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The scope of this thesis is to, firstly, investigate the existing continuous adjoint
solver’s capabilities in shape optimization problems concerning turbulent flows in
simulations carried out using high-Re meshes, and secondly, to investigate possible
extensions of the formulation/code in order to improve the accuracy of the com-
puted sensitivity derivatives (SD). The adjoint solver has been developed by the
PCOpt/NTUA within the OpenFOAM framework.

Applications are performed in external and internal aerodynamics, for incompress-
ible flows. Turbulence was modelled using the Spalart-Allmaras turbulence model
alongside Spalding’s one-equation formula for the near-wall modelling of the flow
on coarse (high-Re) meshes. The formulation of the adjoint to the high-Re Spalart-
Allmaras turbulence model shows significant difficulties with regards to the differ-
entiation of the wall function and the derivation and effective implementation of
the so-called adjoint wall function. First, the adjoint solver is evaluated by com-
paring SD computed with the adjoint method against reference values computed
using finite differences. Then, shape optimization is performed for an isolated air-
foil, tagreting lift maximization and drag minimization as well as, ducts, including
an industrial application (automotive application), targeting minimization of total
pressure losses between the inlet and outlet. Also, the application of a boundary
condition for the primal pressure, referenced in the literature as having positive a
effect on the convergence of the adjoint equations, is tested. Finally, the SD expres-
sion, which contains terms resulting from the differentiation of the wall function, is
revisited and the effect of a specific geometric term in the SD is investigated.
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2%0TmO¢ TNE UETATTUYLOXY S epyaoiag ebvar TpwTioTwe 1 Blepelvnon TV BUVATOTHTLY
TOoL UTdEYOVTA GLVEYOUE cLLUYOUE ETAUTY OE EQPUPUOYEC TOU 0POEOLY T1 BEATIOTO-
TO{NOY) AEPOBUVIIXGY HORPOY OE TAEYUAUTA OTKS AUTE TOU YENOWOTOLO0OVTAL YIol TNV
TEOAEET TUEBWBWY POWY UE YENOT CUVIOTACENY TOLYOU, XaL, OTN CUVEYELX, 1) CUVEL-
OQopd OTNY ETEXTACT, TOU GUVEYOUC ouluyolg emA0TN Ue oxomd TN Bedtinon tng
axpBetac Twv mapaydywy euatoinoiog. O emAdtng Tne ouluyolc pofc €yEl avamTu-
yOel xatd v tedevtaior 15etior amd ) MIITPB/EMII oe nep3dihov OpenFOAM.

Hporyuatomoobvtar @opuoyéc 68 TEOBAAUATA EEWTEPIXNC X0l ECWTEPIXNC AEQOOUVOI-
UxAc Yo aouumieoteg poéc. H povtelomnolnon tng toelng €yive Ye 10 povTéLNO ToV
Spalart-Allmaras xdvovtac yeron cuvapTHOEWY TOlYOU, YENOWOTOLWVTIS XUTIANNA
(O Wiodtepor TUXVE) TAEYUoTa, oUTd oL GUVRTLE avopépovtan w¢ TAEY T LYNAGY
aprduwy Reynolds tng toeBng. H podnuates diatinmorn tou culuyolc Tou oviéhou
Spalart-Allmaras nopouctdlel WLaltepEC BUGXOAES TOU TEOXVOTTOUY U T BlaPOELOT
NG GUVEETNONS TOLYOU X TNV EVOWUATKOOT TNG ETovopalouevne ouluyols GUVEETr-
ong Tolyou. Apyixd, yiveton emixpwon tou culuyolg EMADTY UE GUYXELOT) TIOQOY WY WV
evancinolag mou uroloyiCovtan pe T ouluyr uEV0d0 EVavTL TETEPUCUEVLY DLUPOROV.
‘Eneita, yiveton Pedtiotonolnomn PeUovwuévng agpotourc ue otdyo T UeyioTomoino
NG AVWOoTg %ot Ao TOTOMOT OTUOVEAXOUCUS XAl oYWYWY, CUUTERLAUUBAVOUEVNC
xou prog Broumyavixic eappoyic (tne autoxtvntoflounyaviag), Ue otdyo Ty ehdyt-
0T TTOOT oAxg Tileong YETAED elcdBou xou e€6dov. Emlong, yiveton diepedvnorn twv
UMOTEAEOUATOY OO TNV EQUOUOYT LIS avOTERNS TAENG, and TNy ugtoTduevn oto O-
penFOAM, oploxric cuvifixng ywa tnv wleon 1 onola, clugwva pe T BiBAoypapia,
umopel vo emdpdoel Vetind otn olyxhorn twv ouluywy elo®oeny. Edo, mépa o-
O TN GUYXALOY) BLEEEUVETAL, XOU 1] ETUTTWOY) TOU €YEL OTNV oXEIBEI TWV TORUY WY KV
evatoinotac. Télog, enaveletdleton 1 Exppacn Twv Topay®yYwy svacinciag, 1 omo-
foe meprhopfBdiver bpoug Tou TEogpyovTan amd TN BlAPOELOT) TS CUVEETNONS Tolyou, UE
EugaoT oty enidpacn evog amd TOUG GEOUC TOU TNV ATOTEAOY.
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Chapter 1

Introduction

The use of CFD simulations, as an auxilliary tool, in industrial applications is gain-
ing increasing attention in recent years. The majority of computational codes have
matured, through years of research and refinement, and as a result CFD has gained
credibility as a design tool for industrial products. In an attempt to adopt an
integrated approach to product design, focus has shifted towards CFD-based opti-
mization methods, with the overall goal being the improvement of products with
minimal cost. In the present thesis, shape-optimization problems are of concern,
wherein the goal is to find the shape of a component that yields an optimal de-
sired quality in cases governed by the flow equations, hence the title: CFD-based
optimization.

1.1 Shape Optimization

In shape optimization problems the optimal shape that is sought-after is controled
by a number of design variables. By utilizing aspects of control theory and applying
them to shape optimization the problem at hand is stated as seeking the optimal
configuration of design variables that will yield the optimal shape. This process is
driven by evaluating a quality of the flow that one seeks to minimize/maximize and
which, from a mathematical viewpoint, is a function of the flow variables. This is
called the objective function in shape optimization problems and usually, it is an
integral defined along a boundary of the computational domain or over a specific
volume inside the domain. As an example, consider the case of a duct flow, where
the shape of the duct is parameterized using Bézier curves, and it is desirable to
minimize the total pressure losses between the inlet and outlet of the duct. The
design variables are the coordinates of the control points and the objective function



is the total pressure losses.

Two great categories of optimization methods exist, stochastic and deterministic. In
deterministic optimization the algorithm is driven towards producing an improved
shape by computing the gradient of the objective function w.r.t. to the design vari-
ables, also known as the sensitivity derivatives (SD). Based on this information the
algorithm updates the values of the design variables in order to produce an improved
shape and then march in the direction pointed to by the afforementioned gradient.
At this point, a solution of the flow equations takes place, followed by an evaluation
of the objective function’s value and the process is repeated again until an optimized
solution is obtained. Such an algorithm showcases increased efficiency because the
direction in which the shape should be driven to is dictated by the gradient. One
of the shortcomings of deterministic methods though, is their entrapment in local
minima/extrema, since the values of the SD tend to zero close to those locations.

The question that arises is how are the SD ultimately computed. The most straight-
forward way of computing SD is through finite differences (FD), a computation per-
formed by perturbating the objective function around each design variable b,,n €
[1, N] where N is the total number of design variables. Using a second-order scheme,

SF  F(by, by + €, by) — Fby, oo by — €, .0, by)
— = (1.1)
ob,, 2¢

The usage of FD poses significant concerns. First, there is uncertainty in the decision
of an adequate value for € since in fact, different values of ¢ may yield different results
and there is no way to a priori determine a threshold for ¢ . Choosing a very small
value for € without consideration is not a viable option as it can result to round-
off errors. Also, the flow equations must be fully converged as the subtraction
performed in eq. is between two very close values of F. A most serious issue
though is the implications of the method, when it is applied to large scale problems,
as the computation of the gradient needs 2 x N evaluations of F' by solving the flow
equations; an infeasible scenario. An alternative to the FD method is the complex
variables method where SD are computed as

SF  Im[F(by, .., by + i€, ..., by)]
5b, €

(1.2)

where I'm is the imaginary part of a function and i =v/—1. This method is not as
sensitive to the value of € and it costs N number of evaluations. One other alterna-
tive, that is insensitive to the value of €, as opposed to the FD method, is the direct
differentiation method in which the flow equations are differentiated w.r.t. b,,. This
differentiation results in NV linear systems (as many as the design variables) whose
solution yields the derivatives of flow variables w.r.t. to the design variables. Knowl-
edge of these derivatives allows the computation of SD for the objective function at



hand. Direct differentiation is inevitably inadequate for large scale simulations as it
depends upon the total number of design variables.

1.2 The Adjoint Method

There is one method for computing SD that is independent of N. This is the ad-
joint method. In this method, an augmented function is defined, by adding the flow
equation residuals to the existing objective function. Inside the framework of the
adjoint method, the flow equations are called the primal equations. The residu-
als are multiplied by the adjoint variable fields. After differentiating the objective
function and rearranging the terms that exist in its expression, an adjoint system of
equations is formulated, that once satisfied, the values of the SD can be obtained at
a cost that is independent of N. In light of the above, there are two approaches that
can be followed for the formulation of the adjoint equations. In discrete adjoint, the
augmented function contains the discretized forms of the primal equations residuals
and, thus, the differentiation of the objective function occurs on a discrete level. In
continuous adjoint the primal equations are present in their continuous form and
are discretized after the differentiation takes place. The two methods pose certain
shortcomings and benefits, the most characteristic being that the discrete adjoint
is more accurate in computing SD computationally more expensive [I, 2]. On the
other hand, using continuous adjoint, there is a great challenge in accurately differ-
entiating the flow equations, especially when using wall functions.

This thesis is concerned with the continuous variant of the adjoint equations in
turbulent flows. When formulating the adjoint equations, a frequently made as-
sumption is that the turbulence variables do not change w.r.t. the design variables.
Such an assumption, also known as the ”frozen turbulence” assumption can lead to
significant errors in the computation of the SD. The turbulence variables can have
an important contribution to the computation of SD, as has already been demon-
strated in the literature [3, 4, 5]. Furthermore, the differentiation of the primal
equations solved on high-Reynolds (not that fine) meshes poses an increased chal-
lenge because of the use of wall functions that also need to be differentiated [5, 13].
Adjoint methods that include the differentiation of turbulence models have already
been developed at the Parallel CFD & Optimization Unit of the National Technical
University of Athens (PCOpt/NTUA). The differentiation of the Spalart-Allmaras
turbulence model was presented for the first time in Zymaris et al. [6] for low-Re
meshes as well as the high-Re k& — ¢ model [7], where the concept of adjoint wall
functions was introduced for the first time. The differentiation of the k£ — e turbu-
lence model was extended to low-Re meshes in [§] and the adjoint to the high-Re
Spalart-Allmaras turbulence model was presented for the first time in [3].



The adjoint solver that has been developed by PCOpt/NTUA has been implemented
within the OpenFOAMframework. OpenFOAM (Open Source Field Operation and
Manipulation) is a collection of C++ libraries developed primarily for computational
fluid dynamics [9]. Based on the C++ language it boasts an array of usefull object
oriented programming features that allow for code modularity and easy implemen-
tation of different objective functions and discretization schemes. Finally, the scope
of this thesis is to investigate the existing capabilities of the optimization software
in turbulent flows and specifically on high-Reynolds meshes where wall functions are
used. Furthermore, the addition of certain terms in the SD computation has been
implemented and tested.



Chapter 2

The Finite Volume Method in
OpenFOAM

In this chapter, the flow (primal) equations for steady-state incompressible flows
are presented, followed by a brief introduction to the finite volume method, for
their discretization, as implemented in OpenFOAM. Focus is laid on the various
discretization schemes used by the code.

2.1 Governing Flow Equations

The motion of a fluid is described by a set of partial differential equations (PDEs)
known as the Navier-Stokes equations. These equations are derived from the applica-
tion of conservation laws over a differential control volume within the flow domain.
The resulting equations, referred to as the primal equations in the optimization
problem, are presented below.

2.1.1 Continuity Equation

By applying the law of mass conservation over a differential control volume one can
derive the continuity equation,

dp  O(pv;)
ot T o,

=0 (2.1)

bt



where v; and p are the fluid velocity components and density, respectively. For an
incompressible fluid, the above equation is simplified to

an
= 2.2
oz, 0 (2.2)

2.1.2 Conservation of Momentum Equation

The momentum conservation equations are

i=1,2(,3)

(2.3)
where p is the pressure and ji. sy is the effective viscosity. In laminar flows, ji.sy is the
bulk viscosity p while in turbulent flows, it is the sum of the bulk and eddy viscosity
(¢. Combining eqs. [2.2) with and assuming a steady state incompressible flow,
the above equation is rewritten as

Uja_l'j B @Ij 8$j (‘)xz B 8@

8(,0%) i 8(pvz-vj) . 0 |:ILL ff(@vi 8vj> 2 81)7; :| @

at 8xj N 8xj 3@ +aZL’1 _gﬂeffa_xi g _8% ’

Equation has been divided by p and so p, from now on, denotes the quantity %
and v.¢s the effective kinematic viscocity. In the present study, only steady state

incompressible flows are of concern. From this point onwards, any reference to the
Navier-Stokes equations will be pointing to egs. and [2.4]

2.1.3 Spalart-Allmaras Turbulence Model

Modelling of turbulence is performed using the Spalart-Allmaras one-equation model
[T0] which solves the transport equation presented below for the turbulence variable

o0 N O] e (VN o
a0 e (ar) TP@TP@=0 @9

V?
The eddy viscosity coefficient v; relates to v as

V= ,ﬁfvl (26)



The production and dissipation terms are given by

14

P@)=cyY , D@)=cum fw(f/)P (2.7)
and Y is computed through

ayd v a’l}k

Y:va3+A2li2 f’v2 ) Y: 623ka_] (28)

where Y stands for the vorticity magnitude and A is the distance from the wall
boundaries. The model functions read

3
_ X 1
fo = X3+ s <1+L>3
Cug
(1+va1)

Jos = ————

(2.9)

The constants of the model are ¢,; = 0.1355, ¢ = 0.622, Kk =0.41, 0 =2/3, ¢y =
2L+ (H;—E’Q), Cw2 =0.3, cyp3 =2, ¢,y =7.1 and ¢,2 =5. The Levi-Civita symbol, e;jp,
used in the vorticity magnitude, is

+1 (iaja k) € (17
€ijk = -1 (i7j> k) S (1
0 1=y,

2,3), (2,
737 2)7 (37
j=k k=

3,1), (3,1,2)
2.1), (2,1,3) (2.10)

In meshes which are not appropriately fine close to the solid walls (i.e. meshes
used along with the wall function technique; these are usually referred to as meshes
for high turbulent Reynolds number simulations or high-Re meshes in short), the
computation of the normal (to the wall) derivative of the velocity, using finite dif-
ferences, or any equivallent formula, is prone to important errors. This is due to the
first cell center next to the wall (here, a cell-centered finite volume storage is used)
being outside the viscous sublayer, lying within the log-law region, wherein velocity
increases logarithmically with the distance from the wall. The wall function, that
must be used in such a case, models the behaviour of the flow in the logarithmic
area of the near-wall region of the flow, using empirical information, and this should



be used instead of the differentiation schemes.

