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tA dis
rete adjoint approa
h to grid adaptation is presented. In parti
ular, this paper is 
on
erned withthe predi
tion of integral 
ow quantities, su
h as the for
es a
ting upon isolated or 
as
ade airfoils, withuser{de�ned a

ura
y. The aim is to a
hieve this a

ura
y through a small number of 
omputations onsu

essively adapted 
oarse grids. On ea
h grid the 
ow and adjoint equations are solved. The adaptationsensor on ea
h grid is 
omputed in terms of 
ow and adjoint variables and residuals. The method appli-
ation is 
onsidered to be su

esful if the overall 
omputational 
ost is less than that required to solve theproblem on a very �ne grid, safely adequate to rea
h the same a

ura
y but, unfortunately, not known inadvan
e. An a posteriori error analysis formulation, that is the tool guiding the grid adaptation, is adjustedto an upwind 
ompressible 
ow solver, investigated with respe
t to its parameters and extended to 
as
ade
ows.1 INTRODUCTIONOften, the 
on
lusive output of a 
ow analysis is one (or more) integral quantities whi
h need to be
omputed with a

eptable a

ura
y for engineering appli
ations. Typi
al examples of integral outputs inaerodynami
s or turboma
hinery are the lift and drag of an isolated airfoil or the peripheral for
e a
tingon a 
as
ade blade. This o

urs frequently in design optimization problems, where the aerodynami
 shapewith the minimum or maximum value of an integral quantity (minimum drag, maximum lift, maximumloading in a peripheral 
as
ade, et
) is sought. Sin
e sear
h methods (in parti
ular, those based onevolutionary algorithms) require a great amount of evaluations to rea
h the optimal solution, the CPU
ost per evaluation needs to be as low as possible. One way to minimize the 
ost is by redu
ing the gridsize, without however damaging the predi
tion a

ura
y, at least for the integral output of interest.In view of the above, the a

ura
y with whi
h the entire 
ow �eld is 
al
ulated is of importan
e only sofar as this a�e
ts this integral output. It is known that 
ow equation models, dis
retization s
hemes andgrid resolution are the main issues whi
h determine the a

ura
y in CFD 
omputations. In what followsthe invis
id 
ow equations are solved and the dis
retization s
heme is a vertex{
entered �nite{volumemethod for unstru
tured grids, [8℄. The invis
id 
uxes are 
omputed by means of the Roe's approximateRiemann solver [1℄ with se
ond{order spatial a

ura
y [2℄. In this framework, the integral output needsto be 
omputed with user{de�ned a

ura
y through 
omputations made on the 
oarser possible grid, i.e.with the minimum CPU 
ost.This 
an be done through formulating and solving an appropriate adjoint (dual) problem. Using the
ow and adjoint variables and residuals, a measure of the expe
ted 
ontribution of ea
h grid node to theerror in the integral output is estimated, [3, 4, 5, 6, 7℄. This measure, in the form of a s
alar sensor �eldover the grid edges, is used to sele
tively enri
h the 
oarse grid in error indu
ing areas. The adaptationleads to a new grid on whi
h the 
ow and adjoint equations are solved again and this pro
edure goes up as
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ing grid subsets are identi�ed. The 
omputation on the �nally adapted grid yieldsthe integral output with the desired a

ura
y. In the expense of this iterative algorithm, whi
h relies uponthe numeri
al solution of 
ow and adjoint equations on sequentially adapted grids, engineers over
ome thene
essity to generate extremely �ne grids and the CPU 
ost redu
es. We will show that the 
ost of solvingthe dire
t and adjoint equations on su

essive grids is lower than that of solving the 
ow equations on avery �ne mesh.The stru
ture of this paper is as follows: The formulation of the adjoint problem and the de�nition ofgrid adaptation sensors are presented �rst. More about the method 
an be found in any of the aforemen-tioned works on a posteriori error analysis. In the results se
tion, the method is applied to 
ow problems
on
erned with the a

urate predi
tion of lift and drag in isolated airfoils and the peripheral for
e in a
ompressor 
as
ade. Through these 
ases, parti
ular features of this method are highlighted.2 A POSTERIORI ERROR ANALYSISLet f(U) be an integral 
ow quantity, resulting from the integration of the 
ow variables U over apart of the domain boundary. A spe
i�
 a

ura
y level is required for f(U). Let us also 
onsider two
omputational grids, namely the 
oarse (index H) and the �ne (index h) ones, over the 
ow domain. UHand Uh 
an be 
al
ulated through satisfying the 
ow equations, RH(UH) = 0 or Rh(Uh) = 0, on ea
hgrid. Then, fH(UH) and fh(Uh) 
an be 
omputed through the same integration s
heme. Note that UHand fH(UH) are obtained using low{
ost 
omputations and are not so a

