
OPT-i
An International Conference on

Engineering and Applied Sciences Optimization
M. Papadrakakis, M.G. Karlaftis, N.D. Lagaros (eds.)

Kos Island, Greece, 4-6, June 2014

THE CONTINUOUS ADJOINT METHOD ON GRAPHICS
PROCESSING UNITS FOR COMPRESSIBLE FLOWS

Xenofon S. Trompoukis, Konstantinos T. Tsiakas, Mehdi Ghavami Nejad,
Varvara G. Asouti, and Kyriakos C. Giannakoglou

National Technical University of Athens, Parallel CFD & Optimization Unit
Iroon Polytechniou 9, 15780, Athens, Greece

e-mail: (xeftro,tsiakost)@gmail.com, (mehdi,vasouti)@mail.ntua.gr, kgianna@central.ntua.gr

Keywords: Continuous Adjoint Method, Sensitivity Analysis, CFD on Graphics Processing
Units

Abstract. This paper presents the development and application of the continuous adjoint
method on Graphics Processing Units (GPUs) for use in aerodynamic shape optimization prob-
lems. The techniques used for optimally porting the primal and adjoint solvers on GPUs are
described. This paper focuses on the optimal GPU memory access, mixed-precision arithmetics
and different scatter-gathering algorithms. The resulting solver is approximately 50 times faster
than the equivalent CPU solver. The solver is used in the design/optimization of a 2D airfoil
for, maximum lift and minimum drag. A significant decrease in optimization turnaround time
is achieved and results are presented. The solver is also used for the computation of the drag
sensitivity map on the surface of a transonic wing.



X. S. Trompoukis, K. T. Tsiakas M. Ghavami Nejad, V. G. Asouti and K. C. Giannakoglou

1 INTRODUCTION

Gradient–based optimization supported by the adjoint method is widely used, for the design–
optimization of aerodynamic shapes. The great advantage of the adjoint methods is the low
cost of computing the gradients of any objective function, which is almost equal to that of the
solution of the flow equations and independent of the number of design variables.

This paper deals with the continuous adjoint method for compressible flows. Over and above
the gain achieved by the adjoint method, we are mostly concerned with the reduction of the
optimization turnaround time. To this end, the solution of both the state and adjoint equations
is carried out on GPU clusters.

During the last ten years, CFD codes, for either structured [6, 3, 5, 8] or unstructured
[4, 7, 2, 9] computational grids, have been ported to GPUs. GPUs use their dedicated mem-
ories (global, local, constant, texture and shared) with different structure/access patterns than
CPUs. Memory access/handling plays a significant role in the parallel efficiency of any GPU
implementation. As a consequence, the computational grid type, the flow variable storage pat-
tern, the discretization and solution schemes all affect the performance of a GPU–enabled code.
For structured grids, the organized topology of data and the corresponding memory accesses
lead to significant speed–ups. Unless special care is taken, this is not necessarily the case of
GPU codes for unstructured grids, since their performance depends also on the spatial dis-
cretization scheme. In the cell–centered finite volume scheme, the number of neighbors to
each cell barycenter, where the flow variables are stored, is small and fixed resulting to better
memory accesses. In contrast, a vertex–centered finite volume scheme, where the number of
adjacent nodes to any mesh node may vary a lot, asks for a customized memory handling. The
authors group has experience in developing GPU–enabled codes for unstructured grids with
the vertex–centered finite volume scheme by optimally using all the available GPU memories
[7, 2, 12].

This paper deals with the continuous adjoint method for 3D compressible flows, extending
the work for incompressible flows presented in [1]. The shape optimization of an isolated airfoil
and the computation of sensitivity maps on a transonic wing are presented. In the second case,
we do not proceed with the shape optimization since, in this paper, emphasis is laid on how to
compute the gradient with low wall clock time cost, rather than the optimization loop itself.

