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Abstract. Three low-Reynolds turbulence models are implemented in an unstructured-
grid, Navier-Stokes, finite-volume solver. These are the one-equation model of Spalart-
Allmaras, the Shear-Stress-Transport k — w model and a hybrid one/two-equation k —
e model. All of them are shown to be robust and compliant with unstructured grids.
They are used to numerically predict the subsonic flow around two-dimensional high-lift
configurations, namely the two-element NLR-7301 airfoil and the single-element A-airfoil,
where turbulent separation occurs near the trailing edge at high incidence angles. Both
global coefficient distributions (C,, Cf, C), Cy4) and local boundary layer quantities or
velocity profiles are compared with measured data. Due to the very stretched grid cells used
close to solid boundaries, the definition of the finite-volumes (median-dual or containment
circle-dual tesselation of the domain) is crucial for the quality of the results. Besides, the
effect of including or not a transition mechanism into the turbulence model is investigated.
The results from all models are satisfactory; the Spalart-Allmaras model performs slightly
better than the other two models in terms of both predictive capability and numerical
robustness.
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1 INTRODUCTION

In aerodynamic flows, one- and two-equation turbulence models have credited certain
advantages. Despite their simplicity, their numerical stability outperforms that of other
more sophisticated models often producing results of comparable quality. However, they
are not always free of convergence difficulties due to the stiff low-Reynolds terms employed
in the vicinity of solid walls and these require particular treatment. The numerical imple-
mentation of such models on structured grids is straightforward. Transverse grid lines are
purposely made quasi-orthogonal to the solid boundaries, so that either distances from
the wall or derivatives of flow quantities normal to the wall are computed accurately. For
this reason, models such as those of Launder-Sharma [1], Chien [2], etc. have been widely
used with structured grids.

During the last years, there has been a substantial progress made in the use of finite-
volume techniques on unstructured grids for the solution of flow problems in complex
geometries. Upwind schemes based on one-dimensional approximate Riemann solvers of
second order accuracy [3], [4] or even equivalent ”central schemes” with artificial dissipa-
tion [5], [6] are usually employed for the discretization of the inviscid terms. With regard
to turbulence modelling for unstructured grids, most of the available works rely on the use
of algebraic eddy-viscosity models [7], [8] or differential models based on the wall functions
technique [9], [10], [11]. There are a few papers which employ low-Reynolds two-equation
models on unstructured grids [9], [12]. The Spalart-Allmaras [13] or the Baldwin-Barth
[14] one-equation models are used in preference to other models [15], [16].

In the present work, three low-Reynolds eddy-viscosity models (a one-, a two-equation
and a hybrid one/two-equation model) are employed in a primitive variable, finite-volume
Navier-Stokes solver for unstructured grids. Their straightforward implementation results
to convergence difficulties and, in some cases, lowers the results accuracy. The latter is a
consequence of using very stretched grid cells close to the solid boundaries. To increase
accuracy, an alternative to the usual definition of the control-volumes [3] is adopted and
tested. For the same reason, the least-squares gradient approximation for the MUSCL
scheme is used. Convergence is enhanced through the linearization of the models’ source
terms. The inclusion of a laminar-to-turbulent transition mechanism is investigated using
the one-equation model. The flow problems used to evaluate the relevant software are the
two-element NLR-7301 configuration and the ONERA A-airfoil.

2 TURBULENCE MODELLING

In what follows, the three turbulence models used, are briefly described. For detailed
explanation of the appearing terms, quantities and constant values, the reader should
refer to the cited original publications.
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2.1 Spalart-Allmaras One-Equation Model (SA)

The SA model [13] is one of the most successful one-equation models. It solves a single
differential equation in terms of /i, from which the turbulent viscosity coefficient is derived.
Its compressible flow variant reads
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Transition trip is included in the coefficients f;; and f;» which depend upon the distance
from the transition point. If such a point is not defined, these coefficients should be
zeroed. Along solid walls yi; is set to zero. At the inlet, the turbulent viscosity is set equal
to 0.01p, i being the molecular viscosity.

