National Technical University of Athens
School of Mechanical Engineering

Fluids Dept.

Parallel CFD & Optimization Unit

Aeroacoustic Noise Prediction &
Continuous Adjoint-based Shape Optimization

Master Thesis
Computational Mechanics
Interdepartmental Program of Postgraduate Studies

Aikaterini I. Karoni

Advisor
Kyriakos C. Giannakoglou, Professor NTUA

Athens, July 2018






National Technical University of Athens
School of Mechanical Engineering

Fluids Sector

Parallel CFD & Optimization Unit

Aeroacoustic Noise Prediction &
Continuous Adjoint-based Shape Optimization

Master Thesis
Computational Mechanics

Interdepartmental Program of Postgraduate Studies
Aikaterini I. Karoni

Advisor: Kyriakos C. Giannakoglou , Professor NTUA
Athens, July 2018

Abstract

The present thesis is divided in two parts. The first part deals with the use of the
Kirchhoff Integral Method for aeroacoustic noise prediction. Simple noise sources
are introduced and the noise perceived by a receiver is computed. The corresponding
software was programmed in FORTRAN. The code is validated by comparing the
results (i.e. pressure at the receiver) obtained through the Kirchhoff integral to those
given by the existing analytical equations for monopoles and dipoles. Optimization
of the source (monopole and dipole) position is additionally performed, after setting
a desired "target” pressure time-series at the receiver. Having implemented and
differentiated the KI, its coupling with CFD for aeroacoustic shape optimization
could be the subject of a future work.

The second part of this thesis reflects work carried out at the BMW premises in
Munich. Firstly, the flow and continuous adjoint solvers developed by the PCOp-
t/NTUA and programmed in the OpenFOAM environment are coupled with the
BMW optimization software ”ShapeModule”. The PCOpt/NTUA code is respon-
sible for computing the sensitivities (i.e. the derivatives of the objective function
chosen by the designer, with respect to the design variables determining the shape
of the geometry being optimized), whereas the surface node displacements are com-
puted by ShapeModule using the node-based optimization method known as Vertex
Morphing. After the successful coupling, two geometries are optimized, namely an
S-bend duct and an HVAC (Heating, Ventilation and Air Conditioning) duct of a
passenger car, using two objective functions. The first one aims at the minimiza-
tion of the total pressure losses between inlet and outlet, whereas the second one
is a surrogate, noise-related objective, which aims at minimizing noise related to
turbulence by minimizing the turbulent viscosity.

iii






EO9vixd MetodfBio IloAuteyveio

Yy oA Mnyavordywy Mnyoavixwmy

Touéag Pevotwv

Epyaoctripio Ocspuixwy Xtpoihopnyavey

Movdda IMTagdAAnAng Yroloyiotixrc Peuotoduvauixng
& Beltiotornoinong

AegpoaxouvoTix Hpoﬁ%sqm BOoplPou &
BeAtiotonoinon Mopoprc ne Xenon tng Xuveyolg
Yuluyolg Me9b60u

