NATIONAL TECHNICAL UNIVERSITY OF ATHENS
School of Mechanical Engineering

Fluids Section

Laboratory of Thermal Turbomachines
Parallel CFD & Optimization Unit

Unsteady Discrete Adjoint Method Formulated in the
Time-Domain for Shape Optimization in

Turbomachinery

Ph.D. Thesis

Georgios D. Ntanakas

Academic Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Industrial Advisor: Marcus Meyer, Ph.D., CFD Methods,
Rolls-Royce Deutschland

Athens, 2018






NATIONAL TECHNICAL UNIVERSITY OF ATHENS
School of Mechanical Engineering

Fluids Section

Laboratory of Thermal Turbomachines
Parallel CFD & Optimization Unit

Unsteady Discrete Adjoint Method Formulated in the
Time-Domain for Shape Optimization in Turbomachinery

Ph.D. Thesis

Georgios Ntanakas

Examination Committee:

1.

Kyriakos Giannakoglou (Academic Supervisor)*
Professor, NTUA, School of Mechanical Engineering

. Nikolaos Aretakis*

Associate Professor, NTUA, School of Mechanical Engineering

. Spyridon Voutsinas*

Professor, NTUA, School of Mechanical Engineering

Konstantinos Mathioudakis
Professor, NTUA, School of Mechanical Engineering

Ioannis Nikolos
Professor, Technical University of Crete, School of Production
Engineering & Management

Lambros Kaiktsis
Professor, NTUA, School of Naval Architecture and Marine Engineering

Ioannis Roumeliotis

Assistant Professor, Hellenic Naval Academy

Lecturer, Cranfield University, School of Aerospace, Transport and
Manufacturing

* Member of the Advisory Committee.

Athens, 2018






This work has been conducted within the AboutFlow ITN on “Adjoint-based
optimization of industrial and unsteady flows”
http://aboutflow.sems.qgmul.ac.uk

AboutFlow has received funding from the European Union’s Seventh Framework
Programme for research, technological development and demonstration under Grant
Agreement No. 317006.

ABOUTflow = & =







Abstract

This PhD thesis deals with the mathematical formulation, solution, programming and
validation of the unsteady discrete adjoint method, formulated in the time-domain, for
the computation of first-order sensitivity derivatives for objective functions related to
the aerodynamics of turbomachinery and their utilization in optimization algorithms.
The cases that are tackled involve the constrained optimization of industrial, 3D, multi-
row, turbomachinery configurations with transient and periodic flows.

The unsteady adjoint equations are formulated for an objective function in the form
of a time-integral over a selected time-interval. The dual time-stepping technique is
used to solve the unsteady adjoint equations along with an iterative scheme, which is
the adjoint to the 5-stage Runge-Kutta scheme used for the flow equations and which
is derived "by-hand". The scheme is formulated so as to ensure same convergence
rate as the Unsteady Reynolds-Averaged Navier-Stokes (URANS) solver. Algorithmic
Differentiation (AD) is employed in the adjoint solver for the computation of selected
differential terms. Its usage is restricted to low level operations and combined with
hand-differentiation to ensure efficiency.

To enable communication between adjacent row-domains in the adjoint solver, the
adjoint sliding interface is developed to replace the mixing interface technique used
in steady state solvers. Its baseline is the sliding interface of the flow solver where
grids of adjacent rows are generated so that there is a one-cell overlap. AD along with
hand programming ensure that the implementation is consistent with the reverse flow
of information in the adjoint solver.

The solver utilizes the SSD disk space instead of RAM to store and read-in, in a
parallel manner, the per-time-step flow fields during the adjoint execution. Thus, RAM
bottlenecks are avoided while run time is not significantly increased. The temporal
coarsening technique is employed in the adjoint solver to decrease the run time and

the required storage space when this exceeds the available storage capacity.



Adjoint-based derivatives are computed and used within the optimization work-
flow. If equality constraints are considered, the component of the objective function’s
gradient which is normal to the constraints’ gradients is used along with the projected
gradient descent method to update the design variables and, thus, the geometry. In
unconstrained optimization problems, steepest descent is used.

The developed software is applied to the shape optimization of 3D, multi-row, tur-
bomachinery cases for the first time in the literature. The application cases include
one single row turbine case (transient operation), one stage turbine case (periodic flow
study) and one 3-row compressor case (periodic flow study). The computed deriva-
tives are validated against the derivatives computed via finite differences and, then,
used in optimization setups with and without equality constraints.

Key words: Computational Fluid Dynamics, Unsteady Discrete Adjoint Method, Sen-
sitivity Derivatives, Shape Optimization, Transient Flow, Multi-row Turbomachinery
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Introduction

The continuous evolution of high-performance computing empowered the long-lasting,
ongoing transition from steady to unsteady Computational Fluid Dynamics (CFD) sim-
ulations and surely affects adjoint solvers too. The use of CFD-based, rather than
exclusively experiment-based design, is nowadays established. The new demand is
improving CFD optimization results by reducing the number of assumptions made in
CFD which is also the case with adjoint solvers. This is the area which this thesis con-
tributes to by extending the application of the unsteady adjoint method, formulated
in the time-domain, to industrial, 3D, multi-row, turbomachinery applications. Before
expanding the goals of this work, the fundamental background is set and the relevant
literature review is presented. The chapter concludes with the outline of this thesis.

1.1 CFD & Optimization in Turbomachinery

CFD and optimization have played a decisive role in the evolution of turbomachinery
design [1-5]. Over the years, the problems to be solved have increased in size and
complexity. The growth of the available computing power has led to the decreasing
usage of assumptions when modeling turbomachinery flows. Thus, modeling in 1D
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and 2D was replaced by 3D computations, the Euler by the Navier-Stokes equations
[6, 7], steady by unsteady computations and the use of turbulence models by LES
(Large Eddy Simulation) [8-10]. However, in the industrial environment, some of
the aforementioned simplifications are still being made in order to allow obtaining
technical answers or performing designs within an acceptable timeframe.

Optimization [11, 12], more specifically shape optimization in the CFD context,
aims at minimizing or maximizing a certain objective/cost function by iteratively mod-
ifying the initial geometry. Optimization methods can be broadly classified into two
main approaches; stochastic and deterministic. Stochastic methods [13-15], mostly
represented by evolutionary algorithms (FEAs), mimic natural evolution operations,
producing generations of designs until a convergence criterion is met. They are able to
locate a global minimum within the design space and are suitable to capture the Pareto
front in multi-objective optimization (MOO). On the other hand, they require a large
number of objective function (CFD) evaluations. Thus, for complex design problems
that involve a high computational cost per evaluation, they become prohibitive, at least
in their standard form. Among the techniques that have been suggested to decrease
this computational cost, contributions have been made by PhD theses completed (or
running) in the Parallel CFD & Optimization Unit of the Laboratory of Thermal Tur-
bomachines of the National Technical University of Athens (LTT/NTUA) [16,17]

Deterministic methods [18-21] rely on the availability of the first- or even higher-
order gradients of the objective function with respect to (w.r.t.) the design variables in
order to perform optimization cycles [22, 23] according to methods such as steepest
descent, conjugate gradients or Newton (exact or approximate) etc. Gradient-based
methods could be trapped into local minima. This could be avoided by re-starting
from a different initial design, which would naturally increase the optimization cost.
Unlike EAs, they usually involve a smaller number of evaluations and addressing MOO
problems requires transforming them to single objective optimization (SOO) problems
using weights.

Each optimization method comes with its own advantages and disadvantages [24].
It is the analysis of the underlying problem and its properties that lead to the selection
of a specific method to be used. In turbomachinery shape optimization, both stochastic
[25,26] and deterministic methods have extensively been used. When considering
aerodynamic shape optimization of blades, baseline shapes are often considered to
be near optimal and major shape changes are neither expected nor desired. Thus, an

optimization method that searches for a local optimum is sufficient and gradient-based
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approaches are quite popular in the field.

1.2 Gradient Computation via the Adjoint Method

A variety of different approaches may be used to compute the desired first-order gradi-
ent of the objective function w.r.t. the design variable vector. Using the finite differences
method [27], each component of the design variable vector a, which has N elements, is
perturbed individually by an infinitesimally small value €, defining a perturbed geom-
etry that will be used to evaluate the objective function J. The corresponding element

of the gradient vector, for a second-order scheme, is given by

dJ J(ay,ay,...,a,+€,...,ay_j,ay) —J(ay,a,,...,a,—€,...,ay_1,ay)

1.1
da 2¢ (1.1

n
The process, which for CFD applications might be computationally demanding, needs
to be performed for every element of the design variable vector and hence, the com-
putational cost of the method is proportional to the number of design variables N.
The method is inefficient for a large design vector and, at the same time, derivatives
are sensitive to the size of the selected perturbation. Using a "too" small value for the
perturbation can lead to computer round-off errors. On the other hand, using a large
value for € introduces a non-negligible truncation error. Practically, in most cases,
more than one values of € must be tried in order to find the most suitable.

Dependence on the perturbation step can be circumvented when the complex vari-
able method [28,29] is used instead. In this case, the gradient is computed as

dJ  ImlJ(a;,ay,...,q,ti€,...,ay_3,ay)]

da. - (1.2)
where i = +/—1 and Im is the imaginary part of any complex variable. However,
the computational cost still scales with the number of design variables and the solver
needs to be modified so as to support complex, instead of real variables.

The cost scales with the number of design variables also when using forward /direct
differentiation [30,31]. According to this, the flow equations are differentiated w.r.t.
a and N linear systems need to be solved. This overcomes the dependency from e but
requires programming of software.

An alternative for efficiently computing the gradient is the adjoint method. Fol-
lowing this approach, the gradient is computed by solving an adjoint linear system
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of equations just after the solution of the flow equations. Its fundamental property is
that the computational cost is independent of the number of design variables, in con-
trast to all the aforementioned methods. The method is beneficial when the design
variables significantly outnumber the objective functions. A vast majority of (turbo-
machinery) CFD applications share that characteristic. However, the method requires
the development of a separate adjoint solver in accordance with the flow equations
solver.

The adjoint method was introduced in fluid mechanics problems by Pironneau [32]
and extended later by Jameson [33-36]. Over the last 25 years, it has been exten-
sively used for initially external flow problems, such as airfoils and wings [37, 38].
The transition to internal flows and, in specific, turbomachinery came slightly later,
when, for example, Yang et al. [39] applied it in 2D cascades considering an inviscid
flow or Chung et al. [40] considered the shape optimization of the 3D Rotor 37. Ap-
plications of the adjoint method to turbomachinery cases followed by Wu et al. [41]
and Papadimitriou and Giannakoglou [42-45]. The common element of these appli-
cations was that they were considering a single row only. Despite the fact that Den-
ton [46] provided the mixing-plane technique in 1992 for flow prediction problems
in multi-row configurations, adjoint solvers that supported multi-row applications ap-
peared quite later. Prominent first examples are the work of Frey et al. [47], Wang
and He [48,49].

The adjoint method can be devised in two different ways. When the differentiation
of the governing equations comes before the discretization, we refer to the continuous
approach [50,51]. When the flow equations are firstly discretized and then differenti-
ated to produce the adjoint equations system directly in discrete form, we refer to the
discrete approach [52-54]. Both approaches are used extensively in CFD and have
their own advantages and disadvantages; comparisons can be found in [55-59]. In
this work, the discrete adjoint approach is used.

Even if optimization cycles are not performed, the adjoint method can provide the
designer with sensitivity maps over the existing design. Sensitivity maps express the
derivatives of the objective function w.r.t. the normal displacement of all surface nodes.
They are a useful tool for the designer since they highlight the areas of the geometry
that contribute more towards a potential improvement of the objective function.

Apart from undertaking the gradient computation for shape optimization purposes,
the adjoint method has also been used to tackle other CFD problems. Different usages

are for error estimation and grid adaptation [60-62]. Error estimation refers to at-
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tempting to quantify the difference between the discrete solution and the unknown
exact solution. In grid adaptation, the adjoint-based estimation of the localized error
is used as an indicator for the areas of the grid that need to be refined. Another pop-
ular application field of the adjoint method is uncertainty quantification [63-65], in
which the propagation of uncertainties from the inputs (usually operating conditions)
to the outputs (objective functions) is quantified. In order to compute the statisti-
cal moments of a quantity of interest, its derivatives are needed and because of its
efficiency in computing derivatives, the adjoint method is used.

The benefits of using the adjoint method for CFD applications contributed to its
increasing popularity. A clear view of this recognition in the scientific community
over the years can be obtained by extracting data from the online databases/digital
collections of the

e ASME (American Society of Mechanical Engineers) ! and

e ARC (Aerospace Research Central) of AIAA (American Institute of Aeronautics

and Astronautics) 2.

Published papers that refer to the adjoint method are retrieved. These papers are
classified based on the year of publication and, also, on whether they refer to steady
or unsteady flows (see section 1.3). In fig. 1.1, the per year number of papers that
apply the adjoint method is plotted in a bar chart both for the entire ASME digital
collection and the Journal of Turbomachinery, in specific. The same plot for the AIAA
database can be found in fig. 1.2. The upward trend of the adjoint usage in scientific

papers is apparent.

1.3 Motivation & Recent Advances in Unsteady Adjoint

Solvers

Unsteadiness is an intrinsic characteristic of turbomachinery flows due to the interac-
tion of rotating and stationary components. Other unsteady phenomena such as vor-
tices and flow recirculations also dominate in turbomachinery flows and affect aero-

dynamic behavior. However, the steady state assumption along with the mixing plane

'https://asmedigitalcollection.asme.org
*https://arc.aiaa.org/search
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Figure 1.1: Research papers on the (steady and unsteady) adjoint method that ap-
pear in the ASME paper digital collection. Top: Entire ASME digital collection. Bot-
tom: Journal of Turbomachinery.

technique [46] has been the dominant approach both for flow and adjoint flow com-
putations. Restricted computational power and the large size of 3D turbomachinery
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Figure 1.2: Research papers on the (steady and unsteady) adjoint method that ap-
pear in the AIAA paper digital collection.

cases calls for such a simplification in order to get solutions at a reasonable cost.

Nowadays, in an industrial environment, optimization problems demand modify-
ing designs that are close to optimal and improvements are becoming increasingly
hard to obtain. Improving, for example, the efficiency of a turbine or compressor
stage by 0.1% is satisfactory for industrial applications. This is an indication that cap-
turing flow phenomena more accurately is becoming a necessity that pushes towards
the direction of considering unsteady flow computations for industrial turbomachinery
optimization.

Another issue to face, when making the steady state assumption along with a dis-
crete adjoint solver, is convergence difficulties. When solving an unsteady flow with
a steady solver, the solver may not be able to converge to machine accuracy. If only
the flow solution is needed and the objective function has converged to "engineering
accuracy", the result is usually accepted by the engineer. However, the discrete adjoint
solver is sensitive to the convergence of the flow equations and may diverge when the
flow solver is not fully converged. For example, when a strong vortex shedding ap-
pears at the trailing edge of a blade, then steady flow convergence usually stagnates
and the adjoint may diverge, as seen in fig. 1.3. As a remedy to this problem, the
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GMRES [66] and RPM [67-69] algorithms were used to stabilize the flow solver. An-
other, less mathematical, solution would be to coarsen the grid close to the trailing

edge to average out the vortex effect and, thus, achieve convergence while sacrificing

aCCuracy.
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Figure 1.3: Flow solver stalling convergence leading to adjoint solver divergence.
Left: Flow solver convergence. Right: Adjoint solver divergence.

The aforementioned, combined with the continuous advances in high-performance
computing, enable the transition to unsteady solvers for the flow and adjoint equations
for the design optimization of turbomachinery cases. Based on figs. 1.1 and 1.2, the
tendency of using unsteady adjoint solvers over the last years is confirmed. The need
for unsteady adjoint, especially for turbomachinery applications, is pronounced by the
fact that, in the last years, the majority of papers on unsteady adjoint presented in the
ASME Conference(s) are also published in the Journal of Turbomachinery.

The first papers on the application of the adjoint method to unsteady flows were
published [70-74] at the beginning of the 2000s. Since then, a significant number of
works has been published on unsteady adjoint. More specifically, it has been applied
to a variety of external flow problems, 2D in the beginning and 3D later, mostly - but
not exclusively - using the time-domain formulation. Applications involve flow past
cylinders [75,76], helicopter rotor blades [77-81], airfoils [82-102], wings [80,103],
full aircraft geometries [ 104] but also ducts [105,106]. Most of them are concerned
with fluid mechanics only while some other consider also the interaction with the
structure [78,104]. The computational grid is either static or moving. In the case of a

moving grid, with or without considering overset grids [80], the Geometric Conserva-
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tion Law [ 107] is incorporated into the equations to account for grid deformation. For
turbomachinery flows, the vast majority of unsteady adjoint applications benefits from
the periodic behavior of the flow in order to reduce the computational cost. The time-
domain Fourier models or frequency domain methods, such as the harmonic balance
method [108-114] are based on the Fourier representation of the unsteady solution,
i.e. the unsteadiness is approximated using a mean value and the harmonics of user-
prescribed frequencies. The space-time gradient [115] replaces the time derivative
of the flow vector in the equations by a space derivative multiplied by the rotating
speed. Such approaches neglect transient flow phenomena, such as the surge margin
prediction, the transient flow behavior in cavities and the flow in the thrust reverser
of a jet engine or periodic phenomena with frequencies different than the prescribed
ones such as the vortex shedding of wakes downstream of trailing edges. Talnikar
et al. [116] applied the adjoint method, formulated in the time-domain, using LES
on a single-row turbine vane configuration. Preliminary work conducted within this
PhD applied the unsteady adjoint method for URANS to a 3D stator blade [117] and a
quasi-2D turbine stage [118]. To the author’s knowledge, the time-domain unsteady
adjoint method, with a time-domain formulation, is applied to 3D, multi-row turboma-
chinery applications for the first time in this thesis and in [119], which is a publication
resulted by this PhD. To do so, the development of an interface that supports multi-
row adjoint computations by coupling the grids of adjacent rows is required. This is a
special variant of the overset grids [80].