The wall function technique, as programmed in OpenFOAM, makes use of the Spald-
ing Wall Function [I1] described by the equation

+\2 +\3
fwr=y"—vT —e P e — 1 — gt — (m; L (m% L’ (2.11)

where the non-dimensional distance and velocity at cell-centre P at a distance A”
from the wall are,

APy |vs| P
L= a = 2.12
Yp D ; Up v, ( )
Also, v, is the friction velocity, computed by
vi=—|(v+u) 9, + Ou; ' nt! (2.13)
T ! @xj 8:1:1 I '

where n; and ¢! are the normal to the wall and the parallel to the velocity at the
first cell P (which is considered to be parallel to the wall) unit vectors. In eq. ,
k=0.41 is the von-Karman constant and B ~ 5.5. In egs. and [2.13], indices f
and P denote quantities defined at the boundary wall face and the first cell centre
off this boundary face, respectively.

In OpenFOAM, the viscous flux at this boundary face is computed through finite
differences, namely

ov;  Ov; ! N f of —of
_ {(y—kyt) (axj—l—a%)} n; ~ — (y—i—yt) 77 (2.14)

Such a computation, as stated above, is prone to errors on a coarse mesh and
ultimately results in a miscalculation of the velocity gradient close to the wall. As a
remedy to this problem, the method proceeds with the computation of non-zero I/tf
on the wall (at the aforesaid wall face) based on which the viscous flux across the

boundary face is corrected.

2 2 2

v
= |Pf|
(v —oP)t! | |’UPtI

vl =~ - — v~ —|Pf]

vy 4 9vj fn.tf
Ox; ox; 1%

—v  (2.15)

The friction velocity involved in eq. is calculated by solving the non-linear eq.
for v, using the Newton-Raphson method.



2.1.4 Integration of the Navier-Stokes Equations with the
Finite Volume Method

The aforementioned flow equations are integrated over the fluid domain. Integrating
the continuity, momentum and Spalart-Allmaras turbulence model equations, over
a finite volume V', results to the expressions below,

8vi
= 2.1
/vaﬂﬂi dV =0 (2.16a)
ov; 0 ov; (%] op o
/Vv]ar] — 8_ [ (ax] ax)] dV+/ axldV 0, i=1,2(,3)
(2.16b)

s [ O \°
/Ujaxjdv /3@{( ~>a%}dv /V?<3_x]> v

—/VVP( )dV+/ D (9)dV =0 (2.16¢)

v

The finite volume method is used to approximate the solution to a system of PDEs.
At a preliminary stage, the continuous domain is split into a finite number of par-
titions, called control volumes, upon which the conservation laws of mass and mo-
mentum are applied. This process of splitting the domain is called domain or spatial
discretization and yields a grid of points where the values of the flow variables are
stored. In this regard, there are two approaches that can generally be followed. A
cell-centered or a vertex-centered approach with each name pertaining to where the
variable values are stored: either at the centroids of control volumes or their vertices.
OpenFOAM exclusively relies upon cell-centered storage.

In essence, the discretized form of eqs. [2.16a}, [2.16b| and [2.16¢| are solved for every
control volume. The volume integrals of divergence terms in this equation are trans-
formed into surface integrals along the faces of each control volume. Through this
process a system of algebraic equations is obtained that can be solved numerically.
The discretization scheme of the volume integrals in this equation are of significant
importance. Finally, the way these integrals are handled in OpenFOAMis described
in the next section along with the schemes that are used for the interpolation of the
variables at the faces of control volumes.




2.2 Implementation in OpenFOAM- Description

of Main Discretization Schemes

In order to best describe the discretization schemes employed by OpenFOAMa gen-
eral transport equation is considered for an arbitrary variable ¢ in steady state
incompressible flows,

d(v;0) 0 o) B
/Va—:cjdv_/va_xj {ma—%} dv+/vf¢dv =0 (2.17)

where D? is the diffusion coefficient and f¢ includes source terms.

In order to discretize the first two volume integrals that both contain the diver-
gence operator, the Green-Gauss divergence theorem is used,

OF;
’dV:j{ Fn;dS 2.18
/v Ox; 1% ( )

where n; is the unit vector normal to the finite volume boundary pointing outwards.
The resulting surface integral results from the summation of surface integrals over
the faces of the control volume. Each surface integral is then approximated by
multiplying the flux of vector F}, computed on the face centroid, with the face area
and projecting it onto n;, resulting to

OF, Ny
Lav =S Finlst 2.19
| 5 >l (219)

where S/ is the face area and F) is defined at the centroid of each cell face. N ¢ is
the total number of faces that surround a cell.

2.2.1 Interpolation at the Finite Volume Faces

During the discretization process, variables have to be interpolated at the faces
separating two neighbour cells. A face is shared by two cells and, in the code, the
one with the lower cell number, is the owner of the face and the other is referred
to as the neighbour. Index P denotes the face owner cell and N the neighbour cell.
The normal to the face unit vector n; is pointing from P to N.

The most general interpolation scheme used for a quantity ¢ calculated at the face

10



of a cell is
¢ = wrop+ (1 —wy)on (2.20)

In case of linear interpolation, the interpolation weight wy is calculated as

Wy = = = = — (2.21)
dpf . Sf +di . Sf

where cfpf is the vector that joins the owner cell center P to the face center f and

vector d} ~ the face center f to the neighbour cell center P, respectively. Vector S is
equall to S7i.

2.2.2 Gradient Discretization

For the computation of the gradient at a cell centroid P, the mean value theorem is

used, in addition to eq. [2.19]

99

_ [ 99
oz | .Y

= [ ==av (2.22)
c v Ox;

and, finally, the gradient of ¢ at the cell centroid P is computed as

9
3@-

1
= sz@csj (2.23)

where ¢ is computed using eq. 2.20. Through this method, it is assumed that the
gradient at the cell centroid is equal to the average gradient over the control volume.

2.2.3 Convection Term

Using eq. [2.19, the convection term of the general transport equation is discretized
as

/ 0(vi®) v _ (v;0) nt 57 (2.24)
y Oz;

Two main interpolation schemes are effectively used for the calculation of ¢ at the
cell faces. Using a first order upwind scheme, the value of ¢ at the face centroid of
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a cell is

o5 =dp if mig >0

gf)f:ng ’Lf me < 0 <225>

A second-order upwind scheme can also be used that also takes into account the
gradient of ¢ at the cell centroid,

0 . .
¢f:¢P+8_¢ A]’ if my > 0

Lilp

96 (2.26)
¢>f=¢N+—a A; if myp < 0

Tiln

where A; is the vector joining the cell-center (be it the owner or the neighbour cell)
to the face center and ni; is the volume flux (v;n;S5)/ entering or leaving the control
volume through the cell face. In OpenFOAM, this quantity is stored as a field that
is computed by the SIMPLE algorithm during the pressure correction loop.

2.2.4 Diffusion Term

The integral containing the diffusion term is discretized as

N
) O ! o6 1!
— |D? | dV = D¢ —| nlsf 2.27
/v(%j [ 3%} ;{ du;] (227)
Note that the normal to the face directional derivative of ¢, i.e. %nj, is the

one required. However, in a non-orthogonal unstructured mesh, the unit normal
vector 7 may not be aligned with the vector that joins the two centroids of the
elements straddling the face. For this reason, the surface vector ij is split into two
components
F _ nf f
Sl =El+T (2.28)

with vector 7T} chosen to be perpendicular to S; and E; aligned with the vector
connecting the two cell centers. The overall arangement is shown in fig. From
this point onwards, f, i.e. the index denoting quantities computed over the face of
a cell, is dropped for simplicity of notation.
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Figure 2.1: Arrangement of vectors gf, Ef and ff. Vector JpN joins the two cell-
centers straddling the face f. Vector §f is the surface normal vector (i.e. Sy where
Sy is the surface area). Ef 1s aligned with vector dpn and ff 1s perpendicular to §f.

We, thus, get the following expression for the gradient

966\ _ (99 p o (29 ¢
(59),- (&), 7 (), 22

The first term on the r.h.s. of eq. is called the orthogonal part while the second
term the non-orthogonal part. The computation of the first term is straightforward,

since (dpn)
ej = fN L and E; = |Ele; (2.30)
dpN
meaning that
_ (d
Ej = IE\( fN>] (2.31)
e

and, so, substituting F; with the above expression results to

(%) B = B9 _ |58r—on (2.32)
f

@l’j JPN‘

Taking the dot product of S; with eq. the following expression is obtained
(considering that S;T; = 0),
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thus,

d
E;S, —yE|< P); ig.
e
(dPN>j Eij S]S

" (dpn), Si (dPN)j'Si (2.34)

Folowing this analysis, a final expression for the orthogonal term of eq. is

obtained ” 55
or. ) L 2.35
(axj)f J (¢ ¢N) (dPN) ( )
The non-orthogonal term is computed by taking into account that T} = S; — Ej.
9¢ ¢ ¢ £ .S,
“\aw, ) % o) 57 I ) @
(ai[)] )f (axj)fsj (81:]) J 3:15] S Sz (dPN>,L' (dPN)] ( 36)

Now, the gradient of ¢ (i.e. g‘ ) is calculated at the cell centers of the two elements
J

straddling the face and is interpolated to the face using eq. [2.2.1]
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Chapter 3

The Continuous Adjoint Method
for Turbulent Flows

3.1 Primal Equations

The primal equations are the steady-state, Reynolds-Averaged Navier-Stokes for in-
compressible fluids, practically eqs. [2.2] and 2.5 In residual form, the governing
equations are written as

_ vy

(9xj
ov; 0 ov;  Ov, dp ,
R!=v |:(l/+l/t) (8%—%8%)]4—6% 0, i=12(,3) (3.1b)

N A N ov] e (OUN® -
Py, 9 VY| () _pp D ()= 1
R vj@xj o, [(Vjt() a%} . (8xj) vP(v)+v D ((v)=0 (3.1c)

accompanied by the appropriate boundary conditions (BC). These are described in
section for external and internal aerodynamics.

RP = (3.1a)

3.2 Objective Function

Let F' be the objective function to be minimized and b,,n € [1, N] the vector of
design variables w.r.t. which the sensitivities of F' must be computed, using the
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continuous adjoint method. In the present study, two different optimization prob-
lems are investigated, the minimization of total pressure losses in duct flows and the
maximization/minimization of a force exerted on an airfoil.

3.2.1 Total Pressure Losses

The volume-averaged pressure losses between the inlet and outlet boundaries of the
fluid domain are given by

Fpt:/ Fgunids—/ FSol'nidS
sr So

1 1
= _/ (p + _'Ugl) Uznzds - / (p + _Uzn) vmzdS
SI 2 So 2

where n; are the components of the outwards pointing unit normal vector. S; and
So denote the inlet and outlet boundaries respectively.

(3.2)

3.2.2 Force Exerted on a Body in Free Flow

A force exerted on the surface of an aerodynamic body, in an arbitrary direction 7,
is given by the expression

o avi avj ,]
Fp = /S { (v +1y) (axj + 8xi) +p51} n;r;dS (3.3)

For the case of flow around an airfoil, choosing 7" to point in the direction perpen-
dicular to the farfield flow, and upwards, will result in eq. calculating the airfoil
lift. It is desirable to maximize the airfoil lift, however, as the implemented shape
optimization algorithm aims at minimizing an objective function, 7 is chosen to
point downwards. Similarly, choosing the direction of 77 to be parallel to the farfield
flow will result in eq. expressing the drag force exerted on the airfoil.

