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Abstract
Parametric studies of aerothermal optimization of internally cooled turbine

blade airfoil, using the continuous adjoint method

by Evangelos Mallios

The present thesis deals with the aerothermal optimization of an internally cooled
turbine blade, using the continuous adjoint method. The computational procedure
is based on tools developed by the PCOpt/NTUA members, namely the GPU accel-
erated PUMA software. The optimization procedure is applied to the C3X turbine
blade, being a well-known test-case for validation purposes, involving CFD opti-
mization in Conjugate Heat Transfer problems. The optimization aims at decreasing
the highest solid temperature by updating the positions of the ten cooling channels
inside the blade airfoil. The Method of Moving Asymptotes is used to compute the
design variables in each optimization cycle. Initially, only the primal problem is
solved, using the Spalart-Allmaras turbulence model, to compare with the experi-
mental data in the bibliography. Five operating points are considered, one of which
corresponds to transonic flow. Proceeding with the first series of the optimization
runs, the starting geometry is derived from either the baseline model or blade airfoils
that have also been optimized in terms of total pressure losses. Parametric studies
follow, changing the total number of cooling channels, and further optimizing the
cooling system, allowing their displacement toward the trailing edge.
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Εθνικό Μετσόβιο Πολυτεχνείο - Σχολή Μηχανολόγων Μηχανικών - Μονάδα
Παράλληλης ΥΡΔ & Βελτιστοποίησης

Περίληψη

Παραμετρικές μελέτες αεροθερμικής βελτιστοποίησης μορφής
αεροτομής ψυχόμενου πτερυγίου στροβίλου με χρήση της συνεχούς

συζυγούς μεθόδου

βψ Ευάγγελος Μάλλιος

Η διπλωματική εργασία πραγματεύεται την αεροθερμική βελτιστοποίηση ενός εσωτερι-
κά ψυχόμενου πτερυγίου στροβίλου, με χρήση της συνεχούς συζυγούς μεθόδου. Η
υπολογιστική διαδικασία βασίζεται σε εργαλεία που αναπτύχθηκαν από τα μέλη της
ΜΠΥΡΒ/ΕΜΠ, συγκεκριμένα το λογισμικό PUMA που τρέχει σε κάρτες γραφικών. Η
διαδικασία βελτιστοποίησης εφαρμόζεται στο πτερύγιο στροβίλου C3X, καθώς αποτελεί
γνωστή περίπτωση μελέτης για τον έλεγχο λογισμικών Υπολογιστικής Ρευστοδυναμικής
που σχετίζονται με φαινόμενα Συζευγμένης Μεταφοράς Θερμότητας. Η βελτιστοποίηση
στοχεύει στη μείωση της μέγιστης θερμοκρασίας του στερεού, ανανεώνοντας τις θέσεις
των δέκα ψυκτικών οπών στην αεροτομή του πτερυγίου. Για τον υπολογισμό των με-
ταβλητών σχεδιασμού σε κάθε κύκλο βελτιστοποίησης, χρησιμοποιείται η Μέθοδος των
Κινούμενων Ασυμπτώτων. Αρχικά επιλύεται μόνο το πρόβλημα ροής, με χρήση του μο-
ντέλου τύρβης των Spalart−Allmaras, ώστε να επιτευχθεί η σύγκριση με τα πειραματικά
δεδομένα της βιβλιογραφίας. Μελετώνται πέντε σημεία λειτουργίας, με ένα από αυτά να
αφορά ηχητική ροή. Συνεχίζοντας με την πρώτη σειρά εκτελέσεων του κώδικα βελτι-
στοποίησης, η αρχική γεωμετρία προέρχεται είτε από το μοντέλο της βιβλιογραφίας, είτε
από βελτιστοποιημένες, ως προς τις απώλειες ολικής πίεσης, αεροτομές. Ακολουθούν
παραμετρικές μελέτες, μεταβάλλοντας το συνολικό αριθμό των ψυκτικών οπών στην αε-
ροτομή του πτερυγίου και βελτιστοποιώντας περαιτέρω τη ψυκτική διάταξη, επιτρέποντας
τη μετατόπιση τους προς την ακμή φυγής.
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1 Introduction

1.1 CHT Optimization

The high efficiency of gas turbines is inextricably linked to aerodynamically de-
signed blades and high turbine inlet temperatures. The first turbine row, located
right after the combustor, is exposed to high gas temperatures, which should not
exceed the limit set by the thermal resistance of the blade’s material. For that reason,
it is necessary to reduce the temperature locally in the turbine blade, using a cooling
configuration. Blade cooling can commonly be achieved by injecting cold air into
the main flow (external) or passing the air through channels inside the blade (inter-
nal). In the case of internal cooling, the air used to cool down the blade is usually
extracted from the compressor cascade flow. These types of physical problems, in-
volving a solid body inside a flow field with thermal interaction between them, are
called Conjugate Heat Transfer (CHT) problems.

In a CHT problem, the computational domain splits into a fluid and a solid one,
with heat transfer crossing the boundary between them, known as Fluid Solid Inter-
face (FSI) region. PDEs in fluid and solid domains can be either strongly or loosely
coupled. In the first case, the equations are solved simultaneously, while in the lat-
ter one, there are 2 different solvers, one for each domain, communicating between
them with a coupling scheme [11].

The adjoint method is a widely-used gradient-based optimization algorithm,
computing the objective function’s sensitivity derivatives (SDs) with respect to the
design variables. The method is used in the current thesis, as it is ideal for shape
optimization problems since its cost is proportional to the number of objective func-
tions and not to the number of design variables. For that reason, it is preferred to the
stochastic optimization algorithms and is applied to aerodynamic and turbomachin-
ery applications, combined with various solvers. In that case, the design variables
consist of the geometrical properties of a blade or any aerodynamic surface. For the
aerothermal optimization of an internally cooled turbine blade, the design variables
contain the coordinates of channels’ centers or their perimeter points. The main dis-
advantage of the method is its dependence on the primal problem, meaning that if
either its formulation or the objective function is changed, the adjoint formulation
has to be reprogrammed too.

The C3X turbine blade [6] is a benchmark test-case, which has been frequently
used for validation purposes, involving CFD and optimization algorithms in CHT
problems. In [12], an evolutionary algorithm is used to optimize the cooling system
of the blade, while the immersed boundary method is used in [3] discretizing the
fluid and solid domains with a common grid. In [10], a combination of random
search and gradient-based schemes is proposed, to optimize the number and shape
of cooling channels. The Boss-Quattro platform with MMA method, is used in [21].
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1.2 Literature Review on Continuous Adjoint Method

Extensive research carried out by the PCOpt/NTUA members on the gradient-
based methods, forms the basis of the present thesis. Using the in-house PUMA
software [2] an optimization procedure is performed, aiming to minimize the high-
est blade temperature to the 2D turbine problem, by controlling the cooling chan-
nels’ locations. It is noted that a similar procedure with a different objective function
(total pressure losses) has already been completed [13], the outcomes of which have
been used for thermal optimization in this thesis. Adjoint formulations for the com-
pressible RANS equations were developed in [14], while the method includes the
Spalart-Allmaras model, used in the current thesis, introduced in [22]. The Eikonal
equation for computing the distance field and its adjoint counterpart was presented
in [15]. The continuous adjoint method is extended to CHT problems, including the
fluid energy and solid heat conduction equations, which has been developed in [5]
for incompressible and in [20] for compressible flows and applied to the internally
cooled C3X turbine blade. The latter paper describes the mathematical approach,
herein summarized in chapter 2.

1.3 Thesis Overview

The 5 chapters of the present thesis are summarized below:

• Chapter 1 - Introduction

• Chapter 2 - Mathematical Approach: The continuous adjoint method in the
CHT problem is described. The entire computational procedure is outlined,
starting with the equations for the primal problem and proceeding to the de-
velopment of the adjoint equations, along with their boundary conditions. In-
formation on discretization and coupling schemes are given, while grid prop-
erties are detailed and the MMA method is demonstrated based on [19].

• Chapter 3 - Optimization of C3X Turbine Airfoil: This chapter contains a de-
tailed presentation of the geometrical aspects of the C3X turbine, including ta-
bles with information on the cooling channels’ positions and flow properties.
The conditions of the 5 cases studied in the present thesis are included, while a
series of runs are carried out, with the Spalart-Allmaras turbulence model, in-
cluding comparisons with the experimental data. All data were obtained from
[6].

• Chapter 4 - Results: In this chapter, the results of the optimization procedure
for the internally cooled blade are presented. Runs are divided into two differ-
ent categories according to whether the starting geometry is the baseline one
from [6] or based on [13]. Additional parametric studies are performed with
modifications in the number of design variables, by changing the number of
cooling channels which can be displaced. Further optimization is performed
by updating the design variables to consist of the 3 back channels, following
the main optimization procedure.

• Chapter 5 - Conclusions: The final conclusions are drawn and possible future
approaches related to the aerothermal optimization of the C3X turbine airfoil
are proposed.



3

2 Mathematical Approach

2.1 Governing Equations

Using the Einstein summation notation, the Reynolds-Averaged Navier-Stokes
(RANS) equations [20] over fluid domain ΩF read:

RMF
n =

∂U

∂τ
+

∂ f inv
nk

∂xk
− ∂ f vis

nk

∂xk
= 0 (2.1)

where f inv
k = [ρvk ρvkv1 + pδ1k ρvkv2 + pδ2k ρvkht]T contains the inviscid fluxes

(convection, pressure terms) and f vis
k = [0 τ1k τ2k vℓτℓk + qF

k ]
T contains the vis-

cid fluxes (dissipation terms). ∂U
∂τ is the pseudo-time term, with U = [ρ ρv1 ρv2 ρE]T

and E being the total energy per unit mass. Henceforth, R will be used to denote the
residual value of an equation. The index n = 1, 2, 3, 4 refers to the nth component of
the aforementioned vectors, indicating which equation will be satisfied.

For instance, n = 1 refers to RMF
1 = 0 or

∂(ρvk)
∂xk

= 0 , thus the continuity equation
is satisfied. The general form of the motion equation for the steady compressible

fluid flows is
∂(ρvkvi)

∂xk
+ ∂(pδik)

∂xk
− ∂τik

∂xk
= 0 or RMF

2−3 = 0 where i = 1, 2 for 2D flows. ρ
and p stand for the fluid’s density and pressure, while vk are the velocity components
in the xk direction of the Cartesian coordinate system. The stress tensor, defined as

τkm = (µ + µt)
(

∂vk
∂xm

+ ∂vm
∂xk

− 2
3δkm

∂vℓ
∂xℓ

)

, contains fluxes due to molecular diffusion

and turbulent fluctuations, based on the Boussinesq hypothesis. µ and µt represent
the bulk and turbulent viscosity, while k is the turbulent kinetic energy. δkm is the
Kronecker symbol. The dynamic viscosity µ is a function of fluid’s temperature TF,

established by Sutherland [18], hence µ = µre f

(
T

Tre f

)1.5 Tre f +C

T+C , with C = 110.56 K,

Tre f = 273.11 K and µre f = 1.7894 · 10−5Pa · s. For the computation of µt, turbulence
models must be introduced. With ht being the fluid’s total enthalpy, the conservation

of energy states that RMF
4 = 0 or

∂(ρvkht)
∂xk

= ∂(vℓτℓk)
∂xk

+
∂qF

k
∂xk

= 0 where the heat fluxes

are equal to qF
k = κF ∂TF

∂xk
, according to Fourier’s law (the index F indicates the fluid

domain ΩF). κF = Cp

(
µ
Pr +

µt

Prt

)

is the fluid’s conductivity, where Cp is the specific

heat capacity under constant pressure. The laminar and turbulent Prandtl numbers
equal Pr = 0.72 and Prt = 0.90, respectively.

