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Abstract

This thesis addresses multi-dimensional Uncertainty Quantification (UQ) problems,
tested with up to 50 uncertain inputs—by programming and assessing two cost-
effective, sparse, regression-based Polynomial Chaos Expansion (PCE) methods:
Orthogonal Matching Pursuit (OMP) and the Effective Sampling via Coefficient-
Adaptive Polynomial Expansion (ESCAPE). For problems with more than five un-
certain inputs, projection methods (even in their sparse variants, like Smolyak grid)
and regression-based Non-Sparse PCE (NSPCE) with oversampling ratios (around
3:1) become prohibitive due to their cost. Therefore, this work focuses solely on
sparse regression methods, namely OMP and ESCAPE. Both rely on iterative least
squares regression, to construct a sparse polynomial basis, by progressively selecting
the most relevant polynomials using different selection indicators. This approach
allows for undersampling, reducing the number of function evaluations compared
to the total number of non-sparse polynomials, while updating their coefficients
to minimize the residual error. The two methods are described both theoretically
and algorithmically, and the corresponding software has been programmed in C++.
OMP sparsifies the polynomial basis by iteratively selecting the most correlated
polynomials with the current residual (i.e., the one forming the smallest angle with
it), and then orthogonalizing the residual with respect to the selected polynomials.
This MSc thesis proposes ESCAPE, a novel sparse PCE method inspired by exist-
ing approaches. ESCAPE iteratively builds the sparse polynomial basis by filtering
polynomials according to the magnitude of their least squares coefficients, starting
from a small initial set of samples and adaptively adding more as needed to en-
sure a well-posed least-squares problem. To evaluate these methods, they are first
tested on two pseudo-engineering problems, followed by three (internal and external)
aerodynamic cases, simulated using the OpenFOAM CFD solver.
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Περίληψη

Η παρούσα διπλωματική εργασία ασχολείται με προβλήματα Ποσοτικοποίησης Αβεβαι-

ότητας (Uncertainty Quantification, UQ) σε πολυδιάστατα συστήματα, μελέτες που
περιλαμβάνουν έως και 50 αβέβαιες εισόδους — μέσω υλοποίησης και αξιολόγησης

δύο αποδοτικών μεθόδων αραιής παλινδρόμησης βασισμένων σε Ανάπτυγμα Πολυω-

νυμικού Χάους (Polynomial Chaos Expansion, PCE): την Ορθογώνια Αντιστοίχιση
(Orthogonal Matching Pursuit, OMP) και την Αποτελεσματική Δειγματοληψία (α-
ραιού) Πολυωνυμικού Αναπτύγματος Προσαρμοζόμενο μέσω Συντελεστών (Effective
Sampling via Coefficient-Adaptive Polynomial Expansion, ESCAPE). Για προβλήμα-
τα με περισσότερες από πέντε στοχαστικές εισόδους, οι μέθοδοι προβολής (projection)
(ακόμη και σε παραλλαγές αραιού πλέγματος πχ: Smolyak) και η μέθοδος βασισμένου
σε παλινδρόμηση, μη-αραιού PCE (Non-Sparse PCE, NSPCE) με λόγους υπερδειγ-
ματοληψίας (περίπου 3 : 1) καθίστανται υπολογιστικά απαγορευτικές. Η εργασία αυτή
επικεντρώνεται αποκλειστικά σε μεθόδους αραιής παλινδρόμησης, συγκεκριμένα στις

OMP και ESCAPE. Και οι δύο βασίζονται σε επαναληπτική παλινδρόμηση ελαχίστων
τετραγώνων για την κατασκευή αραιών πολυωνυμικών βάσεων, επιλέγοντας προοδευ-

τικά τα πιο σχετικά πολυώνυμα βάσει διαφορετικών δεικτών επιλογής. Αυτή η προσέγ-

γιση επιτρέπει την υποδειγματοληψία, μειώνοντας τον αριθμό των αξιολογήσεων της

συνάρτησης σε σύγκριση με τον συνολικό αριθμό των μη αραιών πολυωνύμων, ενώ ε-

νημερώνει τους συντελεστές τους ώστε να ελαχιστοποιείται το σφάλμα υπολοίπου. Οι

μέθοδοι αυτές περιγράφονται τόσο θεωρητικά όσο και αλγοριθμικά, ενώ το αντίστοιχο

λογισμικό προγραμματίστηκε σε γλώσσα C++. Η μέθοδος OMP αραιώνει την πολυω-
νυμική βάση επιλέγοντας επαναληπτικά τα πολυώνυμα που παρουσιάζουν τη μεγαλύτερη

συσχέτιση με το τρέχον υπόλοιπο (δηλαδή σχηματίζουν τη μικρότερη γωνία με αυτό),

και στη συνέχεια ορθογωνιοποιεί το υπόλοιπο ως προς τα επιλεγμένα πολυώνυμα. Η
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μεταπτυχιακή εργασία προτείνει τη μέθοδο ESCAPE, μια νέα προσέγγιση εμπνευσμένη
από υπάρχουσες τεχνικές. Η ESCAPE κατασκευάζει επαναληπτικά την αραιή πολυω-
νυμική βάση φιλτράροντας τα πολυώνυμα σύμφωνα με το μέγεθος των συντελεστών

τους από τη μέθοδο ελαχίστων τετραγώνων, ξεκινώντας από ένα μικρό αρχικό σύνολο

δειγμάτων και προσθέτοντας προσαρμοστικά περισσότερα, εφόσον χρειάζεται, ώστε να

εξασφαλιστεί ένα καλά ορισμένο πρόβλημα ελαχίστων τετραγώνων. Για την αξιολόγη-

ση αυτών των μεθόδων, αρχικά δοκιμάζονται σε δύο ψευδο-μηχανολογικά προβλήματα,

και στη συνέχεια, σε τρία προβλήματα εσωτερικής και εξωτερικής αεροδυναμικής, τα

οποία προσομοιώνονται με το λογισμικό Υπολογιστικής Ρευστοδυναμικής στο περι-

βάλλον OpenFoam.
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Acronyms and Symbols

CFD Computational Fluid Dynamics

CR Compression Ratio

CP Control Point
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LOO Leave-One-Out

NTUA National Technical University of Athens
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PCOpt Parallel CFD & Optimization Unit
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Chapter 1

Introduction

1.1 Introduction to UQ

Most optimization methods in engineering assume that all input parameters are
known with absolute certainty. This approach, known as deterministic optimiza-
tion, does not account for variability or uncertainty in the input data. Instead, it
optimizes the design based on fixed, known conditions, which may include one or
more predefined operating points. However, in real problems, both design-related
parameters and environmental conditions may vary within a certain range. These
variations are referred to as uncertain variables and are typically modeled using
statistical distributions—such as normal, Weibull, or others—characterized by their
mean values and standard deviations, either known or assumed.

As illustrated in Figure 1.1 [19], the green point denotes the result of determin-
istic minimization (the optimal design point), whereas the red point indicates the
outcome of a minimization that considers uncertainties—commonly referred to as
robust optimization (the robust design point). The need to consider the latter is cru-
cial, as the deterministic solution (Figure 1.1) may vary significantly if uncertainty
occurs. Real-world problems inherently involve various sources of uncertainty, which
must be taken into account during design/optimization.

Therefore, there is a need to develop UQ tools in order to propagate the flow un-
certainties from the system input to its output; the output is referred to as the
Quantity of Interest (QoI).

UQ requires computing the first two statistical moments of the QoI: the mean and
the standard deviation before computing their weighted sum, given by:
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Figure 1.1: The difference between classical (deterministic) optimization and robust
design lies in how uncertainty is handled. Classical optimization minimizes a deter-
ministic objective function, often resulting in solutions sensitive to input uncertainties,
causing significant variation in the system response. Robust optimization, by contrast,
seeks to minimize a function of the first two statistical moments of the objective func-
tion with respect to the uncertain inputs, producing a solution with smaller variability
(more stable)[19].

F̂ = µ̂F + λσ̂F . (1.1)

Here, the parameter λ serves as a weighting factor that balances the trade-off be-
tween performance (captured by the mean µ̂F ) and robustness (captured by the
standard deviation σ̂F ). F̂ becomes the objective function in a Robust Design Op-
timization (RDO) loop.

In most modern engineering contexts, UQ is becoming an increasingly important
field. Deterministic optimization is gradually being replaced by stochastic or RDO
to account for inevitable uncertainties in physical phenomena and measurements.
However, UQ comes at a high computational cost, especially when dealing with
a large number of uncertain variables. A variety of UQ methodologies have been
developed, each tailored to meet the specific needs and characteristics of the problem
at hand.

It can be implemented using two main categories: intrusive and non-intrusive meth-
ods. Intrusive methods typically involve reformulating the governing equations to di-
rectly incorporate uncertainties. On the other hand, non-intrusive methods treat the
computational model as a black box and can be implemented using either projection-
based or regression-based techniques.

This MSc thesis focuses exclusively on non-intrusive, regression-based UQ method-
ologies, with emphasis on problems characterized by a great number of uncertainties,
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involving more than 5 and up to 50 uncertain parameters.

1.2 Non-Intrusive UQ Methodology

The two widely used non-intrusive UQ methodologies are projection-based and
regression-based methods.

Projection methods compute the polynomial coefficients as a numerical integration
problem. Specifically, they rely on the orthogonality of the polynomial basis to
project the model response onto each basis function. This projection is typically
performed using quadrature nodes, such as Gauss quadrature [12], which approxi-
mate the required integrals by function calls at a fixed set of quadrature nodes. The
number and location of these nodes are determined by the order of the polynomial
expansion and the number of uncertain input variables. While projection meth-
ods can be highly accurate for low-dimensional problems, their computational cost
grows rapidly with the number of input variables, due to the exponential increase
in quadrature nodes required (i.e., the so-called curse of dimensionality) [29, 18, 9].
Even advanced schemes, such as Smolyak sparse grids [1], which exhibit an almost
linear growth in function evaluations with dimensionality, become prohibitively ex-
pensive for more than five uncertain inputs.

Regression methods aim to approximate a function F (x), where x represents the
uncertain inputs, by expressing it as a linear combination of polynomial basis func-
tions ψj(z) [3, 5]. Here, z denotes a normalized version of x, depending on the
distribution type of the inputs. The corresponding polynomial coefficients are de-
termined using the Ordinary Least Squares (OLS) method. This approach computes
the coefficients αj that minimize the deviation between the polynomial approxima-
tion and the observed data. A key distinction from projection methods is that, in
regression, both the number of evaluation points N and their locations are entirely
specified by the user, rather than being determined by the roots of Gauss polyno-
mials (quadrature nodes), as in projection-based approaches. This provides greater
flexibility. A general structure of a regression-based UQ algorithm is illustrated in
Figure 1.2, showing the workflow from input data and algorithmic parameters to
the computation of the mean µF and standard deviation σF of the QoI.

3
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Figure 1.2: Structure of the regression-based UQ workflow. The UQ algorithm re-
ceives algorithm-specific parameters and input data which are evaluated by a black-box
model to obtain the corresponding output values F (x). These outputs are used to com-
pute the mean µF and standard deviation σF of the QoI.

1.3 Introduction to the PCE

Polynomial Chaos Expansion (PCE) is a statistical tool based on the use of orthog-
onal polynomials to propagate uncertainty from input stochastic parameters—also
referred to as dimensions— to output QoI. It is commonly used to compute statis-
tical moments, such as the mean and standard deviation of the QoI.

PCE was first introduced in 1938 [27]. Initially, the method was limited to stochastic
variables that followed a normal distribution, using Hermite polynomials. In 2002,
the concept of generalized Polynomial Chaos (gPC) was introduced [29], utilizing
the framework proposed in [2] for generating orthogonal polynomials corresponding
to different probability distributions. This advancement extended the applicability
of PCE to stochastic variables following a wide range of distributions.

A PCE-based method that employs an OLS approach to minimize the deviation
between the true model response and its polynomial approximation relies on an
adequate number of samples. These samples are typically generated by sampling
from distributions appropriate to each input variable. This Monte-Carlo-like sam-
pling approach is well suited for regression-based PCE methods such as OLS, as it
provides space-filling coverage of the input space.

To ensure convergence of the regression system, the number of samples N must be
sufficiently larger than the total number of polynomial basis terms in a non-sparse
(full) basis, denoted as Ptotal. A common way to quantify this requirement is through
the Sampling Ratio (SR), defined as

SR =
N

Ptotal

. (1.2)

In practice, for non-sparse systems, values of SR in the range of 2 to 3 are typi-
cally required to satisfactorily predict statistical moments. Since SR > 1, the above
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range indicates oversampling. When fewer samples are used, the coefficients are es-
timated inaccurately. Conversely, using significantly more points than required does
not generally improve accuracy but only increases computational cost. Therefore,
choosing an appropriate oversampling ratio offers a balanced compromise between
efficiency and predictive performance [3].

Nonetheless, even an oversampling ratio of 2–3 highlights the rapid growth of N
with dimensionality, as the number of polynomial terms increases combinatorially.
This motivates the use of sparse regression techniques in high-dimensional settings,
which aim to identify only the most significant polynomial terms while reducing the
number of required model evaluations.

1.4 Sparse Regression-Based PCE Methods

Sparse methods are associated with problems involving many uncertain parameters,
typically more than five. For instance, in the design of aerodynamic shapes with
geometrical imperfections, models often involve a large number of uncertain input
parameters. In such cases, sparse regression models are preferred as non-intrusive
methods for performing UQ.

As the number of the stochastic inputs (dimensionality) increases, the number of
polynomial basis functions in a Non-Sparse PCE (NSPCE) regression system grows
rapidly, as illustrated in Figure 1.3. To maintain a sufficient oversampling ratio, the
required number of model evaluations increases significantly. This leads to a sub-
stantial rise in the cost for computing statistical quantities, such as the mean µ̂F and
standard deviation σ̂F , particularly if each evaluation relies upon computationally
expensive models, such as, a solver of the Navier–Stokes equations.

To address these challenges, advanced UQ methodologies have been developed that
aim to reduce the number of model evaluations per optimization cycle, while main-
taining a high level of accuracy. This thesis focuses on problems involving 8 to
50 uncertain input variables. Due to the prohibitively high computational cost of
applying sparse projection methods in such high-dimensional settings, this work
exclusively focuses on sparse regression-based approaches. Various sparsification
strategies have been proposed in the literature [16] to enable efficient surrogate con-
struction. In this study, two methods are considered: Orthogonal Matching Pursuit
(OMP) [4] and Effective Sampling via Coefficient-Adaptive Polynomial Expansion
(ESCAPE), a novel method proposed in the context of this MSc thesis and inspired
by existing approaches.

In sparse regression-based PCE, the model response is approximated by a truncated
polynomial series. The algorithm proceeds in two steps: first, a subset of the most
relevant basis functions is selected according to their contribution to the model
response; second, the corresponding coefficients are determined via regression. By
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Figure 1.3: Combinatorial growth in the number of multivariate polynomial basis
functions used in NSPCE regression with polynomial orders k = 2 and k = 3, as the
number of uncertain inputs D increases.

restricting the expansion to only the most relevant basis functions, the number
of required model evaluations is significantly reduced, which is essential in high-
dimensional problems where each simulation is computationally expensive.

