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Abstract. This paper presents a hybrid (Genetic Algorithms, GA and Adjoint Method,
AM ) tool for the optimum design of aerodynamic shapes. CFD techniques for unstruc-
tured grids are used during both optimization phases. The best solution computed after a
few generations through the GA costitutes a good starting shape for the second, AM -based
optimization phase. This is enriched in design variables through a newly proposed tech-
nique before proceeding to the AM phase. Different parallelization techniques are proposed
for each phase, using the PVM message passing protocol. During the genetic evolution the
concurrent evaluations of candidate solutions is used whereas the domain decomposition
technique is employed during the AM -based optimization.
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1 INTRODUCTION

In the literature, the available aerodynamic shape optimization methods can be dis-
cerned in either calculus-based or stochastic techniques. In the first class of methods,
after defining a cost function, its gradient with respect to design the variables has to be
approximated. The so-called gradient-based optimization methods make use of approx-
imated sensitivity derivatives to iteratively drive the design variables to their optimum
values, through steepest descent or similar techniques. A possible way to calculate sen-
sitivity derivatives is through the solution of an adjoint equation in terms of co-state
variables. Governing flow equations are treated as constraints by introducing them to the
cost function through Lagrange multipliers. It is appropriate to mention earlier works
based on control-theory by Pironneau [1], and Jameson [2]; in the last decade several
applications of the adjoint method (AM), in either continuous or discrete mode, brought
to light (for example [3], [4], [5], [6]). Their main advantages are the fast convergence
properties, and the independency of the computational cost from the number of design
variables However, through the adjoint technique new development efforts are due each
time a new optimization problem (with different objective or an updated flow model) is
elaborated.

On the contrary, stochastic optimizers are ready-to-use supplements to any available
flow analysis software. Among the various Evolutionary Algorithms in use, Genetic Algo-
rithms (GA) [7] have found widespread use. Their main advantage is that their solution
is not trapped to local minima, regardless the starting solution. However, they are costly
procedures since they require a great number of evaluations (CFD routine calls) for the
individuals during their genetic evolution. This cost can be reduced using “cheap” neural
network-based pre-evaluations and/or concurrency [9], [10].

Another possibility for accelerating G A-based optimization methods is through their
hybridization with deterministic methods [11]. This paper presents a hybrid GA-AM
optimization method for the design of aerodynamic shapes, based on CFD techniques for
unstructured grids. The role of GAs is to perform a randomized search and locate, with
affordable cost, a good starting solution for the adjoint method. The starting solution,
being close to the optimum one, allows for the adjoint method to locate the final solution,
within a reduced number of iterations. A new technique, based also on G As, is proposed
for the enrichment of the after-G'As control-point set with new points, as required for
the continuation with the AM. In this paper particular emphasis is given to the paral-
lelization of the hydrid optimization tool on distributed memory computing platforms.
At each phase (GA, AM), parallelization is employed in a different way. During the
genetic evolution the concurrent evaluations of candidate solutions is used, its advantage
being the extremely low communication between processors. On the contrary, the do-
main decomposition technique is used for the parallel solution of the adjoint equations.
In each new iteration step, the generated unstructured grid is first partitioned in as many
subdomains as the number of processors out using an in-house partitioning tool based on
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genetic algorithms [13]. The successive direct-adjoint solutions are then executed using
the partitiomed grid, with regular communication of data among subdomains. For the
parallelization, a cluster of heterogeneous workstations is used under the PVM message
passing protocol.

The inverse design of ducts, isolated airfoils and 2D cascades, with inviscid flow con-
siderations, is demonstrated in the results section.

2 OPTIMIZATION TOOLS

In the context of the present method, all aerodynamic shapes are parameterized using
Bezier-Bernstein polynomials. In the inverse design of an airfoil, two separate Bezier
curves that share common starting and ending points are used for the description of its
pressure and suction sides. The reason for abandoning the use of circular arcs in the front
and rear part of the airfoil is that they increase the model complexity as far as the adjoint
method is of concern. With pure Bezier curves, a single mathematical form models stands
for any part of the shape. Consequently, sensitivity derivatives can be readily computed.
On the other hand, the reason for fixing both the leading- and trailing-edges is to be able
to also fix the airfoil chord. The next to the leading-edge control point in each of the
two airfoil sides defines the local tangent direction of the airfoil shape; limits are often
imposed on the allowed values of its coordinates depending upon the design problem at
hand. In general, both z- and y-coordinates of the control points can be defined as the
design parameters. However, it should be mentioned that, such a definition does not affect
the computing cost of the adjoint technique, but in the genetic optimization the number
of control parameters has to be kept as low as possible. For the same reason, during the
genetic optimization phase, control-point abscissas are often fixed and can be re-adjusted
only during the adjoint technique.

