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Keywords: A Posteriori Error Analysis, Adjoint Method, Grid Adaptation, Aerodynamis, Turboma-hineryAbstratA disrete adjoint approah to grid adaptation is presented. In partiular, this paper is onerned withthe predition of integral ow quantities, suh as the fores ating upon isolated or asade airfoils, withuser{de�ned auray. The aim is to ahieve this auray through a small number of omputations onsuessively adapted oarse grids. On eah grid the ow and adjoint equations are solved. The adaptationsensor on eah grid is omputed in terms of ow and adjoint variables and residuals. The method appli-ation is onsidered to be suesful if the overall omputational ost is less than that required to solve theproblem on a very �ne grid, safely adequate to reah the same auray but, unfortunately, not known inadvane. An a posteriori error analysis formulation, that is the tool guiding the grid adaptation, is adjustedto an upwind ompressible ow solver, investigated with respet to its parameters and extended to asadeows.1 INTRODUCTIONOften, the onlusive output of a ow analysis is one (or more) integral quantities whih need to beomputed with aeptable auray for engineering appliations. Typial examples of integral outputs inaerodynamis or turbomahinery are the lift and drag of an isolated airfoil or the peripheral fore atingon a asade blade. This ours frequently in design optimization problems, where the aerodynami shapewith the minimum or maximum value of an integral quantity (minimum drag, maximum lift, maximumloading in a peripheral asade, et) is sought. Sine searh methods (in partiular, those based onevolutionary algorithms) require a great amount of evaluations to reah the optimal solution, the CPUost per evaluation needs to be as low as possible. One way to minimize the ost is by reduing the gridsize, without however damaging the predition auray, at least for the integral output of interest.In view of the above, the auray with whih the entire ow �eld is alulated is of importane only sofar as this a�ets this integral output. It is known that ow equation models, disretization shemes andgrid resolution are the main issues whih determine the auray in CFD omputations. In what followsthe invisid ow equations are solved and the disretization sheme is a vertex{entered �nite{volumemethod for unstrutured grids, [8℄. The invisid uxes are omputed by means of the Roe's approximateRiemann solver [1℄ with seond{order spatial auray [2℄. In this framework, the integral output needsto be omputed with user{de�ned auray through omputations made on the oarser possible grid, i.e.with the minimum CPU ost.This an be done through formulating and solving an appropriate adjoint (dual) problem. Using theow and adjoint variables and residuals, a measure of the expeted ontribution of eah grid node to theerror in the integral output is estimated, [3, 4, 5, 6, 7℄. This measure, in the form of a salar sensor �eldover the grid edges, is used to seletively enrih the oarse grid in error induing areas. The adaptationleads to a new grid on whih the ow and adjoint equations are solved again and this proedure goes up as