2 THE PRIMAL SYSTEM OF EQUATIONS

The (primal) system of governing PDEs comprises the Navier–Stokes equations for steady–
state compressible flows,

Rn =
∂Un
∂t

+
∂f invnk

∂xk
− ∂f visnk

∂xk
= 0 (1)

where k= 1, 3, n= 1, 5 for 3D flows, where U = [ρ, ρvk, E]T is the vector of conservative
variables with ρ the density, vk the velocity components and E the total energy per unit volume.
The inviscid and viscous fluxes are given by

f invnk =

 ρvk
ρvn−1vk + pδ(n−1)k

vk(E + p)

 , f visnk =

 0
τ(n−1)k

vlτkl + qk

 (2)

where p is the static pressure, qk = κ∂T/∂xk the thermal heat flux components with κ = CP

Pr
µ,

δij the Kronecker symbol and τij the viscous stresses, τij =µ
(
∂vi
∂xj

+ ∂vj
∂xi

)
+λδij

∂vk
∂xk

, with µ



X. S. Trompoukis, K. T. Tsiakas M. Ghavami Nejad, V. G. Asouti and K. C. Giannakoglou

the molecular viscosity and λ=−2
3
µ. Let Ω be the computational domain. Since external

aerodynamic problems are concerned, the boundary S of Ω comprises the solid wall Sw and the
far–field boundary S∞.

3 MATHEMATICAL FORMULATION OF THE CONTINUOUS ADJOINT METHOD

In this paper, the objective function to be minimized is the projection of the aerodynamic
force acting on a body along a direction defined by the vector rk. This is expressed as

F =
∫
Sw

pnkrkdS −
∫
Sw

τkmnmrkdS (3)

where nm are the components of the unit vector normal to Sw. The body shape Sw depends on
the value–set of N design variables bi, i∈ [1, N ], through a selected parameterization scheme.
The variation in F due to any variation in bi is expressed as

δF

δbi
=
∫
Sw

δp

δbi
nkrkdS +

∫
Sw

p
δ

δbi
(nkrkdS)−

∫
Sw

δτkm
δbi

nmrkdS −
∫
Sw

τkm
δ

δbi
(nmrkdS) (4)

The formulation of the continuous adjoint method starts by computing the variations of the
augmented objective function Faug = F +

∫
Ω

ΨnRndΩ w.r.t bi, as follows

δFaug
δbi

=
δF

δbi
+
∫
Ω

Ψn
∂Rn

∂bi
dΩ +

∫
Ω

Rn
∂Ψn

∂bi
dΩ +

∫
S

ΨnRnnk
δxk
δbi

dS (5)

The last two surface integrals vanish, since upon convergence of the state equations, Rn = 0.
The first field integral in eq. 5 is written as

∫
Ω

Ψn
∂Rn

∂bi
dΩ =

∫
Ω

Ψn
∂

∂xk

(
∂f invnk

∂bi

)
dΩ−

∫
Ω

Ψn
∂

∂xk

(
∂f visnk

∂bi

)
dΩ (6)

The inviscid part of eq. 6 is further developed as

∫
Ω

Ψn
∂

∂xk

(
∂f invnk

∂bi

)
dΩ =

∫
S

Ψn
∂f invnk

∂bi
nkdS −

∫
Ω

Anmk
∂Ψn

∂xk

∂Um
∂bi

dΩ (7)

since f invnk = AnmkUm, with Amnk the flux Jacobians. In eq. 7, the surface integral is decom-
posed into two integrals, along Sw and S∞. Since changes in the design variables do not affect
S∞ ∫

S

Ψn
∂f invnk

∂bi
nkdS =

∫
Sw

Ψn
δ (f invnk nkdS)

δbi
−
∫
Sw

Ψnf
inv
nk

δ (nkdS)

δbi
−
∫
Sw

Ψn
∂f invnk

∂xl

δxl
δbi

nkdS

+
∫
S∞

ΨnAnmknk
δUm
δbi

dS (8)

By applying either the no–slip or no–penetration condition (for viscous or inviscid flows, re-
spectively) and setting Ψn=0 at the far–field boundaries to eliminate the last term in eq. 8, the



X. S. Trompoukis, K. T. Tsiakas M. Ghavami Nejad, V. G. Asouti and K. C. Giannakoglou

above surface integral becomes∫
S

Ψn
∂f invnk

∂bi
nkdS =

∫
Sw

Ψk+1nk
δp

δbi
dS +

∫
Sw

(
Ψk+1p−Ψnf

inv
nk

) δ (nkdS)

