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Abstract. The implementation of the adjoint formulation for the solution of robust design
problems in aerodynamic shape optimization, with affordable CPU cost, is presented. In
robust design, the minimization of both the mean value µF and standard deviation σF of
the target objective function F , should take into account the so-called environmental or
robust variables ci, i = 1,M , is required. According to the second-order, second-moment
approach, µF and σF are expressed in terms of the first and second-order derivatives of
F with respect to ci. To perform a gradient-based optimization, µF and σF must, then, be
differentiated with respect to the shape controlling (design) variables bq, q = 1, N . Thus,

methods for computing up to third-order mixed sensitivities, such as δ3F
δciδcjδbq

, must be

devised. In this paper, this is carried out through the appropriate combination of direct-
differentiation and adjoint approaches. The present method is used to perform the robust
design of quasi-1D and 2D shapes. Both the discrete and continuous adjoint approaches
are presented, having CPU cost that scales with M and is independent of N. The proposed
method, in either discrete or continuous form, is the best choice for solving robust design
problems with much fewer environmental variables than the design ones (M << N).
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1 INTRODUCTION

In aerodynamics, the adjoint variable (AV) method, since its first appearance, [1],
has been used in several shape optimization problems in fluid mechanics. Using the AV
method, the gradient of any objective function F that quantifies the performance of a
given configuration, with respect to (w.r.t.) the design or control variables (bq, q = 1, N)
can be computed. In constrast to other rival techniques such as finite differences, direct
differentiation (DD, which is the equivalent of the tangent linear mode in automatic
differentiation, often differentiated by hand, as in the present paper) or the complex
variables’ method, the CPU cost of the AV method does not scale with N . Thus, in
aerodynamic shape optimization problems, the use of the AV method for the computation
of the gradient of F is suitable. One may use either the discrete AV method, [2, 3], where
the discrete adjoint equations are derived directly from the discretized flow equations or
the continuous one [4, 5, 6, 7], where the adjoint PDEs are first derived from the flow PDEs
and, then, discretized. However, regarding the computation of higher-order derivatives
(such as the Hessian of F w.r.t. bq) things are different. In previous publications, [8, 9,
10, 11, 12, 13, 14, 15, 16], it has been proved that the computational cost is minimum if
the so-called DD-AV method is used. In the DD-AV method, the first-order derivatives
are computed using DD and, then, the AV method provides the Hessian of F . In the
literature, DD-AV schemes for computing δ2F

δbqδbp
, based on either the discrete, [12, 13, 14],

or the continuous adjoint approach, [14, 15, 16], can be found. Their CPU cost, for
computing the exact Hessian, scales with N and so does the CPU cost per Newton cycle.

Previous comments are all related to shape optimization problems at given operating
conditions and without geometry imprecisions, etc, i.e. design problems that must be
solved in “fixed environment”. To account for designs with acceptable performance even
if their environment changes, the so-called robust design methods have been developed,
[17, 18, 19, 20]. These rely on a new appropriate objective function (which will be denoted
by F̂ in this paper; see section 2), defined by quantifying the way F changes if the
M environmental variables (ci, i = 1,M) vary, based on a known probability density
function. Robust design methods are found to outperform multi-point shape optimization
methods [21, 22, 23], where the shape is optimized for a number of distinct operating
points. In robust design methods, the definition of the objective function F̂ , according
to the method of moments, [17, 18, 19, 20], requires the derivatives of F w.r.t. ci. These
express the dependency of F on the environment and are written in terms of the mean
value µF and standard deviation σF of F , using first- or second-order Taylor expansions.

Papers [17, 18, 19, 20] are restricted to the computation of derivatives of F w.r.t. ci

only, without considering the computation of the gradient of moments w.r.t. bq, to support
a gradient-based solution to the robust design problem. The computation of the latter
and its use in gradient-based robust design of aerodynamic shapes is the main objective
of the present paper. Let us also make clear that the present paper does not make use of
either surrogate models, [24, 25] or numerical integrations, [26, 27] or, even, evolutionary
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algorithms, [28], which are all alternative ways to cope with the robust design problem.
The structure of this paper is as follows: In section 2, the method of moments is

presented and the required sensitivities of the objective function for the application of a
gradient-based SOSM approach are identified. In section 3, their computations, based on
both discrete and continuous DD and AV methods, are presented. Finally, in section 4,
the developed methods are validated by paying attention to the accuracy of the computed
sensitivities and, then, used for the minimization of the mean value and standard deviation
of F .

2 ROBUST DESIGN: THE SECOND-MOMENT APPROACH

One of the possible ways to cope with robust design problems is to minimize an objec-
tive function expressed in terms of the mean value of F (first statistical moment),

µF (b, c) =
∫

Fg(c)dc (1)

and its variance (second statistical moment),

σF
2(b, c) =

∫
(F − µF )2g(c)dc (2)

where g(c) is the probability density function. A method that minimizes both µF and
σF is referred to as a second-moment one. Neglecting the minimization of σF gives rise
to the so-called first-moment methods. The integrals in eqs. 1 and 2 can be computed
using either the exact integration of a function approximating the integrands (by means
of surrogate models or the method of moments) or the numerical integration of a limited
number of exactly evaluated points.

