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ABSTRACT
In this paper, a constrained optimization algorithm is for-

mulated and utilized to improve the aerodynamic performance
of a 3D peripheral compressor blade cascade. The cascade ef-
ficiency is measured in terms of entropy generation along the
developed flowfield, which defines the field objective functional
to be minimized. Its gradient with respect to the design vari-
ables, which are the coordinates of the Non–Uniform Rational
B–Spline (NURBS) control points defining the blade, is com-
puted through a continuous adjoint formulation of the Navier–
Stokes equations based on the aforementioned functional. The
steepest descent algorithm is used to locate the optimal set of de-
sign variables, i.e. the optimal blade shape. In addition to the
well-known advantages of the adjoint method, the current for-
mulation has even less CPU cost for the gradient computation as
it leads to gradient expression which is free of field variations in
geometrical quantities (such as derivatives of interior grid node
coordinates with respect to the design variables); the computa-
tion of the latter would be costly since it requires remeshing anew
the computational domain for each bifurcated design variable.
The geometrical constraints, which depend solely on the blade
parameterization, are handled by a quadratic penalty method by
introducing additional Lagrange multipliers.

�PhD Student, National Technical University of Athens.
†Associate Professor, National Technical University of Athens.

NOMENCLATURE
�b Vector of design variables
e Energy per unit mass
E Total energy per unit volume, E � ρe� 1

2 ρu2
i

�f inv
i Inviscid flux array

�f vis
i Viscous flux array

k Heat transfer coefficient
ṁ Mass flow rate
ni Normal to the surface, unit vector component
p Pressure
qi Thermal flux, qi � k ∂T

∂xi

s Specific entropy
Si Inlet Surface
So Outlet Surface
Sw Wall Surface
t Time
ti Blade thickness
T Temperature
ui Velocity components
�U Vector of conservative variables
�V Velocity vector
xi Cartesian coordinates
δi j Kronecker symbols
η Steepest descent step size
µ Effective viscosity
�Ψ Vector of adjoint variables
ρ Density
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τi j Viscous stress
Ω Volume

INTRODUCTION
Analysis tools for numerically predicting flow fields in sin-

gle or multiple turbomachinery rows have reached a trustworthy
level. Based on these tools, numerous algorithms for the design
of optimal blade shapes have been developed. The role of the
analysis tools in optimization methods is to evaluate the perfor-
mance of candidate blade geometries, associating with them an
objective functional value. It is readily understood that random-
ized search algorithms are computationally demanding when
dealing with complex 3D flows. Thus, smart search algorithms
of either stochastic [1] or deterministic nature [2] have been pro-
posed instead; their hybridization [3] is also possible. This paper
deals exclusively with deterministic optimization methods which
rely on the adjoint method for the computation of gradients.

Control theory [2,4–6] has proved to perfectly support aero-
dynamic shape design–optimization methods. The properly pa-
rameterized blade shape to be optimized “controls” the fluid flow
within the blade row passage and determines its performance by
means of a user–defined objective functional. The so–called ad-
joint method computes the gradient of the functional with respect
to the design variables and a descent algorithm guides the search
towards the optimal solution.

The present paper focuses on the aerodynamic optimization
of a 3D peripheral compressor cascade; the optimal blade shape
which, for the prescribed flow conditions and under certain ge-
ometrical constraints, gives minimum viscous losses is sought.
The geometrical constraints concern the minimum allowed thick-
ness of the blade; no other structural constraints or constraints
related to flow turning are imposed. The performance of the
peripheral cascade is measured in terms of entropy generation
through the blade passage. Thus, the objective functional is de-
fined as the difference in mass–averaged entropy between the in-
let to the flow domain and its outlet. It is, then, transformed to a
field integral in terms of velocity gradients; replacing entropy by
terms involving temperature and velocity gradients was first pro-
posed by Denton [7–9], as a means to account for profile losses
in 2D turbomachinery cascades. The aforementioned theoreti-
cal framework is further exploited to set up a new continuous
adjoint formulation [10] for the optimization of turbomachinery
cascades, with certain advantages as described below. Our ma-
jor concern is to derive objective function gradient expressions
which are free of field terms. This is achieved by carefully treat-
ing terms which depend on the variation of flow and geometri-
cal quantities’ gradients and simplifies the calculations by avoid-
ing computing the variation of each internal grid node coordinate
with respect to the design variables. The latter would otherwise
be costly as it requires as many calls to the grid generation soft-
ware as the number of design variables.

