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Abstract. An approximation method based on the Proper Orthogonal Decomposition
(POD) method is used for the storage of the primal flow fields, needed during the solution
of the unsteady adjoint equations in aerodynamic optimization problems. Here, without
loss in generality, the presentation is restricted to flow control optimization; its extension
to aerodynamic shape optimization is straightforward.

In this paper, the use of the POD, as an alternative to the check-pointing technique to
handle unsteady flows, is demonstrated. POD approximates the time-evolution of the flow
variables at each grid node, instead of repetitively re-computing them during the solution
of the unsteady adjoint equations, while marching backwards in time. The solutions
obtained with the POD method are compared to those reached by the check-pointing
method, in terms of accuracy and overall simulation time. A parametric investigation of
the POD implementation is carried out.

Based on the approximated primal flow fields, a flow control optimization, using pul-
sating jets, is performed using the unsteady continuous adjoint method. The jet positions
are fixed whereas their amplitudes are optimized aiming at minimal time-averaged drag.

1 INTRODUCTION

The most efficient way to compute the gradient of an objective function with respect
to (w.r.t.) a set of design variables is the adjoint method [13, 8].

In this paper, the continuous adjoint [12, 9, 5] method, where the adjoint PDEs are
firstly derived and then discretized, is used. The state equations are the unsteady Navier-
Stokes equations for incompressible fluids and, for unsteady flow problems, time-averaged
performance metrics are used as objective functions. The flow is considered to be laminar,
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though previous works by the same group (such as [15]) guarantee that the method may
readily accommodate exactly differentiated turbulence models.

In unsteady problems, adjoint information travels backwards w.r.t. to the primal one.
The adjoint wake is formed upwind while the adjoint time progresses from the last to the
first instant of the simulation. Also, for the numerical solution of the unsteady adjoint
equations, the primal fields must be available at each time step. Theoretically speaking,
this makes the storage of the primal solution fields mandatory. However, storing the
computed primal fields for all time steps is very expensive memory-wise and alternatives
are sought.

A common alternative is the binomial check-pointing technique, [7, 14]. In large scale
problems, even though the binomial check-pointing technique has been proved to be op-
timal, it may lead to non-affordable computational cost due to the repetitive solutions of
the flow fields as the solution of the adjoint equations progresses. In order to avoid repet-
itive computations of the primal flow fields, without using excessive amounts of memory,
viable alternatives based on approximation of the time-evolution of the flow field can be
devised. The approximation can be done with simple models, such as linear interpolation,
quadratic models including cubic-splines, Fourier series in case of periodic phenomena, or
any other interpolation method. In this paper, the POD technique is applied and assessed
in terms of overall accuracy and simulation time.

After briefly presenting the primal and the adjoint equations, the POD method is dis-
cussed. Emphasis is laid on the incremental variant of the POD, which is used herein. In
standard POD, the decomposition is performed only after the complete snapshot matrix
is composed. However, this approach is of no interest since it requires full storage of the
computed instantaneous flow fields. Instead, the incremental POD updates the decom-
position at every new snapshot without burdening storage requirements. The method is
used in flow control optimization problems, using pulsating jets in order to control the
drag exerted on a circular cylinder. The same optimizations are also performed using the
check-pointing method for the purpose of comparison.

2 FLOW MODEL AND OBJECTIVE FUNCTIONS

The flow is modeled by the Navier–Stokes equations for the unsteady laminar flow of
an incompressible fluid. The primal equations are

Rv
i =

∂vi
∂t

+ vj
∂vi
∂xj
− ∂

∂xj

[
ν

(
∂vi
∂xj

+
∂vj
∂xi

)]
+
∂p

∂xi
=0 , i = 1, 2(3) (1)

