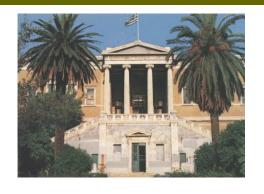
EVOLUTIONARY ALGORITHMS:

What are EAs?

Mathematical Formulation & Computer Implementation Multi-objective Optimization, Constraints Computing cost reduction



Kyriakos C. Giannakoglou

Associate Professor,

Lab. of Thermal Turbomachines (LTT),

National Technical University of Athens (NTUA),

GREECE

Outline

- From traditional problem solving techniques to EAs.
- Generalized EA: Basic and advanced operators.
- Mathematical foundations of EAs.
- EAs for multi-objective optimization.
- Distributed Evolutionary Algorithms (DGAs).
- Hierarchical Evolutionary Algorithms (HGAs).
- Constraints' handling.
- Efficient ways for reducing the computing cost of EAs.
- Applications in the field of aeronautics, turbomachinery, energy production, logistics.

Effective/Efficient Problem Solving Techniques

- The number of possible solutions in the <u>search space</u> is so large as to forbid exhaustive search
- Seeking the best combination of approaches that addresses the purpose to be achieved
- Finding the solution using the available computing resources
- Finding the solution within the available time
- One or more (contradictory) targets
- Solving the problem under a number of (hard/soft) constraints

Basic Concepts of Problem Solving Techniques

- Representation: how to encode alternative candidate solutions for manipulation
- Objective: describes the purpose to be fulfilled
- <u>Evaluation function:</u> returns a value that indicates the (numeric of ordinal) quality of any particular solution, given the representation

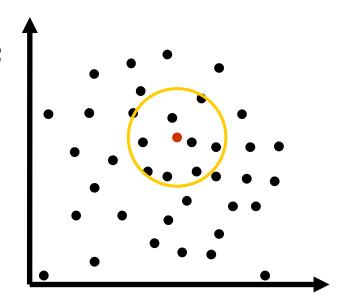
Hill-Climbing: A Traditional (Deterministic) PST

Useful Definitions:

- Neighborhood of a solution
- Local Optimum

Requirements:

- A starting point
- Computation of gradient
- Termination criteria



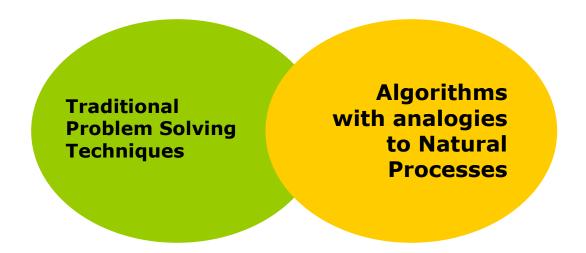
x_1

Ideas for creating Hill-Climbing Method variants

- How to select the new solution for comparison with the current solution (how to compute the gradient) ...
- To use more than one starting solutions, if necessary ...
- To be "less deterministic" ...

Algorithms Relying on Analogies to Natural Processes

- Evolutionary Programming
- Genetic Algorithms
- Evolution Strategies
- Simulated Annealing
- Classifier Systems
- Neural Networks

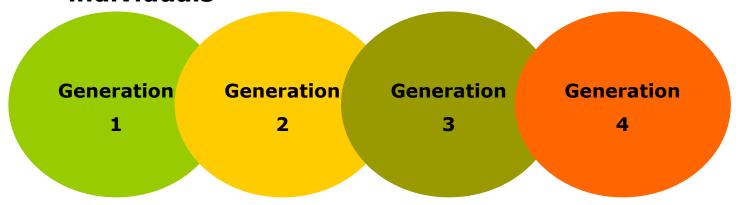


Introductory Course to Design Optimization K.C. Giannakoglou, Associate Professor NTUA, Greece

The Subclass we are interested in ...

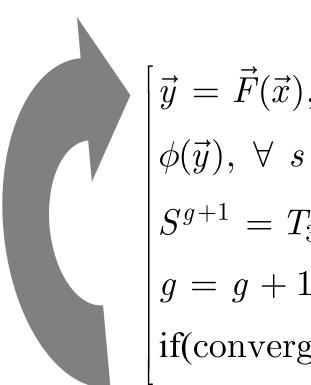
Methods which are based on the principle of evolution (i.e. the survival of the fittest)

- Handling populations of candidate solutions
- Undergoing unary (mutation-type) operations
- Undergoing higher-order (crossover-type) operations
- Using a selection scheme biased towards fitter individuals



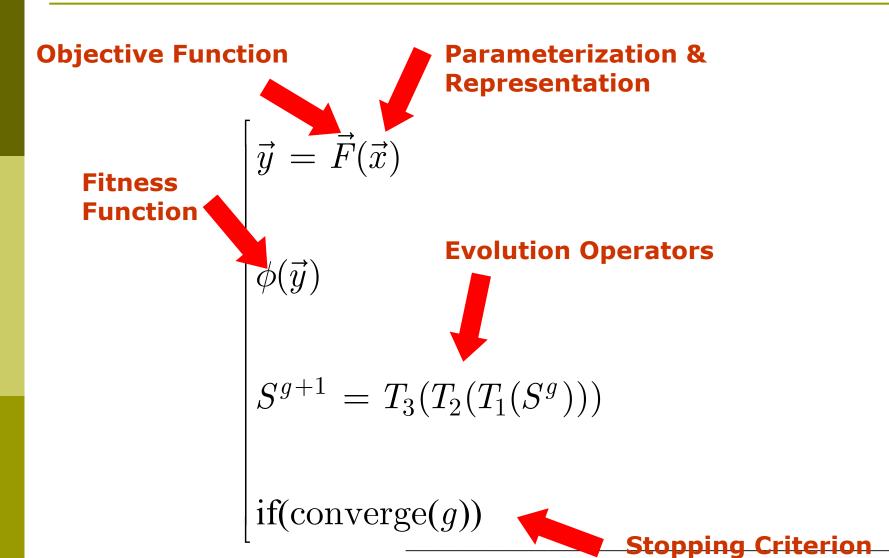
EA – Schematic Presentation:

$$g=0, S^g=S^{random}$$



$$ec{y} = ec{F}(ec{x}), \ orall \ s \in S^g$$
 $\phi(ec{y}), \ orall \ s \in S^{g,\mu}$
 $S^{g+1} = T_3(T_2(T_1(S^g)))$
 $g = g+1$
 $if(converge(g)) \ end$

EA – Prerequisites:



Introductory Course to Design Optimization

K.C. Giannakoglou, Associate Professor NTUA, Greece

Encoding the free variables – Binary Coding:

$$b_m$$
, m=1,M

 b_m , m=1,M Binary digits per variable

 x_m Gene

Candidate solution

Chromosome:

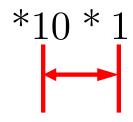
$$\underbrace{0101}_{x_1}\underbrace{101}_{x_2}....\underbrace{10111}_{x_M}$$

$$x_m = L_m + \frac{U_m - L_m}{2^{b_m} - 1} \sum_{i=1}^{b_m} 2^{i-1} d_{m,i}$$

 L_m , U_m user defined bounds

Schemata in binary strings:

A <u>schema</u> is a similarity template describing a subset of strings with similarities at certain string positions (Holland, 1968)



Defining length d(S)=5-2=3

Order of schema o(S)=3 (fixed digits)

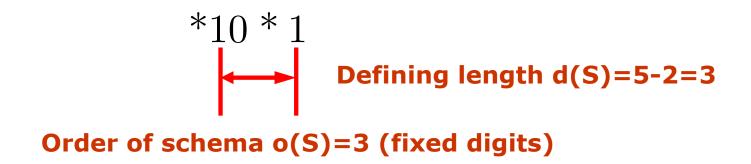
01001	<mark>0</mark> 10 1 1	11001	1 10 1 1

m=length of string(=5) r=number of *'s (=2)

2^m possible schemata

2^r strings matched by this schema

Why dealing with Schemata?



