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Abstract.  This paper is dealing with the design of an optimal combined cycle power
plant with supplementary firing. For this purpose, an Evolutionary Algorithm based opti-
mization tool, namely code EASY 1.3 developed by the National Technical University of
Athens, will be used to carry out a number of different optimizations. The main target is
to get configurations with maximum efficiency and power output at minimum cost. Such a
three-objective optimization yields a 3D Pareto surface; this has been analyzed in detail by
running additional two—objective cases and scrutinizing their results. The analysis of the
obtained results offers a complete understanding of the role of various design parameters,
including supplementary firing.
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1 INTRODUCTION

Electric power generation using both gas and steam turbines, operating in combined
cycle, is nowadays in widespread use. It is well known that Combined Cycle Gas Turbine
(CCGT) power have short erection time, low investment cost and particularly higher ef-
ficiency compared to that of conventional steam power plants. Building optimal CCGT
power plants requires first to define the design parameters and then to employ an op-
timization method with one or more objectives. Maximizing power output as well as
efficiency while minimizing the capital cost are three typical targets.

This paper is dealing with the design of an optimal CCGT plant with supplementary
firing, shown in fig. 1. Supplementary firing (sf) is used at the gas turbine exit (position
0) in order to increase the temperature of exhaust gases entering the Heat Recovery Steam
Generator (HRSG), in the expense of additional fuel consumption.

Figure 1: Combined Cycle Gas Turbine Power Plant with Supplementary Firing.

The design of an optimal power plant calls for multi-criteria optimization tools and
Evolutionary Algorithms (EA) is an evident choice. In this paper, the use of the opti-
mization software EASY 1.8 (Evolutionary Algorithm SYstem, developed by the Lab. of
Thermal Turbomachines of the National Technical University of Athens) for a realistic
design will be demonstrated. FASY 1.3 is capable of handling both single- and multi-
objective, constrained or unconstrained optimization problems and may also reduce the
number of required evaluations through the use of surrogate models, such as artificial
neural networks. Most of the theoretical aspects and the capabilities of EASY 1.3 are
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analyzed in [1] and [2].

2 THE COMBINED CYCLE GAS TURBINE POWER PLANT

The CCGT power plant that will be optimized is shown in fig. 1. During the design
process some of the operating parameters are considered to take on fixed (user—defined)
values. The fixed parameters are:

e the gas turbine operating data, namely the power output (70 MW), efficiency (40%),
exhaust gas mass flow rate (265 kg/s) and temperature (440°C),

e efficiencies (isentropic 90% for the HP and 87% for the LP, mechanical n,e0r, = 90%
and electrical 1n,=100%) related to the steam turbine (ST') and its generator (G2),

e the extraction pressure (2.5 bar, marked by ez in fig. 1) from the LP steam turbine
and

e the condenser vacuum (45 mbar, position 22), which is chosen for minimal waste
heat in the condenser.

The design variables, i.e. the parameters controlled by the optimization tool are listed
below. The lower and upper bounds [Lower, Upper] for the most important among them
are also given. Some of the unknown temperatures are indirectly defined as differences
from other temperatures computed during the power plant analysis.

e the HP steam pressure [20, 100 bar],
e the LP steam pressure (2,15 bar],

e the superheated steam temperature at the exit of the HP branch of the HRSG
(position 14), defined as the difference from the exhaust gas temperature after the
supplementary firing,

e the feedwater temperature at the inlet (position 12) to the HP evaporator,

e the feedwater temperature at the exit (position 11) from the first HP economizer,
e the feedwater temperature at the inlet (position 16) to the LP evaporator,

e the superheated LP steam temperature (position 18),

e the total pressure of steam driven to the water tank [1.1,2.0 bar],

e the percentage r of the flue gases mass flowrate that passes through the LP econo-
mizer [10%, 45%)],
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e the flue gases temperature at the condensate preheater inlet (position 7),
e the HRSG exhaust (position 8) gas temperature [103,110°C] and

e the supplementary fuel mass flowrate s, expressed as the percentage of Os,
contained in the flue gases at position 0 and used for the supplementary firing,

(0%, 100%]

According to the FA terminology, the thermal analysis of a CCGT power plant re-
quires the so—called evaluation tool. This is based on a system of mass and heat balance
equations, governing the various plant components. These equations are summarized be-
low. H and h will denote flue gases and water/steam enthalpies, respectively; LHVy, is
the lower heating value of the fuel (natural gas):

(a) Heat balance occurring in the HRSG heat exchangers (below, this is written only
for the heat exchangers located between positions 6 and 7):

