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Evolutionary Algorithms (EAs), Pros & Cons

EA: A population-based metaheuristic optimization inspired by the biological evolution.
Candidate solutions act as population members for which the value of the cost or fitness
function should be computed.

Pros: ● Readily accommodates any analysis-evaluation software (as a black-box).
● Is gradient-free.
● Computes Pareto fronts of non-dominated solutions, in MOO problems.
● Handles constraints (for instance, through penalties).
● Is amenable to parallelization (simultaneous independent evaluations).

Cons: ● Requires a great number of (costly/CFD) evaluations.

Irrespective of the EA type, methods to reduce the computational cost, without damaging
the quality of the optimal solution(s), are needed.
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Possible was to Reduce the Computational Cost of EAs

 Reduce the number of (CFD-based etc., i.e. costly) evaluations:
● Better evolution operators, more careful tuning of the EA.
● Distributed search.
● Replace calls to the costly/exact evaluation tool (PSM, for instance CFD) with
calls to cheaper/less-accurate surrogate evaluation models (metamodels).
● Dimensionality reduction (curse of dimensionality).
● Hierarchical/multilevel search.
● Hybridization with gradient-based search, etc.

 Reduce the wall-clock time of the optimization:
● Parallelization.
● Asynchronous search by overcoming the generation synchronization barrier.

 Combine some (all?) of the above.
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Without loss in generality, all computations presented in this lecture have been
performed using the optimization s/w EASY developed by the PCOpt/NTUA, based on a
(μ,λ) ΕΑ.

μ = parent population size
λ = offspring population size
e = elite population size

The Evolutionary Algorithm SYstem
http://velos0.ltt.mech.ntua.gr/EASY

http://147.102.55.162/EASY

PCOpt/NTUA provides, free of charge, EASY licenses to academic groups or research
institutes, upon request.

Our EA: The EASY Platform
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Metamodel-Assisted EAs (MAEAs)

The Concept:
Having already evaluated a number of candidate solutions (individuals), let us train and
use an “interpolation” method (a model-agnostic black-box: metamodel or surrogate
evaluation model) to approximate the objective or constraint function values of new
individuals generated by the EA, by avoiding the use of the costly Problem Specific Model
(PSM; here, the CFD code!)
Valid for either Single- & Multi-Objective Optimization (SOO & MOO)

Questions:
● When and how to train the metamodel?
● Which metamodel (polynomial regression, neural networks, …)?
● How to collect training samples for the metamodel?
● How to use the cost/fitness function approximation provided by the metamodel?
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Metamodel-Assisted EAs (MAEAs)
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Metamodel-Assisted EAs (MAEAs) with off-line Trained Metamodels
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Metamodel-Assisted EAs (MAEAs) with on-line Trained Metamodels
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The Inexact Pre-Evaluation 
(IPE) Technique
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MAEAs: Ways to Implement Metamodels

MAEAs with Off-Line Trained Metamodels:
● A Design of Experiment (DoE) technique is used to sample the design space, collect

training patterns, evaluate them on the PSM & store them into the Database (DB).
● A (global) metamodel is trained and the EA search relies exclusively upon its use.
● “Optimal” solution(s) is/are re-evaluated on the PSM (e.g. the CFD code).
● New samples are collected & evaluated on the PSM, DB is enriched, a new

(hopefully, better) metamodel is trained…
● Iterate (successive EA-based searches) until convergence.

MAEAs with On-Line Trained Metamodels:
● Local metamodels are trained during the evolution by on-line collected training

patterns. The Low-Cost Pre-Evaluation (LCPE) phase.
● Coordinated use of metamodels and the PSM.
● Considered to be the distinguishing feature of .
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A MAEA with On-Line Trained Metamodels
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Phase 1:
Evolution based exclusively on the
PSM; no use of Metamodels
Upon completion, the DB has at least TMM inputs

Phase 2:
Evolution using Metamodels (LCPE)
and, selectively, the PSM

● The use of metamodels starts once TMM evaluated (on the PSM)
individuals exist in the DB.

