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Abstract

A discrete adjoint approach to grid adaptation is presented. In particular, this paper is concerned with
the prediction of integral flow quantities, such as the forces acting upon isolated or cascade airfoils, with
user—defined accuracy. The aim is to achieve this accuracy through a small number of computations on
successively adapted coarse grids. On each grid the flow and adjoint equations are solved. The adaptation
sensor on each grid is computed in terms of flow and adjoint variables and residuals. The method appli-
cation is considered to be succesful if the overall computational cost is less than that required to solve the
problem on a very fine grid, safely adequate to reach the same accuracy but, unfortunately, not known in
advance. An a posteriori error analysis formulation, that is the tool guiding the grid adaptation, is adjusted
to an upwind compressible flow solver, investigated with respect to its parameters and extended to cascade
flows.

1 INTRODUCTION

Often, the conclusive output of a flow analysis is one (or more) integral quantities which need to be
computed with acceptable accuracy for engineering applications. Typical examples of integral outputs in
aerodynamics or turbomachinery are the lift and drag of an isolated airfoil or the peripheral force acting
on a cascade blade. This occurs frequently in design optimization problems, where the aerodynamic shape
with the minimum or maximum value of an integral quantity (minimum drag, maximum lift, maximum
loading in a peripheral cascade, etc) is sought. Since search methods (in particular, those based on
evolutionary algorithms) require a great amount of evaluations to reach the optimal solution, the CPU
cost per evaluation needs to be as low as possible. One way to minimize the cost is by reducing the grid
size, without however damaging the prediction accuracy, at least for the integral output of interest.

In view of the above, the accuracy with which the entire flow field is calculated is of importance only so
far as this affects this integral output. It is known that flow equation models, discretization schemes and
grid resolution are the main issues which determine the accuracy in CFD computations. In what follows
the inviscid flow equations are solved and the discretization scheme is a vertex—centered finite—volume
method for unstructured grids, [8]. The inviscid fluxes are computed by means of the Roe’s approximate
Riemann solver [1] with second-order spatial accuracy [2]. In this framework, the integral output needs
to be computed with user—defined accuracy through computations made on the coarser possible grid, i.e.
with the minimum CPU cost.

This can be done through formulating and solving an appropriate adjoint (dual) problem. Using the
flow and adjoint variables and residuals, a measure of the expected contribution of each grid node to the
error in the integral output is estimated, [3, 4, 5, 6, 7]. This measure, in the form of a scalar sensor field
over the grid edges, is used to selectively enrich the coarse grid in error inducing areas. The adaptation
leads to a new grid on which the flow and adjoint equations are solved again and this procedure goes up as



K.N. Gkagkas et al.

long as high error inducing grid subsets are identified. The computation on the finally adapted grid yields
the integral output with the desired accuracy. In the expense of this iterative algorithm, which relies upon
the numerical solution of flow and adjoint equations on sequentially adapted grids, engineers overcome the
necessity to generate extremely fine grids and the CPU cost reduces. We will show that the cost of solving
the direct and adjoint equations on successive grids is lower than that of solving the flow equations on a
very fine mesh.

The structure of this paper is as follows: The formulation of the adjoint problem and the definition of
grid adaptation sensors are presented first. More about the method can be found in any of the aforemen-
tioned works on a posteriori error analysis. In the results section, the method is applied to flow problems
concerned with the accurate prediction of lift and drag in isolated airfoils and the peripheral force in a
compressor cascade. Through these cases, particular features of this method are highlighted.