The heat conduction equation over solid domain ΩS can be written as:

RS = −∂qS
k

∂xk
= 0 (2.2)

where qS
k = κS ∂TS

∂xk
are the heat fluxes and TS, κS the temperature and thermal con-

ductivity of the blade, respectively. Index S indicates the solid domain ΩS.
Equation (2.1) and eq. (2.2) are coupled for the CHT problem. The boundary of

the domain ΩF is SF = SF,I ∪ SF,O ∪ SF,FSI ∪ SF,per. Along the inlet SF,I fixed values



4 Chapter 2. Mathematical Approach

FIGURE 2.1: Computational domain for the 2D CHT problem along
with the C3X airfoil geometry and boundaries.

are imposed on the total pressure, total temperature, and flow angles. The Mach
number variable is extrapolated from the interior of the fluid domain to the bound-
ary. The static pressure is imposed along the outlet SF,O while the temperature and
velocity components are extrapolated. Information on the above values is given in
table 3.3. SF,per denotes the periodic boundary conditions to simulate the passage
through the stator cascade. SF,FSI stands for the Fluid-Solid Interface (FSI) region
between the flow and the airfoil. Along the region, the no-slip condition is imposed.
The boundary of the solid domain ΩS is decomposed into SS = SS,W ∪ SS,FSI . SSW

includes the interior airfoil’s walls, i.e. the cooling holes’ perimeters, based on the
geometrical data of table 3.1. No coolant flow simulation is considered, instead,
the convective heat flux boundary condition is used. Finally, the boundary condi-
tions dictate that the temperature and heat flux are the same across the common FSI
boundary SF,FSI , SS,FSI :

TF =TS

qF
k nF

k =− qS
k nS

k

(2.3)

where nF
k , nS

k are the unit normal vectors to the FSI, pointing toward ΩF and ΩS

respectively. The coupling scheme is presented in detail in section 2.4.2.
Figure 2.1 illustrates the computational domain which consists of the fluid do-

main ΩF including the fluid region, and solid domain ΩS including the airfoil, de-
fined by the aforementioned boundaries. The RANS equations eq. (2.1) along with
the turbulence model eq. (2.4) and Eikonal eq. (2.7) equations, (which will be pre-
sented in the following sections), are solved in the fluid domain ΩF. In the solid
domain ΩS, the heat conduction equation eq. (2.2) is solved.

2.2 Turbulence Modeling

Given that turbulence is a high-complexity fluid motion type, a precise definition
of it seems to be rather impossible. It can be characterized as a dissipative, diffusive,
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and rotational phenomenon and is thought to be nonlinear and time-dependent. In
order to find a direct solution, a huge amount of computational power is required,
due to the small-scale fluctuations of the flow quantities’, appearing in the RANS
equations. Time must be discretized into incredibly small steps, and large comput-
ing meshes are necessary. Thus, turbulence should be commonly modeled in fluid
mechanics applications.

The Spalart-Allmaras one-equation turbulence model [17] is used in this thesis.
Introducing the Spalart-Allmaras variable ν̃, the turbulent viscosity is given by µt =

ρν̃ fv1, where fv1 = χ3

χ3+C3
v1

with χ = ν̃
ν , Cv1 = 7.1. The transport equation of ν̃ reads:

Rṽ =
∂

∂xk
(ρvkν̃)− ρ

σ

∂

∂xk

[

[ν + (1 + Cb2)ν̃]
∂ν̃

∂xk

]

+
ρCb2ν̃

σ

∂

∂xk

(
∂ν̃

∂xk

)

−P ν̃ +Dν̃ = 0

(2.4)

where P ν̃ = ρCb1(1 − ft2)S̃ν̃ and Dν̃ = ρ(Cw1 fw − Cb1

κ2 ft2)
(

ν̃
d

)2
are the production

and destruction terms of ν̃ respectively. d denotes the distance from the nearest solid
wall boundary. In the production term S̃ = S + ν̃

κ2d2 fv2, with fv2 = 1 − χ
1+χ fv1

and

S being the strain rate magnitude. κ is the von Kármán constant, taken as κ = 0.41,

while σ = 2
3 , Cb1 = 0.1355, and Cb2 = 0.622. Cw1 is a function of Cw1 = Cb1

κ + 1+Cb2
σ .

Continuing on, fw = g
(

1+C6
w3

g6+C6
w3

) 1
6
, with g = r + Cw2(r6 − r), Cw2 = 0.3, Cw3 = 3, and

r = ν̃
S̃κ2d2 . Lastly, ft2 = Ct3e−Ct4χ2

, where Ct3 = 1.2 and Ct4 = 0.5.

2.3 The Continuous Adjoint Method

In this section, the formulation of the continuous adjoint method for an objective
function F is presented. The full mathematical development, including the CHT
problem for the 3D C3X turbine blade, is published in [20]. Furthermore, the PhD
thesis of Gkaragkounis [4] and his paper [5] provide a more detailed presentation of
the adjoint formulation in the CHT problem for incompressible flows, developed in
OpenFOAM. The optimization aims at minimizing the highest blade temperature,
thus the objective function will be approximated by the differentiable expression of
max(TS) or:

F =
∑solid TSeaTS

∑solid eaTS (2.5)

where a = 0.2. The above operator is known as Boltzmann softmax operator. For the
cases of a → −∞, a → 0, and a → ∞, the function approximates the behavior of the
min, mean, and max function, respectively. The function p(xi) =

eaxi

∑
n
j=1 e

axj normalizes

the inputs xi into a probability distribution. For instance, with x = [1 5 3] being
the input vector, the function returns p = [0.2120 0.4718 0.3162] for a = 0.2 and
p = [0.0900 0.6652 0.2447] for a = 0.5. The formula is a smooth differentiable
approximation of arg max function, which marks the input vector’s index i, where
the maximum value appears. In the example above, arg max returns the vector
[0 1 0], meaning it is a discontinuous function. The maximum value is calculated,
by summing the products ∑(xi p(xi)), thus forming eq. (2.5). As it turns out, p(xi)
are the weighting factors, assigned to xi. Higher values of xi (those approaching the
maximum value), are given higher weights. For x = [1 5 3], Boltzmann operator
determines the maximum value as 3.5196 (a = 0.2) and 4.1504 (a = 0.5).
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The continuous adjoint method starts with the definition for the augmented form
of F, denoted by Faug:

Faug = F +
∫

ΩF
ΨnRMF

n dΩ +
∫

ΩF
ṽaRν̃ dΩ +

∫

ΩF
daRd dΩ +

∫

ΩS
TaRS dΩ (2.6)

As can be seen, the volume integrals contain the adjoint variables fields and their
corresponding equation residuals. Rd stands for the residual of the Eikonal equation
[15], that computes the field of distances d from the solid boundary, affecting the
terms P ν̃, Dν̃ of the turbulence model:

Rd =
∂d

∂xk

∂d

∂xk
= 0 (2.7)

Ψn refer to the nth adjoint flow field in the fluid domain ΩF (it is reminded that
n = 1, 2, 3, 4), while ν̃a stands for the adjoint field of ν̃ and da refers to the adjoint
distance field, both defined in ΩF. Ta is the adjoint temperature in the solid domain
ΩS. By definition 1, F is equal to Faug. Differentiating eq. (2.6) with respect to the
design variables bi, leads to:

δFaug

δbi
=

δF

δbi
+
∫

ΩF
Ψn

δRMF
n

δbi
dΩ

︸ ︷︷ ︸

IMF

+
∫

ΩF
ν̃a

δRν̃

δbi
dΩ

︸ ︷︷ ︸

ISA

+
∫

ΩF
da

δRd

δbi
dΩ

︸ ︷︷ ︸

ID

+
∫

ΩS
Ta

δRS

δbi
dΩ

︸ ︷︷ ︸

IS

(2.8)
Each of the four field integrals is to be developed separately in the following sub-
sections. The total derivative of any flow quantity Φ at a grid node can be written

as δΦ
δbi

= ∂Φ
∂bi

+ ∂Φ
∂xk

δxk
δbi

, correlating the total and partial derivatives of Φ with the grid

sensitivities δxk
δbi

. According to [14], it can be derived that δ
δbi

(
∂Φ
∂xℓ

)

= ∂
∂xℓ

(
δΦ
δbi

)

−
∂Φ
∂xk

∂
∂xℓ

(
δxk
δbi

)

, which is valid for both structured and unstructured grids, allowing the

Gauss’ divergence theorem to be applied to eq. (2.8). After the proper mathematical

development,
δFaug

δbi
will contain field and surface integrals, that include variations

in the state variables, as well as integrals depending on grid sensitivities. A new
set of partial differential equations, known as field adjoint equations (FAEs), along
with the adjoint boundary conditions (ABCs) emerge when the multipliers of the
variations are set to zero. The mathematical approach will be concluded with the
derivation of the expression of the sensitivity derivatives (SDs) δF

δbi
. The procedure is

called FI adjoint formulation, as the final expression for SDs contain the field varia-
tions of xk [8].