The geometrical constraint handling is taken into account
through the Lagrange multiplier penalty method [11]. The gra-
dients of the constraint functions are computed and used during
the optimization procedure, finally leading to feasible solutions.
The Spalart–Allmaras model, particularly adapted to compresi-
ble flows, is used for the calculation of the turbulent viscosity
coefficient. Variations in turbulent viscosity are omitted.

FLOW EQUATIONS AND OBJECTIVE FUNCTIONAL
Using the Einstein convention for repeated indices, the

Navier–Stokes equations for the turbulent flow of a perfect gas
are written as

∂�U
∂t

�
∂�f inv

i

∂xi
�

∂�f vis
i

∂xi
��0 (1)

where
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�
� ρ

ρ�V
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�
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�
� ρui

ρui�V � p�δi

ui�E � p�
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and

τi j � µ�
∂ui

∂x j
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∂u j

∂xi
��λδi j

∂uk

∂xk
� λ ��

2
3
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In the present application, the objective functional to be min-
imized is defined as the difference in mass averaged entropy s
between the inlet Si to and outlet So from the flow domain,

F �

�
So

sdṁ �

�
Si

sdṁ �

�
Si�o

ρVnsdS �

�
S

ρVnsdS (4)

Using Gauss’ divergence theorem and the continuity equa-
tion, Eq. (4) is transformed to a field integral over the flow do-
main Ω, as follows

F �

�
Ω

ρui
∂s
∂xi

dΩ (5)

Eq. (5) is further expressed in terms of temperature and velocity
gradients as
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F �

�
Ω

1
T

τi j
∂ui

∂x j
dΩ (6)

The integrand in Eq. (6) was proposed in [7–9] for 2D boundary
layers to express the total rate of entropy creation, viz. the vis-
cous shear work being converted to heat at temperature T . Al-
though profile losses are associated with boundary layers, F is
defined over the whole computational domain Ω, since the vis-
cous stresses and velocity gradients outside the boundary layer
are comparatively negligible. By minimizing the profile losses,
total pressure losses are expected to reduce, too.

ADJOINT EQUATIONS, BOUNDARY CONDITIONS AND
SENSITIVITY DERIVATIVES

The integral of the variation of the flow equations, multiplied
by the adjoint variables �Ψ over Ω, is added to the variation of F
yielding thus the variation of the augmented objective functional
Faug, namely

δFaug � δF �
�

Ω
�ΨT δ�

∂�f inv
i

∂xi
�

∂�f vis
i

∂xi
�dΩ (7)

In order to formulate the adjoint problem, Gauss’ divergence
theorem is applied to reduce the order of flow variable variations.
In Eq. (7), the variation in the gradient should be transformed to
the gradient of a variation. This can be done by considering that
any flow variable Φ depends on both grid coordinates and design
variables. By expressing (a) the variation in Φ with respect to the
design variables, (b) the variation in the gradient of Φ and (c) the
gradient of the variation in Φ, it can be shown [12] that

δ�
∂Φ
∂xi

� �
∂�δΦ�

∂xi
�

∂Φ
∂xk

∂�δxk�

∂xi
(8)

Eq. (8) expresses the variation in any spatial derivative of Φ in
terms of the spatial derivative of δΦ and the scalar product of
the gradient of Φ and the same spatial derivative of the varia-
tion in the position vector; the latter accounts for variations in
grid node coordinates due to the variation in design variables �b
controlling the geometry. Using Eq. 8, the variation in gradients
is transformed to gradients of variations and Gauss’ divergence
theorem can be employed. The latter is used to develop terms
including gradients of both flow and geometrical variations (ap-
plied once for the inviscid terms and twice for the viscous terms)
and leads to the final expression for the augmented functional
variation [10, 12], namely
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The elimination of all field terms which depend on the vari-
ations in �U gives rise to the field adjoint equations:

∂�Ψ
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M is the Jacobian matrix of the transformation from the conser-
vative to the non–conservative flow variables.