2 A POSTERIORI ERROR ANALYSIS

Let f(U) be an integral flow quantity, resulting from the integration of the flow variables U over a
part of the domain boundary. A specific accuracy level is required for f(U). Let us also consider two
computational grids, namely the coarse (index H) and the fine (index h) ones, over the flow domain. Uy
and U, can be calculated through satisfying the flow equations, Ry (Ug) = 0 or Ry (U) = 0, on each
grid. Then, fg(Ug) and f,(Up) can be computed through the same integration scheme. Note that Uy
and fg(Up) are obtained using low—cost computations and are not so accurate since both the solution
of the flow equations and integration are carried out using the coarse grid. In contrast, the solution of
R, (Up) = 0 is computationally expensive and, practically, undesirable. Finally, starting from Uy, one
may interpolate it onto the fine grid by means of a prolongation operator I,{I to get

Uy = I1'Ug (1)

and, fr,(UH), through integration over the fine grid.
By expanding the first—order Taylor series about f4(U/[’) and R, (Ul), we get (= is used instead of =)

FulU) = JuUF) + S22 (01— UF) @)
h

Ru(Un) = Ba(UFT) + 908 (U, — Uy = 0 @
h

where %b{’ and gg}}: \U}fz are computed using the prolongated field U . According to eq. 3, U, — UH! is

given by

OR,, 17"
Un = U = - | Gkl Rt (@)
which, upon substitution into eq. 2, provides an estimate of the integral functional as follows
Ofn, [0Rn, 1
_ Hy _ ZJh H
10 = 10 = oy |G| Racl) 6)

The matrix inversion in eqgs. 4 and 5 can be handled by introducing the adjoint variables ¥, satisfying the
so—called adjoint equations

T

T
O o) ©

g H ‘I’ H = H
|:6Uh |Uh h‘Uh <6Uh N

In terms of the adjoint variables, the functional f,(U}) is merely expressed as

£u0) = 1 0F) = (¥alog) " Bu0F) @

Eq. 7 can be considered as a better approximation to f,(Uy), compared to f,(U[T). However, solving for
¥, should be avoided, as we did for any other computation on the fine grid. So, instead of solving eq. 6,
the adjoint equations are written and solved on the coarse grid, i.e.

] o= () ®
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U is then interpolated over the fine grid nodes, through the prolongation operator J,?,

ol = JHyy (9)
So, instead of eq. 6, the following equation can be used

Fn(Un) = fa UL = (BT Ry (UL (10)

3 GRID ADAPTATION

The last term in eq. 10 stands for a correction term (error) through which a better (than f5(U/T))
estimate of f can be obtained, without however solving any partial differential equation on the fine grid.
This is possible in the expense of additionally solving the adjoint equations on the coarse grid, i.e. with
as much as twice the cost of computing Ug. However, if higher accuracy is needed, the coarse grid can
be adapted, particularly in areas which induce the maximum error in the integral output and the same
procedure is repeated. The grid adaptation must be driven by a sensor which is proportional to the
aforementioned error. In [7], it is demonstrated that this error can be written as either

1u(Un) = 1 (U = (#)" RO + (Wl — ¥7) " R (1)
FuU) = fuUF) = (@) RaU) + {RY (BT (U - U (12)

where the residual of the adjoint equation on the fine grid is

T T
Afn
U — = 13
(510 (13)
From the above relations, an adaptation criterion, which takes into consideration the errors associated
with both the flow and adjoint equations, is, [7]

ORy,

RY) = | Gty

1 T

e = 5 D1 [QF e — L], [Ru(LH U], | +
(k)

T

(@K Un — LhHUH]l(k)

(B (Li v m)], (14)

(k) |
where L and @) are linear and quadratic interpolation schemes. Considering that the fine grid A is defined
based on the existing coarse grid, ¢ is assigned to each coarse grid element (here, edge) and the summation
over [(k) takes into account any fine grid element associated with the coarse grid element k. Finally, the
local adaptation parameter is defined by

€k
€o

Mk = (15)

where e, is a user—defined allowed error for the integral output. Grid edges marked with n; > 1 should be
refined. The grid adaptation cycles terminate when there are no more edges marked for refinement.

4 THE OVERALL ALGORITHM - PRACTICALITIES

The repetitive grid algorithm which leads to the computation of f(U) with prescribed accuracy includes
the following steps.

