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A continuous adjoint formulation for the minimization of viscous losses in laminar cas-
cade flows is presented. The losses are expressed in terms of entropy generation due to the
boundary layer formation and development. The minimization of the entropy difference
between the inlet to and outlet from the flow domain results from the minimization of a
field integral, expressed in terms of the velocity gradient. For the latter, appropriate field
adjoint equations along with boundary conditions are derived, leading to sensitivity deriva-
tives depending only upon wall boundary terms. The Lagrange multiplier penalty method
is used to handle geometrical constraints related to the minimum allowed thickness of the
designed cascade airfoils. For the sake of comparison, a discrete adjoint method was also
programmed and used for the solution of the same problem, in which the total pressure
losses, instead of the entropy increase, was used as the objective function.

I. Introduction

In Computational Fluid Dynamics, the formulation and numerical solution of the so–called adjoint equa-
tions is the means of computing the objective function gradient required by deterministic optimization
methods. In the literature, continuous and discrete adjoint methods have been devised and proposed. In
the former, the adjoint equations are derived from the flow equations by considering them as constraints to
the objective function and are, then, discretized accordingly.1–4 In the discrete adjoint method, the discrete
adjoint equations are derived from the discretized flow equations.5, 6 Through either variant, the objective
function gradient is computed with the same CPU cost regardless of the number of design variables; this cost
is by far less than that of finite–difference schemes. The adjoint approach was introduced by Pironneau7 for
elliptic problems and extended to transonic flows by Jameson.8, 9

The treatment of the objective function reflects a major difference between continuous and discrete
methods. In the discrete method, the objective function merely acts as a right–hand–side term in the adjoint
equations. Regardless of where the objective function has been defined, viz. either over the whole domain
or just along its boundary, the treatment is the same. Any objective function is admissible which is not the
case in continuous adjoint. Current research on continuous adjoint methods focuses on the formulation of
the adjoint equations and boundary conditions for objective functions which are theoretically inadmissible,
though of engineering interest.10

In this paper, an objective function which quantifies losses in viscous layer dominated flows is employed
and, based on it, both continuous and discrete adjoint methods are formulated and tested. The optimiza-
tion of a compressor airfoil cascade is used to demonstrate convincingly that the proposed method works
well. However, the formulation is general and may become useful in many other internal aerodynamics
design problem, such as the design of optimal ducts. The mimimum loss requirement is expressed as the
minimization of the entropy increase from the inlet to the outlet of the domain. The proposed formulation
takes into account only the part of entropy generated within the viscous layers and the objective functional
takes the form of a field integral with integrand depending mainly on the velocity gradient. In the past, the
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theoretical backround of the proposed objective function was used to compute viscous losses associated with
2D turbomachinery flows11–13 and, in the present work, is used in design–optimization problems. Accord-
ing to the development shown below, the resulting sensitivity derivatives are cast in the form of boundary
integrals along solid walls. Note that this is not really necessary in the development of the discrete adjoint
method, in which the objective function is just the difference between total pressure integrals over the inlet
and outlet boundaries, but is extremely useful for the continuous adjoint. Finally, in both methods, extra
Lagrange multipliers are introduced to account for geometrical constraints: the design of the cascade airfoil
is subjected to constraints related to minimum allowed thicknesses at several longitudinal positions.

II. Flow Equations and Objective Function

The Navier–Stokes equations for 2D laminar flows of perfect gases are written as

∂U
∂t

+
∂f inv

i

∂xi
− ∂fvis

i

∂xi
= 0 (1)

where

U = h

⎡
⎢⎣ ρ

ρV
E

⎤
⎥⎦ , f inv

i = h

⎡
⎢⎣ ρui

ρuiV + pδi

ui(E + p)

⎤
⎥⎦ , fvis

i = h

⎡
⎢⎣ 0

τi

ujτij + qi

⎤
⎥⎦ (2)

and τi = [τi1, τi2]T are the viscous stresses, with

τij = μ(
∂ui

∂xj
+

∂uj

∂xi
) + λδij

∂uk

∂xk
, λ = −2

3
μ (3)

Also, δi = [δi1, δi2]T are the Kronecker symbols, V = [u1, u2]T is the velocity vector, qi = k ∂T
∂xi

and
E = ρe + 1

2ρu2
i . The Einstein convention applies for repeated indices.