urate sin
e both the solutionof the 
ow equations and integration are 
arried out using the 
oarse grid. In 
ontrast, the solution ofRh(Uh) = 0 is 
omputationally expensive and, pra
ti
ally, undesirable. Finally, starting from UH , onemay interpolate it onto the �ne grid by means of a prolongation operator IHh to getUHh = IHh UH (1)and, fh(UHh ), through integration over the �ne grid.By expanding the �rst{order Taylor series about fh(UHh ) and Rh(UHh ), we get (= is used instead of �)fh(Uh) = fh(UHh ) + �fh�Uh jUHh (Uh � UHh ) (2)Rh(Uh) = Rh(UHh ) + �Rh�Uh jUHh (Uh � UHh ) = 0 (3)where �fh�Uh jUHh and �Rh�Uh jUHh are 
omputed using the prolongated �eld UHh . A

ording to eq. 3, Uh�UHh isgiven by Uh � UHh = � ��Rh�Uh jUHh ��1Rh(UHh ) (4)whi
h, upon substitution into eq. 2, provides an estimate of the integral fun
tional as followsfh(Uh) = fh(UHh )� �fh�Uh jUHh ��Rh�Uh jUHh ��1Rh(UHh ) (5)The matrix inversion in eqs. 4 and 5 
an be handled by introdu
ing the adjoint variables 	, satisfying theso{
alled adjoint equations ��Rh�Uh jUHh �T 	hjUHh = � �fh�Uh jUHh �T (6)In terms of the adjoint variables, the fun
tional fh(Uh) is merely expressed asfh(Uh) = fh(UHh )� �	hjUHh �T Rh(UHh ) (7)Eq. 7 
an be 
onsidered as a better approximation to fh(Uh), 
ompared to fh(UHh ). However, solving for	h should be avoided, as we did for any other 
omputation on the �ne grid. So, instead of solving eq. 6,the adjoint equations are written and solved on the 
oarse grid, i.e.��RH�UH �T 	H = � �fH�UH�T (8)



K.N. Gkagkas et al.	H is then interpolated over the �ne grid nodes, through the prolongation operator JHh ,	Hh = JHh 	H (9)So, instead of eq. 6, the following equation 
an be used~fh(Uh) = fh(UHh )� (	Hh )TRh(UHh ) (10)3 GRID ADAPTATIONThe last term in eq. 10 stands for a 
orre
tion term (error) through whi
h a better (than fh(UHh ))estimate of f 
an be obtained, without however solving any partial di�erential equation on the �ne grid.This is possible in the expense of additionally solving the adjoint equations on the 
oarse grid, i.e. withas mu
h as twi
e the 
ost of 
omputing UH . However, if higher a

ura
y is needed, the 
oarse grid 
anbe adapted, parti
ularly in areas whi
h indu
e the maximum error in the integral output and the samepro
edure is repeated. The grid adaptation must be driven by a sensor whi
h is proportional to theaforementioned error. In [7℄, it is demonstrated that this error 
an be written as eitherfh(Uh)� fh(UHh ) = �	Hh �T Rh(UHh ) + �	hjUHh �	Hh �T Rh(UHh ) (11)or fh(Uh)� fh(UHh ) = �	Hh �T Rh(UHh ) + �R	h �	Hh �	T (Uh � UHh ) (12)where the residual of the adjoint equation on the �ne grid isR	h (	) � ��Rh�Uh jUHh �T 	�� �fh�Uh jUHh �T (13)From the above relations, an adaptation 
riterion, whi
h takes into 
onsideration the errors asso
iatedwith both the 
ow and adjoint equations, is, [7℄�k = 12Xl(k) j �QHh 	H � LHh 	H�Tl(k) �Rh(LHh UH)�l(k) j+j �QHh UH � LHh UH�Tl(k) �R	h (LHh 	H)�l(k) j (14)where L and Q are linear and quadrati
 interpolation s
hemes. Considering that the �ne grid h is de�nedbased on the existing 
oarse grid, �k is assigned to ea
h 
oarse grid element (here, edge) and the summationover l(k) takes into a

ount any �ne grid element asso
iated with the 
oarse grid element k. Finally, thelo
al adaptation parameter is de�ned by �k = �keo (15)where eo is a user{de�ned allowed error for the integral output. Grid edges marked with �k > 1 should bere�ned. The grid adaptation 
y
les terminate when there are no more edges marked for re�nement.4 THE OVERALL ALGORITHM { PRACTICALITIESThe repetitive grid algorithm whi
h leads to the 
omputation of f(U) with pres
ribed a