OMP is a greedy algorithm proposed in 1993 [20] as an enhancement to the original
Matching Pursuit algorithm [15] introduced the same year. OMP iteratively selects
the polynomial basis elements that are most correlated with the current approxima-
tion residual, adding them to the sparse (or active) set of regressors. After a basis
element has been added to the active set, all corresponding polynomial coefficients
are updated via OLS or through recursive formulas. This additional step guarantees
that the newly calculated residual is orthogonal to all regressors in the current active
set. In each iteration, OMP aims to minimize the discrepancy between the model
response and its polynomial approximation [20, 15].

The ESCAPE method relies on the straightforward principle of identifying signifi-
cant polynomials by examining their coefficients. Additionally, it incorporates the
concept of a downward closed basis—discussed in Section 3.1.2—which guarantees
a gradual increase in the polynomial order within the basis [14].

Sparse regression PCE methods are widely used today, particularly in problems
with many uncertain inputs, due to the significant advantages they offer. One key
advantage is their ability to adapt the polynomial basis to the specific characteristics
of the problem. By implicitly favoring stochastic input variables that exert greater
influence on the QoI, these methods select only a subset of the full polynomial basis
having Ptotal elements, namely only Psparse out of them. This results in an expression
having fewer terms in the surrogate model. In the general case, Psparse is not known
a priori and is computed simultaneously with the corresponding coefficients. A
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common way to quantify this sparsity of the basis is through the Compression Ratio
(CR), defined as:

CR =
Psparse

Ptotal

≤ 1. (1.3)

This adaptivity allows sparse PCE to maintain comparable accuracy to NSPCE
while substantially reducing the number of required model evaluations, especially in
problems involving a large number of stochastic inputs.

1.5 Objectives of the Master’s Thesis

The primary objective of this Master’s Thesis is to explore different approaches for
solving sparse UQ problems using sparse regression methods. When the number
of input variables exceeds ∼ 5, the so-called curse of dimensionality significantly
increases the computational cost. To address this challenge, the thesis investigates
more economical solution techniques based on sparse formulations of PCE, using
sparse regression methods.

Two sparse methods are developed. The first is the well-established OMP. The
second is a new method proposed here, called ESCAPE, which draws on ideas from
some existing techniques. Each technique builds a sparse polynomial basis using
different criteria to reduce the number of required model evaluations.

The two sparse UQ methods are theoretically analyzed and programmed in C++.
The methods are first tested on two simplified engineering problems. Then, these are
assessed through three applications in internal and external aerodynamics involving
the solution of the Navier–Stokes equations for incompressible fluid flows. These
applications are carried out using the open-source CFD software OpenFOAM, high-
lighting the practical applicability and computational performance of the proposed
methods.

1.6 Structure of the Master’s Thesis

The structure of this thesis is the following:

Chapter 2: Regression PCE, Error Estimation, and Sensitivity Analysis
This chapter introduces the theoretical foundations of the PCE method for multidi-
mensional problems. Then, it explores the classical regression approach, exemplified
by the OLS problem, and concludes with techniques for error estimation in regression
methods and the use of Sobol indices in sensitivity analysis.

7



Chapter 3: Sparse PCE Methods – Demonstration in Pseudo-Engineering
Problems
This chapter focuses on reducing the computational cost of PCE in high-dimensional
problems. It presents two sparse regression-based algorithms, namely the OMP and
the ESCAPE, which aim to retain accuracy while significantly lowering the number
of required model evaluations. Finally, two pseudo-engineering applications are
conducted to evaluate and compare the performance of these methods, in problems
with 10 and 20 uncertain inputs.

Chapter 4: UQ in Aerodynamic Applications
This chapter applies the OMP and ESCAPE methods, as discussed in the previous
chapter, to three aerodynamic cases—both external and internal—featuring 8, 25,
and 50 uncertain input parameters, respectively.

Chapter 5: Concluding Remarks and Recommendations for Future Work
This chapter presents the summary of this MSc Thesis and the drawn conclusions,
along with a few suggestions for future work.

Appendices
Supplementary material is provided in the appendices. Appendix A presents the
fundamental properties of Hermite polynomials, which are essential in the construc-
tion of PCE for normally distributed stochastic variables. Appendix B provides a
detailed proof of the Leave-One-Out (LOO) error formula used.

8



Chapter 2

Regression PCE, Error

Estimation, and Sensitivity

Analysis

This chapter presents the theoretical foundation of the PCE, with a particular focus
on regression-based approaches. It begins by formulating the PCE problem as a
minimization problem using OLS. Next, it introduces techniques for estimating the
approximation error. It concludes with an overview of sensitivity analysis methods
within the PCE framework, which are used to quantify the impact of stochastic
input variables on the model output.

2.1 PCE in Multidimensional Problems

The theory of PCE [21, 7, 28] suggests that any QoI, F , which depends on a vec-
tor of D independent stochastic input variables, can be represented as a series
of orthogonal polynomial basis functions multiplied by the PCE coefficients. Let
z = {z0, z1, . . . , zD−1} denote a vector of D independent stochastic standardized
input variables. This representation enables the approximation of the statistical
moments of the output stochastic variable up to chaos order k [19].

9



Formally, F (x), is approximated as:

F (x) ≃ F̂ (x) :=
P−1∑
j=0

αjψj(z), (2.1)

where ψj(z) denotes the multivariate polynomial basis functions and αj are the PCE
coefficients. In the case of a full tensor product basis up to order k, the total number
of basis terms P is given by:

P =
(D + k)!

D! k!
. (2.2)

Each multivariate basis function ψj(zi) is the product of univariate orthonormal
polynomials pld(zd), where d ∈ {0, . . . , D − 1} denotes the uncertain inputs and
l = (l0, l1, . . . , lD−1) ∈ ND

0 is a multi-index that defines the order of each univariate
polynomial pld :

ψj(z) = ψj(z0, z1, . . . , zD−1) =
D−1∏
d=0

pld(zd) j ∈ {0, . . . , P − 1}. (2.3)

The total polynomial order for each ψj is constrained by:

D−1∑
d=0

ld ≤ k, (2.4)

ensuring that the total order of each multivariate polynomial does not exceed order
k. For example, consider the multivariate polynomial basis function with D = 3:

ψ4(z1, z2, z3) = p2(z1)p0(z2)p0(z3), (2.5)

This is built using a second-order polynomial in z1, and zeroth-order polynomials
(i.e. constants) in z2 and z3. Its corresponding multi-index, containing the order of
each univariate polynomial, is:

I4 =
[
2 0 0

]
. (2.6)

The univariate orthogonal polynomials pj(zd), with j ∈ {0, . . . , k} and d ∈ {0, . . . , D−
1}, are constructed individually for each input stochastic variable zd, and satisfy the
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orthonormality condition:

⟨pm(zd), pn(zd)⟩ =
∫
Dd

pm(zd) pn(zd)ωd(zd) dzd = δmn, ∀m,n ∈ {0, . . . , k}, (2.7)

where ωd(zd) is the weight function associated with the probability density function
(PDF) of zd, and δmn is the Kronecker delta:

δmn =

{
0, m ̸= n

1, m = n
(2.8)

The classical families of univariate orthonormal polynomials and the corresponding
distributions which they are orthonormal to, are summarized in Table 2.1 [26]. De-
tailed descriptions of these polynomial families, also referred to as the Askey-scheme
orthonormal polynomials, can be found in numerous references, such as [29].

Type of variable Distribution Orthogonal polynomials Basis

Uniform 1
2
1[−1,1](x) Legendre Pj(x)

Pj(x)√
1/(2j+1)

Gaussian 1√
2π
e−x2/2 Hermite Hej(x)

Hej(x)√
j!

Gamma xae−x1R+(x) Laguerre La
j (x)

La
j (x)√

Γ(j+a+1)
j!

Beta 1(−1,1)(x)
(1−x)a(1+x)b

B(a,b)
Jacobi Ja,b

j (x)
Ja,b
j (x)√
Ja,b,j

, Ja,b,j =
2a+b+1

2j+a+b+1
Γ(j+a+1)Γ(j+b+1)
Γ(j+a+b+1)Γ(j+1)

Table 2.1: Classical families of orthogonal polynomials (subset of the Askey scheme)
and their associated orthonormal basis functions.

Up to this point, the construction of the polynomial basis has been explained. In
the following, two approaches for computing the polynomial coefficients in Eq. (2.1)
are presented.

2.1.1 Regression Methods

In this work, N samples are selected for the regression process, with SR > 1 to ensure
that the resulting linear system is overdetermined. To reduce the risk of overfitting,
a commonly recommended choice is an oversampling ratio of approximately SR = 3.

In regression analysis, the objective is to approximate F (x) by a linear combination
of polynomial basis functions ψj(z), where the corresponding polynomial coefficients
are determined using the OLS method. This approach aims to compute the coef-
ficients αj that minimize the deviation between the approximation and the model
evaluations [12].

Each input sample xi, representing the i-th realization of theD stochastic input vari-
ables with components xid, is derived from a corresponding standardized stochastic
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vector zi, whose components zid follow standard distributions (e.g. standard nor-
mal), depending on the assumed distribution of each input variable:

xid = µd + σdzid, i ∈ {0, . . . , N − 1}, d ∈ {0, . . . , D − 1}. (2.9)

In the case of normally distributed inputs, the transformation for the first sample
x0 is given by:

x0 =


x0,0
x0,1
...

x0,D−1

 =


µ0 + σ0z0,0
µ1 + σ1z0,1

...
µD−1 + σD−1z0,D−1

 . (2.10)

Here, µd and σd denote the mean and standard deviation of the d-th stochastic
input, respectively, with d ∈ D. For non-Gaussian distributions, however, the map-
ping from zi to xi may follow a different transformation rule, depending on the
characteristics of the assumed input distribution.

Ordinary Least-Squares

The number of polynomial basis functions P for a given order k and D dimensions
is determined by the combinatorial expression of Eq. (2.2).

The problem to be solved using the OLS method, with ψj(zi) ∈ RN×P , α ∈ RP×1,
and F (xi) ∈ RN×1, where SR > 1 (oversampling), is expressed as follows:


ψ0(z0) ψ1(z0) · · · ψP−1(z0)
ψ0(z1) ψ1(z1) · · · ψP−1(z1)

...
...

. . .
...

ψ0(zN−1) ψ1(zN−1) · · · ψP−1(zN−1)



α0

α1
...

αP−1

 =


F (x0)
F (x1)

...
F (xN−1)

 . (2.11)

In matrix form, this can be written as:

Ψα = f . (2.12)

The left-hand-side (LHS) of Eq. (2.12), Ψ, is the polynomial basis evaluated at zi
(also referred to as the design matrix in the literature), while the right-hand-side
(RHS) is the evaluated data F (xi). The cost of computing the array on the RHS
of Eq. (2.12) is N time-units. The vector α ∈ RP×1 consists of the coefficients that
need to be determined.

The OLS system (2.12) is then transformed into:
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(ΨTΨ)α = ΨTf , (2.13)

computing α as:

α = (ΨTΨ)−1ΨTf , (2.14)

provided that (ΨTΨ) is invertible.

This method computes polynomial coefficients α that minimize the OLS error be-
tween the polynomial approximation and the model evaluations.

2.1.2 Calculation of the Statistical Moments

After determining the polynomial coefficients using regression, various statistical
quantities can be computed. These include the mean, standard deviation, and
higher-order moments such as skewness.

Orthogonal polynomials possess a very useful property that simplifies the calculation
of these statistical moments. Specifically, the orthogonality property, which was
discussed in the previous subsections, allows for the direct computation of the mean,
standard deviation, and higher-order moments.

In this thesis, the first two statistical moments are considered, namely the mean and
the standard deviation. The mean of the response is defined as the expectation:

µF̂ = E[F̂ (z)]. (2.15)

Substituting the PCE expansion yields:

µF̂ =
P−1∑
j=0

αj E[ψj(z)] = α0 · E[ψ0] +
P−1∑
j=1

αj E[ψj(z)]︸ ︷︷ ︸
0

. (2.16)

By construction, the first basis function is ψ0(z) = 1, while all higher-order basis
functions satisfy:

E[ψj(z)] = 0, j ≥ 1, (2.17)

due to orthogonality. Therefore, only the constant coefficient remains:

µF̂ = α0. (2.18)
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The variance of the response is defined as:

σ2
F̂
= E

[
(F̂ (x)− µF̂ )

2
]
. (2.19)

Since µF̂ = α0, the centered expansion becomes:

F̂ (x)− µF̂ =
P−1∑
j=1

αjψj(z). (2.20)

Thus, the variance is:

σ2
F̂
= E

(P−1∑
j=1

αjψj(z)

)2
 . (2.21)

Expanding the square leads to cross-terms of the form αjαk E[ψj(z)ψk(z)]. By or-
thogonality, all terms with j ̸= k vanish, leaving only diagonal contributions:

σ2
F̂
=

P−1∑
j=1

α2
j E[ψ2

j (z)]. (2.22)

If the polynomial basis is orthonormal, i.e. E[ψ2
j (z)] = 1, the expression simplifies

to:

σF̂ =

√√√√P−1∑
j=1

α2
j . (2.23)

While validation is important in all UQmethods, it is particularly critical in regression-
based approaches due to their data-driven nature and the risk of overfitting or poor
generalization from a limited number of samplesN . In many practical cases, particu-
larly those involving computationally expensive models, neither analytical solutions
nor high-fidelity reference data (e.g. from Monte-Carlo simulations) are available
for comparison. To tackle this challenge, various error estimation techniques are
introduced and discussed in section 2.2.

2.2 Error Estimation

This section focuses on validation approaches aimed at detecting overfitting and
assessing the reliability of the OLS, or surrogate, model. These aspects are crucial
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not only for ensuring predictive accuracy, but also for reliably estimating the first
two statistical moments in the context of UQ. In regression-based PCE, evaluating
the generalization capability of the model becomes particularly important when only
a limited amount of training data is available.

It is important to note, however, that the validation indices presented in this section
do not inherently guarantee the adequacy of the experimental design or the suffi-
ciency of the sample set for reliable uncertainty propagation. Instead, these indices
reflect how well the surrogate model reproduces the observed data. A low validation
error suggests a good fit within the sampled region, but does not ensure that the
surrogate will accurately capture the full variability of the system, particularly in
regions of the input space that are underrepresented. To assess the validity of the
results presented in this thesis, several evaluation strategies have been explored.

Following the cross-validation technique [25, 11], the initial approach adopted in this
work involves selecting a fixed number N of training samples, evaluating them, and
using 70% of these to construct the surrogate model while reserving the remaining
30% for validation. This procedure corresponds to a simple holdout validation strat-
egy. If the validation results do not meet the desired accuracy criteria, the number
of samples is incrementally increased until satisfactory accuracy is achieved. How-
ever, this technique is not practically used in this thesis. As a more economical
approach—the Leave-One-Out (LOO) error, εLOO—was preferred. This method
avoids the need to reserve 30% of the samples for validation, thereby making better
use of all the evaluated samples.

According to the comparative analysis presented in [17], the LOO error cross-
validation technique generally outperforms mean squared error and is the preferred
method in this thesis. Let F̂ (−i) denote the surrogate model trained on all samples
but the i-th sample point, i.e. on the dataset Z \ {xi}, and let F represent the true
model. The predicted residual for the i-th observation is defined as the difference
between the actual model output at xi and the corresponding prediction made by
F̂ (−i):

∆(i) = F (xi)− F̂ (−i)(xi). (2.24)

The overall LOO error, which serves as an estimate of the model’s generalization
capability, is given by:

ELOO =
1

N

N−1∑
i=0

(
∆(i)

)2
, (2.25)

while the normalized LOO error can be expressed as:
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εLOO =

∑N−1
i=0 (∆(i))2∑N−1

i=0 (F (xi)− µ̂F )
2
. (2.26)

where µ̂F is the sample mean of the model evaluations:

µ̂F =
1

N

N−1∑
i=0

F (xi). (2.27)

Conceptually, this method requires training N surrogate models, each leaving out a
single data point, and then comparing the prediction at the excluded point with the
corresponding true model evaluation. The resulting error estimate provides a reli-
able measure of the model’s predictive performance without the need for additional
validation data.

