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Abstract. A framework for computing first and second order sensitivity derivatives
of objective functions, which are in use in aerodynamic shape optimization meth-
ods, is presented. The key component of this framework is the continuous adjoint
approach. According to the present formulation, the expression for the gradient of
any objective function contains only boundary integrals, irrespective of whether the
objective function is a field or boundary integral. This leads to increased accuracy
and less computational burden, as far as gradient and Hessian computations are of
concern. Since the twice application of the adjoint approach to compute the Hessian
matrix is computationally intensive, the so—called direct—-adjoint approach (where
the gradient is computed using the direct sensitivity approach and the Hessian by
subsequently employing the adjoint formulation) has been developed and used. The
so—computed first and second derivatives are compared to those computed by fi-
nite differences and, as it will be demonstrated, are in excellent agreement with
them. When the exact Hessian is computable, the Newton method is employed for
the purpose of optimization. Newton method outperforms any other optimization
method (steepest descent, conjugate gradients, quasi-Newton) at least for the num-
ber of design variables used in our demonstration examples. The parallelization of
the Hessian computation is straightforward and this helps overcoming the cost of
computing the Hessian matrix in problems with too many design variables.

Key words: Shape Optimization, Continuous Adjoint, Hessian Matrix, Turboma-
chinery Design

1 Introduction

In aerodynamic shape optimization problems, the most well known advantage
of deterministic algorithms is their capability to reach the global optimum with
low computational cost, as long as the starting solution is such that the descent
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algorithm cannot be trapped in local optimal solutions. Deterministic methods
require the gradient of the objective function with respect to the design variables
and the availability of an efficient means to compute it. The adjoint method is a
tool which, in contrast to finite difference schemes, computes the gradient of the
objective function with the same CPU cost as that required for the solution of the
flow equations.

The adjoint approach has been introduced by Pironneau ' for elliptic fluid flow

equations and, then, J ameson® extended it to hyperbolic systems. Nowadays, adjoint

methods are in widespread use in several aerodynamic problems478.

In the literature, adjoint formulations for the computation of the Hessian matrix
of an objective function, in aerodynamic optimization problems, are extremely rare.
A method to compute the Hessian matrix in structural optimization problerns9 and
another one based exclusively on the adjoint approach for the shallow water equa-
tions in variational data assimilation problems in meteorology10 can be reported.
Note that we are interested in methods which compute the exact Hessian; In con-
trast, the literature concerning methods to compute the approximate Hessian is
rich'".

In the first part of this paper, both the direct and the corresponding adjoint
approach for the gradient computation, in their so—called continuous form, are pre-
sented. The metrics—free adjoint formulation, which has been first presented for
inviscid fAows'" and, then, extended to viscous ﬂowslS, is compared to the conven-
tional adjoint formulation in which the gradient expression depends on field integrals
with variations in metrics.

In the second part, direct, adjoint and mixed continuous formulations for the
computation of the exact Hessian matrix design problems in aerodynamics are pre-
sented. Starting from either the direct or the adjoint approach for the computation
of the functional gradient, either the direct or the adjoint approach can be used
to compute the Hessian matrix. Thus, four different approaches to compute the
exact Hessian matrix, with different computational cost, have been devised. The
more efficient approach proves to be the so—called direct-adjoint approach. In the
results section, the exact Hessian matrix is used to support the Newton method
for the inverse design of a turbomachinery cascade with less CPU cost than the
BFGS" algorithm, which is based on the exact gradient and an approximate (thus,
computationally inexpensive) Hessian.

2 Continuous Adjoint Approach for the Gradient Computation

2.1 Flow Equations and Discretisation

The flow equations of a compressible viscous fluid are used as state equations.
These are expressed in the usual vector form, as

oo a[j' a_%m) a_a)zs
R(U):—+ fz . fz

ot ox, O =0 (1)

where U is the vector of conservative variables U = [p, il E} and /"™ =

(2

- T T
[Pui , pu 0T+ pdl  ui(E +p)} , U= [O T uTi + qz} are the inviscid and
viscous fluxes, respectively. According to the standard notation, u;, E=pe + %pu?,
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7;, and qi:k% stand for the velocity components, total energy, vector of viscous

stresses and heat fluxes, respectively. Also, (i is the Kronecker symbol.