δbi

−
∫
Sw

Ψn
∂f invnk

∂xl

δxl
δbi

nkdS (9)

The viscous integral in eq. 6 is written as

−
∫
Ω

Ψn
∂

∂xk

(
∂f visnk

∂bi

)
dΩ = −

∫
S

Ψn
∂f visnk

∂bi
nkdS +

∫
Ω

∂Ψn

∂xk

∂f visnk

∂bi
dΩ (10)

where∫
Ω

∂Ψn

∂xk

∂f visnk

∂bi
dΩ =

∫
Ω

∂τmk
∂bi

(
∂Ψm+1

∂xk
+vm

∂Ψ5

∂xk

)
dΩ+

∫
Ω

∂Ψ5

∂xk
τkm

∂vm
∂bi

dΩ+
∫
Ω

∂Ψ5

∂xk

∂qk
∂bi

dΩ (11)

If µ is a constant fluid property, ∂µ
∂bi

= 0, through the Green–Gauss theorem and the no–slip
condition we get

∫
Ω

∂τmk
∂bi

(
∂Ψm+1

∂xk
+vm

∂Ψ5

∂xk

)
dΩ = −

∫
Ω

∂τadjkm

∂xk

∂vm
∂bi

dΩ−
∫
Sw

τadjkm

∂vm
∂xl

δxl
δbi

nkdS (12)

where

τadjkm = µ

(
∂Ψm+1

∂xk
+
∂Ψk+1

∂xm
+vm

∂Ψ5

∂xk
+vk

∂Ψ5

∂xm

)
+λδkm

(
∂Ψl+1

∂xl
+vl

∂Ψ5

∂xl

)
(13)

are the so–called adjoint stresses. In eq. 12 it was assumed that the gradient of the adjoint
variable along S∞ is negligible. The last integral in eq. 11 is written as∫

Ω

∂Ψ5

∂xk

∂qk
∂bi

dΩ = −
∫
Ω

∂

∂xk

(
κ
∂Ψ5

∂xk

)
∂T

∂bi
dΩ +

∫
Sw

κ
∂Ψ5

∂xk
nk
∂T

∂bi
dS (14)

where, also, the gradients of the adjoint variables along S∞ are neglected. Based on the perfect
gas state equation, the field integral on the r.h.s member of eq. 14 becomes

−
∫
Ω

∂

∂xk

(
κ
∂Ψ5

∂xk

)
∂T

∂bi
dΩ =−

∫
Ω

∂

∂xk

(
κ
∂Ψ5

∂xk

)(
T

p

∂p

∂bi
−T
ρ

∂ρ

∂bi

)
dΩ (15)

The surface integral in eq. 10 is decomposed into two integrals over Sw and S∞ and since Ψn=0
along S∞, applying the no–slip condition and assuming the solid wall to be adiabatic, this takes
the form

−
∫
S

Ψn
∂f visnk

∂bi
nkdS = −

∫
Sw

Ψm+1
δτkm
δbi

nkdS +
∫
Sw

Ψm+1
∂τkm
∂xl

δxl
δbi

nkdS

+
∫
Sw

Ψ5

(
∂vm
∂xl

τkm +
∂qk
∂xl

)
δxl
δbi

nkdS +
∫
Sw

Ψ5qk
δ (nkdS)

δbi
(16)



X. S. Trompoukis, K. T. Tsiakas M. Ghavami Nejad, V. G. Asouti and K. C. Giannakoglou

Finally, the surface integral in eq. 14, can be expressed as∫
Sw

κ
∂Ψ5

∂xk
nk
∂T

∂bi
dS =

∫
Sw

κ
∂Ψ5

∂xk
nk
δT

δbi
dS −

∫
Sw

κ
∂Ψ5

∂xk
nk
∂T

∂xl

δxl
δbi

dS (17)

In the interest of space, we will refrain from presenting the lengthy final expression of eq. 5
after considering the previous development on a term–by–term basis. Next step is to make this
expression independent from variations in the flow variables. At first, the field integrals in this
expression which depend on variations δUm/δbi are eliminated by satisfying the field adjoint
equations