ura
y in
ludesthe following steps.1. Solve the 
ow and adjoint equations using the same 
oarse unstru
tured grid and 
ompute f(UH).2. Generate the �ne grid (usually the \quadruple" grid, 
reated by subdividing ea
h 
oarse grid triangleinto four triangles) and 
ompute LHh UH , QHh UH , LHh 	H and QHh 	H over its nodes.3. Compute the 
ow and adjoint equation residuals at the �ne grid nodes, using LHh UH and LHh 	H
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ulate the adaptation sensor �k for ea
h 
oarse grid edge and re�ne a

ordingly the 
oarse grid.5. Update the 
oarse grid and return to step (1).The numeri
al solution of the Euler equations is 
arried out through the aforementioned time{mar
hingsolver. The numeri
al invis
id 
uxes 
rossing the interfa
e between any pair of adja
ent node{
entered
ontrol volumes, are 
omputed through the Roe's approximate Riemann solver, [1℄. They be
ome se
ond{order a

urate through variable extrapolation, [2℄, whi
h requires the primitive variable gradient at thegrid nodes. Gradients are 
omputed over the triangular elements and, then, s
atter{added to the nodes.The dis
retized system of equations is solved using the pointwise impli
it Ja
obi method. The matrix
oeÆ
ient is �lled in by 
onsidering only �rst{order 
onve
tion terms; thus, the non{zero pattern of the
oeÆ
ient matrix, in graph theory terms. 
oin
ides with that of the adja
en
y matrix in graph theory.The previous assumption 
on
erning the formation of the matrix 
oeÆ
ient is important. During thesolution of eq. 8, h�RH�UH iT is set equal to the transpose of the aforementioned 
oeÆ
ient matrix. Thus, inthe sake of 
omputational 
onvenien
e, only the �rst{order terms are taken into a

ount in the dis
reteadjoint equation. The r.h.s. term in the same equation, � �fH�UH �T is expressed a

ording to the trapezoidalintegration law. In the present problems, the trapezoidal rule is ex
lusively used to 
ompute integraloutputs. Swit
hing to a more a

urate integration formula is possible and 
an be employed in a straight-forward manner; however, this does not a�e
t the 
on
lusions drawn below.5 RESULTS{DISCUSSIONThe �rst 
ase is 
on
erned with the study of the 
ow developed around the isolated RAE2822 pro�le.The 
ow is invis
id with M1 = 0:50 and �1 = 3o. The maximum Ma
h number over the airfoil is about0:92 and drag should approa
h zero. The initial grid is generated through the advan
ing front methodafter de�ning 112 nodes along the airfoil 
ontour, 
lustered 
lose to the leading and trailing edges. Theinitial grid (URG1) is fully unstru
tured, with as many as 1448 nodes and 2763 triangles. No parti
ular
are 
on
erning the lo
ation of nodes is taken.A 
ouple of 
omputations on su

essively re�ned grids are �rst made to obtain some referen
e results,
on
erning lift and drag 
oeÆ
ients. Starting from URG1, a grid (URG2) with as many as four timesits triangles is generated by splitting ea
h one of its triangles into four. The generation of the so{
alleduniformly re�ned grids (URG) is repeated three times. Over these four grids, the 
ow solver is used topredi
t the 
ow �eld and, through integration, to 
ompute lift (Cl) and drag (Cd) 
oeÆ
ients. These valuesare tabulated in table 1 whi
h also shows the CPU 
ost of ea
h 
omputation. All four 
omputations aremade with the same initialization; even if the 
omputation on any �ne grid 
ould start from the 
onvergedsolution on the previous (
oarser) grid, this is avoided in the sake of fairness in the 
omparison of CPU
osts. A solution is 
onsidered to be 
onverged if the maximum residual be
omes lower than 10�20 and this
riterion determines the CPU 
ost of ea
h 
omputation. All 
omputations are made on an Intel PentiumM pro
essor at 1:80GHz. Note that Cd approa
hes zero without rea
hing it, due to numeri
al di�usion.Grid Nodes Triangles Cl Cd CPU se
s.URG1 1448 2763 0.6674 0.008744 13.3URG2 5659 11052 0.6907 0.004243 111.0URG3 22370 44208 0.6975 0.003551 1124.1URG4 88948 176832 0.6998 0.003463 11331.2Table 1: Flow around the RAE2822 airfoil: Computed (referen
e) Cl and Cd values using four uniformlyre�ned grids.The grid adaptation with a posteriori error analysis is employed four times, with the same startinggrid (URG1). Ea
h time, a di�erent eo value is used; the eo values used are listed in �g. 1 whi
h showsthe 
hanges of Cl during the su

