
CONTINUOUS ADJOINT METHODS IN SHAPE,
TOPOLOGY, FLOW-CONTROL AND ROBUST

OPTIMIZATION

Open Source CFD International Conference, London 2012

Kyriakos C. Giannakoglou1, Dimitrios I. Papadimitriou1,
Evangelos M. Papoutsis-Kiachagias1, Ioannis S. Kavvadias1

and Carsten Othmer2

1National Technical University of Athens,
School of Mechanical Engineering,
Lab. Of Thermal Turbomachines,
Parallel CFD & Optimization Unit
Zografou, Athens, 15710, Greece

e-mails: kgianna@central.ntua.gr, dpapadim@mail.ntua.gr,
vaggelisp@gmail.com, kavvadiasj@hotmail.com

2Volkswagen AG, CAE Methods, Group Research,
Letter Box 1777, D-38436 Wolfsburg, Germany

e-mail: carsten.othmer@volkswagen.de

Keywords: steady/unsteady adjoint, Hessian matrix computation, shape and topology
optimization, optimal active flow control, robust design

Abstract:Recent progress in the development of continuous adjoint methods for the
computation of the first- and higher-order sensitivity derivatives of various objective func-
tions in aero/hydrodynamics is presented. Regarding development of methods, this paper
includes: (a) The continuous adjoint to low-Reynolds turbulence models by laying empha-
sis on the need to include the adjoint turbulence model equations into the optimization loop.
(b) The continuous adjoint to turbulent flow solvers which use the wall function technique.
(c) The truncated Newton method which relies on the computation of Hessian-vector prod-
ucts, as a more efficient alternative to the exact Newton method, in problems with many
design variables. (d) The adjoint method for the solution of robust design problems, based
on the second-order second-moment (SOSM) approach and a gradient-based algorithm,
requiring the computation of up to third-order mixed derivatives w.r.t. the environmen-
tal and design variables. Regarding applications, the adjoint method is demonstrated in
aero/hydrodynamic shape optimization problems, the optimization of steady/unsteady jet-
based flow control systems and topology optimization problems in fluid mechanics. Steady
and unsteady continuous adjoint methods are employed. Most of the methods presented in
this paper have been implemented in OpenFOAM c©, adding state of the art optimization
capabilities to a widely used open source software.
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1 AERODYNAMIC OPTIMIZATION IN TURBU-

LENT FLOWS

1.1 Flow Equations and Objective Functions

The system of state equations are presented in a way which covers shape, topology and
flow control optimization problems. To do so, some extra terms depending on the porosity
field α are appended to the Navier-Stokes equations. The new terms are useful only in
topology optimization; otherwise, α ≡ 0. The flow is incompressible and, without loss in
generality, the Spalart-Allmaras turbulence model, [1], is used to effect closure in turbulent
flows. Based on the above, the state equations are written as

Rp = 0, Rvi = 0, RT = 0, Rν̃ = 0 (1)

where

Rp =
∂vj
∂xj

(2)

Rvi = vj
∂vi
∂xj

+
∂p

∂xi

− ∂

∂xj

[
(ν+νt)

(
∂vi
∂xj

+
∂vj
∂xi

)]
+ αvi (3)

RT = vj
∂T

∂xj

− ∂

∂xj

[(
ν

Pr
+

νt
Prt

)
∂T

∂xj

]
+ α (T − Twall) (4)

Rν̃ = vj
∂ν̃

∂xj

− ∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃

∂xj

]
− cb2

σ

(
∂ν̃

∂xj

)2

− ν̃P (ν̃) + ν̃D (ν̃) + αν̃ (5)

The energy equation is optionally included in the system of state equations to account
for flow problems with heat transfer. Here, vi are the velocity components, p is the static
pressure divided by the density, T is the static temperature, ν̃ is the turbulence state
variable, ν is the bulk viscosity and νt is the turbulent viscosity given by νt = ν̃fv1 .
Also, Pr, Prt are the laminar and turbulent Prandtl numbers and Twall is the known-fixed
temperature over the solidified parts of the domain in topology optimization problems
with heat transfer. Rν̃ must be ignored in laminar flows and so does RT if heat transfer
effects are not taken into consideration.