∂Ψn

∂t
− Anmk

∂Ψn

∂xk
−Kk

∂Vk
∂Um

= 0 (18)

where Vk are the primitive flow variables and

Kn =


−T

ρ
∂
∂xk

(
κ∂Ψ5

∂xk

)
∂τadj

(n−1)m

∂xm
− τ(n−1)m

∂Ψ5

∂xm
T
p

∂
∂xk

(
κ∂Ψ5

∂xk

)
 (19)

In inviscid flows, in order to eliminate the surface integrals of pressure variations over the solid
walls in eqs. 4, 9, the equivalent to the no–penetration condition for the primal velocity, namely
Ψm+1nm=−rmnm should be applied. The normal adjoint velocity becomes equal to zero only
if ~n is normal to ~r. For viscous flows, the equivalent to the no–slip condition should be imposed
for the adjoint velocity along S∞, namely, Ψm+1 =−rm, in order to eliminate the surface in-
tegrals consisting variations in stresses over the wall in eqs. 4, 16. These boundary conditions
for the adjoint velocity over the wall eliminate also the surface integrals including variations
in pressure over the wall in eqs. 4, 9. For the elimination the Sw integral with variations in
temperature in eq. 17, a zero Neumann condition is applied for the adjoint energy.

Finally, the remaining surface integrals give the sensitivity derivatives,

δFaug
δbi

=
∫
Sw

p
δ

δbi
(nkrkdS)−

∫
Sw

τkm
δ

δbi
(nmrkdS) +

∫
Sw

Ψ5qk
δ (nkdS)

δbi

−
∫
Sw

Ψn
∂f invnk

∂xl

δxl
δbi

nkdS +
∫
Sw

(
Ψk+1p−Ψnf

inv
nk

) δ (nkdS)

δbi

+
∫
Sw

[(
−τadjkm + Ψ5τkm

) ∂vm
∂xl

+ Ψ5
∂qk
∂xl

+ Ψm+1
∂τkm
∂xl

]
δxl
δbi

nkdS (20)

4 DISCRETIZATION AND NUMERICAL SOLUTION

The primal and adjoint equations (eqs. 1 and 18) are discretized using the vertex–centered
finite–volume method on unstructured/hybrid meshes. A finite volume formed around node P
is presented in fig. 1, for a 2D mesh for the sake of simplicity. In the primal solver, inviscid
numerical fluxes crossing the interface of adjacent finite volumes are computed using the Roe’s
[11] approximate Riemann solver, with second–order accuracy, as

ΦPQ
n =

1

2

(
APnmU

P
m + AQnmU

Q
m

)
− 1

2

∣∣∣∣ÃPQnm ∣∣∣∣ (UR
m − UL

m

)
(21)



X. S. Trompoukis, K. T. Tsiakas M. Ghavami Nejad, V. G. Asouti and K. C. Giannakoglou

Figure 1: The finite volume formed around node P . At the interface between two mesh nodes the left L and right
R flow variables are extrapolated using nodal (at P and Q) values and spatial gradients.

where, ΦPQ is used for the computation of the residual at node P and ΦQP = −ΦPQ is used
for the residual at Q. In eq. 21, Anm = Anmknk where nk is the normal to the interface of the
finite volumes formed around nodes P , Q and points towards Q. Ã

PQ
is computed based on

the Roe-averaged flow variables, UP , UQ are the flow variables stored at P , Q respectively and
UR, UL are the flow variables on the right and left boundaries of the finite volume, obtained by
extrapolating UQ, UP respectively.

The adjoint inviscid numerical fluxes are computed as

Φadj,PQ
m = −1

2
APnm

(
ΨP
n + ΨQ

n

)
− 1

2

∣∣∣∣ÃPQnm ∣∣∣∣ (ΨR
n −ΨL

n

)
(22)

Φadj,QP
m =

1

2
AQnm

(
ΨP
n + ΨQ

n

)
+

1

2

∣∣∣∣ÃPQnm ∣∣∣∣ (ΨR
n −ΨL

n

)
(23)

Both the primal and adjoint equations are solved iteratively for the corrections of the primal and
adjoint variables (∆U and ∆Ψ) respectively, as

∂Rn

∂Um
∆Um = −Rn Un+1

m = Un
m + ∆Um

∂Rm

∂Ψn

∆Ψn = −Rm Ψn+1
n = Ψn

n + ∆Ψn (24)

Eqs. 24 are solved using the point-implicit Jacobi method which can be efficiently parallelized.

