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Abstract. The continuous adjoint approach to topology optimization in incompressible,
laminar and turbulent ducted flows, is presented. An unknown variable porosity field, to
be determined during the optimization, is the means to define the optimal topology con-
figuration. Regarding turbulent flows, these are handled using the Spalart-Allmaras tur-
bulence model and the proposed adjoint approach is exact, i.e. includes the adjoint to the
turbulence model equation, too. In design problems of ducts (manifolds) with many out-
lets, constraints on the flow rate at each outlet boundary are imposed. Compared to other
published works on the use of adjoint methods in topology optimization and apart from
the exact differentiation of the turbulence model, the present paper extends the porosity-
based method to also account for flow problems and objective functions including heat
transfer. The proposed method is applied to three ducted flow problems.
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1 INTRODUCTION

More than 20 years ago, the notion of topology optimization was introduced in struc-
trural mechanics1, by formulating and numerically solving equations in terms of material
density in order to identify areas in which material should be added so as to increase
structural stiffness. The idea was, then, adapted to CFD problems, for either Stokes2 or
laminar3 flows, by introducing a variable porosity field. In fluids, the optimization aims
at computing the porosity field over an extended (porous media) domain that minimizes
the objective function; based on the local porosity values, domain areas corresponding
to the fluid flow are identified, whereas the remaining areas define the surrounding solid
bodies. The optimal solid walls to be designed correspond to the interfaces between the
two aforementioned areas. In Fig. 1, the concept of the topology optimization method in
fluid mechanics is presented.
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Figure 1: Schematical representation of the porous media domain and its boundaries. SI is the predefined
inlet to the porous media domain, SOl

, l = 1, L are its outlets and SW are the solid wall boundaries of
the porous media domain. Topology optimization algorithms seek the optimal distribution of the variable
porosity, in order to minimize the objective function under consideration. Upon completion of the opti-
mization, red/bright areas with a non-zero porosity value (α 6= 0) correspond to the ’solid body’ domain
(practically, with zero flow within those regions). Blue/dark areas indicate the flow passage (α = 0). The
new ’solid wall’ boundary, Sα, is the interface between the two aforementioned areas (green/white line).

The adjoint approach for solving topology optimization problems in laminar flows has
been presented just a few years ago4. The present work relies on that paper, as far as
the introduction of porosity into the flow equations is concerned (with the introduction of
extra porosity–dependent terms into the energy and turbulence model equations, should
these have to be solved too) as well as to a recent paper by some of the present authors5,
where the exact continuous adjoint method for turbulent flows was presented. The latter
was exclusively dealing with shape optimization and the present paper is, from a different
viewpoint, its extension to topology optimization.

In the present paper, applications of the topology optimization method for the design
of ducts/manifolds in incompressible, laminar and turbulent flows are presented. The con-
tinuous adjoint method will be used to compute the required sensitivity derivatives and,
through them, drive a gradient–based method, leading to the optimal porosity field. As
mentioned before, in turbulent cases, the adjoint equation to the Spalart– Allmaras turbu-
lence model is, also, solved. Finally, in the topology optimization of manifolds with more
that one outlets, constraints on the volume flow rates from each one of the outlet bound-
aries should often be imposed; to compute the gradient of the constraint functions, the
continuous adjoint method was extended accordingly. In one of the topology optimiza-
tion problems examined, the objective function takes into account the exchanged amount
of heat between the fluid and its surrounding solid; in this problem, the energy equation
must be also solved.
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2 TOPOLOGY OPTIMIZATION IN TURBULENT INCOMPRESSIBLE FLOWS
WITH HEAT TRANSFER

In the most general case, the state (or primal) problem is governed by the steady–
state Navier–Stokes equations for incompressible fluid flows with heat transfer, in which
terms depending on the porosity variable α have been introduced. The state equations are
Rp = 0, Rvi = 0, RT = 0, where

Rp =
∂vj
∂xj

(1)

Rvi = vj
∂vi
∂xj

+
∂p

∂xi

− ∂

∂xj

[
(ν+νt)

(
∂vi
∂xj

+
∂vj
∂xi

)]
+ αvi (2)

RT = vj
∂T

∂xj

− ∂

∂xj

[(
ν

Pr
+

νt
Prt

)
∂T

∂xj

]
+ α (T − Twall) (3)

where p, vi, T denote the static pressure, the velocity components and the static tempera-
ture, respectively. Also ν, νt are the bulk and turbulent viscosities, Pr, Prt are the lami-
nar and turbulent Prandtl numbers and Twall is the constant–known temperature along the
solid wall surrounding the flow.