2.2 Shear-Stress-Transport & —w Model (SST)

The SST k — w model has been introduced in [17] as an extension of a blended k — ¢
/k—w model and is considered to be the state-of-the-art k—w model. The model equations
in conservative vector form read
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Model constants is computed by the linear combination & = §;®; + (1 — F})S,, where
S; = {Bi, Owi, ki, vi}, S1 = {0.075, 0.5, 0.85, 0.55}, S, = {0.0828, 0.856, 1.0, 0.44}.
The wall boundary conditions are k,, = 0 and w, = 60u/RepSd?, where d,, is the

distance of the first node off the wall [17]. For each wall node we define d,, to be equal to

3
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the mean value of the heights of the (two) triangles lying on the wall and sharing this node.
At inflow, w;, = 10V}, /L, L being the computational domain length and k;, = auw/Re
with oo = py/pp = 0.01.

2.3 Two-Layer k — ¢ Model (TLKE)

The TLKE model is a k — ¢ variant, which consists, in its main part, of the standard
high-Reynolds k — ¢ model [18], which is written as in equation 4 with W, = (pk, ps)"
and Sy, = P, — Dy, S: = ca1Pre/k — ceape? [k, Dy, = pe, ¢y = 1.44, c.p = 1.92, ¢, = 0.09,
or = 1.0, 0. = 1.3. Close to the wall, the one-equation model of Wolfsthein [19] is used
instead. This is based upon the same equation for & with D, = (95)1eq7 an algebraic
relation for £ and a different definition of the turbulent viscosity. Thus Dy = (pe),,, =
pk®? /1. and 1, = pc,l,v/kRe. The involved length scales [, = xc, ~*/*d[1 — exp(—d*/70)]
and . = ke, ~4d[1 — exp(—d* /(2kc,~3/*)] with d* = pdvVkRe/ p.

The two-layer formulation, with a continuous switch between the two models at a cer-
tain distance from the wall, was first proposed in [20] for structured grids. For numerical
reasons, a time-derivative is added to the algebraic relation of the one-equation model
as d(pe)/dt = a(pk®?/l. — pe). The final s-equation of TLKE uses a linear blending of
the e-equations of the two models, A(e —eq. of k —e ) + (1 — A)(¢ — eq. of leq) = 0,
with similarly blended expressions for the dissipation term Dj and the turbulent viscos-
ity. The same function A as proposed in [20], A = 0.5{1 + tanh[(Re, — Re})/A|} with
Rey = pdvkRe/p is used. Recommended constant values are a = 1,4 = 1, Re); = 150.
The wall boundary conditions are k,, = 0, &,, = 0 whereas at the inflow k;,, = 1.5(T,,V;,,)?,
Tu being the turbulence intensity and £;, = ¢, f,Re(pk2,/ap), with o = p,/p = 20.

It is worth mentioning that the three models described above require the distance d of
any internal grid node from the wall. This is simply estimated as the minimum distance
of each node from all the wall nodes and segments. In view of these, it becomes evident
that the aforemantioned models can be readily implemented on unstructured grids.

3 NUMERICAL SOLUTION METHOD

The Favre-averaged compressible Navier-Stokes equations are discretized on an un-
structured grid with triangular elements using a node-centered, finite-volume technique
and solved through a time-marching scheme. At each node, the control-volume is defined
by successively connecting the midpoints of the edges incident upon the node with the
barycenters of the surrounding elements (median-dual tesselation). In an alternative def-
inition of control-volumes, the center of the containment circle of each triangle is used
instead of its barycenter (containment-circle tesselation). The latter has been originally
proposed by Barth [3] and is highly recommended for finite-volume discretizations on
stretched grids, like those used close to the walls.

The time-marching Navier-Stokes solver uses a pointwise-implicit Gauss-Seidel scheme.
The Roe [21] approximate Riemann solver [21] is employed for the calculation of the in-
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viscid fluxes combined with a MUSCL-extrapolation scheme for higher order accuracy.
The primitive variable gradients are computed using an unweighted least-squares tech-
nique in order to establish an accurate solution in high aspect-ratio grid cells [22], [15].
Furthermore, the use of the two-dimensional Barth-Jespersen limiter [3], was found ab-
solutely necessary for stability purposes, since the very stretched grid cells near the wall
may easily cause local overshoots or even breakdown. A first-order upwind scheme is used
for the discretization of the inviscid terms of the turbulence model equation(s). They are
handled by the same pointwise solver and solved in a loosely-coupled manner with the
mean-flow equations. The viscous terms are calculated by assuming linear distributions
of flow quantities in each triangle. The implementation of the low-Reynolds turbulence
models requires source terms linearization, as a means to overcome numerical problems
caused by their stiffness in regions close to solid walls. For this purpose, the linearization
proposed in [17] and [13] was used for SST and SA respectively, while for the TLKE the
linearization of the negative part of the source term was used.

