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Abstract

In the present thesis, hydrodynamically lubricated contacts are optimized using the
continuous adjoint method and a simplified (1D) flow model. Such contacts can be found in
almost any mechanical system and they are the main source of friction, which is responsible
for power losses, material wear and even total failure of the component. Friction contacts
operate under the regime of hydrodynamic lubrication, meaning that a thin fluid film
separates the two interacting surfaces, in order to avoid metal to metal contact. So,
optimization of the geometry design of sliding surfaces is critical for the reduction of power
loss and wear. Optimization is performed aims either the maximization of load capacity or
the minimization of the friction coefficient.

For the purposes of optimization, the continuous adjoint-based method has been selected.
Adjoint-methods belong to the wider category of deterministic optimization methods, which
compute and use the derivative of the objective function. They are mathematical tools for the
calculation of the gradient of an objective function, satisfying at the same time the primal
equations describing the problem. The equation describing the hydrodynamic lubrication
problem will be the Reynolds equation. The main benefit of the adjoint method is that the
cost of the computation of the derivatives is almost equal to the cost of numerically solving
the primal equation and completely independent of the number of design variables.

So, several different geometries have been studied, representing the hydrodynamic slider
found in mechanical components, with the use of the adjoint optimization method, aiming at
the maximization of load capacity and for one case the minimization of friction coefficient
additionally. For each different geometry case, the amount of design variables varies and the
mathematical formulation is different and for that it is explained for each geometry in detail
in the sub-chapters of Chapter 4. The chosen slider geometries are: simple converging slider
(optimized for both load capacity and friction coefficient), converging and diverging slider
and step slider (only load capacity). One last case has also been studied, where the design
variables are the film thickness of each discretization point, meaning that their amount is
equal to the number of grid points. Ideally with this method the geometry could take any
possible shape and self-adjust to each case.



Extevic llepiAnym

IV UETAMTUYOKN 0Lt epyoacio  mpayuatomombnke Peitiotomoinon  TpPoAOYIKGOV
emoaveldv pe ™ UEBodo G ovveyovg ovlvyovg pebodov. Avtég ol empdveleg
GLVOVTIOOVTOL GE TTOAAG UNYOVOAOYIKA GLOTHLOTO Kot Kupimg otig unyovég Diesel. Te avtég
OVOTTTOGOOVTOL SVVAUELS TPPNC, Ol 0TToieg EVBVVOVTOL Y10 ATMOAELEG 10YVOG, OTMAELL VAIKOD
Ko, TEMKQA, aKOUN Kol OAKY] actoyia TN Kotaokevns. Ot oMoOntpeg tp1ng Asttovpyovv
VIO 10 KOOESTMG VOPOSLVAUIKNG ATTavoNG, He TNV €vvola OTL €va AETTO QLA AMITOVTIKOD
VYPOL daywpilel TIg dVO cVVEPYALOUEVES EMPAVEIEG, MDOTE VO ATOPEVYETAL 1 UETAED TOVG
enan. 'Etol n Pedtictonoinon g yeoUETplog aVTOV TOV EMPAVEIOV £ivol Kaipla Yo TN
peiowon tov anoiewdv gvépyelag kat g eOopds. H Beitiotonoinom exktedeitanr ckomevovTog
elte T peyotomoinom tov ad1dotaTov mapalapPavopevov eoptiov gite v eayloToTOINGT
TOV 0OLAGTATOV GLVTEAESTT TPPTC.

Mo v viomoinon ¢ dwdikaciog Pertiotomoinong ypnoomodnke n cvveyng ovlvyng
péBodoc, M omoio avnKel oTNV €LPLTEPT KATNYOPlD TMOV VIETEPUVICTIKOV HeBOd®V
BeAtioTomoinomg Kot mov S0VAEVOLV LLE TNV TAPAYWYO TNG OVTIKELEVIKNG cuvaptnong. Eivar
LOONUOTIKA EPYOAELD Y10 TOV VTTOAOYIGUO TNG TOPOYMYOL TNG OVTIKELLEVIKNG GLVAPTNONG,
TANPOVTOS TAVTOYPOVO TIS EEIGMGELS PEVGTAOV TOL TEPLYPAPOVY TO PLGIKO TPOPANua. H
eiomon mov démet TV VOPOSVVAIKT AlTavon gival 1 arlomomuévn e&icwon Reynolds. To
ONUOVTIKOTEPO TAEOVEKTNHO. TNS GVLLYOVG peBOdOL glvarl OTL TO KOGTOS VTTOAOYIGHOV TWV
Tapay®Y®V eivor oxeddv 160 pe t0 KOOTOG emiAvomng g eEICMONG PELVOTAOV KOl EVIEANDG
avedptnto amd 10 TAN00C TV TOPAUETPOV GYEdINONG.

MeletOnkav T€06€P1G SUPOPETIKES YEMUETPIEG LOPOSVVOUIKDOV OAMGONTNPWV GTOYXEVOVTOG
o€ OAEG OTN| LEYLGTOTOINGT TOV AOIIGTATOL TOPAAAUPBAVOUEVOL POPTIOL KOl GE KATOLEG GTNV
elo16TOToiNo™ TOL AdIoTATOL GLVTEAESTN TPIPNG. Ot YewpeTpieg mov pehetOnkay eivat ot
e€ng: amhog cvykAivov oMeOntpag, cuykAivev-omokAivov oAMcOnTipag Kot oAMcOntipog
oe oynuo okolomatiov. To tétapto ocevdplo apopd mhAr Tov amAd oMcOntipo e
JLPOPETIKY TOPAUETPOTOINGT, OOV Ot PETAPANTEG OYESIAGHOV  Elval OVGLACTIKE 1) TOTIKN
TIW] TV VWYOLE TOL ATOVTIKOU @A, 7oL onuaivel 01t 10 TAN00G TV UeTOPANTEG
oxedoHoV  givan {60 pe To TANB0¢ TV KOUP®V dlakpltonoinong tov TpoPAnuaToc. X OAa
o mopamdve mpoPAnuata  emPANONKE TWEPLOPICUOG OTNV EAAYIOTN T TOL TAYOLG
MIOVTIKOU, Lo TV £vvolo OTL 1] TOTIKY TN TOL TAYOVE MTAVTIKOD 0EV TPEMEL VO YIVETOL
UIKPOTEPT OO P GLYKEKPIUEVT TIUT. ZTnV ovTifetn mepintwon dmov to eAdyioto ThY0G Ot
ntav kot ovtd HeTaPANTéS oyedoopuod , 10 mPOPAnua ¢ Pertictomoinong Oa elxe
TETPYHEVT ADON TN UNOEVIKY.



2V TEPITT®OTN TOV amAOD KEKAIUEVOL OACONTAPA 1 YEOUETPIOL TOV AITOVTIKOD QAU
TapoapeTporomonKe pe pio povo HETaPANT GYESOGHOV, aLTH NG KAIGNG TOL KOVOALOD.
XpNoomomonke yio va yivel ToTOmOoINoT TV ATOTEAEGUATOV, OGOV QPOPA TO 0OLACTATO
naporopPovopevo eoptio (peylotonoinom) Kot cuvtedeotn oAicOnong (elayiotomoinon), e
avagopés amd T oebv Piprloypaeio kot dSwomiot®Onke moAv koA tavtion. o To
adiéototo TaparapPavopevo goptio n PEATIGTN TR ToL givor W=0.0267 ko avticTotysi oe
1Mon k=1.2, evid y1a tov adidotato cvvieheoth Tpfig n PEATIoT T Tov sivon F=4.5 kan
avtiotoyel og Tun g khiong k=1.55 .

¥t devtepn TMEPITT®ON, GLYKAIVOV-ATOKAIVOV OAGONTNpOG, M TOPAPETPOTOINCT NG
YEWUETPIOG Eyve e TPELS HUETAPANTEG GYEIOCUOD, TAL VYT EIGPONG KOL EKPOTG TOL PEVGTOV
Kot ™ dopnkn 0éon adlhayng g kiione. H Beitiotonoinon mpayupatonombnke dcov apopd
10 addotato mopoiapfovopevo eoptio (peyiotomoinom). ZEekvaviag KaBe @opd amd
SpopeTikd onpeio dtakpltonoinong, OMANON OOPOPETIKO GLVOVOCUO TOV UPYIKOV TILOV
TOV HETAPANTOV oYedlOGHOV, N uEBodog KatéAnte oto 1610 onpeio W*=0.032055 kar yio
uetofintég oyxedioong hi=120 um, hy=50 pm xou 1=0.040073 m . 'Etcr pmopovue va
1GYLPIGTOVHE OTL AT TO onpeio givat éva v duvapel olko BErTioTO.

2y 1pi mepintwon Tov oMcONTPA e GO CKOAOTATL, 1) YEMUETPIO AMOTVRTOONKE e
000 petaPAntég oxedlaopol, TO VYOG €1G0O0L TOL PELGTOV Kol Tn Owpunkn 0éon Tov
OKOAOTOTION. AVTIKEWEVIKY] GUVAPTNON OV £MPeEne vo, peylotoromBetl Ntov 10 ad1doToTo
naporapPovopevo @optio. Opoimg pe tv mponyoduevn mepinmtwon m Peitictomoinon
Eexivnoe amd TPELG OLOPOPETIKOVG GLVOVOGHOVS APYIKDV TYLAOV TOV UETARANTOV GYESIOGLOV
Kot Ohot katéAnéov oto 1010 PBEATIoTO onueio pe TN TNG OVIIKEWEVIKNG GLVAPTNONG
W*=0.03423 kot tipég tov petafintov oxedaopod h1=93 um wkon 1=0.034055 m . Kot og
avTd TO oNUEi0 UTOPOVUE VO IGYVPIGTOVUE OTL 1| TapoTdve Avomn elvar TOAvAOS T0 KaBOAIKO
BértioTo.

2mv televtaio mepintmon, N yeopetpia glval avty Tov aniod cuykAivovta olMcOnpa pe
SPOPETIKO OPMS TpOTO Tapapetponoinong. Ot petafAntég oyxedaopol eivar ot kopPikég
TIWES TOL VYOLG TOL MIavTikoD GAp. To kivTpo mov pag 001 yNce G€ avTH T OKEYT, KOOMG
Kol TO0 POCIKOTEPO TAEOVEKTNOL OWTNG TNG TOPAUETPOTOINOTG, €ivan 6Tl 1 yempetpia eival
elevbepn va AaPet omorodnmote duvatd oynuo. AKOUN, €M EKUETAAAELOUOOTE KOl TO
ONUOVTIKOTEPO TAEOVEKTNHO TNG cLLVYOVE peBdOOV, KOTE TO 0TOI0 TO KOGTOG VITOAOYIGLLOV
TOV TAPayOYOV givor aveEdptnTto omd to TAN00G TV HETARANTOV GYEOACHOD KOl TEPITOV
{00 pe 10 K66TOG emilvong TV €EICMGEMV TOL PELGTOL TOL apPykoy mpoPAnuotos. H
LEYOADTEPT OLVOKOMO GE QLT TNV TEPIMTOON NTOV Vo, avarTuyBohv ot dpot mov vtoroyilovv
TIG TOPAYDYOVS gvancnciog, KaBmG Kol vo moTonomBodv ot TIHES TOV TOPUYDY®OV AVTOV
Tov TPOKVTTOLY amd Tn ovluyn péBodo pe TIC TOPAYDYOVS TOV TPOKVATOVV Oomd TIG
TEMEPAGIEVES SOPOPEG. EEKIVOVTOS TOA OO SLOPOPETIKG APYKO CYNMUOTA, KOl KUPI®G e
OLLPOPETIKEG OPYIKES KMOELS, Tpoékuye KABE QOpPa GE OPOPETIKO TEAKO OATOTEAECLA,
ONAadN avaAOY®S TNV apyKoToinon, evionilovtag o1apopeTikd Tomikd BEATIOTO.