2.3.1 Developing the mean-flow integral

Starting with the development of IMF, the substitution of RMF
n from eq. (2.1),

gives:

IMF =
∫

ΩF
Ψn

δ

δbi

(

∂ f inv
nk

∂xk

)

dΩ

︸ ︷︷ ︸

IMF
inv

−
∫

ΩF
Ψn

δ

δbi

(

∂ f vis
nk

∂xk

)

dΩ

︸ ︷︷ ︸

IMF
vis

(2.9)

Using the divergence theorem, the inviscid term IMF
inv is expanded into [14]:

1Considering that the primal equations should be satisfied, thus the residuals are equal to zero or
RMF

n = Rṽ = Rd = RS = 0.
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IMF
inv =

∫

SF
Ψnnk

δ f inv
nk

δbi
dS

︸ ︷︷ ︸

→IB

−
∫

ΩF
Anmk

∂Ψn

∂xk

δUm

δbi
dΩ

︸ ︷︷ ︸

→FAEMF

−
∫

ΩF
Ψn

∂ f inv
nk

∂xℓ

∂

∂xk

(
δxℓ
δbi

)

dΩ

︸ ︷︷ ︸

→SD

where U = [ρ ρv1 ρv2 ρE]T contains the conservative flow variables, E is the

total energy per unit mass, and Anmk =
∂ fnkinv

∂Um
the inviscid flux Jacobian matrix. The

contribution of each term is denoted by an arrow, located beneath it. For instance,
surface integrals are categorized under IB. Integrals including δUm

δbi
contribute to the

field adjoint mean flow equations (FAEMF), while those with grid sensitivities δxℓ
δbi

contribute to SDs.
Applying the divergence theorem to the viscid term IMF

vis gives:

IMF
vis = −

∫

SF
Ψnnk

δ f vis
nk

δbi
dS

︸ ︷︷ ︸

→IB

+
∫

ΩF

∂Ψn

∂xk

δ f vis
nk

δbi
dΩ

︸ ︷︷ ︸

IMF
vis,Ω

+
∫

ΩF
Ψn

∂ f vis
nk

∂xℓ

∂

∂xk

(
δxℓ
δbi

)

dΩ

︸ ︷︷ ︸

→SD

Substituting f vis
nk in IMF

vis,Ω gives:

IMF
vis,Ω =

∫

ΩF

[
τkm

µ + µt

(
∂Ψm+1

∂xk
+ vm

∂Ψ4

∂xk

)

+
∂Ψ4

∂xk

∂T

∂xk

∂κF

∂µ

]
δµ

δbi
dΩ −

∫

ΩF
Kk

δVk

δbi
dΩ

︸ ︷︷ ︸

→FAEMF

+
∫

ΩF

[
τkm

µ + µt

(
∂Ψm+1

∂xk
+ vm

∂Ψ4

∂xk

)

+
∂Ψ4

∂xk

∂T

∂xk

∂κF

∂µt

]
δµt

δbi
dΩ

︸ ︷︷ ︸

IMF
µt

−
∫

ΩF

(

τ
adj
km

∂vk

∂xℓ
+ q

adj
m

∂T

∂xℓ

)
∂

∂xm

(
δxℓ
δbi

)

dΩ

︸ ︷︷ ︸

→SD

+
∫

SF

(

τ
adj
km nm

δvk

δbi
+ q

adj
k nk

δT

δbi

)

dS

︸ ︷︷ ︸

→IB

For the sake of simplicity, indices F, S of T, qadj, included in integrals are dropped.
Arrays V, K are defined as:

V = [p v1 v2 TF]T

K =
[

0
∂τ

adj
1m

∂xk
− ∂Ψ4

∂xm
τ1m

∂τ
adj
2m

∂xm
− ∂Ψ4

∂xm
τ2m

∂q
adj,F
k

∂xk

]T

where the adjoint stresses and adjoint heat flux are:

τ
adj
km = (µ + µt)

(
∂Ψk+1

∂xm
+

∂Ψm+1

∂xk
− 2

3
δkm

∂Ψℓ+1

∂xℓ
+

∂Ψ4

∂xk
vm +

∂Ψ4

∂xm
vk −

2

3
δkm

∂Ψ4

∂xℓ
vℓ

)

q
adj,F
k = κF ∂Ψ4

∂xk
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By differentiating µ with respect to TF (based on Sutherland law [18]), variations
δµ
δbi

can be taken into account. In addition, the differentiation of equation µt = ρν̃ fv1 or
alternatively µt = µ̃ fv1 develops IMF

µt
as follows:

IMF
µt

=
∫

ΩF

[
τkm

µ + µt

(
∂Ψm+1

∂xk
+ vm

∂Ψ4

∂xk

)

+
∂Ψ4

∂xk

∂T

∂xk

∂κF

∂µt

]
∂µt

∂µ̃

δµ̃

δbi
dΩ

︸ ︷︷ ︸

→FAESA

(2.10)

2.3.2 Developing the Spalart-Allmaras integral

Substituting Rṽ from eq. (2.4), ISA integral takes the form:

ISA =
∫

ΩF
ν̃a

δ

δbi

[
∂

∂xk
(ρvkν̃)

]

dΩ

︸ ︷︷ ︸

ISA
C

+
∫

ΩF
ν̃a

δ

δbi

[

− ρ

σ

∂

∂xk

[

[ν + (1 + Cb2)ν̃]
∂ν̃

∂xk

]

+
ρCb2ν̃

σ

∂

∂xk

(
∂ν̃

∂xk

)]

dΩ

︸ ︷︷ ︸

ISA
D

−
∫

ΩF
ν̃a

δP ν̃

δbi
dΩ +

∫

ΩF
ν̃a

δDν̃

δbi
dΩ

︸ ︷︷ ︸

ISA
S

(2.11)

It can be seen, the above equation can be simplified to ISA = ISA
C + ISA

D + ISA
S ,

where the ISA
C , ISA

D , ISA
S contain the convection, diffusion, and source terms of the

Spalart-Allmaras model, respectively. Using the divergence theorem, the first two
integrals can further be analyzed as [22]:
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ISA
C =−

∫

ΩF

∂ν̃a

∂xk
vk

δµ̃

δbi
dΩ

︸ ︷︷ ︸

→FAESA

−
∫

ΩF

∂ν̃a

∂xk

δvk

δbi
µ̃ dΩ

︸ ︷︷ ︸

→FAEMF

+
∫

SF
µ̃ν̃a

δvk

δbi
nk dS +

∫

SF
vkν̃a

δµ̃

δbi
nk dS

︸ ︷︷ ︸

→IB

−
∫

ΩF
ν̃a

∂

∂xℓ
(ρvkν̃)

∂

∂xk

(
δxℓ
δbi

)

dΩ

︸ ︷︷ ︸

→SD

ISA
D =

∫

ΩF
ν̃a

[

− ρ

σ

∂

∂xk

[

[ν + (1 + Cb2)ν̃]
∂ν̃

∂xk

]

+
ρCb2ν̃

σ

∂

∂xk

(
∂ν̃

∂xk

)]
δρ

δbi
dΩ

︸ ︷︷ ︸

→FAEMF

+
∫

ΩF

ρCb2ν̃a

σ

∂

∂xk

(
∂ν̃

∂xk

)
δν̃

δbi
dΩ

︸ ︷︷ ︸

→FAEMF & FAESA

+
∫

ΩF

ρCb2ν̃ν̃a

σ

∂

∂xℓ

(
∂ν̃

∂xk

)
∂

∂xk

(
δxℓ
δbi

)

dΩ

︸ ︷︷ ︸

→SD

+
∫

ΩF

ρν̃a

σ

∂

∂xℓ

[

[ν + (1 + Cb2)ν̃]
∂ν̃

∂xk

]
∂

∂xk

(
δxℓ
δbi

)

dΩ

︸ ︷︷ ︸

→SD

+
∫

ΩF

ρCb2ν̃ν̃a

σ

∂

∂xk

[
δ

δbi

(
∂ν̃

∂xk

)]

dΩ −
∫

ΩF

ρν̃a

σ

∂

∂xk

[
δ

δbi

[

[ν + (1 + Cb2)ν̃]
∂ν̃

∂xk

]]

dΩ

︸ ︷︷ ︸

ISA
gradν̃

The integrals containing variation in µ̃ contribute to the field adjoint Spalart-
Allmaras equation (FAESA), while those including variations in ν̃ contribute to both

FAEMF and FAESA, given that δν̃
δbi

= ∂ν̃
∂ρ

δρ
δbi

+ ∂ν̃
∂µ̃

δµ̃
δbi

= − ν̃
ρ

δρ
δbi

+ 1
ρ

δµ̃
δbi

. The remaining

integral ISA
gradν̃ is expanded as follows:

ISA
gradν̃ =

∫

ΩF

1

σ

∂ν̃

∂xk

∂(ρν̃a)

∂xk

δν

δbi
dΩ

︸ ︷︷ ︸

→FAEMF

+
∫

ΩF

1 + Cb2

σ

∂ν̃

∂xk

∂(ρν̃a)

∂xk

δν̃

δbi
dΩ

︸ ︷︷ ︸

→FAEMF & FAESA

−
∫

ΩF

∂

∂xk

[
1

σ
[ν + (1 + Cb2)ν̃]

∂(ρν̃a)

∂xk
− Cb2

σ

∂(ρνν̃a)

∂xk

]
δν̃

δbi
dΩ

︸ ︷︷ ︸

→FAEMF & FAESA

+
∫

SF

[
1

σ
[ν + (1 + Cb2)ν̃]

∂(ρν̃a)

∂xk
− Cb2

σ

∂(ρν̃ν̃a)

∂xk

]
δν̃

δbi
nk dS

︸ ︷︷ ︸

→IB

−
∫

SF

1

σ
ρν̃a

δ

δbi

[

[ν + (1 + Cb2)ν̃]
∂ν̃

∂xk

]

nk dS +
∫

SF

Cb2

σ
ρν̃ν̃a

δ

δbi

(
∂ν̃

∂xk

)

nk dS

︸ ︷︷ ︸

→IB

+
∫

ΩF

[
1

σ
[ν + (1 + Cb2)ν̃]

∂(ρν̃a)

∂xk
− Cb2

σ

∂(ρν̃ν̃a)

∂xk

]
∂ν̃

∂xℓ

∂

∂xk

(
δxℓ
δbi

)

dΩ

︸ ︷︷ ︸

→SD
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Defining ζ =
√

2WkmWkm as the vorticity magnitude with Wkm = 1
2

(
∂vk
∂xm

− ∂vm
∂xk

)

, P ν̃

and Dν̃ are functions of ρ, ζ, d, and µ̃, which means that:

ISA
S =

∫

ΩF
ν̃a

∂S ν̃

∂ρ

δρ

δbi
dΩ

︸ ︷︷ ︸

→FAEMF

+
∫

ΩF
ν̃a

∂S ν̃

∂µ̃

δµ̃

δbi
dΩ

︸ ︷︷ ︸

→FAESA

+
∫

ΩF
ν̃a

∂S ν̃

∂d

δd

δbi
dΩ

︸ ︷︷ ︸

→FAED

+
∫

ΩF
ν̃a

∂S ν̃

∂ζ

δζ

δbi
dΩ

︸ ︷︷ ︸

ISA
ζ

with S ν̃ = Dν̃ − P ν̃. The field integral containing variations in d contribute to the
field adjoint distance equation (FAED). Finally, ISA

ζ is developed as:

ISA
ζ =−

∫

ΩF

∂

∂xm

[

ν̃a
∂S ν̃

∂ζ

2

ζ
Wkm

]
δvk

δbi
dΩ

︸ ︷︷ ︸

→FAEMF

+
∫

ΩF
ν̃a

∂S ν̃

∂ζ

2

ζ
Wkm

∂vk

∂xℓ

∂

∂xm

(
δxℓ
δbi

)

dΩ

︸ ︷︷ ︸

→SA

+
∫

SF
ν̃a

∂S ν̃

∂ζ

2

ζ
Wkmnm

δvk

δbi
dS

︸ ︷︷ ︸

→IB

2.3.3 Developing the Eikonal integral

Substituting Rd from eq. (2.7) gives:

ID = −
∫

ΩF

∂

∂xm

(

2
∂d

∂xm
da

)
δd

δbi
dΩ

︸ ︷︷ ︸

→FAED

+
∫

SF
2

∂d

∂xm
nmda

δd

δbi
dS

︸ ︷︷ ︸

→IB

−
∫

ΩF
2

∂d

∂xm

∂d

∂xℓ
da

∂

∂xm

(
δxℓ
δbi

)

dΩ

︸ ︷︷ ︸

→SD

2.3.4 Developing the heat conduction integral

From eq. (2.2), the integral IS can be rewritten as:

IS = −
∫

SS
Tank

δqk

δbi
dS

︸ ︷︷ ︸

→IB

+
∫

ΩS

∂Ta

∂xk

δqk

δbi
dΩ

︸ ︷︷ ︸

IS
q

+
∫

ΩS
Ta

∂qk

∂xℓ

∂

∂xk

(
δxℓ
δbi

)

dΩ

︸ ︷︷ ︸

→SD

By definition, the adjoint heat fluxes in the solid domain are q
adj,S
k = κS ∂Ta

∂xk
, which

means that:

IS
q =

∫

ΩS

∂Ta

∂xk

∂T

∂xk

δκS

δbi
dΩ −

∫

ΩS

∂q
adj
k

∂xk

δT

δbi
dΩ

︸ ︷︷ ︸

→FAES

+
∫

SS
q

adj
k nk

δT

δbi
dS

︸ ︷︷ ︸

→IB

−
∫

ΩS
q

adj
k

∂T

∂xℓ

∂

∂xk

(
δxℓ
δbi

)

dΩ

︸ ︷︷ ︸

→SD
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2.3.5 Field Adjoint Equations (FAEs) and Adjoint Boundary Conditions
(ABCs)

Based on the aforementioned mathematical analysis, by setting the multipliers
of variations to zero, the resulting set of equations (i.e. FAEMF, FAESA, FAED, FAES)
is:

RΨ
m =− Anmk

∂Ψn

∂xk
−Kn

∂Vn

∂Um
− µ̃

∂ν̃a

∂xk

+

[
τkm

µ + µt

(
∂Ψm+1

∂xk
+ vm

∂Ψ4

∂xk

)

+
∂Ψ4

∂xk

∂T

∂xk

∂κF

∂µt
+

1

ρσ

∂ν̃

∂xk

∂(ρν̃a)

∂xk

]
∂µ

∂Um

+ ν̃a

[

− ρ

σ

∂

∂xk

[

[ν + (1 + Cb2)ν̃]
∂ν̃

∂xk

]

+
ρCb2ν̃

σ

∂

∂xk

(
∂ν̃

∂xk

)]

− Cb2

σ
ν̃ν̃a

∂

∂xk

(
∂ν̃

∂xk

)

− ν

ρσ

∂ν̃

∂xk

∂(ρν̃a)

∂xk
− ν̃(1 + Cb2)

ρσ

∂ν̃

∂xk

∂(ρν̃a)

∂xk

+
ν̃

ρ

∂

∂xk

[
1

σ
[ν + (1 + Cb2)ν̃]

∂(ρν̃a)

∂xk
− Cb2

σ

∂(ρν̃ν̃a)

∂xk

]

+ ν̃a
∂S ν̃

∂ρ
− ∂

∂xk

(

ν̃a
∂S ν̃

∂ζ

2

ζ
Wℓk

)

= 0

Rν̃a =− vk
∂ν̃a

∂xk
− 1

ρ

∂

∂xk

[
1

σ
[ν + (1 + Cb2)ν̃]

∂(ρν̃a)

∂xk
− Cb2

σ

∂(ρν̃ν̃a)

∂xk

]

+
1 + Cb2

ρσ

∂ν̃

∂xk

∂(ρν̃a)

∂xk
+

Cb2

σ
ν̃a

∂

∂xk

(
∂ν̃

∂xk

)

+

[
τkm

µ + µt

(
∂Ψm+1

∂xk
+ vm

∂Ψ4

∂xk

)

+
∂Ψ4

∂xk

∂T

∂xk

∂κF

∂µt

]
∂µt

∂µ̃
+ ν̃a

∂S ν̃

∂µ̃
= 0

Rda =− ∂

∂xk

(

2
∂d

∂xk
da

)

+ ν̃a
∂S ν̃

∂d
= 0

RTa =− ∂

∂xk

(

κS ∂Ta

∂xk

)

+
∂Ta

∂xk

∂TS

∂xk

∂κS

∂TS
+

∂F

∂TS
= 0

(2.12)

Only FAED depend on the adjoint distance da, therefore it is the last equation to be
numerically solved.

Excluding the surface integrals with variations in ν̃ and d, the rest of them form:

IB =
∫

SF

(

Ψnnk
δ f inv

nk

δbi
− Ψnnk

δ f vis
nk

δxk
+ τ

adj
km nm

δvk

δbi
+ q

adj
k nk

δT

δbi

)

dS

−
∫

SS

(

Tank
δqk

δbi
+ q

adj
k nk

δT

δbi

)

dS

(2.13)

IB splits into the integrals IB
I/O, over the inlet/outlet boundaries SI/O and IB

W ,
over the solid boundaries (including the FSI region) SW . The first one is developed
as follows:

IB
I/O =

∫

SI/O

[

Ψn Anmknk
δUm

δbi
+ (τ

adj
km nm − Ψ4τkmnm)

δvk

δbi
+ q

adj
k nk

δT

δbi

]

dS
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By eliminating the variations in the flow variables and ignoring those in viscous
stresses and heat flux, the adjoint inlet/outlet equations arise:

Ψn Anmknk
∂Um

∂V I/O
j

+ (τ
adj
km nm − Ψ4τkmnm)

∂vk

∂V I/O
j

+ q
adj
k nk

∂T

∂V I/O
j

+
∂F

∂V I/O
j

= 0 (2.14)

with V I/O standing for any flow variable extrapolated to boundary SI/O from the
interior of the fluid domain ΩF. Specifically, V I

j is the velocity magnitude for the

inlet and VO
j are the outgoing Riemann variables. Imposing the no-slip condition on

eq. (2.13), the integral over SW gives:

IB
W =

∫

SF
W

Ψm+1nm
δp

δbi
dS −

∫

SF
W

Ψm+1nk
δτkm

δbi
dS −

∫

SF
W

Ψ4
δ(qknk)

δbi
dS +

∫

SF
W

q
adj
k nk

δT

δbi
dS

−
∫

SS
W

Ta
δ(qknk)

δbi
dS +

∫

SS
W

q
adj
k nk

δT

δbi
dS +

∫

SF
W

Ψ4qk
δnk

δbi
dS +

∫

SS
W

Taqk
δnk

δbi
dS

︸ ︷︷ ︸

→SD

The surface integrals, including
δp
δbi

, δτkm
δbi

are eliminated by satisfying the adjoint no-
slip condition Ψ2 = Ψ3 = 0. On the same pattern, the adjoint FSI conditions (Ψ4 = Ta

and q
adj,F
k nF

k = −q
adj,S
k nS

k ) eliminate the surface integrals with variations in heat flux

or T. Lastly, the surfaces integrals with δν̃
δbi

, δd
δbi

are eliminated by setting ν̃a = da = 0

over the boundaries of ΩF.

2.3.6 Expression for SDs

Following the definition of the adjoint equations and their corresponding bound-
ary conditions, the sensitivity derivatives (SDs) are computed via:

δF

δbi
= ISD

MF + ISD
SA + ISD

D + ISD
S (2.15)

where

ISD
MF =−

∫

ΩF

[

Ψn

(

∂ f inv
nk

∂xℓ
− ∂ f vis

nk

∂xℓ

)

− τ
adj
km

∂vm

∂xℓ
− q

adj
k

∂T

∂xℓ

]

∂

∂xk

(
δxℓ
δbi

)

dΩ +
∫

SF
W

Ψ4qk
δnk

δbi
dS

ISD
SA =−

∫

ΩS
ν̃a

∂

∂xℓ
(ρvkν̃)

∂

∂xk

(
δxℓ
δbi

)

dΩ

+
∫

ΩF

ρν̃a

σ

[
∂

∂xℓ

[

[ν + (1 + Cb2)ν̃]
∂ν̃

∂xk

]

+ Cb2ν̃
∂

∂xℓ

(
∂ν̃

∂xk

)]
∂

∂xk

(
δxℓ
δbi

)

dΩ

+
∫

ΩF

[
1

σ
[ν + (1 + Cb2)ν̃]

(∂ρν̃a)

∂xk
− Cb2

σ

∂(ρν̃ν̃a)

∂xk

]
∂ν̃

∂xℓ

∂

∂xk

(
δxℓ
δbi

)

dΩ

−
∫

ΩF
ν̃a

∂S ν̃

∂ζ

2

ζ
Wkm

∂vk

∂xm

∂

∂xm

(
δxℓ
δbi

)

dΩ

ISD
D =−

∫

ΩS
2

∂d

∂xm

∂d

∂xℓ
da

∂

∂xm

(
δxℓ
δbi

)

dΩ

ISD
S =

∫

ΩS

(

Ta
∂qk

∂xℓ
− q

adj
k

∂T

∂xℓ

)
∂

∂xk

(
δxℓ
δbi

)

dΩ +
∫

SS
W

Taqk
δnk

δbi
dS

(2.16)
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2.4 PUMA Software

All the necessary computations were conducted using PUMA, developed by the
Parallel CFD & Optimization Unit of the National Technical University of Athens
(PCOpt/NTUA) [2]. It is a GPU-accelerated software, including solvers for the
RANS equations, heat conduction equation, and a variety of turbulence model equa-
tions. In addition, PUMA includes an adjoint solver, based on the continuous ap-
proach for the solution of aerodynamic and CHT optimization problems. The data
transfer among GPUs on different nodes is achieved using the MPI protocol.

The so-called primal and adjoint equations are discretized using unstructured
grids for the fluid and solid domains, following the vertex-centered finite-volume
approach. The 3-stage Runge-Kutta scheme with residual smoothing is employed
to solve the steady-state equations in pseudo-time. At each Runge-Kutta stage, the
computed residuals are smoothed using the spectral radii technique. For the com-
putation of the spatial derivatives, the Green-Gauss method is used. The 2nd order
Jameson-Schmidt-Turkel (JST) discretization scheme [7] is applied on the transport
terms of the RANS equations, while the 1st order upwind Roe scheme [16] is used
to discretize the turbulence model convection fluxes. The heat conduction equation
is also discretized using vertex-centered finite volumes and solved with the Gauss-
Seidel method. The cooling holes’ walls act as boundaries on which PUMA imposes
heat flux conditions, where the bulk temperature and the constant heat transfer co-
efficient need to be defined. The algorithm does not use wall functions in the mod-
eling, as the grid density is considered to be sufficiently high near the solid bound-
aries.

