms arising from the differentiation of the conv(ν̃) and the vorticity terms of equation 4.
Boundary integrals containing δUn

δbi
and δν̃

δbi
are also eliminated by satisfying apropriate adjoint boundary condi-

tions. The remaining field and boundary integrals contain variations in geometric quantities and, thus, are used to
compute the sensitivity derivatives of the objective function. The final expression of the sensitivity derivatives is

δF

δbi
=−

∫
Ω

(
βΨ1

∂υk
∂xl

+Ψm+1
∂

∂xl
(υkυm) + Ψk+1

∂p

∂xl

)
∂

∂xl

(
δxl

δbi

)
dΩ

+

∫
Ω

[
Ψm+1

∂τkm
∂xl

− τakm
∂υm
∂xl

]
∂

∂xk

(
δxl

δbi

)
dΩ−

∫
Ω

(
ν̃aν̃

∂υk
∂xl

− ν̃aυk
∂ν̃

∂xl

)
∂

∂xk

(
δxl

δbi

)
dΩ

+

∫
Ω

(
1 + 2cb2

σ

)(
ν̃a

∂ν̃

∂xl

∂ν̃

∂xk

)
∂

∂xk

(
δxl

δbi

)
dΩ+

∫
Ω

ν̃a

σ
(ν + ν̃)

∂

∂xl

(
∂ν̃

∂xk

)
∂

∂xk

(
δxl

δbi

)
dΩ

−
∫
Ω

ν + ν̃

σ

∂ν̃a

∂xk

∂ν̃

∂xl

∂

∂xk

(
δxl

δbi

)
dΩ+

∫
Ω

cw1ν̃
a

[(
ν̃

∆

)2
∂fw
∂∆

− 2fw
ν̃

∆2

]
δ∆

δbi
dΩ

+

∫
Ω

ν̃a

ν̃ ∂S̃
∂S

∂S

∂
(

∂υm

∂xk

) ∂υm
∂xl

−
(
ν̃

∆

)2
∂fw

∂
(

∂υm

∂xk

) ∂υm
∂xl

 ∂

∂xk

(
∂xl

∂bi

)
dΩ (12)

In [15], a way to treat terms containing δ∆
δbi

has been proposed by some of the authors, by formulating and solving
the adjoint to the eikonal equation for distance computations.

2.3 Discretization And Numerical Solution

The flow and adjoint PDEs are discretized using the vertex–centered finite–volume method on unstructured/hybrid
meshes. A finite volume formed around node P is presented in figure 1, for a 2D mesh for the sake of simplicity.
In the primal solver, the inviscid numerical fluxes crossing the interface of adjacent finite volumes are computed

Q
R

Figure 1: 2D Finite volume formed around node P . At the interface between two mesh nodes, the left L and right
R flow variables are extrapolated using nodal (at P and Q) values and spatial gradients.

using the Roe’s [8] approximate Riemann solver, with second–order accuracy, as

ΦPQ
n =

1

2

(
f inv,P
nk + f inv,Q

nk

)
nk − 1

2

∣∣∣APQ

nmknk

∣∣∣ (UR
m − UL

m

)
(13)

where ΦPQ contributes to the residual at node P and ΦQP = −ΦPQ for the residual at Q. In eq. 13, nk is the
normal to the interface of the finite volumes formed around nodes P , Q pointing towards Q. A

PQ
is computed

using Roe–averaged flow variables, UP , UQ are the flow variables stored at P , Q respectively and UR, UL are the
flow variables extrapolated at the right and left boundaries of the inteface.

The adjoint inviscid numerical fluxes are computed using non–conservative schemes, namely

Φa,PQ
n = −1

2
AP

mnk

(
ΨP

n +ΨQ
n

)
nk − 1

2

∣∣∣APQ

mnknk

∣∣∣ (ΨR
n −ΨL

n

)
Φa,QP

n =
1

2
AQ

mnk

(
ΨP

n +ΨQ
n

)
nk +

1

2

∣∣∣APQ

mnknk

∣∣∣ (ΨR
n −ΨL

n

)
For the computation of the viscous fluxes, the derivatives of any primal flow or adjoint quantity W on the finite
volumes interface (between nodes P and Q) are computed as