3.3 Formulation of the Field Adjoint Equations

For the derivation of the field adjoint equations, an augmented objective function is
defined by taking advantage of the fact that the residuals of the primal equations
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are equal to zero as shown in section [3.1]

Frug=F+ / w RYAV + / gRPdV + / D R7dV (3.4)
v 1% v

The multipliers of the aforementioned residuals are called the adjoint variables,
namely u;, the adjoint velocity, ¢ the adjoint pressure and v, the adjoint turbulence
variable. In contrast to the assumption made by the majority of people develop-
ing continuous adjoint methods for turbulent flows, who make the assumption that
changes in the design variables do not affect the eddy viscosity field (frozen turbu-
lence assumption), it is herein considered that turbulence variations are important
[0, B, 4]. This is why the turbulence model equation has been added to the aug-
mented objective function defined in eq. [3.4}

Differentiating the expression of the augmented function in [3.4] w.r.t. the design
variables yields,

b, b, Yo, T Tsn, s,
5(dV)
5b,

F, F v P v
) aug:5_+/ ( IR +q51~2 +%5R )dV
v (3.5)

+ / (wRY + qRP + U, R”)
\%4

Since the residuals of the primal equations are zero over the whole domain the last
integral in eq. vanishes and the equation becomes

§Fpy OF SR SR SR
LI BWCLE v+ [ gy 3.6
5 6bn+/vu P ST +/V” 5 (36)

In order to proceed further, a very usefull mathematical relation that forms the basis
for the formulation to be presented, is the following [3, 12],

1) ¢ B 0 Yo o¢p 0 oxx, 37

In what follows, the proof of eq. is demonstrated. Starting point is the relation
between the total and partial derivatives of quantity ¢ w.r.t. b,, which is

6o _ 09 99 b,

5b, b,  Oxy ob, (3.8)

The notion of the total derivative is similar to the material derivative of ¢ if a variable
denoting time is substituted in place of b,. A change in b, will cause changes in
the shape/geometry and, subsequently, in the flow variables. Thus, similar to the
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material derivative of ¢, 5% is the total change in ¢ due to variations of b,. It is
comprised of a quantity that takes into acount only changes in the flow variables,

the local term %, and a quantity that takes into account changes in the shape or
geometry i.e. g—i%—:. The following inequality holds true
o (0 a (9
o (), 0 (0 59
5bn 83:]- 833]' (Sbn
On the other hand, the partial derivatives permute
o (0 o (0
9 (99 _ 9 (99 (3.10)
ob,, \ Oz; Ox; \ Oby,

The differentiation of the gradient of ¢, w.r.t. the design variables, takes place during
the derivation of the adjoint equations. However, as the constraint posed by eq.
exists, eq. is used instead, substituting ¢ with %, resulting in

(00 _ 0 (06, 0 (05 in
ob, \ Ox; ~ 0b, Oz, Oz, \ Ox; ) 6by,

o (06 0% ox,
. Ok 11
b, (axj)  9zr0z, b, (3-11)

Taking the gradient of eq. [3.8]

0 (90 _ 9 (99, 9 (0¢0n

Oz, \ 6by, _(%cj ob,, Oz, \ Ozy, 0b,
9 (09 26 Sx,  0b O [Su
_8_95]-(8_17n)+—8xk8xjm+8_xkf)_xj b (312)

Subtracting eq. from yields eq. 3.7

3.3.1 Differentiation of the Flow Equations

Differentiation of the Continuity Equation

Differentiation of the continuity equation residual w.r.t. to the design variables yields

SRP 5 (Ov;\
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and the corresponding term in eq. becomes

o [ Ov; B ov; dq v; ov; 0 [dx
_/V q@ (8@) V= /SanEdeL v o0x; 5bndv+ anxk ox; <5b > v

(3.14)

Differentiation of the Momentum Equations

Differentiation of the residual of the momentum equation w.r.t. b, yields

OB _ovy v O (Ou), 0 (O 0[Ot (%, 0uN]l_
0by  0by Ox; | 95b, \Ox; ) " 0b, \Ox;)  0b, \ Oz Y\ox;, 0 )| T

(3.15)

and the corresponding terms in eq. on a term-by-term analysis, become

o (Ov dv; Ov;
A U — - —L Ly
term /Vuzvj 5. (8:)@) dV + / i B, -d

ov; O(u;v;5) 6v; / ov; 0 (595k
/Suvjnjéb a5= /V Oz, &)ndV Uj(?aské?x] 0b,, v

Ov; 0v;
* / i s 5 10
. 5 dp op Ou; Op ap 0 5$k
termp3 /V“%sbn <8xi) W= / g | 0 06, T o o, o6, )Y
(3.17)

: 6 [0 dv; v, _ 0 (97 =
termC' : /VUZ% {8:cj [(1/—1— 2 (8:@3—’_8@)} } dV—/VuZ(Sbn (8:cj) av =
0Tij Ou; ((Ov;  Ov;\ Qv oV
/“Z 5, /allfj (3%+8xi) i ab, "
ou; 6 (O aUJ Omij 0 (o
0 s 1
+/v 05, "5, (axj axl) w / "0y O <5bn) e

-~

Tp
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Term T can be developed further and yields quantities containing the adjoint stress
tensor 75 = (v + 1) (gT“; + %).

aui ) 8vz~ 6vj
TD— -(V+Vt)_n (8xj+8xz)dv

e (55) v ()

flee Gyt s o [0 (G )| v
e (§Z;+Zzzz) ooz, (i)

AR o Al O L

It is important to note that the differentiation of the momentum equations leads to
contributions to terms multiplying 557” as shown in eq . This means that the
above development also contributes to the adjoint to the turbulence model equation.

Differentiation of the Spalart-Allmaras Turbulence Model

Differentiation of the Spalart-Allmaras model equation leads to

SR Gy v G 05\ _ 3 [0 [(, 7\ ¥
ob,  Oby, Oz, 7 6b,, Oz ob, | Ox; o) O0x;

Cho O oo\l _/ 6P 6D 5v
—7m [(8_33]> ] +V(—E+6T)+< P+D)5b (320)

The production and dissipation terms are equal to

0P 0D ov 0A Ovy, o (8111-) (3.21)

b, by o, TG, +CYy€kaaxﬁm“m o
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where

Cy = <—cb1 Cu, C )fv3 (3.22)
_ 2 2 va2 f’L}2~
Ca= [enr € (8="22 ) b fun 237] (3.23)
afv:; fvg 8fv2 v r fw
= — Y = — .24
Cy ( Chy — Cu, C= ) ( 5 + 2A2+ b5 n2A2)+Cwlc§+cwlA2 (3.24)
Coi U o 1+c8 \"°
— wy V 1 5 1 w3 w3 2
0= [ ealer’ 0] 25 (52) )
Ofs, 3 x\
ov VCy, ( - cw) (3:26)
-3
-2 (58 [ ] )
oV ¢y, c Cys Cy,
| -3
+ L+xfo) (3+2 > < >
vel, Cuy
1 —4
_atxf) 3(1+ X)+(L> (1+ X ) (3.27)
VC,U2 cvg CUQ C'U2

Substituting expression to eq. the resulting volume integrals are developed
as shown below,

ov dv; ) ov
1: -
term / “ 9z 5b —dV + / VU —— 5, (&Uj) av

[~ Ov by N ov O(Vqvj) OV /N ov 0 ([ox
_/V Va@xl- 5bndV—i—/Sl/av]n]5b dS— /V dz, b, AV — [ vuv; Dy 0, \ 56, dV

(3.28)

0 0 ov
t 21— — < — dV =
oz = [ A | (7) 5}
. 1 0v év ~ v\ o ov
/Vanjaﬁx] 5b —dS— /Suanj (1/+ ) 5 (8%) as
ov, ov 1 ov, Ov ov 0 |ov, v ov

v (9Va ov 8 oxy, 8 v\ ov| O ([ox
‘/V (“*5) O, Oy, O, (ab )W / “Buy K”a) a—%} o1, (56 )‘”

(3.29)

21



t &—/ﬁ@ﬁ- o
e v o db (91;]

Ch2 ov o ov
—— [ o -
V= /V s 8% bby, (8@) v

B Cp OV OU Cb2 o |_ov| dv
B /SZVanj o Oz, 0b, a5+ v U Oz, [Va(‘?xj] by, 55,V
_Cp Ov Ov O [ dx}
op, 2 2V 9V 9 .
N /V Va5 Bz, day, 0z, (6b )dv (3:30)

oP 5D ov
4: | vv | — P+ D)—
term /Vuay( 5 5b )dV—i—/v o(=P + )51) av

. 0v — . 0A o1 ov 0v;
:/v Vaycﬁmdv"f_/v’/alchde“f‘/sVaVCY?Qmjka_xljemlinlEds

o (... 1 ovy, d \ v
_/\/8_371 (VaVCerm]kazj mlza )(Sb dV

—/ﬁ;acyl 0o %Zi(égjk)dw/ #(—P+ D)L av
\4 |4

Y ™9z, ™ Dy Oy \ b 3y
(3.31)
Note that eq. [3.29] includes surface integrals that contain both s ” and 5b %

Their mutual existence is what ultimately leads to the derlvatlon of different BCs
for v, between the inlet and outlet boundaries, as will be shown in a latter section,
since one of the two needs to be eliminated where the other is fixed at zero.

3.3.2 Differentiation of the Objective Function

In the present study, two different objective functions are used (section , and for
this reason, the differentiation of the objective function will follow a more generalized
approach. The differences that occur between the two objectives, specifically in the
adjoint BCs and the final expression of the SD, are outlined in the description of
each test case. Both objective functions can be described as

S

where the term Fg; is comprised solely of flow variables, excluding any geometrical
terms. Differentiation of the objective fynction yields

SF 4 0Fs; on; 6(dS)
5 5b /EsmldS / nzdS—I—/FSZ(;b dS—i—/FgmZ 55, (3.33)
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Since term Fj; depends directly on the flow variables, which in turn, depend on the
design variables, its differentiation follows the chain rule and results in

5FSi 8F5i5vj 8FSZ 5]9 8F5k 57’1']' 8F51 ov
i 905i 00 | OFsi 0P | OFs, i OV 34
5bn v, 0b, | Op b, Om; db, v 0by (3:34)

Concluding, the final expression for eq. is

OF O0Fg,; (5”0] dS OFs; op nidS—+ OFs, (STijnde
0’7'1]‘ 5bn

b Js Ov; ob, " s Op ob,
8FSZ v on 6(dS)
+ ; aV (5[) dS"‘/FSz(;b dS—l—/FSlTLZ 5b. (335)

3.3.3 The Adjoint Field Equations

By replacing eqgs. [3.13], [3.15], [3.20] and and substituting into eq. [3.6] a final

. SF,
expression for 5;“9 is assembled,

anj > 5UzdS

5Faug q 6 u5 Va 5 U
ST / R Eczv+ / RIS /V R 5bndV+ /S (Sq o 5
8F51 ov

(9F5 5]? —~
q J i T Va
+/S<SC+8 >5de+/S<SC 5 n)éde

ang 57—1] ~ v ) ov
+/S <—umJ +—=—"n ) dS+/ —VgNj (V+ ) (5b (a—x]> dS

0T 5b
___8A n; 5(dS)
VOA—dV FZ- iFs
+/V”” A 5o +/ Sy, [ TS
0 (5xk
FI: + FIY .
+/V( T J,ﬁ)(9 (5b)dV (3.36)
where
SOq:anj (337)
w o ~~ 1 ka
SCl :—qm—kuivjnj—l—njnj—VaVCy?emjka—xjemlml (338)
8
2 OV (3.39)

_ 10v 0y v
SCY =p,v; 78 -+ +-— — 20,
VaUjn;—V, n] . " <1/ ) VaMj— .
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and

o OV; 0Ty dp ov; ov;
FIL = L —L g — g—2 3.40
=T g i g “Jax s v (3.40)
ov ov ov, Ov
FIf =25, 22 2 22 _ d
7k o Oz, Oxy, V+ dx; Oxy,

T Kw-)ﬂ}—ﬁa-a” FCy it ey O (3.41)
oxy, o

v €mlid €mji
Oz, T 0y, Y ox; " Oy,

By setting the multipliers of g;” , J‘Zp e Y to zero in the field integrals of eq 3.36| the

adjoint field equations arise and the first three volume integrals of eq. [3.36[ vanish.
The field adjoint equations, including that corresponding to the adjoint turbulence
model PDE are given below:

ou;
q__ "7
R oz, 0 (3.42a)
w  0v; O(uwy) 0 Ju;  Ou; Jq
B ™ "0n, o YT\ ar, T )| T on

o (.. 1 vy, 0 ov
o (VaVCy— o A_x)_’_yaaxi =0 (3.42b)

R%:%aui (8vi+avj)_6(u~avj)+laﬁ; ov 9 l@ﬁa (%Lﬁ)}

ov 0z; \Ox; Oux; Oz, 0 0x;0r; Ox; |0z, o
Ch2 0 ov o
+2;a—x] |: @{L’j:| +VQVC ‘|—l/a ( P + D)—O (342C)

3.3.4 Deriving the Adjoint Boundary Conditions

After satisfying the adjoint field equations, the remaining terms in eq. are
6Faug u 6FSJ 5’Ui / q 6FSJ 5]7
5, /s <SC’ a0, ) 5, dS+ g SC+ ap 5, —dS
o aFS, ov ang (57‘1]
+/S <SC + — 5 ) 5. dS—i—/ ( un; + ar, nk> 5, dS
~ v\ 0 [ Jv . 5A
+/S —VgNj (V+ ) b, (89@) dS+ /Vl/al/CAmdv
dS) T 0 [dxy
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Variations in the flow variables, i.e. g;”, 6‘2” , 5‘? and 5b , still exist within the
first five surface integrals on the r.h.s. of eq. - Dependmg on the boundary,
these variations can be equal to zero, an example being the velocity at the inlet to
the domain which may have a fixed value irrespectively of the values of the design
variables. It is clear that the primal BCs fully influence the adjoint BCs. Through
the process of setting the multipliers of the flow variables variations to zero, at the
boundaries where they are not eliminated because of the primal BCs, the adjoint

BCs are derived. The terms that need to be eliminated are

= (SC“ 125y, ) 5ui 1§ (3.44a)
M, = [, (ch+%nj) s (3.44b)
My = fs (SC™ + 2skn,) 22dS (3.44c)
= /s < wmn; + aaj-f”’“) ‘;zi dsS (3.44d)
H’I;I = fS’ ﬁanj (l/ + g) % <88_x§]> dsS (3448)
Inlet
Along the inlet to the domain, g;’l and <X are equal to zero, since Dirichlet BCs are

imposed on v; and v. Thus, II, and H~ vanish. In order to eliminate I, and II, ,

the multipliers of 6‘2 and ‘57“’ in egs. [3.44bjand |3.44d| are set to zero, leading to BCs
for the adjoint veloc1ty Components As described in [3] , the adjoint velocity vector

is split into its normal and tangential components. Setting SCY + SI Ln; =0 and

AF,
un; = Wnk leads to

OFs, ;
Ugn) = —%W (3.45a)
a Sr, GFS k
u{t> 67; nitin; + 87;- ”kt]Iﬂi (3.45D)
OF. OF
H St.k II Sr.k Il
Uiy = 87;. nti g+ T;”ktj n; (3.45¢)

In addition, integral II; contains &‘f <%> and, thus, a Dirichlet BC is imposed on
J

v, so that

Dy =0 (3.46)

A zero Neumann condition is imposed on ¢.
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Outlet

Along the outlet of the domain, pressure has a fixed value and so 5‘% = 0. Also, v

has a zero Neumann BC and so % (%) is zero. Taking into account that, on the

outlet patch, which is a fixed boundary, % is zero, the following equation holds

o (ov o (ov

Thus, by rearranging terms in eq. [3.44¢| II, vanishes. In order to eliminate ITy, a
Robin type BC results for v,,

_ 100 0u, (@ ~ap v OFs,
WU — UgMj— —— — | nj—20,n; —=nj, =0
VaUjn;—1, njaaijr@xj (1/+0) M= 2Valty~— oz, + oy

Special attention must be paid to term II,. In order to eliminate it the following
equalities

o ~ ~ 1 (%k 8F5 J
—qn; +uvng + Ton; + VaVCy?emjké—xjemlml (%i ‘n; =0 (3.48)

must be satisfied. Multiplying the above equation with n; results in a Dirichlet
condition for the adjoint pressure

-~ 1 (%k 8}75 i
«@ ~ 0]
q = umivjnj + Jijnjni + Vau(fy—emjk—emlmlni +

Y al’j 81)@-

whereas multiplying it with ¢/ and ¢! yields BCs for the tangential components of
the adjoint velocity, namely

1 (%k an j
~ o~ 0]
wit{vjng + TGty + ValCy o emj g~ emuituty + —5 %

2 =0 =1,2 (3.50
axj avi nJ 1 , 2 ) ( )

Finally, a zero Neumann BC is imposed on the normal component of the adjoint
velocity.