Assuming a symmetric distribution for ci, it can be shown that

µF ≃ F +
1

2

[
δ2F

δc2
i

]

c

σ2
i

σ2
F ≃

[
δF

δci

]2

c

σ2
i +

1

2

[
δ2F

δciδcj

]2

c

σ2
i σ

2
j (3)

Regarding the minimization procedure itself, stochastic methods such as evolutionary
algorithms (EAs) are well suited for these problems since these are gradient-free. However,
EAs require an excessive number of evaluations. Even if efficient ways to cut down the
number of evaluations required by an EA are now available, the overall cost remains high.
Gradient-based methods (GBMs), such as steepest descent or quasi-Newton schemes based
on Hessian matrix approximations can be used instead. In GBMs, a scalar function

F̂ (b, c)=w1µF + w2σF (4)
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is minimized, where w1 and w2 are user-defined weights. The gradient components dF̂
dbq

can be obtained by differentiating eq. 4 w.r.t. bq, which yields

δF̂

δbq

= w1

(
δF

δbq

+
1

2

δ3F

δc2
i δbq

σ2
i

)

+ w2

2 δF
δci

δ2F
δciδbq

σ2
i + δ2F

δciδcj

δ3F
δciδcjδbq

σ2
i σ

2
j

2

√[
δF
δci

]2
σ2

i + 1
2

[
δ2F

δciδcj

]2
σ2

i σ
2
j

(5)

So, the calculation of δF̂
δbq

requires the computation of up to third-order mixed sensitivities

w.r.t. ci and bq. In this paper, the steepest descent algorithm

bq
n+1 =bq

n
− η

δF̂

δbq

(6)

is used to update the design variable values and, through them, the aerodynamic shape;
quasi-Newton methods can be certainly used instead. This paper is dealing with inverse
design problems, where F is defined as

F =
1

2

∫

Sw

(p−ptar)
2dS (7)

where p is the pressure, ptar is the target pressure distribution and Sw denotes the solid
wall. It is a matter of just a few modifications for using the same method with other
objective functions.

3 COMPUTATION OF SENSITIVITY DERIVATIVES

3.1 The AV Approach for the Computation of δF
δbq

In discrete adjoint, starting point is the discrete form of the system of flow PDEs
denoted by Rk,d = 0, where the first subscript is the equation number (k ∈ [1, ne]; ne

is the number of governing equations per node) and the second one denotes the grid
node (d ∈ [1, np] for discretization on a grid with np nodes). Let Uk,d stand for the flow
variables (same notation). After defining the augmented objective function Faug in terms
of the nodal adjoint variables Nn,a (subscripts as in Uk,d), its sensitivities w.r.t. the design
variables bq (q ∈ [1, N ]) become

δFaug

δbq

=
∂F

∂bq

+
∂F

∂Uk,d

δUk,d

δbq

+ Nn,a

(
∂Rn,a

∂bq

+
∂Rn,a

∂Uk,d

δUk,d

δbq

)

(8)

The summation rule applies for repeated indices. In discrete adjoint, symbols δ
δbq

and d
dbq

are used indifferently; δ
δbq

is, however, preferably used for the closest similarity with the

continuous approach. Eq. 8 is made independent of
δUk,d

δbq
by satisfying the system of the

discrete adjoint equations

∂F

∂Uk,d

+ Nn,a

∂Rn,a

∂Uk,d

= 0 (9)
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Once the Nn,a values have been computed, at the cost of solving an “equivalent flow
system” (EFS), the gradient of F w.r.t. the design variables results from

δF

δbq

=
δFaug

δbq

=
∂F

∂bq

+ Nn,a

∂Rn,a

∂bq

(10)

Throughout this paper, EFS is considered to be the CPU time unit. Practically, solving
an optimization problem at the cost of T EFS is as if the system of flow PDEs is solved
T times.

An alternative way to compute δF
δbq

, with practically the same CPU cost (1 EFS), is by

using the continuous adjoint method. For instance, let us start from the steady-state 2D
Euler equations for a compressible fluid flow, as in the second example presented below;
in conservative form, this reads

∂fnk

∂xk

= 0 (11)

where k = 1, 2, n = 1, 4. The inviscid fluxes fnk are

[f1k, f2k, f3k, f4k] = [ρuk, ρuku1 + pδk1, ρuku2 + pδk2, uk(E + p)]

where ρ, p, uk and E stand for the density, pressure, Cartesian velocity components
and total energy per unit volume, respectively. In conformity to eqs. 11, the array of
conservative flow variables yields

[U1, U2, U3, U4] = [ρ, ρu1, ρu2, E]

Similar to eq. 8, in continuous form however, the sensitivities of Faug w.r.t. bq become