In turbulent flows, based on the Spalart–Allmaras turbulence model6, the turbulent
viscosity is given by νt = ν̃fv1 , where ν̃ is the solution variable in the additional state
equation, Rν̃=0. The turbulence model equation, in which a term depending on α is also
introduced, reads

Rν̃ = vj
∂ν̃

∂xj

− ∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃

∂xj

]
− cb2

σ

(
∂ν̃

∂xj

)2

− ν̃P (ν̃) + ν̃D (ν̃) + αν̃ (4)

The production P (ν̃) and destruction D(ν̃) terms as well as fv1 , cb2 , σ are as in6.
The mean-flow equations are solved in a segregated manner by employing the SIM-

PLE algorithm7 and the heat transfer and turbulence equations are solved decoupled from
them.

Eqs. 1 to 4 are numerically solved on an extended (porous media) domain, with fixed
inlets and outlets along its boundary. For this purpose, unstructured grids, with appro-
priate stretching close to the boundaries, are generated. Over the grid nodes with zero
porosity, terms αvi, α (T − Twall) and αν̃ are eliminated and these nodes belong to the
free flow passage since the local state variables satisfy the flow equations. In contrast,
nodes with non–zero local porosity yield zero velocity (so as to eliminate term αvi in
eq. 2) and temperature equal to Twall (so as to eliminate term α (T − Twall) in eq. 3) and
correspond to the solid bodies surrounding the flow. Over the same nodes, based on eq. 4,
the turbulence model variable is zero, as well.

Given that the incoming flow rate is determined by integrating the imposed inlet ve-
locity profile, constraints on the flow rate exiting from each one of the user–defined outlet
boundaries can optionally be imposed.

In the general case (i.e. in a constrained optimization problem), the user–defined ob-
jective function F is augmented by the state equations, Rp=0, Rvi =0, RT =0, Rν̃=0, as
well as by the constraint c, forming the augmented objective function, Faug

Faug = F +
∫
Ω
qRpdΩ +

∫
Ω
uiRvidΩ +

∫
Ω
TaRTdΩ +

∫
Ω
ν̃aRν̃dΩ + ωcc (5)
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where q, ui, Ta, ν̃a denote the adjoint pressure, velocities, temperature and turbulence
model variables and ωc denotes a user-defined weight for the constraint function, respec-
tively.

For the third case examined in this paper, where L outlets are defined, c is given by

c=
1

2

L∑
l=1

(∆ml)
2=0 (6)

where ∆ml stands for

∆ml=
∫
SOl

vinidS+rl

∫
SI

vinidS (7)

and SOl
, rl stand for the l-th outlet boundary of the domain and the desirable volume flow

rate ratio, with respect to the overall incoming flow rate (from SI); ni is the outward unit
normal vector. It is

∑L
l=1 rl=1.

In general, the global variation (symbol δ) of any quantity Φ with respect to a design
variable b, is expressed as the sum of direct (symbol ∂) and grid-dependent variations,
namely

δΦ

δb
=

∂Φ

∂b
+

∂Φ

∂xk

∂xk

∂b
(8)

In topology optimization problems, the boundaries of the porous media domain remain
unchanged, so ∂xk

∂α
= 0 and symbols δ and ∂ can be used indiscriminatelly

(
δΦ
δα

= ∂Φ
∂α

)
.

Taking that into account, the variation of Faug with respect to the porosity variable is
expressed as

δFaug

δα
=

δF

δα
+
∫
Ω
q
∂Rp

∂α
dΩ +

∫
Ω
ui
∂Rvi

∂α
dΩ +

∫
Ω
Ta

∂RT

∂α
dΩ +

∫
Ω
ν̃a

∂Rν̃

∂α
dΩ + ωc

∂c

∂α
(9)

The last term in eq. 9 stands for the effect of the constraint on the topology optimization.
Term ∂c

∂α
can be written as

∂c

∂α
=

L∑
l=1

∆ml

∫
SOl

∂vi
∂α

nidS (10)

since vi are fixed along SI .
The development of the field integrals of eq. 9, by using the Gauss divergence theorem,

leads finally to the following expression:

δFaug

δα
=

δF

δα
+
∫
Ω
Rq

∂p

∂α
dΩ +

∫
Ω
Rui

∂vi
∂α

dΩ +
∫
Ω
Rν̃a

∂ν̃

∂α
dΩ +

∫
Ω
RTa

∂T

∂α
dΩ

+
∫
Ω
viuidΩ +

∫
Ω
ν̃ν̃adΩ +

∫
Ω
(T − Twall)TαdΩ +

∫
Ω
ν̃aν̃Cd(ν̃, ~v)

∂d

∂α
dΩ

+
∫
S
(ujnj +

∂F

∂p
)
∂p

∂α
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∫
S
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∂vi
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∫
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∂ν̃

∂α
dS +

∫
S
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∂T
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dS

−
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∂

∂α
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∂vi
∂xj
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)
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∫
S
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(
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σ

)
∂
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(
∂ν̃

∂xj
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dS
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∫
S

(
ν

Pr
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)
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∂

∂α

(
∂T
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dS (11)
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where S = SI ∪ SO ∪ SW (SI , SO, SW the inlet, outlet and wall boundaries of the porous
media domain Ω , respectively) and d is the distance from Sα.

