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Abstract. Genetic Algorithms constitute a robust tool in aerodynamic shape opti-
mization problems with one or more objectives. However, a known drawback is that they
often require a large amount of evaluations based on time-consuming CFD analysis tools.
The scope of this paper is to introduce the use of Radial Basis Function networks for
the approximate pre-evaluation of candidate solutions in each generation. These net-
works are “locally” trained on a small number of previously examined solutions which are
closer to each new solution; by building small-sized local networks, we avoid huge networks
with time-consuming trainings. The Radial Basis Function networks are appropriate for
multi-objective optimization problems, as will be explained in the text. Their effectiveness
increases by assigning importance factors to each one of the design variables, so as to
eliminate much of the noise that the less important design variables may cause during
the networks’ training and use. The concurrent evaluation of a number of individuals on
networked workstations, using the PVM message-passing model, is discussed in detail.
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1 INTRODUCTION - THE BASIC OPTIMIZATION TOOLS

CFD-aided optimization and inverse-design methods have gained particular attention
in aeronautics. Without resorting to costly experiments, aerodynamic shapes can be
designed or improved through either deterministic or stochastic approaches. Here, we
stick with the latter and, more precisely, with Genetic Algorithms (GAs, [1]). Despite
their robustness, genetic optimizers require a large number of evaluations. The evaluation
phase becomes the time-consuming part of the relevant software, especially if the CFD-
based evaluation uses sophisticated analysis tools. Parallelization and “cheap” knowledge-
based pre-evaluations are tools that the authors have already used to accelerate GAs, in
single- and multi- objective optimization problems. The aim of this paper is to extend the
shape optimization tools presented by the same authors in [2] and [3] to a full-featured
tool.

In [2] and [3], Artificial Neural Networks (ANNs) [4] are trained using “previous-seen”
solution and used to pre-evaluate candidate solutions in each new generation of the GA,
marking out a subset that “merits” exact re-evaluation. In this paper, the use of Radial
Basis Function (RBF) networks, instead of the multi-layer perceptrons used in [2] and
[3], is proposed for the aforesaid screening. Additionally, the proposed use of “local”
networks is proposed, trained “locally” on the neighbours of the new solution in the
database of previously examined ones seems to outperform the predictive capabilities of
a single network for the entire search space. The advantages of using RBF networks in
multi-objective optimization are discussed.

Either in single- or multi-objective optimizations, the concurrent evaluation of indi-
viduals allows the reduction of the ellapsed time. This is achieved using a network of
workstations and the PVM message-passing model. Some interesting parallelization as-
pects are discussed in a subsequent section.

For more information about genetic optimization the reader should refer to classical
textbooks [1], [5]. In [2] and [3], the parameterization of aerodynamic shapes through
Bezier curves (for the suction and pressure sides of an airfoil) along with circular arcs (for
the leading and the trailing edges, if necessary) is presented and will not be repeated here.
The ANN-based pre-evaluation will proved to be more efficient if “importance factors” are
assigned to the design parameters and this will be demonstrated to this paper. The multi-
objective optimization is based on the non-dominated sorting technique which provides a
number of Pareto optimal solutions on the so-called Pareto front [6]. We shall, therefore,
refrain from repeating here the details of the basic optimization tools as these could be
found in the cited textbooks and papers. Only aspects related to the parallelization and
the implementation of ANNs in the Pareto front technique will be discussed.

Apart from the aerodynamic optimization problem (modeled through either a time-
marching Navier-Stokes method for unstructured grids [7] or a “cheap” surface source
singularity method [8]), a numerical problem is also analyzed to support our conclusions.
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2 CONCURRENT EVALUATION OF CANDIDATE SOLUTIONS

In optimization or inverse design problems relying upon CFD tools the computing cost
per individual depends on the flow analysis tool used. Dealing with inviscid or viscous
high-speed flows, this cost is high enough (since the Euler or Navier-Stokes equations need
to be solved) and includes also the cost for meshing, pre- and post-processing. In order to
reduce the ellapsed time, the concurrent evaluations of the candidate solutions are used
since the GA operates on a population of individuals which can be evaluated separately,
within each generation.

The parallel implementation of the proposed optimizer uses the Parallel Virtual Ma-
chine (PVM) [9] software package. PVM allows a heterogeneous collection of workstations
and/or supercomputers to function as a single parallel machine. It is portable, it runs on
most modern platforms and is available in the form of source code at no cost.

