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Abstract. An overview of recent achievements in the development of adjoint-based methods
and tools in the fields of aero/hydrodynamic shape optimization, optimal active flow control and
topology optimization, in compressible and incompressible flows, is presented. In the first part,
the continuous adjoint approach to widely-used turbulence models, such as the low-Reynolds
Spalart-Allmaras and the high-Reynolds k-ε ones is discussed. The relevant developments allow
the computation of the exact gradient of the objective function using continuous adjoint, even
for RANS assisted by wall functions, and overcome the frequently made assumption of negli-
gible turbulence variations. The second part of this paper deals with higher-order sensitivity
analysis based on the combined use of the adjoint approach and direct differentiation. Through
the methods exposed herein, the aforementioned optimization problems can be solved faster via
the Newton’s method; also, robust design problems can be tackled using gradient-based algo-
rithms. For large scale problems, the fact that the computational cost scales with the number
of design variables is overcome using truncated Newton or the exactly initialized quasi-Newton
method. For robust design problems, the computation of second-order derivatives w.r.t. the
environmental variables is necessary; if in addition, the problem is to be solved using a descent
algorithm, third-order mixed derivatives w.r.t. both environmental and design variables must
be available; optimal ways to perform these computations are demonstrated. This paper goes
through both continuous and (hand-differentiated) discrete adjoint methods; some topics are,
however, presented by emphasizing on the continuous approach, where the relevant literature is
quite poor.
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1 INTRODUCTION

This paper presents the continuous and discrete adjoint method for the computation and use
of the first- and higher-order sensitivity derivatives of objective functions F in optimization
problems governed by PDEs, in aero/hydrodynamics. The paper starts by the development of
the continuous adjoint method to low-Reynolds turbulence models by focusing on the need to
include the adjoint turbulence model equations into the optimization loop; such a treatment
maximizes accuracy and avoids the computation of wrongly-signed derivatives which may mis-
lead the search algorithm. Apart from low-Reynolds turbulent models, the continuous adjoint
method to high-Reynolds turbulence models, relying on the wall function technique, is pre-
sented. Despite their reduced accuracy in complex flows, wall function based models are still in
use in industrial applications, allowing computations on coarser grids with lower computational
cost. The adjoint wall function technique allows the computation of the exact gradient, based
on wall functions. The adjoint method for the computation of (exact) second-order derivatives
or the Hessian matrix of F is, then, presented. The availability of such a method allows the use
of the (exact) Newton method, instead of either quasi-Newton methods (such as BFGS, etc.) or
the much simpler but less efficient steepest descent. Whether Newton’s method is more efficient
than its aforementioned counterparts or not depends on the cost for computing the Hessian. The
exactly-initialized quasi-Newton and the truncated Newton methods, being more efficient al-
ternatives to the exact Newton method are also presented. The truncated Newton is an elegant
way to avoid the costly computation of the Hessian matrix, since products of the Hessian matrix
with vectors are only needed; it is shown that this noticeably decreases the CPU cost, without
damaging accuracy. The similarity of ways to compute the Hessian based on either discrete
or continuous approaches is discussed. The adjoint method for the solution of robust design
problems is presented. It is based on the second-order second-moment (SOSM) approach and a
gradient-based algorithm, requiring up to third-order mixed derivatives (w.r.t. the environmental
and design variables) to be available.

Regarding applications, the adjoint method is demonstrated for various objective functions
and used to solve aero/hydrodynamic shape optimization problems, optimization of jet-based
flow-control systems for controlling the development of boundary layers and topology opti-
mization problems in fluid mechanics. Depending on the problem, the development relies upon
the incompressible or compressible fluid flow equations.

The adjoint solvers used herein have been programmed on a time-marching, primitive-
variable, in-house flow solver, for both incompressible and compressible flows (finite-volume
discretization, vertex-centered storage; pseudo-compressibility method for incompressible flows;
fully parallelized and GPU-enabled code [1], [2]) and the OpenFOAM software, for incom-
pressible flows. The turbulence models which are used are the low-Reynolds number Spalart–
Allmaras one-equation model and the high-Reynolds number k-ε model, with wall functions.

Recall than, in the continuous adjoint approach, [3, 4, 5, 6, 7, 8, 9, 10, 11], the adjoint PDEs
and their boundary conditions are derived from the flow (or primal or state) PDEs and their
boundary conditions and, then, discretized and numerically solved. In contrast, the discrete
adjoint approach, [12, 13, 14, 15], relies on adjoint equations which result, directly in discrete
form, from the discretized state equations.
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2 AERODYNAMIC OPTIMIZATION IN TURBULENT FLOWS