The discretization of eq. 1 on a structured or unstructured grid is based on the
finite volume method, using vertex—centered control volumes. The inviscid fluxes
which cross the boundaries of the control volume are computed by means of the Roe’s
upwind schemeM, so the numerical inviscid flux associated with the edge formed by
nodes P and Q is given by

hg = 5 (ALUs + ArUr) — 51 Aol (Ur — Us) (2)
where A; = aggv and A= A;n;, n; being the unit vector which is normal to each
segment forming the finite volume boundary. Second order accuracy is obtained

using appropriate Taylor expansions for U, and U R, based on U P, (7Q and the local
gradients of U, fig. (1).

The computation of viscous fluxes

FLUX is straightforward, by considering a
:f:> linear distribution of U over any grid
| cell.
p IRIG . .
. © ;() =Q 2.2 Inverse Design in Inviscid

Flows — The Adjoint Approach

Aiming at the design of an aerody-

namic shape (airfoil, duct, etc, in or-

Figure 1: Grid edge PQ and the associated finite der to restrict ourselves to 2D shapes

volume boundary (dotted line). In any 1D Riemann only; note that the extension to 3D is

problem the left (L) and right (R) states, used to straightforward and has already been

define the inviscid flux vector, are shown. presented by the auth0r313’15) the ob-

jective function quantifies the deviation of pressure distribution p(.S) from a known
target distribution py.(S) along the solid walls S,,. Thus

1

= 5 S (p - ptar)2d8 (3)

The variation in F', due to any variation in the design variables l;, is written as
follows

oF = %/Sw (p _ptar)25(ds) + /Sw (p _ptm“)(spds (4)

To set up the adjoint formulation, the variation in the so—called augmented function
Foug=F+ [ WTR(U)d) is defined by integrating the product of the adjoint variables

U and the variation in the flow equations (the inviscid part of eq. 1) over the flow
domain €2 and adding it to 0 F. Thus

0Fqug = 0F + /Q VAR (%) o (5)

The following equation

ofir. _O@fi™) _ Ofi™ o(dwy)
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can be provedlg. It expresses the variation in the gradient of any flow quantity in
terms of the gradient of the variation of the same quantity and an additional term
which includes the gradient of variations in nodal coordinates. Through integration
by parts and the Gauss divergence theorem, the variation in F' is expressed as follows

o rstasy [ 2

Eq. 7 is expressed in terms of the adjoint variables which are computed by discretiz-
ing and solving the field adjoint equations s

A, \115.75de+/ Ui p—07 1)3(nsdS)  (7)

v ov -
— AT =0 8
satisfying
(p — Dtar) + Yiyin; =0 9)
over the solid walls S,, and
SUT(ATT) =0 (10)

at the inlet and outlet. After satisfying eqs. 8 to 10, the gradient expression, eq. 7,
includes only boundary integrals in terms of geometrical variations. Variations such
as 6(dS), dxy, or §(n;dS) can be computed analytically with negligible computational
cost, provided that the shape parameterization has been defined.

As in the flow equations, a Roe-like scheme is used for the discretisation of the
adjoint equations. According to this scheme, the adjoint fluxes are given by

o 1 1

tpo(P) = §A£ (U + Vg) + §|APQ| (W, — Up)

o 1 1

tpo(Q) = 5145 (U + Vg) + §|APQ| (U — VUp) (11)

2.3 Comments on the Adjoint Approach

(a) On a structured grid, an equation of the form'

e
(91'1'

axi + e 0l

fln’U
o0x;

o(——) = ) (12)

can be used instead of eq. 6. Note that 2 55, are the metrics associated with the
standard transformation of the grid from the physmal to the computational or trans-
formed domain. Eqgs. 6 and 12 are equivalent but the former is much more general
since it is not tailored to structured grids. Using eq. 12, it can be proved that the
variation in F' can alternatively be expressed as follows

2/ D Prar)28(dS) /qﬂaﬁ <axz>d9+/ (Uyoip-07 F)5(midS)  (13)

which, in contrast to eq. 7, contains a field integral in terms of the variation in met-
rics. The standard way to compute this integral and the ¢ ( ) terms, in particular,
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is through finite differences which require successive remeshing tasks. This proce-
dure affects badly both the computational accuracy and CPU cost per optimization
cycle.

(b) Eq. 7 can also be derived by directly expressing the variation in Fg,, using
the (zero) partial (instead of total) variation in the residual of the flow equations.
In this case, we define

_p O (Ofim
OFmg = OF + [ W7 | 2= ) ag 14
AR T ( o, ) (14)
The interchange of partial derivatives (% and %) is now possible and by integrating

by parts and using
06 0 0P ox

3b b, 9w o,
(written for any flow quantity ®) it leads to eq. 7.