The parallel optimizer is based on the master-slave model. All of the genetic operations,
like parent selection and recombination are executed serially to keep the optimizer simple,
without though damaging the final speed-up. The master process, which is started by the
user, spawns as many slave processes as the number of available processors (one machine
may have more than one processors) and maintains a queue of the currently available
processing units and a table with the current evaluation assignments. The GA dispatches
a set of design variables and an appropriate message identification to each slave process,
for evaluation purposes. The slave returns one fitness value per objective. In general,
the available processors are less than the population size and the evaluation requests are
continuous during the evaluation phase. As soon as a processor becomes available, the
next evaluation task is assigned to it. Note that the time required to complete each task
may vary depending on the processor load, its power (in a heterogeneous environment)
and some unforseen circumstances. For instance, in a shape optimization problem an
evaluation task may fail during the formation of the contour using the Bezier points (eg.
crossing sides) or during the CFD evaluation. Even if a task does not fail, the evaluation
times may differ if the convergence criterion depends on the final residual. At the end
of each generation, all evaluation tasks must be completed before proceeding to the next
generation, thus the master process should wait for each one of the slaves to return
the fitness scores. Consequently, with a fixed number of processors, the overall speedup
degrades as the population size decreases,

The communication cost is almost negligible since only the design variables are sent to
the processors and one score per objective is returned to the master.

Each slave process saves the design variables in a file and runs a script which executes
a series of programs that form the shape, define the computational domain, generate an
unstructured mesh, call the Navier-Stokes flow solver and compute fitness(es) through
post processing. Disadvantages of using script files is that copies of all executable files
called should exist on each machine and that successive programs communicate by saving
to and reading from the hard disk. However, this increases flexibility. Also, it is not an
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easy task to incorporate different stand-alone programs in the same executable, even if
source codes are available. The communication overhead between programs, activated by
the script file, is small compared to the optimization cost as a whole (less than 0.05% in
designs based on viscous flow CFD tools).

The GAs based optimizer is programmed in C++ whereas the CFD tools have been
written in FORTRANTT.

3 RBF NETWORKS AND THEIR TRAINING

A RBF [4],[10] network maps the input space, i.e. the space of the M design variables
onto the output space of objectives. Even for the multi-objective optimization problems,
it is assumed here, that a single output unit is used, so the RBF mapping reads RM — R!.

RBF networks involve three layers of processing units. The intermediate or hidden
layer, between the M-unit inlet and the single output layers, consists of N units, the
so-called RBF centers, as in fig. 1. Hidden units are associated with an equal number

Figure 1: A typical RBF network with a single output unit

of arrays, with M components each, which will be denoted by &%, n = 1, N. In a stan-
dard RBF network, which is presented with T paired input-output arrays (f(t) and ¢,
respectively, t = 1,T), we select N = T hidden units as follows

) = 2 t=1,T, m=1M

m m

Then, the n** hidden unit value h{") which corresponds to #*) is the outcome of a nonlinear
filter, namely
0= 0 (J2 -, 8

Among various alternative expressions for the activation function [4], we have selected
®(u,r) = exp(—u/r), which performs an Rt — R mapping. Without loss of generality,
we may assume that r, = 1,n = 1, N. For the same input ), the resulting output value
¢® is a linear function of all hidden unit values h(?)

¢V = guhy) (2)

4
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where summation applies to the repeated index n. The weights v, are to be calcu-
lated during the training phase, the criterion being the minimization of the norm E =

D (C (t) y(t))Q, after presenting the network with the ensemble of available training
patterns. Contrary to other multi-layer feedforward networks, the mapping of the hidden
to the output space is linear, eq. 2, and consequently the computation of the N = T
coefficients v, i.e. of the array v components, is the solution of the linear system

HY =7 (3)

The modified Gram-Schmidt method is used for the inversion of H. Note that, in multi-
objective optimization problems, where more than one y,(ct), k = 1, K output units exist,
the same training set leads to the same matrix H. The inversion of H is valid for any
output other than the first and it can be safely stated that the cost for training the
RBF network is approximately the same regardless the number of output units. This is
the main advantage of the use of direct inversion compared to any iterative back-error
propagation training method. In the latter, the training cost increases linearly with the
number of outputs, i.e. the number of objectives.

