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Abstract. This paper presents adjoint methods for the computationweadof the first- and
higher-order sensitivity derivatives of objective funas F' in optimization problems governed
by PDEs, in aero/hydrodynamics. In the first part, the camtims adjoint approach to widely-
used turbulence models, such as the Spalart-Allmaras andre is presented in their low-
Reynolds and high-Reynolds (with wall functions) variantse felevant developments allow
the computation of the exact gradient of the objective fonaising continuous adjoint, even
for RANS assisted by wall functions, and overcome the frelyueate assumption of negligible
turbulence variations. The second part of this paper deatls inigher-order sensitivity analysis
based on the combined use of the adjoint approach and dirffetehtiation. For robust de-
sign problems, the computation of second-order derivativet. the environmental variables
aiming at the computation of the first two statistical momesitequired; if in addition, the
problem is to be solved using a descent algorithm, thirdeonshixed derivatives w.r.t. both
environmental and design variables must be available;oakiways to perform these compu-
tations are demonstrated. This paper goes through bothimeotis and (hand-differentiated)
discrete adjoint methods. In the last part, some other alérecent achievements regarding the
adjoint approach are discussed. Regarding applicatioms adjoint method is demonstrated for
various objective functions and used to solve aero/hydradyc shape optimization problems,
optimization of jet-based flow-control systems for contiglthe development of boundary lay-
ers and topology optimization problems in fluid mechanicepé&nhding on the problem, the
development relies upon the incompressible or compres8ibt flow equations.
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1 FLOW EQUATIONS AND OBJECTIVE fUNCTIONS

Before presenting the formulation of the continuous adjaiethod [] for turbulent flows,
the equations governing the state (i.e. flow) problem arfligmpresented. This presentation is
made for an incompressible fluid flow using either the oneaéqn Spalart-Alimaras [1] or the
Jones-Launder —¢ [2] turbulence models. The mean flow state equations are
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v; are the velocity components,is the static pressure divided by the densityis the static
temperaturey is the bulk viscosity andr, Pr, are the laminar and turbulent Prandtl numbers.
v is the turbulent viscosity computed by solving the turbaemodel equation(s),
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in the case of the Spalart-Allmaras model and
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in the case of the k-model.v is the turbulence state variable, in the Spalart-Allmarad@hand
k, e are the corresponding quantities (turbulent kinetic epargl turbulent energy dissipation)
in the k< model. In both cases the boundary conditions and the modhstaot values are
omitted in the interest of space; their values may be foundjrand [2]. For the closure,
v = v f,, In the Spalart-Allmaras model ang = cM in the k< one.

The objective function, written in general form comprlsesl'bsurface and volume integrals,

as follows
S Q S Q

whereFs and Fy, are the integrands on the boundary and volume of the donmespectively,
wheren; is the outward unit normal vector

2 THEADJOINT METHOD FOR SHAPE OPTIMIZATION IN TURBULENT FLOWS

Even though in discrete adjoint the differentiation of tliebtilence model equations is
straightforward and can be found in several published woi&s4], in continuous adjoint
the majority of the existing works rely on the so-called Zem turbulence” assumption, in
which the sensitivities of the turbulence quantities w.the design variables are neglected
[5, 6,7, 8, 9]. The first work presenting the adjoint to oneleff tnost widely used turbulence
models, namely the Spalart-Allmaras one, for incomprésgiows, is [10]. Later on, this was
extended to compressible flows in [11]. Regarding the adpgaproach to high-Reynolds tur-
bulence models, the (continuous) adjoint to therkodel with wall functions has been recently
presented in the literature, [12], whereas the continudira to the low-Reynolds Launder-
Sharma k= model has been presented in [13].
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2.1 The Adjoint Approach to Low-Reynolds Turbulence Models

In the continuous adjoint approach for shape optimizatioblems, the total sensitivity
derivatives (symbad) of any function® w.r.t. b,, are related to the corresponding partial sensi-
tivities (symbol0) through the relation
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Whereg—z are the sensitivities of nodal coordinates.
For an arbitrary quantityp computed on a surface, the above equation takes the specific
form f;;)f = 3%4—% f;;m n., Since any sufficiently small surface deformation can be ssen
a normal perturbation, only the normal part of the surfaderdeation velocitydxy /b, causes
a change inb
In order to formulate the adjoint equations, the augmenbgetive functiont,,,, is defined
as the sum of” and the field integrals of the products of the adjoint vagdlalds and the state

equations, as follows

(6)
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whereu; are the adjoint velocity componentsis the adjoint pressure, and the extra teifthg,
depend on the turbulence mod@élX/). In Spalart-Allmaras{TM = SA)