The surface integrals defined over the inlet, outlet and solid
walls, which also depend on flow variations, are eliminated too,
giving rise to the boundary conditions for �Ψ. At the inlet and
outlet, viscous terms can be neglected, so δ�UT �AT

n
�Ψ� � 0. Over

the wall surfaces, Ψ2 � Ψ3 � Ψ4 � 0, while either homogeneous
Dirichlet or Neumann condition can be imposed for Ψ 5, depend-
ing on the corresponding temperature condition. Here, adiabatic
wall conditions were used, so ∂Ψ5

∂n � 0.
Once the field adjoint equations and their boundary condi-

tions have been satisfied, the remaining terms in Eq. (9) read
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where
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Given a shape parameterization in terms of �b, Eq. (11) is
used to compute the gradient of Faug with respect to the design

variables. This gradient supports the search of the optimal blade
shape, which is carried out using the steepest descent algorithm,
controlled by a step size η (see next section). From Eq. (11), it
can be deduced that, although F was a field integral, its gradient
expression is free of field terms, depending solely on integrals
defined on the parameterized wall surfaces.

CONSTRAINT HANDLING
In order to prevent the optimization procedure from converg-

ing to “non–acceptable” blade geometries, n geometrical con-
straints are imposed. These constraints control the minimum al-
lowed thickness at certain points along the cascade blade. So,
the blade thickness ti at a number of preselected points should
always exceed predefined minimum allowed values t min

i . Each
constraint is cast in the form of an inequality Ci � tmin

i � ti � 0.
These inequality constraints are handled using Langrange

multipliers and penalty coefficients [11]. The inequality con-
strained optimization problem

min Faug

s�t� Ci � 0 � i � 1�n (12)

is first transformed to an equivalent equality constrained problem

min Faug

s�t� Ci � z2
i � 0 � i � 1�n (13)

by introducing the variables zi. Introducing additional Lagrange
multipliers λi and the penalty coefficient w, the constrained prob-
lem (13) becomes equivalent to the following unconstrained one

min Fc�aug � Faug � ∑
i�1�n

λi�Ci � z2
i �� ∑

i�1�n

w
2
�Ci � z2

i �
2 (14)

The optimal value for zi is z2
i � max�0��� λi

w �Ci�� and
the update formula for the Lagrange multipliers is λ k�1

i � λk
i �

wk�Ck
i � z2

i �, where k is the optimization cycle counter.
Theoretically [11], the minimization of Fc�aug converges to

the optimal solution for continuously increasing values of the
penalty coefficient w. Additionally, numerical experiments rec-
ommend that η should decrease from cycle to cycle.

The gradient of the second and third term on the r.h.s. of
Eq. (14) needs to be computed too and the gradient of Fc�aug with
respect to �b drives the steepest descent algorithm towards con-
vergence, according to the update rule
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�bk�1 ��bk�η
�

δFc�aug

δ�b

�k

(15)

CONSTRAINED OPTIMIZATION ALGORITHM
This section presents an outline of the iterative algorithm

used to solve the constrained optimization problem. For the
sake of brevity, we introduce five operators which govern
the evaluation of the performance of any blade cascade with
respect to the previously stated objective function, the con-
straint handling as well as the solution of the adjoint equa-
tions. So: (a) BLADE(�b) builds the blade shape using the
actual set of values of �b through the NURBS theory [13],
(b) GRID(BLADE(�b)) generates the computational grid in the
cascade passage, (c) THICKNESS(BLADE(�b)) computes thick-
nesses ti, (d) FLOW(GRID(BLADE(�b))) solves the flow equa-
tions, Eqs. (1) and (e) ADJOINT(�U ,GRID(BLADE(�b))) solves
the adjoint equations, Eqs. (10). The iterative algorithm is as
follows:

Step 0: Starting values of the design variables �b0, Lagrange
multipliers λ0

i and penalty coefficient w0 are set (k=0).
Step 1: The blade shape is built (BLADE(�bk)), the necessary

thicknesses are computed (THICKNESS(BLADE(�bk))) and
the computational grid generated (GRID(BLADE(�bk))).