1. Solve the flow and adjoint equations using the same coarse unstructured grid and compute f(Ug).

2. Generate the fine grid (usually the “quadruple” grid, created by subdividing each coarse grid triangle
into four triangles) and compute LI Up, QF Uy, LIy and QU over its nodes.

3. Compute the flow and adjoint equation residuals at the fine grid nodes, using LhHUH and Lf\I’H
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4. Calculate the adaptation sensor n;. for each coarse grid edge and refine accordingly the coarse grid.

5. Update the coarse grid and return to step (1).

The numerical solution of the Euler equations is carried out through the aforementioned time-marching
solver. The numerical inviscid fluxes crossing the interface between any pair of adjacent node—centered
control volumes, are computed through the Roe’s approximate Riemann solver, [1]. They become second-
order accurate through variable extrapolation, [2], which requires the primitive variable gradient at the
grid nodes. Gradients are computed over the triangular elements and, then, scatter-added to the nodes.
The discretized system of equations is solved using the pointwise implicit Jacobi method. The matrix
coefficient is filled in by considering only first—order convection terms; thus, the non—zero pattern of the
coefficient matrix, in graph theory terms. coincides with that of the adjacency matrix in graph theory.

The previous assumption concerning the formation of the matrix coefficient is important. During the

T
solution of eq. 8, [g%ﬁ] is set equal to the transpose of the aforementioned coefficient matrix. Thus, in
the sake of computational convenience, only the first—order terms are taken into account in the discrete

Ofu
oUn

integration law. In the present problems, the trapezoidal rule is exclusively used to compute integral
outputs. Switching to a more accurate integration formula is possible and can be employed in a straight-
forward manner; however, this does not affect the conclusions drawn below.

T
adjoint equation. The r.h.s. term in the same equation, ( ) is expressed according to the trapezoidal

5 RESULTS-DISCUSSION

The first case is concerned with the study of the flow developed around the isolated RAE2822 profile.
The flow is inviscid with M., = 0.50 and oy = 3°. The maximum Mach number over the airfoil is about
0.92 and drag should approach zero. The initial grid is generated through the advancing front method
after defining 112 nodes along the airfoil contour, clustered close to the leading and trailing edges. The
initial grid (URG1) is fully unstructured, with as many as 1448 nodes and 2763 triangles. No particular
care concerning the location of nodes is taken.

A couple of computations on successively refined grids are first made to obtain some reference results,
concerning lift and drag coefficients. Starting from URG1, a grid (URG2) with as many as four times
its triangles is generated by splitting each one of its triangles into four. The generation of the so—called
uniformly refined grids (URG) is repeated three times. Over these four grids, the flow solver is used to
predict the flow field and, through integration, to compute lift (C;) and drag (Cy) coefficients. These values
are tabulated in table 1 which also shows the CPU cost of each computation. All four computations are
made with the same initialization; even if the computation on any fine grid could start from the converged
solution on the previous (coarser) grid, this is avoided in the sake of fairness in the comparison of CPU
costs. A solution is considered to be converged if the maximum residual becomes lower than 10~2° and this
criterion determines the CPU cost of each computation. All computations are made on an Intel Pentium
M processor at 1.80GH z. Note that Cy approaches zero without reaching it, due to numerical diffusion.

Grid | Nodes | Triangles C Cy | CPU secs.
URG1 1448 2763 | 0.6674 | 0.008744 13.3
URG2 5659 11052 | 0.6907 | 0.004243 111.0
URG3 | 22370 44208 | 0.6975 | 0.003551 1124.1
URG4 | 88948 176832 | 0.6998 | 0.003463 11331.2

Table 1: Flow around the RAE2822 airfoil: Computed (reference) C; and Cy values using four uniformly
refined grids.