In practice, since the values of F (xi) for i = 0, . . . , N − 1 are already available from
the evaluation of the QoI through CFD simulations, there is no need to explicitly
construct N surrogate models to calculate the LOO error. Instead, εLOO can effi-
ciently be computed from the existing OLS solution without retraining, as described
in [5]:

εLOO =

∑N−1
i=0

(
F̂ (xi)−F (xi)

1−hi

)2
∑N−1

i=0

(
F̂ (xi)− µ̂F

)2 , (2.28)

where hi is the i-th component of the vector given by:

h = diag
(
Ψ
(
ΨTΨ

)−1
ΨT
)
. (2.29)

The proof of the equality in Eq. (2.28) can be found in Appendix B.

From this point onward, εLOO, as defined in Eq. (2.28), will serve as the validation
metric for the sparse regression methods employed in this thesis.

2.3 Global Sensitivity Analysis Using Sobol In-

dices

Global sensitivity analysis (GSA) aims at quantifying the contribution of individual
stochastic variables x to a QoI F . GSA can therefore be used, as a prior to UQ
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step, to help the engineer gain insights about the model at hand and/or screen out
unimportant variables before main analysis (UQ). As a result, the dimensionality of
the input space is reduced, making the problem more tractable and computationally
efficient to solve.

In this thesis, GSA will not be used as an initial assessment step. Instead, in
chapter 3, it will serve as a ground truth indicator of how effectively each UQ method
captures the importance of the stochastic inputs by examining the polynomial basis
constructed by each method.

One of the most widely used techniques for GSA is the Sobol indices, which decom-
pose the output variance into contributions from individual input variables and their
interactions. Sobol indices provide both first-order effects (measuring the individ-
ual impact of each input) and higher-order effects (capturing interactions between
multiple inputs). This variance-based method is model-agnostic, meaning it can be
used with any black-box model, and is especially valuable in complex systems where
input-output relationships are nonlinear or involve strong interactions [23, 24].

First-Order Sobol Index Sd

The first-order Sobol index quantifies the proportion of the total output variance
that can be attributed solely to the variation in the d-th input variable xd, ignoring
any interactions with other inputs. It is defined as:

Sd =

∑
j∈Ad

α2
j∑P−1

j=1 α
2
j

, (2.30)

where Ad denotes the set of indices for which the corresponding basis function
ψj(z0, . . . , zD−1) depends only on zd.

Total Sobol Index ST
d

The total Sobol index ST
d measures the overall contribution of the input variable xd

to the output variance, including all possible interaction effects with other inputs.
It is defined as:

ST
d =

∑
j∈Bd

α2
j∑P−1

j=1 α
2
j

, (2.31)

where Bd denotes the set of indices for which the corresponding basis function
ψj(z0, . . . , zD−1) depends on zd, possibly along with other input variables.
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Higher-order Sobol indices, which capture interactions between multiple input vari-
ables (e.g., second- or third-order), can be derived analogously using the corre-
sponding partial variances. These indices provide a comprehensive view of the
input–output dependency structure and are essential for identifying and ranking
influential variables in complex systems.

Numerical Example: Sobol Indices for a Simple Model

Consider a QoI F (x) defined as:

F (x) = 10x21 + 0.1x2 + 0.5x1x2, (2.32)

where x = [x1, x2 ]
T and x1, x2 are independent and follow a standard normal dis-

tribution, i.e., x1, x2 ∼ N (0, 1).
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Figure 2.1: Scatter plots of F , Eq. (2.32) versus x1 (left) and x2 (right) for 250
sampled points (x1, x2) from their standard normal distributions. In each plot, the
other variable is sampled independently, so the scatter reflects the combined influence
of both inputs. The left plot shows a clear parabolic trend, indicating that x1 dominates
the variability in F , while the right plot of x2, shows no obvious trend.

Figure 2.1 presents scatter plots of QoI in Eq. (2.32) versus the input variables
x1 (left) and x2 (right) for 250 sampled points (x1, x2) drawn independently from
standard normal distributions. Each plot represents F as a function of a single
input, with the second input sampled independently.

The left plot exhibits a clear parabolic trend, with F increasing as |x1| grows, indi-
cating that x1 dominates the variability in F . In contrast, the right plot shows no
obvious trend in F , with values scattered around a narrow range. These observations
confirm that the variance of F is primarily controlled by x1 and provide a reference
for verifying whether Sobol indices correctly capture the relative importance of each
input.
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The PCE approximation of F (x) is expressed as:

F̂ (x) =
5∑

j=0

αjψj(z),

with the following multivariate orthonormal Hermite basis functions:

ψ0(z1, z2) = 1,

ψ1(z1, z2) = z1,

ψ2(z1, z2) = z2,

ψ3(z1, z2) =
1√
2
(z21 − 1),

ψ4(z1, z2) = z1z2,

ψ5(z1, z2) =
1√
2
(z22 − 1).

The PCE coefficients α = [α0, α1, . . . , α5]
T , are computed by solving the NSPCE

system of Eq. (2.12) via OLS. This system computes coefficients α that best ap-
proximate F (x) in the least squares sense.

The resulting PCE coefficients are presented in Table 2.2.

j Basis Function ψj(z1, z2) Variables Involved Coefficient αj

0 1 — 10
1 z1 x1 3.19189× 10−16

2 z2 x2 0.1
3 1√

2
(z21 − 1) x1 14.1421

4 z1z2 x1, x2 0.5
5 1√

2
(z22 − 1) x2 −8.88178× 10−16

Table 2.2: PCE basis functions, associated variables, and computed coefficients αj

for the QoI defined in Eq. (2.32).

Based on these coefficients, the statistical moments of the QoI become:

Mean = α0 = 10.0000000000, Variance =
5∑

j=1

α2
j = 200.2600000000,
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Standard Deviation =

√√√√ 5∑
j=1

α2
j = 14.1513250263.

The first-order and total Sobol indices are obtained by grouping coefficients accord-
ing to which variables appear in the basis functions. The terms depending only on
z1 are ψ1 and ψ3, those depending only on z2 are ψ2 and ψ5, and the interaction
between z1 and z2 is captured by ψ4.

The first-order Sobol indices are computed as:

S1 =
α2
1 + α2

3

Var[F̂ ]
= 0.99995, S2 =

α2
2 + α2

5

Var[F̂ ]
= 0.00005,

which nearly sum to 1 due to negligible interactions. Similarly, the total Sobol
indices are computed as:

ST
1 =

α2
1 + α2

3 + α2
4

Var[F̂ ]
= 0.99995, ST

2 =
α2
2 + α2

5 + α2
4

Var[F̂ ]
= 0.00130,

which generally do not sum to 1 because they include the contributions of interac-
tions.

These results indicate that the input variable x1 is by far the dominant contributor
to the output variance, while x2 has only a minor influence. The first-order Sobol
indices reflect the variance contribution of each variable alone and nearly sum to
1 due to negligible interactions. The total Sobol indices, which include interaction
effects, slightly differ but still confirm that the variance of F is primarily governed
by x1, with x2 playing a minimal role. These total Sobol indices will be used in
Chapter 3.
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Chapter 3

Sparse PCE Methods –

Demonstration in

Pseudo-Engineering Problems

As the number of input stochastic variablesD increases, the number of basis terms in
the corresponding PCE grows exponentially, making full regression-based approxi-
mations both inefficient and costly. This issue is particularly relevant in aerodynamic
optimization, where the evaluation model is a CFD tool that numerically solves the
Navier–Stokes equations and each simulation can be computationally expensive.

This chapter introduces two sparse regression techniques designed to improve the
cost-effectiveness of such approximations without significantly compromising accu-
racy. Specifically, two different methods for sparsifying the polynomial basis are
presented: OMP and ESCAPE.

After presenting the basic concepts and algorithms of both methods, a simple toy
example with only two stochastic inputs is solved to illustrate clearly how each
method operates. It is important to note that this example is not intended to
demonstrate the full capabilities of the algorithms, but rather to introduce their
underlying logic. In the last part of this section, two pseudo-engineering problems
are solved using the sparse methods.
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3.1 Sparse PCE Regression Methods

Sparse regression methods identify the most influential inputs, allowing for a more
focused model that prioritizes relevant variables. In this way, the number of samples
required for the OLS regression is reduced, which also decreases the number of model
evaluations and the associated computational cost.

The uncertain inputs considered in this thesis are assumed to follow a standard nor-
mal distribution. The sampling procedure operates as follows: for each of theN sam-
ples, a D-dimensional sample is generated, where each component is independently
drawn from a standard normal distribution, N (0, 12). To ensure reproducibility, the
random number generator is initialized with a fixed seed.

A commonly adopted strategy in sparse PCE regression is to begin with a relatively
small number of samples N , aiming to capture the highest possible accuracy by spar-
sifying the polynomial basis. The QoI is evaluated at these N sample points, and the
linear system of Eq. (2.11), or (2.12) is formulated. If the resulting approximation
is not satisfactory, the sample size N increases.

The system above can also be written symbolically as:

Ψsparseαsparse = f , (3.1)

where Ψsparse ∈ RN×Psparse , with Psparse > N and Psparse ≤ Ptotal. Ψsparse is the
sparse LHS, containing evaluations of the polynomial basis at the sample points.
The vector αsparse ∈ RPsparse contains the unknown PCE coefficients for the selected
bases, and f ∈ RN contains the function evaluations required by the sparse system.

For reasons of space, and since this thesis focuses on sparse regression, whenever ref-
erence is made to a sparse PCE method, Psparse will be denoted simply by P , Ψsparse

by Ψ, and αsparse by α. To improve clarity, the main symbols used throughout the
text are summarized in Table 3.1.

Symbol Description

x Vector of stochastic inputs: x = [x0, . . . , xD−1]
T

D Number of stochastic input variables (dimension) d0, . . . , dD−1

P Total number of multivariate orthonormal polynomials (context-dependent)
N Number of initial samples, indexed by i ∈ {0, . . . , N − 1}
Ptotal Total number of non-sparse polynomials
Psparse Total number of polynomials after sparsification

Table 3.1: Summary of notation used in the PCE framework.
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3.1.1 The Orthogonal Matching Pursuit (OMP) Method

The OMP Algorithm is a regression method. It starts with a small, fixed number
of evaluated samples N , and P = 1, containing only the 0-th order polynomials
and iteratively adds only the most significant/correlated polynomials ψj to the
polynomial basis. This greedy selection continues until at least one out of the three
termination criteria is met; these criteria concern the size of the sparse basis that is
iteratively being built, the behavior of the LOO error εLOO through iterations, and
the magnitude of the computed correlation index. Upon termination, the coefficients
corresponding to the solution at the iteration with the minimum εLOO are selected
as the final result.

In the OMP algorithm, a non-sparse set referred to as the candidate pool C is
used; this contains all the polynomials up to a specified order k, namely: ψj, j ∈
{0, . . . , Ptotal − 1}. There will also be used a sparse polynomial matrix referred to
as the active matrix A, which is gradually filled with significant polynomials during
the algorithm. Every polynomial added to A remains there permanently and is
considered part of the sparse set. The number of polynomials in A is denoted by
PA. The notation used is summarized in Table 3.2.

Symbol Description

A Active matrix containing PA selected polynomials
C Candidate pool containing all Ptotal polynomials up to order k

Table 3.2: Summary of notation used in the OMP algorithm.

At each iteration, OMP incrementally chooses and transfers only the most significant
polynomial basis function from the candidate pool C to the active matrix A. The
selection is guided by a correlation index, defined as the cosine of the angle between
two vectors: the vector of evaluations of each basis polynomial ψj over the training
inputs, and the residual vector r. The cosine correlation index is computed as
follows:

Correlation(ψj, r) =
∣∣cos(ψj, r)

∣∣ = ∣∣∣∣∣ ψT
j r

∥ψj∥ ∥r∥

∣∣∣∣∣ , j ∈ {0, . . . , Ptotal − 1} (3.2)

Here, ψj ∈ RN×1 and r ∈ RN×1 are column vectors. This index quantifies the
alignment between each basis function and the residual, which is defined as:

r = f −Aα, (3.3)
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guiding the selection of the most relevant polynomial. This selection process con-
tinues until a stopping criterion is reached.

Algorithm of OMP

The OMP algorithm begins with an initialization phase that sets the fundamental
parameters and defines the problem setup and sampling strategy before the iterative
selection of basis functions.

Initialization:

Chaos order selection: Select the chaos order k.

Choosing the number of samples N : The number of samples N can generally
be chosen freely. In this thesis, N is set as

N = bD (3.4)

for this method. The sample-multiplier factor b = 5 used in Eq. (3.4) is chosen to
reduce overfitting during OLS. A parametric study will be presented in 3.2.1 to
justify this choice.

The steps of the OMP algorithm are outlined:

1. Evaluate the model at each of the N samples to obtain f :

f =
[
F (x0) F (x1) · · · F (xN−1)

]T
.

2. Compute the number of polynomials Ptotal corresponding to the chaos order k
and construct the candidate pool:

C =


ψ0(z0) ψ1(z0) · · · ψPtotal−1(z0)
ψ0(z1) ψ1(z1) · · · ψPtotal−1(z1)

...
...

. . .
...

ψ0(zN−1) ψ1(zN−1) · · · ψPtotal−1(zN−1)

 , (3.5)

which contains the full set of basis polynomials ψj, where j ∈ {0, . . . , Ptotal−1}
and i ∈ {0, . . . , N − 1}. This matrix forms the candidate pool, from which
polynomials are selected and transferred to the active matrix.

3. Initialize the active matrixA with only the constant (zeroth-order) polynomial
terms ψ0:
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A =


ψ0(z0)
ψ0(z1)

...
ψ0(zN−1)

 . (3.6)

4. Solve the system:

Aα = f , (3.7)

with α = [α0] using the OLS method, and compute the first coefficient α0.
Then, calculate the residual as indicated in Eq. (3.3).

5. Compute the magnitude of cosine correlation index, Eq. (3.2), between the
residual vector r and each candidate polynomial ψj vector, i.e. each column
vector from the candidate pool C.

6. Select the j-th polynomial vector ψj with the highest absolute correlation
index, as defined in Eq. (3.2).

7. Copy the selected polynomial from the candidate matrix C, also to the active
matrix set A.

8. Update the coefficients αj of all polynomials in the active set by solving the
system in Eq. (3.7), via OLS.

9. Calculate the LOO error (εLOO) of the system solved.

• This error serves multiple purposes. First, it can serve as an early
stopping criterion to terminate the iterative procedure, as discussed in
Step 11b. Second, once the iterative process has concluded, the active
polynomial set associated with the lowest εLOO across all iterations is
selected as the optimal sparse basis. Moreover, εLOO provides a quality
indicator for the final approximation. Also, in the case of very sim-
ple functions, such as in the example below, εLOO may even reach zero,
thereby directly acting as a termination condition. However, this situa-
tion rarely occurs in practice.