Non-parameterized Walls

The BC imposed on v along a wall which is not controlled by the optimization
method (i.e. is not parameterized) is a zero Dirichlet type and for this reason 22 is
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equal to zero. However, the gradient of v is not and, so, in order to eliminate II;,

and make % independent of variations in % the following BC is imposed on v,
Va=0 (3.51)
Furthermore g;’; is equal to zero due to the no-slip BC imposed on v;. The BCs

applied to u; and ¢ are written again only for the sake of completeness,

0Fs,, ;
Ufn) = ——;;V “n; (3.52a)
OFs,, i OFs,, 1
“{t>: aTZ_”ktf”j‘FTantﬁm (3.52b)
OF sy, i OFs,, &
Uiy =gt Ty g g (3.52¢)

along with a zero Neumann BC for q.

Parameterized Wall

The BCs for the parameterized wall (i.e. those controlled by the optimization) are
identical to those for the fixed wall boundary. In the present study, the flow variables
variations w.r.t. the design variables are expressed through a material derivative of
b,. The only difference between fixed and parameterized walls are the variations in
geometrical entities, such as the position vector and the unit vector, normal to the
wall, which for a fixed (non-parameterized) boundary are zero. Their contributions
to the SD computation is discussed in the next section.

This concludes the derivation of the adjoint BCs. Proceeding further, the BCs
for the adjoint velocity are modified to account for the usage of the wall-function in
the solution of the primal equations.

3.3.5 Adjoint Wall Functions

In high-Re meshes, where the wall-function technique is used to bridge the gap
between the first cell center off the wall and the corresponding wall face, the dif-
ferentiation of Spalding’s wall function must be included in the derivation of the
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adjoint equations. Consequently, the BCs for the adjoint velocity change into

O0Fs,, ;
Uiy = — I 3.53a
= s, (3.53)
ou;  Ou; OF
ur = (v+w) <3xj " 3xz> nltl:_a%:v’knkt{ (3:53b)
F. F
o OFsy, k tHn'—l—a Sw.k ny tH (3.53¢)

u<t> - aTij k% J 87'1]

for both the fixed and parameterized walls. In the above relation, eq.|3.53alis again

obtained by setting SC? + S’ “n; = 0 and eliminating II,. Eqgs. [3.53bland |3.53¢
result by further developing H and IT,,, differentiating eq. |_1| and combining them.
Eq. [3.53D] is the so-called adjoint law of the wall; this is an indispensable part of
the adjoint system formulation when using wall functions. Using this formulation,
the adjoint viscous fluxes at a solid wall face are computed using the expression
provided by the adjoint friction velocity u,, which depends on the derivatives of the
objective function w.r.t. v;, eq. [3.53b] The differentiation of Spalding’s law yields the
following term,

of 0Fs,, 0Fs,, & Yo
TWF:/ CXVF L ( ugt! + T niting + e nkt5n1> Yi 4
Swp ’U| aTij aTij ob,,
tern;rWFl
Fsy k Fsy SAP
+ / C ( wit! + —2ppting + ktjl-nz) —dS
Swp 87‘ij 0 ij 5bn )
teM;a/Fg
Swo k Fsy & § (nyt!
+/ ( w;t! Yot tfnj + U nktfnz) Tij ( J )dS (3.54)
Swp aTij 87,-]» (5bn
teTTanFg

which is added to the expression for M;bﬂ. Sw, stands for the parameteried wall.
The first integral in Ty, marked as ter%WFl, contains variations in the velocity
components at the cell centers adjacent to the wall. The multipliers of Z contribute
as source terms to the discretized adjoint momentum equations in these cells. The
second (termW Fy) and last (termW F3) integrals contribute to the SD.

3.3.6 Sensitivity Derivatives

Having eliminated all terms that contain variations in the flow variables along all
boundaries, the remaining terms constitute the SD. Consequently, the SD expression
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is greatly simplified to

OF [ ___ 0A O [ Ox on;
5= VWCAECWJF/ (FI + FI}) or; (55 ) dv+/swp FSWP,ZEdS

6(dS) W ; OFsy 1 OFsw kO 0AF
Fs, ni——= C —uit; + ————ngt;n, Fngtin; | ——dS
+/5Wp RS +/Swp . T gy T T, )

OF oF 5
+ / <—uit{ b il 4 Mnkt]f.ni) T (5t) 45 4 7, (3.55)
Swp (97'15 5b

Term Tg is,

oF S(nin.: OF S(Hi!
TG:_/ (_uknk + SWP,k”k”zﬂz) Tij (nm])dS_/ ot ( ])dS
SWP S

or, Ty

OFsy, & o(tieih OF sy, i ott))
B P> tIItH oy ) ds_/ Wp thI tItH Tig < - ———dS
/Swp—anz nyt; t, T]—(Sbn s o ur ( R ) T

(3.56)

The quantities that remain to be computed are

. g;” and 245) along the parameterized boundary
. % for the whole domain

° % <‘§"If—’“> for the whole domain
T n

The fundamental prerequisite for the computation of the aforementioned terms is
the computation of . This procedure is further descrlbed in section ﬁ for two dif-

ferent shape parameterlzatlon methods. Terms gg’ and 299 can easily be computed

since n; and dS are functions of z;. The computation of % (%) is performed us-
] n

ing the discretization scheme for the gradient computation presented in section [2.2]
More precisely, the discretization takes place as

s [
Ve

o (b
/V (FIL + FI%) —— (x’“)dv (FIE + FI%)., L Ve (3.57)

Ox; \ ob

where Vi is the cell volume.
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3.4 Adjoint to the Distance Equation

One way to compute the distance field (i.e. A) is through the solution of the
Hamilton-Jacobi equation [3, [13], more specifically,

d(¢;A) 0?A
RAM= "1 A~ —1=0 3.58
oz O3 (3:58)
where ¢; = %. This equation can be viewed as an additional primal PDE to be

solved, meaning that it should be added to the augmented objective function which
now becomes

Foug=F+ / w; RYdV + / qRPAV + / U R7dV + / A R2dV (3.59)
1% 1% 1% 1%

where A, is the adjoint to the distance field variable. The differentiation of eq.
leads to

5Fuy OF SRY SRP R SRA
_or O gy v+ [ 5% v [ A gy (360
b ob. /V gy, T /V Tsp, T /V Vasp @V /V 5b. (3.60)

and the last term on the r.h.s. of eq. is further developed into

SR o (. 9A\ SA NN
AL gy [ 2.9 (a,02) 02 90202 0 (0% 61
/V * 50, 1V /V oz, ( aax) 5,V " /V 9z, Oy O, <6bn> 4V (3.61)

Keeping eq. as a reference point, in order to make the SD expression indepen-

dent of %, the first term on the r.h.s. of eq. |3.61| contributes to the formulation of

the adjoint to the distance field equation,

A
o2 (8,22 cs =0 )
J J

where the multipliers of % in termW F, (eq. |3.54)) contribute as source terms to
its discretized form at the cells adjacent to the walls. The terms inside the second
integral on the r.h.s. of eq. m are added to F'I ]Tk leading to a final expression for

30



the SD,

0 F d (o on; o(dS
— :/ (FI+ FI}) -— ( mk) dv+/ F,S’Wp,iids—f—/ Fay, it (d5)
1% Swy Swy,

by, dx; \ 0b, dby,

+ / (—uit{ T Mnyﬁm) T (55 Dasi1s (3.63)
. ) y -

3.5 Design Variables and Mesh Parameterization

In shape optimization problems, the design variables control the shape to be opti-
mized (e.g. the duct or airfoil). In the present study, two different parameterization
techniques are employed. In the first method, the target boundary is parameterized
using Bézier-Bernstein polynomials; in the second method a 3D structured lattice,
consisting of volumetric B-splines control points, is used for the parameterization of
the volume (shape and surrounding CFD grid) it encloses. Each method results in
a different way to compute grid sensitivities. This section presents the two param-
eterization methods and, ultimately, the way that gi—’; is computed in each one of
them.

3.5.1 Shape Parameterization Using Bézier-Bernstein Curves

Using Bézier-Bernstein polynomials, the coordinates of the boundary nodes are given
by

=

-1

zp(u) = Co(wbny , k=1,2(,3) (3.64)

i
)

where b, j, are control points’ coordinates, C),(u) the Bernstein polynomials u € [0, 1]
the curve parameter and NN is the total number of control points used. The variation
in the coordinates of boundary nodes w.r.t. to the design variables can be computed

by directly differentiating eq.

Sr,  Ox R —
Tk ko _ — msl l _

(3.65)
Once SD have been computed, the design variables are updated and the parame-
terized boundary is displaced. Laplace equations are then solved to propagate the
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displacement field to the interior of the domain. Consequently, ‘;%’: which is sim-
ply computed on the parameterized boundary using eq. is also propagated to
the interior mesh by using the same Laplace equation model, one for each design

variable.

3.5.2 Volumetric B-Splines

Using a parameterization based upon volumetric b-splines, a 3D structured lattice is
constructed which encloses part of the geometry of interest. An example is shown in
fig. 3.1} The nodes of the control lattice are the control points and their coordinates
are the design variables. The coordinates of the control points are denoted as bL/L

Figure 3.1: Ezample of a 3D structured control box for the parameterization of
a CFD grid using volumetric b-splines. Some control points may be chosen to be
inactive, usually the boundary nodes of the control box, meaning that they are held
stattonary throughout the optimization loop. Mowving the control points located on the
boundary of the control lattice might result to the overlapping of grid elements in the
viscinity of the control lattice boundaries.

where k € [1, 3] and I,J,L. are indices that correspond to the nodes in each direction
of the 3D structured lattice. The cartesian coordinates of the CFD grid, within
the bounds of the control grid, are mapped onto the parametric ones through the
following relation

(1,0, w) = Urpu (W) Vo (0) W o (w)b"" k= 1,2(,3) (3.66)

where U, V, W are the b-splines polynomials in each of the 3 directions, pu,pv, pw
their respective degrees and u, v, w the parametric coordinates defined in [0, 1]. The
values of the polynomials also vary from [0, 1] within the control box and their com-
bination can exactly reproduce the coordinates of any CFD mesh.

At the beginning of the shape optimization loop, the coordinates of all mesh nodes
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are known and for a given configuration of basis functions and polynomial degrees
the corresponding parametric coordinates of each node of the CFD mesh can be
computed by solving the system

rp(u,v,w) —xE =0 , k=1,2(,3) (3.67)

These parametric coordinates (u, v, w) are invariant w.r.t. b,, meaning that they do
not depend upon the design variables and, thus, during each optimization cycle, the
resultant mesh coordinates can easily be computed using eq. |3.66] The computation

of the derivative gbi: is done by directly differentiating eq. [3.66{and following a similar

procedure such as the one described in section , only this time, gi—k is directly
computed for the whole domain.

3.6 BCs and SD for the Test Cases

In this section, the formulation of the primal and adjoint BCs is presented, as well as
the final expression of the SD, for specific cases in external and internal aerodynamics
which follow in chapter [4]

3.6.1 External Aerodynamics

The case concerning external aerodynamics that will be presented in the next chapter

is the maximization of lift and the minimization of drag force acting on an airfoil.
The primal BCs are summed up in table [3.1]

inlet outlet airfoil surface
v; Dirichlet Uy, Zero Neumann 0
P Zero Neumann 0 Zero Neumann
v Dirichlet Zero Neumann 0

Table 3.1: Primal BCs in external aerodynamics. The farfield boundary is split into
parts in which the flow enters and leaves the domain. The former will be mentioned
as the inlet part of the farfield and the latter as the outlet.

The differentiation of the objective function gives contributions to terms in the
adjoint BCs, however, as described by eq. it is defined only along the airfoil
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surface i.e. the parameterized boundary. Thus, considering that

8F57k . aF’SWp,k

87’1-]-

N = —rin (3.68)

the BCs are developed into

dq ~
Inlet : upy =0, ufw:O , ug>:0 , %20 ; Va=0
8u<n> — 1 8"Uk
Outlet : ———=0, q = U@y + 73100 + VeVCy —Cmjk 7 CmiiTuMN;
on 7 Y "0,
v+ Tt 4 TCy i et — 0 1,11
Uy U(n) Nz VoVLy S E€mjk = EmiiTul; = , £ =1, y
(t) i7" Y J axj
~ oV, v
V“anj+0_xj V—f—g n; =0
air foil surface : wpy =—rin; @:0 D=0, ull, =—r;t"
- W(n) o on ) Ya » ) ()
Ou;  Ouy /
u? = (v+u) (axj + axi) n;t! =0 (3.69)

Taking also into account that w,) = —rin; at the airfoil surface, term 7¢; in eq.
vanishes and the SD expression takes the following form

oF 0 [oxy
— = (FI:E + FIT) — [ =&
oy, (F L 1) <6bn>dv

(%Z- an j (S’N,j
—i_/,S"WIJ |i_(l/+ Vt) (813] - 3%) +p51:| rlébnds

81’2‘ an j (S(dS)
+/SW,, [ (v+ 1) (axj + ami) +p51} Tin; 5.