2.1 The Genetic Optimization Method

(GAs are robust stochastic optimizers which operate on a population of individuals.
Each individual corresponds to a candidate solution and is represented by a chromosome
containing the concatenated design parameters. This can be realized by using either
binary or real coding. Using various selection criteria, reproductive trials are allocated
with some bias towards their fittest members. The offspring produced by applying the
parent recombination operators form the next generation with possibly improved mean
fitness.

For the design of an aerodynamic shape with prescribed pressure distribution p(s)
along its contour, the cost function [ is defined as

1

I ==
2 Jwall

dp(s)*ds . dp(s) = p(s) —D(s) (1)

and this should be minimized.
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2.2 The Adjoint-based optimization Method

In this section, the adjoint technique for the design of aerodynamic shapes, based
on inviscid flow considerations, will be briefly presented. For detailed information, the
reader should turn to the cited papers. The cost function is defined as in eq. 1. Through
the introduction of the co-state variables A = (A, Ay, As, A4)T the flow equations are
enforced as a constraint into the cost function giving rise to the following augmented cost
function

r=1- // AT aF aG’)dQ (2)
Ay

It should be pointed out that the space integral is taken over the current computational
space defined by fixed inlet, outlet or infinite boundaries and the sought for aerodynamic
shape. The latter undergoes continuous modifications up to its final, converged shape.
Consequently, variations of the augmented cost function have to properly account for
volume changes, as well as changes in the flow field. Bezier-Bernstein polynomials are used
to describe these shapes as z(t) = C;(t) X; and y(t) = C;(t)Y;, (X;, Y;) being the i-control
point coordinates, C;(t) the Bezier coefficients and ¢ the Bezier parameter. Expressions
for the variation of the arc-length ds or the outward normal vector n = (n,,n,) can be
readily derived [6]. Using the assumption that any point on the current shape moves to
a new position with the same ¢ value, and by taking variations in eq. 2 it is a matter of
mathematical rearrangement to get

(a) The governing adjoint equation,

A A
8_+ BTa_

A"+ BT

=0 (3)

By satisfying this equation, the volume integral in eq. 2, which contains variations
of flow variables, is automatically eliminated; this causes cost function variations
0I* to become independent from any flow field variation.

(b) A set of boundary conditions to be satisfied by the A distribution along the contour
of the domain. These aim at eliminating the dependence of 61* upon boundary flow
variations. Along the solid walls, they include the constraint

dp — Aong — Asny, = 0

which is a direct outcome of the velocity slip-condition.
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(c) The expressions of the sensitivity derivatives with respect to the design parameters,
used to correct the Bezier point coordinates. For the y-coordinates, these expressions
are derived from the following equation

or* 1 T
§IF = —6Y; = —dp® — p dp) ——
Z oY, Z/(2 p p p) (i'Q +?)2)
1—n? NgN : OA OA
- p(AQW - 3\/ﬁj_|_yy2)ci + (FT% + GTa—y)Omy)dS 0Y; (4)

where the summation symbol is taken over the entire set of control points and
dotted quantities stand for derivatives with respect to . A similar expression for
the variation of the z-coordinates of the Bezier points is similarly obtained. The
update of the control points location Y¥; = (X, Y) is carried out through a steepest
descent scheme as Y;"** = Y?4 — pndI*/dY; with positive 1) values. Limits can be
selectively imposed to restrict the space of possible solution values.

Eq. 3 is similar to the linearized system of the Euler equations. A time-derivative is
added to them and its discretization and solution are performed by means of the same
technique used by the direct solver. For inviscid flows, this is based on the node-centered,
finite-volume method and a time-marching scheme. The computational domain is dis-
cretized through unstructured grids with triangular elements. The control-volume around
any grid node is defined by successively connecting the midnodes of the edges incident
upon the node with the barycenters of the surrounding triangles. The inviscid fluxes are
computed via the flux vector splitting scheme with MUSCL extrapolation for higher order
accuracy. A pointwise-implicit Jacobi procedure is used to update the solution variables
at each time-step.

3 ACCELERATION THROUGH MULTI-PROCESSING

Multi-processing on distributed computing platforms is used as the means to reduce

the computing cost. This is implemented in a different way in the two optimizing phases
(GA and AM).

(a) During the G A-based optimization, multiple candidate solutions are simultaneously
evaluated on different processors. Due to the coarse-grain parallelization, the com-
puting cost is divided approximately by the number of available processors.

(b) During the AM-based optimization, the domain-decomposition technique is applied.
The unstructured grid is decomposed (using a fast G A-based partitioner described
below) into a number of subdomains equal to the number of available processors.
All subdomains contain the same number of grid entities. Consequently, during the
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solution of the adjoint equation, all processors are evenly loaded. Communication
at the interfacial nodes is regularly required; this practically defines the efficiency
of the parallelization [12].