Hepiindn Metantuylondc Epyaotog
AILM.X Trohoyiotin Mnyovinn

Awcatepivy H. Kapdvn

EmupBiénov
Kugidrog X. Tavvéxoyrou , Kadnyntic EMII

Adrva, ToOhiog 2018
ITepiindn

H moapotoo Simhwyotiny epyacio anoteieiton amd dVo turuate. To mpwto oyetile-
Tou e v yeron e Medodou tou Ohoxhnpouatog Kirchhoff (Kirchhoff Integral
Method) yuwr tnv meéBredn YopiBou. Xuyxexpwéva, vnohoyileton oe évav 8éxtn o
VépuBoc mou mopdyeton amd amhég axouoTiég TNyéc (Wovomoha, dimoha). H uédo-
ooc mpoypoappatiotnxe oe FORTRAN. H opddtnta tou x@do ehéyyetar uéow tne
olyxploNg TwY anoteeoudtwy (nieon otov 8éxtn) tou mpoéxuhay péow tou Kirchhoff
ONOXANPOUATOC, UE AUTA TOU TEOEXUPAY A6 TIG UTHPYOUCES AVOAUTIXES EELOWOELS YiX
HovOToho xai dimolo. Xtny cuvéyela tpaypatorolelton Bedtiotomoinomn tne Yéong tng
Tnyhe, Exoviag Véoet wa emduunty| Ypovooelpd tieong-otoyou otny VEor Tou 0EXT.
‘Eyovtac mpoypaupotioet xou nopaywyioet to ohoxhfpnuo Kirchhoff, n cbleuls tou
ue CFD pe otdyo tnv acpoaxouctixy Peitiotonoinor, umopel va ebvon avtixeiuevo
uehhovtinc epyaciog.

To debtepo Yépog g epyaoiug mpaypatomotfinxe ot eyxatacTdoeg g BMW
oo Mévayo. Katoapydc npaypatomoljinxe evonudtwon tou avartuydévtog otny Mo-
vado Tlapddnine Troroyiotixfc Pevotoduvouxic & Bektiotonoinone (MIITP&B)
emALUTN TN porig xou Tou ouveyolg adjoint emAlTH 6TO Aoylouxd PBehtioTonolnong
woppric Tne BMW, ”ShapeModule”. O x&dwoag e MIITP&B eivon unebduvog yia
TOV UTIOAOYLOHO TOV Topayywy evatoinalag (BnA. twv mopaydhywy e emAeyeicog
ATO TOV GYEDLUC TH AVTIXEWMEVIXTC CUVIOTNONS WE TREOS TIG UETABANTES oY EBLICUOU TTOU
xoopllouv to oyfua TNe ud BEATIGTOTOINOY YEWUETPIOC), EVE Ol UETATOTICELS TWY
ETULPAVELAXOY XOUPwY Tou TAéYuaTog utoloyiCovton and to ShapeModule ypnoyonot-
OVTOG TNV TEYVIXT| Hop@oToinong TAEYUOTOS, YVwo T w¢ Vertex Morphing. Metd tnv
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emtuyY| oUCeudn TV BV0 XWOIXWY, TpayUaToTolElTal BEATIOTOTOMGT 500 YEWUETELOY,
oLYXEXEIEVO EVOC aywyol ayfuatoc S-bend xou evog HVAC (Heating, Ventilation
and Air Conditioning) aywyol emBotinol autoxtviTtou, Yenoylototvtas 800 avTiXEL-
uevixéc ouvapthoels. H mpdtn €€ autddy otoyelel 6Ny EAUYLOTOTOMOT TWV ATWAELDY
olxfg Tieong UETAEY €16600U xou E€600L, EVG 1) 0e0TeERn oyeTileTal UE TNV ToROY (-
YY) YopUPou xou GToyeYEl oTNY ehayloTOTOINGY| TOU UECK TNG ElayioToTolnomg Tou
TUEPROBOLE LEWBOUC.
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Abstract

Die vorliegende Arbeit gliedert sich in zwei Teile. Der erste Teil beschéftigt sich
mit der Verwendung der Kirchhoff Integral Methode zur aeroakustischen Gerauschvorher-
sage. Einfache Larmquellen werden eingefiihrt und das an einem Empfanger in-
duzierte Rauschen wird berechnet. Die entsprechende Software wurde in FOR-
TRAN programmiert. Die Ergebnisse der Kirchhoff Integral Methode (Druck am
Empfianger) stimmen mit analytischen Rechnungen fiir Monopol und Dipol tiberein,
damit wurde der Kode validiert. Weiterhin erfolgte die Optimierung der Quellen-
position (Monopol und Dipol), nachdem eine gewtinschte ”Ziel” Druck-Zeitreihe am
Empfanger gestellt wurde. Nach der Implementierung und Differenzierung des KI
kénnte die Kopplung mit CFD zur aeroakustischen Formoptimierung Gegenstand
einer zukiinftigen Arbeit sein.

