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Abstract. This paper presents adjoint methods for the computation anduse of the first- and
higher-order sensitivity derivatives of objective functionsF in optimization problems governed
by PDEs, in aero/hydrodynamics. In the first part, the continuous adjoint approach to widely-
used turbulence models, such as the Spalart-Allmaras and k-ε one is presented in their low-
Reynolds and high-Reynolds (with wall functions) variants. The relevant developments allow
the computation of the exact gradient of the objective function using continuous adjoint, even
for RANS assisted by wall functions, and overcome the frequently made assumption of negligible
turbulence variations. The second part of this paper deals with higher-order sensitivity analysis
based on the combined use of the adjoint approach and direct differentiation. For robust de-
sign problems, the computation of second-order derivatives w.r.t. the environmental variables
aiming at the computation of the first two statistical momentsis required; if in addition, the
problem is to be solved using a descent algorithm, third-order mixed derivatives w.r.t. both
environmental and design variables must be available; optimal ways to perform these compu-
tations are demonstrated. This paper goes through both continuous and (hand-differentiated)
discrete adjoint methods. In the last part, some other relevant recent achievements regarding the
adjoint approach are discussed. Regarding applications, the adjoint method is demonstrated for
various objective functions and used to solve aero/hydrodynamic shape optimization problems,
optimization of jet-based flow-control systems for controlling the development of boundary lay-
ers and topology optimization problems in fluid mechanics. Depending on the problem, the
development relies upon the incompressible or compressible fluid flow equations.
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1 FLOW EQUATIONS AND OBJECTIVE fUNCTIONS

Before presenting the formulation of the continuous adjointmethod [] for turbulent flows,
the equations governing the state (i.e. flow) problem are briefly presented. This presentation is
made for an incompressible fluid flow using either the one-equation Spalart-Allmaras [1] or the
Jones-Launderk−ε [2] turbulence models. The mean flow state equations are

Rp =
∂vj

∂xj

= 0 (1)

Rvi = vj

∂vi

∂xj

+
∂p

∂xi

−
∂

∂xj

[
(ν+νt)

(
∂vi

∂xj

+
∂vj

∂xi

)]
= 0 (2)

vi are the velocity components,p is the static pressure divided by the density,T is the static
temperature,ν is the bulk viscosity andPr, Prt are the laminar and turbulent Prandtl numbers.
νt is the turbulent viscosity computed by solving the turbulence model equation(s),

Reν = vj

∂ν̃

∂xj

−
∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃

∂xj

]
−

cb2

σ

(
∂ν̃

∂xj

)2

− ν̃P (ν̃) + ν̃D (ν̃) (3)

in the case of the Spalart-Allmaras model and

Rk =vj

∂k

∂xj

−
∂

∂xj

[(
ν+

νt

Prk

)
∂k

∂xj

]
−Pk+ǫ + D = 0

Rǫ =vj

∂ǫ

∂xj

−
∂

∂xj

[(
ν+

νt

Prǫ

)
∂ǫ

∂xj

]
−c1Pk

ǫ

k
+c2f2

ǫ2

k
−E = 0 (4)

in the case of the k-ε model.ν̃ is the turbulence state variable, in the Spalart-Allmaras model and
k, ǫ are the corresponding quantities (turbulent kinetic energy and turbulent energy dissipation)
in the k-ǫ model. In both cases the boundary conditions and the model constant values are
omitted in the interest of space; their values may be found in[1] and [2]. For the closure,
νt = ν̃fv1

in the Spalart-Allmaras model andνt = cµ
k2

ε
in the k-ǫ one.

The objective function, written in general form comprises both surface and volume integrals,
as follows

F =

∫

S

FSdS+

∫

Ω

FΩdΩ=

∫

S

FSi
nidS+

∫

Ω

FΩdΩ (5)

whereFS andFΩ are the integrands on the boundary and volume of the domain, respectively,
whereni is the outward unit normal vector

