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ABSTRACT
A new continuous adjoint formulation for the optimization of cascade airfoils with minimum

total pressure losses, i.e. an objective function which has never been used before along with the
continuous adjoint, is presented. To support a steepest descent algorithm, the adjoint method
computes the gradient of the objective function with respect to the design variables. The func-
tion is defined as the difference in total pressure between the inlet to and the outlet from the
cascade. In contrast to other known continuous adjoint approaches in aerodynamics (such as
inverse designs based on target pressure distributions or drag–lift optimization for isolated air-
foils), where the functional is defined over the parameterized solid walls, the present functional
consists of integrals over the inlet/outlet boundaries only. To cope with this particular situa-
tion, the method of characteristics is used to impose inlet/outlet adjoint boundary conditions.
It is worth noting that the objective function gradient is expressed as an integral over the solid
walls. The minimization of losses in linear and peripheral compressor cascades, constrained by
the desirable flow turning and minimum allowed blade thickness, are demonstrated.

INTRODUCTION
In optimization problems, an efficient means to compute the gradient of an objective function

with respect to the design variables is the so–called adjoint approach. The exploitation of the relevant
control theory concepts for the purpose of optimization is due to Pironneau (1984), for problems gov-
erned by elliptic pde’s, whereas the adjoint method within the field of aeronautics was first proposed
by Jameson (1988). Since then, the adjoint method has found widespread use in internal and exter-
nal aerodynamics, Jameson et al. (1998), including turbomachinery applications, Campobasso et al.
(2003), even for unsteady flows, Duta et al. (2002).

Recent and ongoing relevant research, Jameson and Kim (2003), Papadimitriou and Giannakoglou
(2007), Nadarajah et al. (2006), mostly focuses on (a) the reduction of the computational cost of the
optimization loop which includes the repetitive solution of the state and adjoint equations, (b) the
development of continuous adjoint equations for new objective functions in the form of field and/or
boundary integrals and (c) formulations which avoid the presence of field integrals in the final expres-
sion for the objective function gradient, and, thus, the need for repetitive remeshing of domains with
bifurcated shapes to account for variations in grid–related quantities.

With respect to (a), incomplete gradient methods, Mohammadi and Pironneau (2004), which may
skip the solution of adjoint equations have been proposed. Regarding (b), the need for handling
objective functions related to “field” viscous terms for turbomachinery applications, in particular, is
evident. The present authors have recently proposed an entropy generation based objective function
and the corresponding continuous adjoint approach, Papadimitriou and Giannakoglou (2007). Note
that this resulted to a gradient expression free of field integrals, although the objective function itself
was a field integral. This is also related to point (c), where another noticeable contribution is the
so–called reduced gradient approach which gives gradient expressions that include only boundary
integrals and, thus, overcomes “artifices” for computing grid sensitivities, Jameson and Kim (2003).

In this paper, the continuous adjoint approach for an objective function which expresses the total
pressure losses in turbomachinery cascades is presented. Although the objective function is nothing
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more than the difference in averaged (integrated) total pressure between the inlet and outlet, this has
never been used as objective function in the context of continuous adjoint. The need of setting up and
solving design optimization problems in which the objective function is a line (in 2D) or a surface (in
3D) integral defined remotely from the parameterized solid walls can be found in other applications,
such as the design of diffusers with minimum exit flow deviation, Iollo et al. (2001), the design of fans
and propellers for maximum thrust, Ferlauto and Iollo (2001), or the design of wings at supersonic
flow for sonic boom reduction, Nadarajah et al. (2006). However, none of them copes with total
pressure losses minimization in cascades; furthermore, the present adjoint formulation accounts for
the Navier-Stokes equations (with the Spalart–Allmaras turbulence model) and not for the Euler ones
(as the three aforementioned papers do). The discrete adjoint formulation for the present functional,
which is straightforward to develop, has been presented in Papadimitriou and Giannakoglou (2006).