● All population members are evaluated on local/personalized
metamodels trained on neighboring data in the DB.

● The best λe(«λ, λe,min≤ λe≤ λe,max) of them are re-evaluated on
the PSM & stored in the DB; this determines the
computational cost of this generation.
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A MAEA with On-Line Trained Metamodels – The LCPE Phase
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Generation 1
λ PSM Evaluations

Generation 2
λ PSM Evaluations Generation 3

λ PSM Evaluations

Generation 4
λe PSM Evaluations

Generation 5
λe PSM EvaluationsGeneration 6

λe PSM Evaluations

LCPE starts here!

 Int. Review Journal Progress in Aerospace Sciences, 38:43-76, 2002. 
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On Metamodels (RBF Networks)

The Radial Basis Function (RBF) Network:
Without loss of generality, they are exclusively used in all presented studies.
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RBF network with N inputs, 
K hidden units (RBF centers) and 

a single output (Mo=1).
To be trained with T training patterns.

Possible activation functions:

etc.

Training:

Interpolation (K=T) or Approximation (K<T)?
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On Metamodels (RBF Networks)

The Radial Basis Function (RBF) Network - Training:
Selection of the RBF centers (coincide with the training patterns) and solution of the
linear/symmetric system (case K=T; interpolation):
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On Metamodels (RBF Networks)

The Radial Basis Function (RBF) Network – Selection of Training Patterns:
Building the minimum spanning tree in the design space, starting from the new individual.
Identification & special treatment of outliers.
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On Metamodels (RBF Networks)

The Radial Basis Function (RBF) Network – Selection of RBF Centers:
Increase network’s generalization by using less hidden nodes than training patterns (K<T).
Selection of RBF centers using Self-Organized Maps (SOMs).
Two levels of training:

15

● Unsupervised (classification of 
training patterns in K clusters).

● Supervised (training by minimizing 
the approximation error).
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Metamodels in Constrained Optimization

Constraint Handling in the LCPE through Support Vector Machines (SVM):
Question: Since infeasible population members are penalized (with a +/- infinite F value),
should we include them in the training patterns for the metamodel or not?
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Possible remedy: Before the use of the RBF network in the
LCPE phase of the MAEA, train/use an SVM to guess
whether the new individual is feasible or infeasible:

● RBF is used only for individuals marked as “feasible”.
● Individuals marked as “infeasible” are penalized.

infeasible

feasible
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Other Metamodels

Kriging:
Estimate and use (as an extra criterion) the Confidence Interval which is pertinent to the
guessed/approximated value of the objective or constraint function.

17

 IEEE Transactions on Evolutionary Computation, 10:421-439, 2006.
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Other “Enhanced”  Metamodels

Gradient-Assisted RBF Network:
Prerequisite: The availability of a method to compute the gradient of the objective
function (such as the adjoint method in CFD).
Less training patterns, better approximations.
Inspired by Lagrange vs. Hermite interpolation.
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 Applied Mathematical Modeling, 28:197-209, 2004.
 Computer Methods in Applied Mechanics and Engineering, 195:6312-6329, 2006.
 Journal  of Inverse Problems in Science & Engineering, Vol. 14(4):397-410,  2006.
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Distributed EAs and MAEAs
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Run more than one EAs, each one with its own
parent & offspring populations, in semi-
isolation: by regularly exchanging promising etc
individuals.

User-Defined Parameters:
● Number of demes or islands
● Communication topology
● Communication frequency
● Migration policy
● EA set-up per deme; exploration/exploitation
oriented demes! Common DB for all demes.