2 THE ADJOINT METHOD FOR SHAPE OPTIMIZATION IN TURBULENT FLOWS

Even though in discrete adjoint the differentiation of the turbulence model equations is
straightforward and can be found in several published works, [3, 4], in continuous adjoint
the majority of the existing works rely on the so-called “frozen turbulence” assumption, in
which the sensitivities of the turbulence quantities w.r.t. the design variables are neglected
[5, 6, 7, 8, 9]. The first work presenting the adjoint to one of the most widely used turbulence
models, namely the Spalart-Allmaras one, for incompressible flows, is [10]. Later on, this was
extended to compressible flows in [11]. Regarding the adjointapproach to high-Reynolds tur-
bulence models, the (continuous) adjoint to the k-ε model with wall functions has been recently
presented in the literature, [12], whereas the continuous adjoint to the low-Reynolds Launder-
Sharma k-ε model has been presented in [13].
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2.1 The Adjoint Approach to Low-Reynolds Turbulence Models

In the continuous adjoint approach for shape optimization problems, the total sensitivity
derivatives (symbolδ) of any functionΦ w.r.t. bm are related to the corresponding partial sensi-
tivities (symbol∂) through the relation

δΦ

δbm

=
∂Φ

∂bm

+
∂Φ

∂xl

δxl

δbm

(6)

whereδxl

δbi
are the sensitivities of nodal coordinates.

For an arbitrary quantityΦ computed on a surface, the above equation takes the specific
form δsΦ

δbn
= ∂Φ

∂bn
+ ∂Φ

∂xk
nk

δxm

δbn
nm Since any sufficiently small surface deformation can be seenas

a normal perturbation, only the normal part of the surface deformation velocityδxk/δbn causes
a change inΦ

In order to formulate the adjoint equations, the augmented objective functionFaug is defined
as the sum ofF and the field integrals of the products of the adjoint variable fields and the state
equations, as follows

Faug = F +

∫

Ω

uiR
v
i dΩ +

∫

Ω

qRpdΩ + ETM (7)

whereui are the adjoint velocity components,q is the adjoint pressure, and the extra termsETM

depend on the turbulence model (TM ). In Spalart-Allmaras (TM = SA)

ESA =

∫

Ω

ν̃aR
eνdΩ (8)

whereas in the k-ǫ model (TM = KE)

EKE =

∫

Ω

(
kaR

k + ǫaR
ǫ
)
dΩ (9)

whereν̃a, ka andǫa are the adjoints tõν, k andǫ, respectively.
Based on the Leibniz theorem, the derivative of the augmentedobjective function w.r.t.bn

reads

δFaug

δbn

=
δF

δbn

+

∫

Ω

ui

∂Rv
i

∂bn

dΩ +

∫

Ω

q
∂Rp

∂bn

dΩ +

∫

SWp

(uiR
v
i + qRp)

δxk

δbn

nkdS +
δ(ETM)

δbm

(10)

where

δ(ESA)

δbm

=

∫

Ω

ν̃a

∂Reν

∂bn

dΩ+

∫

SWp

ν̃aR
eν δxk

δbn

nkdS (11a)

δ(EKE)

δbm

=

∫

Ω

ka

∂Rk

∂bn

dΩ+

∫

Ω

ǫa

∂Rǫa

∂bn

dΩ+

∫

SWp

(
kaR

k + ǫaR
ǫ
) δxk

δbn

nkdS (11b)

After a lengthy development of the volume integrals in eq. 10, based on the Green-Gauss the-
orem, and the elimination of the terms that depend on the sensitivities of the mean flow and
turbulence model variables, the adjoint to the mean flow equations yield

Rq =−
∂uj

∂xj

= 0 (12)

Ru
i =uj

∂vj

∂xi

−
∂(vjui)

∂xj

−
∂

∂xj

[
(ν+νt)

(
∂ui

∂xj

+
∂uj

∂xi

)]
+

∂q

∂xi

+AMSi =0 , i=1, 2(, 3) (13)
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The extra terms in the adjoint momentum equations (AMSi), arising from the differentiation of
the turbulence model, can be found in [10, 13]. The adjoint turbulence model variables’ fields
ν̃a, ka andǫa are governed by the adjoint turbulence model PDEs, which areas follows

Rfνa =−
∂(vj ν̃a)

∂xj

−
∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃a

∂xj

]
+

1

σ

∂ν̃a

∂xj

∂ν̃

∂xj

+ 2
cb2

σ

∂

∂xj

(
ν̃a

∂ν̃

∂xj

)
+ ν̃aν̃Ceν

+
∂νt

∂ν̃

∂ui

∂xj

(
∂vi

∂xj

+
∂vj

∂xi

)
+ (−P +D) ν̃a =0 (14a)