5 IMPLEMENTATION ON GPUS

An in–house GPU–enabled CFD solver was used for the solution of the primal and adjoint
equations. The solver may run on many GPUs using either the shared on–board memory for
data transactions among GPUs of the same computational node or the MPI protocol for the
communication of the GPUs on different computational nodes.

In the cases presented in this paper, the speed–up achieved using the GPU–enabled solver
on a single NVIDIA Tesla M2050 instead of the corresponding CPU–enabled solver variant
running on a single core of an Intel Xeon CPU E5620 at 2.40GHz, exceeds 50× and 60× for
the solution of the primal and the adjoint equations respectively. The next paragraphs present
some key programming features of the GPU solver.



X. S. Trompoukis, K. T. Tsiakas M. Ghavami Nejad, V. G. Asouti and K. C. Giannakoglou

5.1 GPU memory handling

The parallel efficiency of any GPU–enabled software is highly related to GPU memory han-
dling issues. Programmable GPUs implement several memory types, such as the global (or
device), constant, texture, shared and local memories. Among them, the global memory is the
one with the largest capacity. Memories of GPUs based on the Fermi architecture (such as the
Tesla M2050 model used), are cached, in contrast to previous architectures, where only the
constant and texture memories are cached.

In order to maximize the parallel efficiency of the GPU solver, the access to the aforemen-
tioned memory spaces adheres to different patterns. For instance, even if GPUs based on the
Fermi architecture are used, large data accesses to the global GPU memory are coalesced to
128 Byte memory segments, so as to minimize the global memory bandwidth. In order to better
understand how important the latter is, it worths noting that the time needed for the execution
of almost 27 arithmetic operations is nearly the same with a single cache miss global memory
transaction. In addition, frequently and randomly accessed data, such as the gradients of the
primal or adjoint variables, are fetched to textures. Access to the texture memory is performed
via the texture cache memory. Renumbering of mesh nodes is employed to minimize cache
miss memory transactions. Moreover, threads of the same block interchange data through the
low latency shared memory. The fast constant memory is used for the storage of gas constants,
etc.

5.2 Mixed Precision Arithmetics

The GPU solver employs Mixed Precision Arithmetics (MPA), [7], for the minimization of
the global memory transactions without harming the accuracy of the results. According to MPA,
the right-hand-side (r.h.s.) of eq. 24 is calculated and stored using DPA, while the memory
consuming left-hand-side (l.h.s.) coefficients are calculated using DPA but stored using SPA.
MPA minimizes the data capacity transferred between GPU threads and the global memory,
resulting to great speed-ups.

The truncation error occurred in storing the l.h.s. coefficients does not harm the accuracy of
the solver since both the primal and adjoint equations are solved in “delta form’. Practically,
the use of MPA significantly reduces (over 30%) the required GPU memory.

5.3 Computation of fluxes

For the computation of the primal/adjoint residuals and l.h.s. matrix coefficients, the accu-
mulation of the numerical primal/adjoint fluxes crossing the finite volume interfaces and their
Jacobians are needed. For the CPU code, this can be done by looping over the mesh edges,
computing the associated numerical fluxes and their Jacobians and contributing to the residuals
and l.h.s. coefficients of the edge nodes.

However, this procedure is not acceptable in a multi-threaded code (like a GPU code) as
it leads to memory conflicts since independent threads may write to the same memory space.
Thus, a different approach must be followed.

The simplest, though inefficient, approach is to use atomic operations which block threads
attempting to write simultaneously to the same memory space. Though this approach exhibits
minimal complexity, is rather inefficient.