Der zweite Teil dieser Arbeit wurde im BMW-Werk in Miinchen realisiert. Zuerst
werden die von PCOpt/NTUA entwickelten und in Open-FOAM implementierten
Strom- und kontinuierlich adjungierten Solver mit der BMW-Optimierungssoftware
”ShapeModule” gekoppelt. Der PCOpt/NTUA-Code ist fiir das Berechnen der Sen-
sitivitaten verantwortlich, wiahrend in ShapeModule die Verschiebungen der Oberflachen-
knoten mit der knotenbasierten Optimierungsmethode Vertex Morphing berech-
net werden. Nach der erfolgreichen Kopplung werden mit der Verwendung von
zwei Zielfunktionen, zwei Geometrien optimiert, namlich ein S-Bend Kanal und ein
HLK-Kanal eines Personenwagens (HLK steht fiir Heizung, Liiftung und Klimaan-
lage). Die erste Zielfunktion zielt auf die Minimierung der Gesamtdruckverluste zwis-
chen Einlass und Auslass, wahrend die zweite Zielfunktion die Minimierung des mit
der Turbulenz verbundenen Larms tiber die Minimierung der turbulenten Viskositéat anstrebt.
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Part 1
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based on the Kirchhoff Integral
Method






Chapter 1

Mathematical Background and
Theory in Aeroacoustics

The first part of this thesis is concerned with noise prediction through the use
of the Kirchhoff Integral Method (KIM). The noise studied is produced through
simple monopole and dipole sources. What the human ear perceives as sound is
the fluctuation in pressure over time. The KIM is a method in aeroacoustics, which
allows the computation of pressure perturbation at a receiver location by integrating
the pressure and its derivatives on a surface containing the source. The method
solves the aeroacoustic wave equation in its PDE form and uses it to propagate
information from the near-field of the source to the receiver. Noise computation
would also theoretically be possible without the use of aeroacoustics, since pressure
perturbation calculation can be performed by solving the Navier-Stokes equations
in a domain extending from the source to the receiver. If, however, the receiver is in
the source far-field, the cost of performing CFD computations to obtain the pressure
value at the receiver is usually prohibitive. Therein lies the advantage of aeroacoustic
analogies, which take the information from a CFD domain defined in the near-field
of the source and propagate it in the far-field at a much lower computational cost.

1.1 Wave Equation

The wave equation is a second-order hyperbolic linear PDE for the description of
waves (e.g. light waves, sound waves, etc.). The aeroacoustic wave equation results
from the rearrangement of the Navier-Stokes equations, which govern the flow of a
compressible viscous fluid. This was first done by M.J. Lighthill [I], who thereby
established a connection between fluid mechanics and acoustics.

The derivation, as can also be found in [2] and [3] starts with the Navier-Stokes
equations for mass, momentum and energy of a flowing compressible fluid

%+V~(pv) =1m (1.1)



d(pv)
ot

+V - (pvv) + Vp=V .7+ f+ 1w (1.2)

d(pet)

5 +V - (pew) + V- (pv) = -V -q+ V- (tv) + 0+ f-v+me  (1.3)

In the above equations, e¢; = e + %'02 is the specific (i.e. per unit mass) total
energy which equals the sum of the specific internal energy e and the specific kinetic
energy %v2. The friction-related stress tensor (v, p) is a function of the (usually
temperature T-dependent) dynamic viscosity u(7"). For a Newtonian fluid under
the Stokes’ hypothesis, the stress tensor is given by

2
T=U V’v—l—(Vv)T—gIV-'v (1.4)

The heat flux vector (7', k) is a function of the temperature-dependent heat con-
ductivity k(T") and is given by the Fourier’s law of heat conductivity as

q=—kVT (1.5)

The symbols 71, f and 9, correspond to (known) sources of mass, external forces
and heat respectively. The mass source term does not only affect the continuity
equation, since any mass added to the fluid has to assume its velocity and internal
energy and, therefore, contributes to the momentum (the fluid has to exert a force
to accelerate the added mass) and energy equations too. In a similar manner, the
introduced force source term will affect both the momentum and energy equations.
The heat source term affects only the energy equation.