K.N. Gkagkas et al.long as high error induing grid subsets are identi�ed. The omputation on the �nally adapted grid yieldsthe integral output with the desired auray. In the expense of this iterative algorithm, whih relies uponthe numerial solution of ow and adjoint equations on sequentially adapted grids, engineers overome theneessity to generate extremely �ne grids and the CPU ost redues. We will show that the ost of solvingthe diret and adjoint equations on suessive grids is lower than that of solving the ow equations on avery �ne mesh.The struture of this paper is as follows: The formulation of the adjoint problem and the de�nition ofgrid adaptation sensors are presented �rst. More about the method an be found in any of the aforemen-tioned works on a posteriori error analysis. In the results setion, the method is applied to ow problemsonerned with the aurate predition of lift and drag in isolated airfoils and the peripheral fore in aompressor asade. Through these ases, partiular features of this method are highlighted.2 A POSTERIORI ERROR ANALYSISLet f(U) be an integral ow quantity, resulting from the integration of the ow variables U over apart of the domain boundary. A spei� auray level is required for f(U). Let us also onsider twoomputational grids, namely the oarse (index H) and the �ne (index h) ones, over the ow domain. UHand Uh an be alulated through satisfying the ow equations, RH(UH) = 0 or Rh(Uh) = 0, on eahgrid. Then, fH(UH) and fh(Uh) an be omputed through the same integration sheme. Note that UHand fH(UH) are obtained using low{ost omputations and are not so aurate sine both the solutionof the ow equations and integration are arried out using the oarse grid. In ontrast, the solution ofRh(Uh) = 0 is omputationally expensive and, pratially, undesirable. Finally, starting from UH , onemay interpolate it onto the �ne grid by means of a prolongation operator IHh to getUHh = IHh UH (1)and, fh(UHh ), through integration over the �ne grid.By expanding the �rst{order Taylor series about fh(UHh ) and Rh(UHh ), we get (= is used instead of �)fh(Uh) = fh(UHh ) + �fh�Uh jUHh (Uh � UHh ) (2)Rh(Uh) = Rh(UHh ) + �Rh�Uh jUHh (Uh � UHh ) = 0 (3)where �fh�Uh jUHh and �Rh�Uh jUHh are omputed using the prolongated �eld UHh . Aording to eq. 3, Uh�UHh isgiven by Uh � UHh = � ��Rh�Uh jUHh ��1Rh(UHh ) (4)whih, upon substitution into eq. 2, provides an estimate of the integral funtional as followsfh(Uh) = fh(UHh )� �fh�Uh jUHh ��Rh�Uh jUHh ��1Rh(UHh ) (5)The matrix inversion in eqs. 4 and 5 an be handled by introduing the adjoint variables 	, satisfying theso{alled adjoint equations ��Rh�Uh jUHh �T 	hjUHh = � �fh�Uh jUHh �T (6)In terms of the adjoint variables, the funtional fh(Uh) is merely expressed asfh(Uh) = fh(UHh )� �	hjUHh �T Rh(UHh ) (7)Eq. 7 an be onsidered as a better approximation to fh(Uh), ompared to fh(UHh ). However, solving for	h should be avoided, as we did for any other omputation on the �ne grid. So, instead of solving eq. 6,the adjoint equations are written and solved on the oarse grid, i.e.��RH�UH �T 	H = � �fH�UH�T (8)



K.N. Gkagkas et al.	H is then interpolated over the �ne grid nodes, through the prolongation operator JHh ,	Hh = JHh 	H (9)So, instead of eq. 6, the following equation an be used~fh(Uh) = fh(UHh )� (	Hh )TRh(UHh ) (10)3 GRID ADAPTATIONThe last term in eq. 10 stands for a orretion term (error) through whih a better (than fh(UHh ))estimate of f an be obtained, without however solving any partial di�erential equation on the �ne grid.This is possible in the expense of additionally solving the adjoint equations on the oarse grid, i.e. withas muh as twie the ost of omputing UH . However, if higher auray is needed, the oarse grid anbe adapted, partiularly in areas whih indue the maximum error in the integral output and the sameproedure is repeated. The grid adaptation must be driven by a sensor whih is proportional to theaforementioned error. In [7℄, it is demonstrated that this error an be written as eitherfh(Uh)� fh(UHh ) = �	Hh �T Rh(UHh ) + �	hjUHh �	Hh �T Rh(UHh ) (11)or fh(Uh)� fh(UHh ) = �	Hh �T Rh(UHh ) + �R	h �	Hh �	T (Uh � UHh ) (12)where the residual of the adjoint equation on the �ne grid isR	h (	) � ��Rh�Uh jUHh �T 	�� �fh�Uh jUHh �T (13)From the above relations, an adaptation riterion, whih takes into onsideration the errors assoiatedwith both the ow and adjoint equations, is, [7℄�k = 12Xl(k) j �QHh 	H � LHh 	H�Tl(k) �Rh(LHh UH)�l(k) j+j �QHh UH � LHh UH�Tl(k) �R	h (LHh 	H)�l(k) j (14)where L and Q are linear and quadrati interpolation shemes. Considering that the �ne grid h is de�nedbased on the existing oarse grid, �k is assigned to eah oarse grid element (here, edge) and the summationover l(k) takes into aount any �ne grid element assoiated with the oarse grid element k. Finally, theloal adaptation parameter is de�ned by �k = �keo (15)where eo is a user{de�ned allowed error for the integral output. Grid edges marked with �k > 1 should bere�ned. The grid adaptation yles terminate when there are no more edges marked for re�nement.4 THE OVERALL ALGORITHM { PRACTICALITIESThe repetitive grid algorithm whih leads to the omputation of f(U) with presribed auray inludesthe following steps.1. Solve the ow and adjoint equations using the same oarse unstrutured grid and ompute f(UH).2. Generate the �ne grid (usually the \quadruple" grid, reated by subdividing eah oarse grid triangleinto four triangles) and ompute LHh UH , QHh UH , LHh 	H and QHh 	H over its nodes.3. Compute the ow and adjoint equation residuals at the �ne grid nodes, using LHh UH and LHh 	H