Step 2: The derivatives of geometrical quantities (such as unit
normal vectors �n, finite areas dS) with respect to �b are
computed at each grid node over the blade surface, using
finite–difference schemes. For this purpose, the non–costly
BLADE(�bk��ε) operator, where �ε is an infinitesimal incre-
ment per component of�b, is repeatedly applied.

Step 3: Derivatives dti
d�b

of blade thicknesses with respect to�b and

consequently dCi

d�b
are computed directly from the derivatives

calculated in the previous step.
Step 4: The flow equations are solved for the given flow condi-

tions using FLOW(GRID(BLADE(�bk))) and �Uk is computed.
Step 5: The adjoint equations are solved using

ADJOINT(�Uk,GRID(BLADE(�bk))) and �Ψk is computed.
Step 6: The objective function gradient dFc�aug

d�b
is computed and

the design variables�bk�1 are updated using the steepest de-
scent formula, Eq. (15)

Step 7: The Lagrange multipliers λk�1 and the penalty coeffi-
cient wk�1 are updated, as described in the previous section.
Go to step 1, with k � k�1.

RESULTS–DISCUSSION
In this section, the previously described optimization algo-

rithm is applied to the design of a 3D peripheral compressor cas-

cade where the objective is the minimization of entropy increase
within the flow passage, at a single operating point. At this point,
the isentropic exit Mach number is 0�5, the inlet flow is axial and
the chord–based Reynolds number is 5�105.

The flow solver is a 3D Navier–Stokes equations solver
for H–type structured grids based on a vertex–centered, finite–
volume discretization. It uses an upwind formulation for the in-
viscid fluxes, employing Roe’s approximate Riemann solver [14]
and variable extrapolation to account for second-order accuracy.
The van Leer–van Albada limiter [15] is used to cope with inac-
curacies owing to highly stretched grids. The Spalart–Allmaras,
low–Reynolds turbulence model [16] is used.

The gradient of the objective functional is calculated using
the continuous adjoint formulation described above. The adjoint
PDEs are discretized using a Roe–type discretization scheme
[17] and the same limiter is employed to overcome inaccuracies
in the calculation of gradients.

The cascade is parameterized using 3D NURBS, separately
for the blade pressure and suction sides. 13 control points are
placed in the longitudinal direction and 5 in the radial one, thus
resulting in a total of 65 control points per blade surface. Only
the control points placed along the hub and tip are directly con-
trolled by�b. The interior control points in the spanwise direction
are placed by linearly interpolating the hub and tip ones. For the
“primitive” control points (i.e. those comprising �b), only their
peripheral coordinates are free to vary. Thus, 28 free variables
are to be optimized in total (�b � R28).

The cascade is formed by 61 blades with a (spanwise con-
stant) stagger angle of 27 deg. An H–type structured grid of
191�55�71 nodes is generated at step 1 of the repetitive algo-
rithm by solving elliptic type equations with appropriate source
terms.

The convergence of the optimization algorithm for the se-
lected tuning parameters is obtained within 35 cycles. Fig. (1)
shows the evolution of the objective function value dur-
ing the cycles; it stands for the entropy generation (here,
non–dimensionalized entropy, in conformity to the non–
dimensionalization of the flow equations). From this figure, it
is obvious that the entropy generation varies non–monotonically
during the first 15 cycles, during which feasible and infeasible
shapes are generated. This can be seen by examining Fig. (2). In
the latter, the sum of values of the geometrical constraint func-
tion, ∑i�1�n max�Ci�0�, is plotted in terms of cycles. During the
first cycles, the frequent violation of the constraints is obvious.
However, after the 15th cycle, all constraints are satisfied; some
slight violations of constraints after the 15th cycle can practically
be neglected.