δFaug

δbq

=
δF

δbq

+
δ

δbq

∫

Ω
Nn

∂fnk

∂xk

dΩ (12)

where Ω is the flow domain, (N1,N2,N3,N4) are the adjoint functions and

δF

δbq

=
∫

Sw

(p − ptar)
δp

δbq

dS +
1

2

∫

Sw

(p − ptar)
2 δ(dS)

δbq

(13)

The differentiation under the integral sign of the last term in eq. 12, based on the Leibniz
integral rule, gives

δFaug

δbq

=
δF

δbq

+
∫

Ω
Nn

∂

∂bq

(
∂fnk

∂xk

)

dΩ +
∫

S
Nn

∂fnk

∂xk

δxl

δbq

nldS (14)

where S is the boundary of Ω and nk are the components of the outward unit vector.
Since partial derivatives permute, the first integral in eq. 14 can be integrated by parts,

∫

Ω
Nn

∂

∂bq

(
∂fnk

∂xk

)

dΩ = −

∫

Ω

∂Nn

∂xk

∂fnk

∂bq

dΩ +
∫

S
Nn

∂fnk

∂bq

nkdS (15)

5



E.M. Papoutsis-Kiachagias, D.I. Papadimitriou and K.C. Giannakoglou

Using the no-penetration condition, the second integral on the r.h.s. of eq. 15, taken only
along Sw, yields

∫

Sw

Nn

∂fnk

∂bq

nkdS =
∫

Sw

Nk+1nk

δp

δbq

dS

+
∫

Sw

(Nk+1p−Nnfnk)
δ (nkdS)

δbq

−

∫

Sw

Nn

∂fnk

∂xl

δxl

δbq

nkdS (16)

A term-by-term development as in [14, 15], yields

δFaug

δbq

=
1

2

∫

Sw

(p − ptar)
2 δ(dS)

δbq

+
∫

Sw

(p − ptar)
δp

δbq

dS

−

∫

Ω
Anmk

∂Nn

∂xk

∂Um

∂bq

dΩ +
∫

SI,O

Nn

∂fnk

∂bq

nkdS +
∫

Sw

Nk+1nk

δp

δbq

dS

+
∫

Sw

(Nk+1p −Nnfnk)
δ (nkdS)

δbq

−

∫

Sw

Nn

∂fnk

∂xl

δxl

δbq

nkdS

+
∫

Sw

Nn

∂fnk

∂xk

δxl

δbq

nldS (17)

where Anmk = ∂fnk

∂Um
(n = 1, 4, m = 1, 4, k = 1, 2) is the Jacobian matrix of the inviscid

fluxes. From eq. 17, dependencies on ∂Um

∂bq
are eliminated by formulating the system of 4

(m = 1, 4) field adjoint PDEs

−Anmk

∂Nn

∂xk

= 0 (18)

to be discretized and solved along with appropriate boundary conditions. For instance,
the inlet/outlet (along SI,O) boundary conditions are derived by eliminating all integrals
depending on δUm

δbq
from eq. 17. Along Sw, the following condition

p − ptar + Nk+1nk = 0 (19)

must be satisfied; eq. 19 mimics the no-penetration condition uknk = Uk+1nk = 0 for the
primal velocity. The remaining terms in eq. 17 provide the gradient of F as follows

δF

δbq

=
1

2

∫

Sw

(p−ptar)
2 δ(dS)

δbq

+
∫

Sw

(Nk+1p−Nnfnk)
δ (nkdS)

δbq

−

∫

Sw

Nn

∂fnk

∂xl

δxl

δbq

nkdS+
∫

Sw

Nn

∂fnk

∂xk

δxl

δbq

nldS (20)

Note that, along Sw, which is affected by variations in the design variables, the total
( δΦ

δbq
) and local ( ∂Φ

∂bq
) sensitivities of any function Φ are related as follows

δΦ

δbq

=
∂Φ

∂bq

+
∂Φ

∂xk

δxk

δbq

(21)
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3.2 Computation of δF
δci

and δ2F
δciδcj

using DD

The computation of δF
δci

is based on the general expression

δΦ

δγi

=
∂Φ

∂γi

+
∂Φ

∂Uk,d

·
δUk,d

δγi

(22)

written for Φ=F and γi =ci. This requires the knowledge of
δUk,d

δci
which can be computed

using the DDc of the flow equations ( δRn,a

δci
= 0). The CPU cost for computing all

δUk,d

δci
,

i = 1,M , fields is equal to M EFS.
The second-order derivatives w.r.t. c are computed using equation

δ2Φ

δγiδγj

=
∂2Φ

∂γi∂γj

+
∂2Φ

∂γi∂Uk,d

·
δUk,d

δγj

+
∂2Φ

∂γj∂Uk,d

·
δUk,d

δγi

+
∂2Φ

∂Uk,d∂Um,e

·
δUk,d

δγi

·
δUm,e

δγj

+
∂Φ

∂Uk,d

·
δ2Uk,d

δγiδγj

(23)

for Φ = F, γi = ci, γj = cj. Apart from the already computed
δUk,d

δci
fields, eq. 23 also

requires
δ2Uk,d

δciδcj
which, based on eq. 23 for Φ = Rn,a, γi = ci, γj = cj yields M(M+1)