The grid adaptation with a posteriori error analysis is employed four times, with the same starting
grid (URG1). Each time, a different e, value is used; the e, values used are listed in fig. 1 which shows
the changes of C; during the successive grid refinements in terms of grid size (left) and CPU cost (right).
In all cases, a small number of adaptation cycles (around five) is needed. After the first or second cycle,
the grid size increases slightly. On the other hand, the CPU cost of the flow analysis on each refined grid
is, more or less, the same, since the starting flow field is interpolated from the converged solution on the
coarser grid. All four runs show the correct trend of the C; value computed over the finally refined grids.
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Figure 1: Flow around the RAE2822 airfoil, with user—defined accuracy in C;: Computed C; values during
the grid adaptation driven by 7, plotted in terms of the number of nodes (left) and CPU cost (right).
The curves shown correspond to four different e, values.

Fig. 2 compares the cost for obtaining the final C; value, with user—defined accuracy, with that of
using the URGs of table 1. Using the two runs with the lower e, values, useful conclusions can be drawn.
The e, = 0.0006 run computes a better (slightly higher, i.e. closer to that of URG4) C; value than that
computed using URG2. This computation leads to an adapted grid with 2634 nodes (URG2 possesses
5659 nodes which, despite that, yields a slightly worse C; value). The cost for the computation using
e, = 0.0006 is about 193 secs. Using the more strict C; criterion (e, = 0.0001), the C; value computed
using URG3 is obtained. However, fig. 2, the cost of this run (555 secs) is about half of the cost for URG3
(1124.1 secs). The economy in CPU cost is, in fact, noticeable.
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Figure 2: Flow around the RAE2822 airfoil, with user—defined accuracy in C;: Comparison of C; values
computed using (a) a posteriori error analysis with grid adaptation and (b) the URGs, table 1.

Two more comparisons for the same case can be made using the plots shown in fig. 3. First, eq. 10 is
used to correct the C; computed on each grid during the successive adaptation cycles. Compared to fig.
1 (left) a slight additional improvement is shown in fig. 3 (left). Also, the C; values on the successively
refined grids (for e, = 0.0001) are extrapolated according the Richardson’s formula and this offers an
additional way of exploiting the a posteriori error analysis method, fig. 3 (right).

The same airfoil, with the same infinite flow conditions and starting grid (URG1) is used for four new
computations. This time, the target is the computation of Cy with prescribed accuracy. Four e, values are
used. The results obtained are shown in figs. 4, 5, according to the previously used presentation mode.
The conclusions that can be drawn are similar. For instance, fig. 5 (left) shows that the same accuracy
level can be obtained using a much coarser grid. From fig. 5 (left) and the CPU costs listed in table 1,
it is also obvious that the lower e, value (e, = 0.0001) reaches the best value for Cy in about 3000 secs
compared to the four times more expensive computation using URG4. As in the case of C} correction, the
correction of Cy through eq. 10 or Richardson extrapolation, (not shown here in the interest of space) can
be used to further improve the Cy predictions. The starting grid as well as two finally adapted grids for
€, = 0.0001 used as threshold for C} and Cy are shown in fig. 6.

The last case is concerned with the accurate prediction of the peripheral force coefficient in a compressor
cascade. Here, a 2D controlled diffusion airfoil cascade is utilized and the integral quantity that needs to
be computed with desired accuracy is the non-dimensional force component in the pitchwise direction.
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Figure 3: Flow around the RAE2822 airfoil, with user—defined accuracy in C;: Corrected through eq. 10
(left) and Richardson extrapolated (right, for e, = 0.0001) C; values computed using (a) a posteriori error
analysis with grid adaptation and (b) the URGs, table 1.
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Figure 4: Flow around the RAE2822 airfoil, with user—defined accuracy in Cy: Computed Cy values during
the grid adaptation driven by 7y, plotted in terms of the number of nodes (left) and CPU time (right).
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Figure 5: Flow around the isolated RAE2822 airfoil, with user—defined accuracy in Cy: Comparison of Cy
values computed using (a) a posteriori error analysis with grid adaptation and (b) the URGs, table 1.