Thus, based on eq. 11, the adjoint field equations are derived by eliminating field in-
tegrals depending on ∂p

∂α
, ∂vi

∂α
, ∂ν̃

∂α
, ∂T

∂α
. The field adjoint to the mean-flow, energy and

turbulence equations are given by

Rq = 0, Rui
= 0, RTa = 0, Rν̃a = 0 (12)

where

Rq =
∂uj

∂xj

(13)

Rui
= −vj

(
∂ui

∂xj

+
∂uj

∂xi

)
+

∂q

∂xi

− ∂

∂xj

[
(ν+νt)

(
∂ui

∂xj

+
∂uj

∂xi

)]

+ ν̃
∂ν̃a
∂xi

+
∂

∂xk

(
ejkiejmq

CS
S

∂vq
∂xm

ν̃ν̃a

)
︸ ︷︷ ︸

termM1

+ T
∂Ta

∂xi︸ ︷︷ ︸
termM2

+αui (14)

RTa = −vj
∂Ta

∂xj

− ∂

∂xj

[(
ν

Pr
+

νt
Prt

)
∂Ta

∂xj

]
+ αTa (15)

Rν̃a = −vj
∂ν̃a
∂xj

− ∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃a
∂xj

]
+

1

σ

∂ν̃a
∂xj

∂ν̃

∂xj

+ 2
cb2
σ

∂

∂xj

(̃
νa

∂ν̃

∂xj

)
+ ν̃aν̃ Cν̃(ν̃,~v)

+ (−P+D) ν̃a +
δνt
δν̃

∂ui

∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
+

δνt
δν̃

1

Prt

∂Ta

∂xj

∂T

∂xj︸ ︷︷ ︸
termT1

+αν̃a (16)

Detailed expressions of terms CS , Cν̃ , Cd, S can be found in5; ejki is the permutation sym-
bol. In eq. 14, termM1 and termM2 result from the differentiation of the turbulence
model and energy equations respectively, whereas termT1 is the contribution of the en-
ergy equation’s differentiation to the adjoint turbulence model field equation (eq. 16).
Whenever the primal turbulence model and/or energy equations are not solved, terms and
equations resulting from their differentiation are omitted from the adjoint formulation.

In addition, elimination of boundary integrals which depend on variations of the flow
variables in eq. 11 yields the adjoint boundary conditions. These are described below:

The outlet conditions for q and ui, along the l-th outlet boundary, can be derived from

BCl
1,i = uivjnj + (ν + νt)

∂ui

∂xj

nj + (ujvj + q)ni +
∂F

∂vi

+ ν̃aν̃ni + ν̃aν̃CS (ν̃)
1

S
ejkiejmq

∂vq
∂xm

nk︸ ︷︷ ︸
termBM1

+ TTani︸ ︷︷ ︸
termBM2

+ωc∆mlni = 0 (17)

(i = 1, 2 in 2D problems; i = 1, 2, 3 in 3D problems). Since the number of the unknown
quantities in eq. 17 is larger than the number of the available equations by one, a single
variable should be zeroed in order to derive the rest of the boundary conditions5. In eq. 17,
termBM1 and termBM2 arise from the differentiation of the turbulence model and
energy equations, respectively. The last term of the same equation is the sole contribution
of the constraint function to the adjoint formulation.
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The outlet boundary conditions for the adjoint temperature and the adjoint turbulence
variable are given by the Robin type equations BC2 = 0 and BC3 = 0, respectively, where

BC2 = viniTa +
(

ν

Pr
+

νt
Prt

)
∂Ta

∂xj

nj +
∂F

∂T
(18)

BC3 = − δνt
δν̃

ui

(
∂vi
∂xj

+
∂vj
∂xi

)
nj −

δνt
δν̃

Ta

Prt

∂T

∂xj

nj︸ ︷︷ ︸
termBT1

+ν̃avjnj

+
(
ν +

ν̃

σ

)
∂ν̃a
∂xj

nj +
∂F

∂ν̃
(19)

In eq. 19, termBT1 is present only when heat transfer is included to the adjoint formula-
tion.