2

systems of equations δ2Rn,a

δciδcj
= 0 to be solved at the cost of M(M+1)

2
EFS. This is referred

to as the DDc-DDc approach.
The DDc-DDc approach can also be formulated at the PDE level (continuous approach),

by setting up, discretizing and numerically solving PDEs for δUm

δci
and δ2Um

δciδcj
. The M

systems of PDEs, to be solved for δUm

δci
, result from the first-order sensitivities of the Euler

equations w.r.t. the environmental variables,

∂

∂xk

(

Anmk

δUm

δci

)

= 0 (24)

along with appropriate boundary conditions. For instance, along Sw, the no–penetration
condition yields

δuk

δci

nk =
δUk+1

δci

nk = 0 (25)

which is an equivalent no-penetration condition for δuk

δci
.

For the M(M+1)
2

systems of equations, to be solved for δ2Um

δciδcj
, i = 1,M , j = 1,M , eq.

24 is differentiated once more to give

∂

∂xk

(

Anmk

δ2Um

δciδcj

+
δAnmk

δcj

δUm

δci

)

= 0 (26)
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Finally, the first- and second-order sensitivities of F w.r.t. the environmental variables
are given by

δF

δci

=
∫

Sw

(p−ptar)
δp

δci

dS (27)

and
δ2F

δciδcj

=
∫

Sw

[
δp

δci

δp

δcj

+ (p−ptar)
δ2p

δciδcj

]

dS (28)

and can be computed from the known δUm

δci
and δ2Um

δciδcj
fields. Similarities between the

discrete and continuous approaches are evident.

3.3 Computation of δ2F
δciδbq

and δ3F
δciδcjδbq

Previously computed derivatives of F w.r.t. the environmental variables should be
differentiated w.r.t. the design variables. To this end, in the discrete approach, a different
augmented function F ′

aug is defined and its derivatives are given by

δ2F ′

aug

δciδbq

=
δ2F

δciδbq

+ L
i
n,a

δRn,a

δbq

+ Nn,a

δ2Rn,a

δciδbq

(29)

by introducing appropriate adjoint variables Li
n,a and Nn,a. The same symbol Nn,a is used

as before, on purpose, since, as it can easily be shown, the equations for Nn,a are the ones
derived above (eqs. 9, 18) Based on the “standard” way for deriving adjoint equations,
Li

n,a (i = 1,M ; n = 1, ne; a = 1, np) result from the solution of

∂2F

∂ci∂Uk,d

+
∂2F

∂Uk,d∂Um,e

·
δUm,e

δci

+L
i
n,a

∂Rn,a

∂Uk,d

+Nn,a

(
∂2Rn,a

∂ci∂Uk,d

+
∂2Rn,a

∂Uk,d∂Um,e

·
δUm,e

δci

)

= 0

(30)

The computation of Li
n,a, based on eqs. 30, costs M EFS and makes use of the already

computed Nn,a fields.

Finally, δ2F
δciδbq

are computed from the following equation

δ2F

δciδbq

=
∂2F

∂ci∂bl

+ Nn,a

∂2Rn,a

∂ci∂bq

+
∂2F

∂bq∂Uk,d

·
δUk,d

δci

+ Nn,a

∂2Rn,a

∂bq∂Uk,d

·
δUk,d

δci

+ L
i
n,a

∂Rn,a

∂bq

(31)

To compute δ3F
δciδcjδbq

, one may start from the following equation (defined by differentiating

eq. 23 w.r.t. γl)

δ3Φ

δγiδγjδγl

=
∂3Φ

∂γi∂γj∂γl

8
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+
∂3Φ

∂γi∂γj∂Uk,d

·
δUk,d

δγl

+
∂3Φ

∂γi∂γl∂Uk,d

·
δUk,d

δγj

+
∂3Φ

∂γj∂γl∂Uk,d

·
δUk,d

δγi

+
∂3Φ

∂γi∂Uk,d∂Um,e

·
δUk,d

δγj

δUm,e

δγl

+
∂3Φ

∂γj∂Uk,d∂Um,e

·
δUk,d

δγi

δUm,e

δγl

+
∂3Φ

∂γl∂Uk,d∂Um,e

·
δUk,d

δγi

δUm,e

δγj

+
∂3Φ

∂Uk,d∂Um,e∂Ur,g

·
δUk,d

δγi

δUm,e

δγj

δUr,g

δγl

+
∂2Φ

∂γi∂Uk,d

·
δ2Uk,d

δγjδγl

+
∂2Φ

∂γj∂Uk,d

·
δ2Uk,d

δγiδγl

+
∂2Φ

∂γl∂Uk,d

·
δ2Uk,d

δγiδγj

+
∂2Φ

∂Uk,d∂Um,e

·
δ2Uk,d

δγiδγj

·
δUm,e

δγl

+
∂2Φ

∂Uk,d∂Um,e

·
δ2Uk,d

δγjδγl

·
δUm,e

δγi

+
∂2Φ

∂Uk,d∂Um,e

·
δ2Uk,d

δγiδγl

·
δUm,e

δγj

+
∂Φ

∂Uk,d

·
δ3Uk,d

δγiδγjδγl

(32)