Rka =−
∂(vjka)

∂xj

−
∂

∂xj

[(
ν +

νt

Prk

)
∂ka

∂xj

]

+

(
B1

Prk

−
ν

k

)
∂k

∂xj

∂ka

∂xj

+
B1

Prǫ

∂ǫ

∂xj

∂ǫa

∂xj

+B1

(
∂vi

∂xj

+
∂vj

∂xi

)
∂ui

∂xj

+

[
ν

2k2

(
∂k

∂xj

)2

−
ν

k

∂2k

∂x2
j

−PB1

]
ka

−

[
c1

ǫ

k
PB1 + 2ν

(
∂2vk

∂xi∂xj

)2

B1+c2f2
ǫ2

k2
− 1.2c2

k2

ν2
e−Re2

t −c1Pk

ǫ

k2

]
ǫa =0 (14b)

Rǫa =−
∂(vjǫa)

∂xj

−
∂

∂xj

[(
ν +

νt

Prǫ

)
∂ǫa

∂xj

]

+
B2

Prǫ

∂ǫ

∂xj

∂ǫa

∂xj

+
B2

Prk

∂k

∂xj

∂ka

∂xj

+B2

(
∂vi

∂xj

+
∂vj

∂xi

)
∂ui

∂xj

+(1−PB2) ka

+

[
−2ν

(
∂2vk

∂xi∂xj

)2

B2−c1
ǫ

k
PB2+2c2f2

ǫ

k
−0.6c2

k3

ν2ǫ
e−Re2

t −c1Pk

1

k

]
ǫa =0 (14c)

The detailed derivation of the adjoint equations and the corresponding adjoint boundary condi-
tions can be found in [10] or [13].

After satisfying the field adjoint equations, the sensitivity derivatives of the objective func-
tion takes the following form

δFaug

δbn

=

∫

S

BCu
i

∂vi

∂bn

dS+

∫

S

(ujnj+
∂FSi

∂p
ni)

∂p

∂bn

dS+

∫

S

(−uinj +
∂FSk

∂τij

nk)
∂τij

∂bn

dS

+

∫

SWp

ni

∂FSWp,i

∂xm

nm

δxk

δbn

nkdS+

∫

SWp

FSWp,i

δni

δbn

dS+

∫

SWp

FSWp,i
ni

δ(dS)

δbn

+

∫

SWp

(uiR
v
i + qRp)

δxk

δbn

nkdS+SD (15)

where, depending on the turbulence model, the missing termsBCi andSD may be found in [10]
or [13]. The gain from overcoming the “frozen turbulence” assumption is shown in selected
cases. It is demonstrated that, the “frozen turbulence” assumption may lead to sensitivities
which might even have the wrong sign, misleading thus the descent process. Such an example,
concerning the flow in a 90o elbow duct, with a Reynolds number equal to3.5 × 104, modeled
using the Spalart–Allmaras model is given in fig. 1 [10].

The shape optimization of an S-shaped duct targeting minimum total pressure lossesF =
−

∫
SI

(
p + 1

2
v2

)
vinidS−

∫
SO

(
p + 1

2
v2

)
vinidS is investigated in fig. 2. The flow Reynolds number

based on the inlet height isRe = 1.2 × 105 and the Launder–Sharmak−ǫ model is used. The
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Figure 1: Adjoint to the low-Re Spalart–Allmaras model: Left: pressure field plotted on a90o elbow duct with
constant cross section; Right: sensitivity derivatives ofthe total pressure losses functionδF/δbn, wherebn are the
normal displacements of the solid wall grid nodes. Two sensitivity distributions are compared (a) the outcome of
the complete adjoint approach (marked as “turbulent adjoint”) and (b) the outcome of an adjoint solver making the
“frozen turbulence” assumption (marked as “frozen turbulence adjoint”). The abscissa stands for the nodal numbers
of the wall nodes. By making the “frozen turbulence” assumption, wrongly signed sensitivities are computed
between nodes 20 and 50. Extensive validation of the adjointsolver against direct differentiation in conducted in
[10].