The system of equations [I.1] to [L.5] contains seven unknown quantities i.e. the
density p, velocity vector v (three components i.e. three unknowns in 3D flows),
specific energy e;, pressure p and temperature 7'. Two more equations are, therefore,
needed in order to close the system. These are the thermal and calorific state
equations of the fluid (assuming a fluid in thermodynamic equilibrium i.e. a system
with no microscopic flows of matter or energy). In that case, the thermal state
equation is

p=p(T.p) (1.6)
and the calorific state equation is
e=e(T,p) (1.7)
Using the definition of the material derivative % = % + v - V, the mass
equation (eq/l.1)) can be rewritten as
D
Ffz—me—l—m (1.8)
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By multiplying eq. with v and subtracting it from eq. we obtain

Dv

"Dt

Next, we take the dot product of eq. with v and subtract from eq. [I.3] From
the resulting equation, we further subtract eq. multiplied by e.

=-Vp+V.-74+Ff (1.9)

This leads to the following equation

De

pﬁt:—pV-'v—F‘r:Vv—V-q—H? (1.10)

As will be seen, it is convenient to reformulate the energy balance (eq. [1.10)) into
the entropy equation. To this end, the fundamental law of thermodynamics for a
reversible process,

Tés = de — (p/p*)op = 0h — (1/p)dp (1.11)
where T is the temperature and h the specific enthalpy is used. In the most general

case, change ¢ involves the material derivative D%, i.e. 0 = dt- —, which is the
change along the pathline of a fluid parcel. Eq. then becomes

Se =T8s + (p/p®)dp

or

De Ds Dp
dt— = T'dt— A dt ==
Dt Dy T /Pt

Multiplying this last equation by p/dt, we get

De TDS ]2&

— =pTl'— 1.12
"ot P De T oD (1.12)
Using eq. [1.12] eq. [1.10| becomes
Ds pDp ~
—+-—=—pV. : -V 9
P Dt+th pV-v+7:Vo—-V.q+9=
Ds 1 : P Dp
P Dy T[T Vv—-V.q+ p(pV v+ Dt)} =
Ds 1 ; p
— =7 -V ¥ —m- 1.13
T T{T Vv—-V.q+ mp} (1.13)

Entropy can now replace the internal energy in eq. [[.7, The calorific equation
(eq. [1.7)) also contains the internal energy and, therefore, this is to be replaced as

5



well by a thermodynamic relation between the state variables

) o
p=p(p,s) = op= (%) op + (a—i) ds
s P

We now introduce the following two new quantities:

ap\ 1/0p
2= (£ = - L 1.14
¢ ((’9]))3 and o P<35>p ( )

Next we want to use eq. to derive an equation for the pressure. Again, the
variations 0 in the above equation are material derivatives, leading to the following

reformulation of eq.
1 Dp  Dp Ds

2Dt Dt 7Di
The total derivatives of the density and entropy appearing in the RHS of eq.
[1.15] are given by eqgs. and respectively. Eq. [1.15] therefore, becomes

(1.15)

%%z—pVﬂv—l—%(T:V’U—V-q—l—ﬁ)—i-m(l—z]—?) (1.16)

To sum up, the governing equations for density, velocity and pressure are eq. [1.8]
and respectively. The previously defined quantities a? and o are considered
to be given fluid properties and, therefore, do not add to the number of unknowns.
The internal energy has now been eliminated, so our unknowns are the density,
velocity vector, pressure and temperature, i.e. six unknown quantities. This means
that along with the five equations, eq. [1.§] and [1.16] the thermal equation of
state p = p(T, p) must be included to close the system. Assuming that our fluid is
a perfect gas, its thermal and calorical properties are given by the equations

p= % and de = ¢, dT (1.17)
where R is the specific gas constant and ¢, the specific heat capacity for constant
volume. The specific heat capacity for constant pressure for a perfect gas is given
as ¢, = ¢, + R and the isentropic coefficient is v = ¢,/c,.