which, for Φ = F, γi = ci, γj = cj, γl = bq, gives

δ3F

δciδcjδbq

=
∂3F

∂ci∂cj∂bq

+
∂3F

∂ci∂bq∂Uk,d

·
δUk,d

δcj

+
∂3F

∂cj∂bq∂Uk,d

·
δUk,d

δci

+
∂3F

∂bq∂Uk,d∂Um,e

·
δUk,d

δci

δUm,e

δcj

+
∂2F

∂bq∂Uk,d

·
δ2Uk,d

δciδcj

+

(
∂3F

∂ci∂cj∂Ur,g

+
∂3F

∂ci∂Uk,d∂Ur,g

·
δUk,d

δcj

+
∂3F

∂cj∂Uk,d∂Ur,g

·
δUk,d

δci

+
∂3F

∂Uk,d∂Um,e∂Ur,g

·
δUk,d

δci

·
δUm,e

δcj

+
∂2F

∂Uk,d∂Ur,g

·
δ2Uk,d

δciδcj

)

·
δUr,g

δbq

+

(
∂2F

∂cj∂Uk,d

+
∂2F

∂Uk,d∂Um,e

·
δUm,e

δcj

)

·
δ2Uk,d

δciδbq

+

(
∂2F

∂ci∂Uk,d

+
∂2F

∂Uk,d∂Um,e

·
δUm,e

δci

)

·
δ2Uk,d

δcjδbq

+
∂F

∂Uk,d

·
δ3Uk,d

δciδcjδbq

(33)

Based on eq. 33,

δUk,d

δci

,
δ2Uk,d

δciδcj

,
δUk,d

δbq

,
δ2Uk,d

δciδbq

,
δ2Uk,d

δcjδbq

,
δ3Uk,d

δciδcjδbq

(34)

need to be known. The computation of the first two sets of derivatives by means of DDc

and DDc-DDc has already been presented. For the derivatives w.r.t. bq, the AVb method
should preferably be used. A new augmented function F ′′

aug is defined with its third-order
derivatives given by

δ3F ′′

aug

δciδcjδbq

=
δ3F

δciδcjδbq

+ K
i,j
n,a

δRn,a

δbq

+ L
j
n,a

δ2Rn,a

δciδbq

+ M
i
n,a

δ2Rn,a

δcjδbq

+ Nn,a

δ3Rn,a

δciδcjδbq
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(35)

where Ki,j
n,a, L

j
n,a, M

i
n,a and Nn,a, (i = 1,M ; j = 1,M ; n = 1, ne; a = 1, np) are adjoint

variables. Using eqs. 22, 23 and 32 (for Φ = Rn,a and appropriate substitutions for
γi, γj and γl) for the first-, second- and third-order derivatives of the state equations, the

computation of δ3F
δciδcjδbq

becomes independent (a) of
δUk,d

δbq
, thanks to the already satisfied

eq. 9, (b) of δ2U
δciδbq

and δ2U
δcjδbq

, thanks to the already satisfied eq. 30 and, finally, (c) of
δ3U

δcjδcjδbq
, by satisfying

∂3F

∂ci∂cj∂Ur,g

+
∂3F

∂ci∂Uk,d∂Ur,g

·
δUk,d

δcj

+
∂3F

∂cj∂Uk,d∂Ur,g

·
δUk,d

δci

+
∂3F

∂Uk,d∂Um,e∂Ur,g

·
δUk,d

δci

·
δUm,e

δcj

+
∂2F

∂Uk,d∂Ur,g

·
δ2Uk,d

δciδcj

+ K
i,j
n,a

∂Rn,a

∂Ur,g

+ L
j
n,a

(
∂2Rn,a

∂ci∂Ur,g

+
∂2Rn,a

∂Uk,d∂Ur,g

·
δUk,d

δci

)

+ M
i
n,a

(
∂2Rn,a

∂cj∂Ur,g

+
∂2Rn,a

∂Uk,d∂Ur,g

·
δUk,d

δcj

)

+ Nn,a

(
∂3Rn,a

∂ci∂cj∂Ur,g

+
∂3Rn,a

∂ci∂Uk,d∂Ur,g

·
δUk,d

δcj

+
∂3Rn,a

∂cj∂Uk,d∂Ur,g

·
δUk,d

δci

+
∂3Rn,a

∂Uk,d∂Um,e∂Ur,g

·
δUk,d

δci

·
δUm,e

δcj

+
∂2Rn,a

∂Uk,d∂Ur,g

·
δ2Uk,d

δciδcj

)

= 0

(36)

Eq. 36 can be solved for Ki,j
n,a at CPU cost equal to M(M+1)