Soumepacpatikd, 1 ovveyne ovluyng pébodog elval éva mOAD ypNoO epyareio yio T
BeAtiotomoinon tpIoroyikdV empaveldV. AKOUN Kot av Ogv TEPUATIOTEL 1| fEATIoTONOIN O,
pe ) uéBodo avT UTOPOVLE VO KATACKEVAGOLLE Eva ApTn evancOnoiog g yempetpiag, o
0mO10G LOIG VITOJEIKVVEL TTOLEG TTEPLOYES TNG EMPAVELNS B TPOKAAEGOVV PEYOADTEPT QALY
OTNV OVTIKEWEVIKN GLVAPTNOT av HeTakivnBodv ta onueio g, Kot dpa wod mpémet va yivel
nopéUPacn TPOKEWEVOL VO EVIOTIGTEL 1 EMOBLUNTY TN TNG OVTIKEWWEVIKNG CLUVAPTNONG,
eite péyoto gite ehdyioTo.
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Nomenclature

Eta Steepest descent step factor

F Friction force [N]

F Friction coefficient, f =F /W

f Non-dimensional friction coefficient, f = f -L/h,
H Film thickness [m]

h1 Outlet height [m]

Nmin, ho Minimum film thickness [m]

K Converging ratio, k=(h,—h,)/h,

L Slider length [m]

M Sigmoidal function magnitude factor

P Pressure jj[Pa]

U Velosity [m/s]

u Fluid velocity in the x direction [m/s]

Vv Fluid velocity in the y direction [m/s]

W Load carrying capacity of fluid [N]

w Fluid velocity in the z direction [m/s]

wW* Non-dimensional load carrying capacity

X Direction along the piston ring profile (streamwise direction)
z Direction along the film thickness (crossflow direction)
7 Lubricant dynamic viscosity [Pa s]

p Lubricant density [kg/mq]

T Shear stress [Pa]
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1. Introduction

1.1 Tribology

Tribology is a rather new field of science, which studies friction, wear and lubrication of
mechanical parts. It meets application in a variety of devices, from household appliances to
bigger and more complicated structures, such as ships. Tribology of a certain component can
be studied under several scopes, such as numerically, experimentally, materials etc. Friction
is the major cause of wear, which if not limited it can cause serious material damage and,
finally, total failure of the component. Wear may be substantially reduced when a thin layer
(film) of material, usually liquid, but also gas or solid, separates the two sliding surfaces.
Hydrodynamic lubrication has been a subject of extensive research in recent decades, in order
to study the behavior of mechanical components such as bearings, piston rings, seals etc.
Consequently, improvements of the geometry design and, even, optimization of them can
substantially reduce friction and wear, increasing the lifetime of a component and reducing
the operational costs. Such improvements are of utmost importance, knowing that 15-25% of
the total energy consumption worldwide is used to overcome friction [1].

Large two stroke marine Diesel engines are a typical case where the study of tribology could
contribute to the minimization of energy losses and wear of the interacting surfaces. These
engines can be found installed in large over-seas ships, such as crude oil carriers, tankers and
containerships. In these engines it is estimated that 5-7% of the total generated power is
consumed in mechanical friction [2]. The generated power of a large two stroke engine can
surpass the amount of 80000 kW, meaning that friction losses consist a significant loss of
energy. More specifically friction in a large two stroke marine engine is distributed in the
several individual parts as follows: piston ring pack (26%), guide shoe bearings (31%), main
bearings (23%) and the connecting rod bearings (10%), as seen in [3].

The common feature shared between the mechanical components described above is the
existence of a wedge-shaped lubricating film and the relative motion of one surface to the
other. These two conditions are both necessary for the occurrence of hydrodynamic
lubrication, which is the phenomenon due to which the two interacting surfaces are separated.
Consequently, optimizing the geometry of the interacting surfaces, in terms of load carrying
capacity and friction power, is crucial for reducing friction losses in a Diesel engine. Load
capacity must be maximized, because higher values mean that the slider can withstand higher
loads for the same lubricant film thickness, while friction power should be minimized, in
order to reduce the power consumed for overcoming friction.
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1.2 Optimization methods (based on [4] and [5])

The process of optimization can be defined as the process of obtaining the “best”, provided
that there is a way of measuring what is “good” and what is “bad”. Practically, in different
problems someone aims at the maximum of a quantity (e.g. income) or the least of a quantity
(e.g. workforce), meaning that the term optimum can either correspond to the maximum or
the minimum, depending on the different circumstances of each problem.

Optimization problems can occur in almost all scientific fields, such as engineering,
economics, mathematics, commerce, social sciences, geopolitics etc. As for engineering,
some examples of subdomains that optimization is important are: aeronautics, naval
architecture, electronics, civil and chemical engineering etc. In these areas, optimization is
implemented in order, for example, to find the best design of devices, such as the best set-up
of circuits in order to minimize the size of a smartphone, to design an optimal airfoil for
minimum drag or even a bridge for the best behavior under extreme weather conditions. So, it
is obvious that optimization methods are in widespread use and at the same time very useful
in order to improve all the aspects of human life.

Before proceeding, optimization must be formulated in a mathematical way. The most
common way to present an optimization problem is by deriving a performance criterion F
(objective function) in terms of a number of parameters (design parameters) Xi.

F=1f(X, %, X,)

Obijective function F is a scalar quantity which can assume any possible form, being either a
cost of a product or the drag of an airfoil. Design variables x; are the parameters that
determine the value of the objective function F. They can either be independent parameters,
such as the weather conditions, which are mostly unpredictable, or control parameters that
can be properly adjusted by the designer performing the optimization.

Therefore, the optimization is applied in order to find the combination of the design variables
values xi that minimize or maximize the objective function F.

The optimization problems used in engineering applications can be classified as presented
below.

14



1.2.1 Continuous - Discrete problems

A basic classification of optimization problems is into continuous and discrete problems.
Continuous problems consider real variables as degrees of freedom (design variables), being
either constrained within certain bounds or not. It is obvious that, in continuous problems, the
optimal solution is being searched within an infinite number of possible solutions. An
example of a continuous optimization problem would be the finding of the optimal
dampening coefficient of the suspension of a car, in order to minimize the vibrations of the
cabin, where the coefficient can take any real value. In discrete optimization problems, the
possible solutions are integer numbers or boolean and are included within a finite amount
(which could also be very large) of desired solutions. An example of a discrete optimization
would be the selection of the number of propeller blades of a ship, in order to maximize the
performance factor of the propeller, where the amount of blades can only be an integer
number. In most of cases, continuous problems have continuous objective and/or constraint
functions that can be differentiated. A common practice to cope with discrete optimization
problems is to solve them as continuous and afterwards to round up the result to the closest
integer, but this usually yields a result far from the actual optimal solution. The problem of
optimization to be solved in this thesis is a continuous one.

1.2.2 Deterministic - Stochastic methods

The optimization methods can be divided into two big categories, depending on the process
of solution, either deterministic or stochastic optimization methods. A deterministic method
of optimization uses the generalized derivative of the objective function, trying to calculate or
estimate values of it. On the other hand, the main characteristic of the stochastic methods is
that they use random or semi-random searching features, aiming at the optimal solution.
Hybrid methods combine features of the two aforementioned categories of methods.

To choose between the two wide categories of optimization methods, the following facts
should be considered. The development of a deterministic method is rather time consuming,
it is mainly linked to the current problem and cannot easily be expanded to account for other
similar problems (i.e. change of objective function), but it converges fast to the solution,
having at the same time the risk of being trapped to a local extremum, heavily depending on
the initialization of the problem.

On the other hand, stochastic optimization methods can be used like “black boxes” on
completely different problems, but they cost much more, because they offer the potential of
locating the global optimal solution, independently of the initialization.

The optimization method to be used in this thesis is a gradient-based one.
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1.3 Literature Review

Tribology research has been extensive during the last decades, focusing on several
mechanical components that have an interesting frictional behavior, such as thrust bearings,
journal bearings and piston rings. Their performance can be predicted on the basis of the
Reynolds equation, which accounts for the physics of the lubricant film that separates the
rotor from the stator and takes a wedge-like shape. The fluid slider can take many different
shapes such as; simple converging, step (converging or parallel), tapered, parabolic and more
modern designs, such as the artificially textured (converging or parallel). A detailed analysis
of the geometric characteristics of the lubricating film in tribological contacts, the derivation
of the Reynolds equation and the application of the appropriate boundary conditions have
been presented in [6].

For a typical slider geometry, quite a few publications exist in the subject of optimization
performance of tribological contacts. The load-carrying capacity of a contact, is defined as
the integral of the pressure field, computed from Reynolds equation, is the most important
performance indicator, which should always be maximum, in order to avoid wear and
damage of the two interacting surfaces. Most of publications have studied such geometries,
under the scope of the geometry being characterized by a number of parameters and
optimized according to these parameters, aiming at the maximization of load-carrying
capacity (objective function). Parallel and converging sliders, both plain and textured, and
step sliders have been studied in [7], [8] and [9]. All these studies utilize evolutionary
algorithms for the purpose of optimization, which is a very strong tool, but does not
understand the physics of the problem. This is obviously an advantage, as the optimization
algorithm can be applied for many different problems without making any changes but, on
the other hand, a disadvantage, because it cannot provide any further information about the
effect of design parameters upon the objective function.

This is where gradient based optimization methods become useful. More specifically, adjoint
based methods, which is the main interest of the present thesis, compute the sensitivity
derivatives of the objective function with respect to the design variables, which express how
much the objective function will be altered if a design variable is slightly increased or
decreased [5].

In the present study, several converging slider geometries are studied, using an adjoint based
optimization method. At first, the slider is parameterized by only one parameter the
converging ratio of the slider. In the second method, being also the more interesting one, the
design variables are the nodal values of the film thickness, meaning that the geometry is free
to take any possible shape. This has been the main motivation for using an adjoint based
method, because the geometry is permitted to adjust on its own to the optimal shape,
determined by the sensitivity derivatives of the objective function.
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2. Theoretical Part

The tribology systems studied in this thesis are met in engineering applications and mainly in
almost all types of propulsion and energy generation (Diesel) engines and shaft power
systems. In Diesel engines, mechanical losses in the form of friction are located in: piston
rings pack, guide shoe bearings, main bearings and connecting rod bearings. In a shaft
system, and specifically in a ship shaft system, friction is located in the journal bearings
(stern-tube and line bearings), in the thrust bearing and in the gearbox units, if one exists.
Each mechanical component mentioned above, will be briefly described in the following
sections.

2.1 Mechanical components
In this section, the several mechanical components where friction is present will be discussed
and their geometries will be illustrated.

2.1.1 Pistonrings

Piston rings are circular metallic rings placed around the piston with a certain pretension, and
their main purpose is to isolate the combustion chamber volume with minimum friction. They
also transfer heat from the piston to the liner and stabilize the piston so that it is supported
symmetrically by the bore. A typical sketch of a piston with its piston rings can be seen in
Figure 1, along with a real image of a piston head with the piston rings installed around it.

- COMMPRESSION
RINGS

PISTON PIN —__
T OIL RINGS

—

i‘\“‘“\-- CONNECTING ROD

m
I
|

|
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Figure 1: (a) Piston and its components [13], (b) Piston and the piston rings of M/V Despoina.