upper and lower duct contours are parameterized using Bézier–Bernstein polynomials with12
control points each. Two gradient–based optimization methods, namely steepest descent and
the Fletcher-Reeves Conjugate Gradient (CG) method are used. The gradients used by each
method to update the design variables are based on (a) the proposed method to computeδF/δbn

and (b) adjoint with the “frozen turbulence” assumption. The starting duct shape along with the
optimal ones computed by the steepest descent method, basedon the two variants of the adjoint
formulation, are presented in fig. 2-top. Both have reached the same result. The shape resulting
from variant (a) has an objective function value that is about 3% lower than that of variant (b)
and reaches the optimal solution after approximately30% less cycles than that using the “frozen
turbulence” assumption. The beneficial impact of differentiating the turbulence model on the
optimization procedure is reconfirmed for the CG method, fig. 2-bottom, where with the exact
sensitivity derivatives, a20% economy in the number of optimization cycles is observed.

2.2 The Adjoint Approach to High-Reynolds Turbulence Models

In industrial projects, many analysis codes rely on the use of the wall function techniques,
due to the less stretched meshes and the economy in the overall CPU cost. The development of
the adjoint approach to the wall function model is thus necessary.

Regarding the k-ǫ model, this development was based on a vertex-centered finite volume
code with non-zero slip velocity at the wall. The real solid wall is assumed to lie at a distance
∆ underneath the grid boundary marked as solid “wall”. Integrating the state equations over the
vertex-centered finite volume of fig. 3, the diffusive flux through the segmentαβ depends on
the friction velocityvτ ,

v2
τ = (ν + νt)

(
∂vi

∂xj

+
∂vj

∂xi

)
njti (16)

wherevτ is computed via the law of the wall. Based on the latter, ifP belongs to either the log
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Figure 2: Adjoint to the low-Reynolds Launder–Sharmak− ǫ model: Shape optimization of an S-shaped duct
targeting minimum total pressure losses. Top: starting duct shape compared to the optimal solutions resulting from
the steepest descent algorithm that uses (a) the proposed method to computeδF/δbn (“turbulent adjoint”) and
(b) the adjoint method based on the “frozen turbulence” assumption (“frozen turbulence”); axes are not in scale.
Bottom: Convergence history of two optimization algorithms (steepest descent, SD, and conjugate gradient, CG)
driven by different adjoint methods. From [13].

law region or the viscous sublayer, the tangential to the wall velocity vτ = viti, whereti are
the tangent unit vector components in wall coordinates (y+ = vτ∆

ν
, v+ = vt

vτ
) results from the

expressionsv+ = 1
κ
lny+ + B if y+ ≥ y+

c or v+ = y+ if y+ < y+
c .

Note thaty+
c is deduced from solvingy+

c = 1
κ
lny+

c + B, with κ = 0.41 andB = 5.5. With
knownvτ , the boundary conditions fork andε are

kP = v2
τ

√
cµ

, εP = v3
τ

κ∆
, if y+ ≥ y+

c

kP = v2
τ

√
cµ

(
y+

y+
c

)2

, εP = k
3

2

P

1+ 5.3ν
√

kP ∆

κc
−

3
4

µ ∆
, if y+ < y+

c

(17)

Similar to the definition ofvτ , eq. 16, the adjoint friction velocityuτ at eachSW node is defined
by

u2
τ = (ν + νt)

(
∂ui

∂xj

+
∂uj

∂xi

)
njti (18)



K.C. Giannakoglou, D.I. Papadimitriou, E.M. Papoutsis-Kiachagias and I.S. Kavvadias

Figure 3: The adjoint technique with wall functions: A vertex-centered finite volumeΩP associated with the solid
“wall” (horizontal line) nodeP . Note that the real wall lies underneath the horizontal linesketched in this figure,
at a distance∆.

