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Abstract. This paper presents a continuous adjoint formulation for inverse de-
sign problems in aerodynamics, based on the low–Mach number preconditioned flow
equations. An existing adjoint method, which yields gradient expressions free of
field integrals is extended to the incompressible flow regime using the compressible
flow equations. The proposed method is applied to the inverse designs of isolated
and cascade airfoils in inviscid and viscous low speed flows where the use of precon-
ditioning reduces considerably the CPU cost.
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1 INTRODUCTION

During the last decades, computational methods for aerodynamic shape opti-
mization problems have reached a certain level of maturity. Among them, the
gradient–based optimization techniques use the derivatives of the objective func-
tion with respect to the design variables to iteratively update design variables by
pointing to the local direction of improvement. In the so–called adjoint method, ba-
sically inspired by control theory

1
, the objective function derivatives are computed

by solving the adjoint equations with almost equal cost to that of solving the flow
equations, irrespective of the number of design variables.

In “conventional” adjoint formulations, the gradient expression contains field
integrals

1
which are costly to compute and may introduce inaccuracies. For in-

viscid flows, Jameson
2

proposed a development that skips the computation of field
coordinate sensitivities. A more general approach (with extension to viscous flows)

has been proposed
3

by these authors and is the basis of the present method.
It is known that the main reason for the performance degradation of time–

marching compressible flow (and adjoint) solvers is the large disparity between

1
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acoustic waves and fluid speeds. By preconditioning
4,5

the flow equations one may
overcome this problem. In view of the above, the objective of this paper is to extend
an existing adjoint method

3
to incompressible flows using an all–speed flow solver

6
.

The use of preconditioned flow and adjoint equations reduces considerably the op-
timization cost at very low speeds. Aerodynamic shapes are parameterized using
Bézier curves with N design variables (b1, ..., bN). The adjoint method computes δF

δbi
,

where F is the objective function and the steepest descent method bnew
i = bold

i −η δF
δbi

is used to update the designed shapes.

2 NAVIER–STOKES & LOW–MACH PRECONDITIONING

The preconditioned flow equations of a compressible fluid are written as follows

Γ−1∂ ~U

∂ t
+

∂ ~f inv
i

∂ xi

− ∂ ~f vis
i

∂ xi

= 0 (1)

where ~U is the vector of conservative variables and ~f inv
i , ~f vis

i are the inviscid and vis-
cous fluxes, respectively. The preconditioning matrix Γ depends on a = min(1,M2),

where M is the local Mach number. Γ is defined by
5

Figure 1: The 1D Riemann prob-
lem for the convective fluxes be-
tween nodes P and Q. Finite vol-
umes ΩP and ΩQ are shown.
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(
∂ ~U

∂ ~V

)−1

(2)

where
(

∂ ~U

∂ ~V

)
is the tranformation matrix from non–

conservative variables
−→
V to

−→
U . Eqs. 1 are discretized

on unstructured grids with triangular elements, using
the vertex–centered finite volume technique. This re-

sults to the balance of numerical fluxes
−→
Φ crossing

the boundary ∂ ΩP , of any volume ΩP

ΩP

∆tP
∆~UP + ΓP

∑

Q∈nei(P )

−→
Φ PQ = 0 (3)

where nei(P ) denotes the set of nodes linked to P by a grid edge,
−→
Φ PQ is the flux

crossing the interface of finite volumes ΩP and ΩQ and ∆~UP = ~Uκ+1
P − ~Uκ

P (κ stands

for the iteration counter). A 1D Roe approximate Riemann solver
7
(fig. 1) is used

to compute the inviscid flux
−→
Φ inv

PQ according to

−→
Φ inv

PQ =
1

2
[AP

~UP + AQ
~UQ]− 1

2
Γ̃−1

PQ |ÃΓ|PQ ∆~UPQ (4)

where Ai =
∂ ~fi

∂ ~U
, AP = AiP nPQ,i, AQ = AiQnPQ,i, |ÃΓ|PQ = |Γ̃PQÃPQ| is the Roe–

averaged preconditioned Jacobian at midnode and ∆~UPQ=~UQ− ~UP . The assumption
|Γ̃−1

PQ Γ̃PQ ÃPQ| ' Γ̃−1
PQ |Γ̃PQÃPQ| is made. Viscous fluxes are computed by assuming

that
−→
V undergoes a linear distribution within each triangular element.