FLOW EQUATIONS AND OBJECTIVE FUNCTION
To illustrate the derivation of the adjoint equations and boundary conditions, we first write the

Favre–averaged viscous flow equations of compressible fluids in their usual vector form as

∂~U
∂ t

+
∂~f inv

i
∂xi

− ∂~f vis
i

∂xi
=~0 (1)

where

~U =




ρ
ρ~u
E


 , ~f inv

i =




ρui

ρui~u+ p~δi
ui(E + p)


 , ~f vis

i =




0
~τi

u jτi j +qi


 (2)

~τi is the vector of the viscous stresses, with

τi j = µ(
∂ui

∂x j
+

∂u j

∂xi
)+λδi j

∂uk

∂xk
, λ =−2

3
µ (3)

and ~δi are the Kronecker symbols, ~u is the velocity vector, qi = k ∂T
∂xi

and E = ρe + 1
2ρu2

i . Eq. 1
along with the turbulence model equations and appropriate boundary conditions constitute the primal
problem (or state) equations to be satisfied on flow domains defined by the initial, any intermediate
(during the optimization loop) and the final–optimal blade or airfoil shape.

For the numerical solution of eq. 1, an in–house software is used. This is a time–marching code
for structured and unstructured grids which uses a point–implicit, upwind, finite–volume discretiza-
tion, with vertex–centered storage of flow variables. Inviscid fluxes at finite volume interfaces are
computed using the upwind scheme of Roe (1981), with second–order variable extrapolation. For
stretched grids, the limiter presented by van Albada et al. (1982), is used. The parallelized solver,
enhanced with multigrid acceleration, is described at length by Lambropoulos et al. (2004). The
one–equation turbulence model by Spalart and Allmaras (1994) is solved separately from the flow
equations, at each pseudo–time step.

As already mentioned, the objective functional is defined as the difference between total pressure
integrals over the inlet Si to and outlet So from of the flow domain Ω, namely

F =
∫

Si

ptdS −
∫

So

ptdS (4)

with variation
δF = −

∫

So

δ ptdS (5)
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since inlet pt remains invariant. Note that δF depends solely on pt variations, and, consequently, on
δ~U over the exit boundary. Variations in geometrical quantities do not appear in eq. 5. However,
by formulating the augmented objective function Faug and after some mathematical rearrangements,
δFaug is expressed in terms of variations in geometrical quantities directly linked to variations in the
design variables that control the shape.

THE ADJOINT PROBLEM
The continuous adjoint formulation may be derived without considering the type of grid (struc-

tured or unstructured) used, by relying upon the identity

δ (
∂ Φ
∂xi

) =
∂ (δΦ)

∂xi
− ∂Φ

∂xk

∂ (δxk)
∂xi

(6)

which holds for any scalar Φ, Papadimitriou and Giannakoglou (2007). The variation in Faug is
formed by adding δF (eq. 5) to the variation in the flow equations multiplied by the adjoint vari-
ables ~Ψ, as follows

δFaug = δF +
∫

Ω
~ΨT δ

(
∂~f inv

i
∂xi

− ∂~f vis
i

∂xi

)
dΩ (7)

Using eq. 6, the integral of the variation in inviscid or viscous terms may be written as

∫

Ω
~ΨT δ

(
∂~fi

∂xi

)
dΩ =

∫

Ω
~ΨT ∂ (δ~fi)

∂xi
dΩ−

∫

Ω
~ΨT ∂~fi

∂xk

∂ (δxk)
∂xi

dΩ (8)

We first consider the inviscid term; integration by parts and the Gauss’ divergence theorem yields

∫

Ω
~ΨT ∂ (δ~f inv

i )
∂xi

dΩ = −
∫

Ω
δ~UT

(
AT

i
∂~Ψ
∂xi

)
dΩ+

∫

Si,o

δ~UT (AT
n
~Ψ)dS

+
∫

Sw

Ψi+1niδ pdS +
∫

Sw

(Ψi+1 p−~ΨT ~f inv
i )δ (nidS) (9)

where Sw stands for the impermeable (uini = 0) solid walls, ~n is the outwards unit normal vector, Ai
is the Jacobian matrix and An = Aini.