and is computed using the expression [12]

u2
τ =

1

cv

[
2uktkvτ −

(
ν +

νt

Prk

)
∂ka

∂xj

nj

δk

δvτ

−

(
ν +

νt

Prε

)
∂εa

∂xj

nj

δε

δvτ

]
(19)

applied to the computation of the adjoint viscous fluxes at the “wall” nodes.
On the other hand, for the Spalart-Allmaras model (cell-centered finite-volume scheme, no-

slip condition at the solid wall boundary faces) the wall function technique is based on a single
formula modeling both the inner sublayer and the logarithmic region of the turbulent boundary
layer

fWF =y+ − v+ − e−κB

[
eκv+

− 1 − κv+ −
(κv+)2

2
−

(κv+)3

6

]
= 0 (20)

and similar expressions for the adjoint friction velocity may be derived, resulting to the condi-
tion of zero adjoint friction velocity. Indicative applications of the adjoint wall function tech-
nique are shown in figs. 4 and 5.
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Figure 4: Adjoint to the high-Re Launder–Sharmak−ǫ model: Optimization of an axial diffuser using the adjoint
wall function technique. Left: Friction velocityvτ and squared adjoint friction velocityu2

τ distributions along its
lower wall. Right: Sensitivity derivatives ofF w.r.t. the design variables, i.e. the coordinates of Bézier control
points parameterizing its side walls. The adjoint wall function method perfectly matches the sensitivity derivatives
computed using finite differences (FD).

3 ROBUST DESIGN USING HIGH-ORDER SENSITIVITY ANALYSIS

In aerodynamics, robust design methods aim at optimizing a shape in a range of operating
conditions, or by considering the effect of environmental uncertainties, such as manufacturing
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Figure 5: Adjoint to the high-Re Spalart–Allmaras model, NACA0012,α∞ = 3o: Drag sensitivities computed
using the proposed method (marked as “adjoint WF”) are compared to the outcome of FD and the adjoint method
using the “frozen turbulence” assumption and the adjoint method with the “low–Reynolds” approach (different
scale on the vertical axis). The latter implies that the turbulence model is differentiated but the differentiation of
the wall functions is disregarded. The first 24 points correspond to the derivatives w.r.t. thex coordinates of the
suction and pressure side control points while the last 24 tothose w.r.t. they coordinates.

imprecisions, fluctuations of the flow conditions, etc. The latter depend on the so-called envi-
ronmental variablesc (ci, i ∈ [1,M ]). In robust design problems, the function to be minimized
can be expressed aŝF = F̂ (b, c,U(b, c)), to denote the dependency ofF̂ on the flow variables
U, the design variablesb (bl, l ∈ [1, N ]) which parameterize the aerodynamic shape and the
environmental variablesc (ci, i ∈ [1,M ]). Let us associate a probability density functiong(c)

with c. In the so-called Second-Order Second-Moment (SOSM) approach, the function̂F to be
minimized in a robust design problem combines the mean valueµF and the varianceσF

2 of F ,
namely

µF (b, c) =

∫
Fg(c)dc ≃ F +

1

2

[
δ2F

δc2
i

]

c

σ2
i (21)

σF
2(b, c) =

∫
(F − µF )2g(c)dc ≃

[
δF

δci

]2

c

σ2
i +

1

2

[
δ2F

δciδcj

]2

c

σ2
i σ

2
j (22)

where the gradients are evaluated at the mean valuesc of the environmental variables.
Based on the previous definitions, in robust design,F̂ becomes

F̂ (b, c)=w1µF + w2σ
2
F (23)

wherew1 andw2 are user-defined weights.
To computeF̂ , efficient and accurate methods to compute first- and second-order derivatives

of F w.r.t. the environmental variables are needed.

3.1 Computation of Statistical Moments using Second-Order Taylor Expansion

In aerodynamic optimization, the computation of the Hessian F subject to the constraint of
satisfying the flow equations can be conducted in at least four different ways, as briefly exposed
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below. All of them can be set up in either discrete or continuous form [14, 15, 16]. It is simpler,
however, to present them in discrete form, whereRi andUi stand for the discretized residual of
the flow equations and the flow variables at nodei, respectively. In discrete form, the first-order
variation rate ofF w.r.t. toci, i=1, . . . , N is given by

dF

dci

=
∂F

∂ci

+
∂F

∂Uk

dUk

dci

(24)

whereas
dRm

dci

=
∂Rm

∂ci

+
∂Rm

∂Uk

dUk

dci

= 0 (25)