K. Tsiakas, X. Trompoukis, V. Asouti, M. Ghavami Nejad and K. Giannakoglou

(
∂W

∂xk

)PQ

=

(
∂W

∂xk

)
−

(∂W

∂xk

)
tPQ
m − WQ −WP√

(xQ
m − xP

m)2

 tPQ
k

where

tPQ
m =

xQ
m − xP

m√
(xQ

m − xP
m)2(

∂W

∂xk

)
=

1

2

[(
∂W

∂xk

)P

+

(
∂W

∂xk

)Q
]

Both the primal and adjoint equations are solved iteratively for the corrections of the flow and adjoint variables
(∆U and ∆Ψ; delta formulation) respectively, as

∂RUn

∂Um
∆Um = −RUn , U j+1

m = U j
m +∆Um

∂RΨn

∂Ψm
∆Ψm = −RΨn , Ψj+1

m = Ψj
m +∆Ψm (14)

where ∂RUn

∂Um
,∂RΨn

∂Ψm
are approximations of the Jacobians for the primal and adjoint fluxes respectively. Eqs. 14

are solved iteratively (j indicates the iterations) using the point–implicit Jacobi method which can be efficiently
parallelized. A similar solution method is used for solving the adjoint and primal turbulence model equations.

2.4 Volumetric NURBS Parameterization

The parameterization method used for both the shape to be optimized and the surrounding mesh within the context
of this paper is a volumetric NURBS scheme. Volumetric NURBS, are trivariate NURBS defined by a grid of
control points and weights (P ijk and wijk respectively) and three knot vectors (Kξ,Kη and Kζ) each one associ-
ated with a parametric direction (ξ,η and ζ) and a corresponding degree (pξ,pη,pζ). Given a triplet of parametric
coordinates, a point’s position xm in the 3D space, is computed as

xm(ξ, η, ζ) =

Nξ∑
i

Nη∑
j

Nζ∑
k

Ξi,pξ

(ξ)Hj,pη

(η)Zk,pζ

(ζ)P ijk
m wijk

Nξ∑
i

Nη∑
j

Nζ∑
k

Ξi,pξ(ξ)Hj,pη (η)Zk,pζ (ζ)wijk

(15)

where Nr is the number of control points in the r direction and Ξi,pξ

is the pξ-th degree B-Spline basis function
defined on the knot vector Kξ (Hj,pη

and Zk,pζ

are defined similarly). The B-Spline basis functions w.r.t. the
corresponding knot vectors as well as their useful mathematical properties can be found in [7].

Eq. 15 can be differentiated to provide the required geometric sensitivities δxl

δbi
and ∂

∂xk

(
δxl

δbi

)
, required by eq.12.

The design variables bi can be either the coordinates of the control points or the weights. To reduce memory
usage by the parameterization scheme, the geometric sensitivities are not stored; instead, there are computed anew
whenever needed. However, especially in large meshes, this can be computationally expensive and, in order to
reduce the wall clock time needed, their computation is performed on the GPUs.

In order to compute the geometric sensitivities of each mesh node position, its parametric coordinates need to be
computed first, using Newton-Raphson iterations. The parametric coordinates of a mesh node are computed at
a pre–processing step and remain fixed during the optimization, in which eq. 15 is also the means to adapt the
computational mesh to the modified shape.

3 GPU DEPLOYMENT

An in–house CFD solver was used for the solution of the flow and adjoint equations. The solver runs on a cluster
of GPUs using the CPU memory of each computational node or the MPI protocol for data interchanges between

K. Tsiakas, X. Trompoukis, V. Asouti, M. Ghavami Nejad and K. Giannakoglou

GPUs of the same or different nodes, respectively. The GPU cluster used in this paper comprises 4 nodes with 3
NVIDIA Tesla M2050 (Fermi Architecture) each and 2 nodes with 2 NVIDIA K20 (Kepler Architecture) each.
The GPU–enabled solver running on a Tesla M2050 is ∼ 50 times faster compared to the equivalent CPU–enabled
solver on a 2×quad core Intel Xeon E2560 CPU with 12MB cache. K20 GPU is ∼ 1.2 times faster than M2050.