It is well known, see also chapter 3, that the unsteady adjoint equations run back-
wards in time. That translates to having the unsteady flow available during the un-
steady adjoint computations. For relatively large CFD cases, the required amount
of RAM to keep the entire unsteady flow may quickly reach numbers that make un-
steady adjoint computations impossible to run. In order to tackle this issue, the check-
pointing technique or approximation models are used. In check-pointing [120-123],
instead of storing the entire unsteady flow, only selected time-steps (checkpoints) are
saved and the rest are recomputed when needed during the unsteady adjoint com-
putation. Thus, run time increases in order to reduce storage requirements. In ap-
proximation models [124,125], again the entire unsteady flow solution does not need
to be stored. During the unsteady adjoint computation, the unsteady flow is recon-
structed or approximated according to techniques such as the POD (Proper Orthogonal
Decomposition). Approximation models reduce storage requirements and are faster

than check-pointing algorithms, though less accurate. In [126], spatial and temporal
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coarsening techniques were used to reduce the storage requirements of unsteady ad-

joint computations, which were also tested in the applications included in this thesis.

1.4 Research Objectives within the Research Framework
of RR and LTT/NTUA

This work was conducted under the AboutFlow [127] Initial Training Network (ITN),
funded by the European Commission, Marie Sklodowska-Curie FP7. The ITN funded
14 research positions focusing on robust adjoint solvers, the seamless integration of ad-
joint gradients into design chains and the application of unsteady adjoint in industrial
design. This thesis evolves around the last axis. The research position combined the
industrial placement in the Design Systems Engineering (DSE) group of Rolls-Royce
Deutschland (RRD) and the academic placement in the LTT/NTUA.

The software used and expanded in this thesis is the Hydra CFD suite [128]. Hy-
dra was originally developed by Prof. M. Giles and his research team in the period
1998-2004 at the Oxford University, using mainly Fortran 77, and was subsequently
transferred to RR while receiving contributions from research groups at Cambridge,
Imperial College, Loughborough, Surrey and Sussex Universities. It is extensively val-
idated [129,130] and has been used by RR since 2009 in almost every aspect of its
aerodynamic design for turbomachinery components. RR products such as the Trent
1000 engine, fig. 1.4, which powers Boeing 787 airplanes, and the newer Trent XWB,
which powers Airbus A350 aeroplanes, have made extensive use of Hydra’s capabili-
ties. Until the completion of this work, the Hydra suite included a steady and unsteady
(time-domain formulation) flow equations solver and a steady adjoint solver.

LTT/NTUA has been developing and using both flow and adjoint solvers for over 25
years, as indicated by the completed PhD theses over that period. Papadimitriou [131]
developed continuous and discrete adjoint methods for inviscid and viscous compress-
ible flows. Asouti [132] extended the continuous and discrete adjoint methods for use
with preconditioned flow equations for low-Mach number flows. Zymaris [133] for-
mulated the continuous adjoint approach to the Spalart-Allmaras turbulence model
and wall functions. Zervogiannis [134] developed a discrete adjoint approach to
compute first- and second-order derivatives, using "hand differentiation”, and per-
formed a posteriori error analysis for the optimal adaptation of hybrid grids. Kon-

toleontos [16] developed the continuous adjoint approach to incompressible, turbu-
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Figure 1.4: Rolls-Royce Trent1000 engine. (c) Rolls-Royce.

lent flows with the presence of heat transfer and to topology optimization problems.
Papoutsis-Kiachagias [ 135] developed the continuous adjoint method to various turbu-
lence models including wall functions, expanded the continuous adjoint for topology
optimization to 3D flows using a truncated Newton algorithm to accelerate conver-
gence and dealt with robust design problems. Finally, Kavvadias [136] developed the
continuous adjoint to the k-« SST turbulence model and a new approach to account
for grid sensitivities in continuous adjoint, including the extension to unsteady flows.

The work of this thesis aims to contribute to the research activities of both par-
ties, industrial and academic. Regarding the industrial party, in order to account for
transient flow phenomena while computing gradients and complete the set of exist-
ing solvers in Hydra (steady and unsteady flow solvers and steady adjoint solver), an
unsteady adjoint solver, formulated in the time-domain, was developed. The existing
Hydra steady adjoint solver was naturally used as background tool for the unsteady
adjoint solver. Regarding the academic party, this work can be viewed in parallel with
the work presented in [136] and [137] despite the fact that, there, the unsteady ad-
joint solver was developed using the continuous (in contrast to the discrete) approach
and the open source CFD software OpenFOAM [138] (in contrast to Hydra). In addi-
tion, the discrete adjoint developments presented in [131, 132,134, 135] considered
steady flows, while this work is extended to unsteady problems. There, the differential

11
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terms were computed using "hand-differentiation" while, in this work, a combination
of Algorithmic Differentiation (AD), Appendix A, and "hand-differentiation" is used to
program the adjoint solver.

Summarizing, this thesis contributes to research efforts on CFD optimization for un-
steady flows, by employing unsteady adjoint solvers. The work conducted within the
thesis aims mainly to explore both the benefits and limits of using a discrete unsteady
adjoint solver, which employs a time-domain formulation, to realistic, industrial, 3D
turbomachinery applications. CFD computations for such cases is a daily routine for
the engineers in the industrial environment.

The following points were considered during the development process of the solver:

e Derivation of equations. The discrete unsteady adjoint equations to be solved
are derived so that the gradient of an objective function, which is defined over

a specified time interval, be computed.

o Iterative solving scheme. In order to solve the unsteady adjoint equations in a
consistent manner and correctly consider the extra unsteady terms, the adjoint
version of the 5-stage Runge-Kutta scheme is derived and used.

¢ Adjoint sliding interface. An interface that ensures the communication be-
tween stationary and rotating grids is developed for the unsteady adjoint solver
respecting the adjoint/reverse flow of information.

¢ Handling increased size of data requirements. In order to avoid RAM bot-
tlenecks, a store-all-to-disk approach is selected. The implementation is faster
than check-pointing algorithms and more accurate than approximation models
but requires large disk capacities which, however, are relatively cheap compar-
ing to RAM expansions. In addition, the temporal coarsening technique offers a
reduction in time and storage space needed.

1.5 Thesis Outline

The present thesis consists of 5 chapters, including the introduction and conclusions
chapters, which are summarized below.

In chapter 2, the Navier-Stokes equations with the Spalart-Allmaras turbulence
model are presented as the governing flow equations. The equations are discretized
and boundary conditions are imposed. A dual time-stepping technique which employs

12
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5-stage Runge-Kutta is employed to solve them and geometric multigrid is used to ac-
celerate convergence. The parameterization and grid generation are briefly described
as the remaining steps of the simulation setup, which starts from the design variables
and ends up with the objective function value.

In chapter 3, the unsteady adjoint equations are formulated starting from an ob-
jective function defined over a specific time interval and the corresponding boundary
conditions are derived. A consistent numerical iterative scheme, adjoint to the 5-stage
Runge Kutta, is derived in order to solve the adjoint equations and Algorithmic Dif-
ferentiation is employed to compute the differential terms that appear in the adjoint
equations. Moreover, the adjoint sliding interface is developed to enable the commu-
nication between rotating and stationary domains and the programming implemen-
tation is discussed. The temporal coarsening method is used to reduce the storage
requirements of the adjoint solver and the specific case of periodic flows is examined
by means of a simplified example. The chapter also presents the integration of the
flow and adjoint flow solvers in the gradient computation process and an optimiza-
tion setup. Lastly, the computational cost of the adjoint solver is discussed.

In chapter 4, two cases are initially used to validate the flow solver. Then, the un-
steady adjoint solver is applied to a turbine vane with transient flow, a turbine stage
and a three-row compressor case with periodic flows. The gradients computed via
unsteady adjoint are compared against those computed by finite differences for the
turbine vane and stage cases. Optimization cycles, with and without considering con-
straints, are performed using the gradients computed via unsteady adjoint to improve
the geometries. Finally, the temporal coarsening technique is used for the multi-row
cases and the gradients are compared with the reference gradients computed without
it.

In Appendix A, the principles of algorithmic differentiation are presented. Two
implementations are introduced and one of them, namely the source code transfor-

mation, which is used in this work, is further discussed using an example.
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Governing Flow Equations: Formulation

and Numerical Solution

In this chapter, the unsteady Navier-Stokes equations and the Spalart-Allmaras [139]
turbulence model are presented as the flow governing equations of the CFD computa-
tion. The governing equations are discretized appropriately on the control volumes of
an unstructured grid, according to the vertex-centered finite volume scheme. Bound-
ary conditions are imposed to achieve the closure of the CFD problem. The solution
of the system is reached iteratively by employing dual time-stepping, an outer real
time loop and an inner pseudo-time loop, where the 5-stage Runge-Kutta scheme is
combined with geometric multigrid for convergence acceleration. The pseudo-code
of the flow solver is also given. Finally, the remaining steps of the flow problem set
up are given by presenting how the objective function is computed for an unsteady
flow problem and providing information about shape parameterization and grid gen-
eration.

15



Chapter 2. Governing Flow Equations: Formulation and Numerical Solution

2.1 Unsteady 3-D Navier-Stokes Equations

The principles of motion of a viscous compressible fluid through turbomachinery rows
can be mathematically represented by coupling the unsteady 3D momentum conser-
vation equations along with the continuity equation and the energy equation, form-
ing the so-called Navier-Stokes equations’ system [6, 7]. The equations are solved in
the Cartesian coordinate system considering the relative velocity. A convention used
throughout the thesis is that bold small letters indicate vectors while bold capital let-
ters indicate matrices. In conservative vectorial form and using Einstein’s notation
(twice repeated indices imply summation over i = 1,2,3), the Navier-Stokes equa-
tions are expressed as _ _
a_u + aﬁ:ln\/ 3 aﬁVlSC _
ot ox; ox;

1

s (2.1)

where u denotes the conservative variables vector, fl.i”V the inviscid flux vector, fl.”'sC
the viscous flux vector, t the time, x = [xy, X, x3]T the Cartesian coordinates and s

the source terms (if any). The involved vectors are defined as follows

e ew; 0
ow, oww; +pdy T1i
u=|ow,l, fii’” = | owyw; +pd;5 | » fimC = Toi (2.2)
ewWs3 owsw; +pb;3 T3i
| oF | | 0Ew; +pw; | | WiTji +4; |

where p is the density, w = [w,, w,,w;]" is the Cartesian relative velocity vector, p is
the pressure, 6;; is the Kronecker delta function, E is the relative total energy per unit

mass and T is the stress tensor.

The absolute Cartesian velocity vector v = [v;, Uy, V5] is defined as
V=w+owxx (2.3)

where w = [w,, w,, ws]" is the angular velocity vector. In a rotating domain, solving

for the relative velocity, the source term s accounts for the Coriolis and centrifugal
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forces _ -
0
—0 (wyv3 — w3v,)
s = | —e (w3v, —w,v;) (2.9
—0 (w1, — w,yvq)
0

In the present work, the rotor axis coincides with the x; axis, thus the angular
velocity can be re-written as w = [w;,0,0]" or simply w hereafter. The absolute

velocity v can be expressed in terms of the relative velocity w as

wi
V= | wy— wXs (2.5)
W3 + (I)Xz
and the source terms reduce to
0
0
s = | pw(w;+ wx,) (2.6)

—pw(w, — wx3)
0

The relative total energy per unit mass is given by

1 1 1
E= B—l + Ewiwi - Erzwz (27)
erY—

where r? = x2 + x2.

Assuming an isotropic Newtonian fluid and following Stokes’ hypothesis for the

viscosity [140], the stress tensor 7;; is given by

ow. Ow; 0
Tij=u(ﬂ+_f)+mﬂ A=—2u 28

ox;  Ox; Yox,’ 3

where u is the dynamic viscosity. The heat flow g; is modeled using the Fourier law

oT

= k— 2.
ox; (2.9

q;
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where k = % is the coefficient of thermal conductivity, c, is the specific heat capacity
under constant pressure and Pr is the Prandtl number with Pr = 0.72 for air.

The Navier-Stokes equations, along with the turbulence model equation presented
below, are solved in non-dimensional form.

2.2 Turbulence Modeling

Turbulent flows are characterized by chaotic 3D fluctuations of the flow quantities
throughout time and space. Turbulence should be taken into consideration in CFD
computations since it is responsible for energy dissipation, mixing, momentum dif-
fusion, high momentum convection etc., thus affecting the flow quantities to be pre-
dicted. Turbulence involves a wide range of length and time scales. Fully resolv-
ing them using extremely fine grids (Direct Numerical Simulation-DNS [141-145]) is
computationally very expensive and almost prohibitive for complex geometries and
industrial time-scales.

Alternatively, one may construct a model to predict the effects of turbulence with-
out resolving it. Following the Boussinesq hypothesis [ 146], the averaged equations
take the same form as the Navier-Stokes equations if the definition of viscosity is mod-

ified to incorporate both molecular and turbulent contributions as

Y= g+ (2.10)

where u, is the eddy viscosity and thermal conductivity k is transformed to

Uy Uy
k=k+k =c,| —+— 2.11

LT (Prl Prt) ( )
with Pr, = 0.9 for air. In order to close the problem, extra equation(s) which form
the turbulence model must be solved. The Unsteady Reynolds-Averaged Navier Stokes
equations coupled with the turbulence model equation(s) gives rise to the so-called
URANS system.

Below, the unsteady one-equation Spalart-Allmaras turbulence model [139] used
in this thesis is presented.
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2.2.1 The Spalart-Allmaras Turbulence Model

The Spalart-Allmaras turbulence model [139] introduces one extra transport equa-
tion to solve for a kinematic viscosity like variable 7, to be referred to as the Spalart-

Allmaras variable, from which the turbulent eddy viscosity is computed as

Uy = 0fy1 (2.12)
where 5 )
3 3 X J

p=ov fa= s X== (2.13)
x3+c U

The equation of the model is

20 20 L2 [ 28 v, (22
ot iaxi_a dx; ox; P2\ 9x;

1 4 4

N (2.14)
- Ch y 9
+Cp SV — (Cwlfw - Ff&) (E) + fulw
where v = u/p is the kinematic viscosity. The last term in eq. 2.14, called trip term,
provides a means for triggering transition at a specified location. However, during
this work, the flow is fully turbulent and the trip term is set to zero. Coefficients are
defined as follows

Sos+f, s= A, 0,=L(2M_ 2"
- v2> — ijeeijo ij— an 8Xi >

K2d2 2
6 N
X 1+ CWB ) 6 V
=1-—, = 5 =r+c r-—rj), r=-=
fv2 1+va1 fw g(g6+cgs 8 W2( ) SK2d2
where d denotes the distance to the nearest wall and constants are
2
¢y = 0.1355, Cpy = 0.0622, o=3 =71,
C 1+c¢
=2 ¢,y =0.3, Cp3 =2, x =0.41

K2 o
Wall Functions

One of the challenges when modeling turbulence is how to treat the thin near-wall
sublayer where the viscous effects become important. The most reliable way is to
use a fine grid in the near-wall area which, however, may become expensive for 3D
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geometries and might additionally lead to high aspect ratio cells. On the other side,
the use of a coarser grid may lead to the incorrect computation of the wall shear stress.
As a remedy for coarser grids, such as in the cases presented in this thesis (chapter 4),
where the dimensionless distance y*, defined in eq. 2.17, of the first node off the wall
is high, wall-functions [147] are used. The original definition of the wall shear stress

value, expressed in the discrete form is

Ty = Uyp— (2.15)
Yy

where y is the distance from the wall and Aw the velocity difference between the wall
node and the first node off the wall. Since the relative velocity on the wall nodes is
set to zero, section 2.4, Aw can be replaced simply by w at the first node off the wall.
In this expression (eq. 2.15), considering that w varies linearly between the first node
off the wall and the wall node leads to an incorrect estimation of 7,,. To avoid this, an
appropriately modified dynamic viscosity u,, is used in the momentum equations to
produce the correct wall shear stress values. The equation that models the near-wall
sublayer, firstly presented by Spalding [148], is written as

yr=wr+e™ [e"W+ —1—kw'— % (kw*)"— % (KW+)3:| (2.16)

where k = 0.41, B = 5.3, the dimensionless distance from the wall y* and the velocity
w' are defined as
o YOWe W 2.17)
% W

and the friction velocity w is defined as

T
w, =1\ =% (2.18)
e
Initially, Spalding’s equation 2.16 is solved iteratively to obtain the value of w*. Then,
to compute the modified u,, value to be used in the momentum equations, equations

2.15, 2.17 and 2.18 are combined to yield
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2.3 Discretization of the Flow Equations

The discretization of the URANS equations presented here is performed on unstruc-
tured grids. The integration of eq. 2.1 is done for node/vertex-centered median dual
control volumes. Each control volume V, is defined by connecting the middle points
of the edges around the central node P with the centroids of the grid cells this node
belongs to, as in fig. 2.1. Integrating eq. 2.1 over the control volume V, forms the
residual r,, , that corresponds to the control volume associated with node P for the

F] inv 0 visc
dv + ofni” dv — 2 AV —qfb 5, pdV (2.20)
N 9x; 9x; ’
VP n n

Vp Vp
temporal inviscid viscous sources

time-step n,

du
= §ff G

Vp

e
Ao/

Figure 2.1: Vertex-centered control volumes (a 2D example). Left: Internal control
volume. Right: Boundary control volume.

The next subsections describe how fluxes are assembled for internal and boundary
nodes and, then, how the different terms in the residual are computed for each control

volume. Subscript n is omitted for simplicity.

2.3.1 Discretization of Inviscid Fluxes

By applying the Green-Gauss theorem to the inviscid term, it occurs that

. 3 ‘inv _
oVp

Vp
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where 1 is the outward unit normal vector to the control volume boundary dV.

Fluxes across the (inter)face associated with the edge between the central node P
and its neighbor Q, at % (xp + xQ), are computed as shown in the 2D case of fig. 2.1.
There is obviously a one-to-one correspondence between faces and edges.