The <u>order</u> of a schema affects its survival probabilities during mutation

The <u>defining length</u> of a schema affects its survival probabilities during <u>crossover</u>

(Schema Theorem)

Encoding the free variable- Real Coding:

Representation: $(x_1, x_2, ..., x_m, ..., x_M)$

A step ahead:

Representation including evolution parameters (the concept of ES):

$$(x_1, x_2, ..., x_m, ..., x_M, \sigma_1, \sigma_2, ..., \sigma_m, ..., \sigma_M)$$

Schema Theorem (1/4):

The effect of selection:

(m_g) examples of a particular schema (S), generation (g)

F(S) = average fitness of the strings matching schema (S)

$$m_{g+1} = m_g \frac{F(S)}{F_{mean,g}}$$

Reproductive Schema Growth Equation

$$m_{g+1} = m_g(1+k)$$

$$m_{g+1}>m_g$$
 if $F(S)>F_{mean,g}$ $m_{g+1}< m_g$ if $F(S)$

$$m_{g+1} = m_0 (1+k)^{g+1}$$

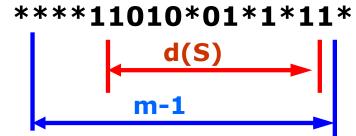
Long term effect of selection (k=constant)

Schema Theorem (2/4):

The effect of crossover:

Possibility of destructing the schema S during crossover:

$$p_{des} = \frac{d(S)}{m-1} \qquad \qquad ****1$$



Possibility of maintaining the schema S:

$$p_{main} = 1 - p_{Xover} \frac{d(S)}{m - 1}$$

Schema Growth Equation (after selection & crossover):

$$m_{g+1}(S) \ge m_g(S) \frac{F(S)}{F_{mean,g}(S)} (1 - p_{Xover} \frac{d(S)}{m-1})$$

Schema Theorem (3/4):

The effect of mutation:

Possibility of maintaining the schema S after mutation:

$$p_{surv} = (1 - p_{mut})^{o(S)} \approx 1 - p_{mut}o(S)$$

****11010*01*1*11*

Final Schema Growth Equation:

$$m_{g+1}(S) \geq m_g(S) \frac{F(S)}{F_{mean,g}(S)} (1 - p_{Xover} \frac{d(S)}{m-1} - o(S) p_{mut})$$

Short, low-order, above-average schemata should receive an (exponentially) increasing number of strings in the next generations

Introductory Course to Design Optimization

K.C. Giannakoglou, Associate Professor NTUA, Greece

Schema Theorem (4/4):

Lessons Learned:

- Short, low-order, above-average schemata sould receive an (exponentially) increasing number of strings in the next generations (Schema Theorem).
- GA explore the search space by short, low-order schemata.
- GAs seek near-optimal performance through the juxtaposition of short, low-order, high-performance schemata (the so-called <u>building blocks</u>, <u>Building Block</u> <u>Hypothesis</u>).

Exploration vs. Exploitation:

- Exploration: seeking the global optimum in new and unknown areas in the search space.
- Exploitation: making use the knowledge gained from the previously examined points to guide the search towards new better points in the search space.

Holland 1975: GAs

but:

- Infinite population size
- Fitness function value accurately reflects the utility of a solution
- Genes in a chromosome do not interact significantly

EAs: Binary or Real Coding?

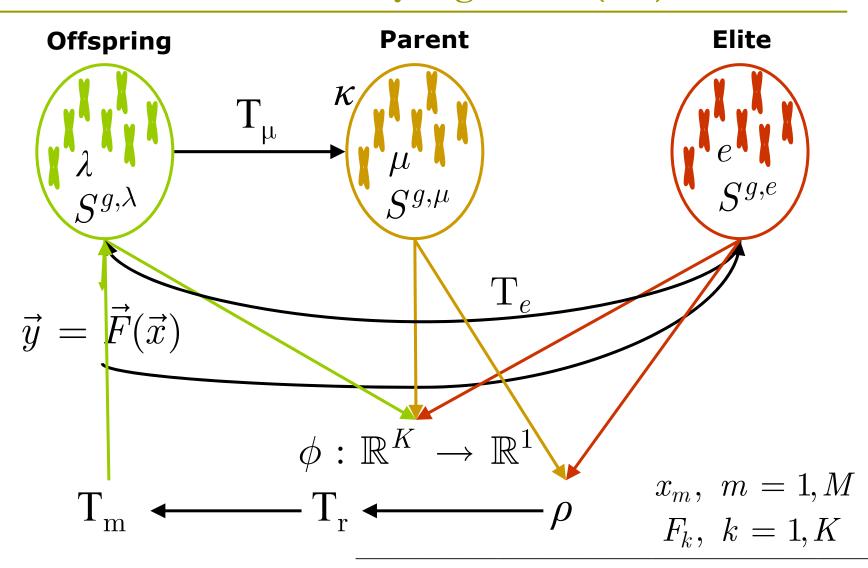
Binary Coding:

- Creates lengthy binary strings if high accuracy is required.
- Offers the maximum number of schemata per bit of information, compared to any other coding.
- Facilitates theoretical analysis and the development of new genetic operators.
- Smallest alphabet that allows a natural expression of the problem (Goldberg, 1989).

Real Coding:

- Problem-tailored genetic operators can readily be devised.
- High-cardinality alphabets contain more schemata (Antonisse, 1989).

Generalized Evolutionary Algorithm (EA)



Introductory Course to Design Optimization K.C. Giannakoglou, Associate Professor NTUA, Greece

EA – Schematic Presentation:

$$g=0,\;S^{g,e}=arnothing,\;S^{g,\mu}=arnothing,\;S^{g,\lambda}=S^{random}$$
 $egin{aligned} ec{y}=ec{F}(ec{x}),\;\;ec{y}\;s\in\;S^{g,\lambda}\ S^{g+1,e}&=T_e(S^{g,\lambda}\cup S^{g,e})\ \phi(ec{y}),\;\;orall\;s\in\;\left(S^{g,\mu}\cup S^{g,\lambda}\cup S^{g+1,e}
ight)\ S^{g,\lambda}&=T_{e_2}(S^{g,\lambda}\cup S^{g+1,e})\ S^{g+1,\mu}&=T_{\mu}\left(S^{g,\mu}\cup S^{g,\lambda}
ight)\ S^{g+1,\lambda}&=\mathrm{T}_m\left(T_r(S^{g+1,\mu}\cup S^{g+1,e})
ight)\ g=g+1\ \mathrm{if}(\mathrm{converge}(g))\,\mathrm{end} \end{aligned}$

Introductory Course to Design Optimization K.C. Giannakoglou, Associate Professor NTUA, Greece

Parent Selection Operator T_{μ} (1/5)

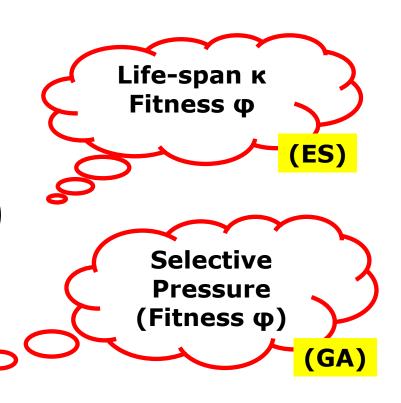
(Neglecting Elitism)

Phase 1:

$$S^{prov,\mu} = T_{\mu,1} \left(S^{g,\mu} \cup S^{g,\lambda} \right)$$

Phase 2:

$$S^{g+1,\mu} = T_{\mu,2} \left(S^{prov,\mu} \right)$$



Parent Selection Operator T_{μ} (2/5)

- Proportional selection
- Linear ranking
- Roulette wheel
- Probabilistic Tournament selection
- lacktriangledown Indirect Selection ($\mu<\lambda$)

$$S^{g+1,\mu} = \mathrm{T}_{\mu,1} \left(S^{g,\mu} \cup S^{g,\lambda} \right)$$
 $S^{g+1,\mu} = \mathrm{T}_{\mu,2} \left(S^{prov,\mu} \right)$

Parent Selection Operator T_{μ} (3/5)

Proportional selection:

Select $(\lambda \rho)$ individuals out of (μ) preselected ones

$$\frac{\mu \phi^{(s)}}{\sum_{i=1}^{\mu} \phi^{(\iota)}} \ge 1$$

Premature convergence due to the presence of a "super-fit" individual.

$$number_of_copies^{(s)} = \operatorname{int} \left[rac{\lambda
ho \mu \phi^{(s)}}{\sum\limits_{i=1}^{\mu} \phi^{(\iota)}}
ight]$$

Introductory Course to Design Optimization K.C. Giannakoglou, Associate Professor NTUA, Greece

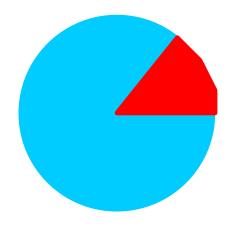
Parent Selection Operator T_{μ} (4/5)

Roulette Wheel:

Select $(\lambda \rho)$ individuals out of (μ) preselected ones

Premature convergence due to the presence of a "super-fit" individual.

$$angle_slot = \frac{\phi^{(s)}}{\sum_{i=1}^{\mu} \phi^{(\iota)}} 360^{\circ}$$



Introductory Course to Design Optimization K.C. Giannakoglou, Associate Professor NTUA, Greece

Parent Selection Operator T_{μ} (5/5)

Fitness Ranking:

- Individuals are sorted in the order of fitness values
- Reproductive trials are assigned according to rank
- Linear Ranking
- Exponential Ranking, etc

- Overcomes the problem of the presence of an extreme individual
- Fitness ranking performs better than fitness scaling.