4 RESULTS AND DISCUSSION

The aforementioned turbulence models will be tested in the numerical prediction of
attached and separated flows over single- and multi-element airfoils. We present the the
flow around: (a) the isolated two-element NLR-7301 airfoil and (b) the single-element
ONERA A-airfoil, in various flow conditions. In what follows, TR denotes that transition
modelling has been used (for example SATR), and FV2 denotes containment circle-dual
tesselations (for example TLKEFV?2).

4.1 The Two-Element NLR-7301 Airfoil

The NLR-7301 two-element configuration consists of an airfoil (chord C=0.57 m) and
a single-slotted trailing edge flap. The flap (of 0.32C length) is staggered at 20 deg with
respect to the airfoil and overlaps with it for 0.053C length. Two different configurations
will be considered. In the first case, the airfoil-flap gap was equal to 0.013C and the
angle of attack 6.1 deg, while in the second case, the gap equals 0.026C and the angle
of attack 13.1 deg. For both configurations, experiments have been carried out in the
NLR wind-tunnel at Re/C = 2.51x10% and M., = 0.185 with free transition [23]. The
airfoil-flap configuration is so designed that the flow remains attached, apart from a small
laminar separation bubble on the airfoil leading edge.

The unstructured grids used for both cases consist of about 150000 nodes and 300000
triangles. The first node spacing off the wall is of the order of 107°C. The finite-volume
scheme was applied using the median-dual tesselation. Fully turbulent flow conditions
were assumed for the three turbulence models. The CFL number increased linearly from
a small initial value to CFLmax within the first NITER iterations. The (CFLmax,NITER)
values were (50,200) for the SA model, (20,300) for SST and (10,500) for TLKE, with
15 internal steps were used per Gauss-Seidel iteration. About 10000 iterations were used
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for all models, without any other convergence criterion. The results are grid independent
and well-converged in terms of flow quantities like the lift or the drag coefficients.

The pressure (C,) and skin friction (Cf) coefficient distributions along the main airfoil
and the flap, as well as the displacement thickness distributions on the airfoil suction side
are compared with experimental data, figure 1, for both cases (1.3 % and 2.6 % gap). The
C), comparison in the small gap is excellent for all models, since the flow is attached and
the angle of attack is small. In the case of 2.6 % gap, some discrepancies with respect to
experimental results appear along the airfoil and flap pressure sides. These discrepancies
are more pronounced at the leading-edge and extent along the whole pressure sides. The
SA model predicts a better leading-edge pressure peak, but the other two models (SST,
TLKE) match closer the experimental distribution after midchord. This is attributed to
the fact that the very stretched grid used, in conjuction with the high angle of attack
allows for an unphysical amount of artificial dissipation to be introduced into the inviscid
fluxes, affecting thus the solution. In accordance to this claim is the fact that the Cy
distributions along the pressure side seem to be unaffected. The artificial dissipation
issue will be further discussed in the second problem and remedies will be proposed. A
totally different performance is noticed in the C; distributions from the three models
along the suction side. In the small gap case, the experimental results are scarce, so it
is difficult to draw definite conclusions. In the larger gap, the SST seems to give better
predictions. In any case, the SST allows for a more ” viscous” solution to evolve, in contrast
to the SA model, with the TLKE curves lying between them. This is also verified by the
velocity profiles shown in figure 2. Concerning the displacement thickness distributions,
they are judged to be satisfactory. It should be mentioned that the boundary layer edge
has been computed by the Stock and Haase method [24] and that the post-processing in
the unstructured grid is not a trivial task. In figure 2, the parallel to the wall velocity
profiles are compared with experimental data. The comparisons concern six measurement
stations: two over the rear part of the airfoil pressure side, three along the flap suction
side (the lattest at the trailing edge) and one at the flap wake. The overall comparison
is judged to be satisfactory. In particular, the SA model seems to be in closer agreement
with experiment at the first four stations but, at the last two ones (flap trailing edge and
wake), the TLKE predictions outperform the rest. The two first profiles predict a thicker
boundary layer, due likely to the assumption of a fully turbulent flow. In addition, all
the numerical results in the last figure seem to underestimate the wake mixing procedure,
giving thus a clear peak for the flap wake, while in the experiment this peak has been
smeared out.