§ (n;t!
- /S (uly +7ly) Tij (65 )dS (3.70)
Wp n

3.6.2 Internal Aerodynamics

The cases concerning internal aerodynamics presented in the next chapter are con-
cerned with the minimization of total pressure losses between the inlet and outlet
of ducts. The primal BCs are summarized in table [3.2l The objective function, as
described by eq. is defined only along the inlet and outlet boundaries of the do-
main. Differentiation of the objective function with respect to pressure and velocity
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inlet outlet wall
V; Dirichlet Zero Neumann 0
P Zero Neumann 0 Zero Neumann
v Dirichlet Zero Neumann 0

Table 3.2: Primal BCs in internal aerodynamics.

yields the following terms (along the inlte and outlet boundaries)

0Fs ;
I =—in, 3.71
ap n; =—v;n; (3.71a)
OFs ; 1
5 5 nj=-— (p + —vi) n;—V;Nj0; (3.71Db)
V4

which in turn contribute to the adjoint BCs at the inlet and outlet patches. The
adjoint BCs are

0 -

Inlet : upy=vin; , ufw:O , ug>:0 , 8—220 , Vg=0

8u<n> — 1 8vk

Otlt :O = Wip\U(p az ac_m'_mi i
utle an y q =Wy >U<>—|—7'Un]n “+ v,V yYe ]kaxje Lnn
1 0
Uiy Vmy + Tt + yauCy—emjkﬂemlmltf
J Y an

1
— (p+—v3n) — vy =0, z=11II,

~ OV, v
Vavjnj+% V+— ndO
J

g
9q ~ big
walls : upy =0, 8_n:0 , Ue=0, u<t>:O
u? = (v+u) <axj + 8;,») niti =0 (3.72)

Taking the above BCs into consideration, in addition to the fact that, in this case,
the objective function is not defined along the parameterized walls, term T in eq.
3.63| vanishes and the latter takes the following form

§ (njt!
A B LA L YR
n 1% SWP

aiCj



3.7 Design Variables Update Methods

In this section, the two optimization methods that have been utilized in this thesis
are succintly described, based on [14].

3.7.1 Steepest Descent

The steepest descent method seeks to find an adequate direction, provided by gTF,

in which to mowve inside the vector space of the design variables, by updating their
values in each optimization iteration, in order to acquire a desired result on the
function F'(b,), be it reducing or increasing its value. Since the adjoint code, that
has been developed by PCOpt/NTUA, incorporates optimization problems as mini-
mization problems, the afforementioned direction will be refering only to a direction
that minimizes F'. In adjoint-based optimization, this direction is provided by (?T};
and the expression that describes this process is

OF
oby,

new __ 1.old
bn _bn -

(3.74)

In each iteration a step is taken towards the direction of the objective function’s
minimization within the vector space of the design variables. An important desicion
to be made is the choice of the value of 7, and this value decides the step length of
the descent. In the current implementation, the choice of 7 is decided by providing
a maximum allowed displacement for the values of the control points b,,. Initially, n
is assumed to be equal to 1 for all design variables. However, once the displacement
of b, is computed (in the first iteration) and if the computed displacement is greater
than the maximum threshold provided by the user, 7 is fixed to less or greater than
1, in order to limit the displacement accordingly. This value of 7 is kept and used
during the rest of the optimization loop.

3.7.2 BFGS

In contrast to a line search method, there are methods that, apart from the gradient
of F', also utilize the second derivative of F', known as the Hessian matrix V%TLF .
The formula that is used for updating the design variables takes the form

old
bnew o bold o 52F - 5F
L A A

(3.75)
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However, the exact computation of the inverse of the Hessian matrix can be very
inefficient and so, in large scale problems, an approximation B,,, is used instead
SF old
ld ~1
5]

nm%

(3.76)

Choosing B, to be equal to the identity matrix yields eq. [3.74] while choosing B,,,
to be an approximation of the Hessian matrix leads to a Quasi-Newton method.
Quasi-Newton methods use an approximation of the Hessian matrix in contrast to
a Newton method which uses the exact Hessian. The BFGS method computes the
approximation By, for every iteration k (the nm index is dropped for simplicity),
using the following equation

BisksiBr Yyl

Byt = By — (3.77)

T T
sy, Bisy, Yi; Sk

where sy = x,11 — 2 and yr = VF, — VFy. Alternatively, the inverse of By can
be computed through the following relation,

Bl = (I—peswyr) Bi' (I — puys si) + prsSesy, (3.78)

where p;, = ﬁ

Practically, the computation of VFj,; is performed by solving the adjoint equa-
tions after updating the design variables. For the very first optimization step there
is no information about the gradient of the objective function and so, a steepest
descent is performed in order to drive the optimization forward. The value of 1 can
be computed through line search methods or using the procedure that includes the
maximum allowed displacement as previously described.
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Chapter 4

Applications and Discussion

In this chapter, a variety of shape optimization test cases is presented, both in exter-
nal and internal aerodynamics. Common characteristic among them is the fact that
all of these cases are turbulent and computations are performed on high-Re meshes
using wall functions. First, the use of the adjoint wall function is illustrated and the
role it has as an indispensable part of the adjoint formulation is highlighted. More
specifically, avoiding the use of the adjoint wall function means that, although the
primal equations are solved by making use of Spalding’s Law, the adjoint equations
are solved using the BCs for wall boundaries provided by eq. instead of [3.53]
Once the adjoint solver’s capacity for computing SD, with relative accuracy, is vali-
dated, shape optimization of an airfoil is performed, targeting lift maximization and
drag minimization. Afterwards, focus is shifted towards internal aerodynamics and
the minimization of total pressure losses in ducts. Shape optimization is performed
on a 2D case and, then, extended to 3D cases.

4.1 External Aerodynamics

The NACA4415 airfoil surface was parameterized using volumetric B-splines, through
the process described in section resulting in a total of 6 x 7 x 3 = 126 control
points from which only 20 are allowed to move in the z and y directions. The
boundary nodes of the control box remain fixed, throughout the shape optimization
loop, in order to avoid the creation of overlapping mesh cells, between the param-
eterized and non-parameterized parts of the mesh, during the mesh displacement
phase. Figure illustrates these points. The mesh consists of 2 x 10° cells, the
farfield flow angle is @ = 3° and the Reynolds number based on the airfoil chord
length is Re = 6 x 10%. Two different meshes of approximately the same size have
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been tested, one with a y* ~ 10 and the other with y™ ~ 50 for the first cell-centers
off the airfoil wall.

Figure 4.1: Parameterization of airfoil surface using volumetric B-splines. Control
points colored in red are the active ones that are allowed to move while the blue ones
are fixed. Flow is purely 2D as velocity components are not solved for the z direction.
Active control points do not move in the z direction. Even though the control lattice is
3D there is no stretching of the airfoil surface, in the z direction and this is ensured
by the symmetry of the basis functions.

4.1.1 Shape Optimization Results

Validation of SD Computation

Results comparing the adjoint method’s capacity for computing SD, with and with-
out using the adjoint wall function, are presented below, in figs. and [£.3] The
objective function is the lift force acting on the NACA4415 airfoil. Omission of the
adjoint wall function results in miscalculation of SD, especially in the x direction,
which happens to be the principal direction of the farfield flow. The contribution
of the adjoint wall function is more pronounced with an increase in the value of y™
from 10 to 50. A grid sensitivity study of the adjoint method is presented in fig. [£.4]
performed on the two meshes with y* equal to 10 and 50.
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Figure 4.2: NACA/415A airfoil, y© =10, Re = 6 x 10%, a=3°. SD computed using
the adjoint method without the adjoint wall function (adjoint no WF), including the
adjoint WF, with the ”frozen turbulence” assumption and using FD; the latter are
considered to give "reference” SD. Derivatives w.r.t. to the x (top) and y (bottom)
coordinates are shown.
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Figure 4.3: NACA4415 airfoil, y+ = 50, Re = 6 x 105, a=3°. SD computed us-
ing the adjoint method without the adjoint wall function (adjoint no WF), including
the adjoint WF, with the ”frozen turbulence” assumption and using FD. Derivatives
w.r.t. to the x (top) and y (bottom) coordinates are shown.
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Figure 4.4: NACA/415 airfoil, Re = 6 x 10%, a=3°. A comparison of lift SD com-
puted using the adjoint method with the adjoint WF, on y* =10 and y*=50. Compar-
ison is made with reference SD computed with FD. Derivatives w.r.t. to the x (top)
and y (bottom) coordinates are shown.
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Lift Maximization

Using the previously validated code, a series of optimization cases are presented. The
first case is dealing with the maximization of lift on the isolated airfoil presented
in section [4.1] and the BCs are outlined in table 3.1 Optimization is performed
using a steepest descent algorithm and the increase in the objective function is
presented in fig. [£.5] Optimization is stopped after the 20th iteration as the goal
of the presented results is solely the demonstration of the adjoint solver’s capability
to drive the optimization in the direction of increasing lift on high-Re meshes. A
comparison of the initial and final shapes, is presented in fig. [£.7 The pressure
distribution in the on the initial and optimized geometry can be seen in fig. [4.6
Lift force is increased by increasing the pressure on the rear side of the pressure side
of the airfoil. For real-world applications, a constraint on the moment coefficient
would have been necessary.

1.7

" airfoil lift ——
1.6 —~

=
15

E 14

< ~

-

= 13 //
1.2

1.1

1
0 2 4 6 8 10 12 14 16 18 20
optimization cycles

Figure 4.5: NACA4415 airfoil, y+ = 10, Re = 6 x 10%, a=3°. Lift maximization
curve. The gain from the shape optimization of the airfoil surface is approximately
65%. The objective function’s value is normalized based on the initial lift value.
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Figure 4.6: NACA4415 airfoil, y* =10, Re = 6 x 10%, a=8°. Pressure distribution
around the airfoil in the initial (top) and optimized (bottom) airfoil geometry. Changes
in the trailing part shape of the airfoil contribute the most to the increase in lift.
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Figure 4.7: NACA4415 airfoil, y* = 10, Re = 6 x 105, a=3°. Initial (blue) and
optimized (red) airfoil surface. The position of the control points (CPs) can also be
seen (bottom) for the initial and optimez configurations.
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Drag Minimization

Shape optimization was also performed for the NACA4415 airfoil, this time targeting
drag minimization. Convergence of the objective function is shown in fig. [4.§
Optimization is stopped after the 20th iteration, again, for the same reasons as
discussed in section [4.1.1 A comparison of the initial and final shapes is presented
in fig. .99 In table the lift and drag coefficients computed on the initial and

airfoil drag ——

0.98 \
096 |\
0.94 \

0.92 \ e
" ‘

0.9
\\\ f
0.88 *'\g»

FL/FLinit

0.86 4
0 2 4 6 8 10 12 14 16 18 20

optimization cycles

Figure 4.8: NACA4415 airfoil, y© = 10, Re = 6 x 10%, a=3°. Drag minimization
curve. The gain from the shape optimization of the airfoil surface is approximately
12%. The objective function’s value is normalized based on the initial drag value.

optimized airfoil, for the two cases presented in this section, are presented.

Ch Cr
Initial 0.0123 0.7099
Lift maximization 0.02488 1.142
Drag minimization 0.01091 0.3692

Table 4.1: Drag and lift coefficients computed on the initial and optimized geometry
for lift maximization and drag minimization.
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Figure 4.9: NACA4415 airfoil, y* = 10, Re = 6 x 105, a=3°. Initial (blue) and
optimized (red) airfoil surface. The position of the control points (CPs) can also be
seen (bottom) for the initial and optimized configurations.

4.2 Minimization of Total Pressure Losses in Ducts

Next, the shape optimization software is tested in duct flow cases targeting minimum
total pressure losses between the inlet and outlet.
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4.2.1 2D Case of a U-bend Duct

The particular case of a 2D U-bend duct flow is investigated. The flow Reynolds
number, based on the inlet height, is Re = 1 x 10° and the mesh consists of 7000
cells with y* ~ 10. Comparison of SD computed with the adjoint method and
FD is presented in fig. The U-bend boundary was parameterized using Bézier
curves, generated by utilizing 6 control points for each side of the parameterized wall
(fig. . Throughout the optimization loop the outermost points on each side
remain fixed. SD computed using the adjoint method complemented by the adjoint

4 1 1 1 1 1 1 1
3+ Nl .
2 | .
1F [l .
x2 O0F .
1 F o ] inner wall
2 F . outer wall
3l m . inner wall CPs [
4 ! outerwallCPs N

Figure 4.10: U-bend duct, y* ~ 10, Re = 1 x 10°. Parameterization of the curved
parts of the walls of the U-bend duct using Bézier curves, separately for the outer and
inner wall. Siz control points (CPs) have been used for each wall. The first and last
control points of both walls remain fixed during the optimization.

wall function are presented in fig. [4.11} Shape optimization is performed, using
the steepest descent method, within 22 cycles (fig. , after which the objective
function values practically stagnate. A comparison of the initial and optimized
shapes of the U-bend duct is shown in fig. [£.13] Pressure losses have been reduced
by 8% and the optimized shape, along with a comparison of the pressure and velocity
magnitude fields between the initial and optimized geometry are presented in figs.
and [4.15] Streamlines indicating the locations of flow separation in the initial
and optimized geometries are shown in fig. [4.16] Flow separation is reduced in the
optimized duct.
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Figure 4.11: U-bend, y© ~ 10, Re = 1 x 10°. SD computed on a high-Re mesh
using the adjoint wall function (WF) compared to FD. The first 8 points pertain to
derivatives of the bojective function w.r.t. the y-coordinates while the remaining points
w.r.t. to the x-coordinates.
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Figure 4.12: U-bend, y© ~ 10, Re = 1 x 10°. Objective function convergence.
Results shown are normalized based on the initial value of the objective function. The
gain from the optimized shape is approximately 8%.
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initial shape
optimal shape

Figure 4.13: U-bend, y* ~ 10, Re = 1 x 10°5. A comparison of the initial (blue) and
optimized (red) shape of the U-bend duct. Close-up view of the parameterized part of
the duct.
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Figure 4.14: U-bend, y* ~ 10, Re = 1 x 10°. Pressure distribution in the initial (a)
and optimized (b) geometry.
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Figure 4.15: U-bend, y* ~ 10, Re = 1 x 10°. Velocity magnitude field on the initial
(a) and optimized (b) geometry.