Recombination Operation T_r – Binary Coding

- Two-point
- One- or two-point per variable
- Discrete (variables' interchanging)
- Uniform (with parent-depending probability)

Recombination Operation T_r – Real Coding

$$x_4 = x_4 + r(x_4 - x_4), r \in [0,1]$$

- Two-point
- \mathbf{z} M-point $\mathbf{x}_{\mathbf{m}} = \mathbf{x}_{\mathbf{m}} + r_m (\mathbf{x}_{\mathbf{m}} \mathbf{x}_{\mathbf{m}}), \ \mathbf{m} = 1, \mathbf{M}, \ r_m \in [0, 1]$
- f Discrete, ho=2
- Discrete Panmictic $\rho = M$ (50% selection probability from each parent $\{1,2\}, \{1,3\}, ..., \{1,M\}$)
- Generalized Intermediate Panmictic

$$\mathbf{x}_{m} = \mathbf{x}_{m} + r_{m} (\mathbf{x}_{m,o} - \mathbf{x}_{m}), m = 1, M, r_{m} \in [0,1]$$

 $frac{\Box}{\Box}$ Blend Xover (BLX-a), c=(1+2a)r-a, a=0.5

Mutation Operator T_m - Binary Coding

$$P_m \sim \frac{1...5}{\sum_{m=1}^{M} b_m}$$

<u>Dynamic Adjustment</u> of P_m , depending on

- the number of generations without any improvement
- the number of evaluations without any improvement

Mutation Operator T_m – Real Coding

Dynamic mutation probability per variable P_{m}

$$x_m = \begin{cases} x_m + D(g, U_m - x_m), & r_1 < 0.5 \\ x_m - D(g, x_m - L_m), & r_1 \ge 0.5 \end{cases}$$

$$D(g, a) = a \cdot r_2 \cdot \left(1 - \frac{g}{g_{\text{max}}}\right)^p$$

$$D(g, a) = a \cdot \left(1 - r_2^{\left(1 - \frac{g}{g_{\text{max}}}\right)^p}\right)$$

 $p \sim 0.2$

... or, using number of evaluations, instead of number of generations

Mutation Operator T_m – Real Coding

$$\sigma_m = \sigma_m \cdot \exp(\tau' \cdot N(0,1) + \tau \cdot N_m(0,1))$$

$$x_m = x_m + \sigma_m \cdot N_m(0,1)$$

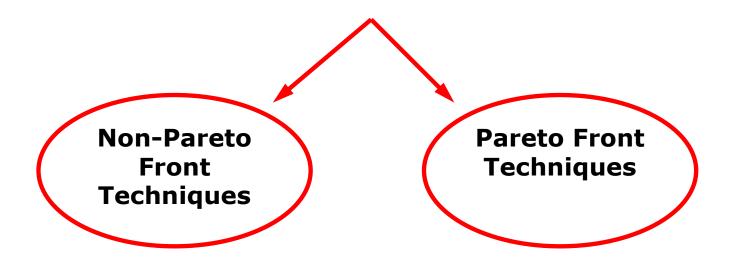
$$\tau = \left(\sqrt{2\sqrt{M}}\right)^{-1}$$
$$\tau' = \left(\sqrt{2M}\right)^{-1}$$

Genetic Algorithms or Evolution Strategies or ...

Binary Coding GA $\mu = \lambda$, parents=offspring [Holland, 1970] ρ =2, two-parent recombination[Goldberg, 1989] [Michalewicz, 1994] $\kappa = 0$, zero life-span P_r <1, recombination probability [Fogel] \square K=1, one target Real Coding, including the evolution parameters ES Without parent Selection Operator $(\mu < \lambda)$ μ<<λ $\kappa=0$ $(\mu,0,\lambda)=(\mu,\lambda)$ or $\kappa=\infty$ $(\mu,\infty,\lambda)=(\mu+\lambda)$ $\rho = 2$ $P_r=1$ [Schwefel, Rechenberg, 1965] \square K=1[Bäck, 1996]

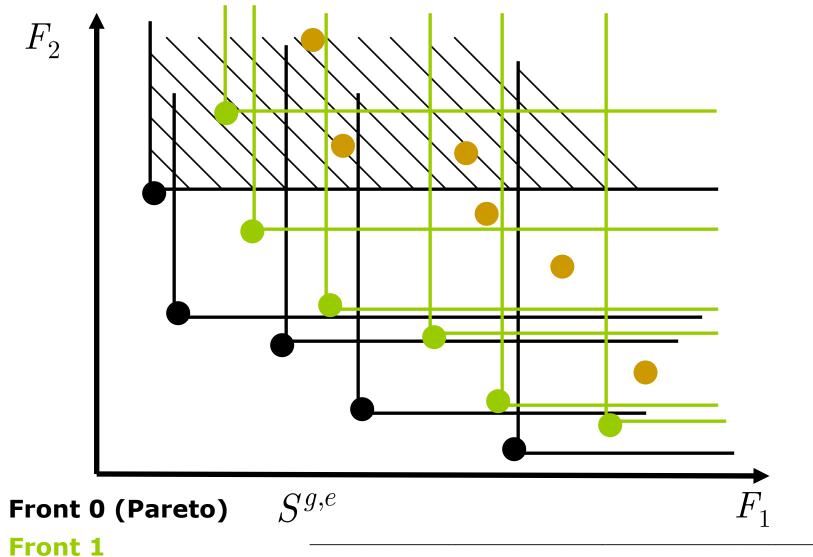
> Introductory Course to Design Optimization K.C. Giannakoglou, Associate Professor NTUA, Greece

Multi-objective Optimization



(K = number of objectives)

Pareto Front



Introductory Course to Design Optimization

K.C. Giannakoglou, Associate Professor NTUA, Greece

Pareto Front - Definition (Minimization Problems):

Dominant Solution:

$$\vec{x}^{(p)} < \vec{x}^{(q)} \Leftrightarrow s^{(p)} < s^{(q)} \Leftrightarrow$$

$$\forall k \in \{1, ..., K\} : F_k^{(p)} \le F_k^{(q)} \land$$

$$\exists k \in \{1,...,K\} : F_k^{(p)} < F_k^{(q)}$$

Pareto Optimal Solution:

$$\vec{x} \Leftrightarrow \vec{z}' \in \mathbb{R}^M : \vec{x}' > \vec{x}$$

Multi-Objective Optimization – Computation of ϕ

$$\phi = \sum_{k=1}^{K} w_k \cdot F_k$$

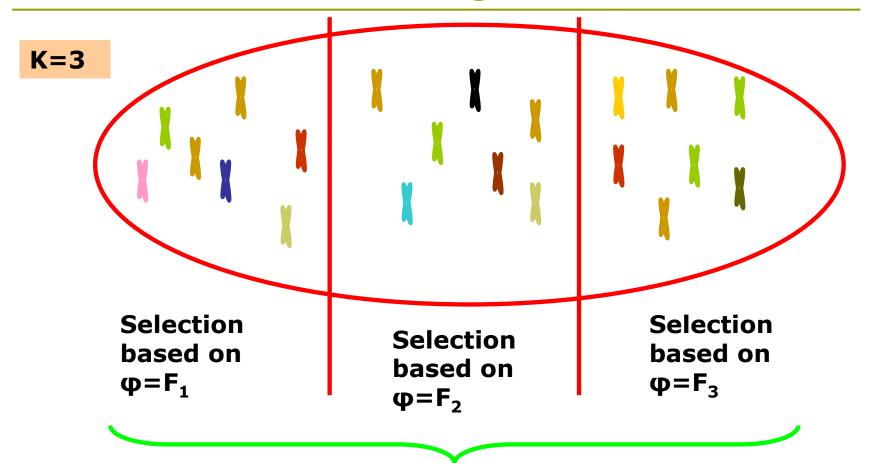
$$\phi = F_k, \ k \in [1, K]$$

For parent selection, VEGA [Schaffer, 1984]

$$\phi = \text{Pareto}_{\text{Rank}}(F_k), \ k = 1, K$$

[Goldberg, 1989]

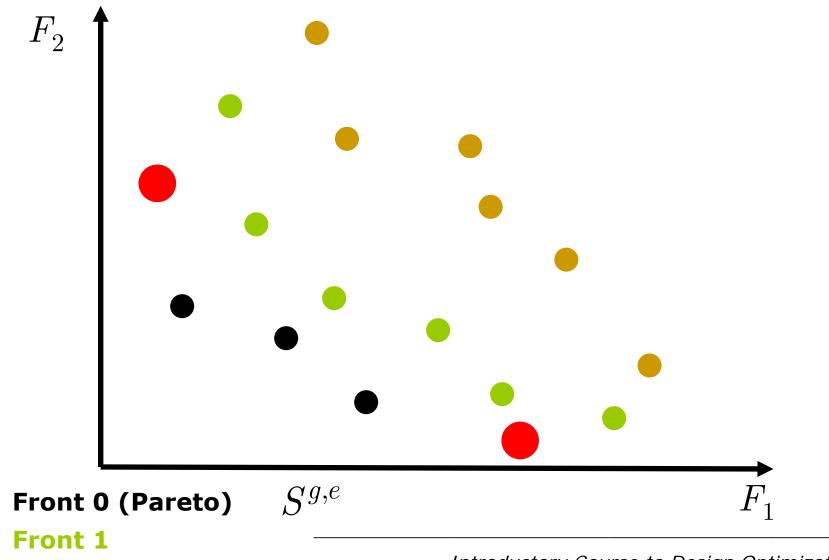
Vector Evaluated Genetic Algorithm (VEGA)



Recombination, Mutation

VEGA: Guess the final solutions...