In the discrete sense, the inviscid nodal (node P) residual is approximated by the

expression
rY s > Sy, (2.22)
Q€Ep
where ¢ = fiiv - fi; is the inviscid flux vector and Sy, represents the area of an

internal face associated with edge (PQ) and S, is the area of the boundary face if P is
p

of the neighboring nodes of node P is denoted by E, and the set of boundary faces by
BP.

a boundary node with ¢ 1" being the corresponding boundary inviscid flux. The set

Let u” and u® be the flow variable values’ vectors on the left and right side of the
face between volumes of P and Q. Based on the Roe’s scheme [149], the flux from P
to Q can be obtained by

; 1 . . _
¢}13r8/ = E ¢1nv (uL) + ¢1nv (uR)J_ |APQ| (uR_uL)l (2.23)

convective term dissipative term

where |APQ| is the Jacobian matrix computed by the Roe-averaged flow variables at
the face between nodes P and Q. To obtain the values of u” and u®, a Taylor expansion
is needed

1
ut =u,+ E(PQ)-Vup

ut=u,— % (PQ) - Vu, (2.24)

where u, and u,, are the flow variable vectors at P and Q respectively and Vu is the

spatial gradient of the flow variable vector. However, to avoid the computation of u’,
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u® for the convective term, the following approximation is used

¢1nv _% (¢inv (up) + ¢inv (uQ) _ |APQ| (uR_uL))

1 _
3 (Apup +Aqu,— |APQ| (uR — uL))

(2.25)

To develop the dissipative term, inspiration is drawn from the corresponding approxi-
mation formula for a structured 1D stencil of equidistant consecutive points x, X;, X;
and x;- and the corresponding flow variable vectors u;., u;, u; and u;- is considered at
first. A family of four-point schemes [ 150] can be employed to express the dissipation
term for this stencil which, by ignoring the application of limiters, can be expressed as

- 1 1 1 1

where x € [0, 1] represents a one-parameter family of second-order schemes; herein,
k = 1/2. Using the operator

Lp(u)= 1 Z (uQ—up) (2.27)

where # (Ep) is the number of faces of the element P and based on eq. 2.26, eq. 2.25

can be rewritten as

o1 =3 {10 )+ 6" ()] 5 =i [0~ £, )]} @29

The £, operator, defined in eq. 2.27, was introduced in [151, 152]. However, a
modified formula, proposed in [153] to ensure that the operator retains second order
accuracy on stretched grids, is used here; the modified operator £, is given by

L5 (u)=Lpu)—Vup Lp(x) (2.29)

where the gradient Vu, is approximated by

1
Vu, = 3 (g +up)fipgSpq + | upfhyS, (2.30)

Q€Ep QbEBp
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and ﬁp (w), ﬁp (x) are computed by, [154],

L, (g) = (Z ;) > So=br (2.31)
Q<Ep

Q<Ep xQ_xpl xQ_xpl

In order to deal with discontinuities such as shock waves and ensure stability, sim-
ilarly to what presented in [151, 155], the flux is re-written as

¢lnv _% |:¢inv (llp) + ¢inv (uQ):I

1,- 1 . \
—7 1] [—5 -2 (& —L5w)+a(u - uR)] (2.32)
where )
Q = min (e’ Pa=Pr ,1) (2.33)
PptPq

and €’ is a user-defined constant, here ¢’ = 8. The additional term offers stability by

becoming dominant in discontinuities due to the way Q is defined.

2.3.2 Discretization of Viscous Fluxes

Similarly to the inviscid term, the Green-Gauss theorem is applied to the viscous term

rLise j%{; P gy = H flsend (V) (2.34)

vy

or

Vl.S(, — Z ¢VlSCSPQ (235)

QEE,

where q&““ is the viscous flux per unit area vector in the normal to the finite volume
boundary direction

PQ A
Ty
visc __ PQ A
¢ T, 1 (2.36)

PQI\
31'

n +ql

]]1
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where Tllin is the stress tensor as defined by eq. 2.8. The computation of the viscous flux
requires the approximation of Vu at the midpoint of each edge, which is computed

by the following expression [156]

1 1 n u,—u a
Vup, = 5 (Vup + Vuy)— (5 (Vup + Vu, ) (PQ) — H) (PQ) (2.37)
Q~ Ap
where
(PQ) = 2 F
|xQ_xP|

2.3.3 Discretization of the Temporal Term

The time derivative is approximated by the second-order backward difference formula

[157]

3u" — 4 n—1 + n—2
S L e (2.38)
2At

8_u
at

n
In the case of a stationary grid, where the control volume is constant, the temporal

term in eq. 2.20 is computed by

oup
at

Vp

3u”—4umt 4 ul?
y=—2 224? v, (2.39)

n

2.4 Boundary Conditions

Walls

Concerning the nodes that lay along solid walls, the components of the flow variable
vector that correspond to the velocity and turbulence are set to zero. At the same
time, the corresponding components of the residual vector are discarded so as not to
update the initial flow variable vector for wall nodes at these components. If a 3D

compressible flow is considered along with a one-equation turbulence mode and B is
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a matrix that extracts the components of velocity and turbulence from wall nodes

(2.40)

o O = O O O
= O O O O O

o O © © © ©
o O ©O ©o = O
o O ©O = O O
o O ©O © © ©

I the identity matrix and r,,,; the residual vector of the wall nodes, the expressions

that summarize the aforementioned can be written as follows

(I—B)r,,; =0
al (2.41)
Buwall =0

In the cases studied in this thesis, the solid wall boundaries are considered adiabatic;

so, the wall heat flux is set to zero.

Periodic

The grid is generated so that the nodes are matched in pairs across the periodic bound-
aries. The residual at the periodic nodes is formed by summing contributions from the
finite volume integrals of the matching nodes. By ensuring the residual is identical at
matching nodes along with the flow values and their spatial gradients, periodicity is
enforced.

Inlet/Outlet

For the inlet/outlet, the boundary condition is imposed using the inviscid flux in eq.
2.23

= 2 (8 (o) + 6 )= &) (1 = 170) (2.42)
where subscript b denotes the boundary face and the definition of u;,,,, depends on
the case. For subsonic inflow and outflow boundary conditions, total pressure and
temperature along with the flow angles are specified at the inlet together with the

static pressure at the outlet.
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2.4.1 Sliding Interface

In turbomachinery flows, CFD simulations often need to simultaneously account for
adjacent rows of blades. Grids are though generated for each single blade row, sep-
arately. Thus, across the interface, flow quantities are exchanged between successive
rotating and stationary rows (rotor-stator interface).

Before elaborating on the sliding interface, a brief overview of the mixing interface
method, which is used in steady computations, is given. In steady computations, the
domain of each row is separately solved in its relative frame of reference. Since the
flow is considered steady, pseudo-time is employed to converge the flow equations
similarly to what is described in section 2.5. At each pseudo-iteration, flow-field data
from adjacent domains are communicated and operate as boundary conditions which
are circumferentially averaged at the mixing interface.

For unsteady simulations, the sliding interface technique [158-160] is used which
is a special type of overset grids [161]. Its parallelization is based on the OPlus library

[162,163], section 2.7. The method requires that in each row an appropriate number
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Figure 2.2: Simplified 2D sliding interface at radial and axial cut (thick dashed line:
interior sliding plane (donors), thick line: exterior sliding plane (receivers), arrows:
interpolation direction) Left: Radial cut. Right: Axial cut.

of blade-passages is considered for the simulation so that each row-domain is of equal
circumferential pitch. The grids of two adjacent rows is pre-processed to create a one
cell overlap between the two grids, fig. 2.3, in the sliding interface boundary. In other
words, the exterior sliding plane of one row coincides with the interior plane of the
other row and vice-versa. During the computation of fluxes, the nodes of the interior

sliding plane (donors) are used to update the flow values at the nodes of the opposite
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Figure 2.3: Radial cut of a 3D turbine stage grid. Zoom at the sliding interface area.

exterior sliding plane (receivers). At each time-step, rotor grids are moved relative to
stator grids. It is reminded that, for each row, its relative frame of reference is used
to solve the flow equations. Before updating them, the flow values (velocities) of the

donors are being transformed from the relative Cartesian to the absolute cylindrical

abS)

frame of reference® (u — u Gon

0] [1 0 o 0O 0 0 0 J[e]

v, 01 o0 0 O 0 0 wy

v, 0 0 cosO —sinf 0 —wsin® —cwcosO | |w,

Vol =10 0 sinf cos@ 0 «wcos —wsinb | |ws (2.43)
p 00 O 0 1 0 0 p

Xy 00 O 0 O 1 0 Xy

 x;| (00 o0 0 0 0 1] | xs]

where w is the angular speed and 6 is the angular displacement of the row for the
corresponding time-step of the CFD simulation. Then, when moving to the next time-
step, a search is performed in order to locate the face of the exterior sliding plane,
where each node of the opposite interior plane is located at the current time-step.
Then, interpolation takes place using weights m; computed based on the distance

3For stationary rows, where w = 0 = 0, the transformation matrix reduces to the identity matrix
and, thus, no transformation takes place.
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between the receiver node from the donors (u4? — u), fig. 2.2.

rec
we =" mudr,  S'm=1 (2.44)
i i

The interpolation takes place at every pseudo-time iteration while the search takes
place only once for every real time-step (see section 2.5 for the description of physical
and pseudo-time usage). Finally, the interpolated flow variables are transformed back

from the absolute cylindrical to the relative Cartesian frame of reference® (u%%* —

rec
rel
llrec)'

o] [1 0 o 0 0 0 0][e]
w, 01 0 0 0 0 Of[uv,
Wy 0 0 cos6 sin6 0 0 w]||v,
ws| =10 0 —sinf cos6@ 0 —w 0] vy (2.45)
p 00 O 0 1 ol|p
Xy 00 O 0 0 1 0f]x
x| (00 0 0 0 0 1] /|xs]

These values are, then, used to compute the fluxes at the corresponding control vol-
umes. At convergence of the real time-step, these values are consistent between the
zones.

2.5 [Iterative Solution Scheme

The system of discrete equations 2.1 is linearized and solved iteratively within each
and every time-step using a dual time-stepping technique for the correction of the
flow variables vector Au. To be more precise, the solution at each real time-step
is considered as a steady problem with extra source terms for time variation. The
iterative scheme that is used to converge the discrete residuals to zero is pseudo-time-
stepping using the 5-stage Runge-Kutta method [164]. Let T denote the pseudo-time
and superscript k the pseudo-time-step counter within a real time step; then, a generic

time marching scheme can be written as
uk+l — gk

ﬁvm =—(1—B)r, (u*)—Br, (u*) (2.46)
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where 3 € [0,1] determines whether a totally explicit or implicit scheme is used.
Note that the residual r, includes the temporal source terms introduced by eq. 2.38.
If the residual at the k + 1 pseudo-time-step is linearized using the Jacobian at k, it is
obtained

or,
rp (W) ~r, (uf) + a_u;;A”: (2.47)

Combining eq. 2.46 and eq. 2.47 yields

v, or, " X
+ Au> =-—r, (u 2.48

(O‘AT P duk ) n " ( ) ( )
where o is the CFL (Courant—Friedrichs-Lewy) number determined by the user. When
o — +00 and the exact Jacobian matrix is computed, the equation translates to a

Newton step, which gives quadratic convergence.

In practice, however, computing the exact Jacobian matrix comes at a prohibitive
memory overhead and this is approximated instead. During this work, an approxi-
mation to the Jacobian, called block-Jacobi approximation, P,_; is used in place of
the full Jacobian matrix. The approximation is based on a local linearization of the
Navier-Stokes equations using the central and neighboring control volumes and con-
structed by extracting the terms that correspond to the central node, thus producing a
block-diagonal matrix [165]. The block-Jacobi approximation, augmented by the CFL

weighted pseudo-time-stepping term, forms the solver’s preconditioner P,

p=_"n

+Py_, (2.49)

transforming eq. 2.48 to
PAuf =-—r, (u") (2.50)

The system is driven to iterative convergence using a 5-stage Runge-Kutta scheme
[164] which, if the subscript is the real time-step counter, the first superscript is the
pseudo-time-step counter and the second superscript the Runge-Kutta stage counter,

can be expressed as

k0 .k

un un
km __ k,m—1 —1_,k,m—1 —

u’"=u, —a,P7r, s m=1,...,5 (2.51)
k+1 __ k5

u, =u,
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where

rk,m—l =C (uk,m—l) _Bk,m—l

n n

Bk,m—l :ﬁmD (urlf,m—l) + (1 _ ﬁm)Bk’m_Z

Above, C is the convective operator arising from the discretization of the inviscid fluxes
and D the dissipation, viscous and source term operator. The coefficients a,, and f3,,

are
OL—1 at—l oc—E OL—1 a:=1
1_45 2_61 3_85 4_2) 5 —
14 11
=1 :0’ _—’ :0, —_— —
Pr=1. p:=0, Py=5z Bi=0, fs=;

The scheme has a large stability region and a low computational cost due to the fact
that 3, and f3, are zero, which does not require the computation of the dissipation
and viscous terms D, (u*?) and D; (u4).

The preconditioning matrix P is inverted by directly inverting each of the diagonal
block matrices before the first Runge-Kutta stage. Then, it is stored in order to be
multiplied with the residual vector r during the Runge-Kutta updates. Neglecting
momentarily the turbulence model, the cost of storing the block-Jacobi preconditioner
is five times that of the flow solution, i.e. a 5x5 matrix vs. the 5x1 flow variable vector
needs to be additionally stored for each grid node.

The usual practice of considering the system as converged is applied when

> r<e or k=N, (2.52)

ie[]-»Nnodes]

where € sufficiently small number and N;,,, the maximum number of iterations, both
provided by the user.

2.6 Multigrid

Multigrid [166-168] is a fundamental technique used in the majority of modern grid-
based flow solvers. The concept behind the method is to have a sequence of suc-
cessively coarser grids, which represent the smooth error modes of the finer grid
along with an iterative “smoothing” procedure that eliminates the high frequency error

modes on each grid. Thus, all error modes are eliminated and convergence is reached
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faster.

Two approaches can be distinguished:

e Algebraic multigrid (AMG) [169, 170], where the hierarchy of operators is con-
structed directly from the system matrix. The levels of the hierarchy are subsets

of unknowns without any geometric interpretation.

e Geometric multigrid (GMG) [171,172], where the hierarchy of discretization is
formulated on a series of successively coarsened grids based on the initial fine
grid.

AMG methods can be applied as black-box for certain classes of sparse matrices and
are considered advantageous where GMG is too difficult to apply. GMG, on the other
hand, can be more efficient because the features of the flow, such as boundary layers,
can be taken into account when coarsening the fine grid. During this work, GMG was
used. GMG needs a grid coarsening algorithm to create the coarser grids and, also,
needs to be properly constructed and embedded into the solver transfer operations.
These are: restriction (from fine to coarse) and prolongation (from coarse to fine).

The consecutive coarse grids are produced by collapsing the grid edges of the finer
level. The algorithm is sorting the cells of the grid in a list according to their volumes.
Then, the shortest edges are collapsing and new cells are being formulated while trying
to maintain a certain quality for the coarser grid and avoid negative volumes. More
information can be found in [165]. An example of the fine grid and a sequence of
coarser grids can be seen in fig. 2.4.

Once the coarser grids are generated, what remains is the definition of the transfer
operations. During the coarsening procedure every grid node of the coarser grid i is
associated with a set of nodes K; on the finer grid from which it has been derived.
In addition, for every fine grid point, the index of the coarse grid point which it has
been collapsed to is available. The aforementioned is all the grid-to-grid connectivity

information that is needed and contributes to a small addition to the storage footprint.

Prolongation

The correction Au is transferred from the coarse to the fine grid. A linear interpolation
is used, taking advantage of the spatial gradients of the corrections. If h denotes the

fine and H the coarse grid values

Aul = Aul’ + (x!—xI) v (au"),  Viek (2.53)

32



Chapter 2. Governing Flow Equations

: Formulation and Numerical Solution

(a) Grid on the inlet face of a tur-
bine stator domain.

(c) 2nd grid level.

(d) 3rd grid level (coarsest).

Figure 2.4: Multigrid levels at the inlet face of a turbine stator domain.

The gradient of the correction is computed using eq. 2.30.
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weighting is used for the operation.
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Multigrid Algorithm

The multigrid algorithm follows the Full Approximation Scheme (FAS) [163]. If N (uk) =
f is a non-linear system, whose solution is u, the iterative scheme to solve it can be

expressed as
U e uk K (f —N (uk)) (2.55)

where Xy, denotes the Runge-Kutta algorithm described in 2.51 and f — N (uk) =
—r (uk) needs to be driven to zero. Initially, the solution is smoothed on the fine grid

by performing a selected number of Runge-Kutta iterations.
ul — uh+fKRK (fh—Nh (uh)) (2.56)
At this point, the solution error, which exists if N* (u") # f", is defined as
E'=d"—u" (2.57)
where #i" is the unknown exact solution. So by definition,
N"(u" +E") = f* (2.58)
Subtracting N" (u") from both sides yields
N" (uh+Eh)—Nh (uh)=fh—Nh (uh)z—rh (2.59)

The residual and the solution are restricted to the next coarser grid and this operation
is denoted by I f . Eq. 2.59 can now be written for the coarser grid

N (IMu" + E")—N" (I'u") = —1/'r"
= f=—1"r" + N" (1"u") (2.60)

Thus, f" is obtained and the smoother can be used for a selected number of iterations

to converge to the solution on that grid in a way equivalent to eq. 2.56,
uf — uf + Ky (F7 —N" (u)) (2.61)

The procedure continues until the coarsest grid is reached. Then the correction is
prolonged gradually from the coarsest to the finest grid which, if IIZ stands for the
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prolongation operator, is expressed as

u' —u"+1! (uH —II’}uh) (2.62)

The sequence of operations described can be applied either in a V or W-cycle. A
schematic can be seen in fig. 2.5. In this work, a V-cycle with 4 grid levels is used for
the cases of chapter 4.

grld level 1 ~deomicimimimimicima(atmimrmimim e di@immimsmim s m s s m s m s O

Ry Ry
grld level 2 Y 4 AN £ (SR 4 S—— Y -
Ry Ry Ry
grld level 3 e (o - (o= nicicicimicicimrminin(@nicif@r =@ == £ -
R a R
grld level 4 7 Y (S 4 S —

Runge-Kutta iterations
restrict solution & residual to coarser grid
sy prolong correction to finer grid

Figure 2.5: Schematic of V and W cycles of multigrid operations (1:finest, 4:coarsest
grid).

The iterative process used to solve the unsteady flow equations per time-step, inside
the outer physical time loop of the dual time-stepping scheme, can be summarized by

(2.63)

3uft—4u,  +u,,
uk =u§_1—ArﬂC( L - - .

2At

where X is the operator incorporating both Runge-Kutta and multigrid.
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2.7 Flow Solver’s Algorithm & Parallelization

The solution method described in this chapter can be summarized in the following

pseudo-code algorithm.