Solving eq. 25 fordUk

dci
, at the cost ofN equivalent flow solutions (EFS; this is more or less the

cost of solving the primal equations) and, then, computingdF
dci

from eq. 24 is straightforward but
costly and will be referred to as the Direct Differentiation(DD) method. Since its cost scales
with N , the Adjoint Variable (AV) method was proposed instead. Theadjoint variablesΨi are
computed by numerically solving the adjoint system of equations

RΨ
k =

∂F

∂Uk

+ Ψm

∂Rm

∂Uk

= 0 (26)

and computing
dF

dci

=
∂F

∂ci

+ Ψm

∂Rm

∂ci

(27)

In discrete form, to compute the Hessian ofF , the straightforward extension of the DD method
for the gradient computation is the so-called DD-DD approach, in which d2F

dcidcj
can be computed

by

d2F

dcidcj

=
∂2F

∂ci∂cj

+
∂2F

∂ci∂Uk

dUk

dcj

+
∂2F

∂Uk∂cj

dUk

dci

+
∂2F

∂Uk∂Um

dUk

dci

dUm

dcj

+
∂F

∂Uk

d2Uk

dcidcj

(28)

where the sensitivitiesd
2Uk

dcidcj
are computed by solving (dUk

dci
being already known from the solu-

tion of eqs. 25).

d2Rn

dcidcj

=
∂2Rn

∂ci∂cj

+
∂2Rn

∂ci∂Uk

dUk

dcj

+
∂2Rn

∂Uk∂cj

dUk

dci

+
∂2Rn

∂Uk∂Um

dUk

dci

dUm

dcj

+
∂Rn

∂Uk

d2Uk

dcidcj

= 0 (29)

The DD-DD approach cannot avoid also the computation ofdUk

dci
and, thus its computational

cost is equal toN + N(N+1)
2

EFS in total (excluding the cost for solving the flow equations). So,
the DD-DD approach scales withN2 being too expensive for use in real–world optimization.

Two less expensive approaches to compute of the Hessian ofF are the AV-DD (AV for the
gradient and DD for the Hessian) and AV-AV ones. As shown in [16], both cost an many as
2N +1 EFS. It can be shown that, in either discrete or continuous form, the fourth alternative
way, i.e. the DD-AV approach (DD for the gradient and AV for the Hessian), is the most efficient
one to compute the Hessian matrix. In DD-AV, the Hessian matrix is computed by

d2F

dcidcj

=
∂2F

∂ci∂cj

+ Ψn

∂2Rn

∂ci∂cj

+

(
∂2F

∂Uk∂Um

+ Ψn

∂2Rn

∂Uk∂Um

)
dUk

dci

dUm

dcj

+

(
∂2F

∂ci∂Uk

+ Ψn

∂2Rn

∂ci∂Uk

)
dUk

dcj

+

(
∂2F

∂Uk∂cj

+ Ψn

∂2Rn

∂Uk∂cj

)
dUk

dci

(30)

wheredUk

dci
result from DD andΨm is computed by solving the (same) adjoint equation, eq. 26.

The total computational cost of DD-AV is equal toN+1 EFS.
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3.2 Robust Shape Optimization using Third-Order Sensitivities

If the optimization problem of minimizing the combination of the two first statistical mo-
ments is to be solved using a stochastic method (such as an evolutionary algorithm), the meth-
ods presented above can be used to computeµF andσF

2. However, if a gradient-based method
is selected to solve the problem, the gradientF̂ w.r.t. the design variablesbq must be available.
By differentiating eq. 23 w.r.t.bq, this becomes

δF̂

δbq

= w1

(
δF

δbq

+
1

2

δ3F

δc2
i δbq

σ2
i

)
+ w2

2 δF
δci

δ2F
δciδbq

σ2
i + δ2F

δciδcj

δ3F
δciδcjδbq

σ2
i σ

2
j

2

√[
δF
δci

]2

σ2
i + 1

2

[
δ2F

δciδcj

]2

σ2
i σ

2
j

(31)