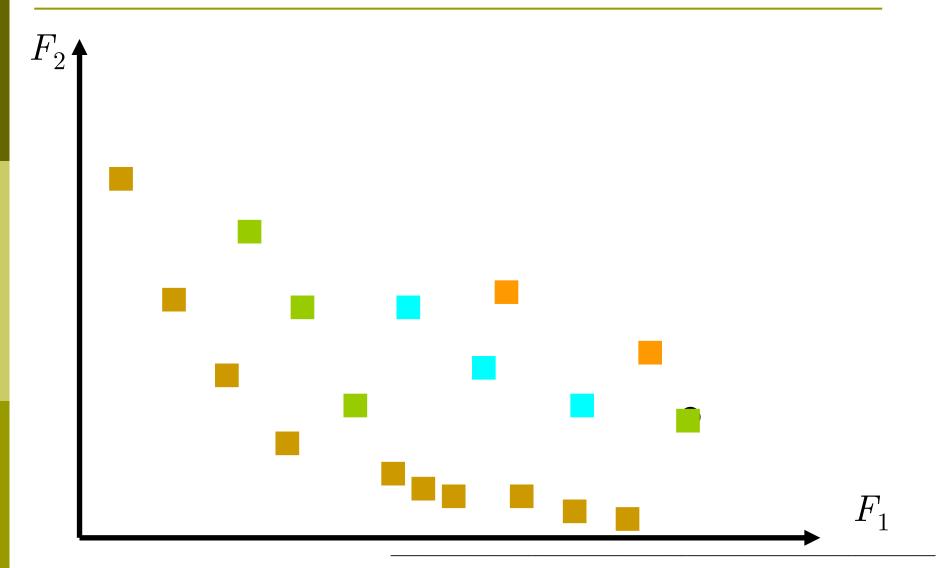
Front 2



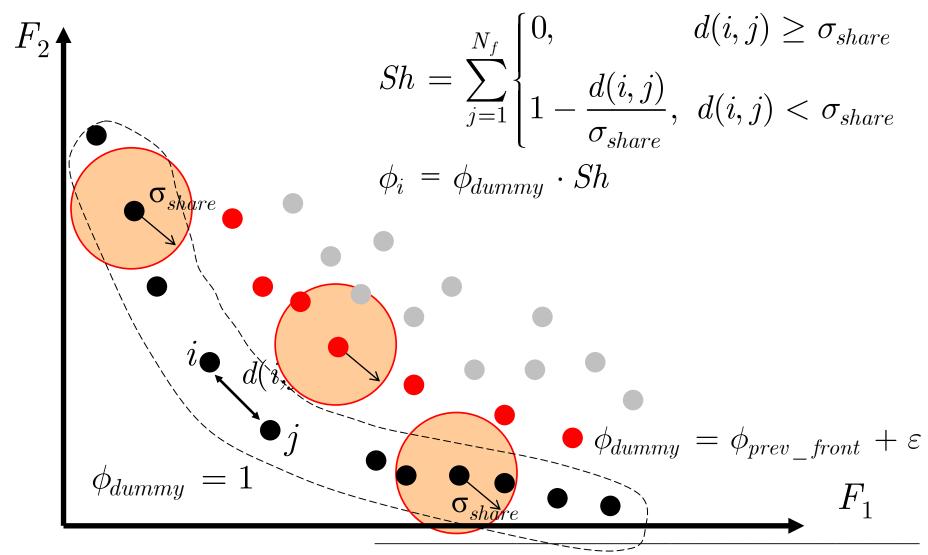
φ computation using the Pareto front:

- Front Ranking [Goldberg, 1989]
- Niched Pareto GA (NPGA) [Horn, Nafpliotis, 1993]
- Nondominated Sorting GA (NSGA) [Srinivas, Deb, 1994]
- Strength Pareto EA (SPEA) [Zitzler, Thiele, 1998]
- Pareto Envelope-based Selection Algorithm (PESA) [Corne, Knowles, Oates, 2000]
- NSGA-II [Deb, Agrawal, Pratap, Meyarivan, 2000]
- Strength Pareto EA II (SPEA II) [Zitzler, Laumanns, Thiele, 2001]

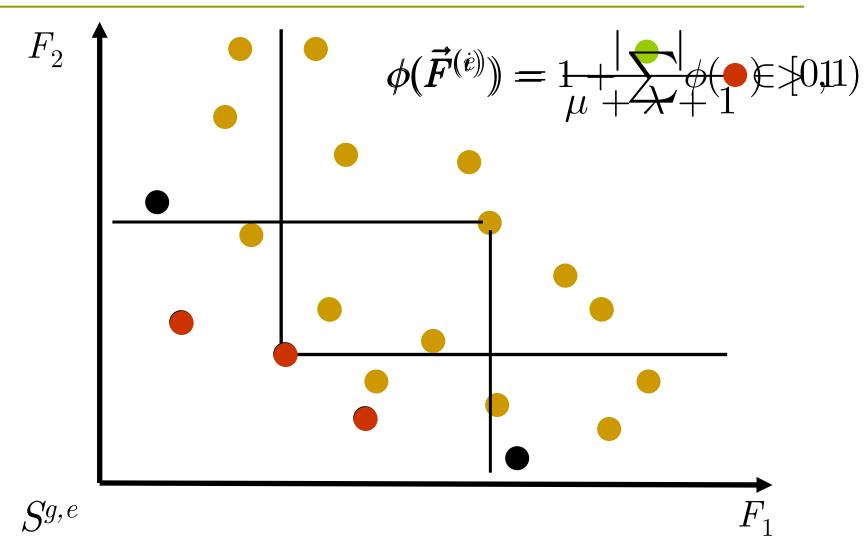
φ computation – Sorting (NSGA)



φ computation – Niching (NSGA)



φ computation – SPEA

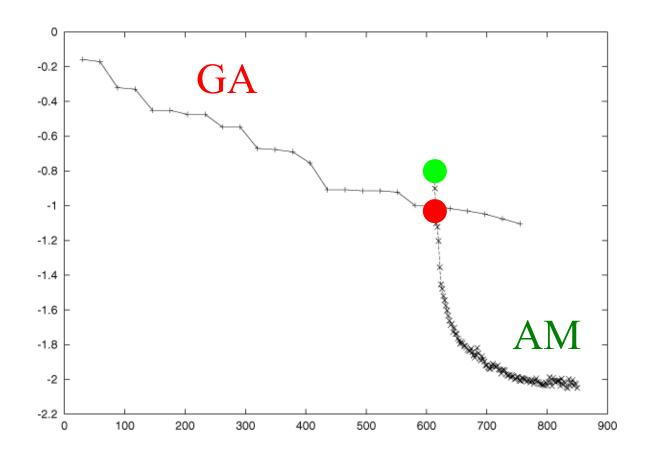


- Dominated Solutions
- Other Solutions

Ways to reduce the number of evaluations:

- Improved evolution operators
- Hybridization with other optimization methods
- Distributed EAs (island model)
- Hierarchical EAs (faster solvers)
- Use of <u>surrogate models</u> (<u>metamodels</u>, fast approximate model)

Hybridization with other Optimization Methods



Introductory Course to Design Optimization K.C. Giannakoglou, Associate Professor NTUA, Greece

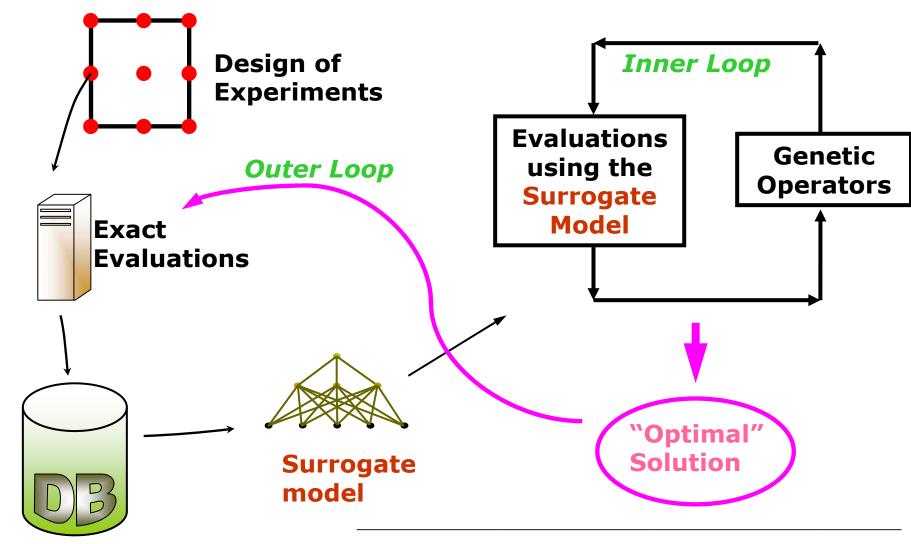
Use of Surrogate Evaluation Models

- Polynomial Interpolation
- Artificial Neural Networks
 - Multilayer Perceptron
 - Radial Basis Function Networks
- Kriging