4.2 The ONERA A-Airfoil

In this section, the ONERA A-airfoil (chord C=0.6 m) is analyzed at various flow
conditions, with and without transition trip. With the same freestream Mach number
(My = 0.15), this airfoil will be investigated initially for a single operating point at
Re/C = 2.1x10°% and o = 13.3 deg. As reported in the literature [25], this case exhibits a
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small leading-edge separation bubble and trailing-edge turbulent separation. Then, it will
be analyzed at ten operating points at a different Reynolds number (Re/C = 3.13x10°)
and angles of attack in the range o = 3.4 — 17.1 deg (3.4, 10.1, 12.1, 14.1, 14.6, 15.1,
15.6, 16.1, 16.6, 17.1). A single unstructured grid with approximately 65000 nodes and
130000 triangles has been generated. Close to the solid wall, structured-like node layers
are formed, ensuring an approximately constant distance of the first node off the wall of
the order of 107°C. The undertaken grid-dependency study is not included in this paper.

Using the three models (SA, SST and TLKE) in their standard form, the flow field
was computed at the first operating point. Figure 3 illustrates pressure and friction
coefficients (C, and Cf) as well as displacement thickness distributions over the airfoil.
The left column corresponds to the median-dual tesselation (first finite-volume definition
or F'V1, this abbreviation is ommitted in the figures) whereas the right column corresponds
to the containment circle-dual tesselation (FV2). Results are compared with each other
and with experimental data. Unfortunately, C'; data in the front part of the suction
side, where most differences between models are located, are not available. From the
C, plots, two conclusions can be drawn, which will be reconfirmed elsewhere. The first
conclusion is that all used models produce similar pressure distributions, for the same
tesselation. The second conclusion is that the FV2 scheme has greatly affected the overall
performance, matching perfectly the experimental C, peak. However, F'V2 produces slight
discrepancies very close to the trailing edge, probably associated with the pressure peak
at the suction leading edge. The latter is a consequence of the change in airfoil circulation
that occurs when the bubble-type separation is underpredicted in size (more pronounced
in SST model). Concerning Cy predictions, the SA and TLKE models produce similar,
though not identical, distributions which are in good agreement with measurements. As
in the NLR case, the SST predicts a more ”viscous” solution. Some differences occur in
the displacement thickness predictions, where the SA results seem to be generally closer
to the experiments, especially in the FV2 case, but this will be discussed below where the
transverse velocity profiles are shown.

For the same operating point, figure 4 presents a more extensive view of the predictive
capabilities of the SA model, using four variants of the solution software (transition model
or not, FV1 or FV2). Transition is imposed at 0.30C on the pressure side, a location known
from the experiments; on the suction side, a transition trip at 0.12C was arbitrarily set.
Transition on the suction side can be readily observed from the corresponding C curves.
The pressure distribution on the suction side, close to the leading edge, shows that the
incorporation of a transition model to the FV2 tesselation does not improve the results
which are already very close to the experimental data. On the contrary, it yields a high
negative local pressure peak, which points to a local laminar flow with well controlled
artificial diffusion effects. The displacement thickness plot is also in favour of SAFV2
which is quite accurate by itself, without resorting to transition modelling.

Figures 6, 7 and 8 compare transverse non-dimensional velocity profiles at twelve axial
positions along the suction side and three stations along the wake, close to the trailing
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edge. The following comments correspond to figure 6 and concern results obtained using
the median-dual tesselation. Quite early, the SA model shows its tendency to create a
separated flow region. This appears first at about 70 percent of chord. The turbulent
separated flow profile at the very last position on the airfoil, predicted using SA, comes too
close to the measured one. The other two models (especially the SST one) fail to predict
separation. On the other hand, the SA model, with the first tesselation, overpredicts
both the extent and thickness of separation. In the wake, SA matches the experimental
curves close to the trailing edge but fails to reproduce the correct peak due to flow mixing
further downstream.

As expected, the FV2 tesselation, figure 7, improves the accuracy of the predictions
close to the wall where the grid cells are very stretched. It is noticeable that the SAFV2
distribution is in excellent agreement with measurements in the major part of the airfoil.
However, in contrast to what was obtained using FV1, the turbulent separation close to
the trailing edge is underestimated. Furthermore, with the F'V2 tesselation, SAFV2 is
the only model that predicts a separated flow region. In the wake and close to the airfoil,
it underestimates the velocity profile peak which is an immediate consequence of the
underestimation of the flow separation in the last part of the airfoil. Further downstream,
the velocity patterns are recovered. The results from the other two models are worsen as
far as the tendancy for separation is of concern, in comparison with the corresponding
F'V1 calculations.