Esa= / v, R d (8)
Q
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wherev,, k, ande, are the adjoints to, £ ande, respectively.
Based on the Leibniz theorem, the derivative of the augmenivgettive function w.r.t.b,,
reads
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After a lengthy development of the volume integrals in/eq.ddked on the Green-Gauss the-
orem, and the elimination of the terms that depend on thetsatiss of the mean flow and
turbulence model variables, the adjoint to the mean flow ggpsyield
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The extra terms in the adjoint momentum equatiohs/(S;), arising from the differentiation of
the turbulence model, can be found in [10, 13]. The adjoirtitlence model variables’ fields
Vs, ke @ande, are governed by the adjoint turbulence model PDEs, whiclasfellows
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The detailed derivation of the adjoint equations and theesponding adjoint boundary condi-
tions can be found in [10] or [13].

After satisfying the field adjoint equations, the sendiivderivatives of the objective func-
tion takes the following form
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where, depending on the turbulence model, the missing tBtipandSD may be found in [10]
or [13]. The gain from overcoming the “frozen turbulence$asption is shown in selected
cases. It is demonstrated that, the “frozen turbulencetirmpion may lead to sensitivities
which might even have the wrong sign, misleading thus theatggrocess. Such an example,
concerning the flow in a 9Celbow duct, with a Reynolds number equabBté x 10*, modeled
using the Spalart—Allmaras model is given in fig. 1 [10].

The shape optimization of an S-shaped duct targeting mimirtaial pressure lossds =
- fsip + 10?) vmidS—fSSp + 2v?) v;n;dS is investigated in fig. 2. The flow Reynolds number
based on the inlet height Be = 1.2 x 10° and the Launder—Sharnia- ¢ model is used. The
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Figure 1: Adjoint to the low-Re Spalart—Allmaras model: t-gfressure field plotted on@®° elbow duct with
constant cross section; Right: sensitivity derivativetheftotal pressure losses functi®f /db,,, whereb,, are the
normal displacements of the solid wall grid nodes. Two g&fitsi distributions are compared (a) the outcome of
the complete adjoint approach (marked as “turbulent atfjaémd (b) the outcome of an adjoint solver making the
“frozen turbulence” assumption (marked as “frozen turbateadjoint”). The abscissa stands for the nodal numbers
of the wall nodes. By making the “frozen turbulence” assuomtwrongly signed sensitivities are computed
between nodes 20 and 50. Extensive validation of the adjoiver against direct differentiation in conducted in
[10].

-20

upper and lower duct contours are parameterized usereB-Bernstein polynomials with2
control points each. Two gradient—based optimization wathnamely steepest descent and
the Fletcher-Reeves Conjugate Gradient (CG) method are udsglgradients used by each
method to update the design variables are based on (a) thegew method to computé’/db,,
and (b) adjoint with the “frozen turbulence” assumptioneBtarting duct shape along with the
optimal ones computed by the steepest descent method, adeel two variants of the adjoint
formulation, are presented in fig. 2-top. Both have reacheddme result. The shape resulting
from variant (a) has an objective function value that is ai36ti lower than that of variant (b)
and reaches the optimal solution after approximaiety less cycles than that using the “frozen
turbulence” assumption. The beneficial impact of diffeieimtg the turbulence model on the
optimization procedure is reconfirmed for the CG method, fipoom, where with the exact
sensitivity derivatives, a0% economy in the number of optimization cycles is observed.