Figure 4.16: U-bend, y* ~ 10, Re = 1 x 10°. Streamlines focused on the recircu-
lation area of the U-bend duct in the initial (a) and optimized (b) geometry. Flow
recirculation is reduced in the optimized geometry.
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4.2.2 3D Case of an S-Shaped Duct

The S-shaped duct flow was simulated using a mesh consisting of 92000 cells. The
cross-section of the duct is circular, the Reynolds number based on the duct diameter
is Re = 1 x 10° and the average y™ value is y™ ~ 22. The geometry of the S-shaped
duct and the location of the control lattice used for parameterization is shown in fig.
Shape optimization was performed using steepest descent and the convergence
of the objective function is shown in fig. [£.18] The optimization loop was allowed to
run for 19 cycles before mesh quality deterioration prevented further solution of the
primal equations. A comparison of the original and optimized shape of the duct

N

-~

Figure 4.17: S-shaped duct, y* ~ 22, Re = 1x10°. Parameterization of the S-shaped
duct using volumetric B-splines.

is presented in fig. [£.19] The optimization algorithm tends to create bulges on the
overall shape, creating regions of flow separation and recirculation. Figs. [4.20| and
show the difference in the pressure and velocity magnitude fields between the
initial and optimized geometry at the symmetry plane of the duct. Fig. [£.22] shows
a cross-section of the duct close to the outlet illustrating velocity vectors, tangent to
the cross-section surface, in the initial and optimized geometry respectively. This is
an indication of the existence of secondary vortices in the duct. It was observed that
the adjoint equations struggled to converge during certain steps of the optimization
loop and the appearance of unsteady characteristics in the flow could be one of the
reasons for this behaviour. In figs. and [£.24] the adjoint pressure and the z and y
components of the adjoint velocity are presented. It seems that the adjoint variables
take their maximum values in the areas where flow separation occurs (locations with
zero velocity magnitude in fig. 4.21)). This could be interpreted as identifying the
locations in which energy should be provided to the flow in order to avoid flow
separation, therefore reducing pressure losses, and then reshaping the geometry
accordingly to suit this need.
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Figure 4.18: S-shaped duct, y© ~ 22, Re = 1x10°. Convergence rate of the objective

function. After 19 cycles the total pressure losses are by 25% less than in the initial
geometry.
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Figure 4.19: S-shaped duct, y* ~ 22, Re = 1 x 10°. Initial (top) and optimized
(bottom) geometry of the S-shaped duct, shown from different angles. Only the param-
eterized boundary is shown.
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Figure 4.20: S-shaped duct, y© ~ 22, Re = 1 x 10°. Pressure distribution on the
initial (a) and optimized (b) geometry. Slice along the duct symmetry plane.
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Figure 4.21: S-shaped duct, y* =~ 22, Re = 1 x 10°. Velocity magnitude field on the
initial (a) and optimized (b) geometry. Slice along the duct symmetry plane.
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Figure 4.22: S-shaped duct, y+ ~ 22, Re = 1 x 10°. Surface vectors on a cross-
section of the duct close to the outlet indicating the existence of secondary flows in the
initial (left) and optimized (right) geometry.
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Figure 4.23: S-shaped duct, y© ~ 22, Re = 1 x 10°. Adjoint pressure field computed
on the initial geometry. Slice along the duct symmetry plane.
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Figure 4.24: S-shaped duct, y© ~ 22, Re = 1 x 10°. Adjoint velocity components
(a) and y (b) computed on the initial geometry. Slice along the duct symmetry plane.
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4.2.3 Minimization of Total Pressure Losses in an HVAC
Duct

The final geometry that was optimized is that of an HVAC duct of a car (identical
case as the one presented in Karoni 2018 [I5] during her internship in BMW), again
targeting the minimization of total pressure losses in a turbulent flow regime. The
mesh is comprised of 2 x 10° cells, Reynolds number is Re = 13800, based on the
hydraulic diameter of the inlet patch, and a greatly non-uniform y* ranges from
0.3 to 31 along the duct walls. Mesh parameterization is done using volumetric B-
splines with 90 active control points. Design variables were updated using steepest
descent and BFGS. The convergence rate is shown in fig. and, as expected,
BFGS converges faster. The optimization software drives the shape of the duct
towards a geometry where the flow exhibits unsteady characteristics. As a result,
the solution of the adjoint equations struggles to converge. The resulting geometry
of the duct computed using steepest descent leads to approximately 9% less total
pressure losses while the gain is 11% for the geometry generated with BFGS which
reaches the objective minimum faster than steepest descent. A comparison of the
initial and optimized shape is presented in fig. [4.20]

1 '

\__ N 'steepe'st descent —— )
0.99 BFGS —»—
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Figure 4.25: HVAC duct, Re=13800. Convergence rate of the objective function.
The two optimization methods, steepest descent and BFGS are compared.
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Figure 4.26: HVAC duct, Re=13800. Initial (top) and optimized (bottom) geometry.
The cumulative normal displacement field indicates the direction in which the duct
surface points moved, either outwards (red) or inwards (blue).
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Chapter 5

Various Implementation Studies

5.1 Higher-order pressure extrapolation at the wall

In OpenFOAM, a so-called zero Neumann condition is applied to pressure on certain
boundary patches among which are solid walls. This study focuses on solid walls.
The expression describing the behavior of pressure on such a boundary is given by

dp
— =0 5.1
o (5.1)
If the ¢ index denotes a quantity stored at the center of the first cell adjacent to the
boundary wall and the b index a quantity stored at the face of the cell that belongs
to the boundary, then eq. is discretized (with first-order accuracy) as

Do = Pe (52)

meaning that the pressure value on the wall where the zero gradient BC is imposed
is the value of the adjacent cell. This is a zero-order accuracy extrapolation and, as
discussed in [I6], this badly reflects on the velocity vector orientation close to a wall
boundary. With regards to the adjoint equations, this effect may result in high ATC
(transpose convection term) values at the cells close to the wall [16] and as a result
the adjoint equations may diverge. To circumvent this, a first order extrapolation
is used to obtain the wall pressure field. The new BC is

dp
Po = Pe + Ir. A (5.3)

tlc
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where A; is the vector joining the cell center to the face center.

5.2 Test Cases Revisited

5.2.1 The NACA4415 Airfoil Case - Revisited

The NACA4415 airfoil case presented in section is revisited with the inclusion of
the first order BC (eq. . Focus is laid on areas like the leading edge or areas with
increased curvature (the exact location can be seen in fig. as these locations
are expected to actually show a change in the velocity vectors orientation. The
change in the direction of the velocity vectors close to the leading edge is shown in
fig. and, in a different area of the airfoil surface, in fig. [5.2] The zero-order BC
refers to using eq. while the first-order BC refers to eq. [5.3] In what follows, a
parametric study is performed for the SD computations. First, the adjoint equations
are solved using eq. for the adjoint pressure ¢ and then, SD are computed using
eqs. and [5.3| both with the adjoint method and finite differences. The results are
shown in fig. [5.3] No significant difference can be observed between the two cases.
Then, the same study is performed for the adjoint pressure, once solving the primal
equations with eq. for the pressure at the wall and once using eq. [5.3] The
latter are presented in fig. and [5.5] It seems the use of eq. for the adjoint

pressure at the wall worsens the accuracy of the SD.
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zero order BC =
first order BC =

v N

Figure 5.1: NACA4415 airfoil, y© = 10, Re = 6 x 10%, a = 3°. Velocity vectors
computed by applying a zero-order BC' for pressure (blue) compared to the first-order
BC described by eq. (red). The location shown is the leading edge of the airfoil.
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Figure 5.3: NACA4415 airfoil, y© = 10, Re = 6 x 10%, a=3°. SD computed with the
adjoint method, using a zero-order BC on pressure (red) and a first-order BC (blue)
while a zero-order BC is applied on the adjoint pressure (p) at the wall. Reference SD
are computed with finite differences, once using eq. and once[5.3. Control points
move in directions x (top) and y (bottom).
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Figure 5.4: NACA/415 airfoil, y+ = 10, Re = 6 x 105, a=3°. The primal equations
are solved using eq. for the pressure at the wall. SD are computed with the adjoint
method using eq. [5.1] for the adjoint pressure (q) at the wall (blue) and eq. (red).
Control points move in directions x (top) andy (bottom).
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Figure 5.5: NACA/415 airfoil, y+ = 10, Re = 6 x 105, a=3°. The primal equations
are solved using eq. for the pressure at the wall. SD are computed with the adjoint
method using eq. [5.1] for the adjoint pressure (q) at the wall (blue) and eq. (red).
Control points move in directions x (top) andy (bottom).
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5.2.2 U-bend - Revisited

The U-bend case presented in section 4.2.1| with the inclusion of the first-order
BC (eq. [5.3) is revisited. Results are focused on locations with increased surface
curvature and the flow recirculation area, for the same reasons discussed in the
previous case. The change in direction of the velocity vectors is minimal for the
greatest part of the duct walls (fig. . Close to the flow recirculation area though
this new BC influences the velocity field even at a distance from the walls, as shown
in fig. [5.71 The same parametric study as the one described in the previous section
is performed for the U-bend case. The results are presented in figs. and As
is the case with the NACA4415 airfoil, using this BC on the adjoint pressure worsens
the accuracy of the sensitivity derivatives computation. As a conclusion, it cannot

zero order BC =
first order BC =

Figure 5.6: U-bend, y© = 10, Re = 1 x 10°. Velocity vectors computed by applying
a zero-order BC' for the pressure gradient (blue) compared to a first-order BC' (red).
The location shown is the inner wall of the U-bend duct

be said that the first-order extrapolation scheme improved the accuracy of the SD
computations. Also, using the first-order extrapolation on the adjoint pressure yields
poor results. However, this is not a conclusive statement as the effects of the first-
order extrapolation seem to be case dependent. In [I6], in the case presented there,
flow separation occurs in certain areas close to the wall boundary, which appear
only if the zero-order extrapolation scheme is used. This resulted in the generation
of high ATC values that lead to the divergence of the adjoint equations and the
remedy proposed was the use of the first-order scheme. This is not the case for
the results presented herein, as in these examples there are no instances of flow
separation occuring when using the zero-order scheme, that are also removed by
applying the first-order extrapolation scheme.
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zero order BC =
first order BC =

Figure 5.7: U-bend, y© = 10, Re = 1 x 10°. Velocity vectors computed by applying
a zero-order BC' for the pressure gradient (blue) compared to a first-order BC (red).

The location shown is close to the recirculation area, also shown in fig. .

0.004
0.002

-0.002
-0.004
-0.006
-0.008

-0.01

dF/db,,

U-bend, y*=10, Re=1e05
P, Losses SD

1st-orderBConp —— 1
0-order BConp —*—
FD 1st-orderBC =

FD 0-order BC =~ X

control points

0 5 10 15 20 25

Figure 5.8: U-bend, y© = 10, Re = 1 x 10°. SD computed with the adjoint method
using a zero-order BC for the adjoint pressure. The primal equations are once solved
with a zero-order BC' for pressure (p) (red) and then, a first-order BC (blue). Refer-
ence SD computed with finite differences follow the same pattern. The first 8 points
pertain to derivatives w.r.t. the y- coordinate while the remaining points w.r.t. to the
x-coordinate of the control points.
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Figure 5.9: U-bend, y© = 10, Re = 1 x 10°. Parametric study performed for
the adjoint pressure BC while using a zero-order BC for the primal pressure at the
wall (top) and then, a first-order BC for p (bottom). The first 8 points pertain to
derivatives w.r.t. the y-coordinate while the remaining points w.r.t. to the x-coordinate

of the control points.
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5.3 Revisiting the SD Expression

Upon revisiting eq. |3.59| focus is laid on one specific term found in Ty which
originates from the differentiation of the wall function and is written again here for
the sake of completeness,

OFs. . 0Fs 5 (nt!
Tsp = / (—uitf + g tin, ¢ nktlnz) Tij (nsti)
Swp

d 4
(%Z-j 87‘,~] 5bn o (5 )

where the normal and tangential to the wall unit vector components, n; and t!, are
defined as in [3]. From now on, this term will be referred to as Tsp. Following an
analysis of this term, it is safe to assume that it should be close to zero. Since

(5tl Idni
5b —t; 5. (5.5)
5”] _ I&JI'
Jéb =t 55, (5.6)
and (1) 511 5
n;t; t; n;
Tij (Sb] = TN —— 5, —i—TUtZI(S—b] (5.7)

terms ®; and @, in eq. [5.7]can further be developed into, by also taking into account

eqs. and [5.6]

ot! ott ;1 0n; ov; on
(I)l = nkajnjnzéb + tk ki1 tz] (Sb nkajn] i 5b = _2Veff on njt{(Sbn (58)
~——
=0
on; on,; on ov; on;
Oy = thrny, nj(sT:l Tt it = 5. = =t ,Wtjtfab = W,py atj tftféb (5.9)

=0

Terms ®; and @, should both be close to zero, as the normal and tangential velocity
components are not expected to drastically change in the normal and tangential
directions respectively. Thus, term Tsp had, as of now, not been implemented in
the code. However, in this thesis, a hypothesis was made, that the aforementioned
two terms could make a noticeable difference to the SD values in sections of the
flow with increased boundary curvature (such as the curved section of a U-bend
duct). This hypothesis has been tested on the U-bend duct presented in section
and the result is presented in fig. |5.10f The addition of Tsp term does not
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have a noticeable effect on the SD computations.
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Figure 5.10: U-bend, y* =~ 10, Re = 1 x 10°. Ewvaluation of the addition of term
Tsp to the sensitivity derivatives computation.
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Chapter 6

Conclusions

The first part of this thesis is focused on the validation of SD computations with the
adjoint method on high-Re meshes. The adjoint solver has been succesfully tested
on the NACA4415 isolated airfoil, on two meshes with y* values of 10 and 50. On
a yT = 10 mesh, the computations are more accurate when compared with refer-
ence SD computed with FD. Afterwards, shape optimization has been succesfully
performed on the NACA4415 airfoil targeting lift maximization and drag minimiza-
tion. The shape optimization software was capable of handling the two optimization
problems in a turbulent flow solved on a high-Re mesh. For lift maximization, a
constrain on the moment coefficient would be necessary for an industrial application.
Focus was then shifted towards internal aerodynamics, where, this time, shape opti-
mization targeting minimization total pressure losses, between the inlet and outlet
(Ap,), was performed on three test cases, a 2D U-bend duct, a 3D S-shaped duct
and an HVAC duct (automotive industry application). Unsteady flow characteristics
were observed during the optimization loop in both of the two 3D cases (S-shaped
duct and HVAC). As a result, the optimization process was hindered, either due to
an inability for further evolution of the primal equations or divergence of the ad-
joint equations. The gain in Ap, was 25% in the S-shaped duct case and 11% for the
HVAC duct, without though imposing other constrains. An additional problem that
was encountered was the deterioration of mesh quality through each optimization
iteration due to the use of a Laplace model used displacing the inner mesh. During
shape optimization of the HVAC duct, two optimization methods were used, steep-
est descent and BFGS, achieving 9% and 11% reduction in Ap, respectively. BFGS
exhibited convergence at a much higher rate than steepest descent, as expected. In
both methods, further evolution of the optimization algorithm was stopped due to
the divergence of the adjoint equations. It could be likely that BFGS reached the
final geometry, before failing, through taking a slightly different route or by taking
larger steps, generating intermediate geometries that did not exhibit unsteadiness
and were closer to the minimum of the objective function, while steepest descent
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reached a geometry that did not favor further evolution of the adjoint equations
at an intermediate step. Hence the resulting difference in the optimization results
w.r.t. to the minimum Ap,.