Algorithm 1: Unsteady flow solver.

initialize u;

t—0;

while ¢t < tfinal do // physical time loop
iter = 0;
while iter <iter,, and >.r > ¢ do // pseudo-time loop

multigrid(to_fine, to_coarse);
if to_fine then
‘ prolong;
else if to_coarse then
‘ restrict;
end
iter™ — Q;
while iter™ <iter; ¢ do // multigrid levels loop
stagepxy — 1;
while stagegy <5 do // 5 stage Runge-Kutta loop
impose BCs;
compute fluxes;
compute redidual r;
update solution u;

stagepy — stagepy +1;
end

iter™ —iter™ +1;

end

iter —iter +1;
end
t—t+ At

end
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The parallelization of the flow solver is based on the OPlus library [162,163], ini-
tially developed at the Oxford University. It enables the parallelization of applications
that involve unstructured grids through the straightforward insertion of simple sub-
routine calls. In other words, it creates an interface between the application code
(i.e. Hydra) and the low level MPI routines. All MPI calls are within OPlus, without
any direct message passing calls in Hydra. It is based on an underlying abstraction
involving sets, pointers between sets and operations performed on sets. The set par-
titioning, computation of halo regions, and the exchange of halo data is performed
automatically by OPlus after the user specifies the sets and pointers by Fortran sub-
routine calls. A single-source OPlus application code can be compiled for execution in
either a parallel or sequential manner.

2.8 Objective Function & Practicalities

The previous sections of this chapter presented the details of the flow solver. This
section attempts to place the flow solver within the process that is needed to set up

the flow simulation and continue with an optimization.

The first step is to select a number of appropriate design parameters a to parame-
terize a given geometry. Modifying the design parameters translates to modifying the
shape of the geometry (section 2.8.1). Then, using a grid generation software, the
computational grid x is generated to discretize the space "close to" the geometry (sec-
tion 2.8.2). The URANS solver that was presented is used to solve the flow problem.
After converging the flow equations at each real time-step, the instantaneous value of
a function of interest j,,(u,a, t) is computed. In an unsteady problem, the objective
function J is defined as the time-integral of j;, over a time interval starting from time-
step n,, corresponding to time t,, and ending at the last time-step N, corresponding
to the time-instant T'. For equal time-steps At, J is given by

T

N
J(u,a) = f jo (u,a, t)dt = At Z Jsen (U, @) (2.64)

n=n
to

Fig. 2.6 provides a schematic of the described process.

The URANS governing equations 2.1 can be rewritten, using eq. 2.38 and the quan-
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Figure 2.6: Simplified schematic of the flow problem’s setup.

tities introduced in this section, in a semi-discrete form as

du
E+rst(u,a)=0
3u,—4u,_;+u, _
=—= thl il 2+rst(u,a)=0 (2.65)

r(u,a,t)=

where r,, is the steady residual, i.e. the URANS residual excluding the temporal term.

2.8.1 Parameterization

Both parameterization and grid generation are performed using PADRAM, which stands
for PArametric Design and RApid Meshing [173,174]. It is a CFD grid generation tool
designed for turbomachinery components as well as a design system providing a rich
set of parameters to alter a given configuration. The different ways to parametrically
modify a geometry include the displacement of blade cut sections, bump functions,
the free form deformation method, splines and NURBS.

For this work, the first method is selected and this is described below. Five sections

are considered uniformly across the blade span. Each section can independently be:
o axially shifted,
e rotated in the circumferential direction and
e rotated around a radial axis.

The blade surface is modified accordingly by a spanwise cubic spline interpolation
of the five sections. In fig. 2.7, the position of the middle out of the five sections is
changed and the effect on the geometry is displayed.
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2.8.2 Grid Generation

Grid generation was performed by PADRAM which is capable of creating 2D, quasi-3D,
3D, single passage, multi-passage, structured, unstructured and hybrid (combination
of structured and unstructured) grids. Grids are based on C-O-H multi-blocks. For the
grids of the 3D blade passages of the applications in this thesis, initially, an O-grid is
generated around the blade. An H-grid is then generated around it to link the O-grid to
the periodic boundaries and for the upstream and downstream regions of the domain,
as shown schematically in fig. 2.8. For a single blade passage, the generation of the
grid is a matter of a single-digit number of seconds. Grid details are specified using an
input file by the user. Options such as the number of O-grid layers, the number of H-
grid layers can be set and this might also include the presence of realistic features such
as fillets, gaps, cavities etc. By adjusting the appropriate parameters, the generated
grid can be coarse, medium or fine.

The so-generated grids are block structured and are preprocessed in order to be
readable from Hydra, which is an unstructured grid solver. The entire computational
domain is assembled by connecting the individual domains that correspond to each
row (row-domains). For steady computations, the mixing plane technique is used for
the exchange of information between different rows. For the unsteady computations,
the sliding interface is needed, so the suitable number of blades to be used to form
each row-domain needs to be found so that all of them are of equal circumferential
pitch. The grid is generated for one of the blade passages belonging to the same
row-domain and repeated for the others. At a post-processing step, a one-cell overlap

between grids of adjacent rows is created (see section 2.4.1).
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Figure 2.7: Possible position changes of the blade sections (left) along with the mod-
ified blade geometries if the position change is applied only over the middle section
(right).
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Figure 2.8: Single passage grid blocks.
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Unsteady Discrete Adjoint Method:

Time-Domain Formulation

In this chapter, the adjoint method is presented as an efficient means of computing
the gradient of an objective function w.r.t. the design variables for unsteady flows.
The adjoint equations corresponding to the URANS flow equations are formulated
in the real time-domain, contrasting with frequency-domain approaches, using the
discrete approach. The adjoint method is applied also to the iterative scheme that
employs Runge-Kutta and is used to solve them so that a consistent iterative scheme,
that ensures the same convergence rate, is generated to solve the adjoint equations.
The computation of some of the differential terms of the adjoint equations is aided
by Algorithmic Differentiation, the usage of which and the combination with hand-
differentiation in the adjoint solver is described. Furthermore, the imposed boundary
conditions of the adjoint system are derived. In order to use the unsteady adjoint solver
for multi-row cases, the communication of adjacent row-domains is needed. This is
achieved by developing the adjoint to the sliding interface technique. In addition, the
temporal coarsening technique is used as a way to reduce the storage space require-

ments and execution time footprint of the adjoint solver. The specific case of periodic
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flows is also examined using an example in order to further reduce the computational

cost of the adjoint solver when applicable.

Apart from solving the unsteady adjoint problem, the algorithm for obtaining the
gradient of the objective function is given. The use of the gradient is described in
a basic optimization loop by considering equality constraints, if needed. Finally, the

time and storage space costs of an adjoint computation are discussed.

3.1 Unsteady Discrete Adjoint Equations

In order to employ gradient-based optimization methods, the gradient of an objective

dJ

function w.r.t. the design variables’ vector 3 needs to be computed. Applying the

chain rule to eq. 2.64, the gradient of the objective is given by

dJ X ajstn N ajstndu

— = At — + At ——L 3.1

da n;lo Jda HZ:nO du, da (3.1)
N 75, g

To compute % of term B in eq. 3.1, the equation that occurs by differentiating eq.
2.65 wirt. a, to be referred as the forward differentiation system hereafter, needs to

be solved

du,
8( da ) 0 Fstn dlln n d Fsen

Rpory = ot | du, da da =0 (3.2)

with the initial condition % = 0. The cost of solving the forward differentiation equa-
tion is proportional to the number of design variables. To avoid solving it, the adjoint
method is employed to replace term B with a term which is cheaper to compute. The

augmented objective function is formulated as

N N
Jaug = At Z Joen (U, @) + Atzll),frn (3.3)
n=0

n=nm

where v is the adjoint variable vector. The gradient of the augmented objective func-

44



Chapter 3. Unsteady Discrete Adjoint Method: Time-Domain Formulation

tion w.r.t. a is
dun

dJ, ] 3] du, ory,du, Or
aug st,n st,n da st,n n st,n
=At + At E + +
da Z( au da) ¥ ( ot du, da Jda )

n=nq

< (B, ﬁJt du, du u ¢Tdu
st,n st,n +A T
tZ( au da ) t[#’n da] Z(;

arstn 8rstndun
+At -
le ( Jda 8un da)

N ajt N adr du N
=At AL Tﬂ+At[ T—”]
r;) Jda nzzozl‘b” Jda Y da |
N oy’ ar aj du
+At _ n + T S[,Tl+ st,n n
n;lo( at Y du, du, ) da

W YT or, .\ du
+AL SR Y YV 3.
;( at Y du, ) da (3.4)

To avoid computing %, the unsteady adjoint residual that must be zeroed while

marching backwards in time, after applying the second-order time discretization for-
mula, eq. 2.38, is

3 aor, 1" 2 1
Tadjn = E¢n+|: a:l ]n wn_E¢n+l+E¢n+2+gn=0 (3.5)
where
-
[%]n, neny,N]
8, = (3.6)
0, ne[0,n,)

and the initial condition to be used is ¢, = 0.

The gradient of J w.r.t. the design variable vector can now be computed by

dJ aJstn stn
— =A At .
P tz: S+ E ¢ (3.7)

— " ga
n=ny

Eq. 3.5 implies that the unsteady adjoint system needs to be solved backwards
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in time. The unknowns of the adjoint equations are the adjoint variable fields of the
current time-step 4", while 1p™"*! and 4p"*2 have already been computed while solving
for the time-steps which are next in terms of real time and previous in terms of order
of solution. The flow solution of the current time-step u,, is also needed to form the
unsteady adjoint equation. However, since it is obtained by marching forward in time,
as implied by eq. 2.65, the flow and adjoint systems are solved separately. In order
to have the flow solution fields available during the adjoint computation, flow-files
are saved per time-step in the disk during the URANS solver run. They are read in,
whenever needed, during the adjoint run. Even though RAM storage would provide
faster access, it is avoided due to RAM size limitations. Moreover, the I/O operations
from an SSD disk using the parallel library OPlus, is still relatively fast and offers far

larger storage space capacity.

3.2 Solving the Discrete Unsteady Adjoint Equations

This section aims at formulating the iterative schemes that are used to solve the for-
ward differentiation and the adjoint systems starting from the iterative scheme that
is used to solve the flow equations. It is recalled that the flow solver is using a dual
time-stepping scheme. The outer loop is marching forwards in real time and the inner
loop performs pseudo-time-steps which employ the explicit Runge-Kutta scheme, eq.
2.51, and multigrid.

It is required that the iterative schemes have two properties. Firstly, it is desired
that the forward differentiation and the adjoint solver converge with the same rate
as the flow solver. The second requirement is consistency between the forward dif-
ferentiation and the adjoint solver. This ensures that, by using the same number of
convergence iterations for the corresponding real time-steps of the forward differen-
tiation or the adjoint equations, the obtained gradient is the same. Giles [175] has
produced the iterative scheme for steady adjoint problems but the analysis needs to
be expanded to include the extra real time loop and unsteady terms.

For the sake of convenience, the equations are used in continuous form and index
n for the real time-step is omitted. The forward differentiation equation, expressed

for a single entry a, of the design variables’ vector a becomes

a(du) or, du Ory
+ + =

rforw - E du dal 5a;t N (38)

dal
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The adjoint equation becomes

_5_¢+[%

r ;.=
adj ot ou

T
]¢+g=0 (3.9)

Differentiating eq. 2.63 w.r.t. a, yields the iterative scheme to solve eq. 3.8,

d (du 0 (du or,du Or
/ =— | — |+ K| — + st —+ st]zo 3.10
Tforw ar(da;\) [at(dal) du da, Oda, (3.10)

where 7 € [0,7] and t € [0,T]. T, may be different for each time-step but is

expressed uniformly here to keep the expressions simpler. For the same reason, in
t

. . . d _d .
the following equations, the notation ﬁ ’T = ﬁ(t, 7), where superscript is for real-
time and subscript for pseudo-time, is used. The initial conditions for eq. 3.10 are
t=0
du __ du —
E 7=0 N H =0

The adjoint method was used to avoid computing fl—z by appropriately replacing term
B in eq. 3.1. In this section, function B, which corresponds to a, is selected to be
computed; this is given by

T
Jdj, du
B, = dt
A Jto 3u dal T
T t
Jdj., d 0
=J Je AU d+f(%£— dr
to 3u dal . 0 a, .
T
ingii dt (3.11)
0 da, e

Ineq. 3.11, index 7, means that the values of ;Tl; for the last pseudo-time step of each
and every real-time instant are used. By introducing a Lagrange multiplier w, instead
of B,, one may define the augmented function Biug which, through integration by

parts, becomes
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or, du

T T
* 0 (du 0 (du
_ T
Jo JO v {ﬁf(daA)Jrjc[at(daA)Jr

du dal

T Too
=JgTd—u dt—J[w—u d+Jf ow” du ;¢
0 day |, 0 ot da;L
Too d
—U TJC—d ] J f —udrdt
0 dal
ory, d
A AL LI LY P drdt (3.12)
Ju da,
Terms Al, A2 and A3 are combined to form
T Too T T a
f J [8w + O gy Zln ]d—udfrdt
o Jo ot at du Jda,
which can be eliminated from eq. 3.12 if w satisfies the equation
ow’ aw Ory _ 0
FEET: du
or, if transposed,
ow ow [aor,1"
+K" —[ “] K'w = 3.13
ot ot laul " (3.13)
t=0
Eq. 3.12, after using the initial conditions for eq. 3.10, ;a‘: = ;Tl; =0, can be
=0
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rewritten as

rT d T d Too d t=T
B = gT—u dt—f w'| et dt—J wik Sl dr
Jo day |, 0 ~daj. Jo da,
P s 46
r T Too 8
- J wik It drde (3.12)
Jo Jo da,
Terms A4 and A5 are eliminated if
wl. =g (3.14)
and term A6 is eliminated if
w|" =0 (3.15)
so that B, can be written as
T Too
aug T 0 L /7
B, =B, =— w K—=dzdt (3.12")
da
o Jo A
By defining
Yl.. =f K'wdr (3.16)
where 7% € [0, T, ] is the pseudo-time used in the adjoint problem, B, can be com-
puted as
' or
B, = Il =—tdt 3.17
2 J ¥, 7a, (3.17)
Applying the Leibniz theorem to eq. 3.16 gives
0
Y o xwl (3.18)
ort*

which because of 3.14 can be written as

oy _
g —iK(g wl._+ WIT*)

:iK(g—f a—wdr) (3.18))
G
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Because of eq. 3.13, this modified to

: T |: rSt]T T Vi
oy — _é e _E T Nl
. —IK[g ff ( X . + X'w|d (3.187)

*

which, finally, by using the definition of 1), eq. 3.16, yields

oy =K' (g—ﬂ+[%]T¢) (3.18")

or* at du

Eq. 3.18" provides the iterative scheme that is used to solve the unsteady adjoint

equations subject to the initial conditions
Too
Yl =f K'wdr =0 (3.19)
Too

(because of eq. 3.16) and

T

1/J|T=J K'wdr| =0 (3.20)

*

(because of eq. 3.15). Since X is used to converge the flow and forward differentiation
equations and X" to converge the adjoint equations, all of them are expected to have
the same convergence rate.

For completeness, the equations that summarize the iterative schemes used are
written in semi-discrete form:

Forward differentiation:

du k—1

n - du |k=1 du
d_u Ozd_ukl_AT:K Bd_an _4En—1+ﬁn—2+arstd_u arst
da|, da|, 2At du da|, da |,
(3.21)
Adjoint:

3¢ﬁ+1 —4"~l)n+l + 1l)n+2 n |:a LY

T
AL 7 ] Pkt +gn) (3.22)

P =kt — ATKT (
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Eq. 3.22 represents the outer loop of the pseudo-time-stepping scheme for the ad-

joint equations. Next step is to go one level deeper and modify the Runge-Kutta scheme

from the flow solver to adjust it for the adjoint solver. For that purpose, it is considered

that K involves only Runge-Kutta and not multigrid for the equations until the end of

this section. Multigrid is addressed in the following section. The flow solver’s explicit

Runge-Kutta scheme introduced by eq. 2.51 is differentiated w.r.t. the design variable

vector to produce the RK algorithm for solving the forward differentiation system

k0 —
d* =0
dul*"_ dul'
da|, — da|,
k,m—1
du|”
K, —
o TPl
n
dul*"_dul o for,
da|, ~ da|, ™ \3daq
du k+1 du k,5
da|, da|,

+(1—pB,)dEm

where m=1,2,---,5. For the 5-stage RK scheme, eq. 2.51, quantities

Tkom __ km __
dom=dbm —p —

no

du

2
n

da

k,m
du

~ da

k

k,m

i
da

du

n dan

n

k,m—1 km—1 _ 4 du du
" k,m_VBdn 4 d:,‘ll n—1 + dzll n—2
n 2At
(3.23)

are defined and the scheme can be reformulated for the solution of the forward dif-

ferentiation system as follows
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~ du
d*° =—D —
n da|,
— k0
dul
da B
,C.i\_, k,m—1
~ u ~
d’;’m =, D — +(1— ﬁm)d’;”"‘l
da| (3.24)
/6.1\_, k,m ,6.1\_, k,m—1 3 1: fom=1
u u ~
- =a.P|R —C — k,m n
da " forw da n 2At
— k5
dul"_dul® du
da|, ~~ da|, da
n

where m=1,2,---,5. The RK operator X is defined implicitly by the previous system

of equations as
T
K=[0 00 - 0 Il [qP 0 P -+ 0 asP] (3.25)

where
I

_ﬁzD I
aP(C+y31) AP 1

~(1—ps)  —PBsD I
asP(C+51) asP I

For the adjoint system, the transpose operation is needed, as proved by eq. 3.22
— T
XK' =[aq,P" 0 aP” - 0 aP"|(r") [0 0 - 0 I] (3.26)

and the adjoint time-marching scheme of eq. 3.22 becomes

5
Yo =+ > q, PTTTHEm (3.27)
m=1
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where w* are defined by

FT[wk,l &5’2 wk2 .. ES’S 1;,k,s]T:[O 0O --- 0 I]Tradj (3.28)

n n n

Finally, using 173 km — pTwkm the RK algorithm for solving the unsteady adjoint system

becomes
kS5 PT
Q'bn - radj
dy® = —asps®
- 3 - -
Phm = pT (—am+1 (CT TN ) P+ /3m+1DTd,'f’m+1) (3.29)
a"l:,m — _am,l];ﬁ’m + (1 _ ﬁm+1)a'rll<,m+1
¥ =y
where m =5,4,---,1.

The important outcome of the analysis is that the unsteady terms referring to other
1

> 2At

5 of the Runge-Kutta scheme), whereas the unsteady term that refer to the current

real time-steps (—%1/)”*1 1p™2) need to be added only once in the residual (stage

real time-step (zimfl/)") is added at every Runge-Kutta stage since only 1" is being
constantly updated.