(g + msp)(He — H7) = 1hpp(hig — his)
(1 - r)(mg + msf)(HG - H?) - mHP(hll - hm)

(b) Heat balance occurring in the condensate preheater:
(g +1isp) (Hy — Hg) = (g p+1ip —1her ) (has — has)
(c) Heat balance occurring in the feedwater tank:
Mex(ho—hos) = (Mgp+mrp—1mes)(has—ho)
(d) Work-heat balance occurring in the steam turbine:

Psy = (mpp(hia—hig)+(mpp+mrp)(heo—ho)

+  (Mpp+mrp—1e)(hor —h22) ) Nelmech
(e) Heat balance occurring in supplementary firing:
(thg+msp) Hy=mgHo+1ms LHVye
The thermodynamic properties of flue gases, water and steam are all modelled using
polynomial expressions. The flue gases composition after the supplementary firing (posi-

tion 1) is calculated using combustion equations. The total efficiency of a CCGT power
plant is given by
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Per + Pst

lee = mfuelLHVfuel

where Pgr and Pgr is the electrical power produced at the gas and steam turbines re-
spectively and 1, is the total fuel mass flowrate.

The capital cost of the CCGT plant is calculated by summing up the cost of its main
components, viz. the gas turbine, the HRSG system and the steam turbine as well as the
cost of the additional electromechanical equipment and civil works which are necessary
in order to complete the plant (expressed as a fixed percentage of the main equipment
cost). The cost of gas and steam turbines depends upon the power of each one of them.
In order to compute the cost of the HRSG system, the total area of the heat exchangers
of the HRSG is required.

Finally, for the HRSG of this power plant, twelve inequality constraints should be
fulfilled in order to ensure feasible heat exchanger design. Additionally, the inlet temper-
ature to the steam turbine (position 14) should not exceed 565°C. All these inequality
constraints are taken into account by penalizing the cost value of all the objectives. Prac-
tically, for any inequality constraint of the form T, > T}, if AT =T, —T, < 0, the penalty
factor p; = e27/™ is computed. The total penalty factor p,, is the product of all p;’s and
the penalized cost value is the yx = yx/Diot-

Having defined objectives and constraints, we seek to optimize the relevant Rankine
cycle and the heat-temperature (Q — T') diagram for the HRSG. In the Q — T diagrams
that will be shown in the Results section for a number of optimal configurations, flue gases
and (counter-flowing) water or steam temperatures will be plotted and the constraints
will be interpreted graphically.

3 EVOLUTIONARY ALGORITHMS

One of the fundamental application of Evolutionary Algorithms (EA) is as optimization
tool. FA process populations of candidate solutions rather than single individuals. A
selection process and a probabilistic random variation are the main features of any FA.
Implicit to the selection process is one or more objective functions, used to determine
the cost or merit of each population member with respect to an equal number of targets.
The most frequently used variants of FA, i.e. Genetic Algorithms (GA) and Evolution
Strategies (ES) are described in many standard textbooks, [3], [4], [5].

The EASY 1.3 optimization software constitutes a generalization of GA and ES with
several add—on features and, for this reason, it will be referred to as an Evolutionary
Algorithm.

Before describing the K—objective EA built in FASY 1.3, a couple of notations should
be introduced. The decision vector will be denoted by 7@ and its components by

x;? , m =1, M. The corresponding objective vector is 7(i), with components y,(j) , k=
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1, K. The objective functions represent the mapping Y — RX. In minimization prob-
lems, the decision vector Z® dominates 77 (7 < #@) if and only if V k € [1, K] :
yP <yl and Ik € [1, K]y < y2.

Using a notation which is common in ES, [5], we will denote any EA that will be used in
this paper by (u, &, A); this symbol denotes the evolution from the parent population of u
individuals to the offspring population of A individuals, while allowing maximal life span
of individuals equal to x generations. Also, if ¢ stands for the generation counter, then
S9# and S9* will denote the set of parents and offspring in the g-th generation. From
the algorithmic point of view, the aim of an EA to compute the Pareto front of optimal
solutions in R¥ is equivalent to the use of the archival front S9*. Upon convergence, S9°
contains the set of nondominated solutions to the K-objective problem. From a more
general point of view, the role of S9¢ is to preserve elitism during the evolution. It is for
this reason that, in FASY 1.3 an archival front S, with more than one solutions, is also
maintained in single-objective problems. The maximum size a of S9¢ is a user—defined
parameter.