The second term on the r.h.s. of eq. 8, after an additional integration by parts, becomes

−
∫

Ω
~ΨT ∂~f inv

i
∂xk

∂ (δxk)
∂xi

dΩ =
∫

Ω

∂~U
∂xk

T

(Ai
T ∂~Ψ

∂xi
)δxkdΩ+

∫

Ω
~ΨT ∂

∂xk
(
∂~f inv

i
∂xi

)δxkdΩ

−
∫

S
~ΨT ∂~f inv

i
∂xk

δxknidS (10)

Regarding the viscous term in eq. 7, the first term on the r.h.s. of eq. 8 (for ~f vis
i ), after being twice

integrated by parts, becomes

−
∫

Ω
~ΨT ∂ (δ~f vis

i )
∂xi

dΩ =
∫

Ω

[
δτi j

(
∂Ψ j+1

∂xi
+u j

∂Ψm

∂xi

)
+δu j

(
τi j

∂Ψm

∂xi

)
+δqi

∂Ψm

∂xi

]
dΩ

−
∫

S
[(Ψi+1 +uiΨm)δτi j +Ψmτi jδui +Ψmδq j]n jdS (11)

where m = 4 (2D) or m = 5 (3D). Further analysis of δτi j or δqi terms is beyond the scope of this
paper and the interested reader should refer to Papadimitriou and Giannakoglou (2007). We also omit
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the development of the boundary integral in eq. 11 which, for solid walls (Sw), should be based on
the identity τi jnin j = 0, Papadimitriou and Giannakoglou (2007). The second integral on the r.h.s. of
eq. 7 can be developed similarly to its inviscid counterpart and the reader may readily work it out by
himself.

If the previous expressions are substituted into eq. 6, a lengthy expression for δFaug is obtained.
Field terms depending on δ~U are eliminated by satisfying the field adjoint equations, namely

∂~Ψ
∂ t

−AT
i

∂~Ψ
∂xi

−M−T ~K =~0 (12)

where M = ∂~U/∂ ~W , ~W = [ρ ,~u, p] is the vector of primitive flow variables and ~K = (K1, ...,Km)T is
defined as follows

K1=−T
ρ

∂
∂xi

(
k

∂Ψm

∂xi

)
, Ki+1=

∂Gi j

∂x j
−τi j

∂Ψm

∂x j
, i ∈ [1,m−1] , Km=

T
p

∂
∂xi

(
k

∂Ψm

∂xi

)
(13)

with Gi j = µ
(

∂Ψ j+1
∂xi

+u j
∂Ψm
∂xi

+ ∂Ψi+1
∂x j

+ui
∂Ψm
∂x j

)
+λδi j

(
∂Ψk+1

∂xk
+uk

∂Ψm
∂xk

)
.

Boundary conditions for Ψi,1 < i < m, over Sw are derived so as to eliminate the boundary inte-
grals which include δ~U or δ ~W other than δui since the latter automatically cancel. Hence, by elim-
inating terms such as

∫
Sw

Ψi+1niδ pdS,
∫

Sw

Ψi+1
ni

[δτi jnin j + τi jδ (nin j)]dS, etc, homogeneous Dirichlet
conditions for Ψi,1 < i < m− 1, are obtained. On the other hand, the solid wall condition on Ψm
depends on the local condition on temperature: Ψm = 0 for given wall temperature and ∂Ψm

∂n = 0 for
adiabatic walls.

Conditions on ~Ψ over Si and So are obtained from the elimination of the inlet/outlet boundary
integrals. Integrals depending on spatial derivatives of flow variables are, there, neglected. The
second integral on the r.h.s. of eq. 9 is analyzed as

∫

Si,o

δ~UT AT
n
~ΨdS =

∫

Si,o

~ΨT Anδ~UdS =
∫

Si,o

~ΨT PΛP−1δ~UdS =
∫

Si,o

[
(PΛ)T~Ψ

]T
δ~V dS (14)

where P and P−1 are formed by the right and left eigenvectors of An, respectively, and Λ is the diagonal
matrix with the eigenvalues of An. ~V is the vector of characteristic flow variables with δ~V = P−1δ~U .