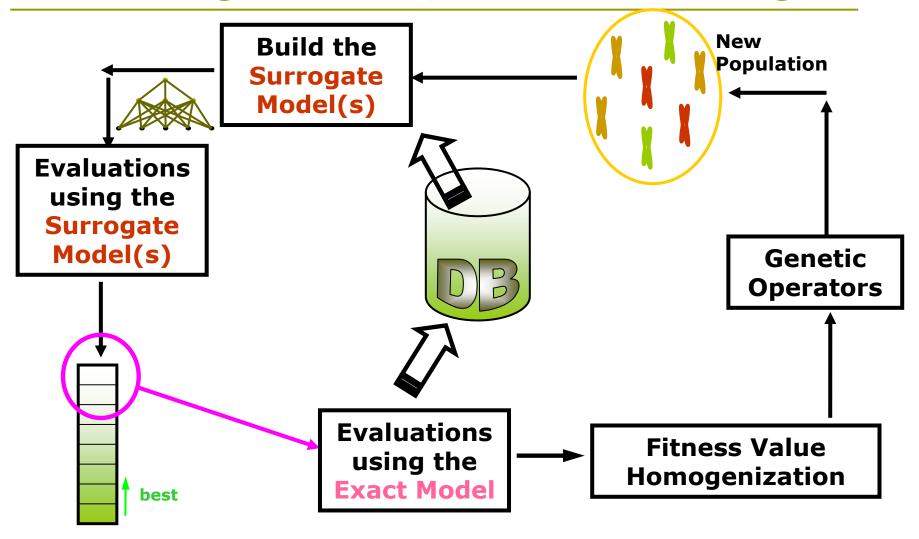
Ways of using the surrogate evaluation model:

- Decoupled from the exact evaluation tool (+Design of Experiments, DoE)
- In combination with the exact evaluation tool
 - Regular Training (depending on the number of new entries in the DB)
 - Dynamical Training (separately, for each new individual)

Use of Surrogate Models (with Off-Line Training)

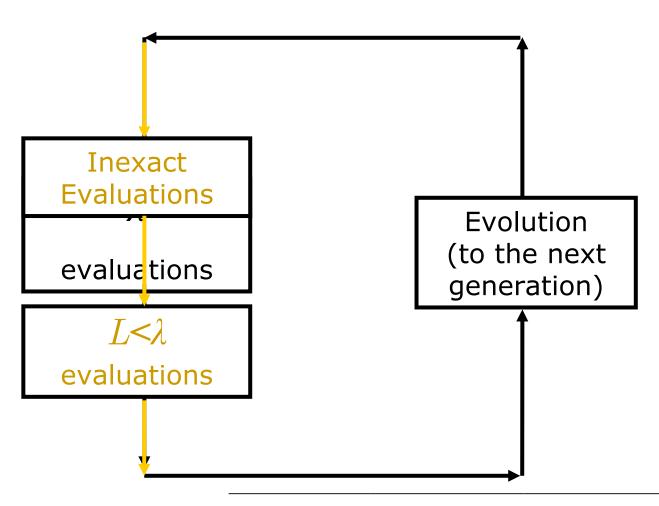


Use of Surrogate Models (with On-Line Training)

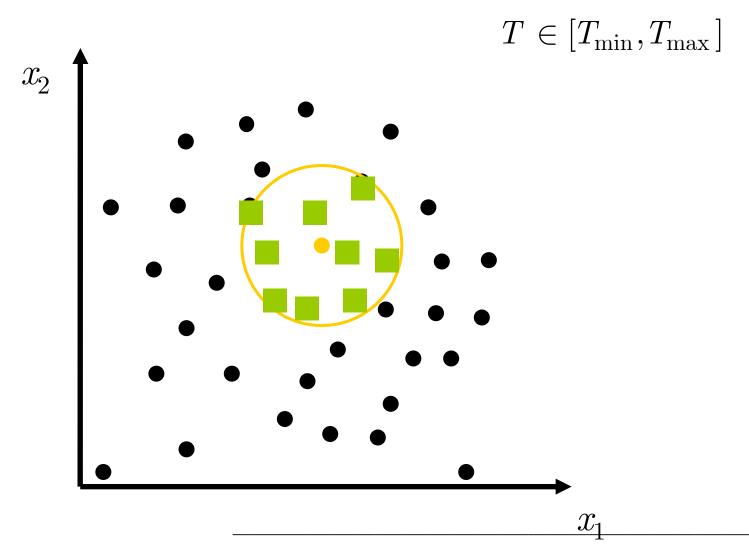


Inexact Pre-Evaluation (IPE) – The Concept:

Exact Evaluation of the most promising solutions

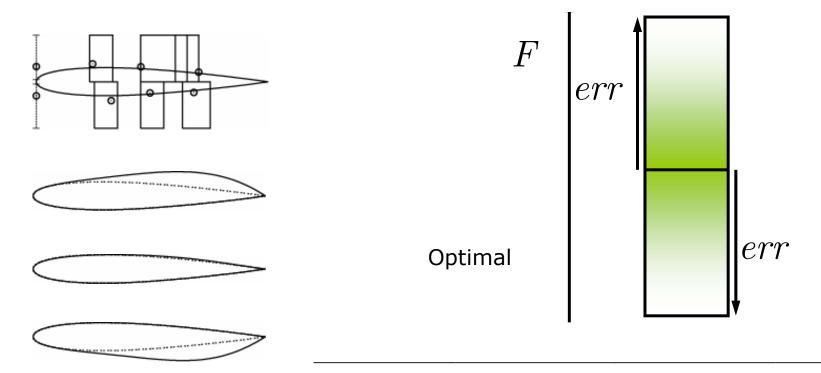


Local Surrogate Models - Training Set:



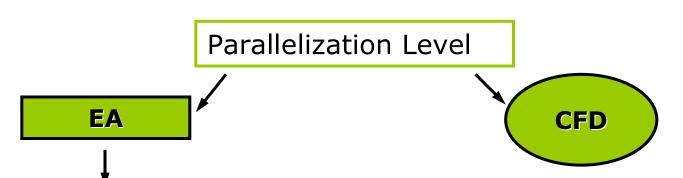
Surrogate Models – What else do they tell us???

- Fitness Function Approximation
- Confidence Intervals
- Hessian Matrix Approximation
- Sensitivity Derivatives (Importance Factors)



Optimization and Multi-processing

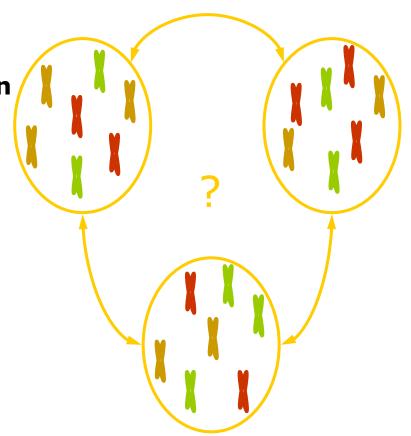
Reduction of the Optimization Wall-Clock Time



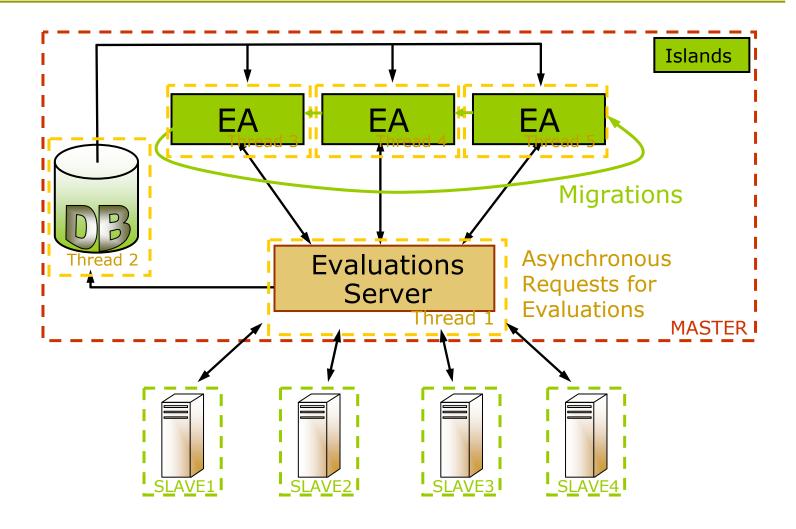
- □ CPUs $\neq \lambda$ ($\dot{\eta}$ L)
- Loading Distribution:
 - Heterogeneous Platforms
 - Loading per processor
 - Variable evaluation cost
- Synchronization (in each generation)
- Master: EA Module waiting list for evaluations
- Slave: discrete (remote) evaluation process