The second part of the thesis focuses on various implementation studies for the
primal and adjoint solvers of OpenFOAM. First, a first-order extrapolation scheme
was adopted for the primal pressure at the wall (instead of the zero-order scheme
already implemented in OpenFOAM), and its effects on the SD computations were
evaluated. Reportedly, a higher order scheme for the extrapolation of pressure at
the wall boundary can have a benefficial effect on the adjoint equations convergence
[16]. However, this seems to be case-dependent and mostly pertains to flows where
flow separation occurs and large ATC values appear in the adjoint equations on
cells close to the wall. In the cases presented herein, there was no improvement to
the accuracy of SD computations. Secondly, a study was performed concerning one
term in the SD expression, labeled Tsp in this thesis, that was assumed to have a
negligible effect on the final SD value. This hypothesis was revisited on the U-bend
test case and it seems that this term is in fact close to zero.

Concluding this thesis, the adjoint-based optimization tool, developed by PCOp-
t/NTUA, was capable of handling shape optimization problems in turbulent flows
by making use of the so-called adjoint wall functions. Additional research could
be performed in areas regarding the stability of the adjoint equations and the re-
striction of the optimization process to generating geometries that keep the flow in
steady state conditions.
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Appendix A

Pressure-based Solution Algorithms

A.1 SIMPLE Algorithm

In SIMPLE, the semi-discretized momentum equations are written down for the cell

with index P as
NB(P)

P
apUp; = ONUNG — 7 + bl (Al)
Ne1 83:@

where ap and apn are discretization coefficients that result from the discretization
of the diffusion and convection terms, b; denotes any source terms that may appear
in momentum equations and NB(P) symbolizes the adjacent cells to P.

SIMPLE is a segregated algorithm which means that the momentum equations are
solved separately from the continuity equation, yielding an intermediate velocity
field denoted as vf. This tentative velocity field is computed using the existing
pressure field, denoted as p* and, at this preliminary stage, it does not satisfy the
continuity equation. So, the semi-discretized momentum equations are written again
as

NB(P) op*
apUp; = Z QANVN,; — . + b} (A.2)
N=1 !

Solving eq. [A.2] a predicition for the velocity field is derived

on*
O./p’U;Z» = HPJ' - % (A3)
where
NB(P)
Hpﬂ' = Z OéNU}kVJ-—i—b: (A4)
N=1
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Let us assume that corrections v; and p  should be superimposed on the velocity
and pressure respectively, so as to satisfy the continuity equation,

no (A5)
p=p+p

Subtracting eq. from and assuming that corrections of the source are
negligible. the following equation is derived for the correction fields,

!

NB(P) op
ozpv;;’i = Z ANV ; — (A.6)
N=1

Oz,

By further assuming that the first term on the right-hand side of is negligible,
compared to the pressure gradient, a more simplified expression results in

’ 1 ap/
= A7
Upi ap 0x; ( )
Then, by combining eqs. [A.7] and we arrive at
v, v o’
_— = 0 :> —‘7 frg ——'7 A8
8xj al’j 8a:j ( )

By substituting eq. [A.7 into eq. we get

o (1 0p o (1 1 op* o (10 o (1
O (Lo 0 (L Loy 0 (L op_ 0 (1,
Ozr; \ap O0x; Orj \ap ap 0x; Ozr; \ap O0x; Or; \ap
(A.9)
which is a Poisson equation for pressure. Integrating this equation over a cell P with

Ny faces yields

Ny Ny

S 1 dp
ZUfijﬁj = Z f— (—S]> (AlO)
=t =] Ox; f
where 1
TA)p’j == —Hp’j (All)
ap

Note that all of the above quantities are defined at the cell faces and are computed
by interpolating the equivalent values of the adjacent cell centres with the exception
of the normal directional derivative of pressure on the RHS of eq. [A.10]
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The final pressure field is obtained by solving eq. [A.I0] Subsequently, the velocity
field is corrected by

Vpi = VUp; + v;{i =
. 1 op* 1 9p
Vp; — Up; — — _
b b ap 8902 ap 83%
1 dp
P P ap O ( )
As a final step, the volume flux nis is computed as
) — 1 (0p
ch = ’Uf’]'SfJ = 'Uf’ijJ' — (a—S]> (A13)
ayp \0Z; ¥
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Touéag Pevotov

Movdada ITapdAAnine YPA & BeAitiotonoinong

Yuveltocgoed otn Xuveyn 2uvluyn Medodo pe E@apuoveg
otn BeAtiotonoinon Mopgpwyv o TugBhdeic Pogg

Extevric meplindn yetantuylaxhc epyaciog
“AIIMY Trohoyiote Mnyavir”

OcpuloToxAng Lnopdyxng

EmufBiénwy: K. X. Tavvéxoyrov, Kadnyntic EMII

Adrva, Tavoudproc 2019
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Ewcaywyy

H petamtuyton epyacio amooxonel otn diepebvnon xou emakfidevon Tou xwdwxa Be-
Tiotonoinong, Paciopévou otn uédodo cLluY®Y UETABANTGY, TOU AVUTTUCCETAL ATd
v MIITPB ce tupBndelg pocg, oL omoleg emALOVTL O xUTdAANAAL cpond TAEYHOTAL
xdvovTag yenon cuvapTroewy Tolyou. Eugacr divetar otny oxpBeta Twv TopoydYoY
evatoUnolag xou TNV AMOTEAEOUATIXOTNTA OTNY EVEEST) BEATIOTOU oY AUATOS, TOGO O
TeoBAAuaT EEWTERLXAS OGO XAl ECWTERIXNC AEEOBLUVOXTC. AEUTEPELMY GXOTOC Elval
1 GUVELGPORA GTOV XMOWE GLLLYOUG UeVEO0UL Ue 0ToYO TN Pehtivon Tng axpifelag Tewv
TOEUY WYLV guonoinoiog.

Awatinworn Xvluyowyv Eicwoswy

Agetnpla yio Ty elorywyt| Twv ouluyoy eEloMoEnY eivan 1) LordnuoTixy SlaTiTwoT Tou
TEWTEVOVTOG TEOPAAUNTOS, BNAdY Twv e€lowoewy porg pall ue to poviého topPng
Spalart-Allmaras, ot onolec givou

vy

Rr=
&vj

=0 (A" 14a)

dv; 021]-)} N dp

hi = ]890] (?xj [ v +w) ( +(?xi ox;

R = jax] aij 38%] C(’f (5—2) —TP@)+UD([)=0 (A.l4y)

D(c;A) A
- A -1 A48
0$] dx? ( )

J

=0, i=1,2(,3) (A.14p)

R® =

OTOL V; N TUYUTNTU TOU PEUCTOU, V ElVol 1) CUVEXTIXOTNTA, V4 1) TUEBWONG CUVEXTI-
AOTNTO YO P 1) OTATT| TTiETT) BlotEeUEVn Ue TNV TuxvoTnTa Tou pevotol. H aveldptn
UETABANTA Yo TNy omola eMAVETL To YOVTENO TUEBNG Elval 1 7 xou GUVOEETOL PE TNV
rupﬁd)&q ouvaxnxémw péow vy = Ufy (BN xe@dhao . H petaffintq A ebvan 7
omocwon TOU ®EVTPOU EVOC XeAOU amd Tov TAnoléctepo Tolyo. H eliowon [A”.146]
etvau 1) e&lowon Hamilton-Jacobi [3] érmou ¢; = gTA. H nopouciacn tng &oc‘cumoong
ToU 6LLLUYOUC UG TAUATOS ECLOMCENY oxohoLVEL Uiar YeVixeuuévn uedodoroyio. Emel-
07) Ol AVTIXEWEVIXEC CUVAPTHOELS, TIOU apopolV OTo TEOPAAUITH TOU TapouGALovToL
o€ auTh TNV epyacia, 0pillovTal WS EMLPAVELINE ONOXANPOUATY, OE GUYXEXPUEVA (XaTd
nepintwon) opta Tou yweiou, viodeteltar 1 ToEOXETE EXPEUoT

s
omoL n; To povadiaio xddeTo e Qopd TEog Tar €€ BLdvucU GTNY ETLpavELa S xon Fig;
ONOL OL OPOL TIOU BEV TEPLEYOLY YEWUETEIXEC TOCOTNTEC. DTN CUVEYELX, XOUTUO TRMVE-

TOL Lol EXPEACT] IO TNY ETOUENUEVT] AVTIXEWWEVIXY| CUVAETNGT Fryy, OE00OUEVOL OTL Ta
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UTONOLTOL TV EELOOOEWY efvon undév petd tnv enihuon e pofc,
Fag=F+ / wRYdV + / gRPdV + / DL R7dV + / A RV (A".16)
v v v v

Eexwvovtog e t dagpdpton e e&lonone xa v ouveyelo, VETovTac Toug ToMNO-
TAAGLAC TEC TOV UETAB0AMY TOV POIXGY PETUBANTOV WE TEOC TIC UETABANTES GYEBLAGUOD
foouc pe undév, mpoxintouy ol culuyeic Tedlaxés elOMOELS

Ri=—_—1=0 (A".17d)

R "an, ox, {@*”t) (axﬁaxi)] o

_ a% <mcyéemjkg—“’;emhail> +@§—Z ~0 (A.178)
St (30, 00) W3a) 1550 [0 (,5)

%a% {@5—2] DOy Dyb(—P + D) =0 (A17Y)

RA= :—za%j (Aag—i) + 70,Ca (A".17%)

Ou avtioTouyeg oploxés cuviixeg mapouotdlovtol 0To xUPlKG XelUEvo (O‘mv oYy At
YAOooo) xo Topoeimovta yia Aoyoug ouvtoplag. H tedind éxgpaon twy mopaydywy
evatoinotag etvan 7

6 F g L N A
— = (FIL + FI}) — [ =
oby, /V( i+ FL3) oz, (6bn)dv
+ / FSWp,i%dS_’_ / stp,m~M+TWF+TG (A”.18)
Swp

omou Sy, elvon To apaueTpoTonuEvo 6plo. O bpog Ty p 610 0l uéhog tng <.
TpogpyeTal amd TN SLPdELoT| TwV UVIETHOEWY Tolyou. O épot T xan Ty p etvan,

OFsy, k 5(nin;) OFs,, » S(t1eh)
To=— — P’ L) 2 dS — P> Il il
G /Swp( U + o7, NN ) Tij 5. /Swp B nt £, 7ij 5.

anW k (5(25»”151-1) 0Fg. & 5(thI-)
_ P> thH y v ) ds_/ Wp> thI tItH » 7] ds
/SWP om. T g, o, e ) gy

(A”.19)

N
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k Sk IAF
TWF:/ cYE (—ultf T pting + e nktjfnl) as
Swy Tij I 0by,
OFsy, & Sy ovF
—|—/ 20,CWVF L <—ultf T nkti[nj + ek ktjlnz) LS
Swp ‘ | 87'@7 (9 ij (5bn

0Fs,, & 0Fs,, & § (nstl)
—ut! + T iy Ty ) g A’20
—l—/SWp ( uit; + o7 nit;n; + o7 ngtin; | 7i; 5, ( )

Axpifeia twv Iapaynywy Evacinoiog

H emixdpwon tou ouluyoie emhitn €yive oe pio agpotoury NACA4415. To mhéyua
amoteheiton and 2 x 10° xehd, 1) ywvia tne en'dnepov poric etvar v = 3° xou 0 optdude
Reynolds Re = 6 x 10°. H TOPUUETEOTOINGCT TNG YEWUETEIOC EYIVE UE OYXOUETOIXES
B-splines xau o mAéyua eréyyou gaivetar oto Lyfuo [A7I} O napdywyor euacinoiog
Tou unohoyioTrxay Ue TN oLLUYY PEV0O0 CUYXEIVOVTUL UE TORAYEYYOUS OVOPORAS TTOU
€youv unoloyloTel ue menepacpéveg dapopes. H (B epyaocia Eyve oe 0o TAEypaTa,
évape yT = 10 xou éva pe yt = 50 (0 apriudc Tov xehdv Tapouéver tepitou 2 X 10°
xou ot 600 TAéyuata). H avtixewevixr cuvdptnon eivor 1 80vopn dvwone mou aoxeitot
otnv acpotouy|. To anoteréopata Topouctdlovial 6To My fud

YyAuo A'.1: Iapapetporoinon mAéyuatos yUpw amé Tny aepoTops) UeE OYKOUETPIKES
B-splines. Ta onueia eAéyxov ue kokkva xpopa €lval evepyd kail emgpénetal 1 Kivnon
TOUS €vc) avtd Tou €lvar onuatodoToUpera e UTAE ypapa napauévovy otalepd. H pon
elvar auiyids 2A kalag dev yivetar emidvon tng taxyUtntas w§ Tpog Th Z ouvioThoa.
Ta evepyd onueia eAéyxov Oev petakivolrtal katd tn z katevuvon. Ilapétt to mAéyua
eAéyyou elvar 3A dev ouuPaiver otpéfAwon tng empdveias tns aepotouns katd T z
dievfluvon yeyovos mov e€aopaliletar ané tn ouupeTpia Twy ourapTnoewy PAorng.