4 THE MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM

The major steps of the multi-objective FA are given below:

Step 1: The A individuals 70 e S92, either created during the previous generation
or selected at random (at the first generation), undergo evaluations; so, values are
given to the objective vectors

7O = F(FY) ;. ?Weg (1)

Step 2: The nondominated individuals belonging to S9* U S9® are identified. These
form the provisional Pareto front S9t1%* It is the first action taken in order to
preserve elitism in the population. If S9t1* is overcrowded (with respect to the
aforementioned « value), a thinning process will be employed in Step 4. The role
of thinning will be to reduce the size of S9*1%* and create S9*%* with better point
distribution.

Step 3: Using the values of 7(i), i€ S9r U S9N U SITLe* 4 unique cost value ¢ per
individual is computed. Of course, in maximization problems, ¢{?) will be referred to
as fitness value. Through the cost (or fitness) assignment, standard single-objective
evolution operators can be used. There is a large literature on the subject of cost
(or fitness) assignment ([6], [7], [8], [9], [10], [11], to mention only some of the most
notable works). They are all based on domination criteria and the concept of the
Pareto front; most of these methods also locate and penalize clustered solutions,
in order to promote diversity. Among the many algorithmic variants offered to
the users of FASY 1.3, the two most inportant are listed below. Note that, with
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respect to the standard forms of these algorithms (see the works cited below) certain
modifications were necessary for adapting them to the (p, , A) scheme.

e Front ranking based methods: The S9* U S9* U §9+1-2* members are ranked in
fronts using a repetitive procedure. Note that the first front (front 0) of the
absolutely nondominated solutions is already known (S971%*). The members
of front 0 are initially given the same lowest ¢ value. Then, in order to promote
diversity, these values are penalized using sharing functions according to the
niching concept. Distances can be measured either in the decision variables’ or
the objectives’ space. The cost assignment algorithm ensures that the ¢ value
of any individual of the j-th front is greater than the highest ¢ value of the
(7 — 1)-th front. This method is conceptually similar to the one proposed in
[6], with the previously discussed modifications.

e Strength based methods: This variant is based on the algorithms introduced in
[10], [11]. All the S9"1** members are first assigned a cost value equal to the
number of the S9#US9* individuals they dominate, divided by jt+A+1. Then,
the ¢ value of each of the S9* U S9* members is set equal to 1 plus the sum
of strengths of the S9*1%* individuals which dominate it. Other algorithmic
variants are also possible. For instance, likely [11], strengths can be computed
for all the S9# U S9* U S92 members; then, the ¢ value for each one of
them is the sum of strengths it dominates. The final ¢ value is the sum of
the previously computed value plus a contribution proportional to the local
density of individuals. This is calculated from the distance of this individual
from its k-th closer neighbour, measured in the objectives’ space.

Step 4: The archival front S91¢ of the current generation is formed. If the size of S9T1.e*
is less than the user—defined parameter o, the nondominated solutions of S971%* are
merely copied to S971%; in contrast to some other methods (such as SPEA2, [11]),
S9+1a consists only of nondominated individuals, so its size might be less than a.
On the other hand, if S9t1** contains more than o members, an iterative thinning
process, that eliminates one of its members at a time, is employed. In each iteration,
the individual to be eliminated is selected between the two members of S91%* with
minimum distance in the objective space, the criterion being the second smaller
distance from its neighbours. This algorithm (described also in [11]) is simple and
fast as long as a reasonably low value of « is utilized. An important feature of this
algorithm is that it maintains the Pareto front extent, i.e. it does not eliminate the
individuals lying along the edges of the archival front.

Step 5: Aiming at preserving elitist solutions in the active population sets (second ap-
plication of elitism), a small fraction of the topmost solutions of S97!® are copied
directly to S9*, by replacing an equal number of the worse individuals in this set.
S9 is, practically, overwritten.
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Step 6: The new S91# set of possible parents is created from the S9* U S9* individuals.
First, the S9* individuals that have reached the maximum allowed life span are
eliminated from S9*. Then, the members of S9* U S9* are rank sorted in terms of
their ¢ values and the p top individuals are selected to form the new S971# set.

Step 7: The new offspring set S9! is created by appling the parent selection operators
to the S9t1#US9ItH superset. Parent individuals are randomly selected from S9+1:#
(with probability p,s) or S9T5¢ (with probability 1 — pps). If u < A, the aforemen-
tioned random selection is adequate. But, whenever p > A, additional selective
pressure should be exerted by increasing the possibility of selecting parents with
lower cost values; for instance, schemes such as the probabilistic tournament selec-
tion scheme are used. The number of candidates participating in the tournament
and the probability of selecting the candidate with the smaller cost value are user—
defined parameters. This is an important difference compared to SPEA2, where
parents are selected only from S97%. Once two parents have been selected, recom-
bination and mutation operators are applied to create a new offspring to be inserted
into S9T1A. EASY 1.3 allows a variety of multi-parent recombination operators to
be used.