Distributed EA

- Why?
 - L ($<<\lambda$) < CPUs
 - Persistant diversity in populations
 - Straightforward parallelization
- Additional Parameters:
 - Number of islands
 - Communication topology
 - Communication frequency
 - Migration algorithm
 - EA parameters per island



Distributed EA on a Multi-Processor System



Applications

v1.3

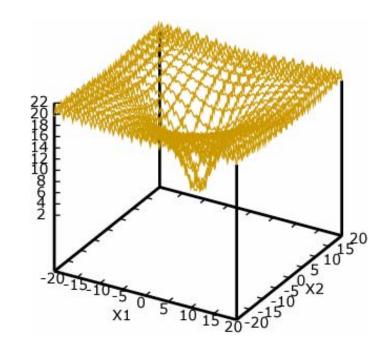
The Evolutionary Algorithms SYstem

Developed by the National Technical University of Athens, (NTUA), Greece

Problem: Rastrigin's Function

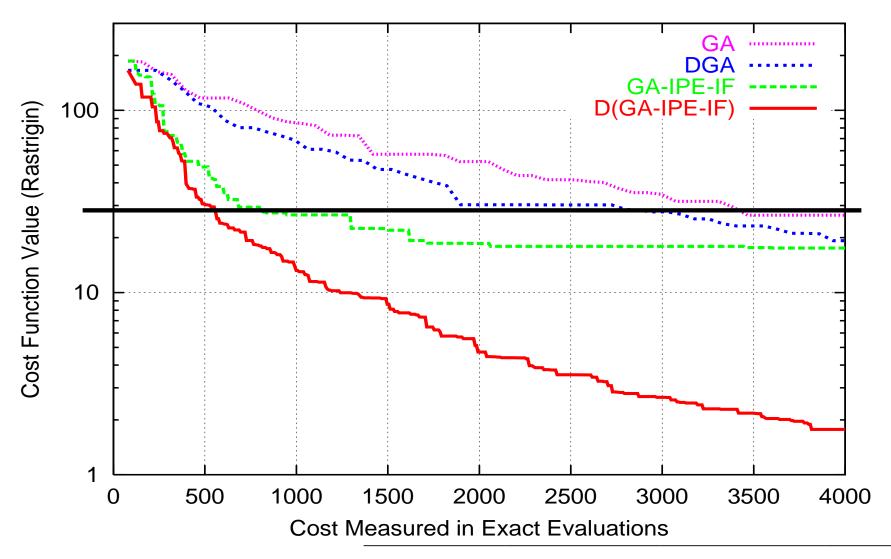
$$F(\vec{x}) = 20 + e - 20 \exp(-0.2\sqrt{\frac{1}{M}} \sum_{m=1}^{M} x_m^2)$$

$$-\exp(\frac{1}{M}\sum_{m=1}^{M}\cos(2\pi x_m))$$

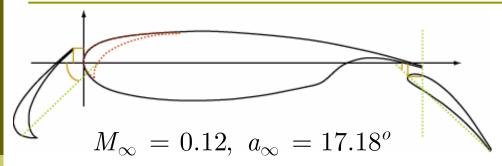


$$M=30$$
 $-30 \le x_m \le 30$

Results: Rastrigin's Function

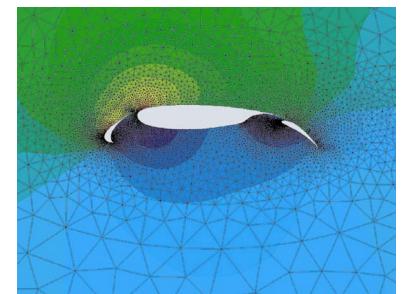


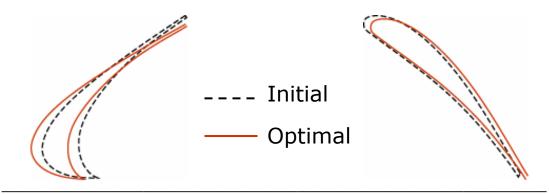
Problem: Three-Element Airfoil, Lift Maximization



$$F = -C_L$$

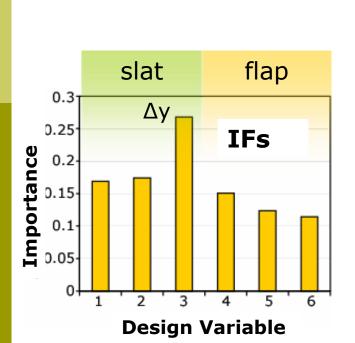
	Initial
Rotation Angle	28.10
Δχ	-0.020
Δγ	0.0269
Rotation Angle	-37º
Δχ	0.020
Δγ	0.0249

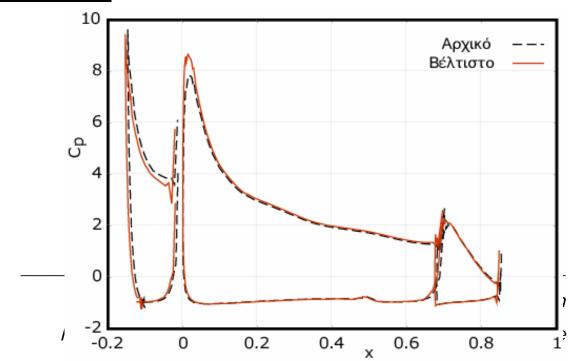




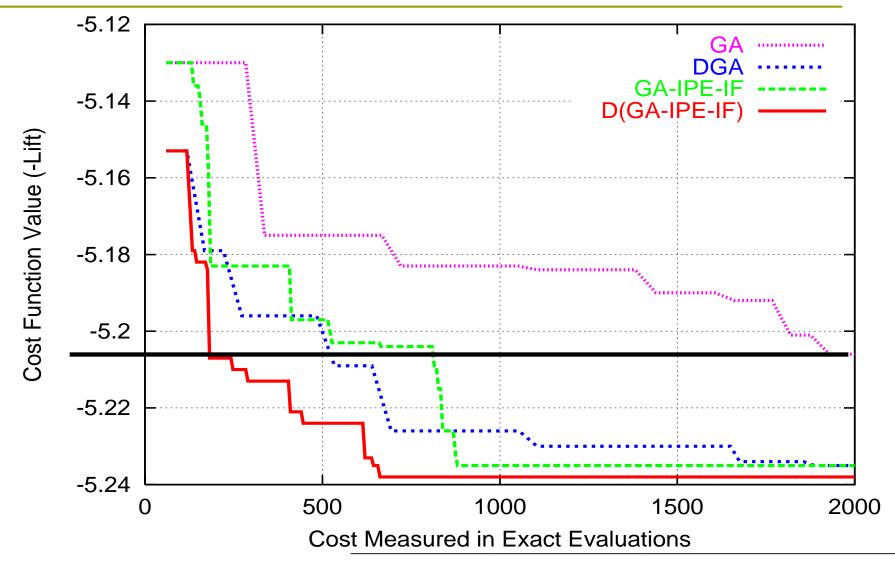
Results: Three-Element Airfoil, Lift Maximization

	Initial	Optimal
Rotation Angle	28.1°	28.02°
Δχ	-0.020	-0.03078
Δγ	0.0269	0.01982
Rotation Angle	-37°	-36.96°
Δχ	0.020	0.02016
Δγ	0.0249	0.02469

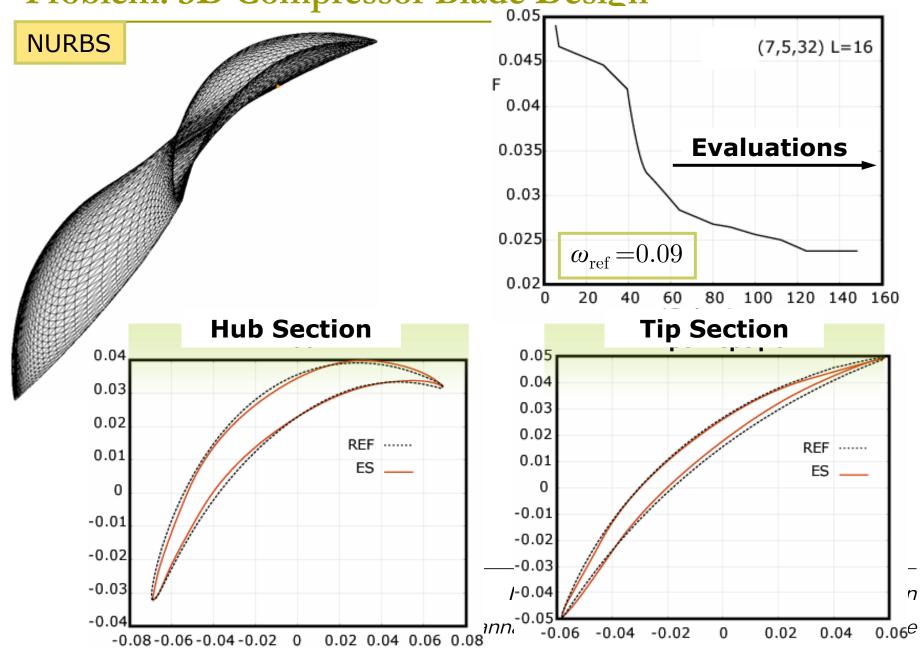




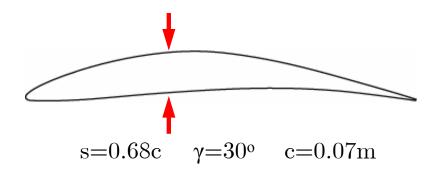
Results: Three-Element Airfoil, Lift Maximization