2.2 The Adjoint Approach to High-Reynolds Turbulence Models

In industrial projects, many analysis codes rely on the dsbhewall function techniques,
due to the less stretched meshes and the economy in thel@@talcost. The development of
the adjoint approach to the wall function model is thus nsags

Regarding the k-model, this development was based on a vertex-centered fialume
code with non-zero slip velocity at the wall. The real solidlMs assumed to lie at a distance
A underneath the grid boundary marked as solid “wall”. Ira¢igg the state equations over the
vertex-centered finite volume of fig. 3, the diffusive fluxabgh the segment depends on
the friction velocityv,,

v;  Ov;
2 _ ! J 4.
vi=(v+un) <8xj + 8%) njt; (16)

wherev, is computed via the law of the wall. Based on the latteF, thbelongs to either the log
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Figure 2: Adjoint to the low-Reynolds Launder-Sharia e model: Shape optimization of an S-shaped duct
targeting minimum total pressure losses. Top: starting slugpe compared to the optimal solutions resulting from
the steepest descent algorithm that uses (a) the proposbddnt® compute F'/db,, (“turbulent adjoint”) and

(b) the adjoint method based on the “frozen turbulence” mgsion (“frozen turbulence”); axes are not in scale.
Bottom: Convergence history of two optimization algorith(steepest descent, SD, and conjugate gradient, CG)
driven by different adjoint methods. From [13].

law region or the viscous sublayer, the tangential to the wabcity v, = v;t;, wheret; are
the tangent unit vector components in wall coordinates-€ %, vt = L) results from the
expressionst = tinyt + Bif y* >yl orvt =yt if yT <y

Note thaty," is deduced from solving; = Liny + B, with x = 0.41 and B = 5.5. With
knownuv,, the boundary conditions fdrandec are
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kP - U;— (y_+) ) Ep = k]% _ZPA’ if y+ < y(—:i_
Ver \ ye KCp EN

Similar to the definition of.., eq. 16, the adjoint friction velocity, at eachSy, node is defined
by

Ou;  Ou;
2 _ ¢ J .
u: = (V+ 1) <8xj + 8@-) njt; (18)
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Figure 3: The adjoint technique with wall functions: A vereentered finite volum& p associated with the solid
“wall” (horizontal line) nodeP. Note that the real wall lies underneath the horizontal $ketched in this figure,
at a distance\.

and is computed using the expression [12]
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applied to the computation of the adjoint viscous fluxes at'tall” nodes.
On the other hand, for the Spalart-Allmaras model (celkeesd finite-volume scheme, no-
slip condition at the solid wall boundary faces) the walldtian technique is based on a single

formula modeling both the inner sublayer and the logarithregion of the turbulent boundary
layer

+)2 +)3
fwrp=yt —vT —e "B [emﬁ—l—mﬁ— (m; ) — (/<w6 ) ] =0 (20)
and similar expressions for the adjoint friction velocitayrbe derived, resulting to the condi-
tion of zero adjoint friction velocity. Indicative applitans of the adjoint wall function tech-
nique are shown in figs. 4 and 5.
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Figure 4: Adjoint to the high-Re Launder—Shariac model: Optimization of an axial diffuser using the adjoint
wall function technique. Left: Friction velocity, and squared adjoint friction velocity? distributions along its
lower wall. Right: Sensitivity derivatives of w.r.t. the design variables, i.e. the coordinates étiBr control
points parameterizing its side walls. The adjoint wall fiumt method perfectly matches the sensitivity derivatives
computed using finite differences (FD).

3 ROBUST DESIGN USING HIGH-ORDER SENSITIVITY ANALYSIS

In aerodynamics, robust design methods aim at optimizingapes in a range of operating
conditions, or by considering the effect of environmentatertainties, such as manufacturing
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Figure 5: Adjoint to the high-Re Spalart—Allmaras model, 3#0012, ., = 3°: Drag sensitivities computed
using the proposed method (marked as “adjoint WF") are coetptarthe outcome of FD and the adjoint method
using the “frozen turbulence” assumption and the adjointhoe with the “low—Reynolds” approach (different
scale on the vertical axis). The latter implies that theulebce model is differentiated but the differentiation of
the wall functions is disregarded. The first 24 points cqoesl to the derivatives w.r.t. the coordinates of the
suction and pressure side control points while the last 2ddse w.r.t. they coordinates.

imprecisions, fluctuations of the flow conditions, etc. Tatdr depend on the so-called envi-
ronmental variables (c;, i € [1, M]). In robust design problems, the function to be minimized
can be expressed &&= I (b,c,U(b, c)), to denote the dependency Bfon the flow variables