Step 8: Set g := ¢+ 1 and return to Step 1 until a stopping criterion is met. The usual
stopping criterion is the maximum number of evaluations.

One of the possibilities offered by the EASY 1.3 software is the use of surrogate evalu-
ation models (often referred to as metamodels or approximate models), [1] and [2]. FASY
1.3 implements the so—called Inexact Pre—Fvaluation phase to reduce the number of eval-
uations required from the same solution quality. In the present analysis, there was no
need to use the metamodel, since the evaluation tool was very fast.

5 RESULTS - DISCUSSION

Extending previous work by the authors, [12], this paper will focus on the design of the
CCGT power plant with supplementary firing, fig. 1. We recall that the goal is to design
power plants with maximum efficiency, maximum power output (at G2; the power output
at G1 is determined by the gas turbine characteristics) and minimum investment cost.
The design variables, the fixed parameters and involved constraints have been discussed
in previous sections.

In fig. 2, the Pareto fronts computed through four optimization runs are shown. This
3D plot includes one Pareto front (surface, formed by a cloud of points) from a three-
objective optimization and three Pareto fronts (3D curves) resulted from three two—
objective optimizations. For the latter, the objectives were (a) maz.efficiency-mazx.power,
(b) maz.efficiency-min.cost and (c¢) maz.power-min.cost. In each one of them, the third
objective was not considered and the corresponding values were post—computed just to
facilitate the inclusion of the derived solutions into the 3D plot. Of course, all of the
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Capital Cost (MEuro)

Efficiency

Figure 2: Results form one three-objective and three two—objective optimizations, shown in the 3D space
of objectives. The three two-objective runs define the bounds of the Pareto surface,i.e. the outcome of
the three-objective optimization.

constraints have been taken into account. As expected, the three two—objective fronts
constitute the bounds of the Pareto surface. In fig. 2, they correspond to the (a) right,
(b) bottom and (c¢) top-left bounds of the Pareto surface, respectively. Fig. 2 indicates
also the lower and upper values of the three objective functions for the optimal solutions.
So, efficiency varies between 45% and 55%, power between 19 and 51 MW and cost
between 45.5 and 66.5 M Euro, approximately.

It is interesting to interpret the type of solutions captured by the two—objective runs.
For this reason, fig. 3 shows three 2D plots (each one with different axes, i.e. all the possi-
ble combinations). The three—objective results are omitted but it is clear that they cover
the area between the three two—objective Pareto fronts. The maz.efficiency—mazx.power
optimization yields (on the corresponding plane) an almost linear front at the highest
efficiency levels (between 52% and 55%, respectively). The higher efficiencies correspond
to lower power levels (from 50 to 26 MW), respectively. Cost and power remain pro-
portional; we recall that since the cost was not included in the objectives, the demand
for maximum power leads to high investment costs (> 55 M Furo). The outcome of the
max.efficiency—min.cost optimization is a front located also in the high efficiency area.
Finally, the max.power—min.cost design yields a Pareto front which is differently shaped
in the three plots. Though on the power—cost plane this is a monotone curve, on the other
two planes the same efficiency can be achieved with two different combinations of power
and cost.

All the two—objective computations have been carried out using the (35,0,200) FA,
with the strength—based cost assignment and without the front thinning option. For the
three—objective runs, the (50,0,350) EA was used. The thinning of the archival front
was activated with an upper bound a = 400. The decision variables were coded in
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Figure 3: Pareto fronts from two—objective computations, ( maz.efficiency-maz.power, maz.efficiency—
min.cost and and maz.power—min.cost) plotted using efficiency—power, efficiency—cost and and power—cost
axes.

binary form using 10 bits per variable. Additionally Gray code was applied to improve
the convergence properties. A two—point crossover operator was applied to each pair
of parents with probability equal to 90%. The crossover operator affected each pair of
decision variables separately from the other ones. The mutation probability was set to
1.9% and was kept constant during the evolution.