 International Journal for Numerical Methods in Fluids, 53:455-469, 2007.
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Description of Demo Cases

Demo Case 1 (SOO):
Shape optimization of an isolated airfoil.
Target: max. Lift (CL).
Inviscid flow, Minf=0.40, ainf=5o.
Constraints: Lower and upper bounds of the design variables.
Unstructured grid, ~20K nodes.
Parameterization: 2 Bezier curves (8 Control Points each).
N=12 DoFs (internal control points moving in the y-direction).
PSM: The PCOpt/NTUA GPU-enabled flow solver (PUMA).
Cost per evaluation: ~ 5 sec. on one NVIDIA K20 GPU.
Basis of Comparison: a (20,40)EA.
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Comparisons on Demo Case 1

21

Starting

Optimal

(20,40) EA
(20,40) MAEA, TMM=40, λe=3
DEA or DMAEA: two demes (10,20)
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Description of Demo Cases

Demo Case 2 (MOO):
Shape optimization of an isolated wing (two objectives)
Target: max. Lift (L) and min. Drag (D)
Inviscid flow, Minf=0.40, apitch,inf=3.06o, ayaw,inf=0o.
Constraints: Lower and upper bounds of the design variables.
Unstructured grid, ~1.33Mi nodes.
Parameterization: 6x3x3 Volumetric NURBS Control Grid.
N=24 DoFs (internal control points moving normal to the planform).
PSM: The PCOpt/NTUA GPU-enabled flow solver (PUMA).
Cost per evaluation: ~ 2 min. on one NVIDIA K20 GPU.
Basis of Comparison: a (10,20)EA.
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Definition of the Hypervolume Indicator
(for min. f1 & min. f2).

Hypervolume
Indicator

Non-Dominated 
Area

Comparisons on Demo Case 2

23

Non-dominated solutions.
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Comparisons on Demo Case 2

24

TMM =30 evaluations on the PSM, before 
starting the LCPE phase.

Optimized geometries resulted from the DMAEA run. 
Mach number fields on the surface of the baseline (left), the max. 

lift (middle) and min. drag (right) wings.
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(MA)EAs & the Curse of Dimensionality

Why EAs and MAEAs become very costly in problems with N>>?
 EAs: The evolution slows down in the presence of many DoFs (N>>).
 MAEAs: Difficult to build dependable metamodels or need for many training patterns;

consequently:
● The cost for training metamodel(s) increases a lot.
● The start of the LCPE phase is delayed.
● The quality of metamodel-based predictions is damaged.

Possible Remedies:
 Artificially transform the problem into a “more separable one”.
 Identify and exclude the less-important DoFs from the evolution .
 Identify and exclude the less-important DoFs from the metamodel training process.

25

 Engineering Optimization, 46:895-911, 2014.
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(MA)EAs & the Curse of Dimensionality

Separable vs. Non-Separable Problems:

26
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(MA)EAs & the Curse of Dimensionality

Idea: How to efficiently solve a Non-Separable problem:
Perform a rotation (how??) and make the EA solve for (c1,c2), instead of (x1,x2).
The Principal Component Analysis can help us!

27
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(MA)EAs & the Curse of Dimensionality

Linear Principal Component Analysis (LPCA):
● Let X be a set of M observations of possibly correlated variables.

These could be the λ (M=λ) members of the current offspring population.
● Make them have zero mean and unit standard deviation:

● Compute the covariance matrix:

● Eigen-Decomposition:

where the eigenvectors are the principal components defining the feature space and the
eigenvalues are their variances. The same can be done with Kernel PCA (KPCA-omitted
here).

28

Design Space Feature Space
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(MA)EAs & the Curse of Dimensionality

EAs and MAEAs with PCA-Driven Evolution Operators
● The current offspring population is used as the set of M=λ
observations for the PCA.
● Why? Other options?
● The current parent population is transformed into the feature
space (LPCA: M=N or KPCA: M=λ).
● Crossover and mutation apply in the feature space by using
different mutation probability per principal component, with
increased probability along directions with small variances.
● Transform offspring back to the design space.

EA(*) EA with evolution operators driven by *PCA
MAEA(*) MAEA with evolution operators driven by *PCA

where *=L (Linear) or *=K (Kernel)

29
 Engineering Optimization, 46:895-911, 2014.
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(MA)EAs & the Curse of Dimensionality

MAEAs with PCA-Truncated Metamodels
● Identification of the most important directions in the feature space, by processing the

computed eigenvalues.
● Truncation: Keep only the most important components in the feature space and train

the metamodels only on them.