U, the design variableb (b;,! € [1, N]) which parameterize the aerodynamic shape and the
environmental variables(c;, 7 € [1, M]). Let us associate a probability density functigie)

with c. In the so-called Second-Order Second-Moment (SOSM) agprdhe functiorf to be
minimized in a robust design problem combines the mean yaluend the variance 2 of F,
namely

1 2
pr(b,c) = /Fg(c)dczF—i—— 5—]; o? (21)
2 | dc |4
0F1* , 1[ 8°F 7
2 = — up)? ~ 24— 252
o) = [(F-peraterie= 30| ey || et @

where the gradients are evaluated at the mean valoéthe environmental variables.
Based on the previous definitions, in robust desigmecomes

F(b,c)=wipp + wo> (23)

wherew; andwz are user-defined weights.
To computeF, efficient and accurate methods to compute first- and seowel-derivatives
of F w.r.t. the environmental variables are needed.

3.1 Computation of Statistical Moments using Second-Order dylor Expansion

In aerodynamic optimization, the computation of the Hesgiasubject to the constraint of
satisfying the flow equations can be conducted in at leasthfi@rent ways, as briefly exposed
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below. All of them can be set up in either discrete or contusifmrm [14, 15, 16]. Itis simpler,
however, to present them in discrete form, whBfeandU; stand for the discretized residual of
the flow equations and the flow variables at nadespectively. In discrete form, the first-order
variation rate off’ w.r.t. toc;,7=1,..., N is given by

dF _OF | OF dUj
dCZ‘ N 80,» 8Uk dCZ‘

(24)

whereas dR OR OR,, dU,
m m m k
Solving eq! 25 for‘il—(ﬁ, at the cost ofV equivalent flow solutions (EFS; this is more or less the

cost of solving the primal equations) and, then, compuﬁ%@om eq. 24 is straightforward but
costly and will be referred to as the Direct Diﬁerentiati(bD) method. Since its cost scales
with NV, the Adjoint Variable (AV) method was proposed instead. &tmint variablesl; are
computed by numerically solving the adjoint system of eigqunet

oF OR
i a0, o, 0 (26)
and computing
dF OF L OR,, 27)

dCi N aCi " 861-

In discrete form, to compute the Hessianffthe straightforward extension of the DD method

for the gradient computation is the so-called DD-DD apphpatwhich d‘fdij
by

&¢*F O*F N OPF  dU, N O?F  dU, N O?’F  dU, dU,, N oOF d*U,

dCide N (962-(90]» 8018Uk de aUkaCj dCz‘ (9Uk(9Um dCZ’ de 8Uk dCide

(28)

where the sensitivitie% are computed by solving{* being already known from the solu-
tion of egs. 25).

d’R, B O’R, n O*R,, dU, L 0*R,, dU, n 0*R,, dU,dU,, n OR,, d*U,
dCide N acié?cj 8018Uk de 6Ukacj dCi aUkaUm dCi de 8Uk dCide

The DD-DD approach cannot avoid also the computatioﬁgéfand thus its computational

cost is equal tav+—-— N“ ) EFS in total (excluding the cost for solving the flow equasiprso,
the DD-DD approach scales wifki? being too expensive for use in real-world optimization.

Two less expensive approaches to compute of the Hessiarnaoé the AV-DD (AV for the
gradient and DD for the Hessian) and AV-AV ones. As shown ],[both cost an many as
2N +1 EFS. It can be shown that, in either discrete or continuous fthe fourth alternative
way, i.e. the DD-AV approach (DD for the gradient and AV foe tHessian), is the most efficient
one to compute the Hessian matrix. In DD-AV, the Hessian imeticomputed by

d*F 0?F 0’R, 0’F 0?R, AU dU,,
= + 0, - + 0,
dCide 862‘80]' 8ciacj 8Uk8Um 8Uk8Um dCi de

o2 F R, \ dU, [ O°F R, \ dU,
I Ly, v, 30
‘*(aqmﬁ*' agmﬁ)tmj+(amﬁ@*' 8Mﬁq)(ki (30)

wheredUk result from DD andV,, is computed by solving the (same) adjoint equation, eq. 26.
The total computational cost of DD-AV is equal 30+ 1 EFS.