Going back to eq. and given the above formulation for the thermal and
caloric properties, a? and ¢ can be expressed in terms of pressure and density as

a® =yp/p (1.18)

v =1/¢ (1.19)

This closes the system of equations [1.§] and Furthermore, if viscous
friction and heat conduction are neglected, i.e. 7 =0 and q = 0, equations [1.§]
and [L.16] become



Dp

= 1.2
i +pV-v= (1.20)
Do

1.21
Py TVP=f (1.21)

1 Dp op
= — 1— == 1.22
2Dt+pV v 19+m( Tp) (1.22)

Note that for an incompressible fluid, for instance, density p is a function of

temperature but not of pressure i.e. p = p(T). Using the definition of a=2 in eq.

1.14| we have a2 = (g_Z)s and a2 will therefore be zero for an incompressible fluid,
leading to the zeroing of the first term in eq{l.22l Therefore, compressibility or non-

compressibility of the fluid plays a significant part in the characterization of sound.

What the human ear perceives as sound, is the temporal deviations p’ from the
mean ambient pressure py. The goal is to formulate an equation for the pressure
perturbation using the equations derived so far. To this end, all flow variables are
expressed as the sum of a mean value plus a changing small perturbation. Density,
for instance, will be expressed as p = po+ €p', where € is a small number ¢ << 1.
The same is done for v, p, 1, f, a2, 0, T and 9. Substituting the low quantities with
the sum of their mean values plus their perturbations in eq. [I.20] [I.21] and [1.13],
differentiating w.r.t. € and letting ¢ — 0 yields

Dopz
Tt+p0V-v’+v'-Vp0+p’v-ru° =1/ (1.23)
0,,

p’ D +Vp +p% V-4’V = f (1.24)

1 DO /
( p + [,v/ . ,v(](a2)//<a2)0] . Vp0> + pOV v+ )V 2°

(a2)0\ Dt
0 0,,0
o 0" & o'p -/
DO
where i = o + " . V is the total derivative along the streamlines of the mean

flow.

At_this point, we assume that the mean flow satisfies the steady form of egs.
11.23] [1.24] and [1.25] without any sources i.e. m® = f° = 9% = 0. According to egs.

1.23] [1.24] and [1.25] this means that

v Vol = —p'V . 2° (1.26)
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PP’V = -V (1.27)
Lo 0 0 0
@yt Y STeY

Let us also consider the simple case of a non-moving medium i.e. v° = 0. This
means that according to eq. [1.27, Vp° = 0. Now let us rewrite eq. [1.23] and
1129

(1.28)

4

5 +p'V v vVl = (1.29)
a ’
p° 5; +Vp = f (1.30)
1 op o 50 a0\
Wa +p V.v = ﬁﬁ/ 1-— OTO m’ (131)

Keeping in mind that the goal is to obtain an equation for the pressure pertur-
bation, next step is to eliminate the velocity perturbation in the above equations.
Dividing eq. by p" and taking its divergence gives

oV - v’ 1 1
V- (=Vy )| =V (=
o (po p) <p“f>
Also, taking the time derivative of eq. yields

1 0% OV v ooy o'p®\ o’
T — 2 (1
(@) or Tt o7 ) ot

By subtracting the first of the two above equations multiplied by p° from the
second, the following equation is derived

1 0% 1_,\ oo om' 1,
otV () =7+ (1m0 v (o) 0

In the case of a constant mean density p’=const=p., eq. takes the following

form ) o
1 o7y )0 o om'’
T =+ (1= 5m) o v
1 o ;
(a2 o1 —Ap'=0Q, (1.33)
where
o 0 o’p’\ o/ ,
=T ( OTO) a VI



Eq. is the acoustic wave equation for the pressure perturbation p’. A wave
equation can be derived for other flow quantities as well, through appropriate han-
dling of eq. [1.29] [1.30]and [1.31] For instance, eliminating the pressure perturbation
instead of v’ in the above equations can lead to the wave equation for the velocity
perturbation. What differentiates the two wave equations is the resulting source
terms on the RHS of the equations.