K.N. Gkagkas et al.4. Calulate the adaptation sensor �k for eah oarse grid edge and re�ne aordingly the oarse grid.5. Update the oarse grid and return to step (1).The numerial solution of the Euler equations is arried out through the aforementioned time{marhingsolver. The numerial invisid uxes rossing the interfae between any pair of adjaent node{enteredontrol volumes, are omputed through the Roe's approximate Riemann solver, [1℄. They beome seond{order aurate through variable extrapolation, [2℄, whih requires the primitive variable gradient at thegrid nodes. Gradients are omputed over the triangular elements and, then, satter{added to the nodes.The disretized system of equations is solved using the pointwise impliit Jaobi method. The matrixoeÆient is �lled in by onsidering only �rst{order onvetion terms; thus, the non{zero pattern of theoeÆient matrix, in graph theory terms. oinides with that of the adjaeny matrix in graph theory.The previous assumption onerning the formation of the matrix oeÆient is important. During thesolution of eq. 8, h�RH�UH iT is set equal to the transpose of the aforementioned oeÆient matrix. Thus, inthe sake of omputational onveniene, only the �rst{order terms are taken into aount in the disreteadjoint equation. The r.h.s. term in the same equation, � �fH�UH �T is expressed aording to the trapezoidalintegration law. In the present problems, the trapezoidal rule is exlusively used to ompute integraloutputs. Swithing to a more aurate integration formula is possible and an be employed in a straight-forward manner; however, this does not a�et the onlusions drawn below.5 RESULTS{DISCUSSIONThe �rst ase is onerned with the study of the ow developed around the isolated RAE2822 pro�le.The ow is invisid with M1 = 0:50 and �1 = 3o. The maximum Mah number over the airfoil is about0:92 and drag should approah zero. The initial grid is generated through the advaning front methodafter de�ning 112 nodes along the airfoil ontour, lustered lose to the leading and trailing edges. Theinitial grid (URG1) is fully unstrutured, with as many as 1448 nodes and 2763 triangles. No partiularare onerning the loation of nodes is taken.A ouple of omputations on suessively re�ned grids are �rst made to obtain some referene results,onerning lift and drag oeÆients. Starting from URG1, a grid (URG2) with as many as four timesits triangles is generated by splitting eah one of its triangles into four. The generation of the so{alleduniformly re�ned grids (URG) is repeated three times. Over these four grids, the ow solver is used topredit the ow �eld and, through integration, to ompute lift (Cl) and drag (Cd) oeÆients. These valuesare tabulated in table 1 whih also shows the CPU ost of eah omputation. All four omputations aremade with the same initialization; even if the omputation on any �ne grid ould start from the onvergedsolution on the previous (oarser) grid, this is avoided in the sake of fairness in the omparison of CPUosts. A solution is onsidered to be onverged if the maximum residual beomes lower than 10�20 and thisriterion determines the CPU ost of eah omputation. All omputations are made on an Intel PentiumM proessor at 1:80GHz. Note that Cd approahes zero without reahing it, due to numerial di�usion.Grid Nodes Triangles Cl Cd CPU ses.URG1 1448 2763 0.6674 0.008744 13.3URG2 5659 11052 0.6907 0.004243 111.0URG3 22370 44208 0.6975 0.003551 1124.1URG4 88948 176832 0.6998 0.003463 11331.2Table 1: Flow around the RAE2822 airfoil: Computed (referene) Cl and Cd values using four uniformlyre�ned grids.The grid adaptation with a posteriori error analysis is employed four times, with the