The applications presented in this paper are dealing with the following objective func-
tions: (1) the volume-averaged total pressure losses between the inlet SI and the outlet
SO of the domain Ω, (2) forces (for instance, lift, drag, etc) exerted on the solid walls SW

along a user-defined direction ri, (3) the volume–averaged temperature difference between
SO and SI , (4) the deviation of the hydraulic head H from a desirable value Htar (for
hydraulic turbomachines) and (5) the deviation of the pressure distribution p from a given
distribution ptar along Sw (inverse design problems). The corresponding five functions to
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be minimized are defined below

F1 =

∫
SI

FSI
dS +

∫
SO

FSO
dS=−

∫
SI

(
p+

1

2
v2
)
vinidS −

∫
SO

(
p+

1

2
v2
)
vinidS (6)

F2 =

∫
SW

FSW
dS=

∫
SW

[
−(ν + νt)

(
∂vi
∂xj

+
∂vj
∂xi

)
+ p δji

]
njridS (7)

F3 = −
∫
SI

TvinidS −
∫
SO

TvinidS (8)

F4 =
1

2
(H −Htar)

2 , H=

∫
SI

(
p+ 1

2
v2k
)
vinidS +

∫
SO

(
p+ 1

2
v2k
)
vinidS

g
∫
SI
vinidS

(9)

F5 =
1

2

∫
Sw

(p−ptar)2dS (10)

where ni is the outward unit normal vector and g the acceleration of gravity.

1.2 The Continuous Adjoint Method for Shape Optimization in
Turbulent Flows

In turbulent flows, the development of continuous adjoint methods which take full account
of the turbulence model PDEs is quite new in the literature. This is not the case in
discrete adjoint, where the differentiation of the already discretized turbulence model
equations is straightforward, [5, 6, 7]. In contrast, in continuous adjoint, the majority
of the existing works use the “frozen turbulence” assumption, according to which the
sensitivities of turbulence quantities w.r.t. the design variables bm are neglected. The
first work presenting the continuous adjoint to the Spalart-Allmaras turbulence model,
for incompressible flows, is [2]. This was extended to compressible flows in [3]. Regarding
the adjoint approach to high-Reynolds turbulence models, the continuous adjoint to the
k-ε model with wall functions was firstly presented in [4]. This section presents briefly
the underlying development and aims at convincing the reader that, in some cases, the
solution of the adjoint turbulence model equation(s) is really necessary.

In shape optimization problems (α ≡ 0), the total sensitivity derivatives (symbol δ)
of any function Φ w.r.t. bm are related to its partial sensitivities (symbol ∂) through the
relation

δΦ

δbm
=

∂Φ

∂bm
+

∂Φ

∂xl

δxl

δbm
(11)

where δxl

δbi
are the sensitivities of nodal coordinates. In topology or flow control opti-

mization, where the grid is invariant, the last term vanishes. To develop the adjoint
equations, the augmented objective function Faug is defined by adding the field integrals
of the products of the adjoint variable fields and the state equations to F , as follows

Faug = F +

∫
Ω

uiR
v
i dΩ +

∫
Ω

qRpdΩ +

∫
Ω

TaR
TdΩ +

∫
Ω

ν̃aR
ν̃dΩ (12)

Here, ui are the adjoint velocity components, q is the adjoint pressure, Ta the adjoint
temperature and ν̃a the adjoint to ν̃. The total variation (symbol δ) of Faug w.r.t. bm
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reads

δFaug

δbm
=

δF

δbm
+

∫
Ω

ui
∂Rv

i

∂bm
dΩ +

∫
Ω

q
∂Rp

∂bm
dΩ +

∫
Ω

Ta
∂RT

∂bm
dΩ +

∫
Ω

ν̃a
∂Rν̃

∂bm
dΩ

+

∫
S

uiR
v
i

δxk

δbm
nkdS +

∫
S

qRp δxk

δbm
nkdS +

∫
S

TaR
T δxk

δbm
nkdS

+

∫
S

ν̃aR
ν̃ δxk

δbm
nkdS (13)

where S = SI ∪ SO ∪ Sw or (see [2] where all symbols are explained). After applying the
Green-Gauss theorem, eq. 13 can be written as

δFaug

δbm
=

∫
Ω

Ru
i

∂vi
∂bm

dΩ +

∫
Ω

Rq ∂p

∂bm
dΩ +

∫
Ω

RTa
∂T

∂bm
dΩ +

∫
Ω

Rν̃a
∂ν̃

∂bm
dΩ

+

∫
S

Bu
i

∂vi
∂bm

dS +

∫
S

BGu
ij

∂

∂bm

(
∂vi
∂xj

)
dS +

∫
S

Bq ∂p

∂bm
dS +

∫
S

BTa
∂T

∂bm
dS

+

∫
S

BGT
i

∂

∂bm

(
∂T

∂xi

)
dS +

∫
S

Bν̃a
∂ν̃

∂bm
dS

∫
S

BGν̃a
i

∂

∂bm

(
∂ν̃

∂xi

)
dS + SD (14)

The last term, SD, is a sum of integrals (see eq. 19) which depend only on the sensitivities
of geometrical quantities and leads to the expression of sensitivity derivatives of F . The
elimination of all field (Ω) integrals depending on the sensitivities of the flow variables
( ∂vi
∂bm

, etc.) from eq. 14 gives rise to the following adjoint mean flow and turbulence model
equations

Rq =
∂uj

∂xj

= 0 (15)

Rui = −vj
(
∂ui

∂xj

+
∂uj

∂xi

)
+

∂q

∂xi

− ∂

∂xj

[
(ν+νt)