The entropy s generation due to viscous effects over the flow domain Ω is determined by subtracting the
mass averaged integral of s at the inlet Si from the corresponding quantity at the outlet So, namely

F =
∫

So

sdṁ −
∫

Si

sdṁ =
∫

Si,o

ρVnsdS =
∫

S

ρVnsdS (4)

It is evident that the contribution of solid walls and periodic boundaries to the integrals in Eq. (4) is zero,
so the last expression is also true. Using the Gauss’ divergence theorem and the continuity equation, Eq. (4)
is transformed to a field integral over the flow domain Ω, as follows

F =
∫

Ω

ρui
∂s

∂xi
dΩ (5)

or11–13

F =
∫

Ω

1
T

τij
∂ui

∂xj
dΩ (6)

The variation in the so–called augmented objective function δFaug is derived by adding the inner product
of the vector of costate variables Ψ and the variation in the flow equations to the variation in the objective
function (i.e. Eq. (6)); so

δFaug = δF +
∫

Ω

ΨT δ(
∂f inv

i

∂xi
− ∂fvis

i

∂xi
)dΩ (7)

III. Formulation of the Adjoint Equations

Any further development of Eq. (7) is based on the following relationship.

δ(
∂Φ
∂xi

) =
∂(δΦ)
∂xi

− ∂Φ
∂xk

∂(δxk)
∂xi

(8)
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which can be proved after subtracting

∂(δΦ)
∂xi

=
∂

∂xi
(
∂Φ
∂b

)δb +
∂2Φ

∂xi∂xk
δxk +

∂Φ
∂xk

∂(δxk)
∂xi

(9)

from

δ(
∂Φ
∂xi

) =
∂2Φ

∂xi∂xk
δxk +

∂

∂b
(
∂Φ
∂xi

)δb (10)

where b is the array of design variables. Eq. (9) expresses the derivative of the variation in Φ

δΦ =
∂Φ
∂b

δb +
∂Φ
∂xj

δxj (11)

with respect to xi, while Eq. (10) expresses the variation in ∂Φ
∂xi

. Based on Eq. (8), the integral on the r.h.s.
of Eq. (7) becomes ∫

Ω

ΨT δ

(
∂fi
∂xi

)
dΩ =

∫
Ω

ΨT ∂(δfi)
∂xi

dΩ −
∫

Ω

ΨT ∂fi
∂xk

∂(δxk)
∂xi

dΩ (12)

where fi stands for either f inv
i or fvis

i .

Development of the Inviscid Terms
By first considering the inviscid fluxes, both terms on the r.h.s. of Eq. (12) are integrated by parts and,

after some mathematical rearrangements, we get∫
Ω

ΨT δ

(
∂f inv

i

∂xi

)
dΩ = −

∫
Ω

(
δUT − ∂U

∂xk

T

δxk

)(
AT

i

∂Ψ
∂xi

)
+
∫

Ω

ΨT ∂

∂xk

(
∂f inv

i

∂xi

)
δxkdΩ −

∫
Sw

∂U
∂xk

T

An
T ΨδxkdS +

∫
Sw

Ψi+1niδpdS +∫
Sw

(Ψi+1p − ΨT fi)δ(nidS) +
∫

Si,o

δUT (AT
nΨ)dS (13)

where Ai are the Jacobian matrices, An = Aini and ni are the components of the outward normal vector at
any boundary edge of the flow domain. Summation is implied for i = 1, 2.

Development of the Viscous Terms
Starting point for the development of the viscous terms in Eq. (12) is a relationship that is similar to

Eq. (8) and governs variations in second–order derivatives. It could readily be shown that

δ(
∂2Φ

∂xi∂xj
) =

∂2(δΦ)
∂xi∂xj

− ∂2Φ
∂xi∂xk

∂(δxk)
∂xj

− ∂2Φ
∂xj∂xk

∂(δxk)
∂xi

− ∂Φ
∂xk

∂2(δxk)
∂xj∂xi

(14)

Through Eq. (14) and the identity τijninj = 0, the viscous term in Eq. (7) gives∫
Ω