The main purpose of piston rings is to keep gas blow-by from the combustion chamber to the
crankcase to a minimum, because leakage will reduce compression pressure and power will
be lost. The combustion gases can flow past the piston ring from three locations, the piston
ring gap (the gap used to fit the ring around the piston), the front face of the ring and its
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backside. Piston rings seal the gas by expanding outwards towards the liner due to the gas
pressure acting on their back and the pretension force.

Piston rings also spread the lubricating oil up and down the liner uniformly and at the same
time scrape off the excessive oil and return it to the crankcase during the downstroke. These
functions are carried out by specially designed oil rings that have a distinguishing face profile
geometry.

Another function of piston rings is heat transfer from the piston to the liner. Through the
cooling system of the piston head, a part of the combustion heat is transferred to the piston
boundaries and, from there, to the piston rings and, finally, to the liner wall.

Piston rings also stabilize the piston, preventing it from coming into contact with the liner,
especially during cold starts. While the piston moves along the liner, the piston ring creates a
thin lubricating film between it and the liner preventing metal to metal contact. Film
thickness is maximum when the piston speed is maximum (middle of a stroke), and minimum
when the piston reaches the two centers (top dead center-TDC, bottom dead center-BDC),
where contact between surface asperities may occur, making a certain amount of wear
inevitable. This fact makes the need of self-lubrication properties of the piston ring and liner
materials necessary [10].

2.1.2 Journal bearings (based on [6], [11] and [12])

Journal bearings are mechanical components appearing in the majority of engineering
applications. They are used either to support the radial load of a rotating shaft or simply as a
guide for the smooth transmission of torque with minimum both power loss and wear. The
geometry of a journal bearing consists of a hollow cylinder, enclosing a solid shaft that
rotates about its axis. The radius of the bearing is slightly larger than that of the shaft; the
difference between the bearing and the shaft radius is called clearance. The bearing cylinder
is usually held stationary. The hydrodynamic film which supports the radial load is generated
between the surfaces of the rotating shaft and the stationary bearing. A typical sketch of a
journal bearing during operation, including the developed hydrodynamic film is shown in
Figure 2.

High-Pressure Area High-Pressure Area High-Pressure Area
(Shaft at Rest) (Shaft Starting to Rotate) (Shaft at Full Speed)

Figure 2: Journal bearing sketch with the developed oil film
(http://www.machinerylubrication.com).
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2.1.3 Thrust bearings (based on [11])
The hydrodynamic principles used in the lubrication of the two previously mentioned
mechanical components are also employed in thrust bearings, which provide axial load
support or simply axial load support for a rotor. Fluid-film design can range from coin-sized
flat washers to more complicated assemblies several meters in diameter. In all cases, a fluid-
film pressure is generated to balance the externally applied thrust load, with proper separation
of the two interacting surfaces, in order to prevent material wear, to provide a movement with
low friction and to maintain temperature rise in lower levels. Usually, thrust bearing consists
of a number of sector-shaped pads, arranged in a shape around the shaft as illustrated in
Figure 3, so the external load is equally divided among the pads. Due to the motion of the
rotor, the lubricant fluid is drawn inside the wedge-shaped zone and hydrodynamic
lubrication occurs, supporting the applied load and preventing metal to metal contact.

(a)

Sliding Surface W
(Rotor)

Figure 3: (a) Sketch of the thrust bearing and the wedge-shaped lubrication zone, (b) Image of a
real thrust bearing with six sector-shaped pads.
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2.2 Adjoint Optimization

2.2.1 Basic Definitions

In section 1.2 the most commonly used optimization methods have been mentioned.
Deterministic methods, operating with the derivatives of the objective function, render
necessary the use of a technique able to compute the first or even the second derivatives of
the objective function.

Despite the vast range of methods being available, for the optimization in problems of fluids
flow, it is necessary to employ tools for the computation of the objective function. Such
methods are called adjoint methods [5], which is also the method that will be used and
properly applied for problems of hydrodynamic lubrication.

Generally, when referring to adjoint methods, it must be clarified that they are mathematical-
computational tools for the calculation of the gradient of an objective function, ensuring at
the same time the satisfaction of the primal equations governing the problem (i.e. fluid
equations). Mathematically, adjoint methods have their roots in the Lagrangian multipliers
theory. The computation of the objective function derivatives is useful because they can lead
to the solution minimizing (or maximizing) the objective function. Therefore, when referring
to an adjoint optimization method, this will also include the process of minimization (or
maximization) of the objective function (i.e. steepest descent, conjugate gradient etc.).

In contrast to evolutionary algorithms, any change of the problem and of the objective
function, demands the mathematical reformulation of the problem and rewriting of parts of
the computational algorithm. [5]

In order to better explain this method, a shape described by a number of geometric

parameters, Bz[bl,bz,...,bN], located in a fluid domain, should be optimized in order to

exhibit minimum drag. The values b;i consisting the vector b are called either design or
optimization parameters or degrees of freedom (DoFs). Using the adjoint method, for any

objective function F and for a certain vector of design variables Ek (n marks the current step
of optimization), the partial derivatives are:

OF =\ (OF OF  oOF )=
E(bk)z(a,a—bz,...,a](bk) )

always assuming that the equations of the primal problem are satisfied.
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2.2.2 Computational Cost

The main advantage of the adjoint optimization method is that the cost of the computation of
the derivatives is almost equal to the cost of the solution of the primal equations. It is also
very important that the computational cost is independent of the number of design variables
N, in contrast to evolutionary algorithms in which the computational time greatly increases
when the design variables are increased. This advantage offsets the need of mathematical
reformulation of the problem.

Generally, in hydrodynamic problems the typical way for measuring the computational cost
is by considering single evaluation (a single call to the primal equations) as the time unit. The
cost of this one solution is analogous to the complexity of the geometry and the assumptions
made in the flow model. So, a single optimization cycle of an adjoint-based method, requires
one call to the primal equations solver and one call to the solver of the adjoint equation,
computing the sensitivity derivatives.
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3. Hydrodynamic Lubrication

3.1 Introduction

Hydrodynamic lubrication is the ability of a viscous fluid to separate two inclined surfaces in
relative motion, by developing hydrodynamic pressure in a thin lubricating film that separates
the surfaces. This results to low friction forces, decrease in surface temperatures and lower
rate of material wear.
In order to achieve hydrodynamic lubrication, a moving surface and availability of oil at the
gap entrance. The resulting pressure development is caused by the energy transferred from
the moving surface to the lubricating oil and satisfies the conservation of mass because, if no
pressure was developed, the flow rate at the domain exit would be lower than the flow rate at
the domain inlet.
A sketch of a simple two-dimensional slider is presented in Figure 4. The bottom surface
(rotor) moves with velocity U while the top surface (stator) is inclined and fixed, creating a
wedge-like gap.

P

Pressure
~—— profile

2 IR E 1
A h, Z h h h,

U

Figure 4: Hydrodynamic pressure between the inclined surfaces of a simple slider [1].

Lubricating oil is forced to enter the wedge-shaped gap from the left edge of Figure 4,
resulting in increase in its pressure. From the pressure profile of Figure 4, it can be noted that
pressure gradient is positive at the inlet, allowing the flow of oil into the wedge, and negative
at the outlet, allowing the exit of the oil. Finally, it must be noticed that the transversal profile
of fluid velocity depends on the spatial derivative of pressure; at the outlet region, it bends
towards the outlet and at the inlet it bends towards the inlet.

The most suitable mathematical equation describing this phenomenon is the Reynolds
equation (Osborne Reynolds 1843-1912), which is a simplification of Navier-Stokes
equations and can be derived by considering force equilibrium and continuity of flow in an
elementary volume of fluid undergoing shear stress.
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3.2 Simplifying assumptions

In most engineering problems, the processes are too complex and interconnected to be
represented by simple mathematical equations. Computers were a real revolution in that
respect, as mechanical systems could be analyzed with more detail, taking into account more
and more factors.

However, limitations of computational power and time make the use of simpler models
inevitable in many cases. In particular, the simplifying assumptions needed for the derivation
of the Reynolds equation are the following:

The lubricant oil behaves as a Newtonian fluid

Inertia forces of the lubricant are neglected

Pressure is constant across the thickness of the lubricant fluid

Flow is considered as laminar

Viscosity is constant in the lubricant domain

No-slip condition is employed on the fluid-wall interfaces

External body forces acting on the fluid film are neglected

No ok~ owbdE

3.3 Forces Equilibrium in a finite volume

0T, ZT
(1;+Edz)dxdy

I
1
| 0
I ] (p+a—gdx)dydz
I dz Gt
pdydz :
I
I
dx X
dy . L--F----= —>
_ - < /’rxdxdy
y

Figure 5: Force equilibrium of a finite volume of fluid [6].

A small element of fluid from the lubricating film is considered, as seen in Figure 5, and is
assumed that forces are applied only along the x direction. The same results can be extended
to the other directions, if needed. Equilibrium of the element dictates that, the forces acting
on the left side of the volume must be equal to the forces acting on the right one:

o, dzj dxdz = ( p+ P dxj dydz +7,dxdz =
0z OX

pdydz + [rx +
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o7, dxdydz = P» dxdydz (2)
oz OX
Considering dxdydz#0, Eq. (2) can be divided by dxdydz, which yields:
or, oOp
x _ 9P 3
oz oOX ®)

A similar equation can be derived for the y direction:

9, _% @
oz oy

Using assumption 3 the pressure is constant along the z direction, thus:

P_q ®)

0z

The shear stress of the lubricant is expressed with the use of dynamic viscosity x and the rate
of shear along both the x and y directions as follows:

— = 6
LML (6)
ov
—H= 7
Ty ’u az ( )

where, tx and 1y are the shear stress acting along the x and y direction, respectively, whereas
u, v are the corresponding fluid velocities.

Substituting Eq. (6) into Eq. (3) and Eq. (7) into Eq. (4):

d_0of ou
ax_éz('uazj ®)
o_0f, N
ay_az(”azj ®©)

Integrating Eq. (8) and using the assumption of no-slip conditions (assumption (6.))

op 7°

——+Cz+C, = 10
ox 2 1 2= H (10)

For the simple slider of Figure 4, the following boundary conditions can be used:
u=U, at z=20 (12)
u=U, at z=nh (12)

These conditions are for the general case where the two surfaces move with different
velocities Uy and Uy; later on, the proper conditions for the case of the present study will be
applied.
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Substituting the boundary conditions Eq. (11) and Eqg. (12) into Eg. (10):

op h
GV 50

C,=uU,

Finally, the equation of velocity of the fluid results from Eq. (10), by substituting the above
constants C1 and Co:

7°—zh \op z
u= —+(U,-U,)=+U 13
[ 2u ]ax ( 1 z)h 2 (13)

The equation for the velocity along the y direction can be derived in a similar way:

7°—zh )9 z
v=[ o ]£+(vl—v2)ﬁ+v2 (14)

In Egs. (13) and (14), the three separate terms represent the three velocity profiles that, when
combined, give the final velocity profile, see Figure 6.

z' — zh\Jdp )
( m )Bx =
Linear Profile of Couette Constant

Parabolic Profile due to % Velocity, due to wall velocity  vglogity Us

Figure 6: Profiles of the three separate velocity terms at the lubricant inflow region.

Velocity Assumptions

In most hydrodynamic problems, one of the two surfaces can be considered stationary (stator)
and the other one moving with speed U (or/and V) (rotor).