All computations are carried out on a cluster of networked Intel processors, under PVM.

3.1 Unstructured Grid Partitioning

The partitioning of an unstructured grid is viewed as a minimization problem for-
mulated on its equivalent graph. A fast and effective G A-based partitioning technique,
developed by the same authors and described in detail in [13], [14] is used. Here, only a
brief outline of the method will be presented. Implicit to the partitioner are a recursive
bisection scheme (so that only 2™ partitions can be created) and a multilevel scheme for
each bisection. In what follows, the terms “nodes” and “edges” will refer to graph nodes
(i.e. triangular elements) and graph edges (i.e. grid segments), respectively.

A multilevel partitioner starts by creating a sequence of graphs, each of which is derived
from the previous one through coarsening. During each coarsening step, graph nodes are
clustered into groups and weights are assigned to newly formed nodes and edges. For
graph nodes the wights stand for the sum of the weights of the constituent nodes whereas
edge weights stand for the number of edges shared between groups of clustered nodes.

Any graph is then mapped onto a square parametric space (®, ¥). created through a
Laplacian filter with 0 < ®, ¥ < 1. In this space, two point-charges A and B are allowed
to float, creating potential fields F'(®, ¥) around them. At any point P in the (®,¥)
space, Fp is computed as follows

Fp = F((I)p, \I/p) — e TPA _ ekBTPB (5)

where

’I“PM:\/((I)p—q)M)Q—F(\IfP—\IfM)Z, M:A,B (6)

For each bisection, the free-parameters are (®4, V4, ®p, Vg, kp), kg < 0 and these are
controlled by the GA. For each pair of point charges, potential values are computed over
the graph nodes. These are sorted and the graph nodes above and below the median are
assigned to the first and second subdomain, respectively. Thus, the only objective left is
the minimization of the interface between the two subdomains.

The partitioning method described above is applied to the coarser graph at each bi-
section. The bisection of the coarsest graph is then ””injected”” to the finer one, up to
the starting graph. This is carried out using heuristics that locally improve the interface

through a limited number of migrations in a narrow zone close to the current interface.

4 THE OVERALL OPTIMIZATION ALGORITHM

The G A-based optimization precedes the AM-based one, so that the overall parallel
optimization algorithm is described by the following steps:
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Step 1 Create the starting population, by randomly selecting the free-parameter values,

within predefined search-space.

Step 2 Evolve this population for Ng4 generations by applying selection, crossover and

mutation operators. The required evaluations in each generation are carried out
concurrently using all the available processors (Nproc). Each candidate solution
is associated with a processor; on this processor an unstructured grid is generated
and the flow equations are solved. Fitness scores from the different processors are
communicated to a master processor that undertakes all genetic operations.

Step 3 The starting point for the AM-based optimization is the best solution found from

the GA. The corresponding unstructured grid is decomposed in Nproc equally-
loaded subdomains using the G A-based partitioning method. Repetitive calls of
the direct and adjoint equation solvers are performed until the cost function is
minimized. Between these calls, the geometry is corrected according to the steepest
descent technique and the unstructured grid is modified, as described in the previous
section.

Below, we will keep track of the basic steps, either parallel or sequential, of the parallel
solution algorithm for the AM-based optimization:

(1)

(2)
(3)

(4)
(5)

(6)

(7)

(8)

The starting aerodynamic shape is formed using the best solution found by the G'A-
based optimization, after its enrichment in control points. (sequential).

An unstructured mesh is generated and its equivalent graph is defined (sequential).

This grid is partitioned into 2" subdomains using the G A-based partitioner (sequen-
tial).

Each subdomain data is communicated to the corresponding processor.

The direct flow problem is solved using the parallel Euler solver. Communication is
required during the numerical solution for the exchange of data along the interfaces
(parallel).

The adjoint equations are solved on the existing grid partition using flow data residing
on each processor. Communication is required at each iteration as in the direct solver
(parallel).

The master processor gathers pressure and co-state variable values as well as their
spatial derivatives along the solid walls described through Bezier curves.

The Bezier control points are corrected using the corresponding sensitivity derivatives
and the aerodynamic shape contour is updated. Return to step (2).

In the above algorithm, the sequential tasks are handled by the master, whereas the
parallel tasks are executed by all the participating processors.

7
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5 RESULTS AND DISCUSSION

Three inverse design problems are used for the validation of the proposed algorithm,
namely the re-designs of (a) a two-dimensional duct, the target being the pressure dis-
tribution along its sidewalls at M, ;s = 0.4, (b) the isolated NACA 0012 airfoil so as
to reproduce its pressure distribution at zero incidence and M, = 0.4 and (c) a planar
compressor cascade with known pressure distribution at a; = 47deg. and M, ;4 = 0.4.