With similar considerations, eq. 5 may be written as

−
∫

So

δ ptdS =−
∫

So

∂ pt

∂ ~W

T

Lδ~V dS (15)

where L is the matrix with the right eigenvectors of the Jacobian matrix of ~W . In 2D problems, for
instance

∂ pt

∂ ~W
= g

[
u2

i
2

, ρu1 , ρu2 ,

(
1− u2

i
2γ

ρ
p

)]
(16)

where g =
(

1+ u2
i

2γ
(γ−1)p

ρ

)
. Along So, the sum of the corresponding terms in eqs. 14 and 15 gives

∫
So

{[
(PΛ)T~Ψ

]T
− ∂ pt

∂ ~W

T
L
}

δ~V dS and the terms in brackets determine the exit conditions on ~Ψ, in

conformity to the boundary conditions for the flow variables. The physical interpretation is simple.
Characteristic flow variables traveling from outside Ω remain constant, so their variation is zero. The
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corresponding adjoint variables are extrapolated from the interior of the flow domain. The ~Ψ variables
related to δ~V traveling from the interior of Ω are computed by solving

[
(PΛ)T~Ψ

]T
+

∂ pt

∂ ~W

T

L = 0 (17)

Along Si, (PΛ)T~Ψ should be zeroed, as in inviscid flows. After eliminating field and boundary inte-
grals depending on δ~U or δ ~W , integrals which include variations in geometrical quantities along the
solid wall read

δFaug =
∫

Sw

(Ψi p−~ΨT ~f inv
i )δ (nidS)−

∫

Sw

~ΨT

(
∂~f inv

i
∂xk

− ∂~f vis
i

∂xk

)
δxknidS

+
∫

Sw

Ψi+1

ni
τi jδ (nin j)dS +

∫

Sw

Ψmq jδ (n jdS)−
∫

Sw

∂ui

∂xl
Gi jδxln jdS (18)

Eq. 18 produces the sensitivity derivatives, which are necessary for the descent optimization algo-
rithm. As prerequisite, the shape parameterization should be defined and expressions for δni, δ (dS),
δxi should be devised. The absence of field integrals in eq. 18 should be noted.

OPTIMIZATION OF TURBOMACHINERY CASCADES
The adjoint method is applied to the loss minimization of 2D and 3D turbomachinery cascades.

The blade contours/surfaces are parameterized using Bézier polynomials. Each blade side is param-
eterized separately. The cascade pitch and stagger angles are considered to be known. Geometrical
constraints to account for very thin blades or airfoils are imposed. Thicknesses are computed at sev-
eral chordwise and spanwise (in 3D) locations and are not allowed to decrease below a fraction of
their initial values. The inequality constraints are handled using the augmented Lagrange multiplier
method, by simultaneously decreasing the steepest descent stepsize.

2D Compressor and Turbine Cascade Designs
The first two applications are concerned with the optimization of a compressor and a turbine

cascade airfoil, for minimum pt losses at given flow conditions. For the compressor cascade: Mout,is =
0.45, αin = 47o, Re = 8×105 whereas for the turbine: Mout,is = 0.75, αin = 0o, Re = 106.

The blade airfoils are parameterized using 13 and 15 control points for the compressor and the
turbine, respectively. Their chordwise coordinates are kept constant and only the normal ones are
allowed to vary. Each airfoil is parameterized at zero stagger angle and, then, rotated to the known
stagger angle. The pitch is equal to 0.7C for the compressor and 0.8C for the turbine cascade (C:chord
length).

Fig. 1 illustrates the reduction in pt losses during the optimization process, in both cascade prob-
lems. The horizontal axis counts cycles; each cycle corresponds to the numerical solution of the state
(mean flow and turbulence model) equations followed by that of the adjoint equations, the computa-
tion of sensitivity derivatives according to eq. 18, the treatment of constraints and, finally, a steepest
descent algorithm with constant stepsize. The vertical axis stands for the non–dimensional total pres-
sure loss coefficient, defined as ω = pt,in−pt,out

pt,in−pin
for the compressor and ω = pt,in−pt,out

pt,out−pout
for the turbine;

overline denotes pitchwise averaging. The initial shapes are existing airfoils used to set the thickness
constraints. With respect to the latter, fig. 2 shows the degree of constraint violation at each cycle.
Note that, a zero value means that no constraint is violated.

The gradient values for the initial and optimal airfoils are illustrated in fig. 3. Positive gradient
values correspond to the suction side control points and the negative, or low–valued positive ones to
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the pressure side. These distributions reveal the thickness reduction tendency for the compressor and
turbine blades.