Rp = −∂vj
∂xj

=0 (2)

where vi and p stand for the velocity components and the static pressure divided by
the density, respectively. To solve the primal equations, the SIMPLE algorithm [4] is
used, with a staggered, cell-centered finite-volume discretization scheme for unstructured
meshes.
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In the optimization problems examined, pulsating jets, [16, 5], are used to minimize
the time-averaged drag exerted on the body. The cartesian velocity components of each
jet are given by

vmλ = (Am sin (2πfm (t− fm0 ))− Am)nλ , λ = 1, 2(3) (3)

where m is the jet counter, Am is the amplitude, fm the frequency and fm0 the phase of
each jet. Jets are aligned with the outwards, normal to the wall, unit vector nλ. Positive
Am corresponds to blowing and negative Am to suction. Frequencies and phases of all jets
are fixed, fm = v∞

d
and fm0 = 0, as in [9], where v∞ is the infinite flow velocity and d the

diameter of the cylinder. The only design variables are the amplitudes Am.
The time-averaged (squared) drag force is expressed as

J=
1

2T

∫
T

D2(t)dt (4)

where T is the flow period. In the uncontrolled case, the flow period is the Karman
vortices’ period whereas in the controlled case T stands for the jets’ period. D is the
time-dependent drag force

D(t)=

∫
Sw

[
pni − ν

(
∂vi
∂xj

+
∂vj
∂xi

)
nj − |vjnj| vi

]
ridS (5)

where ri are the components of the unit vector aligned with the farfield velocity and Sw
stands for the solid wall boundary. The last term in eq. 5 stands for the contribution of
jets on the forces acting upon the body, at the jets locations.

The derivative of the ’mean drag’ objective function w.r.t. bm is

δJ

δbm
=

1

T

∫
T

∫
Sw

D

(
− ν

[
∂

∂xj

(
∂vi
∂bm

)
+

∂

∂xi

(
∂vj
∂bm

)]
nj

+
∂vi
∂bm
|vjnj|+

vjnj
|vjnj|

∂vj
∂bm

njvi+
∂p

∂bm
ni

)
ridSdt (6)

3 THE CONTINUOUS UNSTEADY ADJOINT METHOD

In order to derive the unsteady continuous adjoint equations, the augmented objective
function L is defined as

L=J+

∫
T

∫
Ω

uiR
v
i dΩdt+

∫
T

∫
Ω

qRp dΩdt (7)

where ui and q are the adjoint velocities and pressure, respectively.
The derivatives of L w.r.t. the design variables bm (here bm = Am), after applying the

Leibniz theorem, become

δL

δbm
=
δJ

δbm
+

∫
T

∫
Ω

ui
∂Rv

i

∂bm
dΩdt+

∫
T

∫
Ω

q
∂Rp

∂bm
dΩdt (8)
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The field adjoint equations are derived from eq. 8, after applying the Green-Gauss
theorem to it and eliminating the field integrals depending on variations in the flow
variables w.r.t. bm. These are

Rq=
∂ui
∂xi

= 0 (9)

Ru
i=−

∂ui
∂t
− vj

∂ui
∂xj

+ uj
∂vj
∂xi

+
∂q

∂xi
− ∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)]
= 0 (10)

After eliminating the field integrals depending on variations of the flow quantities, eq. 8
becomes

δL

δbm
=

δJ

δbm
+

∫
Ω

[
vi
∂vi
∂bm

]T
0

dΩ +

∫
T

∫
S

Du
i

∂vi
∂bm

dSdt+

∫
T

∫
S

Dq ∂p

∂bm
dSdt

+

∫
T

∫
S

Eu
i

[
∂

∂xj

(
∂vi
∂bm

)
+

∂

∂xi

(
∂vj
∂bm

)]
njdSdt (11)

where SI is the inlet, SO the outlet, S∞ the freestream boundaries of the domain, S =

SI ∪ SO ∪ Sw or S = S∞ ∪ Sw is the boundary and Du
i = uivjnj + ν

(
∂ui
∂xj

+
∂uj
∂xi

)
nj − qni ,

Eu
i = −νui and Dq = ujnj.
After substituting eq. 6 into eq. 11, the elimination of the boundary integrals including

variations of the flow variables w.r.t. bm gives rise to the adjoint boundary conditions at
every time step. The instantaneous adjoint boundary conditions along Sw, SI and SO are
Sw: ui = −D(t)