10. Update the residual vector r, shown in Eq. (3.3).

11. Repeat steps 5–10 until at least one of the following three criteria is met:

(a) Maximum basis size reached: The size of the active matrix A, with
dimensions N×PA and PA ≤ N (where PA increases with each iteration),
reaches

PA = min(Ptotal, (N − 1)/2),

25



which defines the maximum number of possible iterations. The factor
(N−1)/2 is a practical early stopping criterion: preliminary tests showed
that allowing larger active sets substantially increases the computational
effort required to solve the OLS systems, without yielding significant
improvements in accuracy.

(b) LOO stagnation: The LOO error is absolute 0 (e.g. for very simple
functions), or it increases continuously, relative to its minimum value
reached so far, for a number of iterations equal to at least 10% of the
maximum number of iterations, i.e. min(Ptotal, (N − 1)/2).

(c) Low correlation with residual: Terminate if the highest absolute
cosine correlation in step 6 falls below 10−3.

If any of these conditions is met, the algorithm terminates. The coefficients
corresponding to the iteration with the minimum εLOO, reached through all
iterations, are then selected as the final result. Using these coefficients, the
first two statistical moments can be computed.

The OMP algorithm with N = 5D function evaluations is chosen for this thesis,
and a parametric study of this choice is presented in Section 3.2.1. To assess its cost
reduction compared to non-sparse systems, it can be noted that, while maintaining
good accuracy, the computational cost of OMP (shown in Figure 3.1) follows a linear
trend. In contrast, the oversampling requirements of NSPCE for k = 2, such as the
common 3:1 ratio (SR=3), lead to an exponential increase in function evaluations.
This significant reduction in function evaluations achieved by OMP makes problems
with more than 5 stochastic inputs (D = 5) computationally feasible.
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Figure 3.1: Comparison of the computational cost for constructing polynomial ap-
proximations using OMP with N = 5D and NSPCE with SR = 3 (k = 2) as the
number of stochastic inputs D increases. OMP requires substantially less function
evaluations.
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Steps 11a, 11b, and 11c serve as early stopping criteria, rather than terminating
only when PA = min(Ptotal, (N − 1)) [16]. These criteria have been observed to
significantly reduce the computational time of the OMP iterations. In particular,
for systems with up to 50 uncertain inputs, the number of OMP evaluations is
reduced substantially without any noticeable loss in accuracy.

Since the LOO error serves not only as a stopping criterion but also as a quality
indicator of the regression, it is useful to define a threshold below which the re-
sults can be considered reliable upon algorithm termination. Although there is no
strict theoretical guarantee, an empirical rule suggests that the LOO error can be
considered reliable when:

εLOO ≤ 10−2. (3.8)

In this thesis, εLOO will be reported alongside the OMP results with Eq. (3.8) in
mind, and used as a quantitative metric for evaluating the reliability of the con-
structed surrogate models. If εLOO exceeds the acceptable threshold, no additional
samples are introduced in this work. Instead, the obtained results should be inter-
preted with caution, as the predictive accuracy of the sparse polynomial basis may
be limited in such cases.

Numerical Example of OMP

Let:
F (x1, x2) = x1 + x2, (3.9)

where x1 ∼ N (1, 22) and x2 ∼ N (0, 12) (with N (µd, σ
2
d)) are the two (D = 2)

independent stochastic variables. In closed form formulas, the first and second
moments of f are given by:

µF = E[F ] = E[x1] + E[x2] = 1 + 0 = 1,

σF = Std[F ] =
√

Var(x1) + Var(x2) =
√
22 + 12 = 2.2360679775.

In this example, a second-order expansion, k = 2, is chosen on purpose to demon-
strate how the algorithm handles and rejects second-order polynomial terms for
this function. Although the number of samples is generally selected as N = 5D
throughout the thesis, a smaller sample size, N = 5, is chosen only in this illus-
trative example to enhance readability and ease of presentation. These samples are
evaluated and presented in Table 3.4.

For k = 2, the multivariate Hermite polynomials of the i-th sample are listed in
Table 3.3.

Each input sample xi,d was generated using a C++ implementation of a standard
normal random number generator, as shown in Table 3.4. Each component zi,d
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Order Sum Order per dim/on (jd1 , jd2) Multivariate Hermite Polynomial

0 0 0 ψ0(zi) = He0(zi,1)He0(zi,2) =
1√
0!0!

1
0 1 ψ1(zi) = He0(zi,1)He1(zi,2) =

zi,2√
0!1!

1 0 ψ2(zi) = He1(zi,1)He0(zi,2) =
zi,1√
1!0!

2

0 2 ψ3(zi) = He0(zi,1)He2(zi,2) =
(z2i,2−1)
√
0!2!

1 1 ψ4(zi) = He1(zi,1)He1(zi,2) =
zi,1zi,2√

1!1!

2 0 ψ5(zi) = He2(zi,1)He0(zi,2) =
(z2i,1−1)
√
2!0!

Table 3.3: Multivariate orthonormal Hermite polynomials ψj up to total order k =
2 for D = 2 stochastic inputs. The second column shows the corresponding multi-
index (jd1 , jd2), while the third one, the normalized product of univariate Hermite
polynomials.

was independently drawn from the standard normal distribution N (0, 12). These
samples were subsequently transformed into the physical input space using an affine
mapping based on the corresponding mean µd and standard deviation σd of each
input variable, according to Eq. (2.9).

Index i St/zed Samples zi = (zi,1, zi,2) Samples xi = (xi,1, xi,2) Output F (xi,1, xi,2)

0 1.1679 0.4803 3.3358 0.4803 3.8161

1 -1.1579 0.4344 -1.3158 0.4344 -0.8814

2 -1.1050 -1.3101 -1.2100 -1.3101 -2.5201

3 0.3224 -0.1619 1.6449 -0.1619 1.4830

4 1.0111 0.3828 3.0222 0.3828 3.4050

Table 3.4: Standardized sample values zi ∼ N (0, 12) and corresponding stochastic
values xi, along with the output values F (xi,1, xi,2) used.

The non-sparse candidate pool C, constructed by the polynomials ψj for k = 2, is
given by:

C =


ψ0(z0) ψ1(z0) ψ2(z0) ψ3(z0) ψ4(z0) ψ5(z0)
ψ0(z1) ψ1(z1) ψ2(z1) ψ3(z1) ψ4(z1) ψ5(z1)
ψ0(z2) ψ1(z2) ψ2(z2) ψ3(z2) ψ4(z2) ψ5(z2)
ψ0(z3) ψ1(z3) ψ2(z3) ψ3(z3) ψ4(z3) ψ5(z3)
ψ0(z4) ψ1(z4) ψ2(z4) ψ3(z4) ψ4(z4) ψ5(z4)

 . (3.10)

By substituting the evaluated basis values, C becomes:
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C =


1.0000 0.4803 1.1679 −0.5440 0.5610 0.2574
1.0000 0.4344 −1.1579 −0.5737 −0.5030 0.2409
1.0000 −1.3101 −1.1050 0.5066 1.4477 0.1563
1.0000 −0.1619 0.3224 −0.6886 −0.0522 −0.6336
1.0000 0.3828 1.0111 −0.6035 0.3870 0.0158

 . (3.11)

The active matrix A, which should finally include the selected sparse polynomial
basis function, is initialized as just keeping the first column of C, namely:

A =


ψ0(z0)
ψ0(z1)
ψ0(z2)
ψ0(z3)
ψ0(z4)

 =


1
1
1
1
1

 . (3.12)

In this case, the coefficient vector α contains only a single element α0, which is
computed by solving the system in Eq. (3.7) using OLS. The solution is:

α0 = 1.0604981198.

For the computed value of α0, the residual according to Eq. (3.3) is:

r =


2.7556
−1.9419
−3.5806
0.4225
2.3445

 . (3.13)

Iteration 1

The correlations are computed according to Eq. (3.2). Specifically, the absolute
value of the scalar products between the polynomials ψj and the initial residual
vector r are given by:

|cos(ψ0, r)| = 0.0000

|cos(ψ1, r)| = 0.7227

|cos(ψ2, r)| = 0.9713

|cos(ψ3, r)| = 0.5448

|cos(ψ4, r)| = 0.1937

|cos(ψ5, r)| = 0.1354
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As expected, the residual corresponding to the 0-th order polynomial is, by construc-
tion, orthogonal to the new polynomial ψ0. Furthermore, among the candidate basis
functions, |cos(ψ2, r)| has the highest magnitude, which leads to ψ2 being selected
and added to the active matrix A. With the updated A, the goal is to compute the
coefficient α1 while simultaneously updating α0. The active matrix A is defined as
follows:

A =


ψ0(z0) ψ2(z0)
ψ0(z1) ψ2(z1)
ψ0(z2) ψ2(z2)
ψ0(z3) ψ2(z3)
ψ0(z4) ψ2(z4)

 =


1.0000 1.1679
1.0000 −1.1579
1.0000 −1.1050
1.0000 0.3224
1.0000 1.0111

 . (3.14)

For clarity, the indices of the coefficients in this thesis refer to their position in the
solved system, rather than the order of the corresponding polynomials. Accordingly,
the system to solve for α = [α0 α1]

T , given that PA = 2, is formulated as in
Eq. (3.7). After performing OLS, the estimated coefficients are:

α0 = 0.9475861354

α1 = 2.3667967354

εLOO, is computed according to Eq. (2.28), and is found to be

εLOO = 0.1952.

In the absence of a termination criterion, the algorithm proceeds to iteration 2.

Though not part of the algorithm itself, the surrogate model constructed till this
point is:

F̂ (x) = α0ψ0(z) + α1ψ1(z)

= 0.9475861354
1√
0!

+ 2.3667967354

x1−µ1

σ1√
1!

= −0.2358122323 + 1.1833983677 x1.

In Figure 3.2, the original function Eq. (3.9) and the surrogate model F̂ (x) =
−0.2358+1.1834 x1 are plotted over the domain [−3, 3]2, illustrating their respective
surfaces in the 3D space.
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Figure 3.2: Comparison of the original function in Eq. (3.9) (darker surface) and the
surrogate model F̂ (x) = 1.1834x1 − 0.2358 (lighter surface) over the domain x1, x2 ∈
[−3, 3].

Iteration 2

The residual vector r is first calculated as:

r =


0.1044
0.9115
−0.8524
−0.2278
0.0643

 .

The new correlations are:

|cos(ψ0, r)| = 0.0000

|cos(ψ1, r)| = 0.8388

|cos(ψ2, r)| = 0.0000

|cos(ψ3, r)| = 0.5346

|cos(ψ4, r)| = 0.7468

|cos(ψ5, r)| = 0.2735

Since the coefficient corresponding to the first-order polynomial is larger, polynomial
ψ1 is included in the matrix A. With the updated A, the goal is to compute the
coefficient α2, while simultaneously updating α0 and α1. A is defined as:
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A =


ψ0(z0) ψ2(z0) ψ1(z0)
ψ0(z1) ψ2(z1) ψ1(z1)
ψ0(z2) ψ2(z2) ψ1(z2)
ψ0(z3) ψ2(z3) ψ1(z3)
ψ0(z4) ψ2(z4) ψ1(z4)

 =


1.0000 1.1679 0.4803
1.0000 −1.1579 0.4344
1.0000 −1.1050 −1.3101
1.0000 0.3224 −0.1619
1.0000 1.0111 0.3828

 . (3.15)

The system for α = [α0 α1 α2]
T , with PA = 3, is formulated as in Eq. (3.7) and

solved using OLS. The resulting coefficients are:

α0 = 1.0000000000, α1 = 2.0000000000, α2 = 1.0000000000.

The LOO error is εLOO = 0.000000. The second termination criterion is thus acti-
vated. For demonstration purposes, however, an additional iteration is carried out
to illustrate how the algorithm proceeds.

In this hypothetical third iteration, the residual vector r becomes zero. As a direct
consequence, all cosine correlations with the candidate polynomials are also zero,
i.e., ∣∣cos(ψj, r)

∣∣ = 0 ∀j.

Since the residual vector r is identically zero, all correlations between the basis
vectors ψj and the residual also equal zero. This confirms that the current model
already took all the ’information’ out of C, so the inclusion of additional basis
functions offers no further improvement.

The first two statistical moments, computed from the PCE coefficients obtained in
iteration 2 (where εLOO was minimal), are:

Mean: µF̂ = α0 = 1.0000000000,

Standard Deviation: σF̂ =
√
α2
1 + α2

2 = 2.2360679775,

which match the analytical solution derived above.

The surrogate model created using the same coefficients is:

F̂ (x) = α0ψ0(z) + α1ψ2(z) + α2ψ1(z)

=
1√
0!

+ 2

x1−µ1

σ1√
1!

+

x2−µ2

σ2√
1!

= x1 + x2 = F (x).

which matches the QoI.
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The reliability of OMP results with N = 5D samples is assessed after the algorithm
has terminated, ideally with εLOO < 0.01. If this threshold is exceeded, a com-
mon approach—though not illustrated in this thesis—is to add additional samples
(Nnew > N) and rebuild the polynomial basis from scratch. To implement a similar
strategy automatically, without user intervention, and using a different sparsification
criterion, the ESCAPE algorithm is introduced.

3.1.2 The Effective Sampling via Coefficient-Adaptive Poly-

nomial Expansion (ESCAPE) Method

To obtain results through a robust determination of the sample size N , the ESCAPE
method is proposed. ESCAPE uses a different sparsification index than OMP and
is capable of dynamically adding samples during the algorithm’s iterations, while
ensuring that the number of samples is sufficient relative to the current sparse poly-
nomial basis at each iteration, as dictated by the m : 1 sample-to-polynomial ratio.

This method always starts with the smallest possible chaos order kcurr = 1, that will
be increased by one in every iteration until the final order kfinal is reached (e.g. for
kfinal = 2 ESCAPE will conduct 2 iterations). Initially, a small number of samples
N = 3D is evaluated. At each iteration, the method expands the sparse polynomial
basis by adding only the most significant polynomials from a downward closed set of
polynomials of order k ≤ kcurr. A sparsification index is used to identify these poly-
nomials, based on the magnitude of the associated coefficients—also referred to as
sensitivities, as they reflect the influence of each basis function on the model output.
ESCAPE may adaptively enrich the sample set during each iteration, ensuring that
the number of samples remains sufficient relative to the current sparse polynomial
basis, providing stable and accurate OLS regression.

Analogous to OMP, ESCAPE operates with an active matrix A that finally collects
the sparse polynomial basis. Every polynomial added to A remains there perma-
nently and is considered part of the sparse set. A matrix called S is introduced
solely to solve the least squares problem; it does not carry any physical significance
and is used primarily for explanatory purposes.

This method provides a conceptual framework for identifying significant polynomial
terms via their coefficients within regression-based UQ, drawing inspiration from
recent developments such as [14]. The concept of a downward closed polynomial
basis—adapted from [14] and incorporated within the ESCAPE framework—is em-
ployed to structure the polynomial basis effectively.

In brief, this concept allows the sparse polynomial basis for the d-th dimension,
with d ∈ {0, . . . , D − 1}, to include a univariate polynomial pld(zid) of order jnew ∈
{0, . . . , k} with i ∈ {0, . . . , N − 1} only if all lower-order polynomials pld(zid) with
ld < jnew are already present. This ensures a hierarchical, nested structure, pre-
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venting the inclusion of higher-order terms without their corresponding lower-order
terms. Mathematically, it has been demonstrated that employing a downward closed
polynomial basis improves accuracy [6].

This concept is implemented within the software developed for the ESCAPEmethod,
as detailed below.