30

Example taken from 
Demo Case 2

M(*)AEA MAEA with truncated metamodels using *PCA
where *=L (Linear) or *=K (Kernel)

Or, in combination:
M(*)AEA(*)
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Demo Case 1 Revisited using PCA-based EAs & MAEAs
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(20,40) MAEA(L) & (K)
(20,40) M(L)AEA(L), TMM=40, λe=3, RBF with 6 inputs
(20,40) M(K)AEA(K), TMM=40, λe=3, RBF with 6 inputs
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Demo Case 2 Revisited using PCA-based EAs & MAEAs
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(20,40) MAEA(L) & (K)
(20,40) M(L)AEA(L), TMM=30, λe=3, RBF with 12 inputs
(20,40) M(K)AEA(K), TMM=30, λe=3, RBF with 12 inputs
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Optimization of an Aircraft Wing-Body Configuration
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Customized parametrization: design variables related 
to the wing planform (top) & the wing dihedral angles 

at the leading & training edges (bottom).

Re-design of the wing of an aircraft wing-body
configuration, with 8 design variables, for max. CL and
min. CD. Rec=106, Minf=0.75, ainf=0o. RANS solver (the in-
house PUMA code) with the Spalart-Allmaras turbulence
model. A single call to the PSM (incl. morphing) takes ~16
min. on an NVIDIA K20 GPU.

These design variables affect the 
coordinates of some of the nodes of a 
3x5x4 NURBS morphing/control grid



Parallel CFD & Optimization Unit, Lab. Of Thermal Turbomachines, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

K.C. Giannakoglou, NTUA, kgianna@mail.ntua.gr

Optimization of an Aircraft Wing-Body Configuration

34

Comparison of the averaged convergence histories for three RNG seeds of the (5,10) MAEA & M(K)AEA(K), in terms of the 
number of CFD evaluations (PSM Calls). The LCPE phase starts after the first TMM=20 calls to the PSM and the λe=4 most 

"promising" individuals are re-evaluated in each generation. Stopping criterion = 200 CFD evaluations.
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Optimization of an Aircraft Wing-Body Configuration
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Comparison of  the pressure coefficient distributions & pressure distributions  for different wing shapes (a) 
baseline configuration, (b) max. CL configuration and (c) min. CD configuration.
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Optimization of an Aircraft Wing-Body Configuration

36

Comparison of  the 
baseline configuration (in 
grey) and the max. CL (in 
red) and min. CD (in blue) 

ones.

Airfoil shapes at three spanwise positions of 
the baseline configuration (in grey) and the 
max. CL (in red) and min. CD (in blue) ones.
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Shape Optimization of a Francis Runner
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Shape optimization of a Francis runner with two objectives:
(a) max. efficiency & (b) min. cavitation (maximize the min.
pressure on the blade surface). Inlet flow conditions:
Vinlet=8.198 m/s, aswirl=22.36o & aaxial=0o; outlet static
pressure 39900 Pa & rotation speed 117.8 rad/s.

The in-house GMTurbo software is used to parameterize the
geometry and provide the 75 design variables for the
optimization. These correspond to the span-wise
distributions of quantities parameterizing the camber
surface.

Cost per CFD evaluation: ~1 hr on a single K40 GPU.



Parallel CFD & Optimization Unit, Lab. Of Thermal Turbomachines, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

K.C. Giannakoglou, NTUA, kgianna@mail.ntua.gr

Shape Optimization of a Francis Runner

38

Comparison of the averaged convergence histories for 
three RNG seeds of the (10,20) EA, MAEA and 

M(K)AEA(K), in terms of the number of CFD evaluations 
(PSM Calls). The LCPE phase starts after the first TMM=20 

calls to the PSM and the λe=2 most "promising" 
individuals are re-evaluated in each generation. Stopping 

criterion = 300 CFD evaluations.