3.2.1 Adjoint Multigrid

In eq. 2.51, operator X can be split into the following sub-operators
K =K, Kpe Ky (3.30)

where X, represents the restriction of the residual and the solution to a coarser grid,
Kri the Runge-Kutta scheme and X, the prolongation of solution’s correction to a
finer grid. For the adjoint solver, the transpose operation is needed, as shown in eq.
3.22, where
T _ T T T
X' =X, K Ko (3.31)

Eqg. 3.31 shows that, apart for the adjoint version of the Runge-Kutta scheme that was
derived, in order to use the multigrid technique, the transpose of the prolongation
needs to be used as the adjoint restriction and vice-versa.
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3.3 Algorithmic Differentiation in the Unsteady Adjoint
Solver

Some of the differential terms of the unsteady adjoint equations are computed by
employing algorithmic differentiation (AD) [176]. More specifically, the source code
transformation technique is applied using the AD tool Tapenade [177] developed by
INRIA. More information on the basic principles of AD can be found in Appendix A
while the implementation of Tapenade on a steady CFD code is outlined in [178].

Revisiting fig. 2.6, it can be seen that the flow problem’s setup to obtain the value
of an objective function is a sequence of operations that starts with a number of inputs
and results to a number of outputs similar to the one described in Appendix A. Since
the number of output functions is smaller than the number of input design variables,
one could assume that adjoint AD can be applied to the entire process to obtain the
gradient g—fl or the entire flow solver. However, this is not the case due to a number
of limitations. Applying AD to the entire chain is not possible because of the non-
differentiability of certain steps such as parameterization and grid generation. For
instance, term fl—’; in eq. 3.37 is computed by means of finite differences by perturbing
the design vector a by a small value € for every element and getting the corresponding
perturbed grid x. Regarding the flow solver, AD tools are not yet very efficient han-
dling iterative schemes, although progress has been made in this direction [179,180],
producing differentiated code with a large RAM footprint. To prevent this, the hand-
differentiated analysis of section 3.2 is needed to solve the unsteady adjoint equations.
Another reason is the fact that certain language features are not supported by the AD
language parser. An example is the parallelization loops implemented by the external
parallelization library OPlus [162,163], despite the recent advances in the AD of the
MPI (message passing interface) codes [181-183]. Because of the aforementioned,
such a level of AD automation for the full chain is not possible and the analysis of
sections 3.1, 3.2 and 3.2.1 that involves hand-differentiation is necessary in order to
efficiently compute the gradient.

Nevertheless, AD is used selectively in order to aid the computation of two of the

. T . . ...
terms in eq. 3.5, namely % 1) and g. It is assumed that a generic subroutine is given

subroutine res(—u, <« ry)

where the arrows indicate that u is an input and r,, an output. The subroutine takes

the flow vector of the nodes of the computational domain and gives the corresponding
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flow residual (without considering the unsteady terms). If Tapenade is applied to this
subroutine in reverse mode, the result is a subroutine of the form

subroutine res_b(—u, «<u, «<r,, —7ry,)
. — ary [— ary [— . . .
where the computation u = I:W:I ry = 5.2 1y takes place So if 1 is given as an

input in place of 7, then the result u will contain the term S 1/) Similarly, one may
obtain g by applying adjoint mode AD to the subroutine

subroutine obj(—u, « j,)

to obtain

subroutine obj_b(—u, «u, —j,, — Jjg)

So, in practice, the residual r,, is computed by assembling contributions of the
various fluxes implemented by different subroutines. Tapenade is transforming, in
reverse mode, only the part of the source code computing the fluxes over a single
edge, i.e. the "leaves" of the "call-tree" in programming terms. The rest is hand-coded
in order to wrap correctly the output code of Tapenade to maximize efficiency and

reduce the memory overhead for the adjoint solver.

3.4 Adjoint Boundary Conditions

The boundary conditions which are implemented using inviscid fluxes can be directly
translated to their adjoint variants of the boundary fluxes in the same fashion as for
interior inviscid fluxes. Thus, AD can be used in a similar manner as for the interior
inviscid flux subroutines.

For the solid walls, where boundary conditions were imposed by equations 2.41,
the adjoint boundary conditions are derived by hand. The wall boundary conditions

for the forward differentiation problem are formed by differentiating eq. 2.41 w.r.t. a

(I— B)(ar 3rdu) 0
Jdu da

(3.32)
du
B—=0
da
and adding by parts
du
[(1 B)—+B]d—+(1 B)—a=0 (3.33)
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To obtain the solid wall boundary conditions for the adjoint problem, instead of using
the mathematical analysis of the augmented objective function, for simplicity, the so-
called adjoint equivalence is used. Starting from term B in eq. 3.1 and omitting time
indices, we get

OJudu Ol

ar -1 or o or
du da  du [(I_B)EJFB] (I=B)——=4"(I—-B)—— (3.34)

where the adjoint vector 1) on the solid wall nodes is given by

2ie "
P or. " _[ﬁ] , tefty,T]
S5 )

By =0, (I—B)(
0, t €[0,t,)

Similarly to the flow boundary conditions, the adjoint vector is zeroed at the wall nodes
along with the adjoint equations residual so that the adjoint vector is not updated
during each pseudo-time iteration.

3.4.1 Adjoint Sliding Interface

transformation: transformation:
relative to interpolation: absolute to
the absolute donors to the relative computation

frame receivers frame of fluxes etc.
u uabs uabs urel __________ r
don rec rec st

Figure 3.1: Sliding interface process for flow solver.

The sliding interface technique, described in section 2.4.1, is summarized schemat-
r, T .1 . . .
ically in fig. 3.1. To obtain % 4 for the sliding interface nodes, the chain rule is

employed

[a] [ or, dud ou® qui]’
u ¥ = aurelé‘uabsaugé’fl u ¥

rec rec

_[ouin] [owk ] [oue] [on. ]’
| du oudbs duabs | | dure b

don rec rec

(3.36)

In order to compute the final form of eq. 3.36, a combination of AD and "by hand"
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programming is used. AD is used to compute the differential terms that correspond to
low level operations or i.e. the "leaves" of the call-tree, such as the transformation from
the absolute to relative frame of reference on a single node or the interpolation from
the donors to a single receiver. These operations need to be performed in the correct,
reverse order by the programmer. The parallelization of the execution of operations
is implemented, similarly to the unsteady flow solver, by the OPlus library [162,163].
Note that, because of the reverse flow of information, the interior sliding plane is now

becoming the receiver and the exterior one the donor.
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3.5 Adjoint Solver Algorithm

The structure of the code that is used to solve the unsteady adjoint equations can be

summarized by the pseudo-code of algorithm 2.

Algorithm 2: Unsteady adjoint solver.

initialize 1;

t— tfinal;
while ¢t > 0 do // real time loop
read in u(t);
compute objective_adj g;

iter = 0;
while iter <iter,,, and D,r,; > € do // pseudo-time loop
multigrid(to_fine, to_coarse);
if to_fine then

| restrict_adj;
else if to_coarse then

| prolong_adj;
end

iter™ — 0;
while iter™ <iter;¢ do // multigrid levels loop
stagegpx — 5;
while stageg, =1 do // 5 stage Runge-Kutta loop
compute fluxes_adj %Tll);
impose BCs_adj;
compute residual r,;;
update solution ;
stagepy — stagepr — 1;
end
iter™ —iter™ +1;
end
iter —iter +1;
end

t—t—At;
end
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3.6 Gradient Computation Algorithm

In order to compute the desired final gradient, eq. 3.7 is used which can be further
developed as

N
]stndx Tarstndx
3.3
Z: Zw” dx da (3.37)

The computation methods for the different terms are listed below.
e 1" is computed by solving the unsteady adjoint equations,

° wT% is computed by applying adjoint mode AD to the flux subroutines of the
flow solver, differentiating the steady residual w.r.t. the grid nodes coordinates
x while using 1 as an input,

Jst,n

. aa is computed by applying adjoint mode AD to the post-processing step of
computing the objective function, differentiating the objective function inte-
grand j;, , w.r.t. the grid nodes coordinates x and

. fi" is computed by means of finite differences using a fast parametric meshing

tool [173].

Fig. 3.2 is a flow graph of how the terms in eq. 3.7 are constructed and assembled
in order to compute the total derivative <2 a

3.7 Unsteady Adjoint for Periodic Flows

The formulation of an unsteady adjoint solver in the time-domain allows applying it to
transient flows. However, it is desired to take advantage of periodicity when the user
knows beforehand that the flow is periodic. Usually, in the case of a periodic flow, the
objective function is defined over the duration of a single period, which is the case for
the periodic applications of chapter 4. As mentioned, the flow solution needs to be
stored on the disk in order to be read in during the adjoint computations. In the case
of a periodic flow, the flow of only a single period is stored on the disk, thus reducing
significantly the storage space requirements of the computation.

Regarding the unsteady adjoint computations, there are two ways to compute the
gradient of the objective function w.r.t. the design variables:
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perturb next

solve the
] ‘ element of a

unsteady adjoint ‘ compute g—i
equation ()

’

- 27 dx generate per-
compute ¥ 5 ] ‘ compute 5y Ga ’ ‘ turbed mesh
last element of — No
\ Yes
compute " SL4x I I compute ]
d)
I compute gradient Ta ’

AD reverse mode partially used
finite differences used

Figure 3.2: Unsteady gradient computation.

o The first one involves considering the objective function defined over only the
aJy
dun

zero only for the first period of the adjoint computations. Zeroing the afore-

T
last period of the flow solution. This means that term [ ] in eq. 3.5 is non-
mentioned term during the adjoint solution after the first period will eventually
lead the adjoint solution to be zeroed too, as it will be shown below. The gra-
dient is computed considering the adjoint solution from the beginning of the

computations until the adjoint variables’ fields decay to zero.

e The second one involves considering the objective function defined over each
and every single period of the flow solution. The adjoint solution after a number
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of initial periods will also get periodic. In order to compute the gradient, only

one period of the adjoint variables’ fields will be used.

To demonstrate the aforementioned, an 1D simple example is used.

x(1)

e

k
AW

M E

¢ O O

Figure 3.3: A spring-mass system with damping and external forcing.

A — 1)

A sping-mass system, fig. 3.3, is affected by a sinusoidal external force. The differ-

ential equation that governs this motion is
mx + cx + kx = Fysin(wt) (3.38)

where x denotes the position, m the mass, ¢ the damping coefficient, k the spring
constant and Fysin(wt) the forcing with ¢t denoting time and « the angular frequency.

The system can be rewritten in the following form

Ax+Bx=f
& x =A"'(f —Bx)
Sx=g(x,t) (3.39)

[ 0 m] [k c] [x1:| [x:| [Fosin(cot):|
where A = ,B= , X = =| |and f = .
-1 0 0 1 X, X 0

In order to solve eq. (3.39), a backward Euler, first order time discretization scheme

is used
n+l __ y.n
z AL = = g™ (x,t)
A A
& (E +B)x"+1 =fmly Ex” (3.40)

where n denotes the time-step’s number and At the time-step’s duration. S.I. units are

assumed and the following values are set: m = 2.5, ¢ = 75.0, k = 2000.0, F, = 30.0

and T, = 0.2. T, denotes the period and w = ZTi The initial condition for x is set to
p
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1
x!= [1] The simulation lasts from T, = 0 to T,,, = 1 time unit.

Using a sufficiently small time-step, the solution x is obtained for the entire time-
domain plotted in fig. 3.4.

1072
4,,

position x; (m)
position x; (m)
(e}

0 1
- - - - | —4 - - - - {
0 02 04 06 038 1 0 02 04 06 08 1
time t (s) time t (S)
E
p—
N
= 0
z
Q
S
g -2

0 02 04 06 08 1
time t (s)

Figure 3.4: State equation’s solution x plotted over time. Top left: Position x;. Top
right: Position x;, close-up view. Bottom: Velocity x,, close-up view.

The objective function J is defined only for the last period as follows

1 Ttot
J=— x2dt (3.41)
TP Tmt—Tp

The value of the objective function is J = 7.6903E — 002.
T
. L . . . o oA ]
The gradient of the objective function w.r.t. the design variables [d—,‘; & d—i] is
computed using both of the ways mentioned in this section.
For the first way, the objective function is defined only for the last period (0.8 <t <
1). The adjoint solution is obtained by means of discrete adjoint and can be seen in fig.

3.5. As soon as the objective function in not defined (t = 0.8), the adjoint variables’
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fields decay to zero. This observation can be explained by the following mathematical
analysis. If the governing equation’s residual r is defined as

~ ~

E 4] g

< 9] < 5]

§ 0 S o

S 2 z

£ g -51

S -4 2,

Fg t t t Y { _g t t t t {
0 0.2 04 06 0.8 1 0 0.2 0.4 0.6 0.8 1

time t (s) time t (s)

Figure 3.5: Adjoint solution A plotted over time. Left: Adjoint position A,. Right:
Adjoint velocity A,.

r=Ax+Bx—f=0 (3.42)

then the adjoint equation becomes
aor]" oJ 1"
— | A=|=— 3.43
[ ax ] [ dx ] B43)

A
where A = [Al] is the adjoint vector.
2

Using a backward-Euler scheme and by denoting the time-step where we start com-
puting the objective function with n, (i.e. t, = t,, —T,), eq. (3.43) is expanded as
follows

Al 0
[ A A 7 2
I + B —a 0 ce 0 A 0
A A
i + B —ar 0 0
=| 0 (3.44)
3Jm0
dx"o
A
0 —I
A
i 0 0 0 % +B_
aJN
AT L&
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The right hand side of eq. 3.44 is zero Vn € [1, n,) and the adjoint equation per time-

step is transforming from

A aJ" A
— 4B A = —Antt 3.45
(dt+ ) 8A"+dt (3.45)
to
A n_i n+1
(dt+3)l _dtl , Vne([l,k) (3.46)

Eq. 3.46 can also be written as

dA

A— =—BA* ell.k
T , Vne([l, k)
1
& AdA=-Bd, Vne[l,k)
& At) = Ao Blig=0), Vne[1,k) (3.47)

Eq. 3.47 shows that the adjoint solution exponentially decays to zero if the eigenvalues
of the [A‘lB] matrix are located in the right half of the complex plane, i.e. if the real
part of the eigenvalues is positive. In the spring-mass example, the two eigenvalues

confirm that observation, as shown in fig. 3.6.

O
g 207
i
«©
3
g 0
60
:
= 20
O
—20 —10 0 10 20

real axis

Figure 3.6: Plot of the eigenvalues of "A™!B".

This can be generalized for CFD adjoint computations like the ones developed in

this chapter with the equivalent expression

(1) = proe 5] =0 (3.48)
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The matrix [S—Z]T has eigenvalues with positive real parts for strongly stable numerical
schemes and, thus, the adjoint solution will decay to zero after the objective function
is not defined.

The second way of computing the gradient involves considering the objective func-
tion defined at each period of the governing problem. Thus, the adjoint solution has
a periodic form as in fig. 3.7. In order to obtain the gradient of the objective function,
the adjoint solution of the last (backwards) period is used (0 <t <0.2).

adjoint position A; (m)
(=)

adjoint velocity A, (m)
(@)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
time t (s) time t (s)

(a) Adjoint position A;. (b) Adjoint velocity A,.
Figure 3.7: Adjoint solution A plotted over time.
Table 3.1 compares the derivatives obtained by:
e finite differences,

o the objective function being defined over a single period and using the entire
adjoint solution trajectory (way A) and

o the objective function being defined over all periods and using the adjoint solu-
tion of a single period (way B) which are in total agreement.

| dJ/dm | dJ/dc | dJ/dk |
Finite Differences || —1.2400746E —002 | —1.9687041E —003 | 1.2399984E — 005
Way A —1.2400087E —002 | —1.9683723E —003 | 1.2398832F — 005
Way B —1.2400398E —002 | —1.9684860E —003 | 1.2393586E — 005

Table 3.1: Comparison of derivatives calculated by discrete adjoint.
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3.8 Temporal Coarsening

In order to reduce the overall run time of the adjoint computations and lower the disk
storage footprint of the flow solution, temporal and spatial coarsening techniques were
tested in [126]. It was found that the gradients’ accuracy is significantly compromised
when coarsening is applied to both the flow and adjoint solvers. However, if the coars-
ening is applied only to the adjoint solver, the gradients’ accuracy is retained to the
desired extent and the cost is remarkably reduced.

In this work, the temporal coarsening technique is optionally used to reduce the
disk space requirements for storing the flow solution time-series. In order to apply the
method, the unsteady flow solver runs using the baseline time-discretization. How-
ever, the unsteady adjoint solver is marching backwards in time considering every n_ th
time-step, thus increasing the time-step from At to n.At. So, the flow solution needs
to be stored only every n. time-steps. A schematic of the technique is seen in fig. 3.8.
The required storage space for the flow solution and the running time of the adjoint

solver are therefore reduced by a factor of n,.

Unsteady flow solution u,,

(=)
L 2
~

Unsteady adjoint solution 1,

Figure 3.8: Schematic of temporal coarsening for unsteady adjoint solver.

A comparison of gradients after using different temporal coarsening set-ups and

no temporal coarsening can be viewed in section 4.5.

3.9 Optimization Algorithm

In chapter 4, the gradients computed via the unsteady adjoint method are used for var-

ious optimization scenarios. In this section, the fundamental optimization algorithm
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which is used is presented.

Initially, the baseline geometry is given and an appropriate parameterization is
chosen in order to define the design space and the possible ways that the geometry
can be modified. Then, the spatial domain is discretized by generating the compu-
tational grid. The flow equations are solved and the required objective functions are
computed. If equality constraints are imposed, then their values are also obtained.
The unsteady adjoint equations are solved to compute the gradients of each objective
function and constraint. In the presence of equality constraints, then the perpendicu-
lar component of the gradient of the objective w.r.t. the gradients of the constraints,
fig. 3.9, is computed as follows [184]

dJ

dJ . dJ
da

da (3.49)

=[1-M" (MM")" M]

where M is a matrix, formed by the gradients of the constraints as rows.

objective
gradient
dJ
da

constraint
gradient

Figure 3.9: Schematic of perpendicular component of gradient of the objective func-
tion to the gradient of the constraint.

Finally, the design variables are modified using the gradient descent method [185]
if no constraints are considered or the projected gradient descent, in the case of equal-
ity constraints,

T
4 ] (3.50)

da,

where s is the user-defined value of the step size. Thus, a new geometry is created

Ao = Ao1g =S |:
before continuing to the next optimization loop.