Downward Closed Polynomial Spaces

In multidimensional PCE, a multivariate polynomial basis is constructed from tensor
products of univariate orthogonal polynomials. The corresponding multi-index set
defines the structure of the expansion. These univariate indices, as introduced in
Chapter 2, are now assembled into a multidimensional structure called Λ, as shown
below.

For example, the following j-th basis function with 3 inputs:

ψj(zi,1, zi,2, zi,3) = p1(zi,1) p0(zi,2) p2(zi,3), with i ∈ {0, . . . , N − 1},

correspond to the multivariate index Λ = {(1, 0, 2)} which is the product of a first-
degree polynomial in zi,1, a zero-degree polynomial in zi,2, and a second-degree
polynomial in zi,3.

At each iteration of ESCAPE, a candidate set of new polynomial terms is generated
and denoted as Λ+. These candidates are then filtered to ensure the downward
closed property is preserved. The resulting admissible subset is denoted by Λ+

adm ⊆
Λ+, containing only those multi-indices whose corresponding lower-order terms are
already included in the current sparse basis. For example:

In a problem with two stochastic inputs, consider that the multi-index set of the
sparse basis at a given iteration is:

Λ = {(0, 0), (0, 1)}.

which is illustrated by the green nodes in Figure 3.3. Due to the increment of the
current chaos order by one, from kcurr = 1 to kcurr = 2, the algorithm proposes a set
of candidate multi-indices to be added (indicated in yellow in Figure 3.3):

Λ+ = {(1, 0), (0, 2), (1, 1), (2, 0)}.

Multi-indices (1, 1) and (2, 0) are not admissible since not all their lower-order pre-
decessors are present in Λ. Specifically, (1, 1) requires (1, 0), and (2, 0) requires
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(0, 2)
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Figure 3.3: Illustration of downward closed multi-index selection. The root node
(0, 0) and its immediate successor (0, 1) are already in the sparse basis (green). Can-
didate multi-indices (yellow) include (1, 0), (0, 2), (1, 1), and (2, 0). Nodes (1, 1) and
(2, 0) are rejected due to missing predecessors in the index set, while (1, 0) and (0, 2)
are accepted and added to the admissible set, updating the selection.

(1, 0), which is missing from Λ. Therefore, both (1, 1) and (2, 0) are rejected. The
admissible subset is thus:

Λ+
adm = {(1, 0), (0, 2)}.

This leads to the extended index set:

Λext = Λ ∪ Λ+
adm = {(0, 0), (0, 1), (1, 0), (0, 2)}.

From this extended set, the most suitable candidate—according to a predefined
selection criterion—is incorporated into the basis. This process effectively acts as
another ’filter’ (apart from the sensitivity based one), preventing non-admissible
terms from entering the polynomial basis.

The notation used in ESCAPE is summarized in Table 3.5.

Symbol Description

A Active matrix containing PA selected polynomials
S Matrix used exclusively for solving OLS; initially empty
Λ Multi-index set defining the multivariate polynomial basis
Λ+ Candidate multi-indices proposed for addition to the basis
Λ+

adm Admissible subset of Λ+ satisfying downward-closed property

Table 3.5: Summary of notation used in the ESCAPE algorithm and multidimen-
sional PCE.

Algorithm of ESCAPE

The initialization phase of the ESCAPE method primarily sets the final chaos order.
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Initialization:

Chaos order selection: Select the final order kfinal which, in the context of this
algorithm, also corresponds to the number of iterations.

The steps of the ESCAPE are outlined:

1. Set the current order kcurr = 1.

2. Predefine an initial number of samples, for instance N = 3D, which may later
be enriched with additional samples. Evaluate the model at these samples to
obtain

f =
[
F (x0) F (x1) · · · F (xN−1)

]T
,

and calculate the initial active matrix A, which at first contains only the
constant polynomial ψ0:

A =


ψ0(z0)
ψ0(z1)

...
ψ0(zN−1)

 . (3.16)

This matrix is subsequently updated at each iteration by adding the most
significant polynomial identified by the selection criterion.

3. Copy all polynomial terms from the A matrix into the S matrix.

4. Add to the S matrix all the polynomials of order up to the current kcurr , unless
they are already present in S (from the previous step). Mark the polynomials
added only in this step— with indices like ψjnew—to distinguish them from
the existing ones.

Note: previously rejected polynomials due to admissibility or sensitivity are
not automatically excluded at this stage; they may be reconsidered if they now
satisfy the criteria.

5. Check the marked polynomials ψjnew in the S matrix for admissibility. Remove
the non-admissible ones.

• This approach is based on the assumption that the set of multi-indices
associated with the polynomial space is downward closed, as described in
Section 3.1.2. If this condition is not met, the corresponding multi-indices
are rejected.

• The admissible polynomials that remain in S are marked as ψjnew/adm
.

6. Sample addition and function evaluation step (if needed): Check whether the
current number of samples N is sufficient to support the number of candidate
polynomials in matrix S, denoted PS, according to Eq. (3.17).
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• Verify whether the following inequality is satisfied:

N ≥ 2PS, (3.17)

which ensures that the least-squares system, Eq. (3.19), has a sufficient
number of samples compared to the number of polynomials.

• If the inequality is not satisfied, increase N by adding enough samples so
that

N = mPS. (3.18)

Evaluate the model at the added samples. The updated vector of model
evaluations is then

f =
[
F (x0) F (x1) · · · F (xN−1)

]T
,

which now includes all current samples.

In Eq. (3.18), m = 2 will be used, and a parametric study will be conducted
later to justify why the sample-multiplier factor m = 2 is optimal.

7. Solve the System:

Sα = f , (3.19)

using OLS and compute the coefficients α = [α0, . . . , αPS−1]
T .

8. Compute the sensitivity index, as defined in Eq.(3.20), for the coefficients
ajnew/adm

that are related with the ψjnew/adm
in S. Permanently transfer only

the significant polynomials of them (according to Eq.(3.21)) in A matrix and
reject the rest.

• Compute the sensitivity index for each newly calculated coefficient ajnew/adm
,

associated with ψjnew/adm
in S:

ηjnew/adm
= α2

jnew/adm
. (3.20)

• Compute the mean sensitivity index ηmean from the previously computed
values ηjnew/adm

• Compare each computed sensitivity index with the threshold:

ηjnew/adm
>
ηmean

2
. (3.21)
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If this condition holds, transfer the corresponding polynomials to the
active matrix A.

• Upon completion of this step, empty the S matrix.

9. Increase the current order by one, i.e. set kcurr = kcurr + 1.

10. Repeat steps 3–9 until the iteration with kcurr = kfinal has been completed.

After termination, the sparse basis A has been constructed. Solve

Aα = f , (3.22)

using OLS to obtain the final coefficients αj. Finally, compute εLOO, which
serves as a quality indicator of the expansion. Using these coefficients, the
first two statistical moments can be computed.

A graph similar to Figure 3.1 illustrating the computational efficiency of the ES-
CAPE method would, unfortunately, be inaccurate, since the number of function
evaluations selected by ESCAPE is a priori unknown and case-dependent. Never-
theless, this characteristic underlines the algorithm’s ability to possibly reduce the
linear cost observed in certain OMP scenarios by employing an adaptive strategy,
where function evaluations are performed according to the sampling requirements
of the sparse OLS system (as described in Step 6). In some cases, the OMP algo-
rithm may overestimate the required samples (e.g., when N = 5D proves excessive),
ESCAPE may achieve a lower computational cost; in other cases, the cost may be
comparable or slightly higher.

As seen in the algorithm, kfinal determines both the number of iterations performed
and the maximum possible chaos order in the basis. For example, setting kfinal = 3
does not guarantee the inclusion of polynomials of degree three, since such terms may
repeatedly be rejected due to the downward-closed condition or the sparsification
criterion. Instead, it merely allows for their potential inclusion. So, increasing kfinal
raises the maximum admissible chaos order, which also increases the computational
cost as the polynomial basis grows.

It is also important to note that the admissibility basis check is performed prior
to the sample addition step. This ensures that the number of basis polynomials is
minimized as much as possible before potentially adding new samples, as dictated
by Eq. (3.18).

Numerical Example of ESCAPE

Let the same QoI as in Eq. (3.9) be considered, where x1 ∼ N (1, 22) and x2 ∼
N (0, 12) are uncertain inputs.
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Initially, the order of the PCE is selected, and here kfinal = 2 is purposely chosen, as
before, to demonstrate how the algorithm handles and rejects second-order polyno-
mial terms for this function. The number of samples is adjusted by the algorithm.
Initially, N = 3D = 6 samples are selected. The multivariate polynomials ψ0 are
computed as shown in Table 3.3.

The input samples zi, where i ∈ {0, . . . , N − 1}, are generated as in the previous
example using a standard normal random number generator, see Table 3.6.

Index i St/zed Samples zi = (zi,1, zi,2) Samples xi = (xi,1, xi,2) Output F (xi,1, xi,2)

0 1.1679 0.4803 3.3358 0.4803 3.81615

1 -1.1579 0.4344 -1.3158 0.4344 -0.881432

2 -1.1050 -1.3101 -1.2100 -1.3101 -2.52014

3 0.3224 -0.1619 1.6449 -0.1619 1.48296

4 1.0111 0.3828 3.0222 0.3828 3.40496

5 0.7779 0.7266 2.5557 0.7266 3.28235

Table 3.6: Set of N = 6, D = 2 standardized values zi ∼ N (0, 12), corresponding
stochastic values xi, and outputs F (xi,1, xi,2) used for regression.

The active matrix A, filled initially with only the 0-th order polynomial basis func-
tions computed at the sample points, is initialized as:

A =


ψ0(z0) = 1
ψ0(z1) = 1
ψ0(z2) = 1
ψ0(z3) = 1
ψ0(z4) = 1
ψ0(z5) = 1

 . (3.23)

The polynomial index parameter Λ lists the polynomial orders that exist for each
dimension (column) in order to check for admissibility later on. For the A matrix
in Eq. (3.23), it is:

Λ = {(0, 0)}.

The current polynomial order is set to kcurr = 1.

Iteration 1

Polynomials from A (namely ψ0) are initially copied to S. This is additionally
completed by all multivariate polynomials of order kcurr ≤ 1 (namely ψ1 and ψ2):
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S =


ψ0(z0) ψ1(z0) ψ2(z0)
ψ0(z1) ψ1(z1) ψ2(z1)
ψ0(z2) ψ1(z2) ψ2(z2)
ψ0(z3) ψ1(z3) ψ2(z3)
ψ0(z4) ψ1(z4) ψ2(z4)
ψ0(z5) ψ1(z5) ψ2(z5)

 .

According to Table 3.3, the polynomial basis Λ+ for kcurr = 1 (which corresponds
to the newly added polynomials ψjnew = {ψ1,ψ2}) includes the following:

Λ+ = {(0, 1), (1, 0)}.

An admissibility check is then performed, as described previously. As also shown in
Figure 3.4, the current polynomial basis is already downward closed, so no modifi-
cations are necessary:

Λ+
adm = {(0, 1), (1, 0)}.

(0, 0)

(0, 1) (1, 0)

Figure 3.4: Illustration of the adaptive multi-index selection process starting from
the initial set Λ = {(0, 0)}. The candidate multi-indices Λ+ = {(0, 1), (1, 0)} are
highlighted in yellow. Since the polynomial basis is already downward closed, both
candidates are admissible: Λ+

adm = {(0, 1), (1, 0)}.

The extended multi-index set becomes:

Λext = Λ ∪ Λ+
adm = {(0, 0), (0, 1), (1, 0)}.

More specifically, the corresponding newly admissible basis functions are:

ψjnew/adm
= {ψ1,ψ2}.

Therefore, S remains unchanged from its previously shown form containing ψ0,ψ1

and ψ2.

The number of available samples, N = 6, is then checked against the condition
Eq. (3.17) 2PS ≤ N , where PS = 3 denotes the number of polynomial terms used in
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S. The condition is satisfied, so, no more samples are added at this point.

The S matrix, filled with the polynomials ψ0,ψ1,ψ2 at each sample point zi, is:

S =


ψ0(z0) ψ1(z0) ψ2(z0)
ψ0(z1) ψ1(z1) ψ2(z1)
ψ0(z2) ψ1(z2) ψ2(z2)
ψ0(z3) ψ1(z3) ψ2(z3)
ψ0(z4) ψ1(z4) ψ2(z4)
ψ0(z5) ψ1(z5) ψ2(z5)

 =


1.0000 0.4803 1.1679
1.0000 0.4344 −1.1579
1.0000 −1.3101 −1.1050
1.0000 −0.1619 0.3224
1.0000 0.3828 1.0111
1.0000 0.7266 0.7779

 . (3.24)

The problem is formulated as in Eq. (3.19), where α =
[
α0 α1 α2

]⊤
denotes the

vector of PCE coefficients, and f is the vector of model evaluations at the sample
points xi . Solving this system using OLS computes:

α0 = 1.0000000000, α1new/adm
= 0.9999999999, α2new/adm

= 2.0000000000.

The sensitivity indices corresponding to the new coefficients αjnew/adm
for j = 1, 2

are calculated, according to Eq. (3.20), and summarized in Table 3.7:

Coefficient αjnew/adm
Sensitivity Index ηjnew/adm

Corresponding Polynomial

α1new/adm
= 0.9999 0.9999 ψ1

α2new/adm
= 2.0000 4.0000 ψ2

Table 3.7: Coefficients αjnew/adm
obtained from the latest solution of Eq.(3.7), along

with their sensitivity indices.

ηjnew/adm
>
ηmean

2
= 1.2499.

This inequality holds for the coefficient corresponding to ψ2, as shown in Table 3.7.
Therefore, coefficient 0.9999 (corresponding to ψ1) is rejected for the time. Matrix
S is emptied.

Consequently, the active matrix A retains only the basis functions associated with
the significant term ψ2, along with the previously included ψ0.
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A =


ψ0(z0) ψ2(z0)
ψ0(z1) ψ2(z1)
ψ0(z2) ψ2(z2)
ψ0(z3) ψ2(z3)
ψ0(z4) ψ2(z4)
ψ0(z5) ψ2(z5)

 =


1.0000 1.1679
1.0000 −1.1579
1.0000 −1.1050
1.0000 0.3224
1.0000 1.0111
1.0000 0.7779

 . (3.25)

In order to calculate the coefficients at this point, without being part of the algorithm
(as this is done after all the iterations are completed), Eq.(3.22) is solved and the
estimated coefficients are:

α0 = 1.0205941411, α1 = 2.4215668481.

In this example, α1 corresponds to the polynomial ψ2, and the value of α0 has been
updated. For completeness, εLOO is computed using Eq. (2.28), and is found to be

εLOO = 0.1794.

Just for demonstration purposes, the surrogate model in this iteration is computed
as:

F̂ (x) = α0ψ0(z) + α1ψ2(z)

= 1.0205941411
1√
0!

+ 2.4215668481

x1−µ1

σ1√
1!

= −0.19018928295 + 1.21078342405x1.

Figure 3.5 presents a comparison between the original function in Eq. (3.9) and its
surrogate approximation F̂ (x) = −0.1902+1.2108x1 over the domain [−3, 3]2. The
darker surface corresponds to the original function, while the lighter surface depicts
the surrogate, illustrating their respective shapes in the 3D space.
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Figure 3.5: Comparison between the original function in Eq. (3.9) (darker surface)
and the surrogate model F̂ (x) = −0.1902+1.2108x1 (lighter surface) over the domain
x1, x2 ∈ [−3, 3].

The polynomial order is increased to kcurr = 2. Since no termination criterion is
activated, the algorithm proceeds to iteration 2.