2.1 Flow Equations and Objective Functions

To avoid duplicating the presented material throughout this paper, the development is based
on the most general case of turbulent flows with heat transfer. In this section, incompressible
fluid flows are considered. The system of primal equations is valid for shape, topology or flow
control optimization problems; to also include topology optimization, additional terms depend-
ing on the so-called porosity variable α are appended to the conventional equations. The extra
terms must be zeroed (α ≡ 0) in shape or flow control optimization; they play, however, a crit-
ical role in topology optimization (see section 2.4). As in [3], the Spalart-Allmaras turbulence
model is used. Based on the above, the state equations are symbolically written as

Rp = 0, Rvi = 0, RT = 0, Rν̃ = 0 (1)

where

Rp =
∂vj
∂xj

(2)

Rvi = vj
∂vi
∂xj

+
∂p

∂xi

− ∂

∂xj

[
(ν+νt)

(
∂vi
∂xj

+
∂vj
∂xi

)]
+ αvi (3)

RT = vj
∂T

∂xj

− ∂

∂xj

[(
ν

Pr
+

νt
Prt

)
∂T

∂xj

]
+ α (T − Twall) (4)

Rν̃ = vj
∂ν̃

∂xj

− ∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃

∂xj

]
− cb2

σ

(
∂ν̃

∂xj

)2

− ν̃P (ν̃) + ν̃D (ν̃) + αν̃ (5)

Here, vi are the velocity components, p is the static pressure divided by the density, T is the
static temperature, ν̃ is the turbulence state variable, ν is the bulk viscosity and νt is the turbulent
viscosity given by

νt = ν̃fv1 (6)

Also, Pr, Prt are the laminar and turbulent Prandtl numbers and Twall is the known tempera-
ture along the walls surrounding the flow which is used only in a particular class of topology
optimization problems. Depending on the application in hand, Rν̃ must be ignored in laminar
flows and so does RT if heat transfer effects are of no interest. The applications presented in
this paper are dealing the following objective functions: (1) the volume-averaged total pressure
losses between the inlet SI and the outlet SO of the domain Ω, (2) the force exerted on the solid
walls SW along a user-defined direction ri, (3) the volume–averaged temperature difference
between SO and SI , (4) the generation of entropy E in the flow passage, (5) the deviation of
the hydraulic head H from a desirable value Htar (for hydraulic turbomachines) and (6) the
deviation of the pressure distribution p from a given distribution ptar along Sw (inverse design
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problems). The aforementioned functions, to be minimized, are defined below

F1 =

∫
SI

FSI
dS +

∫
SO

FSO
dS=−

∫
SI

(
p+

1

2
v2
)
vinidS −

∫
SO

(
p+

1

2
v2
)
vinidS (7)

F2 =

∫
SW

FSW
dS=

∫
SW

[
−(ν + νt)

(
∂vi
∂xj

+
∂vj
∂xi

)
+ p δji

]
njridS (8)

F3 = −
∫
SI

TvinidS −
∫
SO

TvinidS (9)

F4 =

∫
Ω

ρvi
∂E

∂xi

dΩ (10)

F5 =
1

2
(H −Htar)

2 (11)

F6 =
1

2

∫
Sw

(p−ptar)
2dS (12)

In hydraulic turbomachines, the head H is given by

H =

∫
SI

(
p+ 1

2
v2k
)
vinidS +

∫
SO

(
p+ 1

2
v2k
)
vinidS

g
∫
SI
vinidS

(13)

where ni is the outward unit normal vector and g the gravitational acceleration.

2.2 The Adjoint Method for Shape Optimization in Turbulent Flows

One of the most important issues regarding the development of adjoint methods, particu-
larly those based on the continuous approach, is the handling of turbulence models. Though
in discrete adjoint the differentiation of the already discretized turbulence model equations is
straightforward and can be found in several published works, [16, 17, 18], in continuous ad-
joint the majority of the existing works rely on the so-called “frozen turbulence” assumption.
Based on this assumption, sensitivities of the turbulence quantities w.r.t. the design variables
are neglected. The first work presenting the adjoint to one of the most widely used turbulence
models, namely the Spalart-Allmaras one, for incompressible flows, is [3]. Later on, this was
extended to compressible flows in [19]. Regarding the adjoint approach to high-Reynolds tur-
bulence models, the (continuous) adjoint to the k-ε model with wall functions was just recently
presented in the literature, [4].

This section aims at briefly presenting the underlying adjoint developments and convincing
the reader that, in some cases, the development and solution of the adjoint turbulence model
equation(s) is really necessary.