67



Chapter 3. Unsteady Discrete Adjoint Method: Time-Domain Formulation

‘ define design
variables

generate
geometry

‘ generate grid ’ ‘ modify de- |

sign variables |

No I compute per-
pendicular

Yes c01'npo'nent of
— objective gra-
dients to the
constraint(s)
[ gradient(s)

solve the
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equations

equality constraints?

compute objective

. compute
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. . . gradients
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Yes solve the
continue optimizing? ——| unsteady adjoint
equations

]

‘ stop ’

Figure 3.10: Optimization algorithm.
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3.10 Cost of Unsteady Adjoint

3.10.1 Time Cost

The running time required for one pseudo-time iteration of the adjoint solver comes
at a cost which is roughly three times the cost of one pseudo-time iteration of the flow
solver. This observation is independent of whether the steady or unsteady variants
are used and can be explained by a number of factors. As seen in Appendix A, AD
in adjoint mode needs to have access to the flow solver code variables and a balance
between the “recompute all” or “store all” approaches needs to be found. Both of
these approaches add a cost overhead to the adjoint solver. The recomputation of
intermediate variables is obviously adding calls to the flow solver subroutines during
the adjoint computation, thus adding running time. Moreover, storing values in the
memory also adds a (relatively smaller) time cost. That is partly because of the time
needed for storage and retrieval of values in the memory stack by the “push” and
“pop” commands. Another reason is that the additional memory needed for storing
both the adjoint and intermediate variables makes the access to memory less efficient,

increasing the overall time.

3.10.2 Storage Space Cost

The unsteady adjoint solver needs to have access to the corresponding unsteady flow
solution. That increases the storage space cost linearly with the number of time-steps
used. The use of temporal coarsening has been shown to reduce significantly the stor-
age cost while maintaining a certain level of gradient accuracy. On the other hand,

storing the unsteady adjoint solution is not necessary. During the adjoint computa-

TOry dx

2 3o 47) is obtained and stored using the adjoint

tions, the per-time-step gradient (v
variables’ fields of the corresponding time-step and then, the “old” adjoint variables’

fields are disposed while marching backwards in time.
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Applications

The main focus of this chapter is to present the application of the unsteady adjoint
solver, formulated in the time-domain to 3D, multi-row, turbomachinery cases for the
first time in the literature. The flow solver is additionally validated against two bench-
mark cases with available experimental data, namely a turbine vane and a compressor
stator. Then, three cases with unsteady flows, namely the transient flow in a turbine
vane and periodic flows in a turbine stage and a three-row compressor setup are stud-
ied. The gradients obtained by the unsteady adjoint method are compared with those
obtained by finite-differences for the turbine vane and turbine stage cases. An un-
constrained optimization process is performed for the turbine vane and turbine stage
cases, while a constrained optimization setup is used for the compressor case. More-
over, for the turbine stage and the compressor case, the flow and adjoint variables’
fields along with the sensitivity maps are compared with the corresponding steady flow
results to shed light into the advantages of using unsteady flow and adjoint solvers. Fi-
nally, the temporal coarsening technique is used as a means of reducing storage space
requirements and the gradients obtained via this method are compared with those of
the standard method.

71



Chapter 4. Applications

4.1 Flow Solver Validation

Hydra is a CFD solver that has been extensively used for over 10 years for the flow
prediction in industrial turbomachinery cases. However, for completeness, two bench-

mark test cases are used to compare CFD and experimental data.

4.1.1 VKI LS89 Turbine Vane

The VKI LS89 test-case [ 186] has been frequently used to benchmark the aero-thermal
predictive capabilities of CFD codes. The 2D 1.S89 blade profile is a high-pressure tur-
bine nozzle guide vane developed by the von Karman Institute for Fluid Dynamics, and
the case is representative of aero-engines. The geometry and geometric parameters of
the LS89 blade airfoil can be viewed in fig. 4.1 and table 4.1.

i Parameter Value
Chord c 67.6 mm

Pitch g 57.5 mm

Throat 0 14.9 mm

LE radius e 4.1 mm

lo f TE radius Tte 0.7 mm

Axial chord Cax 36.9 mm
y Inlet length Ax;y; 55.0 mm
Outlet length Ax,,, 64.0 mm
Stagger angle y 55°

Table 4.1: VKI LS89 turbine vane:
Figure 4.1: VKI LS89 turbine vane: Definition Value of geometric parameters de-
of the geometric parameters. fined in fig. 4.1.

Hydra is a 3D CFD solver, so a quasi-3D grid is created out of the 2D geometry con-
sisting of 57359 nodes per 2D slice, as seen in fig. 4.2. The maximum y™* of the first
nodes off the wall is 10 and wall functions are used. Flow conditions correspond to
the transonic test number MUR47 as described in [187]. Uniform flow conditions are
imposed at the inlet and outlet as listed in table 4.2. Zero velocity is imposed at the
vane’s surface nodes whereas only the normal component of the velocity is zeroed

along the lateral boundaries of the domain. For the remaining two boundaries, peri-
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Figure 4.2: VKI LS89 turbine vane. Grid and computational domain.

Inlet total temperature T,;n 420K

Inlet total pressure P, 1.596-10°Pa
Inlet flow angle a;, 0.0°

Inlet turbulence intensity T, ;, 3%

Outlet static pressure P,,. 0.8235-10°Pa

Table 4.2: VKI LS89 turbine vane. Boundary conditions at the inlet and outlet.

odicity is enforced. The convergence history of the flow equations is plotted in fig. 4.3,

using the sum of the root mean square (RMS) of the residuals of all flow equations,

defined as
1 NPDEs Nnodes 1/2

NPDEanodes i=1 j=1

where N, is the size of the flow vector (= 6 when using a one-equation turbulence
model) and N,,4,, is the total number of nodes. The resulting Mach number field is
shown in fig. 4.4 where the presence of a shock wave over the suction side close to

the trailing edge can be seen.

To validate the CFD solver, the isentropic Mach number distribution is compared with
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the available experimental data. By definition, for a perfect gas,

(4.2)

I
—_
(=)

rrus (10g10)
|
o

AR
N

—16

0 200 400 600 800 1,000
Pseudo-time-steps

Figure 4.3: VKI LS89 turbine vane. Convergence history of the RMS of the flow
equations’ residuals.

Mach number

025 0.5 0,55‘“”“'1“
E—

1.17

Figure 4.4: VKI LS89 turbine vane. Mach number iso-areas.
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where P is the static pressure and y the ratio of specific heats. The comparison between
experimental measurements and CFD results is shown in fig. 4.5. The CFD results are
in satisfactory agreement with the experimental data, despite the small differences
observed on the pressure side close to the trailing edge, due to the challenging task of
accurately capturing the shock wave by a RANS solver. Better results can be obtained
using LES as shown in [188,189].

1.2 %
- CFD y

e Experimental

—_

0.8 1

0.6 1

0.4

Isentropic Mach number

0.2 {,

0 05 1 15 2 25 3 35
x (m) 1072

Figure 4.5: VKI LS89 turbine vane. Isentropic Mach number distribution along the
x-coordinate of suction and pressure sides.
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4.1.2 TurboLab Stator Blade

The TurboLab stator blade is used as a second validation case. This is a 3D compres-
sor stator blade in a measurement rig, fig. 4.6, of the TU Berlin which was used for
benchmarking different flow solvers and comparing optimization results [ 190, 191].
The basic geometric parameters are listed in table 4.3 and the boundary condition
profiles are plotted in fig. 4.10.

Parameter Value
Hub radius 147.5 mm
Tip radius  297.5 mm

Throat 14.9 mm
LE radius 1.9 mm
TE radius 1.3 mm

Axial chord 182.2 mm

Table 4.3: TurboLab stator. Geometric data.

Figure 4.8 shows the geometry, the CFD domain and a cut of the grid at midspan.
The grid has 1975380 nodes and is a combination of an O-type grid in the area close
and around the blade along with an H-type grid for the rest of the computational
domain. The convergence history of the flow equations is shown in fig. 4.9. Figure
4.10 shows a radial cut of the Mach number iso-areas and the streamlines formed on

the suction side of the stator blade, where flow separation occurs.

Figure 4.6: TurboLab stator. Photo of the rig. Image from: http://aboutflow.
sems.qgmul.ac.uk/events/munich2016/benchmark/testcase3/.
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Figure 4.7: TurboLab stator. Inlet and outlet flow profiles.

Using the flow field, the total pressure and whirl angle at the outlet and the total

pressure difference between the outlet and the inlet are circumferentially averaged

and plotted span-wise versus the experimental data in fig. 4.11. For this configuration,

the measurements were taken at different time instants for the inlet and outlet and, so,

the measured ambient pressures at the inlet and the outlet were different. In order

to compare the measurements with the CFD results, a correction is applied for the

experimental total pressure at the outlet of the following form

in

(4.3)

where the index amb stands for ambient values. The CFD results match the experi-

mental data with adequate accuracy.
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Figure 4.8: TurboLab stator. Geometry and radial grid cut at midspan.
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Figure 4.9: TurboLab stator. Convergence history of the flow equations residual.
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rﬁ”' Mach number
0.04 0.08 0.12‘“‘”9‘.16
.
0 0.194

Figure 4.10: TurboLab stator. Top: 3D radial cut of the Mach number iso-areas at
midspan. Bottom: Streamlines on the suction side, flow direction from left to right.
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Figure 4.11: TurboLab stator. Comparison of circumferentially averaged values at
the CFD domain’s outlet between CFD results and experimental measurements. Top
left: Total pressure at the outlet. Top right: Total pressure difference between outlet

and inlet. Bottom: Whirl angle at the outlet.
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4.2 High-Pressure Turbine Vane

As a first industrial case, where the unsteady adjoint solver is applied, the transient
flow in an annular 3D High-Pressure Turbine (HPT) vane is studied. The basic geo-
metric parameters of the vane are defined in fig. 4.12. For the section at the vane’s
midspan, the chord is ¢ = 59mm, the stagger angle is y = —68° and the throat
is 0 = 9.5mm. The geometry along with a blade-to-blade radial cut of the grid at
midspan and details of the surface grid are shown in fig. 4.13. The grid has 955290
nodes and comprises an O-type grid close and around the vane and an H-type grid for

the rest of the domain.

Figure 4.12: HPT vane. Definition of basic geometric parameters.
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Figure 4.13: HPT vane. Top: Vane geometry and blade-to-blade grid at midspan.
Bottom left: Close-up view of the hub and the leading edge surface grids. Bottom
right: Close-up view of the hub and the trailing edge surface grids.
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At the inlet, the total pressure (P, = 1.9- 10°Pa) and total temperature (T = 565K)
are imposed along with a span-wise profile for the whirl and pitch flow angles®, fig.
4.14, and a uniform eddy viscosity (1.76 - 10_4’“72). At the outlet, a prescribed static
pressure span-wise profile is given, as plotted in fig. 4.14.

Whirl (—e—) and pitch (-—=-) flow angles [°] - Inlet
—10 0 10

0.27 f

0.26 |

o
X)
3

Radius[m]
o
o
~

o
)
w

0.22 |

1.05 1.1 1.15 1.2
Static pressure [Pa] (——) - Outlet -10°

Figure 4.14: HPT vane. Inlet and outlet flow condition profiles.

The unsteady flow solver is initialized by the solution of the steady flow equa-

tions computed by imposing the aforementioned boundary conditions with a time-step

>The inlet flow angles are given in the cylindrical coordinate system (x — r — 6) for annular cases
and, then, converted to the cartesian (x — y —2) that is used by Hydra (x is the axial direction). The
whirl and pitch angles are given by

a, =tan \(Vy/V,),  a,=tan '(V,/V,)

while the velocity magnitude is

V=V, \/1 + tan?a,, + tan?a,
and the direction cosines for the cylindrical coordinates are

1 tana,, tana,

= 5 Ce = B C =
1+ tana, +tan?a, 1+ tan?a, +tan?a, ' 1+ tana, + tan?a,

Cx

which are converted to the Cartesian system by

yc, +2cq Ycg +2c¢,
= C, =

K r >E r
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equal to At = 2-107°s. A transient flow is caused by gradually decreasing the inlet
whirl angle profile by 3° and this change takes place within a 50 time-step window,
using the following sigmoid function

e(n—25)/5

=, — 3 ————— (4.4)

a w—init e(n_zs)/S + 1?

w

where n is the time-step counter, starting after the sigmoid function is activated. As
soon as the change in the whirl angle starts, the solver is run for 50 time-steps and,
then, stopped. The inlet whirl angle profiles are plotted in fig. 4.15, both before acti-
vating the sigmoid function and, also, 50 time-steps after the activation.

The total pressure ratio P /Pti" is considered as the function of interest. The
unsteady objective function is defined by integrating the quantity of interest only over
the time interval where the sigmoid function is active. The values of the total pressure
ratio per time-step and the time interval over which the unsteady objective function
is defined are shown in fig. 4.17. In total, the flow solution of 800 time-steps that
requires 46.5GB is stored on the disk.

The convergence of the flow and adjoint equations at an arbitrary real time-step
is plotted in fig. 4.16 and shows that the two computations practically converge with
the same rate. To visualize the adjoint variables’ fields in a line plot, the L2 norm is
used; this is defined as the square root of the sum of all the volume-averaged squared

adjoint values for all grid points

NppEs Nnodes ' 1/2
E(t)= ( ) (4.5)

l]
1 j=1 Vtot

i

where V; is the volume of the control volume and V,,, is the total volume of the com-
putational domain. The L2 norm is plotted using logarithmic scale in the y-axis, fig.
4.17, and its value decays exponentially to zero within the time interval for which the

unsteady objective function is not defined, as shown in eq. 3.48.

The vane is parameterized using the setup of section 2.8.1; thus, 15 design vari-
ables are defined. Before using the gradients of the objective function w.r.t. the design
variables for an optimization process, they are compared against finite differences,
eq. 1.1. Each design variable is perturbed for € = £0.05. The comparison of the
gradients obtained using the unsteady adjoint and finite differences are shown in fig.

4.18. The outcome of finite differences is in agreement with the unsteady adjoint
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Figure 4.15: HPT vane. Whirl angle at the inlet before activating the sigmoid func-
tion (top) and 50 time-steps after the activation (bottom).

gradients. Small differences are due to the fact that a discrete adjoint of the entire
chain (parameterization-grid generation-flow solver) is not available. The gradient is
obtained by using the adjoint method to compute ‘di—;’ and finite differences to obtain
fi—;‘ before computing the full gradient Z—i by the chain rule. Another reason is the use
of finite differences to compute the reference g—;’ values.

Furthermore, optimization cycles are performed to increase the total pressure ra-
tio using the adjoint-based gradients and steepest ascent; the change in the objective

function value is plotted in fig. 4.19. Since no constraints are imposed, the run is
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Figure 4.16: HPT vane. Convergence plot of the flow and adjoint equations in
pseudo-time at an arbitrarily selected real time-step.
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Figure 4.17: HPT vane. Instantaneous pressure ratio values and L2 norm of all the
adjoint variables’ fields. The dotted lines define the time interval over which the un-
steady objective function is defined (from the 750th to the 800th time-step).

terminated after the first 30 optimization cycles. The improved vane is compared to
the baseline geometry in fig. 4.20. The new geometry increases the time-integrated
total pressure ratio by 0.61%. The main areas of the blade that are modified by the
optimization process are the leading and trailing edges. It is only the outlet total pres-
sure that can be changed in order to increase the objective function because the inlet
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Figure 4.18: HPT vane. Comparison of gradients computed using the unsteady ad-
joint method and finite differences.

total pressure is imposed by the boundary conditions. In fig. 4.21, the time-averaged
outlet total pressure is plotted for the 50 time-step window used in the definition of the
objective function, for both the baseline and improved geometries. The optimization
process manages to increase the outlet total pressure by minimizing the areas of the

outlet plane that correspond to low total pressure; these areas are marked in white.
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Figure 4.19: HPT vane. Progress of the optimization aiming at maximum total pres-
sure ratio.
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Figure 4.20: HPT vane. Baseline (gray) vs. improved (green) vane geometries. Left:
Pressure side. Right: Suction side.

Max ! Max !

Min i Min E

Figure 4.21: HPT vane. Time-averaged total pressure for the baseline (left) and im-
proved (right) geometries at the outlet boundary.
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4.3 High-Pressure Turbine Stage

The first stage (S1-R1) of a high-pressure turbine is formed by considering a rotor
blade after the vane of the previous section, 4.2. The meridional view of the config-
uration is shown in fig. 4.22. For the section at the rotor blade’s midspan, the chord
is ¢ = 23mm, the stagger angle is y = —39°, the throat is 0 = 8mm. The size of the

tip clearance is 0,9% of the total rotor span. For the steady computations, a grid of

~——

Figure 4.22: HPT stage. Meridional view and boundaries.

Plain line: stationary wall. Dashed line: rotating wall. Dotted line: inflow/out-
flow/mixing/sliding.

1965430 nodes is generated. Similarly to the vane’s grid, the grid of the rotor blades
is a combination of an O-type grid around the blade along with an H-type grid for the
remaining domain. To form the computational domain for the unsteady computations,
it is considered that the number of stator blades per row is 34 and that of the rotor
blades 68. Thus, a convenient 1:2 ratio exists, where one stator blade and two rotor
blades are needed to form two domains of equal circumferential angular width. The
final grid size is 2979630 nodes. The geometry used for the unsteady computations is
shown in fig. 4.23 along with details of the rotor blade’s surface grid. Wall functions

are used and the maximum y* at the first nodes off the wall is 70; higher y* values
appear at the rotors’ tip clearance area.
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Figure 4.23: HPT stage. Top: Geometry and grid at midspan. Middle left: Close-up
view of the rotor blade’s hub, fillet and leading edge. Middle right: Close-up view
of the rotor blade’s hub, fillet and trailing edge. Bottom left: Close-up view of the
rotor blade’s leading edge and tip. Bottom right: Close-up view of the rotor blade’s
suction side, blade tip and tip clearance.
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Unlike the transient flow in the HPT vane case, the flow in this case is periodic and
the time interval over which the objective function is defined coincides with the period

of the flow. Results for just a single period of the flow solution are stored on the disk.
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Figure 4.24: HPT stage. Radial districution of the static pressure profile at the rotor
blade’s outlet.

The same boundary conditions (apart from the mixing and sliding interfaces) are
used both for steady and unsteady computations and applied as described in section
2.4. The domain outlet is close to the rotor blade trailing edge since the case is taken
from a multi-stage turbine setup, where the rotor blade is followed by another stator
blade. Using non-uniform profiles for some quantities as boundary conditions was
found to reduce unwanted reflections from the boundaries. The inlet boundary con-
ditions are identical (type and values) to those of the HPT vane case, fig. 4.14. A

prescribed static pressure span-wise profile is given at the rotor’s outlet, fig. 4.24.