2
EFS. It can be shown that

Lj
n,a ≡ Mj

n,a.
The CPU cost for the computation of all adjoint variable fields Ki,j

n,a, L
j
n,a ≡ Mj

n,a, Nn,a,

is summarized in table 1. Having computed them, δ3F
δciδcjδbq

is, finally, given by

δ3F

δciδcjδbq

=
∂3F

∂ci∂cj∂bq

+
∂3F

∂ci∂bq∂Uk,d

·
δUk,d

δcj

+
∂3F

∂cj∂bq∂Uk,d

·
δUk,d

δci

+
∂3F

∂bq∂Uk,d∂Um,e

·
δUk,d

δci

·
δUm,e

δcj

+
∂2F

∂bq∂Uk,d

·
δ2Uk,d

δciδcj

+ K
i,j
n,a

∂Rn,a

∂bq

+ L
j
n,a

(
∂2Rn,a

∂ci∂bq

+
∂2Rn,a

∂bq∂Uk,d

·
δUk,d

δci

)

+ M
i
n,a

(
∂2Rn,a

∂cj∂bq

+
∂2Rn,a

∂bq∂Uk,d

·
δUk,d

δcj

)

+ Nn,a

(
∂3Rn,a

∂ci∂cj∂bq

+
∂3Rn,a

∂ci∂bq∂Uk,d

·
δUk,d

δcj

+
∂3Rn,a

∂cj∂bq∂Uk,d

·
δUk,d

δci

+
∂3Rn,a

∂bq∂Uk,d∂Um,e

·
δUk,d

δci

·
δUm,e

δcj

+
∂2Rn,a

∂bq∂Uk,d

·
δ2Uk,d

δciδcj

)

(37)
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Computation of: Solution of CPU cost (EFS)

Flow Variables Flow equations 1

δUk,d

δci
eq. 22 (Φ=Rn,a, γi =ci) M

δ2Uk,d

δciδcj
eq. 23 (Φ=Rn,a, γi =ci, γj =cj)

M(M+1)
2

Nn,a eq. 9 1

Li
n,a =Mi

n,a eq. 30 M

Ki,j
n,a eq. 36 M(M+1)

2

Total Cost 2 + 3M + M2

Table 1: CPU cost (in EFS) of computing δ3F
δciδcjδbq

, using the proposed DDc-DDc-AVb approach.

The total CPU cost is independent of N . The symbols of the adjoint variables of the discrete
approach are used (left column).

In the continuous approach, the differentiation of eq. 20 w.r.t. ci gives

δ2F

δciδbq

=
∫

Sw

(p − ptar)
δp

δci

δ(dS)

δbq

+
∫

Sw

(
L

i
k+1p−L

i
nfnk

) δ (nkdS)

δbq

+
∫

Sw

(

Nk+1
δp

δci

−Nn

δfnk

δci

)
δ (nkdS)

δbq

−

∫

Sw

L
i
n

∂fnk

∂xl

δxl

δbq

nkdS−

∫

Sw

Nn

∂

∂xl

(
δfnk

δci

)
δxl

δbq

nkdS

+
∫

Sw

L
i
n

∂fnk

∂xk

δxl

δbq

nldS+
∫

Sw

Nn

∂

∂xk

(
δfnk

δci

)
δxl

δbq

nldS (38)

where

L
i
n =

δNn

δci

(39)

In the sake of convenience, in the continuous approach, the adjoint variables are given by
the same symbols as their discrete counterparts. The Li

n fields (i = 1,M) are computed
by solving the following system of PDEs

−Anmk

∂Li
n

∂xk

−
δAnmk

δci

∂Nn

∂xk

= 0 (40)

derived from the DDc of the adjoint equations, eq. 18. The inlet/outlet boundary con-
ditions imposed to eqs. 40 are in conformity to those imposed to the adjoint equations.

11



E.M. Papoutsis-Kiachagias, D.I. Papadimitriou and K.C. Giannakoglou

The solid wall boundary conditions for Li
k are derived from the differentiation of eq. 19

w.r.t. ci, which yields

δp

δci

+ L
i
k+1nk = 0 (41)

Regarding the computation of δfnk

δci
, recall that δUm

δci
are known from the DDc of the gov-

erning equations and δfnk

δci
are functions of δUm

δci
.

The third-order mixed sensitivity derivatives of F , required for eq. 5, are obtained
from the differentiation of eq. 38 w.r.t. cj, as follows

δ3F

δciδcjδbq

=
∫

Sw

δp

δci

δp

δcj

δ(dS)

δbq

+
∫

Sw

(p − ptar)
δ2p

δciδcj

δ(dS)

δbq

+
∫

Sw

(
K

i,j
k+1p−K

i,j
n fnk

) δ (nkdS)

δbq

+
∫

Sw

(

L
i
k+1

δp

δcj

−L
i
n

δfnk

δcj

)
δ (nkdS)

δbq

+
∫

Sw

(

L
j
k+1

δp

δci

−L
j
n

δfnk

δci

)
δ (nkdS)