Looking at the source term (), in the pressure perturbation wave equation, it
should be noted that although it is the existence of mass, force and heat sources
that leads to sound generation, it is not the sources themselves, but rather their
change in time or - in the case of the force - space that is actually responsible for
sound production.

1.2 Green’s Functions

Prior to the derivation of the Kirchhoff integral formula, it is important to introduce
a mathematical tool that can assist the solution of linear PDEs, such as the wave
equation in a simple way. This tool is the so-called Green’s functions (for a
detailed analysis see [4]).

Let us consider the following linear PDE

L[p] = Qp(.1) (1.34)

where L is a differential operator. In the case of the wave equation, eq. [1.33] the
. 2
operator L is ﬁ% — A.

First step towards the solution of eq{l.34| using the Green’s functions method is
to formulate the following equation

LIG] = 6(x — €)6(t — 1) (1.35)

where ¢ is the Dirac function. The field G obtained by solving eq. is the field
due to a unit point source at @ = £ firing a needle pulse at t = 7. G is called
a Green’s function and establishes a physical relation between two points in space
(xz and &) and time (¢ and 7) (see [2]). So, in the case of the wave equation for
the pressure perturbation, G(x,t; &, 7) is the pressure perturbation perceived by a
receiver at x at time ¢, caused by a unit point source firing a needle pulse at &
at time 7. Let us multiply both sides of eq. by the RHS of eq. [1.34] i.e. by
Qp(x,t), and integrate the resulting equation over space and time.

By doing so, we obtain

/ / G1Q, (&, 7)drdV () = / 75@ —E)5(t — 1)Q, (&, T)drdV(€)  (1.36)

Voo —00 Voo —00



Notice that the above time integration does not represent i.e. ffooo dr, but rather
an integral from —oo till a positive time ¢+, where ¢+ = li_r}ét(l +€),e >0, ie tF
is slightly bigger than the receiver time ¢. The reason why the integration does
not stretch until positive infinity, but stops slightly after receiver time ¢, is one of
causality (cause and effect). We wish to ensure, that any quantity at the receiver
time ¢ depends solely on the past and not on the future. Ideally, we would want a
Green’s function that satisfies the equality G(7 > t*) = 0. In such a case, the time
integration limits could harmlessly be extended up to positive infinity. However,
since this is not a guaranteed property of Green’s functions, it is safer to limit the
integration up to t*.

The differential operator L acts on @ and ¢ rather than on & and 7, which means
that it can be taken outside of the integral in eq. Also, according to the Delta
function properties, the integral on the RHS of eq. equals Q,(x,t). Eq.

is, therefore, rewritten as

L{/ 7G(w,t;ﬁ,T)Qp(ﬁ,T)deV(ﬁ) = Qp(=,1) (1.37)

By comparing the above equation with eq. [1.34] the following solution for the
pressure perturbation is derived

P, 1) = / / G, 1:€,7)Q, (& T)drdV (€) (1.38)

Voo —00

It can be concluded that if the response G to a point source firing a needle
pulse is known, the response to any other type of source @), can be found as the
convolution of G with the source @,,.

An intuitive way of understanding this would be the following. The response
to a point source emitting a needle pulse is known. A more complicated source @),
can be seen as a "series” of simple sources. Therefore, the response to an arbitrary
source (), will be something like a "sum” of the responses to each of the simple
sources ”comprising” (),. This logic is only valid in the case when the differential
operator L is linear, otherwise the responses to the sources ”comprising” ), cannot
be "superimposed”. It is reminded that a linear operator is one for which the
following holds: L(cizy + cows) = c1L(x1) + coL(x2).