In the present problem, it is assumed that velocity is non-zero only in the x direction,
meaning that the velocities Vi and V2 can be taken as zero.
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As a result, the equations for the two velocities along the x and y directions, respectively, are:

2

u:(z _Zhj@+—UE+U (15)
21 ) OX h
2_

v=[Z Zh]@ (16)
2u )oy

3.4 Continuity of column of fluid

In this section, an infinitesimal volume of the fluid is considered and mass conservation is
taken into account. The volume has hexahedral shape and dimensions dx, dy and dz along the
three principal axes, as seen in Figure 7. The mass conservation law can be expressed by
means of Eq. (17):

Accumulation Rate
of mass in the control
volume

_ {Inflow rate of }_ {Outflow rate of } 17)

the control volume the control volume

The above values refer to a specific moment in time, so if at a next moment, to, the mass
included in the control volume is pdxdydz, the first term of Eq. (17) can be written as:

op
— dxdydz 18
o axay (18)

Concerning the calculation of inflow and outflow rates, it is assumed that mass is entering the
control volume from the left side (+) and exits from the right (-), as see in Figure 7.

o A
[p wike (pw )d= | dxdy
Iz g

z f‘|;
( i F‘ ~\ -
|\p \ TE(PV )t{l j|d'.\r:.‘l_

1
inlet i |
! _—
dz! - outlet
pu dydz —t — —=>= | E T 7=
| ’ 5
/ | [ pu + i ~(pu )dx l:{m’:
pv dxdz "] _j_ I _di L. ___k -
dy_ - X
V-
7 4
a |
y p wdxay

Figure 7: Continuity of flow in a column of fluid [6].
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So inflow rate, from the left side of the finite volume with area dydz, is equal to:
= pudydz

The outflow rate, from the right side of the finite volume, is:

M, o (pu + ag(pu)dx)dydz

In a similar way, the equations for mass conservation in the y and z directions are:
= pvdxdz

. 0
M, o (pv + a(pv) ddexdz

m, ,, = pwdxdy

M, o ( PW + aﬁ( pW) dzj dxdy

From Eq. (19)-(24), the right part of Eq. (17) can be written as:
(m +m +mzm)_(mxout+myout+mzout)

X,in

- —(g(pu)+%(pv)+§(pW)jdXdde

Substituting Eqg. (18) and (25) into Eq. (17) yields:

(aa—/t)+a%(pu)+%(pv)+§(pw)jdxdydz =0

In Eq. (26), the finite volume dxdydz is non-zero, therefore it can be eliminated:

P, 0 2D
p +8 (,0u)+ay(,ov)+a (pw)=0

Each term of Eq. (27) will now be integrated along the z direction from 0 to h (film
thickness) considering that way a column of fluid instead of a finite volume. The velocities
substituted in these terms are taken from Eq. (15) and (16).
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o oh o} —zh)ép h’~h-h)ép . h
u)dz=—| pudz - pu(h)—=— -U-— +U dz - -U—+U
(pu) axlp A5 axIpK 21 Jax h } pH 2 jax /

0

b - 2 8(ph
=£ Yo Z—zh 8p z——IUp—dz+—jUpdz 6—5Lh3+!—(p)
OX 5 21 ) oX ox” 12u 2 0oX
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Finally, substituting the above terms in (27), results in Eq. (28) which is the Reynolds
equation:

PP | 0[P P s +!6(ph)+a(ph):0 (28)
ax oy

ox12u oy 12u 2 oX ot

3.5 Assumptions

Constant density
Considering that the fluid density is constant in the lubricant domain, with a value of po Eq.
(21) is simplified as follows:

3 3
Ja(op h” +8 dp h” ) Udh oh_ 0 29)
ox axlzy oy ay12y 2 0x ot

Isoviscous approximation
In many engineering applications the lubricant viscosity is assumed constant throughout the
fluid domain. So assuming that viscosity p=constant, Eq, (29) can further be simplified:

3 3
ofoph’) ofoph”) Uuch oh_, (30)
x\ox12) oyloay12) 2 ox ot
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3.6 Performance parameters of slider

In Figure 8, a sketch of a convergent slider geometry is presented. Using the Reynolds
equation (Eqg. (29)), the pressure distribution in the lubricant separating the two surfaces can
be calculated. Three important performance parameters of this slider mechanism are load
capacity (total force acting on the ring in the z-direction), friction force (total force acting on
the ring in the x-direction), and friction coefficient, which by definition, is the ratio of friction
force to load capacity. Formulaes of calculating those quantities are presented hereinafter.

Z A

h(x)
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Figure 8: Sketch of a typical converging slider geometry.
Load Capacity
The load capacity can be calculated by integrating the pressure distribution along the x-
direction:

W= pd
= |, pax (31)
where L is the length of the slider (see Figure 8)

Friction Force
Friction force can be obtained by integrating the x-component of shear stress along the x-
dimension of the slider.

L
F=| zdx (32)

where 1« at the ring-fluid interface can be taken from Eq. (6), and ou/ oz of Eq. (6) can be
easily calculated by differentiating Eq. (13).

According to what is mentioned during the derivation of the Reynolds equation, the shear
stress, in terms of dynamic viscosity and velocity, takes the following form:

A dz )
where du/dz is easily calculated by differentiating Eq. (13) of velocity u.

After substituting shear stress in the above equation, friction coefficient is given by the
following equation:
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_(thdp LU u
F_ijo E&dX_LTdX (34)

where, (+) and (-) refer to the friction of the upper and lower surface respectively.
Friction coefficient

Once the load capacity and friction force are known, the friction coefficient, f, can be
calculated as:

f = v (35)

3.7 Boundary conditions

In Figure 9, the geometry of a simple convergent-divergent slider is presented. In order to
solve the Reynolds equation in the lubricant domain, appropriate boundary conditions need to
be described. In the following paragraphs, a description of the boundary conditions mostly
used in lubrication problems is given.

| o |

P EET BT ETZ 7 E TF
| |=—U
0 b

Figure 9: Sketch of a convergent-divergent slider.

Full-Sommerfeld Boundary Condition

This boundary condition assumes that pressure is equal to zero at the slider inlet and outlet
cross-sections. The pressure distribution for the Full-Sommerfeld boundary condition is
presented in Figure 10. Practically, the use of this boundary condition allows the calculation
of negative pressures at the diverging region of the slider. In particular, in the diverging part
of the slider, pressure distribution is the mirror image of the positive pressure distribution of
the converging part of the slider. Overall, the total hydrodynamic load exerted on the slider is
zero, which is unrealistic.
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Figure 10: Solution of the Reynolds equation with Full-Sommerfeld boundary conditions.

Half-Sommerfeld Boundary Condition

A simple remedy to correct the unrealistic results of the full-Sommerfeld condition is by
setting the negative pressures equal to zero. This is the half-Sommerfeld boundary condition
and the respective pressure distribution has the form of Figure 11.

P
/ P

Diverging 1
Region hin h

//(///////' ' | x

|=——U

0 b

Figure 11: Solution of the Reynolds equation with Half-Sommerfeld boundary conditions.

The disadvantage of this boundary condition is that it causes a discontinuity between the
pressurized region and the region of zero pressure. Nonetheless, the use of this method is
straightforward, and the obtained results are accurate enough for basic engineering use.

Reynolds boundary condition

A better solution to the problem of non-realistic boundary conditions was given by Reynolds,
who suggested that negative pressure values should be set equal to zero and that, at the
boundary of non-zero and zero pressure, the spatial derivative of pressure should be also
equal to zero. The resulting pressure distribution is that of Figure 12.
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Figure 12: Solution of the Reynolds equation with Reynolds boundary conditions.

The Reynolds boundary condition is the one to be used in this thesis.
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4. Adjoint-based Optimization

The adjoint-based optimization method is applied in a typical convergent slider geometry,
which reflects the operation of the majority of tribological contacts. The slider will be
modeled in four different ways, based on how the film thickness is defined.

1. Oneinclined line, the only design variable is the converging ratio k.

2. Two consecutive line segments, forming a conveyed and, then, a diverging part; design
variables are the two heights of fluid inflow and outflow and the x coordinate of the point
where the two lines meet.

3. A step shaped slider, which is described by the inlet height and the position of the step.

4. The film geometry is described by discrete (nodal) values of the thickness distribution;
so, the number of design variables is equal to the grid size.

In the first scenario, the optimization aims at the maximization of load capacity and the
minimization of friction coefficient, not simultaneously though, while for the rest of the cases
the aim is to maximize the load capacity.

4.1 One converging line - Maximum Load Capacity

The first one considers the slider as a simple inclined line, characterized by a converging
ratio, k, and constrained by the minimum value of film thickness, ho. A typical sketch of this
geometry is presented in Figure 13.
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Figure 13: Sketch of a typical convergent slider geometry.
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According to Figure 13, the top surface is considered to be the stationary wall (stator), while
the bottom surface moves with velocity U, so as to drag the fluid inside the wedge-like
converging geometry.

A two-dimensional lubricant film separates the two surfaces, spanning in the x-axis. At every
point x, the film is characterized by a thickness value h(x).

The inclination of the top surface is defined by two parameters; ho, is the minimum film
thickness and is constant. The second parameter (which is the only one which is free) is the
converging ratio, k; higher values of k correspond to a steepest geometry. Thus, k is the single
design variable to be used during the optimization.

4.1.1 Primal Problem

The equation governing the primal (flow) problem is the 1-D form of Reynolds equation, as
developed in Chapter 3, Eq. (29) and without the time derivative of h, or:

3
dfdph’) Updn_, (36)
dx | dx 12 2 OX

Eqg. (36) is solved for the pressure p with an iterative Jacobi solver, after having been
discretizing it with a central finite difference scheme. The form to be solved results by
expanding the second derivative of the first term, so the final form of Reynolds equation to be
used now on is:

d’p dh dp dh

h®+3h* —— -6 — =0 37
X2 dx dx o dx (37)
where u is the dynamic viscosity that takes on a constant value throughout the fluid domain,
corresponding to a mean temperature between the minimum and maximum temperatures

expected within the fluid.

R =

The Reynolds equation (Eq.(37)) is solved along the x-direction and Dirichlet boundary
conditions are applied at both ends of the solution domain of constrained length L, as:

p(X:O) =p
p(X = L) =P,
The most common choice for pressure values p1 and p> are to be set equal to zero,

representing atmospheric conditions outside the fluid domain. Other constant values can also
be considered if the given case demands it.
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According to the finite difference method, the spatial derivative of variable p(i) in the x-
direction is approximated, following the development of Taylor series:

2 2 3 3 . 0
P ™ pi+2_s-AX+gxg.(A2XI) +ZXS(A3X') +'"+%.(Anxl) "
_ 0P o%p| (Ax)" &°p| (Ax)’
pi—l_pi+&iAX+aX2 | o _8X3 | T L

Considering a small value of Ax, the higher order terms of the previous equations can be
neglected, and the derivative of p at node i can be calculated as:

@ — Pii—Piy — Pii—Piy
OX 2AX X, — X

The neglected higher order terms form the error from the exact value (truncation error),
therefore, for accurate calculations, an appropriately small value of Ax must be selected.

i i+1 i-1

Using the finite difference method described above, each term of Eq. (37) can be discretized
with second order accuracy and written in a suitable form, to be solved with a Jacobi iterative
process:

(37) = p(i+1)-2p(i)+ p(i—l)h(i)3+3h(i)z dh p(i+1)—p(i—1):6ﬂu$

AX? dx 2AX

It must be clarified that the term % is not discretized as it can be calculated from the
X

geometry of the current geometry in a closed-form expression. So this is hereafter written as
dhdx(i).