ΨT δ

(
∂fvis

i

∂xi

)
dΩ = −

∫
Ω

(
δW − ∂W

∂xk
δxk

)T

KdΩ −
∫

Ω

ΨT ∂

∂xk

(
∂fvis

i

∂xi

)
δxkdΩ +∫

Sw

δui

[
μ

(
∂Ψj+1

∂xi
+uj

∂Ψm

∂xi
+

∂Ψi+1

∂xj
+ui

∂Ψm

∂xj

)
+λδij

(
∂Ψk+1

∂xk
+uk

∂Ψm

∂xk

)
−Ψ4τij

]
njdS +

∫
Sw

δT

(
k

∂Ψ4

∂xi
ni

)
dS −

∫
Sw

Ψ4δ(qjnjdS) +
∫

Sw

Ψ4qjδ(njdS) −∫
Sw

Ψi+1

ni
[δτijninj + τijδ(ninj)]dS +

∫
Sw

Ψi+1

ni
τijδ(ninj)dS −

∫
Sw

uiΨ4δτijnjdS −
∫

Sw

∂ui

∂xl

[
μ

(
∂Ψj+1

∂xi
+uj

∂Ψm

∂xi
+

∂Ψi+1

∂xj
+ui

∂Ψm

∂xj

)
+λδij

(
∂Ψk+1

∂xk
+uk

∂Ψm

∂xk

)]
δxlnjdS +

∫
Sw

∂T

∂xk

(
k

∂Ψ4

∂xi

)
δxknidS −

∫
Sw

ΨT ∂fvis
i

∂xk
δxknidS (15)
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where

K1 = −T

ρ

∂

∂xi

(
k

∂Ψ4

∂xi

)

Ki+1 =
∂

∂xj

[
μ

(
∂Ψj+1

∂xi
+uj

∂Ψm

∂xi
+

∂Ψi+1

∂xj
+ui

∂Ψm

∂xj

)
+λδij

(
∂Ψk+1

∂xk
+uk

∂Ψm

∂xk

)]
−τij

∂Ψ4

∂xj

K4 =
T

p

∂

∂xi

(
k

∂Ψ4

∂xi

)

Here, W = [ρ,V, p]T is the vector of non–conservative variables and i = 1, 2.

Development of δF in Eq. (6)
The variation in the objective function F , as defined in Eq. (6), is analyzed below. The variation

in gradients is first transformed to gradients of variation using Eq. (8) and, then, the Gauss’ divergence
theorem is employed. The term depending on the variation in the incremental volume δ(dΩ) is written as

δ(dΩ) =
∂(δxk)
∂xk

dΩ (16)

By doing so, we have

δF = −
∫

Ω

μ

T 2
R

(
δT − ∂T

∂xi
δxi

)
dΩ −

∫
Ω

∂

∂xj

( μ

T
Rij

)(
δui − ∂ui

∂xk
δxk

)
dΩ −∫

Sw

μ

T
Rij

∂uj

∂xk
niδxkdS +

∫
Sw

μ

T
RδxinidS +

∫
Sw

μ

T
RijnjδuidS (17)

where

R = τij
∂ui

∂xj
, Rij = 2(1 + δij)

∂ui

∂xj
+ 2(1 − δij)

∂uj

∂xi
− 4

3
δij

∂uk

∂xk

Adjoint Equations, Boundary Conditions and Sensitivity Derivatives
Eqs. (13), (15) and (17) determine the field adjoint equations, the inlet, outlet and wall boundary con-

ditions for Ψ and, finally, the gradient of the objective function with respect to the design variables.14 The
system of the field adjoint equations is written as

∂Ψ
∂t

− AT
i

∂Ψ
∂xi

− M−TK− M−TL = 0 (18)

where M = ∂U
∂W and L = (L1, L2, L3, L4)T with

L1 =
1

T 2
R

∂T

∂ρ

Li+1 =
1

T 2
R

∂T

∂ui

∂

∂xj

( μ

T
Rij

)

L4 =
1

T 2
R

∂T

∂E

The boundary conditions of Ψ over the solid walls are selected so as to eliminate the terms
∫

Sw
Ψi+1niδpdS,∫

Sw

Ψi+1
ni

[δτijninj + τijδ(ninj)]dS,
∫

Sw
δT
(
k ∂Ψ4

∂xi
ni

)
dS and

∫
Sw

Ψ4δ(qjnjdS). For Ψ2 and Ψ3, zero Dirichlet

conditions are imposed. For constant wall temperature, Ψ4 = 0; otherwise, for adiabatic walls, ∂Ψ4
∂n = 0.

The inlet, outlet conditions are defined so as to eliminate δUT (AT
nΨ) = 0.

After defining the field and boundary adjoint equations, the remaining terms provide the objective function
gradient

δFaug = −
∫

Sw

(
ΨT fi

)
δ(nidS) −

∫
Sw

∂U
∂xk

T

(Ai
T ni)ΨδxkdS +
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∫
Sw

(
ΨT ∂fvi

∂xk

)
δxknidS +

∫
Sw

Ψ4qjδ(njdS) −
∫

Sw

∂ui

∂xl

[
μ

(
∂Ψj+1

∂xi
+uj

∂Ψm

∂xi
+

∂Ψi+1

∂xj
+ui

∂Ψm

∂xj

)
+λδij

(
∂Ψk+1

∂xk
+uk

∂Ψm

∂xk

)]
δxlnjdS −∫

Sw

Rij
∂uj

∂xk
niδxkdS +

∫
Sw

1
T

RδxinidS (19)

Eq. (19) clearly shows that, even though the objective function was defined as a field integral of losses, the
sensitivity derivatives are expressed in terms of quantities computed only along the wall boundaries Sw.