=0 (29)
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3.2 Robust Shape Optimization using Third-Order Sensitivites

If the optimization problem of minimizing the combinatiof the two first statistical mo-
ments is to be solved using a stochastic method (such as artiemary algorithm), the meth-
ods presented above can be used to corr@mndaﬁ. However, if a gradient-based method
is selected to solve the problem, the gradiEnt.r.t. the design variabldg must be available.
By differentiating eq. 23 w.r.th,, this becomes

SF 82°F 2 2F  §r 2 2
2 07+ Seioc; 5615e,56, 71 0

§F SF 1 §F ——
( 2)+w2 3c; 3ci3b,

V=W o T 5350
&b, dby 2 0c;ob, 2\/[5_F]202+ 1 [ 52F ]20202
8¢ i 2 | dcidey ta

From eq.@l% requires the computation of up to third-order mixed sevisgs w.r.t. ¢; and

bq, such aséc,‘f;—%bq. The computation of the second and third-order sensitidgivatives is
10Cj

presented in detail in [17, 18]. For instan%gfce{”—dbq is computed using the expression
12C;

(31)

PF - PF  PF dUy,  OF Uy
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D000 dUme  de;  de; | 00dUng  dede;
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]CZ’] ) E] > ) . >
+ e 8bl + e (8018[?[ + 8bl(‘9Uk7d dCZ' >
aQRn’a aQRn,a . dUk:,d

+ Mn7a (acjﬁbl + 8b18Uk7d de )

PR PRy AUy a PRy AUy q
+ Nua + : + :
’ 801'86]‘81)1 8@(%,8Uk,d de 8cj8b18Uk7d dCZ'
PR, . dU, AU, e O*R,, d*U,
i , OUkd ey a k.d (32)
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where the additional adjoint variabld$, , should satisfy the equation
oF OR,.
+ N, = =0 (33)
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the variablesC; , are computed by solving

O*F n O*F .dUm,e Y OR,.. Y, (92Rn7a n 82Rn,a AU, e _0
80]'8[]]9,(1 8Uk7d8Um,e de e 8Uk7d e &:j(‘?de 8Uk,d6Um,e de n

(34)
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andM;, , are computed from the equation

OF N PPF AUy N O*F AUy
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An application of the robust design algorithm is illusticte fig. 6 in the optimization of a
2D symmetric cascade, [18]. The design variable considt@khape controlling parameters
and the uncertain parameters consist of the flow conditions.

66‘05 T T T T T 22
So.05 s ‘ DD-DD-AV —=—
e 2.18
4e-05
(6]
£ ze05 2.16
g 2e-05 2.14
©
u 1le-05 212
0
-1e-05 21
-2e-05 2.08 .
0 2 4 6 8 10 12 0 5 10 15 20 25 30

design variable (b) optimization cycle

Figure 6: Robust inverse design of a 2D symmetric cascadé: Cemparison of sensmvme% (b are the

coordinates of Bzier control points) computed using the proposed methddiaite differences (FD) the pro-
posed method practically matches the third derivativesuced by FD. Right: convergence of the mean value and
standard deviation af’ usingw; = 0.7, wy = 0.3. From [18].

4 OTHER TOPICS RELATED TO ADJOINT APPROACHES AND OPTIMIZATION

The last section summarizes some other recent achievemsgaisling continuous adjoint
methods.

Low-cost truncated Newton methods To avoid the computation of Hessian (in large scale
optimization problems, in particular), the truncated Newalgorithm can be used instead, [19].
The adjoint approach followed by the direct differentiatiaf both the flow and adjoint equa-
tions (AV-DD) is proved to be the most efficient way to comptlite product of the Hessian
matrix with any vector required by the truncated Newton gthm, in which the Newton equa-
tions are solved via the conjugate gradient method. Corisglénat the cost of solving either
the adjoint or the direct differentiation equations is apmately equal to that of solving the
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flow equations, the cost per Newton iteration scales ligeaith the number of conjugate gra-
dient steps required, rather than the (much higher, in lacgée problems) number of design
variables (if the Hessian itself was computed). The efficyenf the truncated Newton method
is demonstrated in fig. 7.