The high parallel efficiency of the GPU–enabled solver is strongly related to the GPU–oriented pattern used to
access the allocated GPU memory. For instance, large data accesses to the GPU (device) memory are coalesced
to 128 Byte memory segments, so as to minimize the device memory bandwidth. Apart from the device memory,
GPUs include several other memory types with smaller capacity and different access pattern, namely the constant,
texture, shared and local ones. Frequently accessed data, such as the gradients of the flow or adjoint variables, are
fetched to textures. Access to the texture memory is performed via the texture cache memory and an appropriate
renumbering of mesh nodes is employed in order to minimize cache miss. The low latency shared memory is used
for data interchange among the threads of the same block. Finally, the fast constant memory is used for storing
constants related to fluid properties and other constant quantities.

Moreover, the GPU solver employs Mixed Precision Arithmetics (MPA), [5], which optimally combines the Dou-
ble (DPA) and Single Precision Arithmetics (SPA) for the minimization of the device memory transactions, without
harming the accuracy of the results. According to MPA, the right-hand-side (r.h.s.) of eqs. 14 is computed and
stored using DPA, while the memory consuming left-hand-side (l.h.s.) coefficients are computed using DPA but
stored using SPA. MPA minimizes the amount of data transferred between the GPU threads and the device mem-
ory, resulting to greater speed-ups compared to the DPA scheme. The truncation error occurring in the storage
of the l.h.s. coefficients does not harm the accuracy of the solver since both the primal and adjoint equations are
solved in “delta formulation”, see equation 14. The use of MPA significantly reduces (by 30% at least) the required
GPU memory.

The computation of the flow/adjoint residuals and l.h.s. coefficients, requires the computation and accumulation of
the numerical primal/adjoint fluxes and their Jacobians. This can be done using either the so–called Single or Two–
Kernel scheme, [6]). In the Single–Kernel scheme, each GPU thread, associated with a mesh node, computes and
accumulates the numerical fluxes/Jacobians to form the mesh node residuals and l.h.s. coefficients by looping over
all the finite volume boundaries formed around the mesh node. This implies that the numerical fluxes and Jacobians
are computed twice per volume interface. This is avoided by using the Two–Kernel scheme where two kernels are
launched for the computation of the mesh node residuals and l.h.s. coefficients. The first kernel associates each
GPU thread with a single mesh edge (i.e. interface between the finite volumes formed around two adjacent mesh
nodes). The numerical fluxes/Jacobians are computed once per finite volume interface by the first kernel and are
accumulated by the second one which associates GPU threads with mesh nodes. However, in the Two–Kernel
scheme, extra memory space is required for storing temporarily the Jacobians computed by the scheme’s first
kernel. So, in case the l.h.s. coefficients are not constant, the Two–Kernel scheme is rather prohibitive for large
scale applications due to the limited GPU memory capacity. For this reason, the primal solver uses the One–Kernel
scheme. On the other hand, the adjoint l.h.s. coefficients depend only on the flow solution field and are constant
during the iterative solution of the adjoint equations. Thus, the Single–Kernel scheme is used for the computation
of the adjoint l.h.s. coefficients once per optimization cycle, before iteratively solving the adjoint equations, and
the Two–Kernel scheme for the residuals at each pseudo–time iteration [14].

4 APPLICATIONS

The continuous adjoint formulation on GPUs described in the previous sections was applied to the shape optimiza-
tion of a U–bend duct and a compressor cascade.

The first case is concerned with the shape optimization of a linear compressor cascade for minimum total pressure
losses. The blade is built based on the NACA6512 airfoil with a stagger angle of 30◦. The flow is turbulent with
Re = 4.28 × 105. The velocity angle at inflow is 56.2◦. Modifications in the airfoil shape are controlled by the
control grid of 11× 11 points shown in figure 2(b), which also affects part of the computational mesh. Cubic basis
functions and uniform knot vectors are used in both parametric directions.