The computational procedure starts with the generation of the initial geometry
including both the airfoil shape and the geometric features of the cooling configu-
ration system. The algorithm solves the primal and then the adjoint problem, com-
puting the sensitivity derivatives. Information on the primal and the adjoint solvers,
highlighting the function of the coupling scheme, is presented in section 2.4.2. The
MMA method is used (section 2.4.3) to update the design variables and, conse-
quently, the cooling holes’ displacements. Then, with the updated geometry, the
new grid in the solid domain is generated using the advancing front method. The
properties of the airfoil shape and fluid domain’s grid do not change during the
optimization. The procedure is repeated till the convergence criteria be met. The
aforementioned process is summarized in fig. 2.2.

2.4.1 Grid Properties

The computational domain is generated from 16 curves, i.e. the inlet, outlet, and
periodic boundaries, the pressure and suction side, and the 10 cooling holes. During
the optimization, only the holes’ positions can be modified. The design variables
vector consists of the hole centers, i.e. b = [xc1 yc1 xc2 yc2 ... xcn ycn]T with n
the holes’ total number. After each optimization cycle, due to changes in the cooling
hole’s positions, the grid inside the blade is generated from scratch, while that in the
fluid domain remains intact, as there is no change in the airfoil shape. The displace-
ment of the points forming the perimeter of each hole depends on the coordinates of
the hole center itself. For instance, the perimeter points xper2 = (xℓ, yℓ) of hole no.

2 (ℓ is the number of the parameter points) are transformed via xper2 = δx2
δb b with
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FIGURE 2.2: Flow chart of an optimization cycle.
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(a)

(b) (c)

FIGURE 2.3: Grid illustration in the (a) fluid domain (b) leading edge
(c) trailing edge.

the cooling system grid sensitivities vector 2 being δx2
δb = [0 0 1 1 ... 0 0]T.

The PUMA software uses the advancing front method [9] to triangulate the com-
putational solid domain ΩS, starting from the boundaries and then progressing in-
wards, to generate the unstructured grid. To better handle the large spatial deriva-
tive near the solid boundaries, the grid is structured-like in that region, as illustrated
in figs. 2.3 and 2.4. Regarding the baseline geometry, the total number of nodes in
the fluid and solid domains is 190124 and 91188 respectively.

2.4.2 Coupling Scheme

The flow and heat transfer solvers for the primal problem are loosely coupled.
The heat transfer solver computes the temperature field values in the solid domain
ΩS and then imposes them as boundary conditions on the flow solver. The flow
solver calculates the heat fluxes in the FSI boundary and feeds them back to the heat
transfer solver. That can be achieved by integrating the energy equation RMF

4 = 0
on the adjacent finite volumes ΩF for each node i to consider the heat fluxes cross-
ing the interface between it and its neighbour-nodes. The process is repeated un-
til the convergence criteria are met. The communication of the temperature fields
along the FSI region is achieved using the fixed-point iteration method, meaning

2For visualization reasons, a turning angle may be introduced. In that case, as in the present thesis

where the angle equals 70◦, the vector changes into δx2
δb = [0 0 cos 70◦ sin 70◦ ... 0 0]T .
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(a) (b)

FIGURE 2.4: Grid illustration in the solid domain near the (a) leading
(b) trailing edge.

(a) (b)

FIGURE 2.5: Coupling scheme of the (a) primal and (b) adjoint CHT
solver.

that TF
n+1 = TS

n for the nth iteration. The aforementioned method was also followed
in the case of the adjoint problem, the only difference being the coupling is achieved
with Aitken’s dynamic relaxation formula, named after Alexander Aitken [1]. The
numerical method accelerates the rate of convergence of a sequence, using the val-
ues from three consecutive iterations. With Rn = TS

n − TF
n , the relaxation factor

an+1 = an

(

1 − (Rn−Rn−1)Rn

||Rn−Rn−1||2

)

is updated at each iteration, using the residuals from the

2 last iterations. The temperature field is updated via TF
n+1 = an+1TS

n + (1− an+1)T
F
n .

Figure 2.5 illustrates the coupling procedures for the primal and adjoint problem.

2.4.3 Method of Moving Asymptotes

The gradient-based method of moving asymptotes (MMA) is used [19], to con-
clude the computational procedure. Its function is to obtain the expressions of SDs
generated by the continuous adjoint solver and then optimize the objective function
f0(b), taking into account both the inequality constraints fi(b) ≤ f̂i (i=1, 2, ... m) and
the bounds subjected to the design variables b = [b1 b2 ... bn]T. In the present
thesis, the constraints are related to the displacement of the cooling holes. The de-
sign variables along with their geometrical constraints are detailed in chapter 4.

The algorithm’s approach is based on an iterative scheme of generating and solv-
ing a sequence of explicit sub-problems. Starting with the initial vector b0, the values
of fi(b

k) and ∇ fi(b
k) (i=0, 1, 2, ... m) are calculated in kth iteration. m, n denote the

number of inequality constraints and design variables, respectively. After that, a
sub-problem Pk is generated, its solution being the next iteration point bk+1, until
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the convergence criteria are fulfilled. With Lk
j , Uk

j being the lower and upper bounds

of the design variables, i.e. Lk
j < bk

j < Uk
j , functions f k

i are defined as:

f k
i (b) = rk

i +
n

∑
j=1

(
pk

ij

Uk
j − bj

+
qk

ij

bj − Lk
j

)

where

pk
ij =







(Uk
j − bk

j )
2 ∂ fi

∂bj
, if

∂ fi

∂bj
> 0

0, if
∂ fi

∂bj
≤ 0

qk
ij =







0, if
∂ fi

∂bj
≥ 0

−(bk
j − Lk

j )
2 ∂ fi

∂bj
, if

∂ fi

∂bj
< 0

rk
i = fi(b

k)−
n

∑
j=1

(
pk

ij

Uk
j − bj

+
qk

ij

bj − Lk
j

)

with f k
i (b

k) = fi(b
k) and

∂ f k
i

∂bj
= ∂ fi

∂bj
at b = bk. fi is a convex function since pk

ij, qk
ij ≥ 0

thus the second derivatives are:

∂2 f k
i

∂b2
j

=







2
∂ fi

∂xj

1
Uk

j −bk
j

, if
∂ fi

∂bj
> 0

−2
∂ fi

∂bj

1
bk

j −Lk
j

, if
∂ fi

∂bj
< 0

∂2 f k
i

∂bj∂bℓ
= 0, if j ̸= ℓ

The new sub-problem Pk is defined, involving the approximate versions of f k
i .

The aim is to minimize the function ∑
n
j=1

(
pk

0j

Uk
j −bj

+
qk

0j

bj−Lk
j

)

+ rk
0 with the new con-

straints being ∑
n
j=1

(
pk

ij

Uk
j −bj

+
qk

ij

bj−Lk
j

)

+ rk
i ≤ f̂i for i = 1, 2, ..., n and max (bj, αk

j ) ≤
bj ≤ min (bj, βk

j ) for j = 1, 2, ..., m. Lk
j , Uk

j are called moving asymptotes, although

they may have fixed values based on the optimization problem. αk
j , βk

j are limits with

Li
jk < αk

j < xk
j < βk

j < Uk
j .The solution to the problem Pk is the input bk+1, used to

the next iteration.
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3 Validation of the Solver and
Optimization Set-Up

The geometry of C3X turbine blade along with the cooling holes configuration
are illustrated in fig. 3.1, based on [6]. The blade’s axial chord is 7.816 cm, while its
material is ASTM type 310 stainless steel with density ρS = 7900 kg/m3 and heat
capacity CS = 586.15 J/(kgK). The material’s heat conductivity varies linearly with
the solid temperature as κS = 6.811 + 0.020716TS.

In the present thesis, the optimization will be carried out for the flow conditions
of 5 different test-cases, namely those identified as no. 108, 111, 113, 157, and 158.
The flow conditions of the cases are presented in table 3.3, where the total inlet pres-
sure pt1 and temperature Tt1, turbulence intensity Tu1, outlet pressure p2, and outlet
isotropic Mach number M2,is are recorded. Test-case 111 deals with a transonic flow.
The inlet flow angle is a1 = 0 in all cases. Before starting the optimization pro-
cess, a series of runs were performed to compare with the experimental data from
the literature [6]. Based on the 2-D analysis, a procedure was followed, in which
a constant heat transfer coefficient is assumed for each cooling hole. The coeffi-
cient values depend on the mean coolant temperature TC and coolant flow mass
ṁC per hole, given in tables 3.4 to 3.8. The cooling holes are modeled as circular
cross-section smooth pipes. Utilizing the aforementioned data, the Reynolds num-

ber ReD = 4ṁC
πDµ and the Nusselt number NuD = 0.022Cr Pr0.5Re0.8

D are calculated.

D is the hole diameter and Cr is a correction for a fully developed thermal bound-
ary layer to account for thermal entrance region effects, both given in table 3.1. It
has already been mentioned that Pr = 0.72. The coolant’s viscosity µ is computed

via the Sutherland law µ = µre f

(
TC

Tre f

)1.5 Tre f +C

TC+C , with C = 110.56 K, Tre f = 273.11

K and µre f = 1.7894 · 10−5Pa · s. With the coolant thermal conductivity computed

via κC =
Cpµ
Pr , the heat transfer coefficient is finally defined as hC = κCNuD

D . The
parameters T and hC are assigned to the heat flux condition, imposed on the hole
boundaries. Given the geometry of the airfoil shape, the area within which the holes

FIGURE 3.1: C3X geometry and cooling hole positions.
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TABLE 3.1: Cooling holes geometric characteristics, based on coordi-
nate system of fig. 3.1.

no. x (m) y (m) D (mm) Cr

1 -0.1055 0.0605 6.30 1.118
2 -0.1000 0.0483 6.30 1.118
3 -0.8701 0.0612 6.30 1.118
4 -0.7196 0.0651 6.30 1.118
5 -0.5708 0.0678 6.30 1.118
6 -0.4142 0.0698 6.30 1.118
7 -0.2638 0.0711 6.30 1.118
8 -0.1081 0.0718 3.10 1.056
9 0.4528 0.0721 3.10 1.056
10 0.2007 0.0721 1.98 1.025

TABLE 3.2: Maximum displacement of the cooling holes centers along
the x and y directions.

no. x (mm) y (mm)

1 ± 5 ± 2
2 -5, 4 ± 3
3 ± 3 ± 8
4 ± 3 ± 5
5 ± 3 ± 3
6 ± 3 ± 1
7 ± 3 ± 0.5
8 ± 5 ± 0.5
9 ± 5 -0.2, +0.5
10 ± 5 ± 0.3

can be displaced is limited. Upper and lower bounds have been defined, to prevent
any overlap between the holes themselves and the airfoil sides. The maximum al-
lowed displacements of the hole centers along the x and y directions are given in
table 3.2.