same startinggrid (URG1). Eah time, a di�erent eo value is used; the eo values used are listed in �g. 1 whih showsthe hanges of Cl during the suessive grid re�nements in terms of grid size (left) and CPU ost (right).In all ases, a small number of adaptation yles (around �ve) is needed. After the �rst or seond yle,the grid size inreases slightly. On the other hand, the CPU ost of the ow analysis on eah re�ned gridis, more or less, the same, sine the starting ow �eld is interpolated from the onverged solution on theoarser grid. All four runs show the orret trend of the Cl value omputed over the �nally re�ned grids.
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eo=0.0001Figure 1: Flow around the RAE2822 airfoil, with user{de�ned auray in Cl: Computed Cl values duringthe grid adaptation driven by �k, plotted in terms of the number of nodes (left) and CPU ost (right).The urves shown orrespond to four di�erent eo values.Fig. 2 ompares the ost for obtaining the �nal Cl value, with user{de�ned auray, with that ofusing the URGs of table 1. Using the two runs with the lower eo values, useful onlusions an be drawn.The eo = 0:0006 run omputes a better (slightly higher, i.e. loser to that of URG4) Cl value than thatomputed using URG2. This omputation leads to an adapted grid with 2634 nodes (URG2 possesses5659 nodes whih, despite that, yields a slightly worse Cl value). The ost for the omputation usingeo = 0:0006 is about 193 ses. Using the more strit Cl riterion (eo = 0:0001), the Cl value omputedusing URG3 is obtained. However, �g. 2, the ost of this run (555 ses) is about half of the ost for URG3(1124:1 ses). The eonomy in CPU ost is, in fat, notieable.
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Figure 2: Flow around the RAE2822 airfoil, with user{de�ned auray in Cl: Comparison of Cl valuesomputed using (a) a posteriori error analysis with grid adaptation and (b) the URGs, table 1.Two more omparisons for the same ase an be made using the plots shown in �g. 3. First, eq. 10 isused to orret the Cl omputed on eah grid during the suessive adaptation yles. Compared to �g.1 (left) a slight additional improvement is shown in �g. 3 (left). Also, the Cl values on the suessivelyre�ned grids (for eo = 0:0001) are extrapolated aording the Rihardson's formula and this o�ers anadditional way of exploiting the a posteriori error analysis method, �g. 3 (right).The same airfoil, with the same in�nite ow onditions and starting grid (URG1) is used for four newomputations. This time, the target is the omputation of Cd with presribed auray. Four eo values areused. The results obtained are shown in �gs. 4, 5, aording to the previously used presentation mode.The onlusions that an be drawn are similar. For instane, �g. 5 (left) shows that the same auraylevel an be obtained using a muh oarser grid. From �g. 5 (left) and the CPU osts listed in table 1,it is also obvious that the lower eo value (eo = 0:0001) reahes the best value for Cd in about 3000 sesompared to the four times more expensive omputation using URG4. As in the ase of Cl orretion, theorretion of Cd through eq. 10 or Rihardson extrapolation, (not shown here in the interest of spae) anbe used to further improve the Cd preditions. The starting grid as well as two �nally adapted grids foreo = 0:0001 used as threshold for Cl and Cd are shown in �g. 6.The last ase is onerned with the aurate predition of the peripheral fore oeÆient in a ompressorasade. Here, a 2D ontrolled di�usion airfoil asade is utilized and the integral quantity that needs tobe omputed with desired auray is the non-dimensional fore omponent in the pithwise diretion.