T
ri and S∞: ui = 0; for the whole domain Ω, the initial condition at t = T

is ui|t=T = 0.
The remaining terms in this development give the sensitivities of J w.r.t. the control

variables bm = Am which are given by

δJ

δbm
=

∫
T

∫
Sw

[
uivjnj − ui |vjnj|+ ν

(
∂ui
∂xj

+
∂uj
∂xi

)
nj

− qni −
vjnj
|vjnj|

ujvjni

]
(sin(2πfm(t− fm0 ))− 1)nidSdt (12)

4 STORAGE OF THE PRIMAL FIELDS

The main difficulty in the solution of the unsteady adjoint equations, which march
backwards in time, is that at each time-instant, the corresponding primal field must be
available. Since the adjoint information travels backwards in time, the primal fields must
be stored during the solution of the varying primal field. Such a full storage of the
varying primal field is very expensive memory-wise and is usually replaced by either the
check-pointing method [14, 7] or approximation methods.

The check-pointing technique is a compromise between memory consumption and CPU
cost. Instead of storing the primal solutions at every time step, only those at a predefined
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number of time-instants, called check-points, are stored; from them, the primal solution
at every other time-instant is re-computed. For a given number of time instants for
which the corresponding flow field snapshots can be stored, the check-pointing technique
corresponds to the optimal distribution of snapshots in time, which guarantees minimum
re-computations of the primal field.

On the other hand, approximation methods offer the option of trading memory con-
sumption with accuracy in the stored (approximated) primal fields, while the CPU cost
remains the same. The accuracy of the approximated fields depends on the approximation
method used. In this paper, the POD method is used as an approximation method for
the primal fields.

4.1 Proper Orthogonal Decomposition

The method of POD is reviewed in [10]. Even though the method is generally know as
POD, other names are in use, depending on the scientific field. The main idea derives from
the concept of Principal Component Analysis (PCA). Other notable names of the method
is the KarhunenLoéve decomposition, Eigenvalue decomposition of ATA and Singular
Value Decomposition of A (A being the snapshot matrix defined below). POD results in
a compact representation of the data at hand, while ensures that the representation in a
reduced dimension space is optimal. Primarily, POD is used for Reduced Order Modelling
(ROM), signifying the projection of a higher dimensional space onto a lower one. Various
applications of POD can be found in the literature. A POD method for generating an
aerodynamic database through parameter space (comprised by the angle of attack, Mach
number and flare base radius range) for several test case analysing the number of modes
required is presented in [11]. In [3], ‘gappy’ data sets are investigated, while afterwards
they are used for inverse aerofoil design.

4.1.1 Mathematical formulation of POD/SVD

Since terms POD and SVD [6] can be used indifferently, in what follows the term SVD
will mostly be used as it allows an easier connection to the incremental variant of the
method. The snapshot matrix A corresponds to all spatial and temporal data, where n
is the number of cells and m is the number of snapshots in the time domain. Below, a
cell-centered storage of the finite-volume based CFD solver is assumed and the analysis
is given separately for each flow variable.

4.2 Singular Value Decomposition

For A ∈ Rnxm, SVD suggests that two orthogonal matrices exist, U ∈ Rnxn and
V ∈ Rmxm, such that A = UΣV T , where Σ ∈ Rnxm is a diagonal matrix, which includes
the singular values of A in descenting order σ1 ≥ σ2 ≥ . . . σmin(n,m) ≥ 0. The columns of
U and V are referred to as the left and right singular vectors of A, respectively.
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SVD is used to set-up a Reduced Order Model with reduced storage requirements. To
do so, the decomposition of the snapshot matrix is

A = UnxkΣkxkV
T
kxm (13)

where k << m, leading to lower storage demand. In the present study rank k is user-
defined and this is evaluated in the parametric studies shown.

4.2.1 Incremental Singular Value Decomposition

In its original form, SVD is performed after the complete snapshot matrix A has been
created. Therefore, in a problem similar to the one considered in the present paper,
significant storage is required, without any apparent advantage. An alternative solution
is the continuous update of the matrices generated by the SVD of small scaled data-set.
This method is called Incremental SVD. Here, a brief presentation of the method is given,
following closely the formulation developed in [2, 1].