Figures 3.2 to 3.4 depict the pressure p, temperature T and heat transfer coeffi-
cient h fields along the FSI region, in comparison with the experimental data, us-
ing the Spalart-Allmaras (S-A) turbulence model. The distance is normalized with
the blade’s axial chord (x/c < 0 refers to the pressure and x/c > 0 to the suction
side), with the pressure reference value pre f being equal to the inlet total pressure
pt1, which is different for each case (table 3.3). The remaining reference values are
Tre f = 811 K and hre f = 1135 W/(m2K). It should be noted that the software returns
the heat flux qi for each point i on the airfoil, which is then divided by ∆Ti = Tt1 − Ti

to give the heat transfer coefficient values hi =
qi

∆Ti
. In the transonic test-case 111, the

experiment predicts a rather weak shock wave at x/c ≃ 0.6 (suction side) and at the
trailing edge (pressure side), due to the small number of measurements. The two re-
gions are indicated by a steep drop in the pressure distribution figure. There is also
a decrease in the temperature and heat transfer coefficient at the point, where the
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TABLE 3.3: Flow conditions for the five examined test-cases.

Case 108 111 113 157 158

pt1 (Pa) 319500 307989 323157 413272 243700
Tt1 (K) 786 796 781 818 808
Tu1(%) 6.5 8.3 8.3 8.3 8.3
p2 (Pa) 188900 153339 193145 247004 142530
M2,is 0.90 1.05 0.89 0.89 0.91

shock wave occurs. In the case of the transonic flow, higher temperatures are mea-
sured along the airfoil, as the coolant mass flow is decreased table 3.5, compared to
the remaining cases. There is a good agreement between the solver’s results and the
experimental data, except for the suction side region near the leading edge, where an
overestimation of T and h is observed. Since none of the analysis and optimization
runs is using a transition model, the boundary layer is considered fully turbulent
along the airfoil and the existence of the laminar boundary layer is ignored, by the
Spalart-Allmaras model, in the first half of the airfoil’s suction side. In that region,
there is a transition delay of the boundary layer. It is for this reason that, the exper-
imental data illustrate a dip in the temperature and the heat transfer coefficient dis-
tributions in contrast to the solver’s results, in which the laminar boundary layer has
not been taken into account, meaning that T and h have been taken overestimated
values. The dip region in the experiment is followed by a sharp increase (especially
in the case of the heat transfer coefficient) indicating the boundary layer’s transition
point from laminar to turbulent. It is clear that no transition point is illustrated in
the solver’s results, given that the flow is modeled as fully turbulent along the air-
foil. Although a transition model is necessary for the correction of the results near
the leading edge, it does not seem to have any influence on the temperature distri-
bution on the back of the airfoil, where TS

max occurs. In addition, it is obvious that
the inclusion of a transition model in the mathematical approach would lead to a
lower temperature in the laminar boundary layer’s region, approaching the values
measured in the experiment, and hence not surpassing the maximum solid temper-
ature in the trailing edge. Nevertheless, the temperature gap between the pressure
and suction side would be decreased, leading to a change in the front holes’ dis-
placement, as they tend to move toward the region with the highest TS. Even in this
case, as will be deducted in the following chapters, there is no change in the value
of maximum temperature, as the contribution of the front holes’ displacement to the
minimization of TS

max is negligible. Consequently, the absence of a transition model
can be tolerated in the context of the minimization of TS

max.
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TABLE 3.4: Cooling holes properties for test-case 108, obtained from
[6].

no. TC (K) ṁC (g/s) hC (W/m2K)

1 346.07 22.7 2119.03
2 345.70 23.9 1882.84
3 338.00 22.5 1788.90
4 338.47 23.7 1865.17
5 331.73 23.6 1854.11
6 360.85 15.9 1366.51
7 340.69 23.4 1847.80
8 358.87 7.98 2663.00
9 396.78 5.29 1942.00
10 437.39 2.89 2639.02

TABLE 3.5: Cooling holes properties for test-case 111, obtained from
[6].

no. TC (K) ṁC (g/s) hC (W/m2K)

1 415.81 7.71 780.32
2 417.75 6.21 656.71
3 399.15 6.20 651.86
4 407.29 6.58 685.48
5 384.36 6.61 682.71
6 444.68 6.86 717.26
7 401.55 6.36 665.82
8 417.18 2.25 986.62
9 486.10 1.37 677.71
10 539.68 0.771 945.14

TABLE 3.6: Cooling holes properties for test-case 113, obtained from
[6].

no. TC (K) ṁC (g/s) hC (W/m2K)

1 354.02 21.3 1722.37
2 353.06 22.8 1818.10
3 344.81 22.5 1793.48
4 345.42 23.8 1882.56
5 339.51 24.2 1897.33
6 366.62 24.8 1954.10
7 347.27 22.9 1820.60
8 365.88 7.84 2632.15
9 400.68 5.04 1870.66
10 442.16 2.57 2406.14
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TABLE 3.7: Cooling holes properties for test-case 157, obtained from
[6].

no. TC (K) ṁC (g/s) hC (W/m2K)

1 352.14 22.2 1779.13
2 354.54 22.1 1774.26
3 345.62 21.8 1749.23
4 346.72 22.8 1813.87
5 340.70 22.5 1790.73
6 366.21 22.5 1807.47
7 351.48 21.6 1740.13
8 376.24 7.44 2533.36
9 406.97 4.77 1793.78
10 446.69 2.56 2402.04

TABLE 3.8: Cooling holes properties for test-case 158, obtained from
[6].

no. TC (K) ṁC (g/s) hC (W/m2K)

1 358.14 16.7 1419.92
2 359.37 17.4 1468.00
3 349.97 14.8 1284.39
4 351.51 16.5 1402.37
5 342.56 17.5 1464.16
6 371.85 16.5 1413.94
7 351.85 16.1 1374.92
8 385.96 5.5 2000.80
9 413.22 3.49 1403.64
10 454.87 1.71 1745.60
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(a) (b)

(c) (d)

(e)

FIGURE 3.2: Comparison of the computed pressure distribution and
the experimental data [6], along the blade airfoil contour.
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(a) (b)

(c) (d)

(e)

FIGURE 3.3: Comparison of the computed temperature distribution
and the experimental data [6], along the blade airfoil contour.
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(a) (b)

(c) (d)

(e)

FIGURE 3.4: Comparison of the computed heat transfer coefficient
distribution and the experimental data [6], along the blade airfoil con-

tour.
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4 Results

In this chapter, the results of the optimization process are presented, aiming at
minimum highest blade temperature TS

max, under the conditions of the 5 test-cases,
presented in table 3.3. For that to be accomplished, the location of the cooling holes,
in the interior of the blade, is to be changed. For the 2-D problem, the displacement
of the 10 holes takes place in the axial and pitch-wise directions, while their radii
remain fixed. As a result, the design variables consist of the coordinates of the hole
centers, increasing the number of them to 20 (i.e. 2 per hole). To avoid any intersec-
tion between the holes and the airfoil sides, the appropriate geometric constraints
must be defined. It is dictated that the distance between each side and the perimeter
of the holes should not exceed 30% of their radius. By maintaining the necessary
distance between the holes and the blade sides, high ∇TS and high thermal stresses
can be prevented. Furthermore, upper and lower bounds are imposed on the design
variables to prevent overlapping of holes. The use of the aforementioned constraints
ensures the creation of realistic geometries and the generation of valid grids in the
blade.

Considering that, during the computations, the airfoil contour remains intact,
two series of runs were performed. The difference between them lies in the choice of
the airfoil shape, used for the optimization. In the first one, the C3X baseline config-
uration was used, while in the second one, the total pressure losses-optimized con-
figurations, based on the diploma thesis of Panagiotopoulos [13], were used (pr-opt.
blades in fig. 4.1) as starting points. Panagiotopoulos has optimized the baseline ge-
ometry five times, one for each of the five operating points, aiming to minimize the
total pressure losses. It should become clear that the total pressure losses-optimized
configurations in [13] have resulted from an optimization procedure with a differ-
ent objective function and constraints. The optimized versions of the baseline airfoil
have different shapes to minimize the total pressure losses, but there is no optimiza-
tion on the thermal properties. Each of the five optimized airfoils will now be used as
starting geometries for thermal optimization, under the same conditions they have
been optimized in [13]. In that case, a two-step optimization is practically performed
by further thermally optimizing the solutions for each of the 5 test-cases. From this
point onward, the two different series of runs will be referred to as TH1 and TH2
optimization, respectively, where TH stands for thermal. For instance, using the
aforementioned nomenclature, the TH1 optimization’s solution, at the conditions of
test-case no. 108, will be described as TH1-108 optimized blade. This indicates that
the cooling holes of the new blade have been shifted to the new optimized positions.
Equivalently, the TH2-158 optimized blade will be the outcome of the two-step op-
timization under the case-158 conditions, in which both the airfoil shape (step 1,
i.e. total pressure losses-optimization) and the holes’ location (step 2, i.e. thermal
optimization) have been changed.
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(a) pr-108 opt.

(b) pr-111 opt.

(c) pr-113 opt.

(d) pr-157 opt.

(e) pr-158 opt.

FIGURE 4.1: Comparison of the baseline and total pressure losses-
optimized configurations.
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4.1 TH1 Optimization

The first part of the optimization runs aims at minimizing the highest blade tem-
perature for the baseline model. During the computations, only the location of the
cooling holes can be changed. The optimized hole locations are presented in fig. 4.2.
The lower and upper bounds (given in table 3.2), imposed on the design variables,
are visualized as rectangular areas. Each center of a hole is allowed to be displaced
in its respective area. The effect of the holes’ relocation on temperature distribution
along the blade is illustrated in fig. 4.3. The length x in the horizontal axis is nor-
malized with the axial chord c. Following optimization, TS

max in the trailing edge,
i.e. x/c = ±1, has been reduced. The holes in the front half of the blade have been
displaced toward the suction side (x/c > 0), cooling the local area and increasing
TS along the pressure side (x/c > 0). It is clear that the cooling holes have been dis-
placed toward the regions of high temperature, as shown in figs. 4.6a, 4.7a, 4.8a, 4.9a
and 4.10a. Specifically, the 2 front holes have been re-positioned near the leading
edge, while the rest are closer to the trailing edge. The fields of temperature gradi-
ent magnitude, for each case, are illustrated in figs. 4.6b, 4.7b, 4.8b, 4.9b and 4.10b.
The highest gradient is measured in the perimeter of the cooling hole no.8. The
convergence history of the highest solid temperature is plotted in fig. 4.4. It can be
concluded that the percentage change of TS

max converges to ∼ - 4 % for the subsonic
and ∼ - 1.5 % for the transonic cases. Furthermore, the figures contain information
on the distance of the 10th hole’s center from the pressure and suction sides, normal-
ized with its radius, fig. 4.5. For all test-cases, the distance of the 10th hole’s center
from the suction and pressure side converges to ∼ 1.9 and ∼ 2 radii, respectively.

It can be deducted that the value of the highest blade temperature is sensitive to
the location of the 10th cooling hole, as this hole is the nearest to the trailing edge,
where TS

max is attained. For instance, when contrasting figs. 4.4a and 4.5a for the
TH1-108 optimized blade, it can be seen that the sharpest changes in temperature
are related to the hole’s distance from the suction side. As the distance increases,
the hole moves toward the center of the blade, hence away from the trailing edge.
This could result in less local cooling, leading to a local temperature rise. The above
is confirmed by examining the sensitive derivatives diagram in fig. 4.11, computed
with the adjoint method. The design variable no. 19, i.e. the x-coordinate of the 10th

hole’s center has the greatest impact on the objective function TS
max.