essive grid re�nements in terms of grid size (left) and CPU 
ost (right).In all 
ases, a small number of adaptation 
y
les (around �ve) is needed. After the �rst or se
ond 
y
le,the grid size in
reases slightly. On the other hand, the CPU 
ost of the 
ow analysis on ea
h re�ned gridis, more or less, the same, sin
e the starting 
ow �eld is interpolated from the 
onverged solution on the
oarser grid. All four runs show the 
orre
t trend of the Cl value 
omputed over the �nally re�ned grids.
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eo=0.0001Figure 1: Flow around the RAE2822 airfoil, with user{de�ned a

ura
y in Cl: Computed Cl values duringthe grid adaptation driven by �k, plotted in terms of the number of nodes (left) and CPU 
ost (right).The 
urves shown 
orrespond to four di�erent eo values.Fig. 2 
ompares the 
ost for obtaining the �nal Cl value, with user{de�ned a

ura
y, with that ofusing the URGs of table 1. Using the two runs with the lower eo values, useful 
on
lusions 
an be drawn.The eo = 0:0006 run 
omputes a better (slightly higher, i.e. 
loser to that of URG4) Cl value than that
omputed using URG2. This 
omputation leads to an adapted grid with 2634 nodes (URG2 possesses5659 nodes whi
h, despite that, yields a slightly worse Cl value). The 
ost for the 
omputation usingeo = 0:0006 is about 193 se
s. Using the more stri
t Cl 
riterion (eo = 0:0001), the Cl value 
omputedusing URG3 is obtained. However, �g. 2, the 
ost of this run (555 se
s) is about half of the 
ost for URG3(1124:1 se
s). The e
onomy in CPU 
ost is, in fa
t, noti
eable.
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Figure 2: Flow around the RAE2822 airfoil, with user{de�ned a

ura
y in Cl: Comparison of Cl values
omputed using (a) a posteriori error analysis with grid adaptation and (b) the URGs, table 1.Two more 
omparisons for the same 
ase 
an be made using the plots shown in �g. 3. First, eq. 10 isused to 
orre
t the Cl 
omputed on ea
h grid during the su

essive adaptation 
y
les. Compared to �g.1 (left) a slight additional improvement is shown in �g. 3 (left). Also, the Cl values on the su

essivelyre�ned grids (for eo = 0:0001) are extrapolated a

ording the Ri
hardson's formula and this o�ers anadditional way of exploiting the a posteriori error analysis method, �g. 3 (right).The same airfoil, with the same in�nite 
ow 
onditions and starting grid (URG1) is used for four new
omputations. This time, the target is the 
omputation of Cd with pres
ribed a

ura
y. Four eo values areused. The results obtained are shown in �gs. 4, 5, a

ording to the previously used presentation mode.The 
on
lusions that 
an be drawn are similar. For instan
e, �g. 5 (left) shows that the same a

ura
ylevel 
an be obtained using a mu
h 
oarser grid. From �g. 5 (left) and the CPU 
osts listed in table 1,it is also obvious that the lower eo value (eo = 0:0001) rea
hes the best value for Cd in about 3000 se
s
ompared to the four times more expensive 
omputation using URG4. As in the 
ase of Cl 
orre
tion, the
orre
tion of Cd through eq. 10 or Ri
hardson extrapolation, (not shown here in the interest of spa
e) 
anbe used to further improve the Cd predi
tions. The starting grid as well as two �nally adapted grids foreo = 0:0001 used as threshold for Cl and Cd are shown in �g. 6.The last 
ase is 
on
erned with the a

urate predi
tion of the peripheral for
e 
oeÆ
ient in a 
ompressor
as
ade. Here, a 2D 
ontrolled di�usion airfoil 
as
ade is utilized and the integral quantity that needs tobe 
omputed with desired a

ura
y is the non-dimensional for
e 
omponent in the pit
hwise dire
tion.
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ura
y in Cl: Corre
ted through eq. 10(left) and Ri
hardson extrapolated (right, for eo = 0:0001) Cl values 
omputed using (a) a posteriori erroranalysis with grid adaptation and (b) the URGs, table 1.
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Figure 4: Flow around the RAE2822 airfoil, with user{de�ned a

ura
y in Cd: Computed Cd values duringthe grid adaptation driven by �k, plotted in terms of the number of nodes (left) and CPU time (right).
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Figure 5: Flow around the isolated RAE2822 airfoil, with user{de�ned a