It is important to pay more attention to the flow related constraint (desired flow turning) rather than
the geometric constraint (minimum thickness). For this purpose, the compressor case was analyzed
twice: with and without taking into account the flow turning constraint. Results are shown together
in fig. 4. As expected, the optimization method had the tendency to further reduce the pt losses by
modifying the flow turning. Hence, it is due to the flow turning constraint that the optimal airfoil
gives ω = 0.027 instead of ω = 0.022 which was obtained for flow turning, different than the desired
one.
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Figure 1: 2D compressor and turbine cascade optimization. Reduction in total pressure loss coeffi-
cient. The initial (dashed line) and optimal (continuous line) airfoil shapes are also shown.
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Figure 2: 2D compressor and turbine cascade optimization. Degree of constraints’ violation during
the optimization cycles. Zero constraint values correspond to feasible solutions.

3D Compressor Design
In this study, a 3D peripheral compressor stator is optimized for minimum pt losses. The shape

of the blade has been optimized in a previous paper by the authors, Papadimitriou and Giannakoglou
(2007), by considering minimum entropy generation due to cascade profile losses. This case is revis-
ited here, the target now being the minimization of pt losses.

The flow conditions are Mout,is = 0.4, αin,per = 0, αin,rad = 0 and Re = 105. An H-type structured
grid with 191× 55× 71 nodes is used. The blade is parameterized using 5 control points in the
spanwise and 13 in the chordwise direction. The blade hub and shroud control points are free to vary
and the remaining control points are obtained by linear interpolation. Constraints on minimum blade
thickness are also imposed here, computed at various positions along the spanwise and chordwise
directions. The pressure distribution over the optimal blade is shown in fig. 5.
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Figure 3: 2D compressor and turbine cascade optimization. Functional gradient values for the initial
and optimal set of control points. The first half variables correspond to the normal–to–chord coor-
dinates of the suction side control points and the remaining correspond to those parameterizing the
pressure side. At the optimal solution, the objective function gradient is far from being zeroed due to
the imposed costraints. Note that the vertical axis represents non–penalized (due to the constraints)

total pressure losses.
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Figure 4: 2D compressor and turbine cascade optimization. Reduction in total pressure loss co-
efficient, left, and in flow turning angle, right, with and without taking into account the “equality”

constraint on flow turning.

The total pressure losses reduction and the constraint violation measures are shown in fig. 6,
which demonstrates the same thinning tendency as in the previous 2D cases. The initial and optimal
control points at hub and tip are shown in fig. 7, while the corresponding contours are illustrated in fig.
8. In the same figures, we repeat the optimal shapes computed by Papadimitriou and Giannakoglou
(2007), for the same case and minimum entropy generation. A similar tendency is observed and small
differences are due to the slightly different initial set of free design variables.

CONCLUSIONS
This paper develops, demonstrates and assesses a continuous adjoint approach for the shape op-

timization of turbomachinery cascades so as to minimize total pressure losses. Despite the form
of the objective function which includes integrals over the inlet to and the outlet from the cascade,
the expression of the objective function gradient with respect to the design variables contains only
integrals along the solid walls, which is advantageous since it avoids unnecessary remeshings and,
thus, reduces the total CPU cost. Demonstrations on compressor and turbine, 2D and 3D cascade
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Figure 5: 3D compressor blade optimization. Pressure distribution over the optimal blade. Minimum
pressure: 1.86, maximum pressure: 2.55, increment: 0.0345.
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Figure 6: 3D compressor blade optimization. Convergence of the total pressure losses functional,
left and sum of violated constraints, right.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

y

x

initial
optimal (total pressure)

optimal (entropy)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

y

x

initial
optimal (total pressure)

optimal (entropy)

Figure 7: 3D compressor blade optimization. Initial and optimal sets of control points for the blade
hub and tip using the total pressure loss functional proposed in the present paper and the entropy

generation functional, presented in Papadimitriou and Giannakoglou (2007).

designs, indicate that the method performs satisfactorily. Flow and geometric constraints are taken
into consideration.
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functional, presented in Papadimitriou and Giannakoglou (2007).
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