The computational mesh consists of 50662 nodes and 40052 elements. The latter is generated as a 2D triangular
mesh using the advancing front technique and superimposed to quadrilateral layers close to the airfoil. Given
that the GPU solver handles 3D unstructured/hybrid meshes, the 2D mesh is extruded towards the z–direction.
The resulting 3D mesh comprises hexahedral elements close to the blade boundary for better capturing viscous

K. Tsiakas, X. Trompoukis, V. Asouti, M. Ghavami Nejad and K. Giannakoglou

phenomena, while the rest of the domain is filled with prismatic elements. Since, in this case, we are interested in
simulating only 2D effects symmetry conditions are applied in the two iso–z planes.

(a) (b)

Figure 2: Shape optimization of a linear compressor cascade. (a) Computational mesh close to the blade. (b)
Definition of control points for parameterizing the compressor blade. Points in red are kept fixed while the green
points are allowed to move in both x and y directions.

The optimization runs for 9 cycles on a single NVIDIA K20 GPU. The average wall clock time for a single solution
of the flow PDEs, converged to machine accuracy, is about 1.5min, while for the adjoint field is 1.10min resulting
in ∼ 3min/cycle. The overall optimization requires ∼ 27 min. The optimization convergence history is shown in
figure 3. The primal velocity fields along with the total pressure contours around the initial and optimized geometry
are presented in figure 4. It is clear that the flow separation zone on the rear part of the suction side is reduced and
this leads to lower total pressure losses.

Cycles

(F
in

it
ia

l -F
)/

F
in

it
ia

l %

Figure 3: Convergence history of the optimization. The horizontal axis corresponds to optimization cycles, while
the vertical axis displays the % improvement of the objective function value.

.

The second case is concerned with the optimization of a 3D U–bend for minumum total pressure losses. The design
variables are the control point coordinates shown in figure 7. The control points form a 7 × 8 × 5 grid and cubic
basis functions are used along all parametric directions. Points marked in red are kept fixed so as to ensure C1

continuity across the interface between the deformed and undeformed regions. The remaining points are allowed
to move along the x,y and z axes resulting to (5 × 8 × 5) × 3 = 600 design variables overall. The optimization
history is shown in figure 5(a). The solution of the flow PDEs requires about 4.3min while the adjoint ones 2.5min
resulting in ∼ 7.8min/cycle and a total of 1 hour overall for the optimization procedure (9 cycles). The optimized
duct shape, computed after 9 cycles, compared to the initial one is presented in figure 5(b). The corresponding
contol points are shown in figure 7. In the optimized geometry, the separation area at the exit of the U–bend is
practically eliminated. This can be seen in figure 6, where the velocity contours are plotted on a plane half–width
of the duct.

K. Tsiakas, X. Trompoukis, V. Asouti, M. Ghavami Nejad and K. Giannakoglou

(a)

(b)

Figure 4: Shape optimization of a linear compressor cascade. Primal velocity magnitude (a) and total pressure
fields (b) for the initial (left) and the optimized (right) shape.

5 CONCLUSIONS

This paper presented the use of the continuous adjoint method for the minimization of total pressure losses in
incompressible internal flows. The shapes were parameterized using a volumetric NURBS method, which was also
used for deforming the computational mesh around the parameterized shape. The more computationally intensive
tasks of the optimization process, such as the solution of the flow and adjoint equations and the computation of
the objective function gradient, were implemented on GPUs so as to reduce the optimization wall–clock time.
In addition, the volumetric NURBS parameterization scheme introduced additional flexibility to the optimization
process to handle arbitrarily shaped geometries. The application of the developed software in a 3D U–bend duct
case and a 2D linear compressor cascade airfoil, significantly reduced the total pressure losses with minimum
computational effort. In Practicaly the optimization of the 2D case takes ∼ 27min while an hour is sufficient for a
3D case.

ACKNOWLEDGMENTS The fourth author acknowledges the support, as an Early Stage Researcher, from
the People Programme (ITN Marie Curie Actions) of the European Union’s Seventh Framework Programme
(FP7/2007-2013) under REA grant agreement no 317006 (AboutFLOW project).

K. Tsiakas, X. Trompoukis, V. Asouti, M. Ghavami Nejad and K. Giannakoglou

Cycles

(F
in

it
ia

l -
 F

)/
F

in
it

ia
l %

(a) (b)

Figure 5: Shape optimization of a U–bend duct.(a) Optimization convergence history.(b) Initial (blue) and opti-
mized (red) geometry.