(15)

3 Continuous Direct Approach for the Gradient Computation

The continuous adjoint approach computes the objective function gradient at the
extra cost of numerically solving the linear adjoint pde’s, eqs. 8. Thus, the CPU cost
per optimization cycle (based on steepest descent or BFGS, etc) is approximately
equal to that of two “equivalent” flow solutions, irrespective of the number N of
design variables. Thus, at first glance, the presentation of the so—called direct sensi-
tivity approach to the computation of gradients might be useless. It is evident that
the CPU cost of the direct approach is high since the computation of the gradient
of an objective function with respect to N design variables requires N equivalent
flow solutions (N +1 solutions per cycle).

However, the direct sensitivity approach is presented herein for two reasons. The
first reason is that this is an indispensable part of the so—called direct—adjoint ap-
proach for the computation of the exact Hessian matrix. The second (minor) reason
is that, with the mathematical background presented in section 2, the direct sen-
sitivity approach becomes more accurate and cheaper since we may get rid of any
field integral of variations in grid metrics.

The continuous direct approach is based on the computation of variations in flow
quantities (such as dp which appears in eq. 4 or §U in general) from the linearized
form of eq. 1. We first express the partial derivative of the (steady) flow equations

as follows
9 [0 fx -
— 1
which transforms to
B oUu\ -
| A = 1
O 7 ( ’“abi) 0 (17)

Note that it is much more convenient to start from eq. 16 than from the total
variation of g—g’;’j (i.e. using eq. 15 for q):g—gf’;) which requires repetitive calls to the
grid generation software. The discretisation of eq. 17 is based on a Roe-like upwind



H.A. GEORGOPOULOU, K.C. GIANNAKOGLOU/ Solutions to the UC Problem Using EAs

scheme, for the conservation of fluxes expressed as (fig. 1)

. 1 oU oU ouU oU
Gi,pQ = (AP(% 1 +AQ6—bi|R> |APQ| (619 1 6—bi|R) (18)

Along the solid walls, the variation in the no—penetration condition w;n;=0 yields
the boundary flux

. ~Jp - (5nk ﬁuk 5@

ilw — N— w N, w 19
where N = [0,71,n2,0]T and NU =[1, uy, us, E:p] . Homogeneous conditions are
employed at the inlet /outlet of the flow domain, based on apf |[ 0, g%h , ab 21=0

(inlet, I) and 52]o=0 (outlet, O).

4 Continuous Approaches for the Hessian Computation

The Hessian matrix of F' with respect to the design variables can be computed
starting from either the adjoint-based variational expression, eq. 7, or the direct
one, eq. 4, which are rewritten here as follows

> (/ rg\T OU by
- 2/ ~Prar)” w<A’” 7) 5 Ob;

n.dS
[ (- W?m>(£ ) (20)
and
SF 5p ,8(dS)
S /Sgp ptar)db ds + 2/ D—Dtar)’ Sh (21)

Starting from any of the above expressions for the first derivatives, we may then
employ either the direct or the adjoint approach to compute second derivatives.
This leads to four different combinations: adjoint—direct, adjoint—adjoint, direct—
direct and direct-adjoint, three of which are presented below. The analysis of the
direct—direct approach is omitted due to its high computational cost, which is equal
to %N (N+1)+N+1 equivalent flow solutions per optimization cycle.

4.1 The Adjoint—Direct Approach

The variation in eq. 20 with respect to b; leads to the following expression for
the second derivatives of F

SF 1 ,02(dS) op 0(dS) T OU 821y
Soa; 2 Js PP S +/sw< P 5 _/ u,(A” 7) D 0i0b;
T — —
5\1/ U bxy, 1onT OU 8y, 6(dS)
— [ AT =—=Eas— ) —— 22
T 5 (0U) dxy oy 02(ngdS)
- — | =ta v T ) — 2
/ (axk) 5, " / wip = V' fi) 3b:3b;

Wiy 5\17T 2\ 6(ngdS) 0p  opbfi) 6(nidS)
— o
+/sw< 5o, P b, ’“) 5b; +/s T T AT
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According to eq. 22, to compute the values of the (symmetric) Hessian matrix of F’
at any iterate during the optimization loop, apart from U and \IJ their sensitivities
50 U

e and 5‘1' are also necessary. - can be computed by numerically solving eqs. 17

whereas the computation of g_l\i requires a similar formulation based on the adjoint
equations and boundary conditions (not presented here). Each of them requires the
numerical solution of N pde’s. Thus, 2N+2 equivalent flow solutions per optimization
cycle are due.