Iteration 2

Since all basis functions currently included in the A matrix are considered sig-
nificant—namely ψ0 and ψ2—and based on their univariate orders as shown in
Table 3.3, it follows that Λ = {(0, 0), (1, 0)}.

In this iteration, the polynomial basis Λ+ is examined, considering all polynomials of
order k = 0, 1, and 2, i.e., up to and including the current chaos order kcurr = 2. This
includes the basis functions ψ3, ψ4, ψ5, and ψ1, as the remaining basis functions
are already included in A.

Thus, the candidate multi-indices to be examined first—according to the downward-
closed criterion—are:

Λ+ = {(0, 2), (1, 1), (2, 0), (0, 1)}.

An admissibility check is then performed, as described previously. As also shown
in Figure 3.6, indices (0, 2) and (1, 1) are rejected due to violation of the downward
closedness condition. Therefore, the updated admissible polynomial basis becomes:

Λ+
adm = {(2, 0), (0, 1)}.
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(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1) (2, 0)

Figure 3.6: The root node (0, 0) and its immediate successor (1, 0) are already in the
basis (green). Candidate multi-indices (yellow) include (0, 1), (0, 2), (1, 1), and (2, 0).
Nodes (1, 1) and (0, 2) are rejected due to missing predecessors in the index set, while
(0, 1) and (2, 0) are accepted and added to the admissible set, updating the selection.

As a result, the extended multi-index set becomes:

Λext = Λ ∪ Λ+
adm = {(0, 0), (1, 0), (2, 0), (0, 1)} .

Looking at Table 3.3, the basis functions of Λext that will be added to the S matrix
are ψj = {ψ0,ψ2,ψ5,ψ1}, with the newly admitted basis functions ψjnew/adm

=

{ψ5,ψ1}.

The basis is intentionally kept in this order—rather than being sorted by increasing
total degree—to facilitate computational extraction of the newly added basis func-
tions (ψ5,ψ1) if needed. Since they appear at the tail of the list, there is no need
to define a separate index vector to identify their positions within the basis.

The number of available samples, N = 6, is then checked against the condition in
Eq. (3.17), 2PS ≤ N , where PS = 4. The condition is not satisfied, so according
to Eq. (3.18), 2 additional samples are needed. The updated collection of input
samples zi and their corresponding evaluations F (xi,1, xi,2) is shown in Table 3.8.

The design matrix S is constructed by calculating the polynomial basis functions
ψ0,ψ2,ψ5ψ1 at each sample point zi:

S =


ψ0(z0) ψ2(z0) ψ5(z0) ψ1(z0)
ψ0(z1) ψ2(z1) ψ5(z1) ψ1(z1)

...
...

...
...

ψ0(z7) ψ2(z7) ψ5(z7) ψ1(z7)

 =



1.0000 1.1679 0.2574 0.4803
1.0000 −1.1579 0.2409 0.4344
1.0000 −1.1050 0.1563 −1.3101
1.0000 0.3224 −0.6336 −0.1619
1.0000 1.0111 0.0158 0.3828
1.0000 0.7779 −0.2793 0.7266
1.0000 −1.2157 0.3379 −0.0938
1.0000 1.0665 0.0972 0.5372


.

(3.26)
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Index i Input Samples zi = (zi,1, zi,2) xi = (xi,1, xi,2) Output F (xi,1, xi,2)

0 1.1679 0.4803 3.3358 0.4803 3.8161 (known)

1 -1.1579 0.4344 -1.3158 0.4344 -0.8814 (known)

2 -1.1050 -1.3101 -1.2100 -1.3101 -2.5201(known)

3 0.3224 -0.1619 1.6449 -0.1619 1.4830 (known)

4 1.0111 0.3828 3.0222 0.3828 3.4050 (known)

5 0.7779 0.7266 2.5557 0.7266 3.2824 (known)

6 -1.2157 -0.0938 -1.4314 -0.0938 -1.5252

7 1.0665 0.5372 3.1330 0.5372 3.6702

Table 3.8: Standardized input samples zi ∼ N (0, 1)2, corresponding transformed
values xi, and the output values F (xi,1, xi,2) used for regression. Outputs 0–5 are
already evaluated and known from the previous iteration.

Formulating the problem as in Eq. (3.19), where α =
[
α0 α1 α2new/adm

α3new/adm

]⊤
denotes the vector of PCE coefficients, and f is the vector of model evaluations at
the sample points xi .

The solution of this system using OLS results:

α0 = 0.9999999999, α1 = 1.9999999999,

α2new/adm
= 0.0000000000, α3new/adm

= 1.000000000.

The contributions of the newly added basis functions, ψ5 and ψ1, according to
Eq. (3.20), are reported in Table 3.9.

Coefficient αjnew/adm
Sensitivity Index ηjnew/adm

Corresponding Polynomial

α2new/adm
= 0.0000 0.0000 ψ5

α3new/adm
= 1.0000 1.0000 ψ1

Table 3.9: Coefficients α2new/adm
and α3new/adm

obtained from the solution of Eq.(3.19),
along with their sensitivity indices.

The coefficient α3new/adm
= 0.9999 (corresponding to ψ1) is selected according to

Eq. (3.21). Therefore, the active matrix A becomes:
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A =


ψ0(z0) ψ2(z0) ψ1(z0)
ψ0(z1) ψ2(z1) ψ1(z1)

...
...

...
ψ0(z7) ψ2(z7) ψ1(z7)

 =



1.0000 1.1679 0.4803
1.0000 −1.1579 0.4344
1.0000 −1.1050 −1.3101
1.0000 0.3224 −0.1619
1.0000 1.0111 0.3828
1.0000 0.7779 0.7266
1.0000 −1.2157 −0.0938
1.0000 1.0665 0.5372


. (3.27)

Since kcurr = kfinal has been reached, the iterations are terminated and the system
in Eq. (3.22) is solved using OLS, which computes:

α0 = 1.0000000000, α1 = 2.0000000000, α2 = 1.0000000000.

The LOO error is found to be:

εLOO = 0.000000.

This result of the LOO error is expected, as the surrogate model exactly reproduces
the original model, which was also confirmed earlier in OMP by the identical co-
efficients. Consequently, the mean and standard deviation remain the same as the
analytical results.

The algorithm terminates once the step corresponding to kcurr = kfinal has been
executed. The first two statistical moments, computed using the PCE coefficients
from iteration 2, are:

Mean: µF̂ = α0 = 1.0000000000,

Standard Deviation: σF̂ =
√
α2
1 + α2

2 = 2.2360679775.

which match the analytical solution derived above.

The two sparse UQ methods employed yielded the exact analytical expression. It
is important to note that these values do not represent the computational efficiency
of the methods in the general case, as the examples presented here are solely for
explanatory purposes. Both methods are fundamentally designed to handle prob-
lems with a high number of uncertain variables, where their efficiency should be
evaluated.

In the following, two numerical applications of the sparse methods OMP and ES-
CAPE are presented, for some first comparisons to be made.
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3.2 Pseudo-Engineering Problems

This section presents a comperative analysis of OMP and ESCAPE to assess their
accuracy and efficiency, with particular emphasis on the number of evaluations re-
quired. They are compared to each other using Monte-Carlo simulations, which serve
as the reference solution (‘ground truth’). The comparison is conducted across two
distinct problem scenarios to evaluate the performance of each method under varying
conditions, with the goal of identifying the optimal balance between computational
cost and accuracy.

In addition to evaluating the statistical estimates, the analysis will also examine
the polynomial bases constructed by the two methods, providing insight into which
basis functions are selected by each algorithm and how each basis is adapted to the
problem at hand. All regression algorithms in the following problems will operate
with k = 2 (for ESCAPE, also kfinal = 2).

3.2.1 Problem 1: Wing Weight

The wing weight function from [10], adapted from the aircraft design handbook [22],
models the wing of a Cessna C172 Skyhawk. It is used for sensitivity analysis in
aerospace and depends on factors such as wing area, fuel weight in the wing, aspect
ratio, quarter-chord sweep angle, dynamic pressure at cruise, taper ratio, airfoil
thickness-to-chord ratio, ultimate load factor, flight design gross weight, and paint
weight.

The light aircraft wing weight (QoI) is defined as follows:

F (x) = 0.036S0.758
w W 0.0035

fw

(
A

cos2(Λ)

)0.6
q0.006ℓ0.04

(
100tc
cos(Λ)

)−0.3

(NzWdg)
0.49 + SwWp.

(3.28)

The D = 10 uncertain inputs are assumed to follow normal distributions, in Ta-
ble 3.10.
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Inputs Unit Notation Mean Standard Deviation

Wing area ft2 Sw 175 14.43

Weight of fuel in wing lb Wfw 260 23.09

Aspect ratio – A 8 1.15

Quarter-chord sweep deg Λ 0 5.773

Dynamic pressure at cruise lb/ft2 q 30.5 8.38

Taper ratio – ℓ 0.75 0.14

Aerofoil thickness/chord ratio – tc 0.13 0.029

Ultimate load factor – Nz 4.25 1.01

Flight design gross weight lb Wdg 2100 231.08

Paint weight lb/ft2 Wp 0.0525 0.0159

Table 3.10: Problem 1: Normal distributions of stochastic inputs [22].

Parametric study of the sample-multiplier factor m in ESCAPE method

A parametric study on the factor m of the ESCAPE method, which appears in
Eq. (3.18) as part of Step 6, was conducted. The method was executed for various
values of m ∈ {1.5, 2, 2.5, 3, 3.5, 4}, and the results are illustrated in Figure 3.7,
which shows the evolution of the mean and standard deviation, as a function of
the number of function evaluations (computational cost). As observed, the choice
m = 2 offers the most favorable trade-off between accuracy and computational cost.
Based on this outcome, this value of m is adopted throughout this thesis.
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Figure 3.7: Problem 1: Parametric study of the factor m in the ESCAPE method
(Step 6). Left: Mean value of the QoI. Right: Corresponding standard deviation.
Dashed lines indicate the converged Monte-Carlo reference values (’ground truth’).
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The non-sparse basis using k = 2 according to Eq.(2.2) has Ptotal = 66 basis func-
tions.

Parametric study of the sample-multiplier factor b in OMP method

A parametric study is conducted to investigate the effect of the factor b, as defined
in Eq. (3.4), on the accuracy of the mean and standard deviation estimates. As
shown in Figure 3.8, different values of b are tested, and the resulting values are
compared against the Monte-Carlo ’ground truth’ values. The results indicate that
b = 5 achieves a good balance between accuracy and computational cost, justifying
its selection in this thesis.
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Figure 3.8: Problem 1: Parametric study of the factor b in the OMP method. Left:
Mean value of the QoI. Right: Corresponding standard deviation. Dashed lines indi-
cate the converged Monte-Carlo reference values (’ground truth’).

The bar charts in Figures 3.10 and 3.9a show results obtained using NSPCE with
SR = 3 and N = 198. Bar charts in Figure 3.9a illustrate the Sobol total sensitivity
indices. This chart quantifies the relative importance of each stochastic input to
the QoI. The right chart (b) shows the total number of non-zeroth-order univariate
polynomial terms selected per input variable by the OMP (blue) and ESCAPE (red)
algorithms. More precisely, it presents the number of non-zero univariate terms
retained in the final sparse polynomial basis for each stochastic input.

For example, consider the following final, sparse polynomial basis A with two
stochastic variables, constructed as tensor products of univariate basis functions
p0, p1, p2, in variables x1 and x2:

A =


p0(z0,1) p0(z0,2) p0(z0,1) p1(z0,2) p0(z0,1) p2(z0,2)
p0(z1,1) p0(z1,2) p0(z1,1) p1(z1,2) p0(z1,1) p2(z1,2)

...
...

...
p0(zN−1,1) p0(zN−1,2) p0(zN−1,1) p1(zN−1,2) p0(zN−1,1) p2(zN−1,2)

 .
49



In this example, the polynomial basis in x1 contains only the zeroth-order term,
while those in x2 range from order 0 to 2, resulting in:

• Number of non-zero orders in x1: 0

• Number of non-zero orders in x2: 2 (orders 1 and 2)

Figure 3.9b is directly compared to the reference Sobol indices in Figure 3.9a, in
order to assess how effectively each adaptive method identifies and emphasizes the
most influential variables for the variance of the QoI. The comparison illustrates
how closely the selected polynomial structures reflect the true sensitivity ranking of
the input variables, thus indicating the quality of each method’s basis construction.
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Figure 3.9: Problem 1: (a) Sobol total sensitivity indices (to be used as reference) de-
rived using NSPCE, quantifying each input variable’s contribution to output variance.
(b) an adaptivity-based comparison between OMP (blue) and ESCAPE (red), showing
the count of non-zeroth-order univariate polynomial terms per input dimension in the
constructed polynomial basis. These counts indicate the degree of importance each al-
gorithm assigns to the input variables and are compared to subfigure (a).

Figure 3.9a shows that some uncertain inputs, such asWfw, Λ, q, ℓ, andWp, are not
significantly influential for the variance of the QoI, according to their Sobol indices.
Figure 3.9b demonstrates that both OMP and ESCAPE correctly assigns more non-
zeroth-order polynomial terms to the inputs Sw, A, tc, Wdg, and Nz, reflecting their
higher influence on the QoI. However, the ESCAPE method appears to construct
its polynomial basis more cautiously and in closer agreement with the significance
pattern indicated by the Sobol analysis, suggesting a more targeted and informed
adaptivity than OMP. It is worth noting that the input ℓ may be overestimated in
the basis constructed by ESCAPE. The computational cost for each method shown
in Figure 3.9b is reported in Table 3.11.
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Figure 3.10: Problem 1: Bar chart of the absolute values of the PCE coefficients with
the corresponding polynomial basis functions ψj on the x-axis, excluding the constant
term ψ0. The coefficients are obtained using NSPCE.

Another interesting comparison, shown in Figure 3.10, presents the absolute values
of the PCE coefficients associated with the non-sparse polynomial basis functions
ψj, excluding the constant term ψ0. The bar chart highlights the relative impor-
tance of different basis functions in the expansion. A few coefficients, such as those
corresponding to ψ3, ψ8, ψ7, ψ9, and ψ56, dominate with significantly larger mag-
nitudes, while most others remain small. This, indicates that only a limited subset
of basis functions contributes substantially to the system’s response. In order to
compare whether OMP and ESCAPE correctly select the important basis functions
and reject the rest, a sorted version of these bars is presented in Figure 3.11. Here,
the blue dots represent the subset of basis functions selected by the OMP, while
the red triangles denote those identified by the ESCAPE method. This comparison
highlights the capability of sparse techniques to add the most influential basis func-
tions to the sparse basis, while filtering out less relevant ones. In particular, both
methods identify, among others, the ten most relevant basis functions, namely those
corresponding to j = {8, 3, 7, 1, 9, 56, 10, 35, 60, 6}. They also appear to skip some
not irrelevant basis functions, such as j = 57, 61, 13 before choosing others of lesser
importance. Beyond that, OMP tends to include a few less significant basis func-
tions, like j = 64 and 62, which may not be optimal since it unnecessarily increases
the size of the basis.