The continuous adjoint approach for handling shape optimization problems (with α ≡ 0) is
presented in this subsection. A brief discussion of the equivalent discrete approach can be found
in the beginning of subsection 3.1. The total sensitivity derivatives (symbol δ) of any function
Φ w.r.t. the design variables bm are related to its partial sensitivities (symbol ∂) through the
relation

δΦ

δbm
=

∂Φ

∂bm
+

∂Φ

∂xl

δxl

δbm
(14)

where δxl

δbi
are the sensitivities of nodal coordinates. The augmented objective function Faug is

defined as the sum of F and field integrals of the products of the adjoint variable fields and the
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state equations, as follows

Faug =

∫
Ω

uiR
v
i dΩ +

∫
Ω

qRpdΩ +

∫
Ω

TaR
TdΩ +

∫
Ω

ν̃aR
ν̃dΩ (15)

where ui are the adjoint velocity components, q is the adjoint pressure, Ta the adjoint temper-
ature and ν̃a the adjoint to ν̃. Based on the Leibniz theorem, the variation of Faug w.r.t. bm
reads

δFaug

δbm
=

δF

δbm
+

∫
Ω

ui
∂Rv

i

∂bm
dΩ +

∫
Ω

q
∂Rp

∂bm
dΩ +

∫
Ω

Ta
∂RT

∂bm
dΩ +

∫
Ω

ν̃a
∂Rν̃

∂bm
dΩ

+

∫
S

uiR
v
i

δxk

δbm
nkdS +

∫
S

qRp δxk

δbm
nkdS +

∫
S

TaR
T δxk

δbm
nkdS

+

∫
S

ν̃aR
ν̃ δxk

δbm
nkdS (16)

where S = SI ∪ SO ∪ Sw. Through the Gauss divergence theorem, eq. 16 becomes

δFaug

δbm
=

∫
Ω

Ru
i

∂vi
∂bm

dΩ +

∫
Ω

Rq ∂p

∂bm
dΩ +

∫
Ω

RTa
∂T

∂bm
dΩ +

∫
Ω

Rν̃a
∂ν̃

∂bm
dΩ

+

∫
S

Bu
i

∂vi
∂bm

dS +

∫
S

BGu
ij

∂

∂bm

(
∂vi
∂xj

)
dS +

∫
S

Bq ∂p

∂bm
dS +

∫
S

BTa
∂T

∂bm
dS

+

∫
S

BGT
i

∂

∂bm

(
∂T

∂xi

)
dS +

∫
S

Bν̃a
∂ν̃

∂bm
dS

∫
S

BGν̃a
i

∂

∂bm

(
∂ν̃

∂xi

)
dS + SD (17)

Some of the integrands (such as Ru
i , etc.) are defined below and the remaining ones (such

as Bu
i , etc.) can be found in [3]. SD is a sum of integrals (see eq. 22) which depend only

on the sensitivities of geometrical quantities and, thus, leads to the expression of sensitivity
derivatives of F . The elimination of all field (Ω) integrals depending on the sensitivities of
the flow variables ( ∂vi

∂bm
, etc.) gives rise to the adjoint mean flow and turbulence equations, as

follows

Rq =
∂uj

∂xj

= 0 (18)

Rui = −vj

(
∂ui

∂xj

+
∂uj

∂xi

)
+

∂q

∂xi

− ∂

∂xj

[
(ν+νt)

(
∂ui

∂xj

+
∂uj

∂xi

)]
− ν̃

∂ν̃a
∂xi

− ∂

∂xk

(
ejkiejmq

CS(ν̃)
S

∂vq
∂xm

ν̃ν̃a

)
− T

∂Ta

∂xi

+ αui = 0 (19)

RTa = −vj
∂Ta

∂xj

− ∂

∂xj

[(
ν

Pr
+

νt
Prt

)
∂Ta

∂xj

]
+ αTa = 0 (20)

Rν̃a = −vj
∂ν̃a
∂xj

− ∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃a
∂xj

]
+

1

σ

∂ν̃a
∂xj

∂ν̃

∂xj

+ 2
cb2
σ

∂

∂xj

(
ν̃a

∂ν̃

∂xj

)
+(D−P ) ν̃a

+ ν̃aν̃ Cν̃(ν̃,~v)+
δνt
δν̃

∂ui

∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
+
δνt
δν̃

1

Prt

∂Ta

∂xj

∂T

∂xj

+αν̃a=0 (21)

where α≡0. The elimination of the boundary integrals that depend on the sensitivities of the
flow variables yields the adjoint boundary conditions, as exposed in detail in [3]. The remaining
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integrals (terms abbreviated to SD in eq. 17) define the sensitivity derivatives of F w.r.t. the
design variables bm, namely

δF

δbm
=

∫
SW

∂FSW

∂xk

δxk

δbm
dS+

∫
SW

FSW

δ(dS)

δbm
−
∫
SW

[
ν

(
∂ui

∂xj

+
∂uj

∂xi

)
nj − qni

]
∂vi
∂xk

δxk

δbm
dS

+

∫
SW

uiR
v
i

δxk

δbm
nkdS +

∫
SW

qRp δxk

δbm
nkdS +

∫
SW

ν
∂FSW

∂p

∂

∂xk

(
∂vi
∂xj

+
∂vj
∂xi

)
δxk

δbm
ninjdS

+

∫
SW

ν
∂FSW

∂p

(
∂vi
∂xj

+
∂vj
∂xi

)
δ (ninj)

δbm
dS−

∫
SW

ν
∂ν̃a
∂xj

nj
∂ν̃

∂xk

δxk

δbm
dS+

∫
Ω̃

νaν̃C∆(ν̃,~v)
∂∆

∂bm
dΩ(22)

where CS(ν̃), Cν̃(ν̃,~v) and C∆(ν̃,~v) result from the Spalart–Allmaras model equations. Terms
such as δxk

δbm
, δ(dS)

δbm
, δ(ninj)

δbm
, etc. depend on the selected parameterization scheme for the shape

(Sw) to be designed and can readily be computed either numerically or analytically. Note that
δF
δbm

are all expressed as integrals along SW with the exception of the last integral in eq. 22
which is a field integral the sensitivities of nodal distances ∆ from the solid walls.