IV. The Discrete Adjoint Approach

The discrete adjoint formulation is straightforward, without being affected by the definition of the ob-
jective function. So, there is no reason to use the field integral, Eq. (6), and the averaged total pressure loss
between the inlet and outlet of Ω is used instead. The new objective function is

F =

∫
Si

ptdS

Si
−
∫

So
ptdS

So
(20)

By multiplying the adjoint variable vector Ψ with the gradient of the discretized flow equations dR
db and

adding it to the objective function gradient, the gradient of Faug yields

dFaug

db
=
(

∂F

∂U
+ ΨT ∂R

∂U

)
dU
db

+
∂F

∂b
+ ΨT ∂R

∂b
(21)

The discrete adjoint equation is (
∂R
∂U

)T

Ψ = −
(

∂F

∂U

)T

(22)

and the remaining terms in Eq. (21) provide the objective function gradient with respect to the design
variables, namely

dFaug

db
=

∂F

∂b
+ ΨT ∂R

∂b
(23)

Note that the first term on the r.h.s. of Eq. (23) is equal to zero because the objective function F is defined
at the inlet and outlet of the domain and does not depend explicitly on the design variables. However, an
implicit dependence is “hidden” in the second term and, of course, in the solution to the adjoint equations.
The second term is computed using a central finite–difference scheme, in which the design variables are
perturbed one by one, maintaining the same flow field and the residuals of the discrete flow equations R are
computed.

V. The Constrained Optimization Method

Apart from the flow equations, which are treated as equality constraints with the adjoint variables Ψ as
Lagrange multipliers, n geometrical inequality constraints should be satisfied too. These are related to the
minimum allowed thickness of the optimal airfoil. Inequality constraints (Ci ≤ 0) are handled through the
Lagrange multiplier theory together with penalty functions; the inequality constrained problem is converted
to an equality constrained one by introducing additional variables.15

In the present cascade airfoil design, the thickness at certain positions along the airfoil chord, should be
greater than user–defined values. The constrained minimization problem

min Faug

s.t. Ci ≤ 0 , i = 1, n (24)

is transformed to the following one

min Faug

s.t. Ci + z2
i = 0 , i = 1, n (25)
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in which zi are the additional variables to be optimized. The constraint–augmented objective function is

Fc,aug = Faug + Pc (26)

with

Pc =
∑

i=1,n

λi(Ci + z2
i ) +

∑
i=1,n

w

2
(Ci + z2

i )2

where λi are the additional Lagrange multipliers and w is the penalty coefficient. The optimal value for
z2

i is given by z2
i = max[0,−(λi

w + Ci)] and the Lagrange multipliers are updated as follows: λk+1
i =

λk
i + wk(Ck

i + z2
i ). Should any constraint be violated, its derivative with respect to the design variables is

calculated analytically and added to the augmented function gradient. Otherwise, the steepest descent with
variable step size is used: bk+1 = bk − η

δFaug

δb .

VI. Results–Discussion

The problem of the minimization of viscous losses in the flow developed through a two–dimensional
compressor cascade, by redesigning its airfoil shape, is analyzed. The analysis tool is a time–marching
Navier–Stokes equations solver for structured grids, based on the finite–volume technique and an upwind
formulation, employing the Roe’s approximate Riemann solver16 with variables’ extrapolation to account
for second-order accuracy. Bezier polynomials are used to parameterize each blade side. Thirteen control
points are used for each side. The optimization takes into consideration a number of geometrical constraints
in order to avoid creating unacceptably thin airfoils. The objective function is either the entropy generation
(continuous adjoint) or the total pressure losses (discrete adjoint).

Figure 1. Mach number distribution over the initial (left) and optimal (right) airfoil cascade.

The flow is considered to be laminar with αin = 50o, Mout,is = 0.2 and Rec = 1000. In figure 1, the
Mach number distributions over the initial and optimal (in particular, that computed using the continuous
adjoint method) airfoil cascades are shown. Figure 2 shows the friction (left) and pressure (right) coefficient
distributions over the initial (top) and optimal (continuous adjoint: middle; discrete adjoint: bottom) airfoils.
The optimal airfoils, which are slightly different since they have been computed using different objective
functions, present a milder deceleration of the flow over the rear part of the suction side. The initial and
optimal airfoil contours, together with the location of the corresponding control points are shown in figure 3,
for the continuous (left) and discrete (right) adjoint.