The agreement of SA predictions with measurements motivated a further investigation
of this model. The outcome of an investigation including transition modelling with SA
(coupled with both FV1 and FV2) is shown in figure 8. Two out of the four shown curves
(namely SA and SAFV2) are the same as in the previous figures. To these, the SATR
and SATRFV?2 predictions have been added. By enforcing transition trip, the tendency of
the model to predict a large separation zone is controlled. The separation zone entent is
reduced by adding the transition model to either SA or SAFV2. However, the combined
use of transition and FV2 seems to underestimate the size of separation. Concerning the
wake, the general conclusion is that all the three variants of the standard SA configuration
lead to an overall improved performance compared to SA.

Results from the various numerical predictions of the flow around A-airfoil, at various
inlet flow angles, are shown in figures 5, 9 and 10. For each operating point, four variants
of the software (two tesselation techniques, with and without transition modelling) are
employed, all with the SA model. Lift (C;) and drag (Cy) polars are shown in figure 5.
As one may observe, the FV2 tesselation leads, generally, to the more accurate results.
The transition modelling seems to alter the C; and Cj distributions towards higher C; and
lower C, values. Although FV2 significantly improves the SA curve, transition modelling
in SA does not result in any visible gain. However, transition modelling introduced into
SAFV2 produces the best overall performance. In the Cj region corresponding low angles
of attack, all models produce satisfactory results.

Six out of the ten operating points are further analyzed in figure 9. At all six angles
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of attack, the pressure side C), distribution is accurately captured, regardless the variant
used. Differences appear on the suction side, where at higher incidences, FV2 clearly
becomes superior in terms of accuracy in the pressure distributions.

Figure 10 presents the C'; distributions for the same cases where the effect of transition
modelling on the accurate prediction of friction over the suction side of the airfoil at
midchord can be evaluated especially for the higher angles of attack. In the lower angles,
the effect of transition is less pronounced. However, it should be pointed out that the
transition point on the suction side is considered to be at the same (arbitrary) position
irrespective of the flow angle.

As a conclusion, at pre-stall conditions (high angles of attack), the SATRFV2 variant
outperforms the other ones, while at the post-stall region the situation becomes not so
clear. At lower flow angles, the FV2 option seems to be much more efficient than the
incorporation of transition modelling.

4.3 Conclusions

The main conclusions drawn from the numerical study of subsonic high-lift airfoils
with one- and two-equation low-Reynolds turbulence models on unstructured grids are:
(a) for the accuracy of the numerical solution on stretched grids, using least-squares
approximation for the gradients of the flow variables and the Barth-Jespersen limiter are
required, (b) in case of high angles of attack, the solution accuracy is maintained only by
employing the containment circle-dual tesselation, (c) the SA model was found to have
an overall superior performance compared with SST and TLKE and (d) the inclusion of
transition modelling in the calculation is generally outperformed by the use of FV2, but
in case of high angles of attack its use over and above FV2 becomes necessary.
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Figure 1: Pressure and skin friction coefficients along the main airfoil and flap for the NLR case. Dis-
lacement thickness along the main airfoil suction side. Left: 1.3 %C gap case. Right: 2.6 %C gap
case.
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Figure 2: NLR-1.3 %C case: U/U velocity profiles, (U parallel to the wall), for six different stations
along the main wing and flap.
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Figure 3: A-airfoil, first operating point: Pressure, skin friction coefficient and displacement thickness
distributions along the airfoil. Results from the three turbulence models. No transition modelling neither
FV2 has been used. Left: Median-dual tesselation of the domain. Right: Containment-circle tesselation
of the domain.
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Figure 6: A-airfoil, first operating point: U/U,, velocity profiles, (U parallel to the wall) along the airfoil
suction side and wake. Results from the three turbulence models. No transition modelling neither FV2

has been used.
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Figure 7: A-airfoil, first operating point: U/U,, velocity profiles, (U parallel to the wall) along the airfoil
suction side and wake. Results from the three models. FV2 has been used but no transition modelling.
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Figure 8: A-airfoil, first operating point: U/U,, velocity profiles, (U parallel to the wall) along the airfoil
suction side and wake. Results from the SA model with/without transition modelling-FV1/FV2.
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Figure 9: A-airfoil, multiple operating points: Pressure coefficient distributions along the airfoil for
different incidence angles. Results from the SA model with/without transition modelling-FV1/FV2.
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Figure 10: A-airfoil, multiple operating points: Skin friction coefficient distributions along the airfoil for
different incidence angles. Results from the SA model with/without transition modelling-FV1/FV2.
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