From eq. 31,δ
bF

δbq
requires the computation of up to third-order mixed sensitivities w.r.t. ci and

bq, such as δ3F
δciδcjδbq

. The computation of the second and third-order sensitivityderivatives is

presented in detail in [17, 18]. For instance,d
2F

dcidcjdbq
is computed using the expression

d3F

dcidcjdbl

=
∂3F

∂ci∂cj∂bl

+
∂3F

∂ci∂bl∂Uk,d

·
dUk,d

dcj

+
∂3F

∂cj∂bl∂Uk,d

·
dUk,d

dci

+
∂3F

∂bl∂Uk,d∂Um,e

·
dUk,d

dci

·
dUm,e

dcj

+
∂2F

∂bl∂Uk,d

·
d2Uk,d

dcidcj

+ Ki,j
n,a

∂Rn,a

∂bl

+ Lj
n,a

(
∂2Rn,a

∂ci∂bl

+
∂2Rn,a

∂bl∂Uk,d

·
dUk,d

dci

)

+ Mi
n,a

(
∂2Rn,a

∂cj∂bl

+
∂2Rn,a

∂bl∂Uk,d

·
dUk,d

dcj

)

+ Nn,a

(
∂3Rn,a

∂ci∂cj∂bl

+
∂3Rn,a

∂ci∂bl∂Uk,d

·
dUk,d

dcj

+
∂3Rn,a

∂cj∂bl∂Uk,d

·
dUk,d

dci

+
∂3Rn,a

∂bl∂Uk,d∂Um,e

·
dUk,d

dci

·
dUm,e

dcj

+
∂2Rn,a

∂bl∂Uk,d

·
d2Uk,d

dcidcj

)
(32)

where the additional adjoint variablesNn,a should satisfy the equation

∂F

∂Uk,d

+ Nn,a

∂Rn,a

∂Uk,d

= 0 (33)

the variablesLj
n,a are computed by solving

∂2F

∂cj∂Uk,d

+
∂2F

∂Uk,d∂Um,e

·
dUm,e

dcj

+Lj
n,a

∂Rn,a

∂Uk,d

+Nn,a

(
∂2Rn,a

∂cj∂Uk,d

+
∂2Rn,a

∂Uk,d∂Um,e

·
dUm,e

dcj

)
= 0

(34)
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andMi
n,a are computed from the equation

∂3F

∂ci∂cj∂Uq,g

+
∂3F

∂ci∂Uk,d∂Uq,g

·
dUk,d

dcj

+
∂3F

∂cj∂Uk,d∂Uq,g

·
dUk,d

dci

+
∂3F

∂Uk,d∂Um,e∂Uq,g

·
dUk,d

dci

·
dUm,e

dcj

+
∂2F

∂Uk,d∂Uq,g

·
d2Uk,d

dcidcj

+ Ki,j
n,a

∂Rn,a

∂Uq,g

+ Lj
n,a

(
∂2Rn,a

∂ci∂Uq,g

+
∂2Rn,a

∂Uk,d∂Uq,g

·
dUk,d

dci

)
+ Mi

n,a

(
∂2Rn,a

∂cj∂Uq,g

+
∂2Rn,a

∂Uk,d∂Uq,g

·
dUk,d

dcj

)

+ Nn,a

(
∂3Rn,a

∂ci∂cj∂Uq,g

+
∂3Rn,a

∂ci∂Uk,d∂Uq,g

·
dUk,d

dcj

+
∂3Rn,a

∂cj∂Uk,d∂Uq,g

·
dUk,d

dci

+
∂3Rn,a

∂Uk,d∂Um,e∂Uq,g

·
dUk,d

dci

·
dUm,e

dcj

+
∂2Rn,a

∂Uk,d∂Uq,g

·
d2Uk,d

dcidcj

)
= 0

(35)

An application of the robust design algorithm is illustrated in fig. 6 in the optimization of a
2D symmetric cascade, [18]. The design variable consist of the shape controlling parameters
and the uncertain parameters consist of the flow conditions.
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Figure 6: Robust inverse design of a 2D symmetric cascade. Left: Comparison of sensitivitiesδµF

δbq
(bq are the

coordinates of B́ezier control points) computed using the proposed method and finite differences (FD). the pro-
posed method practically matches the third derivatives captured by FD. Right: convergence of the mean value and
standard deviation ofF usingw1 = 0.7, w2 = 0.3. From [18].

4 OTHER TOPICS RELATED TO ADJOINT APPROACHES AND OPTIMIZATION

The last section summarizes some other recent achievementsregarding continuous adjoint
methods.