4.2 The Adjoint—-Adjoint Approach

It is straightforward to use a twice augmented objective function ﬁ’aug, based on
different sets of Lagrange multipliers for the flow (A;, j=1, N) and adjoint (M;, j=
1, N) equations. The second order variation in Fy,, is expressed as

2F,,  O0*F .0 [0Ff 0w
aug _ Ar 2 (2l / MT AT22 ) 4o 2
5b:0b;  8bisb, L au, (8xk b, \ M ) ¢ (23)
Eq. 23 is integrated by parts to give
52 Fpug 52F oA, T U
aug _ [ (ATl dQ / 55,
Sbidh;  0bidh, /Q( kzm) * o

_ a0 + /A M) S 24
/Q axk b, i) 3, S (24)

% is given by eq. 22. In eq. 24, the elimination of the field and boundary

terms which depend on ?TU and ‘9‘1’ gives rise to the two sets of adjoint equations

for A; and M; (2N equatlons) Thus, the total CPU cost per optimization cycle is
still equal to 2N +2 equivalent flow solutions.

where

4.3 The Direct-Adjoint Approach
The derivative of eq. 21 with respect to b, gives

52 F op op &p op 0(dS)
5udh;  Jsudbn oty 0 ol T Prar) s A 5 T
190 3(d) (dS)
* / P Puar) 5=, 2/ Prar) 55 5b, (25)

Starting from eq. 25, the second order variation in Fy,, is defined as

§2Fh,  O°F N LY
= = U — s 26
5bish;  Sbidb; +, FE (a b b, (26)
where the partial derivatives in the right—hand side integrand have been inter-
changed. The integration of eq. 26 by parts gives

= T — .
52F 9 52F RV, 920} 9%,
aug __ _ AT 0 / \DT 5
0b;ob;  db;0b; /Q ( kaxk) 3biabjd + s 6b,-abj”’“d5 (27)
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By twice employing eq. 15, for &= f;;, we obtain

2fi  9f O2f, dx 0%y du O fp Oxdmm O fx 0%

= — 28
Eq. 28 may be solved for the partial derivatives as follows
O o _ Of Ofi dm
abob;, ©  Obiob; " Abdx, ob;
9% owy d2f; 0wy 0 O fr 0%z, e (29)
Ob;0x, 0b; " DDy, 0b; 0b; Dy 5bidb;
The first term on the right—hand side of eq. 29 is finally written as
2f Y (ﬁnk) _ Lﬁéﬂ _ 5_12% _ 7 O (30)

5000, F T T obob;  ob; b,  ob; ob; 80,00,

Due to the no—penetration condition, the flux vector across a solid wall segment is
given by fing=p[0,ny, ns,0]7, so

0 (fine) 8% BN sNop SN
_ N 0X 9 1
5bidh, 5bi5h; © obiob,” T 3y ob, o, obs (31)

Substituting eq. 25 and eqs. 28 to 31 into eq. 27 and after a series of mathematical
rearrangements we obtain

52Faug op Op 6?p 5p d(dS)
503, Jsuoby 50, £p_p“")5b<5b ds*/ P Puar) 5 sy, (32)
SWCR
-\ T -
(5p(5d5') 1 ,02(dS) / 200\ 020
ar — Ptar - Ap— s
+/ PPuan) 5y =g Jo WP ) 5 o\ A | Svn,
FAE
- 02( A, 0) 6%y,
gr_—r’
T Jsio. Tabiob, WS NS, 55 fk)5b¢5bjds
10BC SWCR

0p  rlfi) O 0p  orlfi | O
+/ (\I”““ 6bl> 5, 5T / (‘Ij’““(sz) D

2 2 2 782
—/\ffTAknk(aaU doy  0°U bx 9°U Sxidwn OU 5$l>ds

b,01 0b,  Db,07, 00, D210 am 0b; 8b; | O 5bidb

The field integral marked with FFAE is eliminated by satisfying the field adjoint
equations, eq. 8 (not surprisingly, the adjoint equations are identical to those used
to compute the gradient of F'). The term marked with SWCR is also eliminated
provided that the adjoint compatibility relation, eq. 9, is satisfied along the solid
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walls. Finally, the boundary conditions along the inlet and outlet can be derived
from