The rotating speed is 1023.53rad /s and, based on the number of blades per row for
the unsteady computation, the simulation period is equal to 1.92 - 10™*s. This period
is discretized using 40 equidistant time-steps. The number of time-steps is smaller
compared to the next case and is used to keep the computational cost of the initial
application of the unsteady adjoint solver low. The unsteady primal solver runs until
a periodic solution is obtained for the physical time of 12 periods. The convergence

of the flow equations for an arbitrarily selected real time-step is shown in fig. 4.27.

Only the last period is stored on the disk, i.e. 40 files x 137 MB per file = 5.48
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GB. Obviously, for the steady flow solver®, only a single file needs to be stored, with
a 90 MB footprint. The size is smaller than that of the file of a single instant of the
unsteady simulation since the grid for the steady run is also smaller. Figure 4.25 shows
a comparison between the steady and different snapshots of the unsteady flow fields.
The most apparent difference is in the wakes from the stator blade’s trailing edge that
are passing through the interface between the two rows and shows how the use of the
sliding interface technique affects the resulting flow-fields.

Two quantities of interest are considered:

e the axial force on the rotor blade and

e the capacity of the inlet boundary of the stator blade domain defined as ri1/T,/P,,
where i1 is mass flow.

The corresponding unsteady objective functions are formed by integrating the instan-
taneous values over one period. The axial force is selected because its value is sensitive
to the accurate prediction of the unsteady wakes coming from the vanes to the rotor
blades. The wakes are passing through the sliding interface, where these are averaged
out when using the mixing interface technique. A comparison between the steady and
unsteady values of the axial force objective function is shown in fig. 4.26. Unlike the
next compressor case, the steady solver gives a result very close to the time-averaged
axial force.

Moving to the unsteady adjoint computations, the convergence history of the ad-
joint equations for an arbitrarily selected real time-step is shown in fig. 4.27. The rate
of convergence is practically equal to that of the flow solver. The unsteady adjoint
computation runs until the adjoint solution becomes absolutely periodic. An indicator
of this is the L2 norm of all the adjoint variables’ fields per time-step, plotted in fig.
4.28.

The cost of a single adjoint pseudo-time iteration is roughly three times more than
that of the flow solver. Section 3.10 gives more information on the cost overhead of
the adjoint solver.

In fig. 4.29, a radial cut at the blade’s midspan of the converged steady and un-
steady adjoint variables’ fields for the inlet capacity objective function is shown.

Similarly to what was observed in the flow solution, the backward propagating
wakes from the rotor blades are passing through only if the sliding interface is used.

®The steady-state solution is obtained using the mixing interface technique (and not the frozen-
rotor assumption).
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Figure 4.25: HPT stage. Steady and unsteady flow fields at midspan.
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Figure 4.26: HPT stage. Axial force on the rotor blade for steady and unsteady flow
computations.
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Figure 4.27: HPT stage. Convergence plot of the flow and adjoint equations in
pseudo-time at an arbitrarily selected, real time-step.

The unsteady adjoint variables’ fields have a more "wavy" form comparing to the steady
adjoint variables’ fields and the averaging-out logic of the adjoint mixing plane.

A very useful tool for the designers is sensitivity maps which can be obtained us-
ing the adjoint method. These correspond to the iso-areas of the objective function
derivative w.r.t. to the normal displacement of each point (node), plotted on the sur-
face of the shape to be optimized. Practically, they reveal which areas of the geometry
could potentially affect the value of the objective function and what are the changes

these should undergo. According to the notation of this thesis, in order to increase the
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Figure 4.28: HPT stage. Objective function: Inlet capacity. L2 norm of all the un-
steady adjoint variables’ fields per real time-step.

value of the objective function one needs to push inwards the blue areas and/or pull
outwards the red areas. During an optimization loop, the modified geometry is given

based on the gradient of the value of interest w.r.t. the design variables.

In fig. 4.30, the sensitivity maps of the stator blade are given for the axial force
on the rotor as the objective function. The sensitivity maps are generated using the
steady and unsteady adjoint solutions at a post-processing step. In the case of the un-
steady adjoint solver, both the time-averaged and four instantaneous sensitivity maps
are given. The information that can be extracted by these sensitivity maps is that, in
order to improve the axial force on the rotor blade, two areas on the stator blade are
important. The first one is the trailing edge which affects the wakes moving down-
stream towards the rotor blade. The second area is on the suction side close to the
leading edge. Modifying the blade in this area has an impact on the available space
between two neighboring vanes. The comparison is more straightforward between
steady and time-averaged sensitivity maps. The gradient of the unsteady objective
function is computed by integrating, over a single period, the product of the instanta-

neous sensitivities (g—i = g—i +1/)T%) with fi—fl‘.
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Figure 4.29: HPT stage. Objective function: inlet capacity. Steady and unsteady ad-
joint variables’ fields at midspan.
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Figure 4.30: HPT stage. Objective function: axial force on rotor blade. Steady, time-

averaged and instantaneous snapshots of the sensitivity maps on the stator blade.
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4.3.1 Comparing Adjoint Gradients with Finite Differences

Using the unsteady adjoint variables’ fields 1, the gradient of the objective function
can be computed w.r.t. the design variables’ vector according to section 3.6 and fig.
3.2.

Before using the gradients within an optimization loop, these are compared with
the gradients computed by finite differences. For this comparison, the vane is parame-
terized in a less rich manner than the one described in section 2.8.1, in order to reduce
the cost required by finite differences, which scales with to the number of design vari-
ables. More specifically, instead of considering 5 sections across the vane’s span, the

perturbed geometries for the finite differences are created by:
e skewing (rotating) the entire stator blade for €; = £0.05° (name: skew) and
o shifting the entire blade for €, = £0.5mm in the axial direction (name: x-shift).

Thus, two parameters are solely used.
The gradients of the two objective functions are compared in table 4.4. The results

are in close agreement.

function design finite unsteady relative
variable || differences adjoint difference (%)
axial force skew -1.418 -1.439 1.45
[Ns] x-shift 6.988e-03 | 6.923e-03 0.93
capacity skew -2.273e-07 | -2.283e-07 0.43
[kgK'/?Pa~'] | x-shift || 2.557e-09 | 2.539e-09 0.72

Table 4.4: HPT stage. Comparison between objective function gradients obtained by
unsteady adjoint and finite differences.

4.3.2 Reduction of the Axial Force

The unconstrained reduction of the axial force exerted on the rotor blade is considered
as an optimization example. The parameterization of the stator blade is performed
according to section 2.8.1, using 5 spanwise sections which can be displaced in 3 ways,
resulting to 15 design variables. The new design is found using the steepest descent
method with a step-size equal to s = 4. Figure 4.31 shows the improved geometry of
the stator blade compared to the initial one and fig. 4.32 the 2D profiles of the blade

at cuts near the hub and tip. The new geometry reduces the objective function value
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Figure 4.31: HPT stage. Objective function: axial force on rotor blade. Baseline
(gray) compared to improved (green) stator blade geometry. Left: Pressure side.
Right: Trailing edge close-up view.
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> >
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Figure 4.32: HPT stage. Baseline vs. improved vane’s profiles near the hub, at 5%
blade’s span (left) and close to the tip, at 95% blade’s span (right).

from 5.488Ns to 5.005Ns, i.e. by 8.81%, by modifying the shape of blade areas that
are important for the objective function as seen in the sensitivity maps of fig. 4.30.
In fig. 4.33, the axial force on the rotor blade is plotted as a function of time, for the

initial and the improved stator blade setup.

The total force on a blade is the sum of the pressure and viscous forces. However,
the viscous forces contribute to a very small percentage of the overall force. This is
apparent in fig. 4.34 where the total force is plotted against the force only due to
pressure forces, by ignoring the viscous forces. Thus, improvements to the total axial
force objective function can be spotted by looking at the pressure distribution at the
midspan of the rotor blade.
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Figure 4.33: HPT stage. Instantaneous axial force on rotor blade for the baseline
and improved stator blade geometry. Left: Total running time. Right: Last period.
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Figure 4.34: HPT stage. Total axial force and axial force only due to pressure forces
on the rotor blade with the improved vane geometry.
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Figure 4.35 shows the time-averaged pressure contours on the rotor blade before
and after the optimization. A sound difference is the decrease in pressure on the
pressure side close to the tip and leading edge areas. The pressure distribution at
midspan is plotted for the baseline and improved geometries in fig. 4.36.
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Figure 4.35: HPT stage. Time-averaged pressure contours on rotor blade. Top: Pres-
sure side. Bottom: Suction side. Left: Baseline geometry. Right: Improved geometry.
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Figure 4.36: HPT stage. Pressure distribution at midspan of the rotor for the base-
line and improved vane geometries.

4.4 Three-Row Compressor

Figure 4.37: Three-row compressor. Cross section of the compressor and selected
three row configuration; from [192].

The next case is a three row compressor configuration; a stator blade row fol-
lowed by a stage. The setup is based on the Rig250 compressor, shown in fig. 4.37,
a four stage axial compressor with inlet guide vane (total pressure ratio 5:1 at the
design point) of the German Aerospace Center (DLR) Institute of Propulsion Technol-
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ogy [192-194]. The stator of the second stage and the entire third stage are con-
sidered, by changing slightly the blade-count to reduce the size of the grid for the
unsteady computations. Below, the abbreviation S2-R3-S3, with evident interpreta-
tion, is used. The blade-count used in this setup is 48:36:72 respectively and, thus,
the computational domain for the unsteady runs consists of four S2 stator blades, three
R3 rotor blades and six S3 stator blades. The computational grid is generated using
Padram similarly to for the turbine case. The grid for the steady runs has 2849966
nodes while that for the unsteady runs has 12369648 nodes in total. Wall functions
are used with the maximum y™* of the first nodes off the wall being 15. The bound-
ary surfaces are indicated in the meridional view in fig. 4.39 and the profiles of the
boundary conditions for the inlet and outlet are given in fig. 4.40.

The rotating speed is 1357.17rad /s which, along with the number of blades used
per row for the computational domain, gives the simulation period, which is 3.86 -
10~%s. 100 equidistant time-steps per period are used; thus, in order to store the flow
fields during a full period to the disk, 100 x 570 MB = 57 GB are required. The solver
runs for 8 periods until periodicity is established. The convergence history of the flow
equations for an arbitrarily selected real time-step is shown in fig. 4.41. A comparison
between the steady and unsteady flow fields is shown in fig. 4.42.

For this case, three functions of interest are considered:
e the axial force on the rotor blade R3,
o the exit capacity (=m+4/T,/P,) at the outlet of S3 and

o the total pressure coefficient between the inlet and outlet of the stage defined
P,

Pt,in_ t,out

as (where the inlet is the interface between S2 and R3 and the exit is

Pt,in_ in

the outlet plane of S3).

The objective function for the unsteady run is computed by integrating the axial force
on R3 over one period while the remaining two functions are also integrated over
one period and used as constraints. The plot of the total pressure coefficient in fig.
4.43 shows differences between the steady and unsteady flow solvers. Three adjoint
computations are needed to compute the gradients for the objective function and the
constraints. Figure 4.44 shows the L2 norm of all the instantaneous adjoint variables’
fields (computed by the time-dependent run) for the total pressure coefficient con-

straint. Figure 4.45 shows a comparison between the steady and unsteady adjoint
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S2 R3 S3

Figure 4.38: Three-row compressor. Top: Geometry and grid at midspan. Middle
left: Stator blade S2 tip and leading edge. Middle right: Rotor blade R3 hub and
leading edge. Bottom left: Rotor blade R3 trailing edge, tip and tip clearance. Bot-
tom right: Stator blade S3 leading edge, hub and hub clearance.
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Figure 4.39: Three-row compressor. Meridional view and boundaries.
Plain line: stationary wall. Dashed line: rotating wall. Dotted line: inflow/out-
flow/mixing/sliding.
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Figure 4.40: Three-row compressor. Inlet and outlet boundary condition profiles.

variables’ fields when the axial force on the rotor blade is the objective function. Sim-
ilarly to the previous case, an important difference that is apparent is the fact that the

backward propagating wakes are passing through the sliding interface, unlike the ad-
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Figure 4.41: Three-row compressor. Convergence plot of the flow and adjoint equa-
tions in pseudo-time at an arbitrarily selected, real time-step.

joint mixing interface method. Using the adjoint variables’ fields, sensitivity maps can
be extracted for the objective function and constraints. Figure 4.46 shows the sensitiv-
ity map on the S2 blade for the axial force objective function while fig. 4.47 shows the
sensitivity map on the R3 blade for the exit capacity constraint. Figure 4.46 confirms
the importance of the trailing edge area of the upstream stator when the force on the
downstream rotor is considered. In the case of a strip-like sensitivity map as in fig.
4.47, the selected parameterization behaves as an implicit smoother when translat-
ing the surface sensitivities to gradients w.r.t. the design variables. As a consequence,
smooth improved blades are obtained at each optimization cycle.
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Figure 4.42: Three-row compressor. Steady and unsteady flow fields at midspan.
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Figure 4.43: Three-row compressor. Total pressure coefficient of the stage formed by
R3-S3 using the unsteady and steady solver.
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Figure 4.44: Three-row compressor. Objective function: Total pressure coefficient.
L2 norm of all the unsteady adjoint variables’ fields per real time-step.
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Figure 4.45: Three-row compressor. Objective function: Axial force on R3. Steady
and unsteady adjoint variables’ fields at midspan.
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Figure 4.46: Three-row compressor. Objective function: Axial force on the R3 blade.
Comparison of steady, time-averaged and instantaneous snapshots of sensitivity

maps on the pressure side of the S2 blade.
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Figure 4.47: Three-row compressor. Steady, time-averaged and instantaneous snap-
shots of sensitivity maps on the suction side of the R3 blade. Constraint: Exit capac-

ity.
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4.4.1 Minimization of Axial Force, Constrained by Exit Capacity &

Total Pressure Coefficient

Using the parameterization setup of section 2.8.1, the S2 and R3 blades are parame-
terized. This gives rise to 30 design variables in total.

To avoid violating the constraints, a smaller step-size (s = 0.1) than in the previous
case (same objective function for both cases) is used at each step for the projected gra-
dient descent method, section 3.9, and after four optimization cycles, new geometries
are obtained for the S2 and R3 blades. Changes in the S2 and R3 blades are shown in
fig. 4.48, in 3D, and their profiles are compared at 5% and 95% of the blade span in
fig. 4.49.

(a) Stator blade (S2) (view from (b) Stator blade (S2) (view from trailing
tip/leading edge side). edge side).

(c) Rotor blade (R3) (view from leading (d) Rotor blade (R3) (view from trailing
edge side). edge side).

Figure 4.48: Three-row compressor. Objective function: axial force on the R3 blade.
Constraints: Exit capacity and total pressure coefficient. Baseline (gray) vs. im-
proved (green) S2 and R3 blades’ geometries.

The new geometry of the configuration reduces the time-integrated objective func-
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Figure 4.49: Three-row compressor. Baseline vs. improved blade profiles near hub
(5% blade’s span) and tip (95% blade’s span).

tion by 0.76% (from 5.604 - 107*Ns to 5.562 - 10~'Ns), while violating the time-
integrated outlet capacity constraint by 0.06% (from 7.916-107 kgK/?Pa~" to 7.912-
1077 kgK'2Pa~') and the time-integrated total pressure coefficient constraint by 0.04%
(from 6.318 - 10~*s to 6.316 - 10~%s), fig. 4.50. The static pressure distribution at the
midspan of the R3 blade for the baseline and improved designs are given in fig. 4.51
while the instantaneous values of the axial force for the baseline and improved ge-
ometries in fig. 4.52.

Since a small step-size is used for 4 optimization cycles, the new geometry does

not significantly differ from the baseline. Thus, the spotted differences in fig. 4.52 are
marginal. However, the reduction in the objective function is apparent, see fig. 4.52.
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Figure 4.50: Three-row compressor. Objective function: axial force on the R3 blade.
Constraints: Exit capacity and total pressure coefficient. Change (%) of the objective
function and constraints after four optimization cycles.
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Figure 4.51: Three-row compressor. Pressure distribution at midspan of the R3
blade for baseline and improved design configurations.
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Figure 4.52: Three-row compressor. Instantaneous axial force on the R3 blade for
the baseline and improved configuration geometries.

4.5 Temporal Coarsening

Using both the turbine stage and the three-row compressor cases, two alternative
coarsening setups will be used for the adjoint solver considering the axial force as
the (time-integrated) objective function, the gradient of which needs to be computed.
On the first one, the real time-step is considered to be twice as high as that of the ref-
erence case and, on the second one, quadruple. The treatment leads to a reduction in
both the storage space needed for the primal flow and the running time of the adjoint
to half and a quarter of the initial setup, respectively. The comparison of the obtained
gradients is plotted using a line graph for the turbine stage in fig. 4.53 and a bar graph
for the three-row compressor in fig. 4.54.

The gradients obtained after the temporal coarsening technique are relatively close
to the reference values, especially when using a double time-step. In large cases, in
which the storage of the entire flow solution time-series becomes impossible due to
hardware limitations, the method can be used to keep the cost at affordable levels,

without though significantly compromising accuracy.
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Figure 4.53: HPT stage. Objective function: Axial force on the rotor. Original gradi-
ents compared with gradients obtained via the temporal coarsening method.
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Figure 4.54: Three-row compressor. Objective function: Axial force on the R3 blade.
Original gradients compared with gradients obtained via the temporal coarsening
method. Left: Gradients computed for the S2 blade. Right: Gradients for the R3
blade.
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This PhD thesis aimed at the development, programming, application and assess-
ment of the unsteady discrete adjoint method, formulated in the time-domain, for
the exact computation of sensitivity derivatives to be used in shape optimization of
3D, multi-row turbomachines. The development was carried out in the CFD suite
Hydra, the standard CFD tool in RR, written in Fortran 77, using a combination of
hand-differentiation and algorithmic differentiation by implementing Tapenade, IN-
RIA. The method was applied to periodic and transient compressible flows governed
by the URANS equations. The computed derivatives were validated against finite dif-
ferences and used in an optimization loop to improve turbine and compressor blades
while considering equality constraints. In the following paragraphs, some remarks are
made and conclusions are drawn concerning the work conducted in this thesis.