Low-cost truncated Newton methods: To avoid the computation of Hessian (in large scale
optimization problems, in particular), the truncated Newton algorithm can be used instead, [19].
The adjoint approach followed by the direct differentiation of both the flow and adjoint equa-
tions (AV-DD) is proved to be the most efficient way to computethe product of the Hessian
matrix with any vector required by the truncated Newton algorithm, in which the Newton equa-
tions are solved via the conjugate gradient method. Considering that the cost of solving either
the adjoint or the direct differentiation equations is approximately equal to that of solving the
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flow equations, the cost per Newton iteration scales linearly with the number of conjugate gra-
dient steps required, rather than the (much higher, in largescale problems) number of design
variables (if the Hessian itself was computed). The efficiency of the truncated Newton method
is demonstrated in fig. 7.
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Figure 7: Design of a 2D airfoil cascade (42 degrees of freedom) using the truncated Newton method: Left:
Validation of the solution of the Newton equation withMCG = 4 conjugate gradient steps; the product of the
exact Hessian matrix and the computed correction is compared to the exact gradient value. Right: Comparison of
the convergence rates of the AV-DD truncated Newton method (with MCG =4) with other second-order methods
(BFGS and exact Newton). From [19].

Adjoint methods for active flow control with blowing/suction jets: The continuous adjoint
method has been used as a low-cost tool to derive informationregarding the optimal location
and type of steady suction/ blowing jets, used to control flowseparation. The derivatives of this
objective function with respect to hypothetical normal jetvelocities along the walls are com-
puted using the continuous adjoint method.

Slot Amplitude
1 0.0160
2 0.0301
3 0.0315
4 0.0068
5 −0.0400
6 −0.0596
7 −0.0147
8 0.0776

Figure 8: Time-averaged drag minimization of the flow arounda cylinder: Optimal amplitude of each pulsating jet
after seven optimization cycles.

Adjoint methods for topology optimization: Continuous adjoint methods for solving topol-
ogy optimization problems for laminar and turbulent ductedflows of incompressible fluids, with
or without heat transfer, have been developed, [20]. For turbulent flows, the adjoint approach is
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exact, i.e. includes the differentiation of the turbulencemodel. In manifold flows, constraints
on the percentage of the incoming flow rate directed to each exit boundary can be imposed.

(a) f1 = 0.025, f2 = 2.48 (b) f1 = 0.037, f2 = 3.00

(c) f1 = 0.053, f2 = 3.51 (d) f1 = 0.026, f2 = 2.83

Figure 9: Unconstrained topology optimization of the one inlet/four outlet duct aiming at minimumF = f1 (top
left). Constrained topology optimization enforcing25% of the incoming flow rate to exit from each outlet for,
minimumF = f1 (top right) and minimumF = f1 − 0.01f2 (bottom left). Constrained topology optimization
subject to the constraint of equal mean temperature at each outlet for minimumF = f1 − 0.01f2 (bottom right).
Velocity iso-areas and flow trajectories in the optimal solutions for the four cases. From [20].

4.1 INDUSTRIAL APPLICATIONS

In fig. 10, the application of the presented adjoint approaches to three industrial problems is
presented. The first case deals with the blade optimization of a 3D peripheral compressor cas-
cade in which the objective is the minimization of entropy losses within the flow passage, [21].
The second one is concerned with the shape optimization of a Francis turbine runner in order to
achieve the desired target head and the last with the shape optimization of the Volkswagen L1
concept car, targeting minimum drag force, [22].
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Figure 10: Top: Shape optimization of a 3D peripheral compressor cascade, targeting minimum entropy generation
rate within the flow passage with constraints on the blade thickness. Pressure distributions over the initial (left) and
optimal (right) blade geometries; from [21]. Mid: Optimization of a Francis runner blade for increased hydraulic
head (by1.5m) subject to a number of flow constraints. Pressure distributions over the initial (left) and optimal
(right) runners. Bottom: Optimization of the VW L1 concept car targeting minimum drag force. Parameterization
of the rear part of the geometry by drawing morphing boxes (left) and comparative view of the baseline and
optimized geometries with the corresponding sensitivity derivatives; from [22].
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