0.0001 5
0.0008 T"‘95‘5iankco"IfeCtilon('\hc(;=I4) e ] ° B AV-DD Truncated Newton —e— |
L -Gradient ---e--- | > 1e-05 [ BFGS ---+--- ]

= 0.0006 R - - g © i Exact Newton ---©---
% 0.0004 5 1e-06 [ AP T S —
5 0.0002 [g g . ]
(*g 5 1e-07 | ]
.© 0 t
7 2 1le08 .
£ -0.0002 o r 1
kol = :
-0.0004 -8 le-09 .

-0.0006 leqob—t 10w

0O 5 10 15 20 25 30 35 40 45 0 50 100 150 200 250 300 350 400
Design Variable EFS

Figure 7: Design of a 2D airfoil cascade (42 degrees of fregdasing the truncated Newton method: Left:
Validation of the solution of the Newton equation willic = 4 conjugate gradient steps; the product of the
exact Hessian matrix and the computed correction is cordgarthe exact gradient value. Right: Comparison of
the convergence rates of the AV-DD truncated Newton methdgtth (Vo = 4) with other second-order methods
(BFGS and exact Newton). From [19].

Adjoint methods for active flow control with blowing/suction jets: The continuous adjoint
method has been used as a low-cost tool to derive informagigarding the optimal location
and type of steady suction/ blowing jets, used to control Beparation. The derivatives of this
objective function with respect to hypothetical normalyetocities along the walls are com-
puted using the continuous adjoint method.

Slot  Amplitude

1 0.0160
2 0.0301
3 0.0315
4 0.0068
5 —0.0400
6 —0.0596
7 —0.0147
8 0.0776

Figure 8: Time-averaged drag minimization of the flow aroamylinder: Optimal amplitude of each pulsating jet
after seven optimization cycles.

Adjoint methods for topology optimization: Continuous adjoint methods for solving topol-
ogy optimization problems for laminar and turbulent dudted's of incompressible fluids, with
or without heat transfer, have been developed, [20]. Féutent flows, the adjoint approach is
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exact, i.e. includes the differentiation of the turbulenoedel. In manifold flows, constraints
on the percentage of the incoming flow rate directed to eaittbexndary can be imposed.
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(@) f1 = 0.025, fo = 2.48 (b) f1 = 0.037, fo = 3.00
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— ———

e 61%-317K

25%-330K o —
0.6 | = - 1
0.5 ———ou

P25%-318K

<
oo oo
O - N W
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(c) f1 = 0.053, fo = 3.51 (d) f1 =0.026, fo = 2.83

Figure 9: Unconstrained topology optimization of the orletifour outlet duct aiming at minimum’ = f; (top
left). Constrained topology optimization enforci2g% of the incoming flow rate to exit from each outlet for,
minimum £’ = f; (top right) and minimum¥ = f; — 0.01f> (bottom left). Constrained topology optimization
subject to the constraint of equal mean temperature at a#tdt or minimumF = f; — 0.01 f5 (bottom right).
Velocity iso-areas and flow trajectories in the optimal sohs for the four cases. From [20].

4.1 INDUSTRIAL APPLICATIONS

In fig.[10, the application of the presented adjoint appreadh three industrial problems is
presented. The first case deals with the blade optimizafiaB® peripheral compressor cas-
cade in which the objective is the minimization of entropgdes within the flow passage, [21].
The second one is concerned with the shape optimization @recks turbine runner in order to
achieve the desired target head and the last with the shdjpeizaiion of the Volkswagen L1
concept car, targeting minimum drag force, [22].
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Figure 10: Top: Shape optimization of a 3D peripheral corsgpoecascade, targeting minimum entropy generation
rate within the flow passage with constraints on the bladstt@ss. Pressure distributions over the initial (left) and
optimal (right) blade geometries; from [21]. Mid: Optimtican of a Francis runner blade for increased hydraulic
head (byl.5m) subject to a number of flow constraints. Pressure disidbatover the initial (left) and optimal
(right) runners. Bottom: Optimization of the VW L1 concept ¢argeting minimum drag force. Parameterization
of the rear part of the geometry by drawing morphing boxef)(lnd comparative view of the baseline and
optimized geometries with the corresponding sensitivisivditives; from [22].
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