The unsteady adjoint solver made use of parallel storage to SSD disks instead of
the RAM to retrieve the flow fields during the reverse time integration of the adjoint
computations. Thus, RAM limitations regarding the storage of flow fields can be elim-
inated without creating a significant time overhead. To quantify it, reading in the flow
fields comes at a cost of less than 5% compared to the cost of solving the adjoint equa-

tions. The size of available SSD capacity may pose a limitation for running very large

117



Chapter 5. Closure - Conclusions

cases (larger than the ones considered in this thesis). Nevertheless, the cost-capacity
ratio is considerably lower for SSD disks compared to RAM. In addition, in order to re-
duce the disk storage space and time cost of the adjoint solver for such large cases, the
temporal coarsening method was used, which proved to be able to provide gradients
with adequate accuracy.

The solution scheme of the flow equations was differentiated by hand to derive an
adjoint to the Runge-Kutta method used to solve the unsteady discrete adjoint equa-
tions. The implementation of algorithmic differentiation (Appendix A) in the adjoint
solver was employed for the computation of selected differential terms in the adjoint
equations. Thus, a combination of hand and algorithmic differentiation was used and
proved to take advantage of the strengths of both methods. Algorithmic differentia-
tion allowed the quick differentiation of subroutines of the flow solver, avoiding pro-
gramming errors while eliminating the need to reprogram by hand the adjoint code
to incorporate changes made in certain parts of the flow solver. On the other hand,
hand differentiation helped to reduce the RAM footprint of the adjoint solver while
maintaining solving efficiency.

Formulating an unsteady adjoint solver in the time-domain appears to be the only
way to solve optimization problems which involve non-periodic (transient) phenom-
ena. In such cases, the use of existing adjoint solvers formulated in the frequency-
domain is not possible. For the specific case of periodic flows, adjoint solvers in both
the time-domain and frequency-domain can be used to compute gradients. The cost of
frequency-domain solvers is proportional to the number of frequencies used. Quan-
tifying the cost difference between time- and frequency-domain computations (for
periodic flows) is case specific and depends on the number of used frequencies for the
frequency-domain solver, the number of time-steps for the time-domain solver etc. In
summary, the availability of an adjoint time-domain solver is the only possible option
for transient flows, which can also deal with periodic flows, at a higher cost though
than frequency-domain methods.

The developed unsteady adjoint solver was applied to three turbomachinery cases,
successfully optimizing the selected objective function while, in one case, considering
equality constraints. The turbine vane case was used as a demonstration of a transient
flow case and the time-integrated total pressure ratio was increased by 0.6% after 30
optimization loops. In the turbine stage case, the time-integrated axial force on the
rotor was reduced by 8.81% after a single optimization loop; this is a relatively large
value justified by the lack of constraints. In the three-row compressor case, the time-
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integrated axial force is reduced by 0.76% while violating the constraints by 0.04%
and 0.06% after 4 optimization loops; the reduction is smaller in this case because of
the smaller optimization step size used to avoid violating the constraints. Since the
focus of the thesis is the development of the unsteady adjoint solver, emphasis is given
to the validation of the computed gradients of the objective function w.r.t. the design

variables using the adjoint method against finite differences.

5.1 Novelties in this Thesis

The novel contributions of this PhD thesis are summarized below:

e The unsteady adjoint method, formulated in the time-domain was applied for
the first time in the literature to 3D, multi-row turbomachinery cases. This al-
lows the use of the developed method and software in turbomachinery shape

optimization with transient flow phenomena.

e The iterative scheme adjoint to the 5-stage Runge-Kutta method was derived
and used to solve the time-accurate adjoint equations so as to ensure the same
convergence rate with the URANS solver and obtain the same gradient value
whether solving the equations that occur from forward differentiation or using

the adjoint method.

¢ An adjoint sliding interface method was developed to achieve the coupling of the
domains of adjacent rows during the adjoint computations by combining hand
and algorithmic differentiation.

Publications

The publications that resulted from the research carried out in this thesis are listed
below:
Journal publication:

e Ntanakas, G., Meyer, M., and Giannakoglou, K.C. Employing the time domain
unsteady discrete adjoint method for shape optimization of 3D multi-row turbo-

machinery configurations. Journal of Turbomachinery, 140(8):081006, 2018

Conference publications (with full paper):
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e Ntanakas, G. and Meyer, M. Towards unsteady adjoint analysis for turbomachin-
ery applications. Paper No. 1S14-S8-3, 6th European Conference on Computa-
tional Fluid Dynamics-ECFD VI, Barcelona, Spain, 2014.

e Ntanakas, G. and Meyer, M. The unsteady discrete adjoint method for turboma-
chinery applications. 14th International Symposium on Unsteady Aerodynam-
ics, Aeroacoustics and Aeroelasticity of Turbomachines, Stockholm, Sweden, pp.
5071-5081, 2015.

5.2 Future Work

A brief overview of the points that could be the continuation and expansion of this
work follows:

e In the flow solver, OPlus is employed for the parallel execution of the sliding
plane implementation. Flow variables are transferred (interpolated) from the
internal sliding plane nodes to the corresponding external sliding plane nodes.
For the adjoint solver, the process is reversed; data are transferred from the ex-
ternal sliding plane to the corresponding internal. This new operation that needs
to be performed is not yet supported by OPlus for multiple partitions. As a rem-
edy, when splitting the grid into different partitions, the user needs to manually
assign the nodes of each single sliding interface (internal and external planes)
to the same partition for the operation to be performed. This restriction may
pose an upper bound to the scalability of the parallel execution of the unsteady
adjoint solver for (very) big cases on a large number of computer nodes. It is,
thus, essential for future versions of OPlus to fulfill this reversal of data transfers
for sliding interface nodes that lay on different partitions.

e For the reduction of the cost of the adjoint computations the temporal coars-
ening technique was used. Cost reduction is obvious but this might reduce the
accuracy of the computed gradients. To maintain the accuracy of the reference
gradients, while reducing the storage space cost, a check-pointing scheme can
be used. However, this will increase the running time of the flow solver due
to recomputation of the flow of intermediate time-steps. A compromise that,
if implemented, maintains an acceptable level of gradients’ accuracy while not
adding an execution time overhead, as big as check-pointing does, is reduced-

order modeling methods, such as POD, which will allow the unsteady adjoint
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solver to be applied to big cases where storing the flow for every time-step ex-

ceeds the available disk’s storage limits.

e The unsteady adjoint solver can be extended for problems that involve grid de-
formation [80, 88], e.g. to account for blade vibration. In this case, the Ge-
ometric Conservation Law needs to be incorporated into the flow and adjoint
equations to consider the displacement of grid nodes per time-step.
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Appendix A

Algorithmic Differentiation Principles

The unsteady adjoint solver is using partially algorithmic differentiation (AD) [176]
in order to compute some of the differential terms that appear in the unsteady adjoint
equations. In this appendix, the basic principles of AD are given in order to provide
the required background that is needed before going into the details of the AD imple-

mentation in the unsteady adjoint solver of this work.

It is assumed that there is a computer program P that takes a vector of inputs
x = [xl xn] and produces a vector of outputs y = [yl ym]. There is
a wide number of ways to compute the derivative of the outputs w.r.t. the inputs.
A natural way is to differentiate by hand the mathematics that led to the computer
program and write another program that computes the derivative. This, for large
and complex programs that involve solving differential equations, is not an efficient
and viable option because it is error-prone and implies discretizing new equations,
recoding etc. Another way is to use the original program and finite differences or the
complex variable method, as described in section 1.2, after carefully considering their
disadvantages.

Using AD software tools, one is able to compute the exact analytical derivatives,
and not an approximation to them, by constructing a new augmented program P’,
called the differentiated program.

Initially, a simple example is set up [195-197]. A computer program is used to
compute the following function

y1 = cos(xy) + Inx; (A.1)

n n

T
7x, 8x2] the following fundamental steps

In order to compute the gradient g—i’ = [

123



Appendix A. Algorithmic Differentiation Principles

are performed:
e the original function is decomposed into intrinsic functions,
e the intrinsic functions are differentiated and
o the differentiated terms are appropriately multiplied according to the chain rule.

T
If the input vector is x = [2 3] , the program implements the following intrinsic

functions by using the intermediate variables w;

Original program

X =2

X =3

w; =cos(x;) =-—0.416
wy, =x2 =

wy  =lnw, =2.197
w, =w;+twy; =1.781
Y1 =wy =1.781

Table A.1: Implementation of the function calculation by a program.

Two distinct modes of AD are presented; forward mode and reverse/adjoint mode.
Applying AD in forward mode is the conceptually most simple type. Every interme-
diate variable is associated with a derivative
. Ow,

W

= —, =]_,2 A2
b 0x; J (A.2)

and the chain rule is applied following the forward trace of the original program.

Forward Differentiation Forward Differentiation
1st Pass 2nd Pass

l ).Cl =1 ! 5(1 =0
l xz =0 l Xz =1
} Wy, =—xsin(x;) =-0.909 1 W, =—xsin(x;) =0
bWy =2x,%, =0 L oWy, =2x,x, =6
L ows =wy/wy =0 Loy =iy /w, =0.667
L w, =W+, =—0.909 LW, =i+, = 0.667
Ly =w, =—0.909 I ¥ =, =0.667

Table A.2: Operations performed from the forward differentiated program.
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Using the reverse/adjoint mode, every intermediate variable is associated with

an adjoint variable
oo n
A2

and derivatives are computed by propagating the adjoint variables backwards from

(A.3)

the outputs to the inputs in Table A.3

Reverse/Adjoint Differentiation

T .)-Cl == wlg_‘;/ll == —Wlsin(xl) == _0.909
T % =W,5R =w,2x, = 0.667
T
T oW, =Wl =Wt =0.111
dw, 3wy
T oW =W le =, =1
T oW, =w ows _ =1
3 — V45w, — W4 -
T wy, =y =1

Table A.3: Operations performed from the reverse differentiated program.

Often, to compute an adjoint intermediate variable, an intermediate variable from
the original program is needed. For example, to compute w,, w, is required. Thus,
the reverse mode often has two phases. The first one is a forward sweep of the orig-
inal program to compute any needed intermediate variables, which is omitted in this
example. The second phase involves the reverse sweep of the differentiated code.

It is observed that in order to compute the full gradient using forward differentia-
tion, two passes using a different initial seed are needed while using reverse differen-
tiation only one. ILe. the cost of forward differentiation is proportional to the size of
the input vector whereas reverse differentiation to the size of the output vector.

In the general case of a function f : R" — R™ so that y = f(x), the Jacobian is

given by
in )
0xq dx,
f=—=-===- = = = ==
1 1
1 1
' .o
O Ym R A
I \ ) dx,
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If a single-entry input vector of the form
T T

(zeros everywhere except the entry X;) is given, a forward pass yields the i,;, column
of the Jacobian, indicated by the plain border-line. In the general case, where x is not

simply a single-entry vector, the forward pass offers a matrix free way of computing

2 3 .
Rl
(A.5)
a m a m y
N N ES
On the other hand, if a transposed single-entry input vector of the form
T T
3’:[}_’1“'}_’1'"'}_%] =[0...1...0] (A.6)

is given, a reverse pass yields the i,;, row of the Jacobian, indicated by the dashed
border-line. In the general case, where y is not simply a single-entry vector, the reverse

pass offers a matrix free way of computing

T Jxq Ixy
(71 Ta] | : (A7)
0xq dx,

If the Jacobian needs to be computed, choosing the forward or reverse mode translates
to whether the columns are more than the rows or equivalently whether the inputs n

are more than the outputs m.

Usually, a computer program implements a composition of functions and not a
single function. To examine this case, it is assumed that a computer program reads in
an input vector §, € R" and produces an output vector §y € R" through a series of
operations of the form

&= ful8n) (A.8)

so that

Cn=fnvofy10...0fr0f1(8o) =F(&o) (A.9)

Since F is a composition of functions, the first-order derivative is given by the chain
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rule as

F'(§o) = fu(Cn1) - fy_1(Gn=a) ... 'fll(go) (A.10)

Similarly to the application of AD to a single function program, the differentiated code

computes the products
F'(§p) ¢, or Sn - F'(So)

where § o € R"and ZN € R™, when using the forward or the reverse mode, respectively.

Forward Mode Reverse Mode
gl =f1(§0)
;1 :f1(§0) ) gz =fz(§1)
gl =f1'(§o)§o
2= 1l8) S =Fullnos)

A F A T

. _N_ =_N_ A /_( _)
gN =fN(§N_1) g 2 :g 1 fN 1 gN 2

gN =f, 1\’[ ( §N—1 ) gN—l

20 221 'fll(go)

Table A.4: Forward and reverse mode for program of composite functions.

The resulting vector from the forward mode is

In = FLGno) Fi Q) e £1o) - o (A.11)

and from the reverse mode

=00 Finn) FyaCna) e £ (A.12)

The Jacobian of the outputs w.r.t. the inputs can be computed by running either the
program that resulted by applying tangent mode on the original program m times or
the program that resulted by applying reverse mode to the original program n times,
using the appropriate input vectors.

Forward or reverse differentiation are two extreme ways of traversing the chain
rule. The problem of computing a full Jacobian with the minimum number of opera-
tions is known as the Optimal Jacobian Accumulation Problem, which is NP-complete
[198] and is beyond the scope of this appendix. Simplifying, it can be said that forward
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mode is best suited when n < m while reverse mode is best suited when n > m.

AD is implemented using two strategies: source code transformation and operation
overloading.

Source code transformation [177,199,200]: The original source code that imple-
ments the function composition of which the derivative needs to be computed is re-
placed by an automatically generated augmented source code, fig. A.1. An AD tool
takes over the transformation of the original source code. The AD tool parses the
original source code similarly to a compiler but instead of producing objective files
and executables, produces new source code. Source code transformation is possible
in most programming languages including legacy Fortran or C codes. Moreover, it al-
lows compile-time optimizations that reduce running time. On the other side, creating
a source code transformation AD tool is more development-intensive than operation

overloading.

Operation overloading [201-204]: If the programming language permits it, one can
replace the types of floating-point variables with a new type that contains additional
derivative information and overload the arithmetic operations for this new type to
propagate the derivative information. This is performed by a library that defines the
overloaded type and arithmetic operations, fig. A.2. There are no substantial changes
that need to be done in the original code and coding the AD tool is easier comparing
to source code transformation. However, operation overloading is limited to selected
programming languages that support it. In addition, current compilers lag behind in

optimizing code that uses operation overloading libraries.

[ function.f ’ [function_diff.f’ ‘function_diff.o]

fortran
AD tool .
compiler

Figure A.1: Simplified schematic of source code transformation.

An exhaustive list of AD tools, on-going research and applications can be found
in [205].
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[ function.c++ ’

function.o

[ oper_overl.h ’

Figure A.2: Simplified schematic of operation overloading.

A.1 Source Code Transformation using Tapenade

Tapenade, INRIA, is the source code transformation AD tool that was used to compute
some of the differential terms during the unsteady adjoint computations of this work.
In this section, the functionality of Tapenade is demonstrated in the simple function
example that was introduced in the previous section. The programming language is
Fortran 90.

Initially, the code that mimics the operations that were performed in table A.1 is
written as follows

subroutine function(x1,x2,y1)

implicit none

real*8 :: x1,x2,yl
real*8 :: wl,w2,w3,wd
wi=cos(x1)

W2=X2%*2

w3=log(w2)

wi=wl+w3

yl=w4d

end subroutine

This source code is given as an input to Tapenade along with the arguments that flag
forward differentiation and identify x; and x, as inputs and y,; as output. Tapenade
produces the following source code.

d Generated by TAPENADE (INRIA, Tropics team)
! Tapenade 3.4 (r3375) - 10 Feb 2010 15:08

! Differentiation of function in forward (tangent) mode:
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! variations of useful results: yl

! with respect to varying inputs: x1 x2
! RW status of diff variables: yl:out x1:in x2:in
SUBROUTINE FUNCTION_D(x1, x1d, x2, x2d, yi, yid)
IMPLICIT NONE

REAL*8 :: x1, x2, yi

REAL*8 :: x1d, x2d, yid

REAL*8 :: wl, w2, w3, w4

REAL*8 :: wid, w2d, w3d, wé4d

INTRINSIC COS

INTRINSIC LOG

wid = -(x1d*SIN(x1))

wl = COS(x1)

w2d = 2*x2*x2d

W2 = xX2%%2

w3d = w2d/w2

w3 = L0OG(w2)

w4d = wild + w3d

wd = wl + w3

yid = wéd

yl = wd

END SUBROUTINE FUNCTION_D

It is observed that along with the original operations there are additional program
lines that compute derivatives. The variables that end with a "d" correspond to the
variables with an overdot of table A.2.

Simply by changing the flag that indicates the differentiation mode from "forward"
to "reverse", Tapenade provides the adjoint code.

! Generated by TAPENADE (INRIA, Tropics team)

! Tapenade 3.4 (r3375) - 10 Feb 2010 15:08

i

! Differentiation of function in reverse (adjoint) mode:
! gradient of useful results: yi

! with respect to varying inputs: yl x1 x2

! RW status of diff variables: yl:in-zero xl:out x2:out

SUBROUTINE FUNCTION_B(x1, x1b, x2, x2b, yl, ylb)
IMPLICIT NONE
REAL*8 :: x1, x2, yi
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REAL*8 :: x1b, x2b, yilb
REAL*8 :: wl, w2, w3, wé
REAL*8 :: wlb, w2b, w3b, w4b
INTRINSIC COS

INTRINSIC LOG

W2 = X2%%2

w4b = yib

wilb = w4b

w3b = w4b

w2b = w3b/w2

x2b = 2*x2*w2b

x1b = -(SIN(x1)*wib)
ylb = 0.0_8

END SUBROUTINE FUNCTION_B

In this case, variables that end with a "b" correspond to the overbar variables of table
A.3. The resulting code can be divided into two sub-parts. In the first part, a forward
sweep computes the intermediate w variables needed for the reverse differentiation.
For the current example, that translates only to w, and only to one line (the first
line after the variable declaration) of the reverse differentiated source code. Then, a
reversal of the trace of operations of the original source code takes place.

In the case of a subroutine where some of the intermediate w values are overwritten
during the execution of the original code, a problem arises because of the data-flow

reversal of the adjoint code. There are two extreme options:

e Recompute-all: The part of the code that is needed to retrieve an overwritten
value is re-executed every time an overwritten value is needed. This option adds

execution time.

e Store-all: During the forward sweep of the original code, whenever an inter-
mediate value that will be needed during the backward sweep is overwritten,
its old value is stored on a stack with a "push" command. During the backward
sweep, when the intermediate value is needed, this is retrieved using a "pop"
command. This option increases the memory requirements and, indirectly, the

running time by slowing down the memory access.

Often, a trade-off between the two methods is used. This translates to storing some
of the overwritten intermediate values in the stack and using them as a starting point

to recompute the remaining needed intermediate values.
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