An efficient approach is to associate each GPU thread with a mesh node (One–Kernel scheme).
Then, each thread loops over the edges emanating from the same node, computes and accu-
mulates the numerical fluxes and the corresponding Jacobians. Using this approach, memory



X. S. Trompoukis, K. T. Tsiakas M. Ghavami Nejad, V. G. Asouti and K. C. Giannakoglou

conflicts are avoided and no thread synchronization is required. However, fluxes and Jacobians
are computed twice.

An alternative approach is to to use a Two–Kernel scheme, [2]. The first kernel associates
each GPU thread with a mesh edge and computes the numerical fluxes and Jacobians, which
are temporarily stored in the global memory. Then, a second kernel is launched, where each
GPU thread is associated with a single mesh node. Threads loop over the edges emanating
from the associated node and accumulate the already computed numerical fluxes and Jaco-
bians. By doing so, memory conflicts are avoided and fluxes are computed once. On the other
hand, especially in the accumulation of the Jacobians in order to form the l.h.s. coefficients,
non–coalesced large global memory accesses are required. Moreover, extra memory space is
required for storing the edge-based information computed by the first kernel. This makes the
use of the Two–Kernel scheme rather prohibitive for large scale applications due to the limited
GPU memory capacity.

Comparing the aforementioned schemes, the One-Kernel represents the best compromise
between speed-up and memory consumption and is, thus, used in the primal solver. The l.h.s. of
the discretized adjoint equations involves only the primal variables, which remain constant dur-
ing the adjoint solution, and thus the l.h.s. coefficients need to be computed only once before the
iterative solution of the adjoint equations. For this reason, the accumulation of non–coalesced
large data corresponding to the Jacobians is avoided during the iterative solution of the adjoint
equations. Thus, the One–Kernel scheme is used for the computation of the adjoint l.h.s. ma-
trix coefficients and the Two–Kernel scheme for the less memory consuming residuals at each
pseudo-time iteration. It should be noted that the adjoint residuals computed by the first kernel
of the Two–Kernel scheme, are stored at the same memory location with the extrapolated to the
finite–volume interfaces adjoint variables. These extrapolated adjoint quantities are required
for the computation of the adjoint fluxes with second order accuracy, but there is no need to
keep them stored afterwards. The aforementioned memory positions are fetched to textures in
order to reduce the memory transaction time while accumulating the adjoint fluxes in the second
kernel of the Two–Kernel scheme.

6 APPLICATIONS

The continuous adjoint method on GPUs described in the previous sections was applied to
the shape optimization of an isolated airfoil and used to compute the surface derivatives of a
transonic wing. Recall that, the main goal of this paper is to present “optimal” techniques for
making the adjoint solver run on GPUs rather than demonstrating the accuracy of the adjoint
solver, which was the subject of previous publications, [10].

6.1 Shape optimization of a 2D airfoil

The first application is concerned with the shape optimization of an isolated airfoil for max-
imum lift and minimum drag. The two performance metrics (CL and CD) are combined using
weighting factors into a single objective function F,

F = −WLCL + WDCD (25)

where WL=0.1, WD=1.0. The initial geometry is a NACA0012 airfoil parameterized using
Bézier–Bernstein polynomials with 8 control points per airfoil side. Five (out of the 8) control
points per airfoil side were allowed to vary along the normal to the chord direction, summing
up to 10 design variables in total. Leading and trailing edge control points and those next to



X. S. Trompoukis, K. T. Tsiakas M. Ghavami Nejad, V. G. Asouti and K. C. Giannakoglou

the leading edge control point are kept fixed. Fig. 2 presents the initial shape of the airfoil
surrounded by the initial positions of the Bézier control points. The filled circles and squares
correspond to control points which are allowed to move normal to the airfoil chord.

Figure 2: Shape optimization of an isolated airfoil. Initial geometry parameterized using Bézier–Bernstein poly-
nomials.

After the completion of each optimization cycle, the airfoil mesh nodes are updated based on
the computed sensitivity derivatives and the rest of the mesh nodes are deformed accordingly.
Each mesh node is associated with the deformation of the closest airfoil node scaled by a factor
depending on the distance of the mesh node from its closest wall node. The flow conditions are:
M∞ = 0.3, α∞ = 2o and Rec = 1000. The starting hybrid 2D computational mesh consists of
56270 nodes, 101859 triangular and 5090 quadrilateral elements. Since a solver for 3D flows is
used this mesh is extruded to the third direction by a single cell width.