It is worth noting that εLOO remains below 0.01, thereby confirming the reliability
of the results. As shown in Table 3.11, the reported information includes the CR,
as defined in Eq. (1.3), Psparse, along with estimates of the mean µF̂ and standard
deviation σF̂ of the QoI. The estimates from both OMP and ESCAPE, which require

51



8 3 7 1 9
5
6

1
0

3
5

6
0 6

5
7

3
4

3
8

1
8

6
1

1
3

3
6

1
7

3
0

1
9

5
8 5

4
1

3
9

1
4

1
1

6
3

3
2

4
3

2
6

3
3

4
9

5
5

1
5

5
2

1
6

4
4

2
2

5
0

4
2

5
3

4
8

5
9

4
7

6
4

2
7

2
4 2

2
0

2
5 4

2
3

6
5

5
1

2
8

6
2

3
1

2
1

4
0

4
6

5
4

3
7

2
9

1
2

4
5

0

5

10

15

20

25

30

Basis Function ψj

|α
j
|

NSPCE

OMP

Escape

Figure 3.11: Problem 1: Bar chart of the sorted, absolute values of the PCE coef-
ficients, excluding the constant basis function ψ0, together with the polynomials and
their coefficient magnitudes selected by OMP (blue dots) and ESCAPE (red triangles).

Method (k) µF̂ σF̂ Psparse/CR Cost
(Function Calls)

Monte-Carlo 268.120836175 49.402464061 – 109

OMP (2) 268.5235342628 49.0926092981 22/0.3 50
ESCAPE (2) 268.3217099425 49.6664607313 17/0.26 52

Table 3.11: Problem 1: Comparison of the OMP and ESCAPE methods for estimat-
ing the mean µF̂ and standard deviation σF̂ of the QoI, also compared with Monte-
Carlo. The table also reports Psparse, CR and the number of function evaluations.

nearly the same computational cost, seem very close to the Monte-Carlo values.

3.2.2 Problem 2: Beam’s deflection

A simply supported beam under uniform load is considered, with artificially in-
creased input dimensionality, up to D = 20, to examine its impact on the PCE
methods. The beam’s deflection at coordinate ℓm is given by

δ(ℓm) =
Pℓm (L3 − 2ℓ2mL+ ℓ3m)

2Ewh3
+ 10−10

20∑
i=6

di, (3.29)
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where ℓm = mL
M+1

, m = 1, . . . ,M . The five primary input parameters are assumed
to follow normal distributions, as specified below. Additionally, 15 dummy parame-
ters di, i = 6, . . . , 20 are introduced, also normally distributed, though they do not
influence the response. Despite their irrelevance, the increased input dimensional-
ity affects the performance of the PCE methods. This setup allows us to evaluate
whether the methods can handle situations where the curse of dimensionality be-
comes significant [14].

The non-sparse basis for order k = 2, computed according to Eq. (2.2), consists of
a total of Ptotal = 231 basis functions.

Inputs Unit Notation Mean Standard Deviation

Width m w 15 · 10−2 75 · 10−4

Height m h 3 · 10−1 15 · 10−3

Length m L 5 5 · 10−2

Young’s modulus Pa E 3 · 1010 45 · 108
Load N/m P 1 · 104 2 · 103
Dummy – d6 − d20 1 1

Table 3.12: Problem 2: Normal distributions of stochastic inputs [14].

Figure 3.12 shows (a) Sobol total sensitivity indices, obtained via NSPCE, and (b)
the number of non-zero univariate polynomial terms per stochastic input in the poly-
nomial bases constructed by OMP (blue) and ESCAPE (red). The latter reflects the
adaptivity of each algorithm in relation to the Sobol reference (’ground truth’). As
a result, in contrast to OMP, ESCAPE effectively ignores the purposely insignificant
orders corresponding to d6 through d20 for the QoI, which is useful, as it significantly
reduces the size of the polynomial basis. Additionally, both methods identified that
h,E, P inputs have increased importance in the variance of the QoI, according to
the Sobol indices shown in Figure 3.12a, potentially enabling the construction of
more appropriate polynomial basis.

In order to evaluate whether OMP and ESCAPE correctly identify the dominant
basis functions while discarding the less relevant ones, Figure 3.13 displays the sorted
absolute values of the PCE coefficients. The blue dots represent the subset of basis
functions selected by OMP, while the red triangles correspond to those identified
by ESCAPE. Both methods capture several of the most influential basis functions
(e.g., j = {5, 4, 2, 1, 3, 44, 43}), thereby demonstrating their capability to construct a
compact sparse basis. However, ESCAPE appears to recover a larger fraction of the
important basis functions (such as j = 41, 61, 62), while both methods miss others
like j = 79. They both seem to select also less relevant terms, which are omitted
from the figure due to space limitations.

Table 3.13 presents the mean and standard deviation estimates obtained by the
OMP and ESCAPE methods, alongside the converged Monte-Carlo reference results
(’ground truth’). Notably, εLOO has remained below 0.01, thereby confirming the
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Figure 3.12: Problem 2: (a) Sobol total sensitivity indices obtained with NSPCE
(used as reference), quantifying the contribution of each input variable to the output
variance. (b) Adaptivity-based comparison between OMP (blue) and ESCAPE (red),
showing the number of non-zeroth-order univariate polynomial terms per input di-
mension in the constructed basis. These counts reflect the importance each algorithm
assigns to the stochastic variables and are contrasted with subfigure (a).
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Figure 3.13: Problem 2: Bar chart of the sorted absolute values of the first subset
of PCE coefficients (out of the total Ptotal = 231), shown for clarity, excluding the
constant basis function ψ0. The markers indicate the coefficients selected by OMP
(blue dots) and ESCAPE (red triangles).

reliability of the results. OMP demonstrates a good balance between computational
cost and accuracy, while ESCAPE achieves a similarly accurate representation using
a sparser polynomial basis and less function evaluations.
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Method (k) µF̂ σF̂ Psparse/CR Cost
(Function Calls)

Monte-Carlo 0.0083836936 0.0026087982 – 107

OMP (2) 0.0083872707 0.0025527939 48/0.21 100
ESCAPE (2) 0.0083750489 0.0025528164 13/0.06 72

Table 3.13: Problem 2: Comparison of the OMP and ESCAPE methods in estimating
the mean µF̂ and standard deviation σF̂ of the QoI, alongside Monte-Carlo results.
The table additionally presents Psparse, CR, and the number of function evaluations.

3.3 Conclusions

For Problem 1, ESCAPE achieved a compression ratio of 0.26 compared to 0.30
for OMP, indicating the construction of a smaller polynomial basis. Both methods
reproduced the mean and standard deviation of the Monte Carlo reference with
errors below 0.7%, with ESCAPE yielding slightly higher accuracy. The number of
function evaluations was nearly identical, with 52 for ESCAPE and 50 for OMP.

For Problem 2, ESCAPE achieved again a substantially lower CR of 0.06 compared
to 0.21 for OMP. Accuracy with respect to the Monte Carlo reference remained
within 2%, with OMP providing slightly better prediction of the mean. It is worth
noting that ESCAPE required fewer function evaluations (72) than OMP (100).

Overall, these results show that both ESCAPE and OMP achieve similarly high
accuracy in estimating the mean µF̂ and standard deviation σF̂ of the QoI.
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Chapter 4

UQ in Aerodynamic Applications

In this chapter, OMP and ESCAPE methods are applied to three aerodynamic
case studies that involve normally distributed, geometric (using shape deformation
techniques) and flow uncertainties, such as inlet velocity.

For shape parameterization, B-spline-based Free-Form Deformation (FFD) is em-
ployed. In particular, volumetric B-splines are used to map all CFD mesh points
located within predefined morphing boxes from the Cartesian space (x, y) to a para-
metric space (u, v). This mapping is performed once at the beginning of each case.

Each case involves the solution of the Navier–Stokes equations using the Open-
FOAM software. For the present study, no turbulence model was employed, and
the simulations were conducted under laminar assumptions. The aim is to assess
the reliability and effectiveness of the proposed sparse UQ methods in both internal
and external aerodynamics. This is accomplished by comparing the predicted means
and standard deviations with those obtained via the Monte-Carlo method, thereby
demonstrating the accuracy and practical applicability of the sparse techniques in
real-world aerodynamic problems.

For the first case, however, Monte-Carlo simulations are prohibitively expensive to
run to convergence. Therefore, NSPCE with k = 3 is used as the reference solution
instead.

4.1 Problem 3: NACA0012 Airfoil

The NACA0012 airfoil is selected for this study due to its symmetric design, which
ideally produces zero lift under parallel flow conditions. Small geometric pertur-
bations—namely, 8 uncertainty inputs corresponding to the coordinates of Control
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Points (CPs), on the order of 0.01% of the chord length are considered in this exam-
ple. These perturbations can influence the aerodynamic performance, such as the
lift coefficient, which serves as the QoI in this case. The effects are quantified in
the following sections and used to compare the performance of ESCAPE and OMP.
According to Eq. (2.2), for a total polynomial order k = 2, the total number of
non-sparse polynomials is Ptotal = 45.

Model Description and Flow Conditions

This study investigates the external flow around an isolated NACA 0012 airfoil at
a freestream flow angle of 0◦ under shape/geometrical uncertainties. The airfoil has
a chord length C = 1 m and a maximum thickness equal to 12% of the chord, i.e.,
0.12C. The computational domain is discretized using a structured mesh comprising
37,800 hexahedral cells. The corresponding mesh is illustrated in Figure 4.1.

Figure 4.1: Problem 3: Computational mesh.

Regarding the laminar flow conditions, air flows at a velocity of 6m/s. The flow
is assumed incompressible, and the working fluid is modeled as Newtonian with a
kinematic viscosity of ν = 6× 10−3m2/s.

The no-slip boundary condition is imposed along the airfoil walls. For the pressure
field, a zero-gradient boundary condition is imposed at the airfoil surfaces.

The aim of this application is to perform UQ with respect to a QoI, which is defined
as the aerodynamic lift coefficient CL. This coefficient is computed by projecting
the total aerodynamic force F onto a given lift direction eL, and normalizing it with
the dynamic pressure and a reference area. The mathematical expression is given
by

J = CL =
F · eL

1
2
ρ∞U2

∞Aref

,
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where ρ∞ denotes the freestream density, U∞ the freestream velocity magnitude,
and Aref the chosen reference area.

In Figure 4.2, the CPs that parameterize the geometry of the airfoil using the B-
splines method are shown. Table 4.1 presents the mean values and standard devia-
tions of the normal distributions assigned to the displacements of these CPs. The
blue CPs are fixed: specifically, the first column remains stationary to prevent mesh
distortion, and the second column is inactive to preserve continuity in slope. The
red CPs are active and can be displaced during the UQ process to represent geomet-
rical uncertainty. Along the boundaries of the morphing box, two series of control
points remain still, and this ensures a smooth transition between the controlled and
uncontrolled parts of the CFD grid.

2

43

1

Figure 4.2: Problem 3: Morphing box of the NACA0012 airfoil.

Uncertain Parameters: Mean (µ) Standard Dev. (σ)
Displacements ∆x,∆y of CPs 1–4 (8 inputs) 0C 0.0001C

Table 4.1: Problem 3: Mean and standard deviation of the normal distributions used
for the displacement of CPs 1–4, expressed in terms of the chord length C.

NSPCE with k = 3 and 165 polynomials is used to provide a reliable result for
validation of the 2 sparse methods. The convergence of the first two statistical mo-
ments—mean and standard deviation using D = 8 uncertain variables is illustrated
in Figure 4.3. These results serve to assess the accuracy of the sparse UQ methods.

In Figure 4.4, the convergence of the two algorithms, ESCAPE and OMP, can be
observed. Setting kfinal = 3 for the ESCAPE method, as described in Chapter 3,
implies that the algorithm performs three iterations. In each iteration i ∈ {1, 2, 3},
the algorithm may select significant polynomial terms of order k ≤ i. For example,
during iteration 3, polynomial terms of order up to 3 (i.e. orders 1, 2, and 3) can
be included in the model, provided they are found to be significant.

In Figure 4.5, the εLOO errors for both methods are shown. Both methods achieve
low and acceptable values of εLOO. A direct comparison between the values for each
method is not strictly meaningful, since εLOO depends on the specific system solved
in each case.
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Figure 4.3: Problem 3: NSPCE via OLS convergence for k = 3, using 165 polynomi-
als: mean (left) and standard deviation (right) plotted against the increasing number
of evaluations.
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Figure 4.4: Problem 3: Comparison of the convergence of the mean (left) and stan-
dard deviation (right) between OMP with k = 2 (blue), OMP with k = 3 (green), and
ESCAPE, annotated with the corresponding initialization parameter kfinal.

Table 4.2 presents the final results for this case study which are also circled in
Figures 4.4 and 4.5. Both OMP and ESCAPE seem to achieve very close estimates of
the mean and standard deviation. Notably, ESCAPE achieves this while employing
the smallest number of polynomial terms and nearly the same number of function
evaluations as OMP, yet with slightly higher accuracy.
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Figure 4.5: Problem 3: εLOO error for the OMP and ESCAPE methods using dif-
ferent numbers of evaluations. ESCAPE results are annotated with the corresponding
initialization parameter kfinal.

Method (k) µF̂ [·106] σF̂ [·106] Psparse/CR Cost

(Function Calls)

NSPCE (3) -4.2685419237 64.3048095939 - 816

OMP (2) -4.2973995039 64.3014172751 15/0.3 40

ESCAPE (2) -4.2669236655 64.2956551353 8/0.17 38

Table 4.2: Problem 3: Comparison of the OMP and ESCAPE methods for estimat-
ing the mean µ and standard deviation σ of the QoI, compared against the reference
NSPCE for k = 3. The table also presents the Psparse, the CR, and the number of
function evaluations (Cost).

4.2 Problem 4: Bend Bifurcation Duct

Next, a bend bifurcation duct is selected to compare how the ESCAPE and OMP
methods handle D = 25 uncertain variables related to geometry and flow conditions.
The comparison is performed by computing the mean and standard deviation of the
flow rate at one of the two outlets. For k = 3, the total number of non-sparse
polynomials is Ptotal = 351.
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Model Description

The velocity boundary conditions are defined with a uniform inflow of 1 m/s, while
both outlet boundaries are assigned a zero-gradient condition to allow free outflow.
No-slip conditions are imposed along all solid walls. The computational domain
represents a 2D, bend bifurcation duct geometry. Two key geometric dimensions
are the inlet width, approximately 0.1m, and the total length of the duct in the
streamwise direction, 0.3m. The computational mesh, shown in Figure 4.6, consists
of 15,000 hexahedral cells.

Outlet 1

Outlet 2

Inlet

Figure 4.6: Problem 4: Computational mesh.

At both outlet branches, zero-gradient velocity and fixed static pressure conditions
(set to identical values) are applied. No-slip boundary conditions are enforced on all
walls. The flow is assumed to be laminar with a kinematic viscosity of ν = 10−3m2/s.

The objective function is defined as the volume flow rate through the ’Outlet 1’ patch
shown in Figure 4.6. This is computed as the surface integral of the velocity vector
projected along the outward normal of the outlet surface. The UQ aims to calculate
the mean and standard deviation of this QoI, which is expressed mathematically as:

J =

∫
AOutlet1

v · n dA,

where v is the velocity field and n is the unit outward normal vector on the outlet
surface AOutlet1.

As shown in Figure 4.7, the morphing box displays the CPs parametrized using
B-splines, similar to the previous case. Red CPs (1–12), together with the inlet
velocity, are subject to normally distributed uncertainties, as listed in Table 4.3,
while blue CPs remain fixed to preserve continuity of the mesh and of second-order
derivatives.

As illustrated in Figure 4.8, the convergence behavior of the reference Monte-Carlo
method is clearly demonstrated.

Figure 4.9 presents the mean and standard deviation obtained using the two methods
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Figure 4.7: Problem 4: Morphing box of the bend bifurcation duct.