ura
y in Cd: Comparison of Cdvalues 
omputed using (a) a posteriori error analysis with grid adaptation and (b) the URGs, table 1.Sin
e the 
ow is invis
id, this is derived through the integration of the pressure distribution around theairfoil and proje
tion in the pit
hwise dire
tion. The 
oeÆ
ient of interest is denoted by CFy. The 
ow
onditions are: M2;is = 0:37 and �1 = 47o. In all 
omputations, the Ja
obi method is used with CFLnumber equal to 50. The 
onvergen
e 
riteria are the same as previously. Of 
ourse, modi�
ations in theadjoint method are ne
essary, in order to a

ount for periodi
ity.Table 2 shows the three URGs used to get referen
e CFy values so as to 
ompare the expe
ted gain fromthe use of grid adaptation based on the a posteriori error analysis with uniformly (and, thus, un
ontrollablyexpensive) grid re�nement. URG1 is the starting grid in every subsequent 
al
ulation.Fig. 7 shows the results of �ve 
omputations with a wide span of eo values. In 
ontrast to the monotoni

urves previously shown, in all 
ases, an overshooting in CFy is observed before rea
hing its �nal value, onthe �nally adapted grid. A

ording to table 2, we may assume that the desired CFy value is about 0:033.We 
an see from �g. 7 that the lower the desired a

ura
y threshold eo, the 
loser to 0:033 the terminalCFy value is 
aptured.
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Figure 6: Flow around the RAE2822 airfoil: Left: starting grid (URG1), Middle: �nally adapted grid(5571 nodes, 10777 triangles), 
omputed using eo = 0:0001 for Cl. Right: �nally adapted grid (15290nodes, 30170 triangles), 
omputed using eo = 0:0001 for Cd.Grid Nodes Triangles CFy CPU se
s.URG1 1809 3327 0.032880 24.6URG2 6945 13308 0.032988 189.8URG3 27198 53232 0.033014 1472.6Table 2: Flow in a 2D 
ompressor 
as
ade: Computed (referen
e) peripheral for
e 
oeÆ
ient values usingthree uniformly re�ned grids.
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eo=0.00001Figure 7: Flow in a 2D 
ompressor 
as
ade, with user{de�ned a

ura
y in CFy: Computed CFy valuesduring the grid adaptation driven by �k, plotted in terms of the number of nodes (left) and CPU 
ost(right), for �ve di�erent eo values.Fig. 8 
ompares the results of grid adaptation through a posteriori error analysis with those obtainedusing the three URGs. In terms of grid size, the a posteriori error analysis based adaptation leads to mu
hsmaller numbers of grid nodes. The di�eren
e is not that important in terms of CPU 
ost; however, thisdepends on the 
onvergen
e 
riteria used during the repetitive solution of the 
ow and adjoint equationsand 
ould be improved through the sele
tion of di�erent values. Fig. 9 presents the �nally adapted gridsfor eo = 0:0005 and eo = 0:00005. It is obvious that the latter leads to a 
onsiderably �ner grid 
lose tothe blade airfoil.6 CONCLUSIONSIn this paper, the a posteriori error analysis method 
ombined with grid adaptation te
hniques waspresented, as a tool that ensures the 
omputation of integral quantities with user{de�ned a

ura
y. Theexpe
ted gain, whi
h was 
on�rmed by the examined 
ases, is that our goal 
an be a
hieved without usingun
ontrollably �ne grids; lo
al 
riteria 
an be used to drive the grid re�nement in areas whi
h indu
e thehigher errors in the 
omputation of the integral output of interest. The repetitive solution of the 
owand adjoint equations are 
arried out on 
omparatively 
oarse grids, so the overall CPU 
ost redu
es.Corre
tion formulaes, based on either the adjoint formulation or Ri
hardson extrapolations 
an be usedto improve the predi
tion a

ura
y, with the same 
omputing 
ost. In this paper, the a posteriori erroranalysis method is extended to periodi
 turboma
hinery 
ows.
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ompressor 
as
ade, with user{de�ned a

ura
y in CFy : Comparison of CFy values
omputed using (a) a posteriori error analysis with grid adaptation and (b) the URGs, table 2.

Figure 9: Flow in a 2D 
ompressor 
as
ade, with user{de�ned a

ura
y in CFy : Left: Initial 
oarse grid(URG1, 1809 nodes, 5136 triangles). Middle: �nally adapted grid (2048 nodes, 3786 triangles), 
omputedusing eo = 0:0005. Right: �nally adapted grid (3368 nodes, 6354 triangles), 
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