Since the flow is inviscid, this is derived through the integration of the pressure distribution around the
airfoil and projection in the pitchwise direction. The coefficient of interest is denoted by Cr,. The flow
conditions are: Ms ;s = 0.37 and a; = 47°. In all computations, the Jacobi method is used with CFL
number equal to 50. The convergence criteria are the same as previously. Of course, modifications in the
adjoint method are necessary, in order to account for periodicity.

Table 2 shows the three URGs used to get reference C'r,, values so as to compare the expected gain from
the use of grid adaptation based on the a posteriori error analysis with uniformly (and, thus, uncontrollably
expensive) grid refinement. URG1 is the starting grid in every subsequent calculation.

Fig. 7 shows the results of five computations with a wide span of e, values. In contrast to the monotonic
curves previously shown, in all cases, an overshooting in C'r, is observed before reaching its final value, on
the finally adapted grid. According to table 2, we may assume that the desired Cp, value is about 0.033.
We can see from fig. 7 that the lower the desired accuracy threshold e,, the closer to 0.033 the terminal
Cry value is captured.
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Figure 6: Flow around the RAE2822 airfoil: Left: starting grid (URG1), Middle: finally adapted grid
(5571 nodes, 10777 triangles), computed using e, = 0.0001 for C;. Right: finally adapted grid (15290
nodes, 30170 triangles), computed using e, = 0.0001 for Cy.
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Grid | Nodes | Triangles Cry | CPU secs.
URG1 1809 3327 | 0.032880 24.6
URG2 6945 13308 | 0.032988 189.8
URG3 | 27198 53232 | 0.033014 1472.6

Table 2: Flow in a 2D compressor cascade: Computed (reference) peripheral force coefficient values using
three uniformly refined grids.
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Figure 7: Flow in a 2D compressor cascade, with user—defined accuracy in Cr,: Computed CF, values
during the grid adaptation driven by 7, plotted in terms of the number of nodes (left) and CPU cost
(right), for five different e, values.

Fig. 8 compares the results of grid adaptation through a posteriori error analysis with those obtained
using the three URGs. In terms of grid size, the a posteriori error analysis based adaptation leads to much
smaller numbers of grid nodes. The difference is not that important in terms of CPU cost; however, this
depends on the convergence criteria used during the repetitive solution of the flow and adjoint equations
and could be improved through the selection of different values. Fig. 9 presents the finally adapted grids
for e, = 0.0005 and e, = 0.00005. It is obvious that the latter leads to a considerably finer grid close to
the blade airfoil.

6 CONCLUSIONS

In this paper, the a posteriori error analysis method combined with grid adaptation techniques was
presented, as a tool that ensures the computation of integral quantities with user—defined accuracy. The
expected gain, which was confirmed by the examined cases, is that our goal can be achieved without using
uncontrollably fine grids; local criteria can be used to drive the grid refinement in areas which induce the
higher errors in the computation of the integral output of interest. The repetitive solution of the flow
and adjoint equations are carried out on comparatively coarse grids, so the overall CPU cost reduces.
Correction formulaes, based on either the adjoint formulation or Richardson extrapolations can be used
to improve the prediction accuracy, with the same computing cost. In this paper, the a posteriori error
analysis method is extended to periodic turbomachinery flows.
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Figure 8: Flow in a 2D compressor cascade, with user—defined accuracy in Cr,: Comparison of Cr, values
computed using (a) a posteriori error analysis with grid adaptation and (b) the URGs, table 2.
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Figure 9: Flow in a 2D compressor cascade, with user—defined accuracy in Cpy: Left: Initial coarse grid
(URG1, 1809 nodes, 5136 triangles). Middle: finally adapted grid (2048 nodes, 3786 triangles), computed
using e, = 0.0005. Right: finally adapted grid (3368 nodes, 6354 triangles), computed using e, = 0.00005.
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