To further support the previous hypothesis, the candidate solutions of 9th, 14th,
24th, and 32th optimization cycles for the test-case 108 will be presented. Figures 4.12
and 4.13 show that by moving the 10th hole away from hole no.9 (9th, 24th opt. cycle),
the region between the 2 holes is exposed to high TS

max. In contrast, positioning the
hole away from the trailing edge (14th opt. cycle), increases TS

max in that area, as is
already known. Consequently, to lower TS

max across the entire region between hole
no. 9 and the trailing edge, the optimization algorithm carefully adjusts the position
of hole no. 10.

Following the algorithm’s convergence, each of the 5 optimized solutions, was
re-evaluated at the conditions of the 4 other cases. The temperature drop is given
in table 4.1 and equals ∼ 27.5 K for the subsonic cases, and ∼ 10.5 K for the tran-
sonic one (case 111) from their baseline values. The best solution for each case is
highlighted in cyan, although the differences between them are not greater than ∼
1 K. This can be considered to be well within the CFD code inaccuracies. Regard-
ing the total pressure losses, as can be seen in table 4.2, the difference between the
values is barely noticeable, given that the airfoil shape is the baseline one. In addi-
tion, by calculating the mean displacement of each hole for the 5 test-cases, as seen
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(a) TH1-108 opt.

(b) TH1-111 opt.

(c) TH1-113 opt.

(d) TH1-157 opt.

(e) TH1-158 opt.

FIGURE 4.2: Comparison of the baseline and TH1 optimized configu-
rations.
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(a) (b)

(c) (d)

(e)

FIGURE 4.3: Comparison of the baseline and TH1 optimized temper-
ature distribution along the blade airfoil contour.
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(a) TH1-108 opt. (b) TH1-111 opt.

(c) TH1-113 opt. (d) TH1-157 opt.

(e) TH1-158 opt.

FIGURE 4.4: Convergence history of highest solid temperature for the
TH1 optimization.
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(a) TH1-108 opt. (b) TH1-111 opt.

(c) TH1-113 opt. (d) TH1-157 opt.

(e) TH1-158 opt.

FIGURE 4.5: Convergence history of 10th hole’s center distance from
blade sides for the TH1 optimization.
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(a) temperature

(b) temperature gradient

FIGURE 4.6: Temperature and temperature gradient magnitude dis-
tributions of the baseline (left) and TH1-108 optimized (right) blade.
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(a) temperature

(b) temperature gradient

FIGURE 4.7: Temperature and temperature gradient magnitude dis-
tributions of the baseline (left) and TH1-111 optimized (right) blade.
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(a) temperature

(b) temperature gradient

FIGURE 4.8: Temperature and temperature gradient magnitude dis-
tributions of the baseline (left) and TH1-113 optimized (right) blade.
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(a) temperature

(b) temperature gradient

FIGURE 4.9: Temperature and temperature gradient magnitude dis-
tributions of the baseline (left) and TH1-157 optimized (right) blade.
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(a) temperature

(b) temperature gradient

FIGURE 4.10: Temperature and temperature gradient magnitude dis-
tributions of the baseline (left) and TH1-158 optimized (right) blade.
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FIGURE 4.11: Sensitivity derivatives computed for the starting geom-
etry with the adjoint method.

(a) 9th (b) 14th (c) 24th (d) 32th (e) TH1-108 opt.

FIGURE 4.12: The holes’ location for a number of candidate solutions
of the TH1-108 optimization.

(a) 9th (b) 14th (c) 24th (d) 32th (e) TH1-108 opt.

FIGURE 4.13: The temperature field for a number of candidate solu-
tions of the TH1-108 optimization.



40 Chapter 4. Results

TABLE 4.1: Highest solid temperature TS
max (K) of the baseline opti-

mized blades.

optimized blade
flow

conditions baseline 108 111 113 157 158 multi

108 649.6 620.7 620.7 620.7 620.6 621.4 620.7
111 709.2 698.6 698.4 698.6 698.6 698.7 698.6
113 651.1 623.2 623.1 623.3 623.3 623.3 623.2
157 691.4 664.1 664.2 664.1 664.0 665.0 664.2
158 669.6 642.4 642.2 642.6 642.6 641.8 642.2

TABLE 4.2: Total pressure losses ∆pt (Pa) of the TH1 optimized
blades.

optimized blade
flow

conditions baseline 108 111 113 157 158 multi

108 5540.5 5510.9 5515.9 5511.7 5511.2 5510.3 5512.1
111 12384.9 12388.1 12390.4 12388.4 12388.2 12388.5 12388.6
113 5490.2 5460.0 5465.5 5460.8 5460.5 5459.6 5461.4
157 6856.9 6821.4 6827.7 6822.3 6821.9 6820.7 6822.9
158 4490.3 4469.6 4473.2 4470.2 4469.8 4469.4 4470.5

in fig. 4.14, a pseudo-multipoint optimization can be accomplished. All holes, with
the exception of no. 10, have been placed on the allowed boundaries, denoted by
black lines. The performance of the new configuration (indicated as multi blade in
the aforementioned tables) is identical to that of the optimized ones.

4.2 TH2 Optimization

The outcomes of the TH2 optimization will be presented in this section. In the
previous section, the geometry optimized under the five different flow conditions
was the baseline one, based on [6]. In this section, there are five different geome-
tries, obtained from [13]. Each of them is the new version of the baseline geometry,
optimized in terms of total pressure losses, under each of the five different operat-
ing points. For instance, pr-108 airfoil is the optimized version of the baseline one
in terms of total pressure losses, under the test-case 108 conditions. As a result, the
new airfoil has a different airfoil shape from the baseline one, and slightly displaced
holes (to match the airfoil shape). Each of the airfoils will be thermally optimized
under the conditions they already have been optimized, in terms of total pressure
losses. In the above example, the pr-108 airfoil will now be thermally optimized
only under the same conditions, i.e. the 108 operating point. As a result, the TH2-
108 optimized configuration will now be optimized both in terms of total pressure
losses (optimization in [13]) and in terms of the highest solid temperature (achieved
in the present thesis).
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(a) no. 1 (b) no. 2

(c) no. 3 (d) no. 4

(e) no. 5 (f) no. 6

(g) no. 7 (h) no. 8

(i) no. 9 (j) no. 10

FIGURE 4.14: Baseline and optimized locations of the cooling holes’
centers for TH1 optimization.
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TABLE 4.3: Total pressure losses and highest solid temperature of the
TH2 optimized configurations at each optimization step.

∆pt (Pa) Tmax (K)
flow

conditions baseline step 1 step 2 baseline step 1 step 2

108 5540.5 4296.8 4281.2 649.6 651.4 622.3
111 12384.9 10699.9 10704.3 709.2 710.3 699.2
113 5490.2 4236.2 4216.3 651.1 652.9 624.1
157 6856.9 5216.6 5193.5 691.4 693.7 665.4
158 4490.3 3562.3 3547.5 669.6 670.9 642.2

TABLE 4.4: Highest solid temperature TS
max (K) of the TH2 optimized

blades.

optimized blade
flow

conditions baseline 108 111 113 157 158

108 649.6 622.3 621.3 621.8 621.5 622.1
111 709.2 700.1 699.2 699.5 700.1 699.1
113 651.1 624.7 623.5 624.1 624.2 624.0
157 691.4 666.1 664.8 665.8 665.4 666.0
158 669.6 643.4 642.3 642.4 642.8 642.2

Figure 4.15 demonstrates that the holes have, as anticipated, been shifted toward
the high-temperature regions. The baseline and optimized airfoil shapes are differ-
ent. As presented in the convergence history diagrams (figs. 4.17 and 4.18) and the
TS, ∇TS fields (figs. 4.19 to 4.23), the results are in good agreement with those of the
previous section since the percentage change of TS

max equals ∼ - 4 % for the subsonic
test-cases and ∼ - 1.5 % for the transonic one. With the exception of the transonic
case, there is a slight reduction in the 10th hole center distance from the blade sides,
compared to the TH1 optimization. The aforementioned are fully justified, as the
trailing edge thickness has been reduced after the pressure losses optimization in all
cases, except for case 111, where there have been minimal geometry changes. Addi-
tionally, as shown in figs. 4.24 to 4.28, the flow velocity in the passage throat region
has been reduced, decreasing the total pressure losses. For subsonic cases, a weak
shock wave occurs at x/c ≃ 0.6 of the suction side.

The values of the total pressure drop and highest temperature are given in ta-
ble 4.3, for each step of the optimization process. At the end of the computations,
the highest temperature drop is ∼ 27 K for the subsonic cases and ∼ 10 K for the tran-
sonic one. The total pressure percentage drop ranges from ∼ 21% to ∼ 24% for the
subsonic cases and is equal to ∼ 13.5% for the test-case 111. As shown in tables 4.4
and 4.5, when tested under various conditions, each optimized configuration yields
a comparable TS

max.
The first optimization [13] was carried out, with changes in the inlet flow capacity

and flow exit angle constrained to 0.1% from their baseline values in table 4.6. The
inlet capacity is slightly higher after step 2 (table 4.7), while for the majority of re-
evaluations, the exit angle condition is met (table 4.8). The violations mainly relate
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(a) TH2-108 opt.

(b) TH2-111 opt.

(c) TH2-113 opt.

(d) TH2-157 opt.

(e) TH2-158 opt.

FIGURE 4.15: Comparison of the baseline and opt-TH2 configura-
tions.
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(a) (b)

(c) (d)

(e)

FIGURE 4.16: Comparison of the baseline and TH2 optimized tem-
perature distribution along the blade airfoil contour.
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(a) TH2-108 opt. (b) TH2-111 opt.

(c) TH2-113 opt. (d) TH2-157 opt.

(e) TH2-158 opt.

FIGURE 4.17: Convergence history of highest solid temperature for
the TH2 optimization.
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(a) TH2-108 opt. (b) TH2-111 opt.

(c) TH2-113 opt. (d) TH2-157 opt.

(e) TH2-158 opt.

FIGURE 4.18: Convergence history of 10th hole’s center distance from
blade sides for the TH2 optimization.
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(a) temperature

(b) temperature gradient

FIGURE 4.19: Temperature and temperature gradient magnitude dis-
tributions of the baseline (left) and TH2-108 optimized (right) blade.
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(a) temperature

(b) temperature gradient

FIGURE 4.20: Temperature and temperature gradient magnitude dis-
tributions of the baseline (left) and TH2-111 optimized (right) blade.
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(a) temperature

(b) temperature gradient

FIGURE 4.21: Temperature and temperature gradient magnitude dis-
tributions of the baseline (left) and TH2-113 optimized (right) blade.
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(a) temperature

(b) temperature gradient

FIGURE 4.22: Temperature and temperature gradient magnitude dis-
tributions of the baseline (left) and TH2-157 optimized (right) blade.