Fig. 4 can shed more light to the physical characteristics of the Pareto optimal solution
obtained through the two—objective optimizations. Two of the most important design
variables, namely the HP values and the percentage of the Oy (of the turbine flue gases)
used for the supplementary firing, are plotted. The correspondance of points between figs.
3 and 4 can readily be found. Concerning the HP levels, it is interesting to note that
the Pareto optimal solutions scan the entire search space for this variable, from 20 up
to 100 bar. Note, however, that the efficiency—power optimization favors configurations
operating at the highest HP level. Despite the fact that the level of supplementary
firing was practically left unbounded (the Oy percentage was allowed to vary between
0% and 100%), the maximum attained value was close to 10%. This is attributed to
the upper bound (565°C') imposed to the temperature at the steam turbine inlet. Tt

10
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Figure 4: Pressure values at the HP branch of the HRSG (left) and percentages of the exhaust gas Oa
used for supplementary firing (right) for the two—objective Pareto optimal solutions.

can also be noticed that the maz.efficiency—min.cost optimization favors configurations
without supplementary firing; in contrast, the major part of the Pareto front computed
with maz. power—min.cost targets corresponds to the higher allowed level of supplementary
firing.

Some comments on the obtained results may contribute to the understanding of the
proposed optimal configurations. For instance, it is clear from fig. 3 (bottom row) that
the same power can be achieved with two different capital costs. Using also fig. 4, it
comes out that these two solutions correspond to different levels of supplementary firing.
In particular, the less expensive solution is the one with maximum use of supplementary
firing which, however, yields lower efficiency. Of course, the final choice of the optimal
power plant configuration requires a detailed economical analysis, by considering both
capital and operating (fuel) costs. To this end, it is interesting to compare two realistic
configurations: The capital cost for a plant delivering 35 MW (to the steam turbine
generator) is about either 52 M Euro with 45.5% efficiency and 10% supplementary firing
or 60 M Euro with 53.8% efficiency and 4% supplementary firing. Thus, in this case, an
increase of about 15.4% in capital cost results to about 18.2% higher efficiency. A similar
analysis for 45 MW power output gives only 6% higher efficiency while increasing the
capital cost by 14%.

Figs. 5, 6 and 7 show the temperature operating levels in terms of the exchanged heat,
at some characteristic HRSG positions. Fig. 5 analyzes the two extreme optimal points on
the maz. efficiency—min.cost Pareto front. From the results shown so far, all these configu-
rations have been obtained without supplementary firing. Though in both configurations
the exhaust gas temperature from the HRSG is almost the same, the higher efficiency of
the configuration shown in fig. 5 (right) is due to the lower temperature difference at the
so—called pinch point (at the exit from the HP evaporator). Fig. 6 analyzes the extreme
points on the upper branch (as shown in fig. 3, top—left) of the maz.power—min.cost front;
this branch corresponds to the maximum allowed supplementary firing (10%). The higher

11
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Figure 5: Temperature plots at characteristic locations along the HRSG, for the optimal solutions com-
puted through the maz.efficiency—min.cost optimization. Configuration with minimum (left) and maxi-
mum (right) efficiency.
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Figure 6: Temperature plots at characteristic locations along the HRSG, for the optimal solutions com-
puted through the maz.power—min.cost optimization. Configuration with minimum (left) and maximum
(right) efficiency, for the high—power branch of fig. 3 (upper row,left).

efficiency of the configuration in fig. 6 (right) is due to the same reason (pinch point) as
previously exposed.

Fig. 7 corresponds to two optimal configurations resulted from the mazx.power-min.cost
optimization, for the same efficiency (50%). The use of 10% supplementary firing (right)
yields more than twice the same steam turbine output (with only 23% additional capital
cost) thanks to the higher temperatures occuring in the HRSG.

6 CONCLUSIONS

An FEA-based optimization tool (FASY 1.3) was utilized for the design of optimal
CCGT power plants. Using a combination of three— and two-objective analyses, a full
understanding of the obtained solutions and the role of supplementary firing was obtained.

CCGT power plant configurations with no supplementary firing are characterized by
directly proportional efficiency—power—cost relationships. By introducing supplementary
firing, power becomes inversely proportional to the efficiency. The demand for high
efficiency—high power output can be met through any percentage of Oy of the fluw gases

12
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Figure 7: Temperature plots at characteristic locations along the HRSG, for the optimal solutions com-
puted through the maz.power—min.cost optimization. Two configuration with the same efficiency and
minimum (left) and maximum (right) power output.

used for supplementary firing (up to its maximum value allowed by the maximum allowed
temperature at the steam turbine inlet) but only for the highest pressure level at the HP
part of the steam cycle. The capital cost is always proportional to the power output.
Further decisions about a new CCGT power plant can be taken only if the operating cost
is taken into account, too.

13
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