In the form presented so far, a RBF network provides guesses for the objective values
of any new candidate solution (provided that a training set which is representative of
the search space is available) with affordable training cost. To ensure the latter, the
size T is always kept low and the training is carried out through a small subset of the
available database. This subset consists of the “neighbours” of the new individual in the
solution space and is proved to be advantageous in terms of quality of predictions, over
and above to the gain in CPU cost. However, the predictive capabilities of a RBF network
can be further improved by considering a “weighted” norm in eq. 1. The modification
proposed herein is based on the fact that, in an aerodynamic optimization problem, the
involved design parameters are not all of equal importance. For instance, the leading edge
circle radius is of primary importance since it affects cosiderably the pressure distribution
further downstream. In this respect, user-defined importance factors I,,,m = 1, M are
associated with each design variable. These are introduced in eq. 1, where the weighted
norm

oo~

wei

M 2
=3 In (21 - ) (4)
m=1

is used instead of norm-2.

It is recommended that the user defines a small number (2-4) of classes of “importance”
for the design variables. By doing so, the non-dimensionalization of eq. 1 requires that
rn =M _ I, at least for the activation function employed herein.

4 GAs WITH APPROXIMATE PRE-EVALUATION

The main steps of the GA-based single- and multi-objective optimization method using
approximate fitness pre-evaluations through RBF networks, are listed below:
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4.1 Single-Objective algorithm

Phase 1: The starting population evolves for a few generations, by applying genetic
operations. To compute fitness scores, calls to the evaluation routine are used and
entries are put into the database for subsequent trainings of the RBF network.

Phase 2: During the next generations, only a percentage of the candidate solutions is
exactly evaluated. The entire population is first pre-evaluated using a local RBF net-
work trained separately for each individual on the 7' closest entries in the database.
The approximate fitness scores are used to sort out the actual individuals. The num-
ber of individuals to be exactly re-evaluated routine is the maximum of a predefined
percentage of the population (0L = L,,0 < 0 < 1, starting from the best one) and
the number of individuals with higher predicted score than the best solution so far.

Thus, for each generation, the gain in computing time is (1 — o)L evaluation routine
calls. Of course, the L, new exact evaluations are used to enrich the database.
The o—parameter is the outcome of a parametric study that follows in the results
section.

4.2 Multi-Objective algorithm

Phase 1: The starting population evolves for a few generations, using non-dominated
sorting and sharing [6]. At the end of each generation a new Pareto front is obtained,
which consists of the nondominated (or Pareto-optimal) solutions, in the sense that
none of them is absolutely superior to any other.

The reproduction task is based on dummy fitness values, calculated after sharing is
separately applied along each front to spread the solutions all over the front. The
sharing factor (with which the real score should be multiplied to give the dummy
one)

Oshare

m; = Jjgpjojmax (0, 1— M) (5)

is computed for its i» member where 0 < ogp4re < 1, (i,j) lie along the same front
and d(i, j) is their Euclidean distance.

After the end of the first generation the Pareto front is stored and used in successive
generations for non-dominance checking and sharing. In each generation, this Pareto
front is updated and generally it consists primarily of members found in previous
generations and a few new entries. If an individual of the current generation belongs
to the Pareto front, sharing includes also the stored Pareto front members .

Phase 2: In subsequent generations, the population is first pre-evaluated using trained
RBF networks. The current population is sorted out in temporary fronts by also
considering the actual Pareto front members. The number of individuals that merit



A P. Giotis, K.C. Giannakoglou and J. Périaux

exact re-evaluation is the maximum of a predefined percentage of them (L,, starting
from the Pareto front) and the population temporary Pareto front. Only accurately
evaluated individuals are allowed to enter the actual Pareto front. Note that during
the calculation of the dummy fitness values, exact and approximate scores are mixed

up.

5 RESULTS AND DISCUSSION

Numerical and low-level CFD optimization problems which rely upon a “cheap” flow-
analysis routine have been used for demonstration purposes and for some reduced CPU-
cost parametric studies, before proceeding to the applications using the time-consuming
Navier-Stokes routine.

5.1 Numerical optimization

In the first test problem, the Rastrigin function

M
fra(Z) = 10M + > (22, — 10cos (27z,,)) (6)
m=1
with M = 20 and —5.12 < =z, < 5.12 , m = 1, M should be minimized. This is a
single-objective optimization problem, the sought for solution is z,, = 0, and we are
using it in order to demonstrate the convergence acceleration of GAs with approximate
pre-evaluation. Needless to say that in this case, the gain of the GAs-ANN algorithm is
illusive since, it costs less to evaluate the function than to find the proper training set,
train the ANN and then approximate fr.