K.N. Gkagkas et al.
 0.66

 0.67

 0.68

 0.69

 0.7

 1000  2000  3000  4000  5000  6000

Li
ft 

C
oe

ffi
ci

en
t (

C
l)

Number of Nodes

eo=0.003
eo=0.001

eo=0.0006
eo=0.0001

 0.66

 0.67

 0.68

 0.69

 0.7

 0  2500  5000  7500  10000

Li
ft 

C
oe

ffi
ci

en
t (

C
l)

Number of Nodes

Uniformly Refined (R)
Eta_k Adapted (R)Figure 3: Flow around the RAE2822 airfoil, with user{de�ned auray in Cl: Correted through eq. 10(left) and Rihardson extrapolated (right, for eo = 0:0001) Cl values omputed using (a) a posteriori erroranalysis with grid adaptation and (b) the URGs, table 1.

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 1000  4000  7000  10000  13000  16000

D
ra

g 
C

oe
ffi

ci
en

t (
C

d)

Number of Nodes

eo=0.005
eo=0.001

eo=0.0005
eo=0.0001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0  200  400  600  800  1000  1200

D
ra

g 
C

oe
ffi

ci
en

t (
C

d)

CPU time (secs)

eo=0.005
eo=0.001

eo=0.0005
eo=0.0001

Figure 4: Flow around the RAE2822 airfoil, with user{de�ned auray in Cd: Computed Cd values duringthe grid adaptation driven by �k, plotted in terms of the number of nodes (left) and CPU time (right).
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Figure 5: Flow around the isolated RAE2822 airfoil, with user{de�ned auray in Cd: Comparison of Cdvalues omputed using (a) a posteriori error analysis with grid adaptation and (b) the URGs, table 1.Sine the ow is invisid, this is derived through the integration of the pressure distribution around theairfoil and projetion in the pithwise diretion. The oeÆient of interest is denoted by CFy. The owonditions are: M2;is = 0:37 and �1 = 47o. In all omputations, the Jaobi method is used with CFLnumber equal to 50. The onvergene riteria are the same as previously. Of ourse, modi�ations in theadjoint method are neessary, in order to aount for periodiity.Table 2 shows the three URGs used to get referene CFy values so as to ompare the expeted gain fromthe use of grid adaptation based on the a posteriori error analysis with uniformly (and, thus, unontrollablyexpensive) grid re�nement. URG1 is the starting grid in every subsequent alulation.Fig. 7 shows the results of �ve omputations with a wide span of eo values. In ontrast to the monotoniurves previously shown, in all ases, an overshooting in CFy is observed before reahing its �nal value, onthe �nally adapted grid. Aording to table 2, we may assume that the desired CFy value is about 0:033.We an see from �g. 7 that the lower the desired auray threshold eo, the loser to 0:033 the terminalCFy value is aptured.
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Figure 6: Flow around the RAE2822 airfoil: Left: starting grid (URG1), Middle: �nally adapted grid(5571 nodes, 10777 triangles), omputed using eo = 0:0001 for Cl. Right: �nally adapted grid (15290nodes, 30170 triangles), omputed using eo = 0:0001 for Cd.Grid Nodes Triangles CFy CPU ses.URG1 1809 3327 0.032880 24.6URG2 6945 13308 0.032988 189.8URG3 27198 53232 0.033014 1472.6Table 2: Flow in a 2D ompressor asade: Computed (referene) peripheral fore oeÆient values usingthree uniformly re�ned grids.
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