Fig. 1 shows an indicative example which convincingly proves that the omission of solving
the adjoint turbulence model equation(s) (i.e. in the analyzed example, the omission of solving
eq. 21) may mislead the optimization by computing derivatives δF

δbm
with the wrong sign.
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Figure 1: Shape optimization of an elbow duct for min. F =F1, (eq. 7). Sensitivity derivatives δF
δbm

(left), where
bm are the normal displacements of the solid wall grid nodes. Two sensitivity distributions were compared (a) by
solving the complete adjoint system, including the adjoint to the turbulence model PDEs (marked as “turbulent
adjoint”) and (b) by making the “frozen turbulence” assumption. The abscissa stands for the IDs of the inner wall
nodes. It is clear that, by making the “frozen turbulence” assumption, wrongly signed sensitivities are computed
for nodes 20 to 50. The velocity isolines are also plotted (right).

The previous development was based on the low-Reynolds number Spalart-Allmaras model.
However, several engineering applications still rely on high-Reynolds number turbulence mod-
els with wall functions, since their use allows handling coarser grids and saving computational
cost. For this reason, in [4], the continuous adjoint approach to the high-Reynolds k−ε turbu-
lence model, [20], was presented for incompressible flows. In the system of flow equations, the
PDEs for k and ε replace eq. 5; eq. 6 is also replaced by νt = cµ

k2

ε
In the interest of space, we

refrain from presenting these equations in detail. Applying the wall function technique means
that the k and ε values at the first nodes off the wall are all expressed in terms of the local
friction velocity vτ , where

v2τ = (ν + νt)

(
∂vi
∂xj

+
∂vj
∂xi

)
njti (23)
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Consequently, during the development of the adjoint formulation, an integral depending on δvτ
δbm

(instead of the sensitivities of k, ε and vi) appears along Sw. The elimination of this integral
leads to the definition of a new quantity, to be referred to as the local adjoint friction velocity,

u2
τ = (ν + νt)

(
∂ui

∂xj

+
∂uj

∂xi

)
njti (24)

which, similarly to eq. 23, is expressed in terms of the local gradient of the adjoint velocities.
Since differentiation close to the wall must be avoided, the squared adjoint friction velocity is
computed by the expression, [4],

u2
τ =

1

cv

[
2uktkvτ −

(
ν +

νt
Prk

)
∂ka
∂xj

nj
δk

δvτ
−

(
ν +

νt
Prε

)
∂εa
∂xj

nj
δε

δvτ

]
(25)

and serves to apply the wall boundary conditions for the adjoint momentum equations. An
indicative application of the adjoint wall function technique is shown in fig. 2
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Figure 2: Optimization of an axial diffuser using the adjoint wall function technique, for min. F = F1, (eq.
7). Left: Friction velocity vτ and squared adjoint friction velocity u2

τ distributions along its lower wall. Right:
Sensitivity derivatives of F w.r.t. the design variables, i.e. the coordinates of Bézier control points parameterizing
its side walls. The adjoint wall function method perfectly matches the sensitivity derivatives computed using finite
differences (FD).

2.3 The Adjoint Method for the Optimal Active Flow Control

This section presents a different use of the continuous adjoint method. Here, the adjoint
method is used as a tool to identify the appropriate location and “type” (suction or blowing)
of steady jets used in active flow control systems. Sensitivity maps are plotted along Sw and,
based on them, the designer extracts information about the optimal location (from the sensitivity
magnitude) and “type” (from the sensitivity sign) of the jet to be applied, so as to successfully
control the boundary layer development. Jets are used to prevent or delay separation, control
transition from laminar to turbulent flow, suppress or enhance turbulence, control shock waves
and their interactions with boundary layers, etc. [21, 22].