81



0.025 p=

Adj. y*
0.02 | Ad.y,
FD y* |
0015, FDy =50 X ... X
0.01 oo B — g -
£ 0005fF i T — | X ]
S
S5 0 e | |
0005 fF AR 1 S - — ]
0.01 fo — ‘ ‘
0015 fF T— T—
-0.02 b ‘
50
0.4 = ' : : :
T e
0.2 f T— ‘ ‘
g
S 01 T
LL : H :
° 1 :
0
.
-0.1 F ¥+;é8
FDy* =10
FDy* =50
0.2 L i
50 55 60 65 70 75

control points, y direction

SyAna A%.2: NACA4415, Re = 6 x 105, a=3°. Xlyxpion mapaydywr evaicinoiag
i d0vaun dvwong vrodoyildueves ue tn ovluyry pédodo, ya y*=10 ka y*=50. H
oUyKkpIon) YiveTal e Tapaydyous avapopds mov €Yoy UTOAOVIOTEL € TeTepacéves oia-
popés. Ta onueia eAéyyov petaxwodvtar mpos otig katevdivoeg ¢ (dvw) kar y (kdtw).
Yo apaid mAéyua, n akpifela twy Tapaydywy evaioinoiag eivar xepotepn.
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BeAtiotonoinon Mopgg e Xpnror tng Yuluyodg Medddou o ESw-
tepuxr) Agpoduvapixy

H aepotopry NACA4415 Behnotomouinxe pe yerion tng ouluyois pedodou ue otdyo
v PEYto Tt SOvaun dvwong vy yT=10. H nopeia tne obyxhiong goivetoa oto Ny
EV( 0TO YN ouyxplvovton 1 opytxh xon 1 TENX LopP TG AEPOTOUAC.
Hopatnewvtog to nedlo g nieong (BA. ZXY’WO(, elvor Qovepd OTL 1) AVKOT) TEOXAA-
Aelton amd To Tow YEPOC TNG BEPOTOUNS, YEYOVOS TOU oruolveEL OTL o€ uiot Bloumnyavixn
nepintwon Yo émpene v emPBAnlel emmhéov TEPLOPLOUOS WS TPOG TN EOTH YUpw ot
Tov d&ova Tou elvor xdHETOC 0TO ENUMEDO TNG EMPAVELNG TOU ameElxoVI(ETaL GTO Ly ua
[A”4] Avtiotoiyn Pehtictonoinon éyve xou yia ehaytotonoinon g omodérxoucag, 1
Topouciacy tTng onolug TopaAslteETAL €66 Yot Adyoug cuvTouiag.

1-7 L) L] L] llf '|l|'ft T T
alrtoil i —'—/I-
1.6
/r—-o/‘—-4
1.5

1.4 /

13F / ,,,,, B —
1.2

/
1}/

1

FL/FLinit

0 2 4 6 8 10 12 14 16 18 20
optimization cycles

SyAwa A’.3: NACA4415, y© = 10, Re = 6 x 105, a=3°. Meyoronoinon avwot-
kns ovvauns - Ilopeia ovyrkhions tng avuikeiuerikng ovvdptnons. To képdog amd T
Bertiotonoinon oxrjpatos eivar mepimov 65%. H tyur) tng avtikepuevikng ovvdptnong
kavovikormoleitar Bdoel TnS apx1kNS TS TIUTS.
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Initial shape
Optimized shape

Fixed CPs o
. . . . . . .
. .
m
. .
. .
. . . . . . .

Syhuo A’.4: NACA4415, y© =10, Re = 6 x 10%, a=3°. Apyix1j (unAe) ka1 férniotn
(kéKkKkwo) emgpdvea aepotounis. Or Béoeig twy onueiwr eAéyyou paivovtal ya TNy apxik)
ka1 tehikn) GidTaén.

Pressure (m2/s2)
-2736 -1000 O 1000 2736

s |

SyAuo A’5: NACA4415, y+ =10, Re = 6 x 10%, a=3°. Katavoun ricong ylpw ard
Y aepotouri otny apxikn (dvw) ka Bédtion (kdtw) yewpetpia. H avénon otn dvaun
dvwong Tpoépxetal ané o mow UEPOS TNS AEPOTOUTS.

BeAtiotonoinon Mopgrg pe Xpron tng Xuluyols Medddou o Ecw-
Tepixr] Acpoduvauixi

Hporypoatomolinxe eAdyLOTOTOMOT OMXDY ATWAEWDY TECTC OE TEELS OLPOPETINES TiE-
EIMTOOoELS, evog 2A aywyol oyfuatoc U, evog 3A aywyol oyfuatoc S xo evéoec HVAC
aywyoU. Xdptv cuvtoplag, TapouctdlovTon To anoTEAEoUATY U6vo and Tn BeATioTonoin-
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1

ng —+—

882 \ steepest delegceB| St ‘
097 b N
0.96 |\ N\

g 095F LN

K-V S T N s s T
0.93 | ]
092 e e e e -
oot b L T
09F N
0.89 ‘ ‘ ‘ ‘ ‘

0 2 4 6 8 10 12
optimization cycles

Exua A’.6: HVAC duct, Re = 13800. Ilopefa oUyrAions tng avtikelpevikng ov-
viptnons Ap,. O1 Vo péfodor BeAtiotonoinons cuykpivortar w§ mpog tny tayvTtnta
ovyikhiong. H BFGS eAayiotonoiel tny avtikelpeviky ovvdptnon ypnyopotepa ard ot
1é0060s NG anérouns kaédouv (steepest descent).

on mou eqopuéotnxe ctov HVAC aywys. H olyxhion tng aviixewevinic ouvdptnong
TOEOUCLALETOL GTO My AU . o ) Behtiotonolnorn yenoyorotinxay dVo pédo-
oot, 1 péYodog tng amdToung xadédou xou ) BEGS, o obvtoun neprypagr twy omolnvy
yiveton oTo uTOXEPIAALO . H cOyxplon tne apyhc xon tng TEMxAC YEwUeTplag Ta-
pouctdleTon 0TO Ly AU .
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fid

< —K
Cumulative Normal Displacement
-0.013 0 0.013

_—

Iyhuo A'.7T: HVAC duct, Re=13800. Apxikrj (dvw) ka1 Bértiotn (kdtw) yewpetpia.
H aOpootixn kdletn petaténion vrodeikrver tn dievluvon katd tny onola petakiveital
n emgdveia Tov aywyol, €fte mpog to €Ewtepikd (kokKkvo) €fte TPOg To €0WTEPIKS (UTAE).
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Yuvewogopég oty Ilepatépw Avantugr tou Koduxa

Emuniéov twv ¢ thpa TopouctalOUeEVmY anoTEAECUAT®Y EYve Uia Slepebvnorn Tov
OLVATOTHTWY ETEXTACTC TOU UPLO TAUEVOU XOOLXA UE UTOTERO 0X0T6 TNV BeAtinon Tng
axpBetag twv tapaywywy euvaoinciag. H mpodtn diepedvnon agopolos otny eap-
woyn plog meodtne tédng axplBelac mpoexBoinc Tng mieong amd To ®EVTPo Tou xEAOD
oimha otov Tolyo endve otov Tolyo. To OpenFOAM yenowonotel undevixrc tééng
oxpifetac npoexBolt (e&. xou, ot BiBAoypapia [16], €yer avapepdel nwe, avdhoya
e Tic oLVIrxEg porig, auTd UTopel Vo empépel BUoXOAES 0T oUYXAOTN TwV GULLYGOVY
e€lothoeny Aoyw vhnioy oy ATC xovtd otov tolyo [16]. H opoxr ouvidrixn mou
EPUQUOC TNUE TEQLYPAPETOL amd T OYEo

Py =pc+ o A; (A”.21)

ﬁa:i c
omou py ebvan 1) tleon endve oTov Tolyo, pe N T NG Tieong 6To Papixevipo Tou xe-
AoV, TTou €yel w¢ optoxy| ““pdTon’’ Tov Tolyo, xon A; TO BIAVUCUN TTOU EVEIVEL TO XEVTEO
ToU xeMOU ¢ e Tov Tolyo. Ta anoteréopoto amd TNV EQUPUOY T AUTNS TNG OpLoxG GUV-
Vxng g meog TNV axpifela Twv Topory @YWy evatotnciog xon Tou apopoly TAPNYWYOUS
NG BLYAUNG dVKONG AVAOEXYIOVTUL GTO Oy . To amoteAéoyota TEOEPYOVTAL
OO TNV TUPUUETEIXY UEAETT] TOU TEQLYQUPETOL AVOAUTIXOTEQU OTO XEPIANLO [D] xou €-

papudbotnray oty oepotouy NACA4415 vy y+ = 10.

Hapdhhnha, Siepeuvidnxe 1 enidpact Tou Tapaxdte 6pov, etovoualouevou we Tsp, o
omolog TEQLAUPAVETOL OTNY EXPEAOT] TWYV TOEAY YWY ELXcUNGCIAG xou TEOEpyETAL UTd
1 DLPOELOT) TV CUVAPTHCERY TolyYOoU

0 (njt;)

—ds  (A22)

O0Fs,, O0Fs,,
TSD = / (—uitf + a—%nktfnj + a—%nkt]Im) Tij
Swp Tij Tij

Apyxd elye vnotelel mwe o dpog autodg Vo €yel OYedOY UNBEVIXY) CLUVELC(PORPE OTIC
Toparywyoug evancinotag (Bh. xe@dhoto [B)) duwe oe yewuetpleg Twv onolwy To To-
CUUETEOTIOLNUEVO OPLO TUEOVGLACEL AUENUEVT XOUTVAOTNTY, OTWS 1) TERITTKON Tou o-
yYwyol oyfuatoc U, Yo uropoloe auty| 1 unédeon va unv toyvet. H unddeon auvth
ENAVEEETAG TNXE XAl TOL AMOTEAECUOTA TOPOUGLALOVTAL GTO Gy T
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NACA441 5,Sy+=1 0, Re=6.€06, a=3°
Lift SD in x direction

0.02 p= : ‘ ‘
0.015 fF T — — -3 — e -
001 f I —— | — —— -

0.005 |- . — L — 20— ]

dF/db,,
o

-0.005 fios R [ . o )G
: x
-0.01 | 0-order B€onp =+ |\ S 1
1st-order BC'on p :
-0.015 f FD, O-orderBConp m g e 1
FD, 1st-orderBConp X :
-0.02 d d A A
50 55 60 65 70 75
control points, x direction
NACA441 5,Sy+=1 0, Re=6.e06, a=3°
Lift SD in y direction

0.35 p=r ,
03} f
0.25
0.2
0.15
0.1
0.05

dF/db,,

-0.05

-0.1
015 Lk FD, O-ordemBC onp m
6 > L FD, 1st-order BConp X

50 55 60 65 70 75
control points, y direction

SyAua A'.8: NACA/415, yT =10, Re = 6 x 10°, ¢=3°. Hapdywyor evaionoiag rov
éxovr vnodoyotel pe tn ovluyn pédodo. To mpwtelov mpoPAnua éxer Avlel xpnoipo-
rowdvtag undevikng tdéns (Umie) ka1 mpcTng tdéns (kékkivo) mpoekfolr ya tny wieon.
Iapdywyor evaioinoiag mov éxovy UTOAOVIOTEL 1€ TEMEPAOTLEVES BlaPOPES Kal A€rtoupyo-
Ur wg éva erimedo avapopds axolovdody o 610 potifo. To medio ovluyols mieong éye
unodoyiotel xypnoponowdvtas npoekfoAn undevikng tdéng. Ta onueia eAéyyouv agopody
™ x dievdurvon (dvw) ka1 T y Sievduvon (kdtw).
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U-bend, y*=10, Re=1e05
0.004

0.002

-0.002

dF/db,,

0004 | e rrrrrrrrrrrrrrrrrrr -
-0.006 ‘ ‘ ‘

| adjoint i—-—
-0.008 'l """""""" A adjoint no Tgp —»—
1 FD

; |
_001 | 1 1 1
0 5 10 15 20 25

control points

SyApe A’.9: U-bend, y© ~ 10, Re = 1 x 10°. A&woAdynon tns owveiopopds tou dpou
Tsp otov vmoAoyioé twy Tapaydywy evaioinoiag.

Yupnepdopata

To mpwto TuAUa TN epyaciag alep®InXe TNV ETXUEMOT] TOU XOOLXA W TEOS TNV
axplBeta TV TapaydYwy cvaoUnolug xo TN BUVITOTNTA EXTEAEOTG ETUTUYNUEVODY
Beoywv Beitiotomoinone o TupBwdelc poéc mou emhbovtal ot apoud TAEypoata. Ot
ueRéTeC TERIMTWONG TOL EETAC TNV HTAV: 1) EAUYLOTOTOMOT OTUGVEAXOUCAC XAl 1)
UeYloToTOlNoN ToL GLVTEAESTH dvwong o i NACA4415 xou 1 ehayiotomoinorn okt
xOV anwhewdy tieong Ap, oe évay 2D aywyod oyfuatoc U, évav 3D aywyd oyruatog
S xou évay HVAC aywyd. Ytny NACA4415, 1 axp{lela twv mapaydywy cuotcinciog
@Oiver and yT=10 oe yt=50. H Pernotonoinon éyve o mhéypa pe yT=10 xou oy
ETUTUYNC YL TIC BVO AVTIXEWEVIXES GUVUPTAGELS, BveaoTn xou oo ¥éAxouoa.

YTIC MEQIMTWOELS EOWTEPIXAC UEQCODUVOXTC TOU €EETACTNXAY, O XWOXAUS XUTAPERE
ue emiTuylo Vo TopdEel YEWUETPIEC OTIC Omoleg 1 amwAELES OAXTC Tiieong Uetdinxay.
Y1ic 3A nepntidoele, 10 x€pdog and TN Bedtiotonoinon fray 25% otov aywyd oyfuo-
to¢ S xat 9% N 11% otov HVAC oywyd, avdhoyo ye ) wédodo Bektiotonoinong
Tou yenotonoinxe, frol andtoun xdodog  BFGS. Ilopatnerinxe duoxohio otn
oVOYxhoT TwV cLLLY OV EELCWOENY UETA a6 OPIOUEVOUS xUXAoUE BedTio ToTolnoNg, 1) o-
ol Suoxohio ogelletan xotd TdoU THUVOTNTU GTNY EUPAVIOT) UN-UOVIUGY TEDBIY POTC.

270 0e0TEPO UEPOS NG EpYaolag EYLVE OLEpELYNOY TNG BLVUTOTNTOG EMEXTAUONS TOU
xwoxa pe 0Toy0 TN Bedtioon tng axpifelag Twv mapaydywy evacdnolac. H oplo-
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x1) UV AT TTIOL EQUPUOCTAXE YLl TNV TEOTNG TAENE axpifBetoc mpoexBohy| tng mieong
0TOV Toly0 eCETACTNNE WE TEOC TNV ETOEACT TOU EYEL OTNY OXEIBELN TV TR WY WY
evatodnotac. Ipoximtel duwe cuuTEPUOUTIXG Twe OEV €yEL eTidpacT oTny axplBela
autwyv. To (Bo oylel xou vy Tov 6po Tgp movu, 6mwe cLlNTAUNXE, EYEL UNdUULVA
enidpaon o1 SLPORPKCT TNG TS TWV TOEAYWYWY EvatcUnciog.
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