Considering that the appropriate form of the above equation is Eq.(38), the expressions for A,
B, E and F are separated and imported in an iterative solver:

Ap(i+1)+Bp(i—1)+Ep(i)=F (38)

h(i)* 3h(i)* dhdx(i)

A=—7"+
AX 2AX
5 h(i)® 3n(i)* dndx(i)
CAX? 2AX
-\3
E=—2h(I2)
AX

F = 6.Udhdx (i)

Finally, the pressure at any point (i) is computed by solving iteratively Eq. (38) for p(i):

(i) = F—Ap(i+lE)—Bp(i—1) (39)
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4.1.2 Continuous Adjoint Problem Formulation

The converging ratio is the only variable determining the shape of the lubricant film and is
also the design variable of this optimization problem. It is equal to:

k = h-h (40)
hO

where, ho is the minimum film thickness, height of outflow, and hy is the maximum film

thickness, height of inflow, see Figure 13.

In most hydrodynamic lubrication cases ho is a constant parameter of the problem; it is the
minimum distance between the top and bottom surfaces and should remain constant during
the optimization; as long as ho is decreased the load capacity carried by the top surface is
increased, meaning that infinitesimally small ho will have the maximum load capacity.
Consequently, trying to maximize the load capacity using the minimum film thickness ho, as
design variable would result in the trivial solution he=0.

So, starting from the minimum film thickness ho, h1 can be calculated as:
h =(k+1)h (41)
and the h(x) value at each node is equal to:

()= (k+1)h, — 1 x (42)

The first derivative of film thickness (dh/dx), which appears in the Reynolds equation is now
. kh, . . . :
simply equal to the term TO including the converging ratio k.

The function to be maximized is the load capacity of the fluid film, as defined in Eq. (31)
which is repeated below:

W = IOL pdx (43)

The sensitivity derivative of the load capacity W with respect to the converging ratio k is
computed using the continuous adjoint method as presented in detail below.

At first, the augmented objective function is defined and its derivatives of this are expanded,
in order to define the adjoint equation, the adjoint boundary conditions and terms that finally
yield the derivative of the objective function with respect to k.
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Augmented objective function

L
W, =W + [ "WRdx

(44)

where ¥ is the Lagrange multiplier (adjoint variable field) and R is the primal equation
residual, which is anyway equal to zero, as shown in Eq. (37).

Derivative of the augmented objective function

In the next step, the derivative of Wayg (EqQ. (31)), with respect to the vector of the design

variables b will be developed. The main mathematical tool that will be used is the
integration by parts.

oW, éW o

SRALER h? — |dx
5b T sb §b ob obJo dx dx dx dx
2

(A):i \Pd Dhedx= | \P—(—j 3dx+JL‘Pd—f3h25—hdx=

ob 7o o dx ob
r L
lPhe’i(@j —ILi(lPh)d [5"de+3j w4 P2 Oy,
i dx\ éb )|, -0 dx dx\ ob ob

L ,

\PhSi(@j {d (\Ph3)5pJ w5 (v h3)@ h25—hd
dx\ob /|, [dx ob 0 dx’ ob ob
(B) =2 [ I g2 Ay :3quJd(5p)h * D3] ‘Pdp2h5—h%d +3[ W

Shdo  dx dx o dx\ ob dx
L
3{%2@@} —std( hzdhjépdx 6 w L Mgy g) g B2 0
dx ob |, ‘0 dx dx )| ob dx ob dx o dx ob
5 dh
(©)=51, [GyU jdx —6yuj (dxjdx
s tsp
(D)_% . pdx_j0 %dx

Adjoint equation

oW o

d’p .,

1323 g 4

dh

[

dp25

dx

dh

dx

Jo

(45)

slzp-

The field adjoint equation is derived by selecting the terms that multiply the derivative of the

quantity as for which the primal (Reynolds) equation is solved, which are the terms

5p, and
b

setting them equal to zero. These terms are within boxes in the expressions above. So:

d2

d
W(\Ph3)—3&[\y

h2%j+1:02>
dx
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2
d E’h3+3h2@d—q’ 1=0 (46)
dx dx dx

Eq. (46) is the adjoint equation, which is solved for ¥, after the solution of the primal
(Reynolds) equation.

The solution of the adjoint equation uses the same method as for the primal equation, see
Chapter 4.2. The expressions of A, B, E and F are:

h(i)3+3h(i)2 dhdx (i)

A=——
AX 2AX
5 h(i)’ 3n(i)’ dhax(i)
A 2AX
\3
. :_Zh(lz)
AX
F=-1

The equation that is to be solved as for ¥(i) in discrete form becomes:
AY (i+1)+BY(i-1)+EY(i)=F

Adjoint boundary conditions

In order for equation (46) to be solved, two boundary conditions are necessary at both ends of
the solution field, namely at x=0 and x=L. These boundary conditions are derived from the
terms of Eq. (45) being inside the [ ] brackets.

L
‘Phsi(@j [ d (‘Ph‘?)gp} 3{%2 dn 5p} _
dx\ ob dx ob |, dx ob

\Phsi(@j —\Ph3i(@j —i(\w)@ d = (v h3)5IO +
dx\ éb J| _, dx\ ob )| _, dx ob|_, dx ob |, (47)
awnz MOPI g2 N 0P
dx ob|,_, dx ob|,_,
From the boundary conditions of the primal (Reynolds) equation, the following is valid:
op
O)=p,=>—| =0
PO)=p=— B
sp
=0
P(L)=p=— 3
This means that the four final terms in Eq. (47) are equal to zero. Concerning the two first
terms in the same equation, the value of di(%j is unknown, so the term multiplying the
X

unknown term, is set equal to zero, imposing:
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Yhi =0

x=0 =|¥(0)=0
h(0)’ %0
Yh) =0

x=t =|¥(L)=0
h(L)3 #0

These are the adjoint boundary conditions.

4.1.3 Sensitivity derivative expression

Up to this point, the primal problem has been solved and the pressure has been computed,
along with the values of W that resulted from the solution of the adjoint problem.
Consequently, the computation of the derivative of W with respect to b is now possible and it

is based in the remaining terms of Eq. (45).
MzBJL d’p §h oh dh

Ph? 2 dx+ 6 “pdppohdng,
ob o dx 6 dx ob dx

3jL\Pd—ph2 o (dhly, Uj v dhjdx
0 dx ob dx dx

In this section, the optimization uses only one design variable which is the converging ratio
of the slider, b =[k]. Here it must be clarified that using an adjoint method for a problem

(48)

with only one design variable, there is no computational profit. This is mostly performed as a
test case in order to proceed in more complex problems with more design variables.

The profile of film thickness, h(x) is reminded here from Eq. (42), in order to calculate the
corresponding derivatives, appearing in Eq. (48).

n(x) = (k+1)h, —x

oh_oh_p o, (49)
Sb ok L

ﬁ(@j:i(@j:_ﬁ (50)
ob\dx ) ob\ dx L

Substituting Eqg. (49) and (50) into Eq. (48) it yields:

? ho—&x dx+6jL\Pd—ph ho—&x ey
L o dx d

L X (51)

3ﬂjLwd—ph2dx+Mf\de
L0 dx L 0
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4.1.4 Optimization Loop

Figure 14: Optimization flow-chart with the adjoint method.

The optimization loop starts with the initialization of the design variables, b, which for the
current case includes only one variable, namely the converging ratio of the slider. Then, the
primal problem is solved, using Reynolds equation Eq.(37), and the pressure distribution p is
computed. At second, the adjoint equation is solved Eq.(46), using the already computed
pressure field. Then, the derivative of the load capacity with respect to the converging ratio is
computed, based on Eq.(51). Finally, an updated value of the converging ratio is obtained,
with the steepest descent method which uses a step value s, appropriately selected, depending

Initialization of. & = [¥]

Y

Solution of primal (Reynolds)
equation for:

P

Solution of Adjoint equation for:

¥

Uses the pressure p
of the primal problem

N

Sensitivity derivative calchlation:

o
dk

Calculation of new b values

with steepest descent method
aw

f)l.m = f’;.m -8 E

on the units of the variables of each case.
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4.1.5 Results

In this section, the results of the optimization procedure, described in the previous sections
are presented and compared with results from the literature.

The optimization has been performed starting from two different initial values of the
converging ratio k; a very low value, almost k=0, and a high one, k=6. These two bounds of k
are selected according to the numerical results of Stachowiak [1], Figure 4.10, page 124.

In Figure 15, the results of the adjoint-based optimization are compared to the diagram of
Stachowiak, having in the x-axis the converging ratio and in the y-axis the non-dimensional
load multiplied by 6. The non-dimensional load for a 1-D slider is defined as follows:

* th
_ 0
W* = IPE (52)
0.18 —
i ¢ Stachowiak
0.16 4 <0, — Adjoint initialized from k=0
* ] QOQQ ----- Adjoint initialized from k=6
E 0.14 ] %
= ] 3
g_ 0.12 1 'Q,Q
o ] ~$
1] B ~
g 011 'Q,Q
- 1 ~.
@ ] @
5 0.08 - "Q‘._e
g 1
£ 0.06 E
T .
£ 0.04 -
2 ©
0.02 ®
o
O Qv v
0 1 2 3 4 5 6 7

Converging ratio, k

Figure 15: Comparison between the results of the present study and Stachowiak regarding the
non-dimensional load (6W") [1].

Starting from k=0, the derivative W"/8k is positive and W reaches the maximum value for
k=1.2. Similarly, starting from the other side of x-axis, the curve moves to the opposite
direction, SW"/3k is negative, and the procedure stops at the same point of maximum W".

From Figure 15, a very good match is observed between the adjoint method of the present
study and the relation between W* and k already been presented in [1].

Consequently, considering a simple converging slider, a slider with a converging ratio equal
to 1.2 has the maximum load capacity. Lower or higher values of k lead to a decreased load
capacity.
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4.2 One converging line - Minimum Friction Coefficient
In this section, the objective function is the friction coefficient and the design variable will
remain the same as that of Section 4.1.

4.2.1 Primal Problem
The primal problem is the same as the previous case of Chapter 4.1, and it will also remain
the same throughout the following cases. The governing equation is repeated:

d’p., . ,dhdp dh
h®+3h " ——-6:U —=0 53
x? dx dx o dx (53)

R =

4.2.2 Adjoint Problem
The function to be minimized is the friction coefficient, Eg. (35).

The friction force is given from Eq. (34). The friction of the lower surface (rotor) is selected
as this is the higher than the friction force of the upper surface (stator). So, the objective
function of friction coefficient is given by:

f C (54)
IO pdx

The augmented friction coefficient is:
L

fug = f 4 WRdX (55)

and its derivative is:

of

ﬁ:ﬁ+i “WRdx (56)

ob ob obJo

Comparing Eq. (56) and (45), the only change is the derivative & f /Sb, which has to be
expanded.

SF SW
2 W-F=Z2=
of _sb Sb

ob W2

(57)

The term W /Sb has already been calculated during the development of Eq. (45). So:
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oF _0o L(_Ed_p_uﬂj -_= dep oh —lehi(ﬂjdx—yujL 5(ljdx=
ob  Sblo 2 dx dx ob 2790 dx\ &b 0 8blh

Ld 5h o 1,.dho L1 5h
T LR e e

[ +_ _
dx 5b 2| ob 270 dx ob h? 6b

According to the boundary conditions applying to the pressure field:

o
p(0)= p1:>5—g =0

5 = consequently:

op
=0
P(L)=pP= 50
SF _ lpdpsh, 1pedhop o 1oh, 58)
ob 270 dx ob 270 dx &b h 5b
Going back to Eq. (57), having derived the derivative of friction force, it yields:
ﬂ:iz[—vled—pith+Wjdh5pd LW UJ' 125hd —FI :lz
ob W o dx ob o dx ob h® ob (59)
-1 tdpsh . . 1 (rdh 5pdx+,uU Lohg P rloely
o dx ob 2W Jo dx | 5b o h* 6b W< Jo|6b

In order not to repeat all the previously presented equations, the terms of equation (59)
replace the term oW /Sb of Eq. (45), and the rest of the expanded form of Eq. (45) remains
the same. Following the same process as in section 4.1.2, the adjoint equation, the adjoint
boundary conditions and the sensitivity derivative expression0020are derived.