4.2. TH2 Optimization 51

(a) temperature

(b) temperature gradient

FIGURE 4.23: Temperature and temperature gradient magnitude dis-
tributions of the baseline (left) and TH2-158 optimized (right) blade.
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(a) baseline (b) TH2 opt.

FIGURE 4.24: Mach distribution of the baseline and TH2-108 opti-
mized blade.

(a) baseline (b) TH2 opt.

FIGURE 4.25: Mach distribution of the baseline and TH2 optimized
blade.

(a) baseline (b) TH2 opt.

FIGURE 4.26: Mach distribution of the baseline and TH2 optimized
blade.
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(a) baseline (b) TH2 opt.

FIGURE 4.27: Mach distribution of the baseline and TH2 optimized
blade.

(a) baseline (b) TH2 opt.

FIGURE 4.28: Mach distribution of the baseline and TH2 optimized
blade.

TABLE 4.5: Total pressure losses ∆pt (Pa) of the TH2 optimized
blades.

optimized blade
flow

conditions baseline 108 111 113 157 158

108 5540.5 4281.2 5546.3 4267.0 4243.8 4362.1
111 12384.9 13644.9 10704.3 14002.9 14295.9 12684.8
113 5490.2 4247.5 5492.8 4216.3 4162.2 4332.9
157 6856.9 5299.8 6875.5 5260.6 5193.5 5406.6
158 4490.3 3519.4 4505.6 3570.4 3587.2 3547.5
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TABLE 4.6: Inlet flow capacity ṁ∗
1 and flow exit angle a2 of the base-

line test-cases.

108 111 113 157 158

ṁ∗
1 · 105 6.7053257 6.7597963 6.6941078 6.6961264 6.7105246

a2 (rad) -1.2755952 -1.2691205 -1.275526 -1.2755307 -1.2756093

TABLE 4.7: Inlet flow capacity percentage change % of the TH2 opti-
mized blades.

optimized blade
flow

conditions 108 111 113 157 158

108 0.1227 0.3498 0.1185 0.1154 0.0956
111 3.4615 0.1051 3.5051 3.6688 2.9503
113 0.1059 0.3578 0.1116 0.1117 0.0666
157 0.1184 0.3566 0.1238 0.1253 0.0753
158 0.1278 0.3344 0.1232 0.1222 0.1147

to the performance of the TH2-111 optimized blade.

4.3 Additional Parametric Studies

After the main optimization procedures had been completed, an additional set of
runs was performed to test different approaches to the CHT problem. First, compu-
tations on pressure losses-optimized test-cases 111 and 158 were conducted, keeping
either the 4 front (no. 1, 2, 3, 4) or the 3 last (no. 8, 9, 10) cooling holes intact, as illus-
trated in fig. 4.29. It can be deduced (fig. 4.31) that the front holes displacement only
contributes by ∼ 0.3% and ∼ 0.15% to the Tmax percentage change for the subsonic
and transonic cases respectively (or a maximum temperature drop of ∼ - 2 K and ∼
- 1 K). In accordance with fig. 4.30, the displacement of the front holes reduces TS

locally but has no impact on TS
max at the trailing edge. Figures 4.33 to 4.36 further

validate that the temperature field in the trailing edge has not been affected by the
front holes displacement.

TABLE 4.8: Exit flow angle (rad) of the TH2 optimized blades.

optimized blade
flow

conditions 108 111 113 157 158

108 -1.2768 -1.2745 -1.2768 -1.2769 -1.2768
111 -1.2571 -1.2703 -1.2565 -1.2557 -1.2597
113 -1.2767 -1.2745 -1.2768 -1.2769 -1.2768
157 -1.2767 -1.2744 -1.2767 -1.2768 -1.2767
158 -1.2768 -1.2746 -1.2767 -1.2767 -1.2768
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(a) TH2-111 opt., 3 back holes fixed

(b) TH2-111 opt., 4 front holes fixed

(c) TH2-158 opt., 3 back holes fixed

(d) TH2-158 opt., 4 front holes fixed

FIGURE 4.29: Comparison of the baseline and opt-TH2 configura-
tions.
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(a) 3 back holes fixed (b) 4 front holes fixed

(c) 3 back holes fixed (d) 4 front holes fixed

FIGURE 4.30: Comparison of the baseline and TH2 optimized tem-
perature distribution along the blade airfoil contour (fixed holes

runs).
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(a) TH2-111 opt. (3 back holes fixed) (b) TH2-111 opt. (3 front holes fixed)

(c) TH2-158 opt. (3 back holes fixed) (d) TH2-158 opt. (3 front holes fixed)

FIGURE 4.31: Convergence history of highest solid temperature for
the TH2 optimization.
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(a) TH2-111 opt. (3 back holes fixed) (b) TH2-111 opt. (3 front holes fixed)

(c) TH2-158 opt. (3 back holes fixed) (d) TH2-158 opt. (3 front holes fixed)

FIGURE 4.32: Convergence history of 10th hole’s center distance from
blade sides for the TH2 optimization.
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(a) temperature

(b) temperature gradient

FIGURE 4.33: Temperature and temperature gradient magnitude dis-
tributions of the baseline (left) and TH2-111 optimized (right) blade

(3 back holes fixed).
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(a) temperature

(b) temperature gradient

FIGURE 4.34: Temperature and temperature gradient magnitude dis-
tributions of the baseline (left) and TH2-111 optimized (right) blade

(4 front holes fixed).
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(a) temperature

(b) temperature gradient

FIGURE 4.35: Temperature and temperature gradient magnitude dis-
tributions of the baseline (left) and TH2-158 optimized (right) blade

(3 back holes fixed).
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(a) temperature

(b) temperature gradient

FIGURE 4.36: Temperature and temperature gradient magnitude dis-
tributions of the baseline (left) and TH2-158 optimized (right) blade

(4 front holes fixed).
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(a) TH3-111 opt.

(b) TH3-158 opt.

FIGURE 4.37: Comparison of the opt-TH2 and opt-TH3 configura-
tions.

In addition, the TH2 optimized 111 and 158 cases were further optimized, set-
ting a new vector of design variables to include only the coordinates of the 3 back
holes. These holes were chosen as they are closer to the area of interest, where the
highest temperature occurs. They are allowed to move within their respective areas,
defined by the displacements in table 3.2, starting from their TH2 optimized posi-
tions, except that their x displacement is not allowed to be negative, i.e. they are
only allowed to move closer to the trailing edge, as illustrated in fig. 4.37. In addi-
tion, the upper bound of hole no. 10 is not defined as a displacement but is kept as
the maximum x coordinate bound corresponding to the TH2 optimization, to avoid
any interaction with the trailing edge. The new candidate solutions will be referred
to as TH3 optimized blades, as they have been optimized thrice. In this way, TS

max is
expected to be further reduced, as the holes are allowed to move closer to the trailing
edge without being constrained from the bounds of the previous optimization. As
can be seen in fig. 4.39, it is clear that the temperature has changed by ∼ −1.4% for
the 111 and ∼ −3% for the 158 test-case, with small modifications in the holes’ loca-
tion, along the y direction. These percentages are equivalent to temperature drops
from 699.2 to 689.8 K and from 642.2 to 622.9 K, respectively. In contrast, TS has been
increased between hole no. 7 and 8 (figs. 4.41 and 4.42) since hole no. 8 is shifted
near the trailing edge, yet has not surpassed the maximum value. It is evident that
with the displacement of the 3 last holes toward the trailing edge, the temperature
field tends to be uniform with a lower maximum value in this region.

Finally, an optimization run was performed on total pressure losses-optimized
case 108, reducing the total number of cooling holes from 10 to 9. Figure 4.43a illus-
trates the initial geometry used for the TH2 optimization, without hole no. 3. The
displacement area of hole no. 4 has now been extended to include the space left by



64 Chapter 4. Results

(a) (b)

FIGURE 4.38: Comparison of the TH2 optimized and TH3 optimized
temperature distribution along the blade airfoil contour.

(a) TH3-111 opt. (b) TH3-158 opt.

FIGURE 4.39: Convergence history of highest solid temperature for
the TH3-111 optimization.

(a) TH3-111 opt. (b) TH3-158 opt.

FIGURE 4.40: Convergence history of 10th hole’s center distance from
blade sides for the TH3-158 optimization.
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(a) temperature

(b) temperature gradient

FIGURE 4.41: Temperature and temperature gradient magnitude dis-
tributions of the TH2-111 and TH3-111 optimized (right) blade.
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(a) temperature

(b) temperature gradient

FIGURE 4.42: Temperature and temperature gradient magnitude dis-
tributions of the TH2-158 and TH3-158 optimized (right) blade.
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hole no. 3. There is a TS
max drop equal to ∼ −4%, although TS increases up to the

maximum value in the front half of the suction side, based on figs. 4.43d and 4.44.
The above analysis highlights the importance of the front holes, as they may not im-
pact the TS

max of the trailing edge, yet they cool down the front part of the airfoil,
meaning that by removing them, there is a high risk of rising TS to the levels of the
maximum value in the region, where they are located.
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(a)

(b) (c)

(d)

FIGURE 4.43: Properties of the TH2-108 optimized geometry without
hole no. 3. (a) New configuration (b) convergence history of highest
solid temperature (c) convergence history of 9th hole’s center distance
from blade sides (d) temperature distribution along the blade airfoil

contour.
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(a) temperature

(b) temperature gradient

FIGURE 4.44: Temperature and temperature gradient magnitude dis-
tributions of the pr-108 and TH3-108 optimized (right) blade.
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5 Conclusions

This chapter presents the findings of the whole study, along with important ob-
servations and future suggestions.

• Except for the first half of the blade’s suction side, where an overestimation of
TS and hS is observed, the results for the primal problem are in good agreement
with the experimental data of the C3X turbine blade in the remaining airfoil
contour. The lack of a transition model, given that the adjoint equations should
be formulated from scratch, leads to a poor prediction in that region. This is
soon to be resolved as the inclusion of the γ − Reθ transition model into the
continuous adjoint method is already under development at the PCOpt.

• The optimization procedure, involving the initial constraints, converges to a
TS

max drop equal to ∼ 4% for the subsonic cases and ∼ 1.5% for the transonic
one. Using the total pressure losses-optimized airfoils as the starting geometry,
the results give a slightly higher TS

max (by ∼ 1 K) from the baseline geometry.

• The key factor for the aerothermal optimization of the airfoil is the displace-
ment of channel no. 10 (the one closest to the trailing edge) along the x di-
rection. The front channels have almost no impact on the minimization of the
objective function TS

max.

• A second displacement toward the trailing of the 3 back channels, compared to
their optimized positions, leads to an additional ∼ 3% and ∼ 1.4% TS

max drop
(for the subsonic and transonic cases respectively). It seems that a dynamic
constraint needs to be developed in the future, by computing the distance be-
tween them and the airfoil sides and updating the constraints at the end of
each optimization cycle.

• Removal of a cooling channel, even one away from the trailing edge, can lead
to higher TS in the region, at risk of getting close to the maximum value. Any
modifications of the cooling channels’ number should be carefully executed,
by updating the constraints of the adjacent channels to cover the free space left
behind from those removed.
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