Fig. 2 compares the convergence rate of the standard GA (with 100% exact evaluations
in each generation) with its counterpart using ANN approximate pre-evaluations and only
oL exact evaluations per generation (0=0.05, 0.10 and 0.20). The best score evolution
is plotted in terms of the number of exact evaluations. Fig. 2 shows the superiority
of the proposed method compared to standard GAs and the important role of . An
appropriate choice of ¢ may considerably improve the convergence rate. We can safely
state that similar conclusions can be drawn for multi-objective optimization problems.

It is important to note that even if smaller values of o seem to improve the convergence
rate, a minimum value (minimum number of exact evaluations) is required since the GA
may be driven to regions where insufficient information (scarce data) may exist.

5.2 Parametric studies

In this section, we are presenting studies that have been undertaken in order to demon-
strate the role of several parameters involved in the present method. We have selected
a low-level flow model and the corresponding non-time-consuming software, in order to
increase the number of tests we had the possibility to carry out. Thus, we have defined
and used two inverse-design exercises, namely the reconstruction of the NACA 0012 (the

7
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Figure 2: Convergence rate of the Rastrigin test function method, with and without ANN.

target being the pressure distribution at zero incidence) and the NACA 4412 (examined
at 10 deg. incidence) profiles. In both cases, a panel method [8], for incompressible po-
tential flows, was used. Both exercises used a single-objective, but the conclusions can be
generalized to multi-objective optimization problems as well.

The first point to be investigated is the appropriate training set size for the RBF
network. It is evident that small training sets (small values of T') are preferred, since
the corresponding training CPU-cost is low. Concerning predictive capabilities, the user
should select T" so as to bring about a reconciliation between the two extreme symptoms,
namely insufficient learning (for very small 7’s) and increased generalization of the net-
work (for high T values; the cost to pay for the generalization is that faraway database
entries may erroneously affect the network prediction). Since the value of T is closely re-
lated to the percentage (o) of the population that will be re-evaluated through the direct
solver, a great number of 7" and o values have been examined. The results summarized in
fig. 3 correspond to five T values (T = 5, 10, 15, 25 and 50) combined with ten o values
(0 =0.1,0.2,...,1.0). Each point in this figure is the best average score of ten runs for
the same problem and the same parameters. Basic data for the GA are tabulated below:

The close similarity of the behaviors of the groups of curves shown in fig. 3, for both
design exercises, is remarkable. Within the same number (600) of direct evaluations bet-
ter final scores are obtained with the lower o values. There is of course a lower limit for o
below which the role of the RBF network dominates, the number of direct evaluations per
generation reduces dramatically and the GA completely fails to provide improved solu-
tions. The lower limit is approximately ¢ = 0.1 and we therefore refrain from presenting
results for smaller o values. From the same figure, definite conclusions about the opti-
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Population size 50
Max number of exact evaluations 600
Two-point crossover probability — 85%
Mutation probability 0.5%
Binary tournament probability 85%

Table 1: GA parameters
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Figure 3: Re-design of NACA 0012 (left) and NACA 4412 (right) using the panel method. Average best
score (minimization problem) for various o and T values.

mum 7" values cannot be drawn and seems that (considering also the stochastic nature
of the model) this is not a crucial parameter. However, T values of the order of 15 (for
NACA 0012) and 10 (for NACA 4412) seem to perform slightly better. Also, such small
values yield low training cost per individual and should be definitely recommended. To
complete this discussion, fig. 4 illustrates the predictive capabilities of the RBF network
when trained with the 15 closest database entries. This figure corresponds to 50 individ-
uals and is indicative of the errors that usually appear between RBF network guesses and
exact fitness scores; it corresponds to the first exercise after the first 600 evaluations.
Another point that needs to be investigated is the use of importance factors for the
design parameters. This is newly proposed in this paper and helps depreciating the role of
some design parameters with “secondary” effect during the training of the RBF networks.
Here, priority (highly valued importance factors I) is given to the geometrical parameters
that determine the shape of the airfoil leading edge. Fig. 5 summarizes results from five
runs. In the captions, “circle priority” means that increased importance is given to the
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Figure 4: Redesign of the NACA 0012 profile. Comparison of RBF-based pre-evaluation and exact
evaluation scores.

leading edge circle whereas in the “LE priority” the first Bezier points are also given
high I values. Results with 0 = 0.10 and 0.20 are shown. Regardless the o values,
the importance factors considerably increase the performance of the genetic optimization
method. They seem to be extremely useful during those generations where the database
entries are really scarce; in order to train the network with local information, 7" should be
kept low and with low 7T values we have to filter out the role of non-important parameters.