Adjoint equation
The adjoint equation is partially the same as in Eq. (46), but replacing the third term, which
was equal to 1, with the new terms appearing due to the terms within boxes in Eq. (59).

2
d°v 3h2dhd‘P 1 dh F (60)

2 + 2
dx dx dx 2W dx W

The solution of the adjoint equation follows the same method as the solution of the primal
equation, already presented in Chapter 4.2. The expressions of A’, B’, E’ and F’ are:
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-\3
a0 3n(0)" chex ()
AX 2AX
B,_h(i)3_?,h(i)zolholx(i)
CAX? 2AX
\3
E'=—2h(|2)
AX
po_td F
2W dx W2

Adjoint boundary conditions

They are also the same as in section 4.1.2, while no new constant terms have been added
during the development of the above equations. So:

¥(0)=0
¥(L)=0

4.2.3 Sensitivity derivative expression

In order to derive the expression of the adjoint derivative, the left over terms in Eg. (59) must
be added to the terms of Eq. (48). So:

CAREET d° Eh25—hd 6w 5h%
sb o dx dx  ob dx
3_[L‘Pd—ph2 5(0'“)(1 _ uj’ y 2 ( j (61)
0 dx obldx
Ldp §h ,uU L1 oh
=, 1o,
dx ob" 0 h? 5b

And because b=k, and while the terms ?—E are already known from Eq. (49), the final form of

the sensitivity derivative is:

2
ﬁ:stLPd Pz, - floy dx+6IL\I’d—ph ho—ﬁx]@dx—
ok o dx L o dx L Jdx
3&JL‘I’%h2dx+6£Lh°IL‘de

— _[Ldp(h —h—xjdx+ﬂuj 12(h &x]dx
0 d L 0 h L

(62)
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4.2.4 Results

The optimization loop is the same as that described in the flow-chart of Figure 14; the only
difference is that the computed sensitivity derivatives are these of friction coefficient, f, with
respect to the converging ratio k, using Eq.(62). In this section, the results of the optimization
procedure are presented and compared with results from the literature.

Similarly to the previous chapter, according to Stachowiak [1] the initialization starts from
two different starting points that of k=0 and k=6.

In Figure 16, the results of the adjoint optimization method are compared to the diagram of
Stachowiak, having in the x-axis the converging ratio and in the y-axis the non-dimensional
friction coefficient, which is given by the following equation:

* L
f=f— 63
3 (63)

¢ Stachowiak
—— Adjoint initialized from k=0
----- Adjoint initialized from k=6

[
=
1

=
N
1

=
o
1

Non-dimensional Friction Coefficient, f*

Converging ratio, k

Figure 16: Comparison between the results of present study and Stachowiak regarding the non-
dimensional friction coefficient (f*) [1].

Starting from k=0, the derivative 8f'/8k is negative and f* reaches the minimum value for
k=1.55. Similarly, starting from the other side of x-axis, the curve moves to the opposite
direction, 5f°/8k is positive, and the procedure stops at the same point of minimum f.

From Figure 16, a very good match is observed between the adjoint method of the present
study and the relation between f* and k already been presented in [1].

Consequently, considering a simple converging slider, a slider with a converging ratio equal
to 1.55 has the minimum friction coefficient. Lower or higher values of k lead to an increased
friction coefficient.
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4.3 Two line segments - Maximum Load Capacity

In the present section, the slider geometry under optimization is that presented in Figure 17,
consisting of a converging and a diverging part. The thickness is described by a linear
equation, based on the position of the three point, A, inlet area, C, outlet area and B, being the
connecting point between the two lines.

h A
A(0,h,)
C(L,h,)
h,
B(l,h,)
h,
h,
".////////////////////////://///////i/ >
0(0,0) | | | ! x
E——
u
Figure 17: Lubricated slider consisting of two lines.
4.3.1 Primal Problem
The primal problem is governed by Reynolds equation, as already seen in Eq. (37).
d? dnd dh
R="Preyan P g, 8 (64)
X dx dx dx

4.3.2 Adjoint Problem
The adjoint equation is the same as the previous problem, as the adjoint equation has been
derived generally for any vector of design variables b. The adjoint equation is:

2
d lfh3+3h2%d—\y+1:0 (65)
dx dx dx

where W is the adjoint variable.

Similarly, the adjoint boundary conditions remain the same, namely:

=0
=0
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4.3.3 Sensitivity Derivatives

W 3 w 4P Mgy, o[ w R g,
ob o dx* &b dx &b dx

(66)

A A

In Eq. (66) the terms inside the integrals, except the 6/6b terms, are substituted by the
following symbols, for the purpose of simplicity:

d’p .,

dp, dh
Q=337 dx?

dx dx

h? +6W —
dp »
Q,=3¥Y—h"-6nU¥Y
dx

So, Eq. (66) can be rewritten as:

W a0 2B

At thls pomt, the equations describing the two lines of Figure 17 should be written. Line AB
will be resulted knowing that points A and B belong to the line and similarly line BC with the
points B and C. Consequently:

Line AB: h,;(x) = L I_hl

X+h

h,—hy  hL=hy
LI LI

Line BC: hy. (x) =

In order to avoid the non-continuity problems of a step function, a sigmoidal function is
defined, describing the whole geometry and exhibiting a small curvature at the connection
point B(l,ho). The curvature magnitude is controlled by giving different values to the variable
m (as seen in the following equations), higher values of m lead to a steeper angle, closer to
the real geometry, while lower values of m lead to a more curving geometry.

h=¢-hg+(1-9)-hge (68)

(D:(D(X'I) :1+em(x—l) (69)

hAB:@X"‘hl (70)
h, —h, h,L—h,l

= X 4 71

L LI (72)

Substituting Eqg. (69), (70) and (71) into Eq. (68) the fluid film geometry is as follows:
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14" 1+e"0

h(x,1)= %nxfl (hol_hlx+hlj+(l— %n j(h __T ho:::lhzlj (72)

For this problem the design variables are: b =[h,h,,1]

According to Eq. (66) the derivatives 5—h: 5—h5—h5—h and
ob | oh oh, ol

i[@j: i(@)i(@jéid—hj should be calculated in order to find the
ob \dx oh \dx /) oh,\ dx /) ol dx

derivative %at each optimization step.

. Sp__me"
sl (1+em<x—l>)2

. 5hAB:hl_hoX
5l E
Shee _ (h—h,)
ol (L—I)2

(dhj d (5hj d (&o)h +@dhAB+d_(p5hAB+(pi(6hABJ+i(5thj
Sildx ) dx\sl) dx\lsol) ™ o1 dx  dx ol dx U sl dx U ol
d[&p)h _dpdh,. dpshy i(mcj
dx\ ol ) % s dx  dx ol dx\ Sl

d¢ mem(x—l)

dx (1 N em(x—|>)2

d (é‘q)j m2em(x—l) 2m2 2m(x-1)

dx\ sl ) (1 +em<x4>)2 (Lrem .))3
o e _h-h

dx I
° 1[5%3):*11—“0

dx | ol 12

dx L-I
. i(éhmj: h, —h,

dx\ ol (L-1)°
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, oh_o ah/
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%:—}x+l

sh |

o d(p§hAB o (dh,g

W& ‘—(TJ & oh, ahl(ﬂ
5 (dh,) 1
) 5hl(_j:_f

0
oh 6 oh 5h oh
> —:% h + K{ BC_ 9/ hye — =(1—(p) BC
2 2

sh, , S, sh,
Shye 1 !

X
oh, L-1 L-I
> i(%j:i 5_h :(1 ) g (thcJ d_goéhi
oh,Ldx ) dx{ oh, oh, { dx dx oh,
. 9 dh,e ) 1
oh, { dx L-1

Finally, an external constraint is implemented upon the solution, setting the values of film
thickness that are lower than hmin, equal to hmin.

4.3.4 Results

Having computed the sensitivity derivative of W, using Eq. (67), the optimization loop can be
initiated, as already presented in Figure 14. Several runs have been performed, starting from
different initialization points. Especially, three different initializations have been selected,
almost equally distributed within the fluid film region, as follows:

1. h; =100 pm, h, =60 um, 1 =0.035
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Figure 18: Non-dimensiona
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Iterations

I load capacity trend along the optimization loop, W,x=0.32055.

The initial geometry and the optimal geometry are presented in Figure 19.

1.2E-04
] - - - Initial film geometry
] Final film geometry
1.0E-04 +~
E 80605 |
= ]
7
b ]
£ 6.0E-05 -
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< 40805 e
z i
™S
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00E+00 +——+ "+
0 0.01 0.02 0.03 0.04 0.05 0.06

x coordinate (m)

Figure 19: Initial and final geometry of lubricant film geometry. Optimal values of the design

variables are: [hy, hy,

I] =[0.000112, 0.00005, 0.040073].
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2.hy =80 um, h, =60 um, 1 =0.015
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Figure 20: Non-dimensional load capacity trend along the optimization loop, W"o,=0.32055.

The initial geometry and the optimal geometry are presented in Figure 21.

1.2E-04
1 - = = |nitial film geometry
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Figure 21: Initial and final geometry of lubricant film geometry. Optimal values of the design
variables are: [hy, hy, 1] =[0.000112, 0.00005, 0.040073].
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Figure 22: Non-dimensional load capacity evolution along the optimization loop,
W*opt:0.032055.

The initial geometry and the final geometry after the optimization procedure are presented in
Figure 23.

1.4E-04 -
1 - = = Initial film geometry
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Figure 23: Initial and optimal geometry of lubricant film geometry. Optimal values of the design
variables are: [hi, hy, 1] =[0.000112, 0.00005, 0.040076].
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According to the three previous results, it is noted that independently from the initialization
values of the design variables, in all the three optimization runs, the final result is the same,
meaning that the point [h1, h2, I] =[0.000112, 0.00005, 0.04007] can be the global optimal.

4.4 Step - Maximum Load Capacity

In this section, the slider geometry under optimization is that presented in Figure 24,
consisting of a step shape. Each region is described by a constant number, equal to the fluid
film inlet height h; at point A and equal to minimum film thickness ho at point C up to D.

h A
A(O,h1) B(|7h1)
o L LSS
h, /////////D(L’h")
C(l,h,) h,
IV AV v A S S A & S S & & S & & & S SV A S SV AV N &V SV AV & SN AV &Y &Y & &V &V 4V 4 >
1 1 1
0(0,0) ! I | : X
n > |
| L : |
1 1 1
—_—
U

Figure 24: Lubricated step-like slider.