(
∂ui

∂xj

+
∂uj

∂xi

)]
− ν̃

∂ν̃a
∂xi

− ∂

∂xk

(
ejkiejmq

CS(ν̃)
S

∂vq
∂xm

ν̃ν̃a

)
− T

∂Ta

∂xi

+ αui = 0 (16)

RTa = −vj
∂Ta

∂xj

− ∂

∂xj

[(
ν

Pr
+

νt
Prt

)
∂Ta

∂xj

]
+ αTa = 0 (17)

Rν̃a = −vj
∂ν̃a
∂xj

− ∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃a
∂xj

]
+

1

σ

∂ν̃a
∂xj

∂ν̃

∂xj

+ 2
cb2
σ

∂

∂xj

(
ν̃a

∂ν̃

∂xj

)
+(D−P ) ν̃a

+ ν̃aν̃ Cν̃(ν̃,~v)+
δνt
δν̃

∂ui

∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
+
δνt
δν̃

1

Prt

∂Ta

∂xj

∂T

∂xj

+αν̃a=0 (18)

where, in shape optimization, α≡ 0. The elimination of the boundary integrals that
depend on the sensitivities of the flow variables from eq. 14 yields the adjoint boundary
conditions, as exposed in detail in [2]. The remaining terms, which have been abbreviated
to SD, define the sensitivity derivatives of F w.r.t. bm, namely

δF

δbm
=

∫
SW

∂FSW

∂xk

δxk

δbm
dS+

∫
SW

FSW

δ(dS)

δbm
−
∫
SW

[
ν

(
∂ui

∂xj

+
∂uj

∂xi

)
nj − qni

]
∂vi
∂xk

δxk

δbm
dS

+

∫
SW

uiR
v
i

δxk

δbm
nkdS +

∫
SW

qRp δxk

δbm
nkdS +

∫
SW

ν
∂FSW

∂p

∂

∂xk

(
∂vi
∂xj

+
∂vj
∂xi

)
δxk

δbm
ninjdS

+

∫
SW

ν
∂FSW

∂p

(
∂vi
∂xj

+
∂vj
∂xi

)
δ (ninj)

δbm
dS−

∫
SW

ν
∂ν̃a
∂xj

nj
∂ν̃

∂xk

δxk

δbm
dS+

∫
Ω̃

νaν̃C∆(ν̃,~v)
∂∆

∂bm
dΩ(19)
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where CS(ν̃), Cν̃(ν̃,~v) and C∆(ν̃,~v) result from the Spalart–Allmaras model equations.

Terms such as δxk

δbm
, δ(dS)

δbm
,

δ(ninj)

δbm
, etc. depend on the selected parameterization scheme for

the shape (Sw) to be designed and can be computed either numerically or analytically.
The shape optimization of an elbow duct for min. F =F1, (eq. 6), is shown in fig. (1) In

this figure, the computed sensitivity derivatives δF
δbm

are shown on the left, where bm stand
for the normal displacements of the solid wall grid nodes. Two sensitivity distributions are
presented and compared (a) by solving the complete adjoint system, including the adjoint
to the Spalart-Allmaras PDEs (marked as “turbulent adjoint”) and (b) by making the
“frozen turbulence” assumption. The abscissa stands for the IDs of the inner wall nodes.
It is clear that, by making the “frozen turbulence” assumption, wrongly signed sensitivities
are computed for nodes with ID from 20 to 50. The duct shape along with the velocity
isolines are shown on the right of fig. (1). This is a convincing example showing that the
omission of solving the adjoint turbulence model equation(s) (i.e. the omission of solving
eq. 18) may mislead the optimization by computing derivatives δF

δbm
with the wrong sign.
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Figure 1: Shape optimization of an elbow duct for min. total pressure losses. Results
from [2].

The previous development was based on the low-Reynolds number Spalart-Allmaras
model. However, several engineering applications still rely on (high-Reynolds number)
turbulence models with wall functions, since their use allows handling coarser grids and
saving CPU cost. For this reason, in [4], the continuous adjoint approach to the high-
Reynolds k− ε turbulence model, was presented for incompressible flows. In [4], the
concept of the adjoint wall functions was introduced for the first time in the corresponding
literature. The adjoint friction velocity was introduced to bridge the gap between the wall
boundary faces and the first cell-centres off the wall, during the solution of the adjoint
equations.