In such a problem, the design variables are the values of the Cartesian components of hypo-
thetical jet velocities vbpq (p ∈ [1, 2] in 2D or p ∈ [1, 3] in 3D problems) at the N wall boundary
nodes (q ∈ [1, N ]). Since δxk

δbi
= 0, it can be proved that, at any point over Sw, the sensitivity

derivatives are
1

∆Sq

δF

δvbpq
= νeff

(
∂upq

∂xj

+
∂ujq

∂xp

)
njq − qqnpq (26)
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Note that, for eq. 26 to be valid, F = F1, (eq. 7) and the energy equation RT = 0 is not included
in the system of flow PDEs. Without loss in generality, let us assume that the jet velocities
vjet are applied normal to the wall. Thus, the signed jet velocities vjet become vjetq = vbpqn

b
pq

(summation over p) and their sensitivity derivatives δF

δvjetq
= δF

δvbpq
nb
pq. High absolute valued

sensitivities pinpoint the most promising locations for the placement of jets. The sensitivity sign
at these points indicates the preferred direction of the jet, i.e. suction or blowing (negative and
positive sign, respectively). Such a case is illustrated in fig. 3. By solving the adjoint equations,
just once, the flow control system designer makes the right decision about the optimal location
of the jet.
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Figure 3: Flow control in an S–shaped duct for min. F = F1, (eq. 7). Left: Distribution of nodal sensitivity
derivatives 1

∆S
δF

δvjet
q

along the lower wall. The sensitivities computed using the continuous adjoint method (labeled
“Adjoint”) perfectly match those computed using finite differences (FD). Right: Computed velocity magnitude
isolines. As a matter of fact, suction with maximum jet velocity equal to 10% of the inlet flow velocity was applied
at the location recommended by just a single adjoint solution and this reduced viscous losses, expressed by F1 (eq.
7), from 0.01835 to 0.01662.

2.4 Topology Optimization using Continuous Adjoint

In fluid mechanics, topology optimization is a useful tool for designing flow passages which
connect given inlets and outlets and yield optimal performance according to the objective func-
tion F . The continuous adjoint method for the solution of topology optimization problems
in incompressible flows, with or without heat transfer, was presented in [23]. Occasionally,
constraints on the volume flow rates and mean temperatures per outlet boundary are imposed.

To formulate the topology optimization problem, a real-valued porosity field α is artificially
introduced into the governing equations (see eqs. 2). The porosity field α that minimizes F is
sought. Upon convergence of the optimization method, the local porosity values are used to
identify the domain areas that correspond to the flowing fluid (nodes with α=0 or practically,
α ≤ ε where ε > 0 is an infinitesimal number). For α = 0, eqs. 2 to 5 degenerate to the
conventional flow equations. All the remaining areas with α 6=0 or, practically α>ε, correspond
to parts of the domain to be solidified. There, according to eqs. 2 to 5, vi = 0, T = Twall, ν̃ =
νt=0. The interfaces between the two identified areas, fluid and solid, correspond to the sought
optimal solid walls. The adjoint method is the perfect choice for this type of problems because
the cost for computing the gradient of F is independent of the number of design variables which,
in such a case, coincides with the grid size. The adjoint equations are given by eqs. 18 to 21.
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The objective function considered concatenates total pressure losses (min. F1, eq. 7) and
temperature difference (min. F3, eq. 9) in a single function F = w1F1 + w3F3, where w1 and
w3 are user–defined weights.

Once the system of adjoint equations with appropriate boundary conditions has been solved,
the sensitivity derivative w.r.t. α at the k–th grid node is given by the expression

δFaug

δαk

= (viuiΩ)k + [(T − Twall)TaΩ]k + [ν̃ν̃aΩ]k +

∫
Ω

ν̃aν̃C∆(ν̃, ~v)
∂∆

∂αk

dΩ (27)

where Ωk is the finite volume of cell k, associated with αk. Optimal solutions to four topology
optimization problems (some including flow constraints) are illustrated in fig. 4.

(a) F1 = 0.025, F3 = 2.48 (b) F1 = 0.037, F3 = −3.00

(c) F1 = 0.053, F3 = −3.51 (d) F1 = 0.026, F3 = −2.83

Figure 4: Unconstrained topology optimization of a one inlet/four outlet duct aiming at min. F = F1 (top-left).
Constrained topology optimization enforcing 25% of the incoming flow rate to exit from each outlet for, min.
F = F1 (top-right) and min. F = F1 − 0.01F3 (bottom-left). Topology optimization subject to the constraint of
equal mean temperature at each outlet for min. F =F1 +0.01F3 (bottom-right). Velocity iso-areas ((a) and (b)) or
flow trajectories along with the imposed Twall distribution (background in (c) and (d)).

2.5 Industrial Applications of the Continuous Adjoint Method

In fig. 5, the application of the presented adjoint approaches to three industrial problems
is presented. The first case deals with the blade optimization of a 3D peripheral compressor
cascade in which the objective is the minimization of entropy losses within the flow passage
(min. F4, eq. 10), [24]. The second one is concerned with the shape optimization of a Francis
turbine runner in order to achieve the desired target head Htar (min. F5, eq. 11) and the last
with the shape optimization of the Volkswagen L1 concept car, targeting minimum drag force
(min. F2, eq. 8), [25].
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Figure 5: Top: Shape optimization of a 3D peripheral compressor cascade, targeting minimum entropy generation
rate within the flow passage with constraints on the blade thickness. Pressure distributions over the initial (left)
and optimal (right) blade geometries. Mid: Optimization of a Francis runner blade for increased hydraulic head
(by 1.5m) subject to a number of flow constraints. Pressure distributions over the initial (left) and optimal (right)
runners. Bottom: Optimization of the VW L1 concept car targeting minimum drag force. Parameterization of the
rear part of the geometry by drawing morphing boxes (left) and comparative view of the baseline and optimized
geometries with the corresponding sensitivity derivatives; from [25].