Comparison of the computed sensitivity derivatives between the adjoint method and finite
differences for the initial geometry is shown in fig. 3. The first 5 sensitivities correspond to
the design variables controlling the pressure side. The last 5 sensitivities correspond to the
suction side. The computed sensitivity derivatives are very close to those computed using finite
differences.

Figure 3: Shape optimization of an isolated airfoil. Comparison between sensitivity derivatives computed using
the GPU–enabled adjoint solver and finite differences for the initial geometry.

CL increased about two times, from 0.120 in the initial geometry to 0.264 in the optimized
one. Moreover, the drag coefficientCD decreased from 0.118 to 0.102. Fig. 4 presents the Mach
number and the adjoint velocity fields computed around the initial and optimized airfoils. The
optimized airfoil is cambered to increase CL, being much thinner than the initial one to decrease
CD.

In the presented optimization, a single NVIDIA Tesla M2050 was used. This GPU is based
on the Fermi architecture and has 3 GB RAM with maximum bandwidth 148 GB/sec. The peak



X. S. Trompoukis, K. T. Tsiakas M. Ghavami Nejad, V. G. Asouti and K. C. Giannakoglou

Mach Number 0.340. Adjoint Velocity 3.50.1

Figure 4: Shape optimization of an isolated airfoil. Computed Mach number (left) and adjoint velocity (right) field
for the initial (top) and optimized (bottom) configurations.

double precision floating point performance is 515 GFLOPS. In each optimization cycle, the
solution of the primal and adjoint equations on a Tesla M2050 took merely around 40 secs.
So, overall (i.e. for 30 optimization cycles) the time needed for the solution of the primal
and adjoint equations were 30× 40 = 1200 secs or 20 minutes. In the aforementioned time
measurements, the time needed for the deformation of the mesh and the re–computation/update
of the data which are related with the mesh geometry, after the end of each optimization cycle, is
not taken into account. This part of the code is the only one which runs on the CPU. So, overall
the optimization wall–clock time was around 25 minutes. The use of a single GPU instead
of a single core of the dual–quad–core Intel Xeon CPU (with 2.40 GHz and 12288 KB of
cache memory) for the solution of the primal and adjoint equations speed–ups the optimization
about 45 times. This means that the same optimization with the primal/adjoint equations solver
running on a single CPU, it would take more than 15 hours.

6.2 Sensitivity analysis of a Transonic Wing

The second case deals with the sensitivity analysis of the ONERA M6 wing for drag mini-
mization. The flow is considered to be inviscid, with M∞= 0.84 and α∞= 4o. Fig. 5 presents
iso–lines of the Mach number and the adjoint velocity, while fig. 6 shows the computed sensi-
tivity map over the wing for drag minimization. Areas with red color should be moved inwards
whereas blue areas should be moved outwards in order to reduce drag. This computation was
carried out on NVIDIA Tesla M2050 which speeds–up the solution of the primal equations of
about 47 times and the adjoint ones about 52 times compared to a single CPU core (same as in
the previous case).



X. S. Trompoukis, K. T. Tsiakas M. Ghavami Nejad, V. G. Asouti and K. C. Giannakoglou

Figure 5: Transonic wing drag reduction. Primal and adjoint fields.

Figure 6: Transonic wing drag reduction. Sensitivity maps plotted over the surface of the wing.

7 CONCLUSIONS

This paper presented the continuous adjoint method for compressible flows on GPUs. This
paper is dealing with 3D compressible flows and the adjoint method was used not only for
design–optimization assisted by a gradient–based method but, also, for the computation of sen-
sitivity maps. Emphasis was laid on the speed–up of the GPU–enabled software for both the
primal and the adjoint equations solvers and, thus, the reduction of the optimization turnaround
time. In particular, the GPU solvers presented are about 50 times faster than the corresponding
ones running on a single CPU core. Applications in the computation of sensitivity derivatives
on a transonic wing and the shape optimization of an airfoil. For the latter, thanks to the use
of GPUs the optimization is completed within a few minutes instead of hours on a single CPU
core.