The concept presented in [4] (there, employed to an in-house, vertex-centered flow
solver based on the pseudo-compressibility technique) was, then, adapted to the high-
Reynolds variant of the Spalart-Allmaras method in OpenFOAM c©. In the latter, a
single law of the wall expression is used to model the inner sublayer and the logarithmic
part of the turbulent boundary layer, [8],

fWF = y+ − v+ − e−κB

[
eκv

+ − 1− κv+ − (κv+)2

2
− (κv+)3

6

]
= 0 (20)

where κ=0.41, B ≈ 5.5 and the non-dimensional distance and velocity are y+ = yvτ
ν

and
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v+ = |vi|P
vτ

Also, vτ is the (primal or state) friction velocity, computed by

v2τ =

[
(ν + νt)

(
∂vi
∂xj

+
∂vj
∂xi

)]
f

njti (21)

where nj and ti are, the normal and tangent to the wall unit vectors. Subscripts f and P
denote quantities defined at the boundary wall face and the first cell centre, respectively

(see fig. 2). The computation of ∂vi
∂xj

∣∣∣
f
nj, eq. 21, using any finite-difference scheme intro-

f

P

q

y
υP

Figure 2: Typical finite volume adjacent to the wall.

duces error. This is alleviated by computing an “artificial” value of νt|f , so that the wall
shear stress computed by eq. 20 and that computed by differentiating the velocity field
and multiplying by (ν + νt)f be identical. So, fWF (vτ , |vi|P , yP )=0 (eq. 20) is solved for
vτ and then, eq. 21 adjusts νt|f accordingly.

According to the development presented in [4] for a different turbulence model, the ad-

joint friction velocity, u2
τ =

[
(ν + νt)

(
∂ui

∂xj
+

∂uj

∂xi

)]
f
njti, is introduced in order to correctly

compute the adjoint viscous fluxes at f . The rest of the adjoint formulation previously
developed for its low–Reynolds counterpart is adapted accordingly.

An indicative application is presented in fig. (3), where the gain in accuracy is illus-
trated. A non-symmetric NACA4415 airfoil was parameterized using Bézier polynomials
with 8 control points for the pressure and suction sides, fig. (3)–top. A hybrid grid was
used with a mean y+ ≈ 10 for all nodes P (fig. 2) along the solid walls. The Reynolds
number is Re = 6 × 106 based on the airfoil chord length and the infinite flow angle is
α∞=3o. The state equations include the Spalart-Allmaras model with wall functions, as
programmed in OpenFOAM c©.

The proposed method for calculating sensitivity derivatives using the adjoint wall
functions technique was used to calculate the sensitivities of F =F2 (eq. 7) with respect
to the (x, y) coordinates of the 16 control points, resulting to a total of 32 design variables
(including the leading and trailing edge control points). The outcome of this calculation
(“adjoint WF”) is compared with finite differences (“FD”) in fig. (3)–bottom left. The two
curves are in a very good agreement even for the leading and trailing edge control points,
where the “usual” flow singularities often lead to local inaccuracies. In fig. (3)–bottom
right, the two aforementioned curves are also compared with those computed using the
“frozen turbulence” assumption and the adjoint to the low–Reynolds Spalart-Allmaras
model. The latter implies that the primal solver uses the Spalart–Allmaras model with
wall functions but the adjoint is based on its low–Reynolds variant. The gain in accuracy
is obvious and it is interesting to note that, in this case, the “low–Reynolds” approach
performs even worse than the “frozen turbulence assumption”!
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Figure 3: Shape optimization of the NACA4415 airfoil for min. F =F2, (eq. 7). Coordi-
nates x and y (top) are not in scale.

In fig. 4, the application of the presented adjoint approaches to two industrial problems
is presented. The first case (top) is concerned with the design of a Francis turbine runner
for the desired target head Htar (min. F4, eq. 9), subject to a number of flow constraints.
Pressure distributions over the initial (left) and optimal (right) runners are shown in
the figure. The second case (bottom) is concerned with the shape optimization of the
Volkswagen L1 concept car, targeting minimum drag force (min. F2, eq. 7), [12]. The rear
part of the car is parameterized by drawing morphing boxes (left) and the comparative
view of the baseline and the optimized geometries, with the corresponding sensitivity
derivatives, is also presented (right).
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Figure 4: Top: Optimization of a Francis runner blade for increased hydraulic head.
Bottom: Optimization of the VW L1 concept car targeting minimum drag force, [12].

1.3 Adjoint for Optimal Flow Control (Steady Jet)

The continuous adjoint method is used as a tool to identify the appropriate location and
“type” (suction or blowing) of steady jets used in active flow control systems. It computes
sensitivity maps along Sw, from which the designer extracts information about the optimal
location (from the sensitivity magnitude) and “type” (from the sensitivity sign) of the jet
to be applied, so as to successfully control the boundary layer development.