The pressure coefficient distribution along the blade
midspan, for both the starting and optimal blade are shown in
Fig. (3). They correspond to the iso–Mach contours at midspan,
plotted in Fig. (4). The total pressure loss coefficient in the cas-
cade is reduced from ω � 0�038 to ω � 0�033. Note that the
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Figure 1. Convergence of entropy generation rate.
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Figure 2. Sum of geometrical constraints, ∑i�1�n max�Ci�0�, showing

the violation of constraints in each cycle.

improvement is considerable (13%) due to the fact that the im-
posed constraints practically allowed a small reduction in the
blade thickness. The 3D computational grid and the pressure
distribution over a part of the peripheral cascade are illustrated
in figs. (5) and (6).

The initial and optimal set of control points for the blade
hub, Fig. (7), and tip, Fig. (8), are also shown. A 3D view of
the initial and optimal control points is shown in Fig. (9). In
Figs. (10) and (11), the blade airfoils at the hub and tip are illus-
trated. All these figures reveal the same tendency for the blade
geometry and control points. The blade contour slope right after
the leading edge becomes milder and the blade tends to become
thinner; however any further reduction in the blade thickness is
avoided due to the constraint imposition. If the geometrical con-
straints are not taken into account, the optimization algorithm
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Figure 3. Presssure coefficient distribution for the initial and optimal

blade at midspan.

Figure 4. Mach number distribution for the initial (top) and the optimal

(bottom) blade at midspan. Maximum Mach=0.95, increment=0.0475.

tends to continuously reduce the blade thickness. As expected,
the reduction in thickness starts at the leading edge. Computa-
tional experiments showed that the objective functional reduces
until the thickness of the blade becomes almost zero, resulting of
course in an infeasible shape solution.

The convergence trend of the optimization algorithm and the
physical meaning of the final solution is further clarified with
Fig. (12). The derivatives of the objective functional F mea-
suring the entropy generation with respect to the control points
defining the suction side are positive for both hub and tip (14
first values); in contrast, the same derivatives for the pressure
side control points are negative. Thus, generally, the blade tends
to become thinner. By carefully examining the same figure, one
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Figure 5. 3D computational grid over the blade and hub surfaces of the

optimal peripheral cascade.

Figure 6. Mach number distribution over the blade and hub surfaces of

the optimal peripheral cascade. Minimum P=1.4bar, maximum P=2.5bar,

increment=0.055bar.

might notice that the derivatives of the suction side control points
near the leading edge have comparatively higher values. This
leads to greater reduction of their values during the descent al-
gorithm. When the blade becomes too thin in this region, the
constraint gradient “reacts” on both suction and pressure sides.
As a consequence, although the pressure side control points tend
to approach the suction side ones (thus thinning the blade), the
constraint forces them move in the opposite direction.
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Figure 7. Initial and optimal control points for the blade hub.
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Figure 8. Initial and optimal control points for the blade tip.

CONCLUSIONS
A new continuous adjoint formulation for the optimization

of turbomachinery blades was presented. The objective func-
tional was defined in terms of the entropy generation within the
blade passage. By considering that this is mainly due to the pro-
file losses, the objective functional took the form of a field in-
tegral expressed in terms of velocity gradients and temperature.
The handling of terms expressing the variation of spatial gradi-
ents, as shown in detail in this paper, led to the objective function
gradient which is free of field terms. Geometrical constraints are
imposed using additional Lagrange multipliers and a penalty co-
efficient. The algorithm proved to be non–costly and the cost
for the design of a peripheral compressor cascade was equiva-
lent to approximately 70 flow solutions (35 solutions of the flow
equations and an equal number of solutions of the adjoint equa-
tions, both considered to have almost the same computational
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Figure 10. Initial and optimal blade contours at hub.

cost). The proposed method overcomes repetitive grid genera-
tion at each cycle, which is the standard technique to compute
derivatives of the coordinates of interior grid nodes with respect
to the design variables.
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