At the inlet, Diriclet boundary conditions are imposed to vi, ν̃ and T and so, their vari-
ations are automatically zeroed. In order to make δFaug

δα
independent of ∂p

∂α
, ∂
∂α

(
∂ui

∂xj
nj

)
,

∂
∂α

(
∂ν̃
∂xj

nj

)
, ∂
∂α

(
∂Tα

∂xj
nj

)
, the following inlet adjoint conditions should be imposed

uini = −∂F

∂p
, uiti = 0 (20)

(where ti are the components of the unit tangent vectors), ν̃a = 0, Tα = 0. Since no
boundary condition for q results from the elimination of any of the boundary integrals, its
normal derivative is set to zero (natural boundary condition).

In a similar way, zero Dirichlet conditions are imposed to ui, Ta, ν̃a and a zero Neu-
mann to q along the solid wall boundaries.

The adjoint p.d.e.’s with the presented boundary conditions are solved using a scheme
equivalent to that of the primal equations, i.e. the adjoint mean–flow equations are solved
using the SIMPLE algorithm and, where needed, the adjoint to the heat transfer and tur-
bulence model equations are solved in a decoupled manner.

Finally, the remaining terms of eq. 11 give rise to the sensitivity derivatives of Faug

with respect to the variable porosity values

δFaug

δα
=
∫
Ω
viuidΩ +

∫
Ω
(T − Twall)TadΩ +

∫
Ω
ν̃ν̃adΩ +

∫
Ω
ν̃aν̃Cd(ν̃, ~v)

∂d

∂α
dΩ (21)

So far, the adjoint formulation was general and could be adapted to any objective function.
The functions fi considered in this paper are

f1 = −
∫
SI,O

(
p+

1

2
v2
)
vinidS

f2 =
∫
SO

TdS −
∫
SI

TdS (22)

and correspond to the volume–averaged total pressure losses (to be minimized) and the
temperature difference between the outlet (SO) from and the inlet (SI) to the flow domain
(to be maximized), respectively. The norm of the velocity vector is written as v. For the
examined heat transfer problems, the objective function (to be minimized) is the weighted
sum of fi i.e. a single scalar function, F = ω1f1 − ω2f2, where ω1, ω2 are user–defined
weight factors. The gradient of the objective function F with respect to the state variables
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p, vi, T, ν̃ is

∂F

∂p
= −ω1vini,

∂F

∂vi
=−ω1(

1

2
v2ni + vivλnλ + pni)

∂F

∂ν̃
= 0,

∂F

∂T
= −ω2 (23)

3 APPLICATIONS

In this paper, the proposed adjoint method for the solution of topology optimization
problems is used to tackle three of them, namely:

• Problem I: the unconstrained optimization of an existing 2D S-bend duct, for a
turbulent flow, aiming at minimum viscous losses.

• Problem II: the unconstrained optimization of the topology of a 2D duct with four
inlets and four outlets, for a laminar flow, targeting minimum total pressure losses
and maximum temperature increase between the inlet and outlet boundaries.

• Problem III: the constrained design of a 3D manifold for predefined volume flow
rates at the outlet boundaries and laminar flow conditions, targeting minimum total
pressure losses.

Problem I is concerned with the topology optimization of a 2D S-bend duct. The flow
is turbulent with Reynolds number, based on the inlet diameter, equal to Re=1.2 × 105.
The target is to minimize f1, so practically ω1 = 1 and ω2 = 0. Starting point of the
optimization loop is a duct with a large recirculation area; this duct coincides with the
porous media domain; see Fig 2, top left. Topology optimization aims at transforming
part of the initial flow (i.e. porous media) domain to solid walls, in order to reduce to-
tal pressure losses. Fig. 2 shows the velocity field in the recirculation zone before the
topology optimization (top–right) and the porosity field calculated at the final step of the
optimization algorithm (bottom–left). After post-processing the outcome of the topology
optimization, a new duct shape is acquired by interpolating the nodal porosity values to
form the new solid wall; the new velocity field can be seen in Fig. 2 (bottom-right). It
can be observed that the optimized duct has a reduced recirculation area (F = 0.16) and,
after 10 optimization cycles, a 15% total pressure loss reduction is achieved, as compared
to the initial geometry (for which F = 0.188). Numerical experiments have shown that
the dominant sensitivity term (eq. 21) is viui. In Fig. 3, light is shed on the mechanism
leading to the (partial) elimination of the recirculation areas (and, thus, the minimization
of total pressure losses). The angle formed by the primal and adjoint velocities determines
the sign of the sensitivity derivative computed at each grid node. Since there is no adjoint
(velocity) backflow, areas with negative primal streamwise velocities generate negative
sensitivity values (since the inner product becomes locally negative). These sensitivity
values lead to an increase of the local porosity variables. Hence, the new solid walls are
formed, by eliminating the recirculation areas.