3 COMPUTATION OF HIGHER-ORDER SENSITIVITY DERIVATIVES

3.1 Optimization using Second-Order Sensitivity Analysis

Thus far, the optimization was based on the gradient of the objective function F w.r.t. the
design variables bm. Using this gradient, a steepest descent algorithm was used to locate the
optimal solution. However, this approach usually suffers from performance degradation, as the
minimum is approached in a zig-zag manner.

A remedy to this problem is to compute the Hessian matrix of F (second-order sensitivities)
and apply the Newton method,

bk+1
i = bki + δbi,

δ2F
δbiδbj

∣∣∣k δbj = − δF
δbi

∣∣∣k (28)

where k is the Newton iteration counter.
In aerodynamic optimization, the computation of the Hessian F subject to the constraint of

satisfying the flow equations can be conducted in at least four different ways, as briefly exposed
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below. All of them can be set up in either discrete or continuous form [26, 27, 28]. It is simpler,
however, to present them in discrete form, where Ri and Ui stand for the discretized residual of
the flow equations and the flow variables at node i, respectively. In discrete form, the first-order
variation rate of F w.r.t. to bi, i=1, . . . , N is given by

dF

dbi
=

∂F

∂bi
+

∂F

∂Uk

dUk

dbi
(29)

whereas
dRm

dbi
=

∂Rm

∂bi
+

∂Rm

∂Uk

dUk

dbi
= 0 (30)

Solving eq. 30 for dUk

dbi
, at the cost of N equivalent flow solutions (EFS) and, then, computing

dF
dbi

from eq. 29 is straightforward but costly and will be referred to as the Direct Differentiation
(DD) method. Since its cost scales with N , the Adjoint Variable (AV) method was proposed
instead. In section 2, the continuous AV method was presented. Its discrete counterpart re-
quires the computation of the adjoint variable Ψi by numerically solving the adjoint system of
equations

RΨ
k =

∂F

∂Uk

+Ψm
∂Rm

∂Uk

= 0 (31)

and computing
dF

dbi
=

∂F

∂bi
+Ψm

∂Rm

∂bi
(32)

In discrete form, to compute the Hessian of F , the straightforward extension of the DD method
for the gradient computation is the so-called DD-DD approach, in which d2F

dbidbj
can be computed

by

d2F

dbidbj
=

∂2F

∂bi∂bj
+

∂2F

∂bi∂Uk

dUk

dbj
+

∂2F

∂Uk∂bj

dUk

dbi
+

∂2F

∂Uk∂Um

dUk

dbi

dUm

dbj
+

∂F

∂Uk

d2Uk

dbidbj
(33)

where the sensitivities d2Uk

dbidbj
are computed by solving (dUk

dbi
being already known from the solu-

tion of eqs. 30).

d2Rn

dbidbj
=

∂2Rn

∂bi∂bj
+

∂2Rn

∂bi∂Uk

dUk

dbj
+

∂2Rn

∂Uk∂bj

dUk

dbi
+

∂2Rn

∂Uk∂Um

dUk

dbi

dUm

dbj
+

∂Rn

∂Uk

d2Uk

dbidbj
= 0 (34)

The DD-DD approach cannot avoid also the computation of dUk

dbi
and, thus its computational

cost is equal to N+N(N+1)
2

EFS in total (excluding the cost for solving the flow equations). So,
the DD-DD approach scales with N2 being too expensive for use in real–world optimization.

Two less expensive approaches to compute of the Hessian of F are the AV-DD (AV for the
gradient and DD for the Hessian) and AV-AV ones. As shown in [28], both cost an many as
2N+1 EFS. It can be shown that, in either discrete or continuous form, the fourth alternative
way, i.e. the DD-AV approach (DD for the gradient and AV for the Hessian), is the most efficient
one to compute the Hessian matrix. In DD-AV, the Hessian matrix is computed by

d2F

dbidbj
=

∂2F

∂bi∂bj
+Ψn

∂2Rn

∂bi∂bj
+

(
∂2F

∂Uk∂Um

+Ψn
∂2Rn

∂Uk∂Um

)
dUk

dbi

dUm

dbj

+

(
∂2F

∂bi∂Uk

+Ψn
∂2Rn

∂bi∂Uk

)
dUk

dbj
+

(
∂2F

∂Uk∂bj
+Ψn

∂2Rn

∂Uk∂bj

)
dUk

dbi
(35)
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where dUk

dbi
result from DD and Ψm is computed by solving the (same) adjoint equation, eq. 31.