Based on the predefined maximum rank k, the initial snapshot matrix is composed.
Thus, A ∈ Rnxk, where n is the number of grid cells and k the number of the already
performed time steps. Then, a first SVD takes place resulting in Uo ∈ Rnxk, Σo ∈ Rkxk

and Vo ∈ Rkxk. Since the singular value matrix is in descending order the last entry can
be disposed off when the solution for the next k + 1 time step becomes available. At this
point, the corresponding SVD matrices are updated based on the following algorithm.
For every new vector, ω, containing the flow variables, it is

p′ = UTω (14)

g′ = Uω (15)

r′ = ω − g′ (16)

The update of the current decomposition yields,

[
UΣV T ω

]
=

[
U

r′

‖r′‖

] [
Σ p′

0 ‖r′‖

] [
V 0
0 1

]T
(17)

The decomposition

[
Σ p′

0 ‖r′‖

]
= U ′Σ′V ′T (18)
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is then carried out.
The update of the singular value matrix, as well as the left and right subspaces, is

expressed by three new matrices as follows

Unew =

[
U

r′

‖r′‖

]
U ′ (19)

Σnew = Σ′ (20)

Vnew =

[
V 0
0 1

]
V ′ (21)

5 Method Demonstration

The developed code was used for the reconstruction of the fields of the flow variables,
such as the pressure p and velocity u. The results produced with the use of the incremental
SVD algorithm are presented, in comparison with those computed by using binomial
check-pointing.

The flow control optimization problem is handled by using 12 pulsating jets as discussed
in section 2. Fig. 3 shows a comparison of the computed drag coefficient, by processing
the primal solution and that obtained when a different number of maximum rank k is
used in the incremental SVD algorithm. It is noticed that the phenomenon is captured
adequately by using 10 modes. In contrast, when the first 5 orthogonal modes are used
for the reconstruction of the flow variable field, the representation is rather poor. This
results in a drag coefficient curve with a different phase and amplitude compared to the
curve generated by the primal flow variable field.

Increasing the number of orthogonal bases matches the primal curve even more ac-
curately. In fig. 3, it could be seen that the curve, which corresponds to 6 bases yields
similar amplitude for the overall phenomenon, though having a different phase. Further
increase in the number of bases may quite accurately capture the curve generated by the
primal fields.

Based on the previous comparisons, it is expected that the optimization process, which
makes use of the POD method, yields results very close to those obtained when binomial
check-pointing is used. Indeed, fig. 4 shows that the three curves are practically identical.
The optimization results taken with the utilization of POD have a perfect resemblance to
results calculated by considering binomial check-pointing.

6 Conclusions

Incorporating the method of incremental SVD to the overall optimization process has
a twofold positive effect. First, the storage required, when 10 bases are considered, is
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∼ 2% of the one that would be bound with 500 check-points. Also, for an approximation
of the flow variables with 10 bases the optimization for 25 cycles requires ∼ 31% less
computational time compared to the run using the check-pointing.
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Figure 1: Six snapshots of the primal velocity magnitude calculated over a period of Tkv ≈ 0.59s. The
time-step increment for theses snapshots was equal to Tkv/6. These snapshots were taken once a periodic
flow was established. No jets were applied in this case.
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Figure 2: The absolute error in the velocity magnitude, for the 6 figures of fig. 2, between the velocity
computed by the primal solver and that reconstructed by the POD method, using 10 bases.
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Figure 3: Drag coefficient, over time, as computed by the primal solver and POD approximations for
different number of bases. For 5 orthogonal bases the approximation is not satisfactory, while for 10 it is
almost perfect. It seems that, using more than 10 bases, no meaningful gain in accuracy is expected.
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Figure 4: Evolution of the objective function obtained by using binomial check-pointing are approxi-
mated closely by the POD method using 10 orthogonal bases. As expected, further increasing the number
of orthogonal bases further does not contribute any extra gain.

12