In such a problem, the design variables are the values of the Cartesian components
of hypothetical jet velocities vbpq (p ∈ [1, 2] in 2D or p ∈ [1, 3] in 3D problems) at the N

wall boundary nodes (q ∈ [1, N ]). Since δxk

δbi
=0, it can be proved that, for any objective

function F , at any point over Sw, the sensitivity derivatives are

1

∆Sq

δF

δvbpq
= (ν + νt)

(
∂upq

∂xj

+
∂ujq

∂xp

)
njq − qqnpq (22)

Eq. 22 has been derived for F =F1, (eq. 6) without including the energy equation RT =0
into the system of flow PDEs. Without loss in generality, it is assumed that the jet veloc-
ities vjet are normal to the wall. Thus, the signed jet velocities vjet become vjetq = vbpqn

b
pq

(summation over p) and their sensitivity derivatives δF

δvjetq
= δF

δvbpq
nb
pq. High absolute val-

ued sensitivities pinpoint the most promising locations for the placement of jets. The
sensitivity sign at these points indicates the preferred direction of the jet, i.e. suction
or blowing (negative and positive sign, respectively). Such a case is illustrated in fig. 5
where the flow control in an S–shaped duct for min. F =F1 is examined. In this figure,
the distribution of nodal sensitivity derivatives 1

∆S
δF

δvjetq
along the lower and upper walls is

plotted. The sensitivities computed using the continuous adjoint method (labeled “Ad-
joint”) perfectly match those computed using finite differences (“FD”). This figure shows

8
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the recommended jet locations. On the right, the computed velocity magnitude isolines
are presented. With two suction slots, having max. jet velocities equal to 10% of the
inlet flow velocity, applied at the recommended locations (kinks in the sensitivity map),
a reduction in viscous losses, from 0.01835 to 0.01432 was achieved.
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Figure 5: Flow control using steady blowing or suction jets, in an S–shaped duct for
min. total pressure losses.

1.4 Adjoint for Optimal Flow Control (Unsteady Jet)

A similar application using unsteady (pulsating, either for blowing of for suction) jets,
which requires the use of unsteady adjoint methods follows. The distribution of jets
alongside the body is fixed and the design variables will be the amplitudes of all jet
velocities. This problem calls for solving the unsteady primal equations and the unsteady
adjoint equations. The only differences with respect to the adjoint equations, eqs. (15-18),
are the extra temporal terms.

In order to solve the adjoint equations backwards in time, the checkpointing method
with the binomial distribution for optimal memory-space usage [21, 22] is used.

The adjoint method was used to support steepest descent, for calculating the optimal
amplitude of each jet, in order to minimize the time-averaged drag of the square cylinder
shown in fig. (6). The jet velocities at the predefined slots, as shown in fig. (6), are given
by

vbi = (Ab sin(2πf bt+ f b
0)− Ab)ni , i = 1, 2(3) (23)

where the frequency f and phase f0 are fixed (f = U∞
D

= 10,f0 = 0), while the amplitudes
Ab stand for the design variables. The pulsating jet period is not to be confused with
the period of the free flow unsteadiness, which is associated with the Strouhal number of
the flow. The flow is laminar and the Reynolds number is Re= 100, which causes von-
Karman vortices to be generated behind the body. The Strouhal number was calculated
St = 0.145. At the end of the optimization, the mean drag coefficient was significantly
reduced (fig. (6)-top), which was in fact the optimization target. The minimization of
lift was not implemented in the objective function, but lift was zeroed thanks to the
pulsating jet, and this was a by-product of the optimization. In the same figure, bottom,
the computed optimal jets are shown and their amplitudes are tabulated. The infinite
velocity magnitude was Uinf = 0.1m

s
. Snapshots of the flow vorticity in the controlled

case, over a jet-period of time Tjet, is presented in fig. (7).
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Figure 6: Mean Drag Minimization for an unsteady laminar flow around a square cylinder,
using pulsating jets. Optimization assisted by the unsteady continuous adjoint method.
A similar study for a circular cylinder, using discrete adjoint however, can be found in
[20].

1.5 Topology Optimization using Continuous Adjoint

In fluid mechanics, topology optimization is a useful tool for designing flow passages
which connect given inlets and outlets and yield optimal performance according to an
objective function F . The continuous adjoint method for the solution of topology opti-
mization problems in incompressible flows, with or without heat transfer, was presented
in [9],[10] and [11]. Constraints on the volume flow rates and mean temperatures per
outlet boundary are optionally imposed.

To formulate the topology optimization problem, a real-valued porosity field α is
artificially introduced into the governing equations (see eqs. 2). The porosity field α that
minimizes F is sought. Upon convergence of the optimization method, the local porosity
values identify the domain areas that correspond to the flowing fluid (nodes with α= 0
or, practically, α≤ ε where ε> 0 is an infinitesimally small quantity). For α=0, eqs. 2
to 5 degenerate to the conventional flow equations. All the remaining areas with α 6= 0
or, practically α > ε, correspond to parts of the domain to be solidified, [11]. There,
according to eqs. 2 to 5, vi=0, T =Twall, ν̃=νt=0. Interfaces between fluid and solid are
thus computed, which correspond to the optimal solid walls. For this type of problems,
the adjoint method is the right choice because the cost for computing the gradient of F
is independent of the number of design variables which coincides with the grid size. The
adjoint equations are given by eqs. 15 to 18.
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(a) t = Tjet (b) t = Tjet +
1
5Tjet

(c) t = Tjet +
2
5Tjet (d) t = Tjet +

3
5Tjet

(e) t = Tjet +
4
5Tjet (f) t = 2Tjet

Figure 7: Mean Drag Minimization for an unsteady laminar flow around a square cylinder,
using pulsating jets: Vorticity field snapshots equi-distributed over a jet-period Tjet.