The next figures show the convergence rate of the constrained optimization algorithm for both approaches.
Since different objective functionals are used (entropy generation and total pressure losses), both quantities
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Figure 2. Left: Friction Coefficient, right: Pressure Coefficient for the initial (top), and optimal airfoil using
the continuous (middle) and discrete (bottom) adjoint method.

have been plotted in order to compare the two algorithms, figure 4. Even though the objective functions
used correspond only to the ordinates in the top–left and the bottom–right figures (i.e. the top–right and
bottom–left figures are the results of postprocessing), all of the presented plots reveal the same tendency
and, consequently, the equivalence of the two objective functions. Some spikes that appear during the first
iterations are due to the handling of constraints which allowes us to come up with some infeasible (provisional,
however) shapes.

Various quantities related to the geometrical constraints are also plotted. Figure 5, top, shows the
evolution of the sum of thickness deviations

∑
i=1,n (ti − t̃i) from the user–defined minimum thicknesses t̃i.

In both methods, the starting “thick” airfoil is identical, so
∑

i=1,n (ti − t̃i) > 0. Upon convergence, this
quantity approaches zero. Since it is expressed as the algebraic sum of (ti − t̃i), in the same figure (bottom)
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Figure 3. Initial and optimal blade contour and control points using the continuous (left) and discrete (right)
adjoint method.
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Figure 4. Convergence rate for the two objective functions, using the continuous (left) and discrete (right)
adjoint method.

the quantity
∑

i=1,n max(ti − t̃i, 0) is plotted. It now becomes clear that the computed optimal airfoils do
not violate any of the constraints.

By further examining figure 5, we conclude that the airfoil designed through the discrete adjoint method
is slightly thicker than that resulted from the continuous method. This explains why the continuous adjoint
is able to yield comparatively lower losses, figure 4. From the numerical point of view, this difference can
be attributed to the way the stepsize η as well as the penalty coefficient w vary during the steepest descent

8 of 11

American Institute of Aeronautics and Astronautics



-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0  20  40  60  80  100  120  140  160

C
on

st
ra

in
t

Iteration

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0  20  40  60  80  100  120  140

C
on

st
ra

in
t

Iteration

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0  20  40  60  80  100  120  140  160

C
on

st
ra

in
t

Iteration

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0  20  40  60  80  100  120  140

C
on

st
ra

in
t

Iteration

Figure 5. Convergence rate of
∑

i=1,n
(ti − t̃i) (top) and

∑
i=1,n

max(ti − t̃i, 0) (bottom) using the continuous

(left) and discrete (right) adjoint method.
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Figure 6. Monitoring of the convergence rate for the flow turning function using the continuous (left) and
discrete (right) adjoint method.

algorithm.
It is also interesting to plot and comment on the convergence history of the flow turning through the

cascade, figure 6. From this figure, it turns out that, during the first iterations, the flow turning increases,
whereas losses reduce. However, as the optimization goes on, losses are reduced even more and new airfoil
shapes are generated with less flow turning which finally stabilize at 27.4o (continuous adjoint) or 28.5o

(discrete adjoint).
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Figure 7. Objective function gradient computed through the continous (left) and the discrete (right) adjoint
method and a central finite–difference scheme for the initial (the same in either method) airfoil.
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Figure 8. Objective function gradient norm, computed through the continous (left) and discrete (right) adjoint
method against the constraint gradient norm.

Values of objective function gradient components are compared to those computed using a finite–difference
scheme, figure 7. Both plots correspond to the same starting airfoil shape and the agreement between adjoint
methods and finite–differences is satisfactory.

Figure 8 plots the convergence of the objective function gradient norm against the constraint gradient
norm. In order to prevent the algorithm from terminating before reaching the (feasible) optimal solution the
steepest descent stepsize was allowed to vary/decrease so that the constraint “takes its time” to converge as
well.

VII. Conclusions

The problem of designing aerodynamic shapes with minimum viscous losses was addressed. An objective
function based on the entropy generation in viscous layers, which is appropriate for use in continuous adjoint
methods, was presented. It was demonstrated that the field integral defined in terms of the velocity gradient
after the necessary rearrangement of terms, leads to admissible adjoint equations and boundary conditions
along with sensitivity derivatives which depend only on integrals considered over the solid walls. In the
examined test problem, i.e. the optimization of a compressor cascade airfoil, the comparison with a discrete
adjoint method (using the averaged total pressure losses as objective), demonstrates the equivalence of the
two formulations. Over and above, geometrical constraints related to the minimum airfoil thickness at various
chordwise locations are imposed and handled using extra Lagrange multipliers and penalty functions.
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