Problem II is dealing with the design of a 2D duct with four inlets and four outlets
located along the two opposite sides of a square porous media domain, aiming at mini-
mum total pressure losses and maximum temperature increase. The flow is laminar with
Re = 1000 based on the width of any of the (equally sized) inlets/outlets. Fig. 4 shows
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Figure 2: Problem I: Topology optimization of an S-bend duct under turbulent flow conditions, aiming
at minimum total pressure losses. Top-left: Unstructured computational grid with 45.700 triangles. Top-
right: Velocity field and flow trajectories computed on the initial duct. Bottom-left: Optimal porosity field.
Red/bright areas correspond to “new” solid bodies. Bottom-right: Velocity field and flow trajectories of
the duct that arises after identifying the new solid wall boundaries, approximating them using a continuous
curve and re-solving the flow problem. The reduction of the recirculation area is absolutely clear.

Figure 3: Problem I: Blow–up view of the recirculation area on the lower wall of the initial duct. Primal
(left) and adjoint (right) velocity vectors, using uniform vector lengths for visualization purposes. Since
viui (i.e. the inner product of the primal and adjoint velocities) is the dominant term of the sensitivity
derivatives, the angle between the primal and adjoint velocity vectors determines the sign of the sensitivities
for each grid node. In areas where the primal and adjoint velocities form an obtuse angle, the sensitivity
derivatives become negatively signed and this increases the local porosity values. Hence, the recirculation
areas tend to disappear.

the flow field and the porous media field, obtained upon completion of the topology op-
timization. The flow enters the box with fixed temperature (Tinlet = 293K) and exits it
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Figure 4: Problem II: Topology optimization of a four inlet/four outlet duct aiming at minimum total pres-
sure losses and maximum increase in fluid temperature. Computations performed over a square porous
media domain. Left: Velocity field obtained after the topology optimization loop. Right: Porosity field of
the optimal solution. Blue/dark areas depict the flow passage.

 0.5

 1

 1.5

 2

 2.5

 3

 0  10  20  30  40  50

F

Optimization cycles

Figure 5: Problem II: Convergence history. Each optimization cycle comprises the solution of the flow and
the adjoint equations. F stands for the concatenated objective function with ω1 = 0.7 and ω2 = 0.3.

through four predefined openings along its right side. The wall temperature is fixed to
Twall =353K. The convergence history of the single scalar objective function F , which
concatenates the two objectives by using the user–defined weight factors ω1 = 0.7 and
ω2 = 0.3, is shown in Fig. 5. In Fig. 4, right, the blue/dark domain, where the porosity
is practically zero, represents the flow passage configuration that ensures minimum to-
tal pressure losses and maximum increase in fluid temperature. As expected, the flow is
preferably developed quite close to the upper and lower hot walls, for the flowing fluid to
increase its temperature as much as possible.

Problem III is concerned with the constrained topology optimization of a 3D manifold
with one inlet and four outlets; the flow in laminar with Re = 2000, based on the inlet
hydraulic diameter. Prescribed volume flow rates at each outlet boundary of the porous
media domain are imposed as constraints. The target is to minimize total pressure losses.
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The incoming flow rate splits by a 20% − 30% − 30% − 20% ratio (of the incoming
flow rate) among each of the four outlets. The result of the constrained optimization is
compared to the unconstrained one in Fig. 6.

Figure 6: Problem III: Constrained topology optimization of a 3D manifold, targeting at minimum total
pressure losses and prescribed volume flow rates at the four outlets. Left: Solution of the unconstrained
optimization problem. The flow is almost evenly distributed among the four outlets. Right: Optimal solution
of the constrained optimization problem calling for a 20%− 30%− 30%− 20% volume flow rate partition
among the four outlets.

4 CONLUSIONS

The continuous adjoint approach to topology optimization problems for laminar and
turbulent flows, including heat transfer, was presented. The heat transfer and turbulence
model equations were enriched with new porosity dependent terms in order to formulate
the topology optimization problem. For turbulent flows, the adjoint formulation was pre-
sented without making the “usual” assumption that variations in topology do not affect
turbulence; extra terms and equations resulting from the differentiation of the Spalart-
Allmaras turbulence model were considered in the present formulation. Constraints re-
garding desirable volume flow rates at each flow outlet were formulated and included in
the adjoint-based optimization.
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