In the first case presented below, the objective function considered is the weighted
sum of the total pressure losses (min. F1, eq. 6) and the temperature difference (min. F3,
eq. 8). Thus, F = w1F1 − w3F3, where w1 and w3 are user–defined weights, should be
minimized. With this objective function, the sensitivity derivative w.r.t. α at the k–th
grid cell is given by the expression

δFaug

δαk

= (viuiΩ)k + [(T − Twall)TaΩ]k + [ν̃ν̃aΩ]k +

∫
Ω

ν̃aν̃C∆(ν̃, ~v)
∂∆

∂αk

dΩ (24)

where Ωk is the finite volume of cell k, associated with αk. The flow is considered to be
turbulent and the Spalart-Allmaras turbulent model is used.

For the above-mentioned objective function, optimal solutions to two topology opti-
mization problems including flow constraints are illustrated in fig. 8. On the left, the
constrained topology optimization of a one-inlet/four-outlet duct, aiming at min. F =F1

11
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(w1 =1, w2 =0) and requiring 25% of the incoming flow rate to exit from each outlet is
presented while, on the right, the topology optimization of the same duct subject to the
constraint of equal mean temperatures at all outlets and targeting min. F =F1 − 0.01F3

(w1=1, w2=0.01) can be seen. Velocity iso-areas (left) and flow trajectories along with
the imposed Twall distribution (right) are shown.

(a) F1 = 0.037, F3 = −3.00 (b) F1 = 0.026, F3 = −2.83

Figure 8: Topology optimization targeting min. total pressure losses and an equally dis-
tributed flow mass between the four outlets (left). Minimization of F =F1− 0.01F3 along
with the constraint of temperature uniformity at the four outlets (right). From [10].

An industrial application of topology optimization is presented in fig. (9). The target
is to minimize F = F1 for an air-conditioning duct of a commercial passenger car. In
the top-left figure, the duct geometry is presented along with the description of the duct
boundaries. In top-right, the flow trajectories of the initial duct’s solution can be seen.
In bottom-left, the final porosity field is presented and the corresponding flow trajectories
can be seen, bottom-right. The optimization of the duct, using topology optimization,
leads to a 42% reduction in total pressure losses.

12
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Figure 9: Topology optimization of an air-conditioning duct targeting min. F =F1. Test
case from the E.C. project “Flowhead”.

2 COMPUTATION ANDUSE OF HIGHER-ORDER

SENSITIVITY DERIVATIVES

All previous sections were concerned with the computation of first-order sensitivity deriva-
tives and their application in shape, topology and flow control optimization using gradient-
based methods such as steepest descent or, even, quasi-Newton variants. However,
gradient-based optimization algorithms suffer from convergence degradation, especially
in problems where there are different scales in the gradient components.

A remedy to this problem is to solve the Newton equation

δ2F
δbiδbj

∣∣∣k δbj = − δF
δbi

∣∣∣k , bk+1
j = bkj + δbj (25)

for updating the design variables, instead of using steepest-descent or a quasi-Newton
method such as BFGS. The Newton method requires the (Hessian) matrix of second-
order sensitivity derivatives δ2F

δbiδbj
(in addition to the gradient, δF

δbi
) in order eq. 25 to be

solved for δbj. The computation of the Hessian of F can be carried out in four different
ways, which can be set up in either discrete or continuous form, [13, 14, 15]. These four
ways rely on all possible combinations of the direct differentiation (DD) and the adjoint
variable (AV) method. They noticeably differ in terms of computing cost. The latter is
measured in terms of equivalent flow solutions (EFS). One EFS stands for the CPU cost
of numerically solving the flow equations, i.e. the state or primal problem.

The most efficient approach to compute the Hessian matrix is the so-called DD-AV
method which is based on DD to compute the first-order derivatives of F and the adjoint
approach to compute the second-order ones. The overall computing cost is equal to N +1
EFS, excluding the cost for solving the state equations.

The alternative approach AV-DD, where the first-order sensitivities are computed
using the adjoint approach and the second-order ones by differentiating the adjoint equa-
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tions, is less efficient and requires as many as 2N + 1 EFS. However, as shown in section
2.1, the AV-DD approach is the most efficient approach for the computation of Hessian-
vector products needed for the truncated Newton algorithm. This method fits well to very
large scale problems, such as the computation of sensitivity maps for complex shapes or in
topology optimization, where the design variables are as many as the grid cells of nodes.
In either case, there might be thousands or millions of design variables.