5.3 Multi-objective, viscous flow optimization

This case was first presented by the authors in [3], where a single multi-layer perceptron
for the entire search space was built and used for the pre-evaluation of individuals. Here,
we repeat the same study using local RBF networks that are trained separately for each
new individual. Instead of the regular retraining of a huge network through an iterative
method, we are relying upon the training of multiple networks of very small size and,
consequently of almost negligible training cost per network.

The objective is to design a new airfoil that yields given pressure distributions at
two operating points. The targets have been defined using, as “starting” profiles, a
low-subsonic, high-lift airfoil (M;,; = 0.2, Re = 5 -10°,a = 10.8°) and a transonic,
low-drag one (M;,; = 0.77, Re = 107,a = 1.0°). Results from three computations, all
of them with the same GA parameters, are presented. In the first, which was carried
out without approximate pre-evaluations, 5000 exact evaluations were allowed at most.
The other two runs stopped at 2000 exact evaluations. Between them, the second was
without pre-evaluations whereas the third used RBF networks trained with the 10 closest
neighbors of each individual and with 0 = 8/50 = 0.16, 50 being the population size and
8 the number of processors used concurrently. The parallel system used was a cluster of
Linux workstations (Intel Pentium III, 500MHz) connected on the same LAN using a fast

10
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Figure 5: Re-design of the NACA 4412 profile. Convergence rates with and without ANN-based pre-
evaluation and/or the use of importance factors.

Ethernet switch. The wall time required to evaluate an individual was about 4 minutes,
mostly spent for two direct flow solver calls for each operating point. Unstructured grids
with triangular elements were used to mesh the computational domain, with an average
size of 6000 triangles / 3000 nodes. The airfoil contour was described using 200 nodes.
The flow solver of [7], with the & — ¢ model and the wall-function technique was used.

A profiling of the third run is given in fig. 6, for the first 40 generations of the GA,
where the reader may find the number of exact evaluations required in each generation
after the ANN-based screening. It is also noticeable that, during the first two generations,
approximately 40 percent of the population failed during the CFD-routine call. This was
due to the fact that the search space for each variable was large enough. Quite early (at
the third generation) the number of CEFD-routine fails reduces drastically thanks to the
RBF network based pre-evaluation that discards most of the worse individuals.

Fig. 7 shows the computed Pareto fronts with the three aforesaid runs. The Pareto
front which is the outcome of the first run should be considered as the reference front (as
this costs as much as 2.5 times each one of the rests. However, as one may notice at a
particular zone the third run (with pre-evaluation) gives locally better solutions. It is also
interesting to compare the fronts resulted from the second and the third runs, as they both
have similar CPU-costs. The ANN-aided run seems to provide a front that is less spread
out than the second run, which was exclusively based on exact evaluations. However, the
third front gives a higher number of entries in the “middle”, in a region which is practically
of higher importance. We recall that only exactly evaluated individuals are allowed to
join the Pareto front and that sharing (the spreading mechanism) applies separately along

11
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Figure 6: Two operating point design: Profiling of the third run.

each front. This explains clearly why the third front entries are in the “middle” of the
reference front.

6 CONCLUSIONS

It is well known that Genetic Algorithms are an effective and robust tool for handling
inverse-design and optimization problems in aeronautics. In this paper, two techniques are
combined with GAs for acceleration purposes. These are: (a) the concurrent evaluation
of multiple candidate solutions using networked workstations and (b) the use of a pre-
evaluation phase in each generation, as a first screening that isolates the subset of the
population that merits exact evaluation.

The pre-evaluation was based on Artificial Neural Networks and, particularly, on Radial
Basis Function ones. They were trained on the previous seen solutions and then used to
approximately evaluate individuals. Main conclusions are:

(a) The pre-evaluation phase considerably reduces the overall cost of the optimization
tool.

(b) RBF networks trained in the “local” sense should be preferably used instead of a
single huge network for the entire search space. The direct method used for their
training bears almost negligible cost due to the small size of the training set. RBF
networks should be preferred in multi-objective optimizations as the extra objectives
does not practically increase the training set.

(c) Asintroduced in this paper, it is recommended to use different importance factors for
the various design parameters; their use improves the predictive capability of RBF
networks, by artificially getting rid of the less important design parameters during
its training with a small-sized training set.

12
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