In all these problems the flow was inviscid and the design variables consist of the y-
coordinates of the Bezier control-points used to model the unknown shapes, with fixed
x-coordinates.

Figs. 1, 2 and 3 illustrate the reference and the optimum computed shapes as well
as the target and the final pressure distributions. Both geometries and pressure distri-
butions match each other satisfactory. The profiles shown in the above figures have all
been computed using GA for approximately 20 generations with a small population (30
individuals) and the AM afterwards.

A practical problem that had to be faced in all these runs and the remedy proposed
herein are discussed below. In general, the adjoint method requires more control points,
to be distributed along the modeled solid wall, than that previously used by the GA.
The G'A-based optimization starts with a reduced number of design variables, for both
efficiency and effectiveness. This number is not capable of ensuring a deep convergence of
the AM, so that at the end of the genetic evolution and before proceeding to the adjoint
method, the actual set of control points should be enriched.

A fast and flexible procedure to accomplish this need makes also use of the capabilities
of GAs. The aim is to create additional control points which, along with those computed
by the G A, yield a contour that matches, as close as possible, the best airfoil shape com-
puted at the end of the first optimization phase. It should be clarified that the target
in this G A-based optimization is a geometrical contour (the cost-function expresses the
deviation between two geometrical shapes) and does resort upon pressure distributions.
Thus, the evaluation task bears almost negligible computing cost and the so-called ”en-
richment procedure” is very fast. The user defines the number of additional Bezier points
to be generated in the interval formed by pairs of successive Bezier points, computed in
the first optimization phase. The search area for each new control-point is automatically
defined by splitting quadrilaterals formed by existing control points in a number of sub-
areas, as in fig. 4 (left). By doing so, the new control-polygon maintains the general
characteristics of the coarser one. Two alternative techniques have been successfully used
in our tests. In the first of them, the z-coordinates of the new control-points are fixed
whereas their y-coordinates are allowed to vary within the upper and lower borderlines
of the quadrilateral, as in fig. 4 (right). The second does not use any of the existing
control-points and searches for new points that match the ”target” contour. All three
options perform equally well. One of the side-effects of the enrichment in control points
is that the starting contour of the AM-based optimization could be locally wavy, due to
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the addition of new control points. As a consequence, the starting fitness value for the
AM-based optimization is expected to be different (usually higher) than the ending one
of the GA.

We will finally demonstrate the application of the aforementioned enrichment technique
in the second test case (NACA 0012). In fig. 5 one may see the optimum airfoil shape
computed at the end of the 21" generation of the GA. The cost of the G A-based
optimization, up to this point, was about 620 flow evaluations, with a polulation size of
30. The convergence of the GA is shown in fig. 6, where this is extended beyond the
21™" generation, for the purpose of comparison. The starting profile for the AM-based
optimization, after the enrichment in control- points is also shown in fig. 5. In the right
part of the same figure, one may notice the differences in the pressure distribution the
new blade yields compared to the final profile from the GA. This explains the higher
starting cost of the AM-based optimization in fig. 6. It should be noticed that, in order
to include the AM convergence in the same figure, each cycle of the AM was given the
cost of two equivalent evaluations (one for the direct method and the other for the adjoint
equations).

6 CONCLUSIONS

A method was presented for aerodynamic shape optimization problems. It is based on a
hybrid scheme, where the first optimization phase is based on Genetic Algorithms and the
second on the Adjoint Method. The efficient use of a multiprocessor system required com-
pletely different parallelization techniques during the two phases. The G A-based method
assigns the evaluation of each individual to a single processor. The speed-up is very high
since the communicated data between processors are limited to the design parameters
and the outcome of the evaluation, provided that the relation between population and
number of processors is the proper one. The AM-based method is parallelized using
the subdomain technique and a fast unstructured grid partitioning tool. The AM-based
optimization requires more design variables than the GGA-based one, so an enrichment
technique is newly proposed. The coupling of GAs with the AM gives a deeper and
faster convergence, measured in terms of equivalent evaluations.

To assess the gain from the parallelization, fig. 7 presents the number of evaluations
per processor in the third case, during the G A-based optimization phase. Eight processors
are used and the loading of each processor is shown as percentage of the total number
of evaluations. With eight processors, the speed-up during the second, AM-based op-
timization phase is quite low (2.7) due to coarseness of the mesh used for inviscid flow
computations. The speedup values for four and two processors were 2.8 and 1.8, respec-
tively; so, this kind of problems, it is recommended to use a smaller number of processors
during the second optimization phase.

Acknowledgment: The development of the G A-based optimization and of the unstruc-
tured grid partitioning method have been funded by Dassault Aviation.
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