The total computational cost of DD-AV is equal to N+1 EFS.
The DD-AV approach for the computation of the Hessian of F can also be developed in con-

tinuous form. For instance, for an inverse design problem (min. F =F6, eq. 12) in compressible
aerodynamics governed by the Euler equations (∂fnk

∂xk
=0, where fnk = fnk(Ui) are the inviscid

fluxes and Ui the conservative flow variables), the second-order sensitivities using the DD-AV
approach are given by

δ2Faug

δbiδbj
=

∫
Sw

δp

δbi

δp

δbj
dS+

∫
Sw

(p−ptar)
δp

δbi

δ(dS)

δbj
+

∫
Sw

(p−ptar)
δp

δbj

δ(dS)

δbi

+
1

2

∫
Sw

(p−ptar)
2 δ

2(dS)

δbiδbj
+

∫
Sw

(Ψk+1p−Ψnfnk)
δ2nk

δbiδbj
dS

+

∫
Sw

(
Ψk+1

δp

δbi
−Ψn

δfnk
δbi

)
δnk

δbj
dS +

∫
Sw

(
Ψk+1

δp

δbj
−Ψn

δfnk
δbj

)
δnk

δbi
dS

+

∫
Ω

∂Anmk

∂Ul

∂Um

∂bi

∂Ul

∂bj

∂Ψn

∂xk

dΩ

−
∫
Sw

Ψn

(
∂2fnk
∂bi∂xl

δxl

δbj
+

∂2fnk
∂bj∂xl

δxl

δbi
+

∂2fnk
∂xl∂xm

δxl

δbi

δxm

δbj
+
∂fnk
∂xl

δ2xl

δbiδbj

)
nkdS

+

∫
S

Ψn
∂

∂bi

(
∂fnk
∂xk

)
δxl

δbj
nldS +

∫
S

Ψn
∂

∂bj

(
∂fnk
∂xk

)
δxl

δbi
nldS

+

∫
S

Ψn
∂fnk
∂xk

δ2xl

δbiδbj
nldS +

∫
S

Ψn
∂fnk
∂xk

∂

∂xm

(
δxm

δbi

)
δxl

δbj
nldS

+

∫
S

∂Ψn

∂xm

∂fnk
∂xk

δxm

δbi

δxl

δbj
nldS −

∫
S

Ψn
∂fnk
∂xk

∂

∂xm

(
δxl

δbi

)
δxm

δbj
nldS

+

∫
S

Ψn
∂2fnk
∂xk∂xl

δxl

δbi

δxm

δbj
nmdS (36)

Here, δUk

δbi
and their derivatives are computed by solving the continuous DD equations

δ

δbi

(
∂fnk
∂xk

)
=

∂

∂bi

(
Anmk

∂Umk

∂xk

)
+

∂

∂xl

(
∂fnk
∂xk

)
δxl

δbi
= 0 (37)

where Anmk = ∂fnk

∂Um
. In eq. 36, Ψ is the vector of adjoint variables computed by solving the

adjoint PDEs

−Anmk
∂Ψn

∂xk

= 0 (38)

Fig. 6 compares the performance of various gradient- or Hessian- based methods for the solu-
tion of the inverse design of a 2D compressor cascade. Even though the exact Newton method
outperforms other methods since it requires less optimization cycles, the fact that its cost per
optimization cycle scales with N makes quasi-Newton methods (such as BFGS, which approx-
imate the Hessian matrix based on the gradient only) more efficient as N increases. In large
scale (N >>) industrial problems, the exactly-initialized quasi-Newton algorithm, in which the
exact Hessian matrix is computed in the first optimization cycle only and is, then, updated using
BFGS, was proposed in [28].
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Figure 6: Inverse design of a 2D compressor cascade (min. F =F6, eq. 12). Left: Reduction rate of the F value
using four different optimization algorithms; steepest descent, Fletcher–Reeves conjugate gradient, BFGS quasi-
Newton and exact Newton based on the DD-AV approach. Right: Reduction rate of the F value using algorithms
that make use of approximate and/or exact second-order sensitivities. The first two curves correspond to standard
quasi- and (exact) Newton. The third curve corresponds to the exactly-initialized quasi-Newton approach, where
the exact Hessian matrix is computed in the first optimization cycle only, and then, updated using the BFGS
scheme. Such a scheme is highly recommended for use in large scale optimization problems. From [28].