δbq

+
∫

Sw

(

Nk+1
δ2p

δciδcj

−Nn

δ2fnk

δciδcj

)
δ (nkdS)

δbq

−

∫

Sw

K
i,j
n

∂fnk

∂xl

δxl

δbq

nkdS−

∫

Sw

L
i
n

∂

∂xl

(
δfnk

δcj

)
δxl

δbq

nkdS

−

∫

Sw

L
j
n

∂

∂xl

(
δfnk

δci

)
δxl

δbq

nkdS−

∫

Sw

Nn

∂

∂xl

(
δ2fnk

δciδcj

)
δxl

δbq

nkdS

+
∫

Sw

K
i,j
n

∂fnk

∂xk

δxl

δbq

nldS+
∫

Sw

L
i
n

∂

∂xk

(
δfnk

δcj

)
δxl

δbq

nldS

+
∫

Sw

L
j
n

∂

∂xk

(
δfnk

δci

)
δxl

δbq

nldS+
∫

Sw

Nn

∂

∂xk

(
δ2fnk

δciδcj

)
δxl

δbq

nldS (42)

where

K
i,j
k = K

j,i
k =

δLi
k

δcj

(43)

K
i,j
k (i = 1,M ; j = 1,M) are computed by solving the field equation resulting from the

differentiation of eq. 40 w.r.t. cj, which is

−Anmk

∂Ki,j
n

∂xk

−
δAnmk

δcj

∂Li
n

∂xk

−
δAnmk

δci

∂Lj
n

∂xk

−
δ2Anmk

δciδcj

∂Nn

∂xk

= 0 (44)

The boundary conditions imposed to eqs. 44 are, also, in conformity with those imposed
to the adjoint equations. The solid wall boundary conditions for Ki,j

k are derived from the
differentiation of eq. 41 w.r.t. ci, yielding

δ2p

δciδcj

+ K
i,j
k+1nk = 0 (45)

12



E.M. Papoutsis-Kiachagias, D.I. Papadimitriou and K.C. Giannakoglou

The solution of systems 44 and 45 for K
i,j
k and substitution to eq. 38 yields the required

third-order mixed sensitivities at the cost of M(M + 1)/2 EFS, which does not depend

on N. The terms δ2fnk

δciδcj
can be computed in a straightforward manner from the computed

values of δUm

δci
and δ2Um

δciδcj
.

The overall computational cost of the continuous gradient-based SOSM method is,
practically, equal to that of its discrete counterpart incorporating exactly the same number
of EFS.

4 APPLICATIONS-VALIDATION OF THE COMPUTED DERIVATIVES

4.1 Case Study 1: Robust design using the discrete approach (1D)

In the first case, the discrete approach is tested. A steady state flow model for the
quasi-1D viscous flows is considered, where the flow equations are

∂ ~f

∂x
= ~qs + ~qν (46)

Vectors ~U , ~f = ~f(~U), ~qs (source terms due to blockage effects) and ~qν (source terms due
to viscous effects) are given by

~U =




ρ
ρu
ρE



 , ~f =




ρu

ρu2 + p
u (ρE + p)



 , ~qs = −
1

S

dS

dx




ρu
ρu2

u (ρE + p)



 , ~qν = −λ
L

2D




0

ρu2

ρu3





S = S(x) corresponds to the cross-sectional area of the duct, which is controlled by the
design variables bq, q = 1, N ; the latter stand for the ordinates of the Bézier control points

Method DD or DD-DD FD

δF
δM2,is

−14858410.83 4227340.85

δF
δλ

−14857665.84 4227735.54

δ2F
δM2

2,is

6501400443.98 6498032545.33

δ2F
δM2,isδλ

−1851952901.38 −1850969770.31

δ2F
δλ2 711627191.25 710883026.73

Table 2: Case Study 1: (a) First- and second-order derivatives w.r.t. the environmental variables M2,is

and λ, computed for the initial duct, using DDc or DDc-DDc and FD (for step-size ǫ = 5 × 10−4; ǫ-
independent results).
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Figure 1: Case Study 1: Derivatives computed for the initial duct geometry. Top-left: δF
δbq

, using AV

and FD. Middle-left: δ2F
δM2,isδbq

, q = 1, 7. Bottom-left: δ2F
δλδbq

, q = 1, 7. All second derivatives were com-

puted for the duct, using the DDc-AVb approach and FD. Top-right: δ3F
δ2M2,isδbq

, q = 1, 7. Middle-right:

δ3F
δM2,isδλδbq

, q=1, 7. Bottom-right: δ3F
δλ2δbq

, q=1, 7. Third derivatives were computed for the same geome-

try, using the DDc-DDc-AVb approach and FD.
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with fixed abscissas, used to parameterize S(x). Also, D is the local hydraulic diameter
of the duct and λ is the Darcy-Weisbach friction coefficient.
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Figure 2: Case Study 1: Inverse design of an 1D symmetric duct. Left: Pareto front of non-dominated
solutions on the (µF , σF ) plane, calculated with the discrete AV-based SOSM algorithm. Right: The
geometries calculated through the SOSM algorithm for different weight factors, in comparison with ge-
ometry Star(x) which results from a “fixed-environment” optimization aiming at minimum F .