X. S. Trompoukis, K. T. Tsiakas M. Ghavami Nejad, V. G. Asouti and K. C. Giannakoglou

ACKNOWLEDGMENTS

The third author acknowledges the support from the People Programme (ITN Marie Curie
Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under
REA grant agreement no 317006 (AboutFLOW project).

REFERENCES

[1] V.G. Asouti, E.A. Kontoleontos, X.S. Trompoukis, and K.C. Giannakoglou. Shape opti-
mization using the one-shot adjoint technique on graphics processing units. In 7th GRACM
International Congress on Computational Mechanics, Athens, June 30-July 2 2011.

[2] V.G. Asouti, X.S. Trompoukis, I.C. Kampolis, and K.C. Giannakoglou. Unsteady CFD
computations using vertex-centered finite volumes for unstructured grids on Graphics Pro-
cessing Units. International Journal for Numerical Methods in Fluids, 67(2):232–246,
2011.

[3] T. Brandvik and G. Pullan. Acceleration of a 3D Euler solver using commodity graphics
hardware. AIAA Paper 2008–607, 46th AIAA Aerospace Sciences Meeting and Exhibit,
Reno, Nevada,, January 2008.

[4] A. Corrigan, F. Camelli, R. Löhner, and J. Wallin. Running unstructured grid based CFD
solvers on modern graphics hardware. AIAA Paper 2009–4001, 19th AIAA Computa-
tional Fluid Dynamics, San Antonio, Texas,, June 2009.

[5] E. Elsen, P. LeGresley, and E. Darve. Large calculation of the flow over a hypersonic
vehicle using a GPU. Journal of Computational Physics, 227(24):10148–10161, 2008.

[6] T.R. Hagen, K.A. Lie, and J.R. Natvig. Solving the Euler equations on graphics processing
units. Computational Science - ICCS, 3994:220–227, 2006.

[7] I.C. Kampolis, X.S. Trompoukis, V.G Asouti, and K.C. Giannakoglou. CFD-based anal-
ysis and two-level aerodynamic optimization on graphics processing units. Computer
Methods in Applied Mechanics and Engineering, 199(9-12):712–722, 2010.

[8] M. Lefebvre, P. Guillen, J.-M. Le Gouez, and C. Basdevant. Optimizing 2d and 3d struc-
tured euler CFD solvers on graphical processing units. Computers & Fluids, 70:136 –
147, 2012.

[9] G. Oyarzun, R. Borrell, A. Gorobets, O. Lehmkuhl, and A. Oliva. Direct numerical sim-
ulation of incompressible flows on unstructured meshes using hybrid cpu/gpu supercom-
puters. Procedia Engineering, 61:87 – 93, 2013.

[10] D.I. Papadimitriou and K.C. Giannakoglou. A continuous adjoint method with objective
function derivatives based on boundary integrals for inviscid and viscous flows. Computers
& Fluids, 36(2):325–341, 2007.

[11] P. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. Jour-
nal of Computational Physics, 43(2):357–372, 1981.



X. S. Trompoukis, K. T. Tsiakas M. Ghavami Nejad, V. G. Asouti and K. C. Giannakoglou

[12] X.S. Trompoukis, V.G. Asouti, I.C. Kampolis, and K.C. Giannakoglou. CUDA implemen-
tation of Vertex-Centered, Finite Volume CFD methods on Unstructured Grids with Flow
Control Applications, chapter 17. Morgan Kaufmann, 2011.


	INTRODUCTION
	THE PRIMAL SYSTEM OF EQUATIONS
	MATHEMATICAL FORMULATION OF THE CONTINUOUS ADJOINT METHOD
	DISCRETIZATION AND NUMERICAL SOLUTION
	IMPLEMENTATION ON GPUS
	GPU memory handling
	Mixed Precision Arithmetics
	Computation of fluxes

	APPLICATIONS
	Shape optimization of a 2D airfoil
	Sensitivity analysis of a Transonic Wing

	CONCLUSIONS