A much more promising way to apply Newton’s method is its truncated variant. In the
truncated Newton method, [29], instead of computing the first– and second-order sensitivities
of F and, then, solving eq. 28 for the corrections δbj (N equations, 1 ≤ j ≤ N), eq. 28 is solved
iteratively using the conjugate gradient (CG) method. In this way, the computation of Hessian-
vector products, instead of the Hessian matrix itself, is required. For the truncated approach, the
AV-DD method is the most efficient, as proved in [29]. The truncated Newton method is ideal
for large scale optimization, such as shape optimization with a lot of shape controlling variables
and topology optimization, [30], which is by definition a large scale optimization problem. The
efficiency of the truncated Newton method is demonstrated in fig. 7.
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Figure 7: Design of a 2D airfoil cascade (42 degrees of freedom, min. F = F6, eq. 12) using the truncated
Newton method: Left: Validation of the solution of the Newton equation with MCG=4 conjugate gradient steps;
the product of the exact Hessian matrix and the computed correction is compared to the exact gradient value.
Right: Comparison of the convergence rates of the AV-DD truncated Newton method (with MCG=4) with other
second-order methods (BFGS and exact Newton). From [29].

3.2 Solution of Robust Shape Optimization Problems

The adjoint method, coupled with DD, can also be used to solve robust design problems via
a gradient–based method. In this case, higher–order derivatives must be computed as explained
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below.
In aerodynamics, robust design methods aim at optimizing a shape in a range of operating

conditions, or by considering the effect of environmental uncertainties, such as manufacturing
imprecisions, fluctuations of the flow conditions, etc. The latter depend on the so-called envi-
ronmental variables c (ci, i ∈ [1,M ]). In robust design problems, the function to be minimized
can be expressed as F̂ = F̂ (b, c,U(b, c)), to denote the dependency of F̂ on the flow variables
U, the design variables b (bl, l ∈ [1, N ]) which parameterize the aerodynamic shape and the
environmental variables c (ci, i ∈ [1,M ]). Let us associate a probability density function g(c)
with c. Based on g(c), in the so-called Second-Order Second-Moment (SOSM) approach, the
function F̂ to be minimized in a robust design problem combines the mean value µF and the
variance σF

2 of F . These are defined as

µF (b, c) =

∫
Fg(c)dc ' F +

1

2

[
δ2F

δc2i

]
c

σ2
i (39)

σF
2(b, c) =

∫
(F − µF )

2g(c)dc '
[
δF

δci

]2
c

σ2
i +

1

2

[
δ2F

δciδcj

]2
c

σ2
i σ

2
j (40)

where the gradients are evaluated at the mean values c of the environmental variables.
Based on the previous definitions, in robust design, F̂ becomes

F̂ (b, c)=w1µF + w2σ
2
F (41)

where w1 and w2 are user-defined weights. It is evident that, even for computing the value
of F̂ , first- and second-order derivatives of F w.r.t. the environmental variables are required.
Therefore, even, if the optimization problem is to be solved using a stochastic method (such
as an evolutionary algorithm), the methods presented in this paper can be used to compute µF

and σF
2. If a gradient-based method is selected to solve the problem, the gradient F̂ w.r.t. the

design variables bq must be available. By differentiating eq. 41 w.r.t. bq, this becomes

δF̂

δbq
= w1

(
δF

δbq
+

1

2

δ3F

δc2i δbq
σ2
i

)
+ w2

2 δF
δci

δ2F
δciδbq

σ2
i +

δ2F
δciδcj

δ3F
δciδcjδbq

σ2
i σ

2
j

2

√[
δF
δci

]2
σ2
i +

1
2

[
δ2F
δciδcj

]2
σ2
i σ

2
j

(42)

From eq. 42, δF̂
δbq

requires the computation of up to third-order mixed sensitivities w.r.t. ci and

bq, such as δ3F
δciδcjδbq

. The computation of the second and third-order sensitivity derivatives is

presented in detail in [31, 32]. For instance, δ2F
δciδbq

is computed (in continuous form) using the
expression

δ2F

δciδbq
=

∫
Sw

(p− ptar)
δp

δci

δ(dS)

δbq

+

∫
Sw

(
Li

k+1p−Li
nfnk

) δ (nkdS)

δbq
+

∫
Sw

(
Ψk+1

δp

δci
−Ψn

δfnk
δci

)
δ (nkdS)

δbq

−
∫
Sw

Li
n

∂fnk
∂xl

δxl

δbq
nkdS−

∫
Sw

Ψn
∂

∂xl

(
δfnk
δci

)
δxl

δbq
nkdS

+

∫
Sw

Li
n

∂fnk
∂xk

δxl

δbq
nldS+

∫
Sw

Ψn
∂

∂xk

(
δfnk
δci

)
δxl

δbq
nldS (43)
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where the Li
n = δΨn

δci
fields (i=1,M ) are computed by solving the following system of PDEs

− Anmk
∂Li

n

∂xk

− δAnmk

δci

∂Ψn

∂xk

= 0 (44)

derived from the DD of the adjoint equations w.r.t. the environmental variables. The third-order
mixed sensitivity derivatives of F , required by eq. 42, are obtained from the differentiation of
eq. 43 which is omitted in the interest of space.
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differences (FD). Right: convergence of the mean value and standard deviation of F using w1 = 0.7, w2 = 0.3.
From [32].
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