In the sake of completeness, the DD-DD approach is the most costly one, since its
cost scales with N2. On the other hand, it can be shown that the AV-AV approach can
be transformed to either DD-AV or AV-DD.

If there is a moderate number of design variables or the Hessian matrix itself has to
be computed (this might be useful for the computation of the objective function in robust
design problems, see below, even in the framework of a global optimization method),
the DD-AV approach is the most efficient one. Since, in the so-called truncated Newton
method, the solution of eq. 25 is required, rather than the computation of the Hessian
matrix itself, the AV-DD approach can preferably be used. Similar developments with
exactly the same costs in EFS hold for the discrete approach, [15]. Below, the truncated
Newton method, as applied to topology (rather than shape) optimization, [17], is briefly
presented. The implementation of truncated Newton in shape optimization can be found
in [16].

2.1 The Truncated Newton Method in Topology Optimization

The truncated Newton method is based on the use of the Conjugate Gradient (CG)
method with MCG cycles for the solution of linear systems, where MCG is usually much
smaller than the number of design variables. The CG algorithm solves iteratively linear
systems, such as Amnxn = qm, (m,n) ∈ [1, N ]. Starting from the initialization xρ = x0

(ρ= 0) and the corresponding residuals r0m = Amnx
0
n − q0m and s0m =−r0m, the following

steps:

wm = Anmsn, m ∈ [1, N ]

η =
rρmr

ρ
m

smwm

xm
ρ+1 = xm

ρ + ηsm, m ∈ [1, N ]

rm
ρ+1 = rm

ρ + ηwm, m ∈ [1, N ]

β =
rρ+1
m rρ+1

m

rρmr
ρ
m

sm = −rρ+1
m + βsm, m ∈ [1, N ] (26)

are performed (ρ← ρ+1; ρ is the CG cycle counter) until the norm of the new residual
rρ+1 is lower than a user-defined threshold value. The cost of each CG cycle, comprising
the previous six steps, is practically nothing more than the cost of performing the matrix-
vector multiplication in the first step. In topology optimization, the Newton equation,
eq. 25 to be solved, is similar to the aforementioned linear system, if Amn=

δ2F
δαmδαn

and

qm=− δF
δαm

.
For instance, in topology optimization for laminar flows, aiming at minimum total

pressure losses, the sensitivities of the objective function are given by the expression, [10],

δF

δαm

=um
i v

m
i Ωm (27)
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where m indicates the cell index and ui satisfy the adjoint equations given in the previous
section. Eq. 27 is a simplified version of eq. 24, for laminar flows without heat transfer.

The Hessian vector products required by the truncated Newton method are computed
using the expression

δ2F

δαmδαn

sn =

∫
Ω

(
vi
δui

δαn

sn + ui
δvi
δαn

sn

)
δα

δαm

dΩ =

∫
Ω

(viūi + uiv̄i)
δα

δαm

dΩ

= (vmi ū
m
i + um

i v̄
m
i ) Ωm (28)

where fields δvi
δαn

sn = v̄i and
δui

δαn
sn = ūi are computed from the differentiation of the flow

and adjoint equations w.r.t. α and their multiplication with s, yielding

∂v̄j
∂xj

=0

v̄j
∂vi
∂xj

+ vj
∂v̄i
∂xj

+
∂p̄

∂xi

− ∂

∂xj

[
ν

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)]
+ αv̄i + svi=0 , i = 1, 2 (29)

and

∂ūj

∂xj

= 0

−v̄j
(
∂ui

∂xj

+
∂uj

∂xi

)
− vj

(
∂ūi

∂xj

+
∂ūj

∂xi

)
− ν

∂

∂xj(
∂ūi

∂xj

+
∂ūj

∂xi

)
+

∂q̄

∂xi

+ αūi + sui = 0, i = 1, 2 (30)

respectively. The boundary conditions for systems 29 and 30 are derived from the differ-
entiation of the flow and adjoint boundary conditions w.r.t. αn and their multiplication
with sn.

The adjoint-based truncated Newton method for topology optimization is demon-
strated in the case of a square overall domain which has two flow inlets and two outlets
and three square “obstacles” inside. The optimal velocity distribution computed using
the truncated Newton, in an one-shot fashion, is shown in fig. 10, left. The objective
function value converges in an almost 4% lower value when using the truncated Newton
algorithm instead of the steepest descent one, fig. 10, right.