Uncertain Parameters: Mean (µ) Standard Dev. (σ)
Displacements ∆x,∆y of CPs 1–12 (24 inputs) 0m 0.01m

Inlet velocity 1m/s 0.2m/s

Table 4.3: Problem 4: Mean and standard deviation of the normal distributions used
for the displacement of CPs 1–12 and inlet velocity.
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Figure 4.8: Problem 4: Monte-Carlo convergence of the mean (left) and standard
deviation (right) with increasing number of evaluations.

under study, namely the ESCAPE and OMP. The OMP method is shown using
polynomial orders up to k = 2 (in blue) and k = 3 (in green). The ESCAPE
method, which falls almost immediately to the converged values, is presented for
kfinal = 2 and kfinal = 3, demonstrating comparable accuracy and stability. Notably,
the ESCAPE method starts producing reliable estimates at roughly the same point
where the OMP method converges across various sample sizes, suggesting that the
selected oversampling ratio is well matched to the problem’s convergence behaviour.

Figure 4.10 shows εLOO for the OMP and ESCAPE methods, both of which attain
low values, with their predictions are considered reliable.
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Figure 4.9: Problem 4: Comparison of the convergence of the mean (left) and stan-
dard deviation (right) between OMP with k = 2 (blue), OMP with k = 3 (green), and
ESCAPE.
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Figure 4.10: Problem 4: εLOO error for the OMP and ESCAPE methods using
different numbers of evaluations.

Table 4.4 presents the final results for this case study. These selected cases, high-
lighted (circled) in Figures 4.9 and 4.10, are used to evaluate the relative performance
of the two methods. Both methods produce results close to the Monte-Carlo val-
ues. Notably, ESCAPE achieves similar accuracy while selecting significantly less
polynomial terms (11 vs. 62 for OMP) and requiring less model evaluations (75 vs.
125), demonstrating its efficiency in achieving a sparse representation with reduced
computational cost.
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Method (k) µF̂ [·102] σF̂ [·102] Psparse/CR Cost

(Function Calls)

Monte-Carlo 0.5308556934 0.1016684421 - 5000

OMP (2) 0.5280100220 0.1037572010 62/0.18 125

ESCAPE (2) 0.5279857390 0.1038256064 11/0.03 75

Table 4.4: Problem 4: Comparison of the OMP and ESCAPE methods in estimating
the mean µ and standard deviation σ of the QoI. The table also presents the Psparse,
the compression ratio (CR), and the number of function evaluations, alongside the
Monte-Carlo reference results.

4.3 Problem 5: Bend Duct

As the final case study, an S-shaped bend duct is examined. Due to its large mor-
phing region, this duct is particularly well-suited for evaluating UQ methods under
a high number of geometric input variables. In this study, D = 50 geometric un-
certainties are introduced to rigorously assess and compare the performance of the
ESCAPE and OMPmethods. For k = 2, the total number of non-sparse polynomials
is Ptotal = 1326.

Model Description

This study examines the development of a laminar flow within a 2D, S-shaped duct
Figure 4.11. The cross-sectional height of the duct is approximately 0.38m, while its
total length measures around 6.8m. The computational domain is discretized using
a structured mesh comprising 24,000 hexahedral cells, providing sufficient resolution
to capture the flow characteristics within the bend geometry.

Regarding the flow conditions, a Reynolds number of Re = 1000 (laminar) is se-
lected. The inlet velocity is prescribed as v = (0.039473, 0, 0)m/s, i.e., aligned with
the x-axis, while the static pressure at the outlet is fixed to p = 0Pa. The fluid has
a kinematic viscosity of ν = 1.5 · 10−5m2/s.

The QoI is the volume-weighted total pressure loss:

J = −
∫
SI,O

(
p+ 1

2
ρv · v

)
v · n dS, (4.1)

where v is the velocity field and n the outward-pointing surface normal.
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Figure 4.11: Problem 5: Computational mesh.

For shape parameterization, volumetric B-spline-based Free-Form Deformation is
employed. In order to maintain continuity, the stationary part of the mesh must be
preserved by keeping the boundary CPs and their neighboring points (blue points
in Figure 4.12) constant.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

Figure 4.12: Problem 5: Morphing box of the bend duct

The uncertain inputs in this example correspond to the displacements of CPs 1-25,
as shown in Table 4.5, all of which are normally distributed.

In Figure 4.13, the convergence characteristics of the reference Monte-Carlo method
are clearly illustrated. Figure 4.14 illustrates the computed mean and standard
deviation using the OMP method. In Figure 4.15, the ϵLOO of the OMP and the
ESCAPE method is presented. ESCAPE exhibits a slightly higher εLOO than OMP.
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Uncertain Parameters: Mean (µ) Standard Dev. (σ)
Displacements ∆x,∆y of CPs 1–25 (50 inputs) 0m 0.1m

Table 4.5: Problem 5: Mean and standard deviation of the normal distributions used
for the displacement of the x and y coordinate of CPs 1–25.

However, based on Monte-Carlo and the observed convergence between kfinal = 2
and kfinal = 3 for ESCAPE, the results can still be considered reliable despite the
marginally higher εLOO.
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Figure 4.13: Problem 5: Convergence of Monte-Carlo estimates for the mean (left)
and standard deviation (right).
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Figure 4.14: Problem 5: Comparison of the convergence of the mean (left) and
standard deviation (right) obtained with OMP and ESCAPE.

The final results for this case study are summarized in Table 4.6. Both methods
seem to estimate the mean and standard deviation close to the Monte-Carlo re-
sults. Although the LOO errors are relatively higher than in previous cases, both
approaches still predict the mean and standard deviation reasonably well. ESCAPE
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Figure 4.15: Problem 5: Comparison of εLOO for the OMP and ESCAPE methods
as a function of the number of function evaluations.

achieves a sparser polynomial representation by selecting less terms (70 vs. 125 for
OMP), while requiring 25% more function evaluations (312 vs. 250). The higher
cost of ESCAPE, in this case, probably indicates the need for specific algorithmic
tuning in high-dimensional settings such as the present one, where D = 50.

Method (k) µF̂ [·107] σF̂ [·107] Psparse/CR Cost
(Function Calls)

Monte-Carlo 7.3636198298 0.3203129694 - 3800
OMP (2) 7.3545298325 0.3208058326 125/0.09 250
ESCAPE (2) 7.3699597468 0.3162349518 70/0.05 312

Table 4.6: Problem 5: Comparison of the OMP and ESCAPE methods for estimating
the mean µ and standard deviation σ of the QoI. The table also presents the Psparse,
CR, and the number of function evaluations, alongside the Monte-Carlo reference
results.
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Chapter 5

Conclusions and

Recommendations for Future

Work

5.1 Concluding Remarks

This thesis addresses multi-dimensional UQ problems, tested with up to 50 uncertain
inputs, by programming and evaluating two cost-effective, sparse regression-based
PCE methods: the well-known OMP method and the ESCAPE method, which is
proposed in the context of this MSc thesis and inspired by existing approaches.

Figures 5.1 and 5.2 summarize the performance of OMP and ESCAPE across all five
problems, in terms of relative errors in the mean and standard deviation, as well
as computational cost. The relative errors are computed with respect to a high-
fidelity reference solution, expressed as a percentage, allowing a direct comparison
of how accurately each method reproduces the mean and standard deviation of the
QoIs. In Figure 5.1, the left panel illustrates that both methods achieve relative
errors in the mean of less than 1%, with ESCAPE slightly outperforming OMP in
Problem 3.The right panel presents relative errors in the standard deviation, show-
ing comparable performance between the two methods for most problems; however,
ESCAPE exhibits a larger error for Problem 5 (D = 50 stochastic inputs). Overall,
both methods remain highly accurate, with relative errors below 2.2%. Figure 5.2
presents the computational cost in terms of function calls. In some cases, ESCAPE
shows an advantage over the OMP algorithm, whose linear cost growth can lead to
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an overestimation of the required samples (e.g., when N = 5D is excessive). For
instance, ESCAPE can achieve similar or lower computational costs for small- to
medium-scale problems (Problems 1–4, D = 8–25). In other cases, such as Prob-
lem 5 with D = 50, the computational cost of ESCAPE is higher, where OMP
demonstrates better accuracy and cost-reduction. This suggests that further tuning
of ESCAPE may be necessary to handle problems of this dimensionality more effi-
ciently. While OMP and ESCAPE maintain manageable computational costs with
an approximately linear trend as the number of stochastic inputs increases, NSPCE
(k = 2, SR = 3) becomes practically intractable in high-dimensional problems due
to its exponentially growing cost. This underscores the crucial role of OMP and
ESCAPE in enabling scalable, high-dimensional UQ.
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Figure 5.1: Comparison of OMP vs ESCAPE relative errors across problems. Left:
relative errors in mean, Right: relative errors in standard deviation.
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ESCAPE, and NSPCE (k = 2, SR = 3) across problems with increasing dimension
D. Problem numbers corresponding to each dimension are indicated in parentheses on
the x-axis.
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5.2 Recommendations for Future Work

Building upon the findings of this study, future research is encouraged to explore
various directions in the field of UQ. A potential direction for future work is the
extension of sparse, regression-based PCE to handle input uncertain variables with
arbitrary distributions. In such cases, standard polynomial families may not be
applicable. One approach is to apply an isoprobabilistic transform, mapping the
inputs to a space with independent standard marginals, which allows the use of
classical polynomials but may introduce additional non-linearity and affect accuracy.
Alternatively, custom orthonormal polynomials can be constructed directly. This
strategy is more flexible and avoids transformation-induced distortions, although
it requires additional computational effort. Implementing these approaches would
broaden the applicability of sparse regression PCE [16].

Additionally, alternative algorithms for sparse PCE, such as Least Angle Regres-
sion (LARS) [8], could be implemented and systematically compared with existing
methods like OMP and ESCAPE. Furthermore, incorporating algorithms that sup-
port both forward selection and backward elimination—i.e., those capable of not
only adding significant polynomial terms to the basis but also removing polynomial
terms added in previous iterations that lose their relevance—could enhance model
sparsity and accuracy in an adaptive and efficient manner.

In this thesis, samples were generated using a C++ implementation of a standard
normal random number generator. Future work could focus on assessing sample
quality and selecting new points based on model uncertainty or error indicators,
particularly in regions of poor surrogate accuracy. Such adaptive sampling strategies
could yield more accurate PCE models with lower undersampling ratios and fewer
costly function evaluations, thereby enhancing computational efficiency.
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Appendix A'

Orthogonal Polynomials

A.1 Hermite Polynomials and Their Properties

Hermite polynomials are a family of orthogonal polynomials widely used in PCE
for stochastic variables with normal distributions. There are two types of Hermite
polynomials: the probabilists’ Hermite polynomials, which are commonly used in
statistics, and the physicists’ Hermite polynomials, which are preferred in physics.
This section focuses exclusively on the probabilists’ Hermite polynomials.

The probabilists’ Hermite polynomials are defined as uniparametric functions in the
domain (−∞,∞):

Hk(x) = (−1)ke
x2

2
dk

dxk
e−

x2

2 . (A.1)

These polynomials satisfy the following recurrence relation:

Hk+1(x) = xHk(x)− kHk−1(x). (A.2)

Probabilistic Hermite Polynomials

The first ten polynomials in this sequence are given by:
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H0(x) = 1, (A.3)

H1(x) = x, (A.4)

H2(x) = x2 − 1, (A.5)

H3(x) = x3 − 3x, (A.6)

H4(x) = x4 − 6x2 + 3, (A.7)

H5(x) = x5 − 10x3 + 15x, (A.8)

H6(x) = x6 − 15x4 + 45x2 − 15, (A.9)

H7(x) = x7 − 21x5 + 105x3 − 105x, (A.10)

H8(x) = x8 − 28x6 + 210x4 − 420x2 + 105, (A.11)

H9(x) = x9 − 36x7 + 378x5 − 1260x3 + 945x. (A.12)

The derivative of a Hermite polynomial follows:

d

dx
Hk(x) = kHk−1(x). (A.13)

The probabilists’ Hermite polynomials are orthogonal with respect to the weight
function on the domain (−∞,∞):

w(x) = e−x2/2, (A.14)

which gives the orthogonality condition:

∫ ∞

−∞
Hm(x)Hk(x)e

−x2/2dx = k!
√
2πδmk. (A.15)

These properties make Hermite polynomials fundamental tools in UQ and PCE for
modeling normally distributed random variables.
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Appendix B'

LOO cross validation

B.1 Proof of the LOO Error Formula

Notation and Problem Statement

Consider a PCE model of order k:

F̂ (x) =
P−1∑
j=0

αjψj(x). (B.1)

Let f ∈ RN be the vector of model evaluations at the sample points:

f =

 F (x0)
...

F (xN−1)



Predicted Error

The predicted error is defined as the difference between the model evaluation at xi

and its prediction based on F̂X\i(xi):

∆(i) = F (xi)− F̂X\i(xi). (B.2)
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Design Matrices

Define the full design matrix Ψ ∈ RN×P :

Ψ =

 ψ0(x0) · · · ψP−1(x0)
...

. . .
...

ψ0(xN−1) · · · ψP−1(xN−1)

 .

The reduced design matrix Ψi ∈ R(N−1)×P excludes the i-th row:

Ψi =



ψ0(x0) · · · ψP−1(x0)
...

. . .
...

ψ0(xi−1) · · · ψP−1(xi−1)
ψ0(xi+1) · · · ψP−1(xi+1)

...
. . .

...
ψ0(xN−1) · · · ψP−1(xN−1)


.

Coefficient Formulations

The PCE coefficients for the full model are obtained by solving the system via OLS:

α = (ΨTΨ)−1ΨTf = M−1ΨTf , (B.3)

where M = ΨTΨ.

For the reduced model (excluding the i-th point), the coefficients are:

αi = M−1
i ΨT

i f i, (B.4)

where Mi = ΨT
i Ψi and f i is f without the i-th element.

Relationship Between M−1
i and M−1 Matrices

It can be shown that M−1
i is related to its counterpart M−1 as follows:

M−1
i = (M−ψiψ

T
i )

−1, (B.5)

using the matrix inversion lemma (Sherman–Morrison–Woodbury identity) [13]:

(M−ψiψ
T
i )

−1 = M−1 +
M−1ψiψ

T
i M

−1

1− hi
, (B.6)
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where
ψi = (ψ0(xi), . . . , ψP−1(xi))

T ,

is the i-th row of Ψi, and
hi = ψ

T
i M

−1ψi.

LOO Prediction

The LOO prediction can be expressed as:

F̂X\i(xi) = ψ
T
i αi (B.7)

= ψT
i

(
M−1 +

M−1ψiψ
T
i M

−1

1− hi

)
(ΨTf − F (xi)ψi) (B.8)

= F̂ (xi)−
hi

1− hi
(F (xi)− F̂ (xi)). (B.9)

.

Final LOO Formula

Substituting into the LOO error definition:

∆(i) = F (xi)− F̂X\i(xi) (B.10)

= F (xi)−
[
F̂ (xi)−

hi
1− hi

(F (xi)− F̂ (xi))

]
(B.11)

=
F (xi)− F̂ (xi)

1− hi
. (B.12)

LOO Error Estimate

The LOO error according to [5] is therefore:

εLOO =
1

N

N−1∑
i=0

(
F (xi)− F̂ (xi)

1− hi

)2

. (B.13)

This formula allows computation of the LOO error without constructing N separate
models, using only the residuals and leverage scores from the full model.
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