EVOLUTIONARY METHODS FOR DESIGN, OPTIMIZATION AND CONTROL (EUROGEN 2007)

3 ADJOINT FORMULATION USING PRECONDITIONING

The continuous adjoint approach for the inverse design of aerodynamic shapes
at very low flow speeds, based on the preconditioned Navier–Stokes equations as
state equations, is developed. Our aim is to design isolated and cascade airfoils that
produce a given pressure distribution ptar(S) over their solid walls Sw, at specified
flow conditions. The corresponding objective or cost function is

F =
1

2

∫

Sw

(p− ptar)
2dS (5)

and its variation due to variations in the design variables becomes

δF = 1
2

∫
Sw

(p− ptar)
2δ(dS) +

∫
Sw

(p− ptar)δpdS (6)

where δ(dS)=φ1(δ~b) depends on the parameterization. Based on the preconditioned
flow equations, the variation in the augmented objective function is written as

δFaug = δF +
∫

Ω

−→
ΨT δ

[
Γ

(
∂ ~fi

∂ xi

)]
dΩ = δF +

∫
Ω

−→
ΨT Γ δ

(
∂ ~fi

∂ xi

)
dΩ (7)

where ~fi = ~f inv
i − ~f vis

i . Note that the last expression in eq. 7 has been derived by

considering ∂ ~fi

∂ xi
= 0. Since the variation in the gradient of any quantity Φ can be

expressed in terms of the gradient of δΦ and variations in nodal coordinates
5

δ
(

∂ ~Φ
∂ xi

)
= ∂ (δ~Φ)

∂ xi
− ∂ ~Φ

∂ xk

∂ (δxk)
∂ xi

(8)

we obtain

∫
Ω

−→
ΨT

Γ δ
(

∂ ~fi

∂ xi

)
dΩ =

∫
Ω

−→
ΨT

Γ
∂ (δ ~fi)
∂ xi

dΩ− ∫
Ω

−→
ΨT

Γ
∂ ~fi

∂ xk

∂ (δxk)
∂ xi

dΩ (9)

where
−→
ΨΓ = ΓT−→Ψ should be referred to as the vector of the preconditioned adjoint

variables. It is a matter of integration by parts to get

∫
Ω

−→
ΨT

Γ
∂ (δ ~fi)
∂ xi

dΩ = − ∫
Ω

δ ~fT
i

∂
−→
ΨT

Γ

∂ xi
dΩ +

∫
Si,o,w

−→
ΨT

Γ δ ~finidS (10)

and

− ∫
Ω

−→
ΨT

Γ
∂ ~fi

∂ xk

∂ (δxk)
∂ xi

dΩ =
∫
Ω

∂
∂ xi

(−→
ΨT

Γ
∂ ~fi

∂ xk

)
δxkdΩ− ∫

Sw

−→
ΨT

Γ
∂ ~fi

∂ xk
δxknidS (11)

where Si and So are the inlet and outlet boundaries and δ(xk) = φ2(δ~b). Further
development of eqs. 10 and 11 for the inviscid and viscous terms is omitted, in the
interest of space. After several mathematical rearrangements and the satisfaction of
the adjoint equations, we obtain

δF = 1
2

∫
Sw
(p− ptar)

2δ(dS) +
∫

Sw
[
−→
ΨΓi+1p−

−→
ΨT

Γ
~f inv
i ] δ(nidS)

− ∫
Sw

∂ ~UT

∂ xk
An

T−→ΨΓδxkdS +
∫

Sw

−→
ΨΓ

∂ ~fvis
i

∂ xi
δxk ni dS +

∫
Sw

−→
ΨΓ4qiδ(nidS)

+
∫

Sw

−→
ΨΓi+1

ni
τijδ(ninj)dS−∫

Sw

∂ ui

∂ xk
τ

(ΨΓ)
ij δxknjdS − ∫

Sw

∂ T
∂ xk

k ∂
−→
ΨΓ4

∂ xi
δxk ni dS (12)
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where δ(nidS) = φ3(δ~b) and δ(ninj) = φ4(δ~b). Using eq. 12 with appropriate func-

tions φ1 to φ4 (depending on the parameterization) the gradient δF
δbi

= δFaug

δbi
can be

computed and used in the steepest descent method. τ
(ΨΓ)
ij are the so–called “adjoint

stresses”, given by

τ
(ΨΓ)
ij =µeff

(
∂
−→
ΨΓj+1

∂ xi
+uj

∂
−→
ΨΓ4

∂ xi
+

∂
−→
ΨΓi+1

∂ xj
+ui

∂
−→
ΨΓ4

∂ xj

)
− 2

3
µeffδij

(
∂
−→
ΨΓk+1

∂ xk
+ uk

∂
−→
ΨΓ4

∂ xk

)

with µeff =µ+µt being the effective viscosity.
The adjoint variables are computed by solving the field preconditioned adjoint

equations. After taking ΓT out of the spatial derivative, they are written as

∂
−→
Ψ

∂ t
− AT

Γi

∂
−→
Ψ

∂ xi
−

(
∂ ~U

∂ ~V

)−T−→
K = 0 (13)

where
−→
K is defined as (i=1, 2)