2.2 Solution of Robust Shape Optimization Problems

Robust design methods in aerodynamics aim at optimizing a shape in a range of operating
conditions or by considering the effect of environmental uncertainties, such as manufac-
turing imprecisions, fluctuations of flow conditions, etc. All uncertainties depend on the
so-called environmental variables c (ci, i ∈ [1,M ]). In robust design problems, the func-

tion to be minimized can be expressed as F̂ = F̂ (b, c,U(b, c)), to denote the dependency

of F̂ on both U, the design variables b (bl, l ∈ [1, N ]) which parameterize the aerodynamic
shape and the environmental variables c (ci, i ∈ [1,M ]). The adjoint method (AV), cou-
pled with DD, can also be used to solve robust design problems using any gradient–based
method. According to the Second-Order Second-Moment (SOSM) approach, a probabil-

ity density function g(c) is associated with c and the function F̂ to be minimized depends
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Figure 10: Topology optimization of a duct with three obstacles. Gain from using the
truncated Newton method. From [17].

on the mean value µF and the variance σF
2 of F . These are defined as

µF (b, c) =

∫
Fg(c)dc ' F +

1

2

[
δ2F

δc2i

]
c

σ2
i (31)

σF
2(b, c) =

∫
(F − µF )

2g(c)dc '
[
δF

δci

]2
c

σ2
i +

1

2

[
δ2F

δciδcj

]2
c

σ2
i σ

2
j (32)

where the gradients are evaluated at the mean values c of the environmental variables.
In robust design, the function F̂ to be minimized becomes

F̂ (b, c)=w1µF + w2σ
2
F (33)

where w1 and w2 are user-defined weights. It is evident that, even for computing the value
of F̂ , first- and second-order derivatives of F w.r.t. c are required. Therefore, even, if
the optimization problem is to be solved using a stochastic method (such as evolutionary
algorithms), the methods presented in this paper are needed to compute µF and σF

2. If a

gradient-based method is selected to solve the problem, the gradient of F̂ w.r.t. the design
variables bq must be available. By differentiating eq. 33 w.r.t. bq, this becomes, [18],

δF̂

δbq
= w1

(
δF

δbq
+

1

2

δ3F

δc2i δbq
σ2
i

)
+ w2

2 δF
δci

δ2F
δciδbq

σ2
i +

δ2F
δciδcj

δ3F
δciδcjδbq

σ2
i σ

2
j

2

√[
δF
δci

]2
σ2
i +

1
2

[
δ2F
δciδcj

]2
σ2
i σ

2
j

(34)

From eq. 34, δF̂
δbq

requires the computation of up to third-order mixed sensitivities w.r.t. ci

and bq, such as δ3F
δciδcjδbq

. These computations are presented in detail in [18, 19].

The DDc-DDc-AVb is the most efficient method to solve the problem with a gradient-
based method provided that the number of environmental variables (M) is smaller than
the number of design variables (N). DDc mean that direct differentiation is performed
w.r.t. c whereas in AVb the adjoint method undertakes the derivation w.r.t. b. It is
reasonable to reserve the use of the adjoint method for the array (this is b in our case)
with the higher dimension. So, all δF

δbq
derivatives are computed using the AV method, at

the cost of a single EFS. First- and second- order derivative w.r.t. c ( δF
δci

and δ2F
δciδcj

) rely

16



K. C. Giannakoglou, D. I. Papadimitriou, E. M. Papoutsis, I. S. Kavvadias, C. Othmer

on DD. This means that δU
δci

and δ2U
δciδcj

(where U stands for the flow or state variables)

will be computed at the cost of M and M(M+1)
2

EFS, respectively. Once δU
δci

and δ2U
δciδcj

have been computed, the computation of δF
δci

and δ2F
δciδcj

is straightforward. Regarding the

computation of derivatives δ2F
δciδbq

and δ3F
δciδcjδbq

, the previously computed first or second

order derivatives of F w.r.t. c should be differentiated w.r.t. to b. As in the standard
continuous adjoint method, to compute δ2F

δciδbq
, a new augmented objective function must

be defined in which, in addition to the state equations, their derivatives with respect to c
must be also added. This development introduces M new adjoint variable fields for which
M PDEs must be numerically solved at the cost of M EFS. Similarly, for δ3F

δciδcjδbq
, a new

augmented objective function will also include the Hessian of the state equations. The
corresponding development introduces M(M+1)

2
EFS. By also including the cost of solving

the state equations, the computation of δF̂
δbq

, eq. 34, has an overal cost of

1 + 1 +M +M +
M(M + 1)

2
+

M(M + 1)

2
= 2 + 3M +M2 EFS

EFS. In [19], this is presented using both the discrete and continuous approaches and an
interesting comparison of the two formulations is shown.

Fig. (11) presents the use of the aforementioned method for the robust inverse design
of a 2D symmetric cascade. On the left, a comparison of sensitivities δµF

δbq
(bq are the

coordinates of Bézier control points) computed using the proposed method (DDc-DDc-
AVb) and finite differences (FD) is shown. On the right, the convergence of the mean
value and standard deviation of F using w1 = 0.7, w2 = 0.3 is presented, [19].
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Figure 11: Robust inverse design of a 2D symmetric cascade (min. F =F6, eq. 10). From
[19].
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