Problem: 3D Compressor Blade Design



Problem: Design of a Compressor Cascade



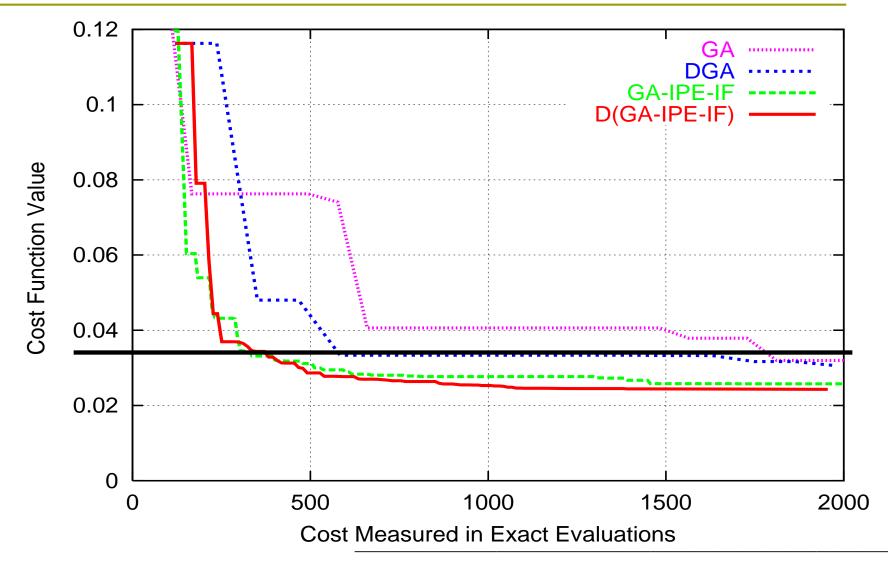
- Minimum Total Pressure Losses
- Constraint on the minimum (maximum thickness)
- Desirable Flow turning

$$F_{1} = \omega \cdot P_{1} \cdot P_{2}$$

$$P_{1} = \exp(\frac{|t_{\text{max}} - t_{thres}|}{t_{thres}}), \ t_{thres} = 0.9t_{\text{max},ref}, \ t_{\text{max}} < t_{thres}$$

$$P_{2} = \exp(-\max(1, \frac{\Delta \alpha_{ref} - \Delta \alpha}{\Delta \alpha_{ref}})), \ \Delta \alpha = \alpha_{1} - \alpha_{2} > 0$$

Results: Design of a Compressor Cascade



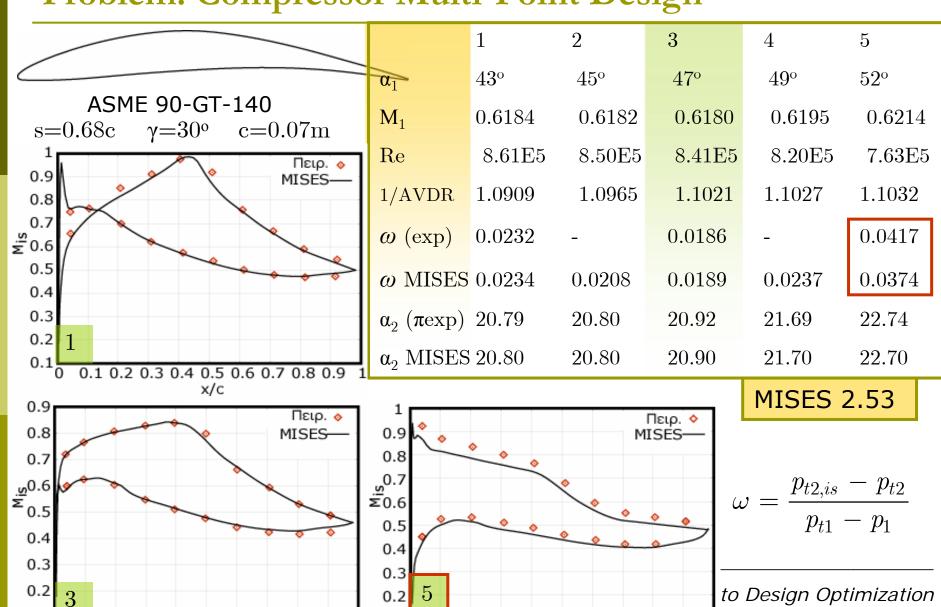
Problem: Compressor Multi-Point Design

0.1

0.1 0.2 0.3 0.4

0.6 0.7

x/c



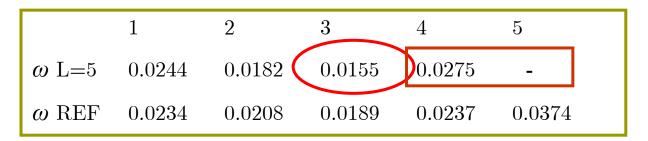
0.6 0.7 0.8 0.9

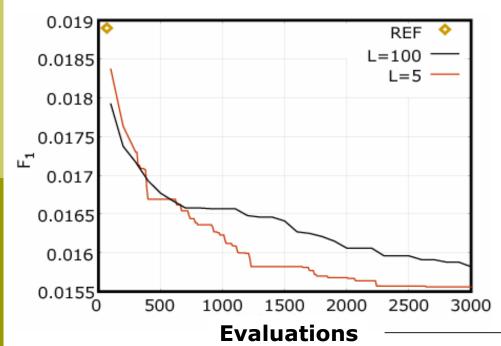
x/c

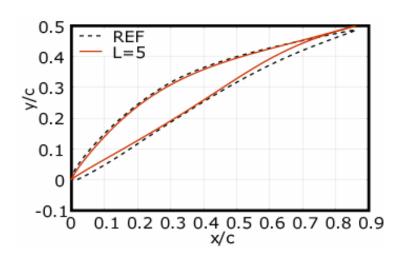
¹'rofessor NTUA, Greece

Compressor Multi-Point Design (1 OP – 1 target)

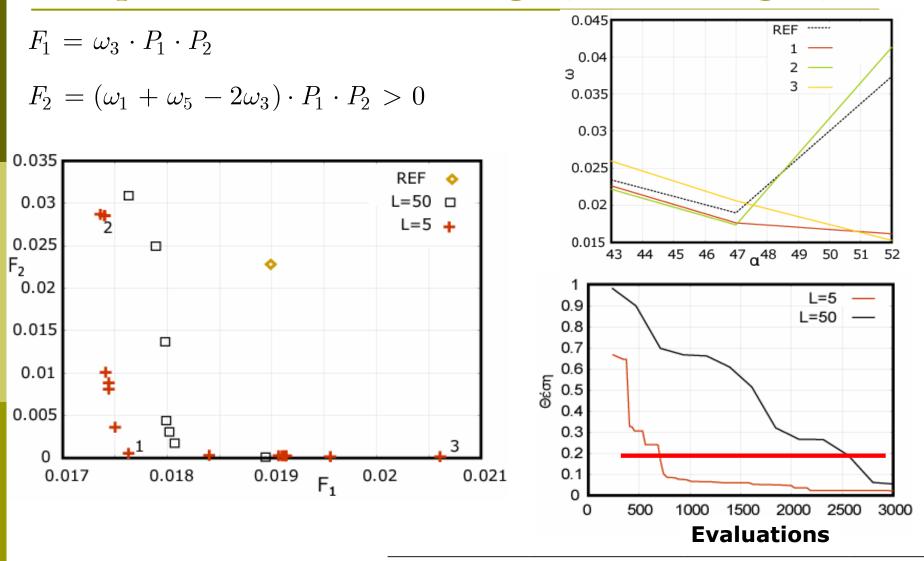
(20,2,100)