L 02(A0) - . Lo
T n — 62 T AT\II —
—5bi5bj 0 = U" (A, )=0 (33)

eliminating, thus, the term marked with /OBC' in eq. 32. The solution of eq. 8§,
with egs. 9 and 33 as boundary conditions, provides the ¥ field. The Hessian matrix
is, then, computed by

62 Foug op op dp 6(dS) dp 6(dS)
Siob; — Jsudbr a0 TSP +/S(p “Puer) S,
,6%(dS) I L
vof b5 ) [ (Wewp =T i) 705 (34)

§p  =plfn) On 0p  ordfi | O
Uy = — v —
* /5( b, 5bz~) 8b; 5, 0T / ( ’““51) 8b; | ob;
92U oz 92U ox; 02U dwdx, OU 8
- /\I’ K k(&b@xl 5b; " 000 6b; T Dy, 0bs 0b; D obiob; |

Provided that the linearised flow equations are solved for the computation of the
oU
ﬁja
additional system of adjoint equations needs to be solved for the computation of the

Hessian matrix. Thus, the total computational cost of the direct—adjoint approach
is equal to N +2 equivalent flow solutions per optimization cycle. It is evident
that the direct-adjoint approach is the less time—consuming among the four possible
approaches.

flow variable sensitivities at the cost of N equivalent flow solutions, only one

5 Application to the Design of a 2D Turbine Cascade

This section presents the inverse design of a 2D turbine cascade (with a predefined
target pressure distribution) in inviscid flow conditions, using gradient—based and
Hessian—based optimization algorithms. The continuous adjoint approach is used to
compute the gradient of the objective function with respect to the design variables
and the direct—adjoint approach is implemented for the computation of the Hessian
matrix. After the validation of the gradient and Hessian values, several optimization
algorithms are compared with respect to their convergence characteristics. The
convergence histories of the functional, gradient and Hessian values are illustrated.

The Euler equations are solved for the flow through the cascade. The flow condi-
tions are: ;=19 and M5>=0.6. The airfoil is parameterized using Bezier polynomials
and 16 control points among which the ordinates of the 14 internal points are free
to move (N=14). The initial set of the design variables defines an airfoil that pro-
duces a pressure distribution which is far apart from the reference (target) one. The
objective function gradient values for the initial configuration, computed using the
metrics—{ree adjoint approach, the conventional adjoint approach, the direct sensi-
tivity analysis and a central finite difference scheme are illustrated in fig. (2), left.
The comparison of gradient values is excellent. We recall that the direct approach
and finite differences require the solution of the linearised flow equations or the flow
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0025 T T LT T T T T T T T
finite differences —%— 04 L finite differences

0.02 - direct sensitivity ---m--- : direct-adjoint approach -------
0.015 b metrics-free adjoint ----®---
: conventional adjoint

N 0.3

0.01
0.005

Gradient Value
Hessian Value

-0.005
-0.01
-0.015

I L R N
20 40 60 80 100 120 140 160 180 200
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o

Figure 2: Inverse design of a 2D turbine cascade. Left: objective function gradient values using
the metrics—free and the traditional adjoint approaches, the direct sensitivity analysis and finite
differences. Right: Hessian matrix values using the direct—adjoint approach and finite differences.
The first 14 values correspond to the first row of ﬁ and so forth (14 columns x 14 rows = 196
values; they are all shown here, although the Hessian matrix is symmetric).

equations, respectively, as many times as the number of the design variables (N + 1
equivalent flow solutions). In contrast, in the adjoint approaches, the cost per op-
timization cycle is equal to that required for the solution of the flow and adjoint
equations (two equivalent flow solutions). Also, the metrics—free adjoint approach
is less time—consuming than the conventional one, since it avoids the 2N calls to
the grid generation software per cycle (for central finite difference schemes). The
Hessian matrix values computed using the direct—adjoint approach are compared to
finite differences in fig. (2), right. Again, the comparison is excellent.