4.4.1 Primal Problem
The primal problem is governed by the Reynolds equation, as already seen in Eq. (37).

0°P.s ~..00h0p oh
R=—-h"+3h"——-6UJ0 — =0 74
o xox M o 4
4.4.2 Adjoint Problem

The adjoint equation is also the same as the previous problem. The adjoint equation is:

2
d \fh3+3h2%d—l}‘+1:0 (75)
dx dx dx

where W is the adjoint variable

Similarly, the adjoint boundary conditions remain the same, namely:

(0)

Y(0)=0
w(L)=0
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4.4.3 Sensitivity Derivatives
oh dh

——j th‘sh sjqf h<" ——dx+
ob dx=  ob dx ob dx

3j "y IRy 5(dh]d - Uj vy (dhjdx
o dx JSbldx dx

In Eg. (76) the terms inside the integrals, except the 6/3b(.) terms, are replaced by the
following symbols, for the purpose of simplicity:

(76)

2
Q,=3¥ (ZXE dp, dh

dx dx

h? +6¥ —
dp, »
Q,=3Y—h"-6UY
dx

So, Eq. (66) can be rewritten as follows:

oW L _ oh L o0 (dh

— = —adx + —| — @dx 77
b Jo %5 L < 5b(dxj 7

At this point, the equations describing the step shape of Figure 24 should be found out. Line

AB will be resulted knowing that the height of the inlet region is equal to h1 and similarly line

CD that the height of the outlet region is equal to the minimum film thickness ho.
Consequently:

Line AB: hz(X)=h,
Line BC: hy(x)=h,

The first try was based in the non-continuous form of the step function, which is the
following one:

h(x):{&’, )>:||

Using the above formulation stability problems were faced and the optimization process was
unable to converge. So, similarly to the case of the two lines (converging-diverging), a
sigmoidal function was used to simulate the step shape.

Despite this, the use of a sigmoidal function did not come without disadvantages. More
specifically, the utilized sigmoidal function is the following one:

1 1
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The factor m, decides how steep or smooth its curvature will be. High values of m result in a
shape very close to the real step function, while lower values lead to a smooth curve
approximating the step shape.

Experimenting with the factor m, the following was observed; high values, meaning a shape
closer to the real step, result in values of the adjoint sensitivity derivatives that don’t match to
the derivatives computed with the finite differences, while lower values of m, creating an
approximate shape of the step, result in values of the adjoint sensitivity derivatives closer to
the derivatives computed with the finite difference method. In addition to this, a decisive role
in the matching of the two sensitivity derivatives has the number of discretization point,
because more points are needed in order to model the steep geometry of the step. So, the grid
points have been increased to 501, instead of 201 points that were used in all the previous
cases. In Table 1, an example of the m values, the corresponding shape and the sensitivity
derivatives both of the adjoint and the finite difference method is presented.

m=1000 m=5000
Step shape soootz -
dW/6h; from adjoint -1.87E+08 -2.70E+08
dW/dh; from FD -1.86E+08 -2.65E+08
% difference of 0.13% 1.98%
oW/dh,
dW/sl from adjoint -4.30E+04 1.11E+06
dW/sl from FD -5.26E+04 5.19E+05
% difference of 18.27% 114.08%
dWI/slI

Table 1. Comparison of geometry and sensitivity derivatives for two different values of factor m
of Eq. (78).

According to Table 1, the difference of 18.27% in the sensitivity derivative dW/3l is
considered to be acceptable. So the factor m is decided to be equal to m=1000, sacrificing a
bit for the shape of the step geometry, but resulting in better match between the sensitivity
derivatives computed with the adjoint method and finite differences methods.

The design variables for this problem are: b =[h,,1].
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According to Eq. (77) the derivatives 5—h: 5—h5—h5—h and

ob | oh oh, dl
i(@j: i(@ji(%jé(%j should be calculated in order to find the
ob \ dx oh \dx ) oh,dx /) oI\ dx

derivative Y at each optimization step.

sh_Sp s’ v,
e 5|rﬁ 7% % —w%—5(hl

5| (1+e”‘( ))2
o - U S S I E LR
. d (5§DJ mzem(x ) ~ 2m2 2m(x-1)
dx\ sl (1+em X"))z (1+em X"))S

> 5—h:§ZO+ Z}Z ho Z% =
oh ph hy hy

.i(dj oh d(p_mem
shldx) dx{sh ) dx (1 +em<x—>)2

Finally, an external constraint is implemented upon the solution, setting the values of film
thickness that are lower than the hmin, equal to it.

4.4.4 Results

Having computed the sensitivity derivative of W, using Eq. (77), the optimization loop can be
initiated, as already presented in Figure 14. Several runs have been performed, with three
different initialization points, almost equally distributed within the fluid film region, as
follows:
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1.h; =100 um, I = 0.035
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Figure 25: Non-dimensional load capacity trend along the optimization loop, W"o,=0.03423.

The initial geometry and the optimal geometry after the optimization procedure are presented
in Figure 26.

1.2E-04

W*0.033965 - — — Initial film geometry

1 Final film geometry
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4.0E-05 1

Fluid film thickness, h (m)

2.0E-05 1

0.0E+00 4
0 0.01 0.02 0.03 0.04 0.05 0.06

X coordinate (m)

Figure 26: Initial and optimal geometry of lubricant film geometry. Optimal values of the design
variables are: [h;, I] = [0.000093, 0.034055].
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2.h; =80 um, 1=0.015
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Figure 27: Non-dimensional load capacity trend along the optimization loop, W"o,=0.03423.

The initial geometry and the optimal geometry after the optimization procedure are presented
in Figure 28.
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— 7.0E-05 -
£ ]

< 6.0E-05 '
@ ]

50E-05 1 000 Nemmmmmoooo2
1 W*=0.021617
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Figure 28: Initial and optimal geometry of lubricant film geometry. Optimal values of the design
variables are: [h;, I] = [0.000093, 0.034055].
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3.h; =130 um, 1 =0.025
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Figure 29: Non-dimensional load capacity evolution along the optimization loop, W"o,:=0.03423.

The initial geometry and the optimal geometry after the optimization procedure are presented
in Figure 30.
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Figure 30: Initial and optimal geometry of lubricant film geometry. Optimal values of the design
variables are: [h;, I] = [0.000093, 0.034055].

According to the three previous results, it is noted that independently from the initialization
values of the design variables, in all the three optimization runs, the final result is the same,
meaning that the point [h1, h2, I] = [0.000093, 0.034055] can be the global optimal.

59



4.5 Nodal Parameterization

In this section, a second method is used to parameterize the converging slider. The initial
geometry is defined for each case and, then, the nodal values of film thickness, hi, are
considered as the design variables. In this way, the geometry is completely free to self-adjust
to the optimal shape for each different case, always depending on the initial shape.

This means that if the solution domain is discretized in N points, then the number of design
variables is N and, at each optimization cycle, N derivatives W/sh; must be computed. The
values of these derivatives reflect how much the load capacity W changes if each point
undergoes an infinitesimal offset around its position.

These derivatives provide information about what regions of the surface should be displaced
and in what direction, in order to improve the performance. When the derivatives are plotted
upon the geometry, the resulting figure is the so-called sensitivity map of the surface which is
a valuable help to the designer.

In other cases, being also the case of the present study, these derivatives can be used in a
conjugate gradient method to proceed to a better geometry, leading after some optimization
steps to the optimal one.

Until now, in tribology and hydrodynamic lubrication surfaces, stochastic optimization
methods, using a confined number of design variables, have been used to conclude to optimal
geometries, such as the simple converging slider [7]. An adjoint method with the nodal values
of the geometry being the design variables, can lead to a completely different shape, because
the geometry is described from the discrete values of film thickness providing a great
potential of diversity, see Figure 31.

Yy A

VANV AV AV AV AV AV A AV A i i i A i i i i i O i A i 4
0 —_— L X
u

Figure 31: Slider with an example of sensitivity derivative calculation [1].

In Figure 31, an example of the way of computating the sensitivity derivative W IS
presented. This derivative expresses how much the objective function, here the load carrying
capacity, changes when the point h; is slightly moved, almost as much as the epsilon value, in
the one or the other direction.

The optimization process, along with the adjoint equation and the adjoint boundary
conditions are the same to that described in Chapter 4. The only change in this problem is the
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geometry expression, which now consists of the nodal values of the film thickness, meaning
that the number of design variables is equal to the discretization points along the x-axis.
So, the following are repeated only for reasons of completeness:

4.4.1 Primal Problem
The primal problem is governed by the Reynolds equation, as already seen in Eq. (37).

ap 3 2ahap
h® +3h 6 79
e X OX ”U (79)

It is solved using the finite difference method and an iterative solver for the pressure, p.
Dirichlet boundary conditions are applied at both ends of the solution domain.

4.4.2 Adjoint equation

The adjoint equation is also the same as the previous problem, where the only design variable

was only the divergence ratio k, because the adjoint equation has been derived generally for a

vector of design variables b. The adjoint equation is:

2

d ‘fh3+3h2 dh d¥
dx dx dx

where ¥ is the adjoint variable

+1=0 (80)

Similarly, the adjoint boundary conditions remain the same, namely:

¥(0)=

0
w(L)=0

4.4.3 Nodal Sensitivity Derivatives

This is where the main change, between parameterizing the geometry with one (or more)
parameters and expressing it with the nodal value of film thickness, is located. The
derivatives of the objective functions are now calculated with respect of the local film
thickness of each node, and their number is equal to the number of the discretization points.

The generalized formula defining the derivative of the objective function W with respect to
any design variables vector b has already been presented in Eq. (48) and is repeated below:
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%:3](: ‘;p sjqf hg—gg—hd
X X (81)

3j dp h2 5(dh]d X—6 uj p 2 (dhjdx
dx dx

For the current case, vector b consists of all the h(i) values along the x-axis:

b2 oh
50"

b=[h,h,,....h,.hy 0]

So Eq. (81) now can be written as follows:

oW _ _ph 5—d J‘ 6y -~ h@&_hd
5h dx? oh, dx dx oh,
%,_/ %,_J

(82)
gy dP 2 8 (dn 5 (dn
[ov 2 (B o 2 (2
——

C
The various terms in the above equation must be written as sums from i=0 to i=N, because of

the terms 5—hand i(@j which become active only at node i=k. Consequently 5—hcan
oh, oh, oh,

be replaced by the Kronecker delta, while the term 5%(?) demands a more careful
X
k
analysis, because it expresses how sensitive the spatial derivative of geometry is to the local
shift of node h.

In Eqg. (82), the terms within the integrals, apart from the sensitivity derivatives of hg, are
denoted by the following block letters, for brevity,

2
A-w 2)(5) h? (83)
B = 6%, ‘;p hg—h (84)
X|, dx
dp| -
C=3¥, 1N (85)
D, =-6nU ¥, (86)

So, Eq. (82) is now rewritten as:
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;&h:'[OLAg—hdx+J‘OLB5—hdx+O ( ]d I 5h( de—

j(A+B)§—dx+j C+ D)ahk(g:jdx

In Eqg. (87) the two terms will also be distinguished and elaborated separately. These two
integrals are also substituted with two variables to make easier the following analysis.

(87)

OoW' L oh
:.[O (A+ B)é‘—hdx

Kk

AL =J.L(C+ D)i(%)dx
sh, o sh, dx

OW’/dhk term

For the integral of these terms of Eq. (87) the trapezoidal rule will be used and the general
expression for the derivative of one point is the following one:

?’r\]" (A& +B,) 1k+z (A+B)s, (AN+BN)5Nk (88)

Kronecker Delta is equal to unity only when i=k, so the derivative of the first, last and all the
rest nodes are equal to:

W
Sh 2 Z(a+8) (89)
P

o =Ax(A+B,) (90)
oW' Ax

oh -2 (AtBY) (91)

OW”’/8hk term

These refer to the terms of Eq. (87) that include the sensitivity derivative of the first spatial
derivative of film thickness and are equal to:

W' 5 (dh
W _[Mc+D)2[ Dy %
T )5hk(dxjx (92)
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In the standard adjoint problems these terms are generally difficult to cope with, because they
represent how sensitive the spatial derivative of the design variable is, when the design
variable changes.