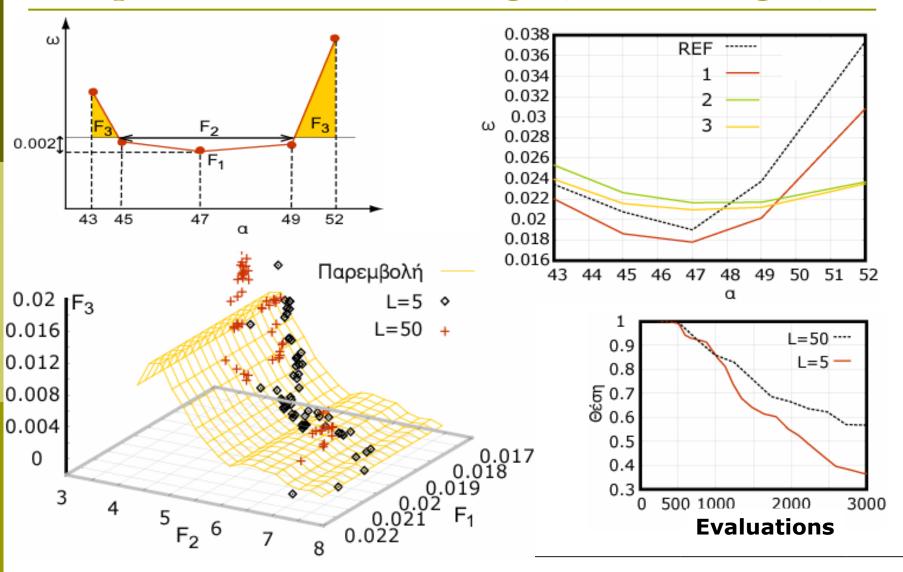




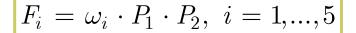
Compressor Multi-Point Design (3 OP – 2 targets)

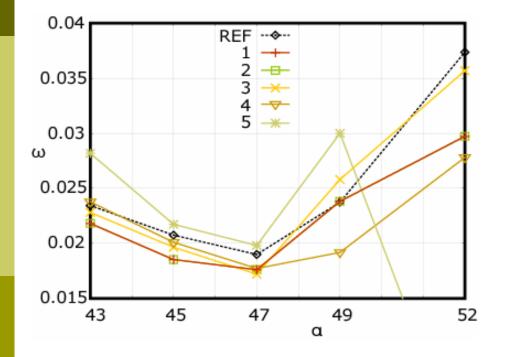


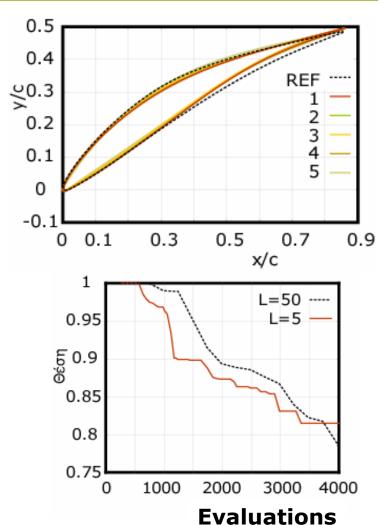
Compressor Multi-Point Design (5 OP – 3 targets)



Compressor Multi-Point Design (5 OP – 5 targets)

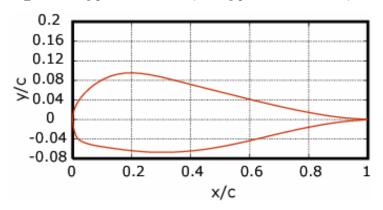


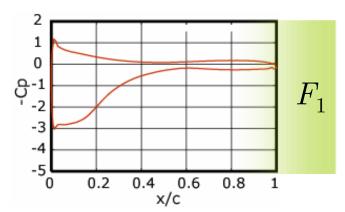




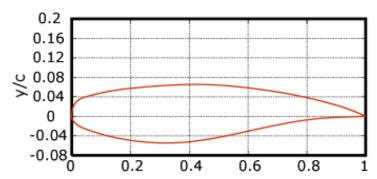
Problem: High-Lift, Low-Drag Optimization

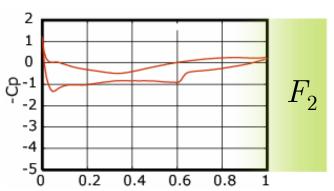
$$C_1: M_{\infty} = 0.20, \ a_{\infty} = 10.8^{\circ}, \ \mathrm{Re}_{\infty} = 5 \times 10^{6}$$





$$C_2: M_{\infty} = 0.77, \ a_{\infty} = 1.0^{\circ}, \ \mathrm{Re}_{\infty} = 10 \times 10^{6}$$





NS, k-ε WF

6000

4min

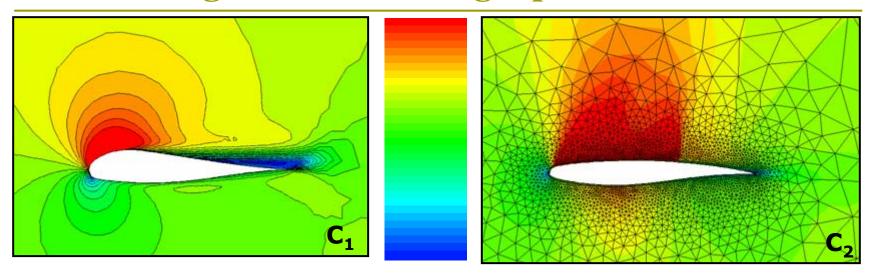
3000 🔵

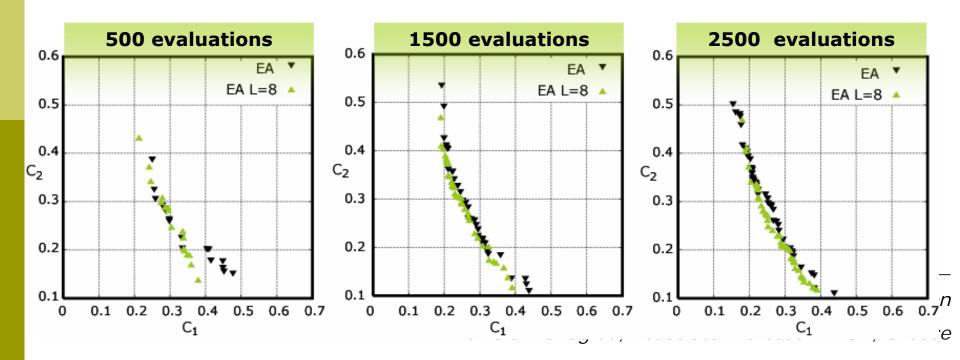
200

Introductory Course to Design Optimization

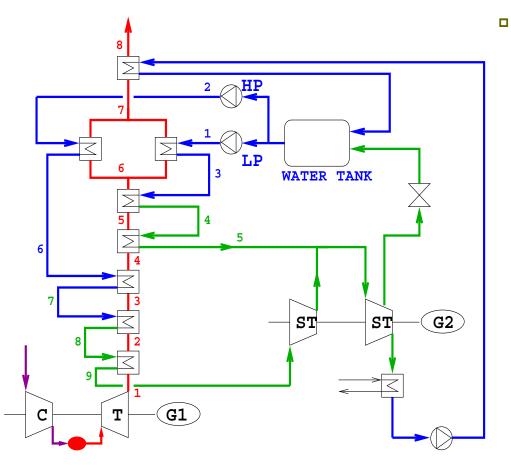
K.C. Giannakoglou, Associate Professor NTUA, Greece

Results: High-Lift, Low-Drag Optimization





Optimization of Combined Cycle GT Power Plants

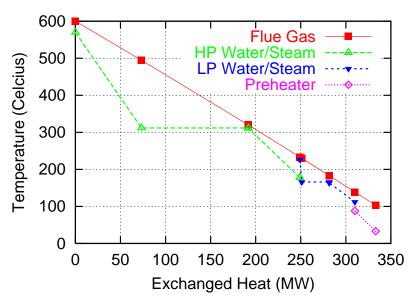


Design variables

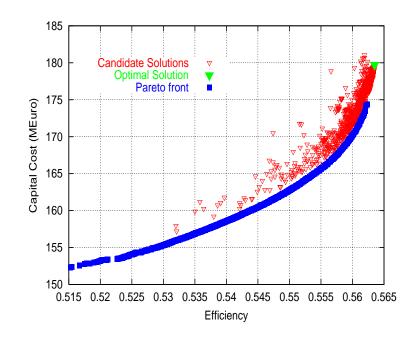
- HP steam pressure
- > LP steam pressure
- superheated HP steam temperature
- feedwater temperature at the inlet to the HP evaporator
- feedwater temperature at the outlet from the first HP economizer
- feedwater temperature at the inlet to the LP evaporator
- superheated LP steam temperature
- steam pressure fed to the water tank
- exhaust gas mass flow ratio (percentage of mass flowrate traversing the LP economizer)
- exhaust gas temperature at the HRSG outlet
- steam extraction pressure from the LP steam turbine
- exhaust gas temperature at the inlet to the condensate preheater

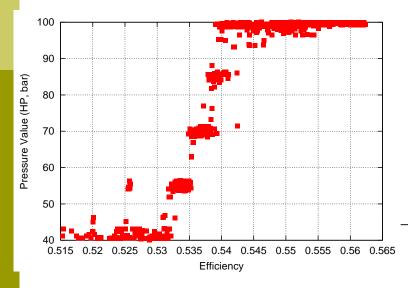
Natural gas fired, dual-pressure CCGTPP configuration GT: 260 MWe, 38% efficiency, exhaust gas mass flow 615 kg/sec at 600C.

Optimization of Combined Cycle GT Power Plants



Constrained Optimization Problem





HP Pressure Values, over the Pareto Front