1 _' "' Quasi Newton —— ] "I L I " Newton E
Eo Conjugate Gradient ------- ] b : . Quasi Newton =------ ]
© 16005 Peggrnennnn.! Steepest Descent 1 0 16005 P e ]
3 Fox ST S A N A o\ T ]
> 1e-010 foivie B e o O e I O i 3
T S ] s SR Y
S 1e-015 [ S 16015 F -\l s
© : B : f f f f oy
S 1e-020 | S 16020 o\
- : L ; | : 3 : Cooh ]
18025 | 1€-025 ||
te0so b1 1w Wy fe0s0 b\ 4y
0 20 40 60 80 100120140160180200 0 20 40 60 80 100 120
Cycles Cycles
- T T T T T ]
1 oo Newton = . .
. ‘ Quasi Newton ------- ] Figure 3: Inverse design of a 2D tur-
o 16-005 | : 5 5 ] bine cascade. Convergence rates of
© : the three gradient—based optimiza-
> 1e-010 | . .
= . tion algorithms (top-left), conver-
_§ 1e-015 | gence rate of the Newton and the
§ 16-020 E quasi-Newton algorithms in terms
L ; of the optimization cycles (top—
1e-025 | right) and in terms of the required
equivalent flow solutions (bottom-—

16-030 E S
0 50 100 150 200 250 300 left).
Equivalent Flow Solutions
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The comparison of the convergence histories for three different gradient—based op-
timization algorithms is shown in fig. (5), top-left. The conjugate gradient method
is faster than steepest descent algorithm while the superiority of the quasi—-Newton
(BFGS) method over the previous ones is obvious. At the top-right of fig. (5),
the BFGS algorithm is compared to the exact Newton method, based on the (exact)
Hessian computed using the direct—adjoint approach. In order to accelerate the over-
all convergence rate, the steepest descent algorithm is used for the first ten cycles.
It is obvious that the Newton method outperforms the quasi—-Newton algorithm,
in terms of the required optimization cycles. However, to be fair in comparison,
fig. (5), bottom, shows the convergence rate of the two algorithms in terms of the
required equivalent flow solutions. So, the x—axis scale is multiplied by 2 in the
quasi-Newton approach and 16, (N+2 = 14+2), in the Newton approach. Even
in this case, the Newton approach performs better, especially at the first and most
important optimization cycles.

T T T T H
[ 4 b 1st cycle 1
o 0.01 1 0 A 10th cycle ---»--- |
© converged ---w=---
S 0.0001 | o 03 | converged
= 16006 | 3 T
S 1e- > (AR WO S 1N [N U S N B & 1
-8 1e-008 L c 0.2 : ; : : : ; : :
G 1e-010 2 A :l N S N
g 1e-012 | : ﬁ 0.1 Jr | """ Y| T
§ 1e-014_~—~1——~——5 o ! :,,ﬁ_
< 1e-016 - 1
1e-018 -0.1 L
0 2 4 6 8 10 12 14 0 20 40 60 80 100 120 140 160 180 200
Design Variable Design Variable

Figure 4: Inverse design of a 2D turbine cascade. Convergence history of the inverse design
functional gradient (left) and Hessian (right) values during the optimization.

Gradient and Hessian values, computed using the metrics—free adjoint approach
is illustrated in fig. 4. It can be seen that the gradient absolute values tend to zero
upon convergence while the corresponding Hessian matrix values undergo minor
changes; major changes can be observed only during the first cycles.

0.1 1.05
0 1
0.95
-0.1 0.9
0.2 0.85
> & o8
0.3 A 7E
0.75
-0.4 0.7
0.5 0.65
e A 0.6
0.6 ] i ] ] i i ] i i 0.55

-0.1 0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 -0.1 0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9

X X

Figure 5: Inverse design of a 2D turbine cascade. Comparison of the initial, optimal and reference
airfoil contours and the corresponding pressure distributions.
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In fig. 5, the initial, reference and optimal (computed using the exact Newton
method) contours as well as the corresponding pressure distributions are compared.
In the case of steepest descent or conjugate gradient, similar figures can be obtained.
It is clear that for the deviation between the target and optimal pressure distribu-
tions to vanish, these two algorithms should keep turning for a prohibitively long
period of time; with the exact Newton method, this is achieved within less than 30
cycles.

6 Conclusions

Continuous adjoint and direct approaches for the computation of the gradient
and the Hessian matrix of functionals used for the optimal design of aerodynamic
shapes were presented. Both first and second order sensitivity expressions are free
of field integrals, resulting to lower CPU cost and increased accuracy, since the com-
putation of field geometrical variations is avoided. Concerning the Hessian matrix,
four different approaches were presented and compared for the total required com-
putational cost. The more effective one, i.e. the so—called direct—adjoint approach
(in which the direct approach was used to compute the flow sensitivities and the
adjoint one to compute the Hessian matrix values) was adopted. Although the total
CPU cost depends on the number of design variables, the Newton method based on
the exact Hessian matrix proved to outperform the quasi-Newton approach, which
was the best—performing Hessian—free algorithm.
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