The aim of this example is not only to perform the gradient-based optimization itself
but, also, to validate the computed derivatives of F w.r.t. M2,is and λ, before even pro-

ceeding to the computation of δF̂
δbq

. The validation is performed against finite-differences

(FD), after ensuring that the selected step-size ǫ leads to ǫ-insensitive derivatives.
The isentropic exit Mach number M2,is and λ are considered as the two environmental

variables (M = 2) with user-defined mean values M2,is = 0.4, λ = 0.025 and standard
deviations σM2,is

=0.01, σλ =0.001. In this example, eleven Bézier control points were used
to parameterize S(x). Seven of the control points ordinates were free to vary, while the
remaining four (the first and last two control points) were fixed; thus, N =7. Derivatives
w.r.t. the environmental variables are tabulated, see table 2, and the ones w.r.t. the
design variables are plotted in fig. 1. In all cases, the agreement is absolutely satisfactory.

These sensitivities were used to compute δF̂
δbq

(eq. 5) for different combinations of the

weight values w1 and w2 (eq. 4). The optimal solutions obtained for the different (w1,
w2) pairs of values form a Pareto front of optimal solutions. In figure 2, left, the Pareto
front on the (µF , σF ) plane, computed by the proposed method, is presented. In figure
2, right, the optimal geometries corresponding to the aforementioned Pareto front points,
are presented in comparison with the outcome of a “fixed-environment” optimization,
merely targeting at minimum F .
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4.2 Case Study 2: Robust design using the continuous approach (2D)

The second inverse design problem examined is governed by the 2D Euler equations and
optimized using the continuous approach. The case is concerned with the robust design
of a 2D cascade airfoil which is formed by two Bézier-Bernstein polynomials. The design
variables are the normal to the chord coordinates of all but the first and last Bézier control
points, resulting to N =12 design variables. The exit isentropic Mach number M2,is and
the inlet flow angle α1 are the two environmental variables (c1 and c2, respectively; so,
M =2).

In fig. 3, first-order sensitivities δµF

δbq
and δσF

δbq
were compared to FD. The comparison

is satisfactory. The sensitivity derivatives δµF

δbq
and δσF

δbq
were used in the steepest descent

algorithm in order to provide geometries with robust aerodynamic performance. For this
purpose, a series of five independent optimization runs were performed based on steepest
descent, eq. 6, where the derivatives were computed by eq. 5, with five different values
of the weights w1 and w2. In fig. 4, left, the convergence rate of the mean value of F is
shown for the different weight value sets. As expected, the µF decreases always, whereas
the higher the weight w1 the higher the decrease in µF . The same statement (for w2,
instead of w1) can be made for the convergence of σF , fig. 4, right.

As in case 1, repetitive runs of the programmed software with different value sets
(w1, w2) resulted to the formation of a Pareto front of optimal solutions on the (µF , σF )
plane. Fig. 5 shows this front for the computations already presented in fig. 4. It
can be seen that the Pareto front is convex and continuous. Finally, the five optimal
geometries, corresponding to the non-dominated members of the Pareto front, are shown
in fig. 5, right, compared with the reference geometry that reproduces the target pressure
distribution. Pronounced changes in the shape of the airfoil close to its rear part can be
seen.
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Figure 3: Case Study 2: Inverse design of a 2D symmetric cascade. Comparison of sensitivities δµF

δbq
and

δσF

δbq
, computed using the proposed method and FD.
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Figure 4: Case Study 2: Inverse design of a 2D symmetric cascade. Convergence of the µF and σF values,
for different pairs of weight values.
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Figure 5: Case Study 2: Inverse design of a 2D symmetric cascade. Left: Pareto front with five optimal
solutions, plotted on the (µF , σF ) plane. Right: Reference and optimal airfoils for five different pairs of
weight values (w1, w2).

5 CONCLUSIONS

The scope of this paper was to present efficient ways of computing the high–order
derivatives required for the solution of robust design problems in aerodynamics, based on
the second–order, second–moment model and gradient-based algorithms. The mean value
and the standard deviation of a target function to be minimized are expressed in terms
of its derivatives w.r.t. the environmental values. An additional differentiation w.r.t. the
design variables is needed to provide the gradient of the objective function (formed by
weighted sums of the mean value and standard deviation) and, thus, drive the steepest
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descent algorithm. High–order derivatives were computed through combinations of the
adjoint method and the direct differentiation of the flow (and the adjoint) equations. The
cost of the proposed method scales with the square of number of environmental variables
M but not with that of the design variables (N). Since M <<N , the total CPU cost for the
robust design is affordable. The development was presented according to both the discrete
and continuous approaches, demonstrating (among other) the similarities between them.
The proposed algorithm was successfully applied to the robust optimization of 1D and
2D geometries, and, through repetitive calls to the same optimization software, optimal
Pareto fronts on the mean value and standard deviation of F plane have been computed.
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