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ABSTRACT
A method based on computational intelligence is pre�

sented for the inverse design of �D turbomachinery blades
producing desirable wall pressure or velocity distributions
under certain �ow conditions� Blade airfoil shapes are
parameterized through the combined use of circular arcs
and Bezier functions� The design variables are controlled
by Genetic Algorithms� employed in order to minimize
the di�erence between target and numerically predicted
distributions for each candidate shape� All numerical eval�
uations are carried through a primitive variable �ow solver
for unstructured grids� By employing Arti�cial Neural
Networks� trained to correlate shapes and �tness scores�
a great number of costly shape evaluations is overcome�
The proposed combination of GAs for the optimization
and ANNs for part of the evaluation phase is attractive
and dramatically reduces the design cost� This paper dis�
cusses issues such as the regular re�training of the ANN or
the selection of the threshold for numerical �ow evaluations�

NOMENCLATURE

ANN Arti�cial Neural Network
AVDR Axial�Velocity�Density�Ratio
BEP Back�Error Propagation
�C Binary String
F Cost or Fitness Function
g Activation Function� g�x� 	 �
 � e�x���

GA Genetic Algorithm

L Chromosome Length
LE Leading�Edge
NFP Number of Free�Parameters
NHL ANN�s Hidden Layer Units
Npop Population Size
NP Number of Bezier Points on the PS
NS Number of Bezier Points on the SS
NTS Number of Training Patterns
PS Pressure�Side
s Arc�length along the Airfoil
SS Suction�Side
TE Trailing�Edge
�u Design Variables� Array
wji ANN�s Connection Weights �from i to j�
Greek Letters
�k ANN�s Output Layer Units
� ANN�s Training Rate� � 	 

�j ANN�s Hidden Layer Units
� Threshold �
 � � � 
�
Superscripts
targ Target
pred Predicted

INTRODUCTION
The design of e�cient turbomachinery blades can be car�

ried out on the basis of optimized distributions of �ow quan�
tities� such as pressure or velocity� along the blade walls� In
what follows� this distribution will be refered to as f targ�s��
Airfoil shapes are sought which� tested in the wind tunnel



or analyzed numerically� yield an f�s� distribution as close
as possible to f targ�s�� From a mathematical point of view�
the design is related to an optimization problem involving
the minimization of

F ��u� 	

Z
contour

jfpred��u�� f targjds �
�

for each candidate blade� Needless to say that the designer�s
experience is implicit in the selection of a suitable f targ

distribution �Bouras et al� 
�����
Gradient�based methods have been widely used in nu�

merical shape optimization� Quite often� gradient informa�
tion is obtained through �nite�di�erence quotients� They
are computationally demanding� since as many �ow compu�
tations as the number of design variables are required� In
addition� inaccuracies may result if the �nite�di�erence step
is erroneously chosen� A possible way to reduce the CPU
cost is through sensitivity analysis �Burgreen and Baysal�

����� A di�erent way to compute gradients is through
the adjoint system of equations� �Jameson� 
����� which
includes the linearization of the relation expressing the de�
pendence of the �tness function on the control parameters�

Rival to the above are stochastic optimizers �Aly et al��

����� their major advantage being the capability to seek
global optima� Evolutionary methods� simulating annealing
techniques and especially genetic algorithms �Quagliarella
and Cioppa� 
���� Lee and Hajela� 
���� Galan et al�� 
����
Goel et al�� 
���� Rocchetto� 
���� Poloni� 
���� Gian�
nakoglou� 
���� are the most known optimizers�

In this paper� soft computing techniques will be incor�
porated in the design method presented in Giannakoglou
�
����� This will render it fast and e�ective without resort�
ing to multiprocessing� The blade parameterization intro�
duced in the aforementioned paper will be used� Geometric
quantities constitute the set of design variables that are con�
trolled by GAs� employed in order to minimize F � Cascades
formed by the candidate blade shapes� corresponding to a
set of design variables that are the outcome of the genetic
evolution� are meshed with triangular elements and their
�tness is evaluated through a primitive variable �ow solver�
During the genetic operations� a multi�layered network is
trained� Its role is to guess the �tness of new candidate
blade shapes� outside the training set� Based on the ANN
guesses� �promising� shapes distinguish themselves among
the members of each generation� These are the only shapes
that need to be re�examined through the �ow solver� in the
hope of providing better solutions� Thus� the costly di�
rect solver is used only for a small percentage of the GA
population� To maximize the gain� some ANN parameters
should be carefully adjusted� The regular adaptation of the
design variables� search space� �Giannakoglou� 
����� that
improves both the exploitation capabilities of the GA and

the convergence rate� is also used�
For the assessment of this method� existing �D turbo�

machinery blades will be �rst analyzed through a direct
�ow solver� The resulting pressure or velocity distributions
constitute f targ�s� and the present method will be used to
reconstruct the blades� By modifying the �tness function�
the method is ready to accommodate other requirements or
design constraints� It is necessary to stress here the point
that what is our major concern is the acceleration of the
design process itself�

BLADE SHAPE PARAMETERIZATION
The parameterization of the blade shape is of primary

importance� Related to it is the total number of free�
parameters that should be kept as low as possible for the
sake of maximum computational e�ciency� On the other
hand� by allowing a wide search space for each design pa�
rameter� the model becomes �exible enough to cope with a
variety of turbomachinery blade shapes�

A brief survey of the parameterization techniques
used in relevant works will be presented �rst� Then� the
proposed geometrical model will be described�

A Brief Literature Survey
In the relevant literature� Bezier functions� B�splines

and other simpler polynomial expressions have been widely
used due to their smoothing properties� Indicatively� in
Goel et al� �
����� the parametric representation of a tur�
bine aifoil was carried through Bezier�Bernstein polynomi�
als� The Bezier control points close to LE and the TE were
purposely alligned to insure continuity in the shape and its
slope� In addition to the Bezier control points� other geo�
metric parameters �like the stagger angle� were de�ned as
control variables� In Li Jun et al� �
����� �th�order para�
metric splines along segments of the PS and SS have been
used for the design of transonic turbine cascades� Pritchard
�
���� and Trigg et al� �
���� used similar geometric mod�
els based on �rd�order polynomials �

 basic parameters�
and cubic Bezier curves �
� basic parameters�� respectively�

In Poloni et al� �
����� an assembly of Bezier curves
was used� giving rise to 
� design parameters� four of
them were used to model the camber line through a cubic
Bezier curve while the others controlled the superimposed
thickness distribution� Bezier functions have been also
used in Galan et al� �
���� and Rocchetto �
����� In
Quagliarella and Cioppa �
����� the airfoil was represented
using a linear combination of a baseline shape along with
some given modi�cation functions�

The Proposed Parameterization
The proposed airfoil shape parameterization is based on

the combined use of circular arcs and Bezier�Bernstein poly�
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Figure 
� Airfoil parameterization�

nomials� This approach is attractive� for it may easily han�
dle blades with rounded LE and�or TE like turbine blades�
The use of circular arcs close to the front and rear part is
optional and could be omitted if the targeted airfoil does not
demand it� The two Bezier curves are de�ned byNP�� and
NS �� control�points� along the PS and the SSrespectively
�Fig� 
� and cover their major parts�

For the purposes of this paper� major cascade character�
istics �stagger angle� chord�length� pitch� will be considered
known and �xed� This is not mandatory and when not ob�
served one or more of the aforementioned quantities will be
also included in the set of free parameters� According to
the Bezier polynomial theory �Farin� 
����� the pth deriva�
tive at each end�point is determined by the point itself and
the p adjacent ones� With regard to this observation� the
�rst derivative equals the slope of the straight line joining
the end�point and the adjacent interior one� Consequently�
drawing the tangent from the �nd or the �NP � 
�th �or
�NS � 
�th� Bezier points to the LE or TE circles respec�
tively� the 
st and the �NP � ��th �or �NS � ��th� Bezier
points can be located� On the basis of the premise above�
circular arcs and Bezier curves remain continuous at the
junction points�

According to the proposed parameterization� the design
variables� array �u consists of the radii R� and R� of the
LE and TE circles� the b�� and b�� blade angles that de�
termine the centers of the circles and the coordinates of
NP �xPi � y

P
i � i 	 �� NP � 
� and NS �xSi � y

S
i � i 	 �� NS � 
�

control�points� Therefore� the number of design parameters
is found to equal NFP 	 � � �NP � �NS � The set of NFP

real values that minimizes F is sought� this search will be
undertaken by the GA�

Under certain conditions� the NFP could be reduced�
For instance� this can be done by �xing the x�coordinates
of all Bezier control�points� In this case� only � � NP � NS

design variables need to be used�

THE INVERSE DESIGN ALGORITHM
The inverse design problem is linked to the minimization

of the cost function given in 
� In a previous paper by
the same author �Giannakoglou� 
����� the inverse design
was based on a standard GA combined with adaptive
search domains for the design variables during the genetic
search� Towards convergence� GA automatically switched
to iterative hill�climbing optimization� A distributed
memory parallel system supported the design process�
processors were simultaneously associated with di�erent
cost function evaluations� in a SIMD fashion� Practically�
the ellapsed time for evaluating a su�cient number of
candidate solutions was equal to the duration of a single
run� provided that as many processors as the examined
solutions were available�

Optimization Through GAs
The GA handles a population of individuals each of

which corresponds to a candidate blade shape� The compo�
nents ui� i 	 
� NFP of �u are encoded as binary strings �Ci�
each one with ni bits� Their concatenation �head�to�tail�

gives rise to the full binary string �C � encoding the candi�
date blade airfoil as a whole�

The binary substrings for the ui� i 	 
� NFP parame�
ters can be of variable length �i�e� di�erent numbers ni of
bits could be used for each one of them�� The chromosome
length� i�e� the number of bits used to encode �u is equal to

L 	

NFPX
i��

ni

The designer should set bounds to the search space for
the NFP design parameters� The initially chosen lower
�ui�min� and upper �ui�max� i 	 
� NFP � bounds may af�
terwards change in an adaptive manner�

GAs were developed to simulate processes observed in
natural evolution� In the beginning� Npop chromosomes
are randomly selected over the search space of possible
solutions� Each one of the initial generation chromosomes
is given a �tness score which expresses the suitability of
the corresponding individual� In a minimization problem�
the genetic evolution looks for the chromosome with
the minimum possible score� Maximization problems
are handled in an analogous way� In each generation�
the individuals compete to participate in the mating
procedure that creates new o�spring� The competition
is based on their relative scores� In the present work�
multiple reproductive trials are allocated to the �tter
individuals through linear �tness ranking� whereas some of
the weaker chromosomes die out� Since these trials de�ne
the number of copies of each individual in the mating
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Figure �� A three�layer ANN�

pool� �tter individuals are likely to receive more than one
copies� Once the mating pool is �lled in with copies of the
previous generation chromosomes� crossover and mutation
undertake to form the next generation� In crossover� pairs
of individuals are selected from this pool at random and
their chromosomes are cut at a point also selected at
random� Parts before and after the cuts are mutually
exhanged �one�point crossover�� Crossover is carried out
with very high �about �
�� probability� Finally� mutation
is applied to the individuals formed through crossover� In
mutation� bits in the chromosome string may randomly
alter according to a small probability �usually less than 
���

Fitness Evaluation Using ANNs
ANNs were inspired by neurophysiology and gave rise

new non�algorithmic computing methodologies� A detailed
discussion of ANNs is provided in classical textbooks �Day�
ho�� 
��
� Hertz et al� 
����� so it su�ces to present here
the most important features of the BEP networks� as incor�
porated in the shape evaluation procedure�

A BEP network is capable of learning complex input�
output mapping rules� like the mapping between �u and
F ��u�� For this purpose� the network should be presented
with input patterns �airfoil shapes that correspond to al�
ready examined chromosomes� paired with the target out�
puts ��tness scores computed using a direct �ow solver��
At the completion of the training� the network can evalu�
ate new airfoil shapes� by guessing output values for input
patterns other than those used in the training process�

Fig� � presents a typical multilevel feed�forward net�
work� organized in three layers� It includes only one hidden
layer with NHL units� fully connected to the input and out�
put layers� The input layer consists of NFP units �as many
as the design variables� and the corresponding values will
be referred to as �u 	 ui� i 	 
� NFP � The output layer has
only one processing unit associated with the �tness score
and will be denoted by �k� k 	 
� In what follows� values at
the hidden layer units will be denoted by �� 	 �j � j 	 
� NHL�
Each connection is associated with its own weight� Accord�
ing to �g� �� weights wji� j 	 
� NHL� i 	 
� NFP and

wkj � k 	 
� j 	 
� NHL should be adjusted during training�
In the BEP method� NTS training patterns are repet�

itively presented to the network� Upon each presentation
�denoted by � 	 
� NTS�� the processing units perform
weighted sums of their inputs and� through a non�linear
activation function g� their outputs are computed� Propa�
gating the signals forwards yields

��j 	 g�wjiu
�
i � � ��k 	 g�wkj�

�
j � ���

where the summation convention applies when repeated in�
dices appear�

Through the forward propagation of each input signal
�u�� a single value at the output unit ��k�� is obtained�
In general� this is di�erent than the desired �tness score
F� 	 F ��u�� and this deviation is a measure of the sys�
tem error� The backward propagation step starts from the
output and moves backward through the successive hidden
layers� changing the connection weights� The correction is
incremental and is carried through the computation of an
additive vector � �w� According to the gradient descent al�
gorithm� weights are modi�ed in the direction in which the
system error is decreased� For the network shown in �g� ��
a routine calculation yields

�wkj 	 ���k�
�
j � ��k 	 �F� � ��k �g

��wkjg��
�
j �� ���

�wji 	 �	�
j u

�
i � 	�

j 	 ��kwkjg
����j �� ���

The training task entails a number of iterations and
computational cost� On the contrary� the use of an
already trained network for the evaluation of a candidate
shape outside the training set is straightforward and with
negligible cost� In the next Section� the utilization of the
network will be explained in detail�

The Proposed Inverse Design Algorithm
In the proposed method� an ANN� which learns how to

map sets of design variables to �tness scores� helps overcome
a considerable amount of airfoil cascade evaluations through
the costly �ow solver� Compared to the algorithm analyzed
in Giannakoglou �
����� the gain in CPU time is noticeable�
at least as long as both design methods run on a sequential
computer� Each time the optimizer does not resort to the
�ow solver for a new shape evaluation� the computing gain
is equal to the cost of running the solver� The training cost
of the network should be considered as equivalent to the cost
of a single �ow solution and does not present any threat to
the e�ciency of the method�

Without considering multi�processing� Fig� � illustrates
the main loop of the proposed algorithm� At the end of
the �rst generation of the GA and regularly afterwards the
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Figure �� The iterative part of the design algorithm�

network is trained� Chromosomes examined by the direct
�ow solver paired with the so�obtained �tness scores are
presented to the network input� The connection weights
are computed and stored� Practicalities about how often
the network should be �re��trained and comments on the
training patterns that should be used are given below�

During all but the �rst GA generations� each chromo�
some is �rst evaluated using the trained network� The
design parameters corresponding to this chromosome are
presented to the input of the network� which estimates its
�tness score�

Although a properly trained network is dependable� the
network cannot estimate �tness scores lower than the mini�
mum score of the training set chromosomes� Consequently�
the network is not capable to generate a �tter solution than
the �ttest in the training set� On the other hand� even if
this were possible� guesses close to the �extreme� training
data would not be as reliable�

To overcome this problem� the Npop chromosomes of
any generation� are sorted according to the ANN estimates
and the �� Npop�

th
best score is found� Let us denote this

score by F �� In the next generation� any chromosome
for which the ANN provides �tness score lower than F �

needs to be re�examined by the direct solver� One would
therefore expect a reduced number of N��� Npop� �ow
calculations to be conducted� A �tter chromosome will be
hopefully found among the N� re�examined chromosomes�
The parameter � is chosen by the designer� Low � values
reduce the number of required numerical �ow solutions�
but better chromosomes than the current best will be

hardly captured if the network estimate is way out of the
accurate� On the other hand� higher � values tend to erode
the gain in CPU time� As F � is computed using the scores
obtained in the preceding generation the number of �ow
solutions per generation is not constant�

THE USE OF ANN� PRACTICALITIES

�a� The network is presented with ui� i 	 
� NFP real val�
ues rather than L binary digits� since NFP � L�

�b� In the examined cases� NFP 	 �� input units and a
single output unit have being used� One hidden layer
with about NHL 	 �
 processing units proved to be
su�cient for the network to be both reliable and fast
to learn� The selected network size is as close to the op�
timum as possible� for this particular kind of problems�
By increasing the number of hidden layers and�or the
number of units in these layers� the training cost in�
creases� On the other hand� a very small number of
units in the hidden layer usually leads to poor learning
and the map between input and output patterns is not
reliable� So� the designer should carefully select the
network parameters�

�c� The connection weights are updated by re�training the
network using new training data originating from the
evolving populations of the GA� An automatic decision
mechanism for determining when and how re�training
should occur has been incorporated� Upon completion
of the genetic operations� re�training starts if�


� a chromosome �tter than the �ttest in the training
set appears� or

�� during the last m �usually about � to �� genera�
tions� new chromosomes have been analyzed with
the direct code� giving rise to new paired inputs�
outputs that might enrich the training set�

�d� Various re�training procedures are available� They
are usually based on simple linearizations �Park et
al�� 
��
�� and are e�cient for slowly varying non�
stationary processes� In the present problem� a much
simpler approach has been adopted� Each time the net�
work weights are to be re�adjusted due to the enrich�
ment of the available paired shapes and �tness�scores�
the network is presented with the entire training mate�
rial� In the gradient descent algorithm� the connection
weights wji and wkj start evolving from their more re�
cent values�

�e� Often� some candidate airfoils with unrealisic shapes
are not capable to yield a converged �ow �eld around
them� In general� more delicate is the design of turbine
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Figure �� Typical convergence history of the direct �ow
solver� using restarted GMRES�

blades� since at choked or near�choked conditions the
ratio pinlet
ptot�inlet and the size of the cascade throat
are physically related�

THE DIRECT FLOW SOLVER
The direct �ow solver �Koubogiannis et al�� 
���� is

based on the �nite�volume technique� as it applies to un�
structured grids with triangular elements� It supports
quasi��D �ow analyses in cascades� with variable stream�
tube thickness along the axial direction� to account for
AVDR values other than unit� A vertex�centered scheme�
where each control volume is formed around a grid node is
used� The convective terms are discretized using the Roe
�
���� scheme with MUSCL extrapolation� The numerical
solution is performed using the restarting� matrix�free GM�
RES technique �Saad and Schultz� 
����� preconditioned
through the Jacobi scheme� For typical meshes of about
�


 triangles � �


 nodes� �
��
 external iterations are
required for the residual to converge about ��� orders of
magnitude� Such a typical convergence is shown in Fig�
�� this was obtained in the �rst examined case and cor�
responds to the �ttest blade shape� It has been computed
using a CFL number linearly increasing from 
 to �
 �within
the �rst �
 iterations��

The unstructured grid is generated through an auto�
matic triangulation software� based on the advancing front
technique� The designer speci�es the number of points
�about �

� �

� along the airfoil contour� This number�
though high for inviscid calculations� helps to cope with
unrealistic shapes that may appear� A few intermediate
layers with a gradually decreasing number of nodes are
automatically created around the airfoil� in order to keep
the grid size at reasonable levels� The external boundary
is formed by straight lines� with a coarse nodal point
distribution along them� The grid� including any node
on the inner� the outer and the intermediate layers is
generated at almost negligible cost�

APPLICATION OF THE METHOD
The proposed method has been used for the inverse de�

sign of a turbine and a compressor blade� For two existing
blades� the aforementioned �ow solver was used to compute
velocity or pressure distributions along the blade contours�
Using them as target� the proposed design method was then
applied to reconstruct the original shapes� As stressed in
the Introduction� emphasis was given to demonstrate the
method�s e�ciency and the gain due to the incorporation
of ANNs�

The �rst problem examined was the inverse design of a
high turning turbine nozzle� The reference blade geometry
is described in Sieverding �
��
�� As the available point
distribution was not su�ciently smooth� we deemed that
smoothing through high�order polynomials was necessary�
Of course� this incurred inaccuracies and the target �ref�
erence� blade was slightly di�erent than the original� The
chord length ��
cm�� the pitch�to�chord ratio �
���� and
the stagger angle �����o� remained �xed during the design
process�

In direct mode� the inviscid �ow in this cascade has
been calculated at inlet �ow angle equal to 
��o and isen�
tropic exit Mach number equal to 
����� The so�obtained
velocity distribution was used as target� The comparison of
target and computed distributions is always based on the
arc�length along the airfoil contour� even if these were of�
ten plotted as f�x� distributions� The target distribution is
given below� together with the best obtained solution�

First� we will illustrate the convergence characteristics
of the proposed method� in this particular case� In Fig� ��
the convergence rates of four variants of this method are
compared� Referring to the legend of Fig� �� METHOD�
stands for the standardGA optimizer operating on the basis
of �xed search space �adaptation was excluded� and without
the acceleration through the ANNs� In METHOD�� each
chromosome is evaluated using the Euler solver� Thus� the
computing cost of this variant is proportional to the num�
ber of candidate shapes� In METHOD�� the search space
automatically re�adapts its bounds by shrinking both sides
of the corresponding rectangles around the current best so�
lution� This takes place as the method evolves� provided
that during the last four generations there is no improve�
ment� METHOD� combines GAs with ANNs in order to
decrease the number of CFD code runs� with �xed search
spaces� Finally� METHOD� is the enhanced version making
use of both search space adaptation and ANNs�

Interesting conclusions can be gleaned by comparing the
behaviour of these variants� Using the same population
�Npop 	 �
� and the same genetic operations� the com�
parison is fair and meaningful� Similar conclusions have
been also drawn for the design of the compressor blade�
According to Fig� �� the use of ANNs without the adap�



tive scheme �METHOD�� leads to worse solutions as only
a small percentage of the candidate solutions is accurately
evaluated� In this test case�METHOD� gives slightly better
results than any other variant� Note that METHOD� and
METHOD� produced results of similar quality� very close
to that ofMETHOD�� whereasMETHOD� andMETHOD�
were dramatically faster�

In order to quantify the gain in computing time� we
will assume that the cost of genetic operations is negleg�
ible� Therefore� the cost of the design will be measured in
terms of �direct �ow solutions�� This term includes the un�
structured grid generation and the numerical solver� For the
enhanced version �METHOD��� Fig� � compares the num�
ber of required direct �ow solutions per generation for two
� values� namely � 	 
�

 �its convergence was illustrated
in Fig� �� forMETHOD�� and � 	 
��
 �with slightly better
convergence characteristics�� Without considering any con�
vergence criterion� all comparisons have been made on the
basis of �
 generations� with Npop 	 �
� Thus� �


 �ow
solutions have been required in METHOD�� Instead� only
��� or �
� runs have been required in METHOD�� with
� 	 
�

 or � 	 
��
 respectively�

In order to demonstrate the quality of the inverse design�
the target velocity distribution along the blade walls and
the best predicted one are given in Fig� �� They are in
very good agreement� showing a shock springing from the
blade TE and meeting the SS of the adjacent blade� For
this design� METHOD� was used with � 	 
�

 and NPS 	
NSS 	 �� Linked to the previous �gure is Fig� �� comparing
the reference and the best predicted blade shapes� Their
comparison is also very satisfactory� The �nal locations
of the Bezier points� are also shown in this �gure� The
rectangular areas de�ne the search spaces for the Bezier
control points� during the �rst generations� As stated above�
close to convergence� the search spaces become very small
and centered in relation to the current best solutions�

The second problem examined was that of a controlled�
di�usion airfoil cascade �Steinert et al�� 
��
�� representa�
tive of industrial axial �ow compressors� The inlet �ow
angle and the isentropic exit Mach number were equal to
��o and 
���� respectively� The AVDR was equal to 
��� so
that the streamtube thickness before the LE or after the TE
was constant and equal to 
�
 and 
�� respectively� whereas
in the part between the LE and TE it varied linearly�

The direct �ow solver provided the target pressure co�
e�cient distribution for the reconstruction of the blade� In
Fig� �� the target pressure coe�cient distribution is shown�
In the same �gure� this quantity is also compared with the
predicted blade shape having the best �tness score� Be�
tween the two curves� only small di�erences can be seen�
close to the leading edge or along the rear part of the SS�
The blade shapes which correspond to the aforesaid distri�
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Figure �� GA convergence for the turbine blade design�
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Figure 

� Reference and best predicted compressor blade�
search spaces and optimum locations of the Bezier points�

butions are shown in Fig� 

� The search spaces for the
Bezier points are indicated in the same �gure�

We will repeat here the comparative study of the four
variants of the proposed method� as we did with regard to
the turbine blade� The convergence of the four versions
of the method is shown in Fig� 

� The nomenclature for
this �gure is the one previously used in Fig� �� METHOD�
should be considered as the standard procedure� Compared
to it� METHOD�� that is the use of the ANN accelerator
without adaptivity of the search space� proved to be very
slow and the convergence stagnates within the �rst 
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Figure 

� Comparison between di�erent implementations
of the method�
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Figure 
�� Number of required direct �ow solutions per
generation �Npop 	 �
��

generations� The convergence of METHOD� is better than
that of METHOD�� METHOD�� with a quite low � value
�� 	 
��� gave the faster convergence� reaching almost the
same �nal error as METHOD� but in a reduced number
of iterations� as shown in Fig� 
�� METHOD� demands
only about �
� of the total number of direct �ow solutions
required by METHOD��

CONCLUSIONS
Computational intelligence was succesfully incorporated

to the inverse design of �D turbomachinery blades� at high�
subsonic and transonic �ow conditions� The aim was to
lower� as much as possible� the computing cost� Calcula�
tions were performed for the reconstruction of compressor
and turbine blades� based on target wall pressure or ve�
locity distributions� Of course� other inverse design or op�
timization problems can be handled� it merely su�ces to
de�ne appropriately the �tness function� All of the designs
have been carried out using an Euler solver for unstructured
grids� A Navier�Stokes solver or a boundary layer method
could be used as well�

The purpose of this paper was to illustrate the capability
of ANNs to considerably accelerate design techniques based
on GAs� The major conclusions are�

�a� The proposed �D airfoil parameterization� based on the
use of circular arcs and Bezier functions is adequate for
typical compressor or turbine blades�

�b� ANNs can be trained to correlate shapes and �tness
scores� replacing thus a great number of costly shape
evaluations� The proposed combination of GAs for the
optimization and ANNs for part of the evaluation phase
reduces the design cost by a factor of about � to ��

�c� ANNs should be necessarrily combined with automatic
search space adaptation� It is clear� though not dis�
cussed in this paper� that a careful timing for the repet�
itive adaptations is required� to avoid premature con�
vergence of the GA�



�d� The e�ciency of the ANN�based accelerator depends
on the so�called parameter �� Low � values reduce the
number of the required numerical �ow solutions� but
a small number of better chromosomes might be never
captured� On the other hand� high � values tend to
damage the e�ciency of the method�

�e� The connection weights of the ANN should be up�
dated through regular re�training of the network� based
on updated input�output pairs� An automatic deci�
sion mechanism to determine when and how re�training
should occur� has been proposed�
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