Comparison of the fronts of non-dominated 
solutions resulted from  the (10,20) EA, MAEA and 

M(K)AEA(K).
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Shape Optimization of a Francis Runner

39

Comparison between the baseline runner (in grey)  and those with  max. efficiency (in red)   and min. cavitation 
(in blue).
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Optimization of a (second) Francis Runner

40

● Design of the Francis runner, at 3 operating points with two objectives: (a) exit velocity
profiles’ quality and (b) uniformity of the blade loading. Two constraints (head and
cavitation). There are 372 design variables, in total!
● Comparison of fronts of non-dominated solutions obtained at the same number of
evaluations on the PSM (same CPU cost).
● Due to the extremely high problem dimension, the use of M(L)AEA(L) becomes
absolutely necessary!
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Design of HYDROMATRIX ®

41

● HYDROMATRIX®: a number of “small”, axial flow turbine generator units comprising a
factory assembled grid or “matrix”.
● Advantages compared to conventional designs (lower cost to power ratio):
● Minimization of the required civil construction works.
● Minimum time for project schedules, construction and installation.
● Small geological and hydrological risks. Minimum environmental inflict .
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Design of HYDROMATRIX ®

42

● 52 design variables
● Five quantities of interest (metrics): (f1,f2) : Given swirl and axial velocity distributions at

the exit. (f3): Uniform loading. (f4): cavitation index. (f5): pumping area.
● (5 metrics) x (3 operating points) = 15 objectives, cast as a two-objective problem.
● min. F1(f1,f2, at the 3 OPs) , min. F2(f3,f4,f5, at the 3 OPs)

Full
Load

Part
Load

Best
Effic
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Design of HYDROMATRIX ®

43

Computations with the same budget.

Pumping area.
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List of Communicated Messages
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• EAs or any kind of stochastic population-based metaheuristics (Genetic Algorithms,
Evolution Strategies, Particle Swarm Optimization, Differential Evolution, etc. etc) may
locate global optimal solutions at a high cost as a great number of evaluations on the
PSM (CFD, CSM, CAA, etc code) are necessary.

• Assisting the above metaheuristics with surrogate models is a “must” for reducing the
optimization turn-around time. The type of surrogate models (metamodels: polynomial
regression, neural networks, Gaussian processes, etc etc) and, in particular, the way
these are implemented within the search algorithm are critical. Cost reduction by even
an order of magnitude can be achieved (from EAs to MAEAs).

• A well-coordinated distributed search is also beneficial (from MAEAs to DMAEAs).
• As evolution slows down in the presence of a great number of design variables (curse

of dimensionality), smart use of Principal Component Analysis (PCA), either for
allowing the application of evolution operators to a “transformed design space” or for
reducing the inputs seen by the metamodels may help a lot. Linear of kernel PCA can
be used (from DMAEAs to PCA-Assisted DMAEAs).
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• Should a gradient-based optimization (such an adjoint method in CFD) be available,
hybridization may help. In MOO problems, computing the descent direction that
improves the current front of non-dominated solutions is challenging (from PCA-
Assisted DMAEAs to Hybrid PCA-Assisted DMAEAs).

• Other hybrid schemes, such as multi-level or hierarchical search, can be used; not
shown here (find more in http://147.102.55.162/research/pubs.html).

• Parallelization and, in particular, asynchronous search (that overcomes the generation
synchronization barrier) may help a lot; not shown here.

• It is important that all these techniques can be combined into a single stochastic
population-based search algorithm and benefits are practically superimposed.

• PCOpt/NTUA provides, free of charge, EASY licenses to academic groups or research
institutes, upon request.
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Asynchronous EAs & MAEAs:

 Engineering Optimization, 41:241-257, 2009.
 Genetic Programming and Evolvable Machines, 10(4):373-389, 2009.

Metamodel-Assisted Memetic Algorithms (MAMAs):
 Engineering Optimization, 41(10):909-923, 2009.

Other Hierarchical Schemes:

 Engineering Optimization, 41(11):1037-1049, 2009.

etc.