(a) (b)

Figure 6: Shape optimization of a U–bend duct. NURBS control points on the initial (a) and optimized (b)
geometries. Points marked in red remain fixed during the optimization.

(a) (b)

Figure 7: Shape optimization of a U–bend duct. Velocity contours on a half–width plane on the initial (a) and
optimized (b) geometries.

K. Tsiakas, X. Trompoukis, V. Asouti, M. Ghavami Nejad and K. Giannakoglou

References

[1] Chorin A. (1967), ”A numerical method for solving incompressible viscous flow problems”, Journal of Com-
putational Physics, Vol. 2, pp. 12-26.

[2] Spalart P., Allmaras S. (1994), ”A one-equation turbulence model for aerodynamic flows”, La Recherche
Aerospatiale, Vol. 1, pp. 5-21.

[3] Papadimitriou D.I., Giannakoglou K.C. (2007), ”A continuous adjoint method with objective function deriva-
tives based on boundary integrals for inviscid and viscous flows, Computers & Fluids, Vol. 36, pp. 325-341.

[4] Zymaris A.S., Papadimitriou D.I., Giannakoglou K.C., Othmer, C. (2009), ”Continuous Adjoint Approach
to the Spalart-Allmaras Turbulence Model for Incompressible Flows, Computers & Fluids, Vol. 38 , pp.
1528-1538.

[5] Kampolis I.C., Trompoukis X.S., Asouti V.G, Giannakoglou K.C. (2010), ”CFD-based analysis and two-
level aerodynamic optimization on graphics processing units”, Computer Methods in Applied Mechanics and
Engineering, Vol. 199, pp. 712-722.

[6] Asouti V.G., Trompoukis X.S., Kampolis I.C. and Giannakoglou K.C. (2011), ”Unsteady CFD computations
using vertex–centered finite volumes for unstructured grids on Graphics Processing Units”, International
Journal for Numerical Methods in Fluids, Vol. 67, pp. 232-246.

[7] Piegel, L., Tiller, W. (1997), The NURBS book, Springer-Verlag, New York.

[8] Roe P. (1981),”Approximate Riemann solvers, parameter vectors, and difference schemes”, Journal of Com-
putational Physics, Vol. 43, pp. 357-372.

[9] Hagen T.R., Lie K.A., Natvig J.R.(2006),”Solving the Euler equations on graphics processing
units”,Computational Science - ICCS, Vol. 3994, pp. 220-227.

[10] Brandvik T., Pullan G. (2008), ”Acceleration of a 3D Euler solver using commodity graphics hardware”, 46th
AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA.

[11] Corrigan A., Camelli F.F., Löhner R., Wallin J. (2011), ”Running unstructured grid-based CFD solvers on
modern graphics hardware”, International Journal for Numerical Methods in Fluids, Vol. 66, pp. 221-229.

[12] Lefebvre M., Guillen P., Le Gouez J.-M., Basdevant C. (2012), ”Optimizing 2D and 3D structured Euler CFD
solvers on Graphical Processing Units”,Computers & Fluids, Vol, 70, pp. 136-147.

[13] Oyarzun G., Borrell R., Gorobets A., Lehmkuhl O., Oliva A. (2013), ”Direct Numerical Simulation of Incom-
pressible Flows on Unstructured Meshes Using Hybrid CPU/GPU Supercomputers”, Procedia Engineering,
Vol. 61, pp. 87-93.

[14] Trompoukis X.S., Tsiakas K.T, Ghavami Nejad M., Asouti V.G. and Giannakoglou K.C. (2014), ”The Con-
tinuous Adjoint Method on Graphics Processing Units for Compressible Flows”, OPT-i, International Con-
ference on Engineering and Applied Sciences Optimization, Kos, Greece.

[15] Papoutsis–Kiachagias E.M, Giannakoglou K.C (2015), ”Continuous Adjoint Methods for Turbulent Flows,
Applied to Shape and Topology Optimization: Industrial Applications”, Archives of Computational Methods
in Engineering, to appear

[16] Martin M.J., Andres E., Lozano C., Valero E. (2014), ”Volumetric b-splines shape parametrization for aero-
dynamic shape design”, Aerospace Science and Technology, Vol. 37, pp. 26-36.