At this point, the following problem arose. When the dh/dx terms is discretized using central
differences, dh/dx becomes completely insensitive to the changes in the central point h;,
because the first derivative depends on the variable values at points i+1 and i-1.

So, second order backward differences were used for almost the whole domain, because the
value of the central node exists in the formula. The first four nodes demand forward
differences.

At first, the finite difference formula of dh/dx for an internal point is written using backwards
differences:

@
dx

_3h—-4h_ +h_,
2AX

i=(3,N]

And for the first two points, this is written obligatorily with forward differences, despite the
fact that these terms will remain inactive during the following analysis.

@
dx

hH2 +4h. ., —3h,
2Ax

i=1,2

The integral of Eq. (92), using the trapezoidal rule to approximate it, for a random internal
node, can be expanded as:

n N 1
oW =&(C1+D +Z (C;+D,) dn AX(CNJFDN)i dh
sh, 2 5h a 5h dx| ) 2 sh, | dx|,
M py ( _h, +4h, 3h1J+Ax (C,+0,)2 (—h4+4h3—3h2]+m+ 03)
2 sh, hk 2AX
AxX(C, +D,) 2 (3h —4h,_ +h. 2j+ LM DN)(3hN—4hN_l+hN_2j
oh, 2AX

Because of the fact that forward differences have been used for the first 2 nodes and
backwards for the rest of the domain, several terms are repeated within the sums, leading to
inaccurate calculation of the derivative at these points and the two neighboring ones. So, the
assumption has been made that the derivative dW’’/dhx of the first four points is equal to the
derivative of the fifth one. More specifically, substituting the node for which the derivative is
calculated into Eq. (93), the following expressions result:
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oW — Ax(C, +D,) o (3h5_4h4+h3j+Ax(C6+D6) o (3h6_4h5+h4j+
oh oh, 2AX oh, 2AX

o (3h,—4h. +h 3 2
AX(C,+D ! 6 S I=AX(C.+D.)| — |+AX(C.+D. )| —— 94
X(Cr+ 7)5h5( 2AX j X(Co+ 5)(2ij+ X(Co+ 6)( ij+ (54)

1 3 1
AX(C, + g)(mj:a(cs £D,)-2(C, +D,)+5(C; +D;)

As already mentioned, the derivative of the first four points is set equal to the derivative of
fifth point, given by Eq. (94). So:
oW" ow" 3 1
= ==—(C.+D.)-2(C.+D,)+=(C,+D 95
Sh_yq SN 2( ++Ds)=2(C,+ Dy) 2( 1+D1) 99)
Thinking in the similar way as in Eq. (94), the derivatives are calculated for the following
points too:

oW " 3 1
é'h— = _(Ck + Dk)_z(ck+l + Dk+1)+E(Ck+2 + Dk+2) (96)
k=[5,N-3]
ow" 1 1 1
Sh =_(CN—2+DN—Z)__(CN—1+DN—1)+_(CN +DN) (97)
N-2
owWw" 3
oh ZE(CN‘l +Dy,)—(Cy+Dy) (98)
OW" 3
=—(Cy+D 99
shy, 4( v+ Dy) (99)

Finally, in order to present the final formula of the sensitivity derivative of each node, the
terms of Eq. (89)-(91) and Eqg. (96)-(99) must be merged, yielding the final expressions:

?N_m:%(pﬁ BJ+%=%(A1+ Bl)+g(CS+D5)—2(C6+ D6)+%(C7 +D,) (100)
5

W _ ax(A+8,)+ 2V _ ax(A, +Bk)+g(C5+ D,)-2(C, + D6)+%(C7+ D)  (100)

SN oh,
oW 3 1

————=M(A+B)+=(C, +D,)-2(Cy,; + D,y ) +=(Cy., + Dy,2) (102)

5hk:[6,N—3]



=AX(A +B,)+=(Cy_, +Dy_,)—=(CyL+Dyy)+=(Cy +Dy) (103)
ohy , 2 4
oW 3

=AX(A +B,)+=(Cy,+Dy,)—(Cy+Dy) (104)
ohy , 2
oW  AX 3
o :?(AN + B”)+Z(CN +Dy) (105)
4.4.4 Optimization loop

In this case, the optimization procedure follows the next steps, see also Figure 14 in flow-
chart form for a single design variable though.

1. Initialization of the design variables vector. In this case, these are the nodal values of
film thickness, hi, meaning that the number of design variables is equal to the grid size of
the problem.

2. Solution of the primal problem, i.e. of Eq. (79), providing the pressure distribution along
the solution domain.

3. Calculation of the objective function, here the load carrying capacity of the slider, Eq.
(43), by integrating the pressure field along the x direction. This value can also be non-
dimensionalized by Eqg. (52), in order to compare cases with different sizes.

4. Solution of the adjoint problem, Eq. (80), providing the values of the Lagrange multiplier
¥ along the solution domain.

5. Calculation of the sensitivity derivatives % , utilizing Eq. (100) - (105). The variables

A, B, C and D appearing in these equation are given by Eqg. (83) - (86) and are functions
of pressure and Lagrangian W, that have already been computed in steps 2 and 4
respectively.

6. Computation of the new film thickness, using the conjugate gradient method, as follows:

W
_hnew_ _hold ] 5h1
I I oW r;ew c; oW
hnew = hold + SE Py hi = hi ld + S 5_hl
new old ’
_hN i _hN B é\/\/
shy |

The value of s is always carefully selected in order to adjust to the units of the current
problem. If W is in measured in Newton and h in micrometers then s should be around
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101°-10'%. An external constraint is also implemented upon the solution, setting the
values of film thickness that are lower than the hmin, equal to it.

7. After updating the geometry (h), the procedure starts again from step 2, and is repeated
many times, until the derivatives converge to zero.

4.4.5 Validation

When solving an optimization problem such as the current one it is of utmost importance to
validate the values of the sensitivity derivatives computed by the adjoint method, against the
corresponding derivatives calculated from a finite differences scheme.

According to the finite difference scheme, at each point of the solution domain, the design
variable, here the local film thickness, is moved upwards and downwards from the initial
position, by a distance equal to 6h=0.01 um. After each displacement, the new value of the
objective function, here the load carrying capacity, is computed and, finally, the sensitivity
derivatives are derived by:

oW _ W+5h _ngh — W+§h _Wﬂ?h (106)
oh (hi+§h)—(hi—5h) 256h
where:

W.e is the load capacity after the point h; has been shifted from its initial position +e
upwards.

W_. is the load capacity after the point h; has been shifted from its initial position -e
downwards.

So, in Figure 32 a comparison is presented between the %cmputed from the adjoint

method and the ;ﬂhcomputed from finite differences, as seen in Eq. (106). These derivatives
are computed starting from a simple converging slider geometry, with a converging ratio
equal to 1.2.
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Figure 32: Comparison of 8W/6h between the adjoint and the finite difference method.

A very good match can be observed between the two methods, meaning that the adjoint
method developed in this chapter, calculates correctly the sensitivity derivatives.

4.4.6 Results

It is of high importance here to remind that our target is the maximization of load carrying
capacity. This optimization problem is solved for a constant minimum film thickness, hmin. If
hmin IS Not constrained, the problem has a trivial solution equal to a value very close to zero,
because, while the cross section is reduced, the developed pressure increases.

Consequently, in order to constraint the minimum film thickness, the following procedure has
been implemented. Starting from the initial film thickness profile, the minimum value of the
film thickness is computed. Afterwards, during the optimization loop, if any resulted value of
film thickness is below the threshold value of hmin, this is set equal to hmin.

It must also be clarified that this method is a deterministic one and there is no guarantee that
will necessarily find the global optimum. The resulted geometry of each run is different and
heavily depends on the initial shape given to the geometry, during the initialization step.

The initial geometries that has been tested is the plain convergent slider, with a variety of
converging ratios.

Three different cases of the plain converging slider were tested, varying the converging ratio
of the slider from 0.1 up to 5. It is reminded that the design variables are the nodal values of
the film thickness and not the converging ratio. The trend of the non-dimensional capacity for
each cases is presented in the following figures, along with the point after which the solution
starts to present instabilities and the iterations are terminated. Additionally, the initial
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geometry and the geometry corresponding to the terminal point are also shown in the
following figures.

1. Initial point: k=0.1

In Figure 33 the trend of the non-dimensional load capacity against the optimization
iterations (a) and the initial and final geometry (b) are presented.

(a) (b)
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Figure 33: Results for initial converging ratio k=0.1: (a) non-dimensional load capacity against
iterations, final optimization step is marked with triangle (b) initial and final (triangle)
film thickness profile.

2. Initial point: k=1.2

It must be noted that the geometry corresponding to converging ratio k=1.2 is the optimal
solution that resulted from the adjoint optimization of chapter 4.1, where the design variable
was only the converging ratio k. Here, the interesting point is to find out if there is an even
better solution, when the design variables are the nodal values of the film thickness. In Figure
34, the trend of the non-dimensional load capacity against the optimization iterations (a) and
the initial and final geometry (b) are presented.
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Figure 34: Results for initial converging ratio k=1.2: (a) non-dimensional load capacity against
iterations, final optimization step is marked with triangle (b) initial and final (triangle)
film thickness profile.

3. Initial point: k=5

In Figure 35, the trend of the non-dimensional load capacity against the optimization

iterations (a) and the initial and final geometry (b) are presented.
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Figure 35: Results for initial converging ratio k=5: (a) non-dimensional load capacity against
iterations, final optimization step is marked with triangle (b) initial and final (triangle)
film thickness profile.

Observing the results presented above, the first obvious remark is that in all the cases after
some point the solution starts to present instabilities. This happens due to the fact that the
derivatives are computed with finite differences and so after some point they start to take
very high values even close to infinite. Second, it is obvious that the film thickness geometry
is less affected as the converging ratio k increases. This can be explained as the steeper the
geometry the less the effect of the slider geometry upon the values of the objective function,
meaning that the load capacity is rather insensitive to the changes of the film thickness
profile.
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6. Conclusions and future work

In the framework of this thesis, the continuous adjoint optimization method has been
developed in order to optimize the design of certain geometries of tribological contacts. The
mathematical formulation has been performed for each geometry separately and the
sensitivity derivatives have been thoroughly elaborated, as their accuracy may affect the final
result of the optimization. More specifically, in order to verify our results, for each case the
values of the sensitivity derivatives computed from the adjoint method are compared to the
ones computed from the finite difference method and a good match was found in all the
cases.

Subsequently, a MATLAB code was developed, in order to run the optimization, computing
at each step the sensitivity derivatives and proceeding to the next step with a steepest desent
method. For each case, the process has been initiated from different points in order to secure
that the method has reached a global optimal point and not a local one. This was achieved in
all the cases except the last one where the design variables are the nodal values of film
thickness, because instability problems occurred. For that reason, in the latter case, the loop
was terminated before oscillations of the solution start.

Concluding, the adjoint method is a very useful tool for the optimization of hydrodynamic
lubrication systems as it indicates the areas that have greater effect on the objective function
and towards what direction they should be moved in order to improve it. It is also a very
useful computational tool for the sensitivity derivatives of a certain geometry, as the
computational cost is almost equal to cost of the primal problem.

The suggested subject for future research is the case where the design variables are the nodal
values of the film thickness, and especially the numerical instability of the solution. For
instance, the computed sensitivity derivatives could be filtered with a polynomial method, in
order to smoothen out the peaks it exhibits. Another suggestion is to use Bezier curves to
describe the geometry, reducing the points controlling the fluid film shape, probably making
the optimization smoother, but reducing the degrees of freedom of the geometry.
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