K1 = −T
%

∂
∂ xj

(
k ∂

−→
ΨΓ4

∂ xj

)
, Ki+1 =

∂ τ
(ΨΓ)
ij

∂ xj
− τij

∂
−→
ΨΓ4

∂ xj
, K4 = T

p
∂

∂ xj

(
k ∂

−→
ΨΓ4

∂ xj

)

The inlet–outlet boundary conditions are defined by eliminating the integrals of δ~U

over the inlet and outlet (δ~UT (AT
n

−→
ΨΓ) = 0) whereas, along the solid walls, the

condition for the adjoint variables that correspond to the velocity components is−→
ΨΓi+1 = −(p−ptar)ni, i = 1, 2. For constant wall temperature or adiabatic flows,−→
ΨΓ4 = 0 or ∂

−→
ΨΓ4

∂ xi
ni = 0, respectively.

The integration of the preconditioned adjoint equations, eq. 13, over any finite
volume (as defined in section 2) gives the adjoint flux as follows

−→
Φ Ψ

PQ =
1

2
(−AT

ΓP

−→
ΨP − AT

ΓQ

−→
ΨQ) − 1

2
|ÃT

Γ |PQ (
−→
ΨQ −−→ΨP ) (14)

4 RESULTS–DISCUSSION

The proposed method is demonstrated using two airfoil design problems. For
the parameterization of the airfoils, two Bézier curves are used separately for the
pressure and suction sides.
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Figure 2: Case I: Initial, reference and optimal airfoil contour (not in scale, left) and the corre-
sponding pressure distributions (right).
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Figure 3: Case I: Convergence history (left) and objective function gradient components for the
initial geometry computed using the preconditioned adjoint method and finite differences (right).

Case I is concerned with the inverse design of a NACA4415 airfoil at M∞ = 0.001
and a∞ = 6◦. Fig. 2 shows the initial, reference and optimal airfoil contours and the
corresponding pressure distributions. In this case, 30 control points are used. All but
the leading and trailing edge control points are allowed to vary in both the chordwise
and normal–to–chord directions, summing up to 56 design variables. In fig. 3, the
convergence history of the optimization procedure is shown. Assuming that the
solution of the flow and the adjoint equations are of almost equal CPU cost, the
optimization costs ∼ 200 equivalent flow solutions. In fig. 3, the objective function
gradient values computed with the preconditioned adjoint method are compared
to those computed using finite differences. The first 30 data correspond to the
chordwise (first 15) and normal–to–chord (16 to 30) control point coordinates of the
pressure side “measured” from the trailing to the leading edge; the next 30 variables
correspond to the control points parameterizing the suction side (same sequence).
The need for preconditioning both the flow and adjoint equations becomes clear in
fig. 4, where the speed–up of both the direct and adjoint equations is shown.
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Figure 4: Case I: Convergence rates of the flow (left) and the adjoint (right) equations on a selected
airfoil with and without preconditioning.

Case II is concerned with the inverse design of a compressor cascade in turbulent
flow (M2,is=0.1, a1=50◦ and Re=8.105). The Spalart–Allmaras model with wall–

functions
8

is used. A grid with triangular elements, generated using the advanc-
ing front technique and superimposed to structured–like layers of triangles stacked
around the airfoil, are used. The optimization results, fig. 5, are satisfactory.
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Figure 5: Case II: Initial, reference and op-
timal airfoil (top–left), corresponding pressure
distributions (top–right) and convergence his-
tory (bottom).

5 CONCLUSIONS

A preconditioned continuous adjoint formulation for the inverse design of isolated
and cascade airfoils, valid for both high and low Mach number flows was presented.
The proposed formulation allows the inverse design optimization of aerodynamic
shapes at very low Mach numbers with reasonable CPU cost, compared to the con-
ventional adjoint approach (without preconditioning).
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