Below follows an example of how the Green’s function for the Laplace equation
for a 3D domain can be found. (Note that for a specific equation there are different
Green’s functions depending on whether the cases being dealt with are 1D, 2D or
3D). First, the function G that satisfies the equation

V3G = §(x — &) (1.39)
must be found, where @ is the observation point and & the source position. To this
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end, eq. is integrated over a sphere S centered at & with a radius r = | — |,
volume V' and surface S.

V2GdV = [ §(x — €)dV =1 (1.40)
[vor-]

\%

Using the divergence theorem, which states that
/V-FdV:/F-ndS (1.41)
v 5

where n is the outward pointing unit normal vector on each surface element dS of
the boundary, eq. can be rewritten as

/VQGdV = / VG ndS = a—GdS a—GdS =1 (1.42)
S on or
where g@ %G smce the direction of m and r coincide in the sphere case. Further-

more, since dS = 72 sin pdodh, eq. n can be rewritten as

T 27 g
/—dS / / %73 sin ¢pdpdl = 271'%7'2 / sin ¢pdg = 4nr? 20G =1=

or or
¢=06=0 ¢=0
oG 1 1
== =_—— 1.4
or 4qrr? =G A7y (1.43)

If the Laplacian (eq. [1.39) is examined in 2D, S is a circle. Thus dS = rdf.
Therefore, in the 2D case, eq. is written as

0G GG 0G
Eds W?"d& = 277'57” =1=
S 6=0
oG 1 1
o " am T G (144)

Eq. [1.43 H is the Green’s function for the Laplace equation (eql.39)) in 3D, whereas
eq. [1.44)is the Green’s function of eq. [[.39in 2D. Green’s functions for a particular
equation are not always so easy to find, but deriving them can greatly facilitate the
solution process.
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1.3 Kirchhoff Integral

Wave propagation in a free field can be described by the homogeneous wave equation
derived in the above section

a2p/

o AV =Qp =0 (1.45)

where the index P in the source term Qp indicates that this is the source term of
the pressure wave equation. Wave equations can also be derived for other acoustic
quantities. In that case, the source term (p on the RHS of eq. changes. The
proof of the Kirchhoff integral formula for a non-moving medium that follows, can
be found in [2].

A free field, in acoustics, is a situation in which no sound reflections occur i.e.
there are no bodies or if there are, they are very sound-absorbing. Also, the flow
variables are defined everywhere in space. The free field Green’s function for the
wave equation is known and it can be used to solve it in free field conditions. In the
presence of bodies or sources, the homogeneous wave equation is no longer valid and
a source term (), # 0 is introduced. Also, the presence of bodies in the flow means
that the flow variables are no longer defined everywhere, but rather only outside
the bodies. They are not defined inside the body boundaries. That is an issue that
prevents the use of the free field Green’s function to solve the wave equation for the
flow variables in the presence of bodies. The first step is, therefore, to create new
flow variables that are defined over all space. Generalized functions are a useful tool
in that direction.

Generalized functions can help us take the presence of obstacles into account.
These are functions which are defined by integral properties. They are not neces-
sarily defined at each possible argument [2]. As an example, the Heaviside function
H(x) (defined in eq. has the value 0 for x < 0 and the value 1 for z > 0,
but is not defined at x = 0. The Heaviside and delta functions are two of the most
common generalized functions.

A body can be introduced through a level set function f(x,t) that takes a zero
value on its surface, a negative value inside the body and positive values outside it.

12



Figure 1.1: Source, body and receiver. (From [2])

Since the Heaviside function has the property

0. fz<0
H(z) =4 146
(@) {1, it 2> 0 (1.46)

it follows that
0, if f(x,t) <0

1, if f(x,t) >0 (L47)

H(f(x,1)) = {

This means that the Heaviside function H(f) will have the value of 0 inside the
body and 1 everywhere outside it. We can now define a new generalized variable for
the pressure

p'=H(f)p (1.48)

The new generalized pressure variable is - unlike p’ - defined over the entire space
and will be zero inside the body and equal to p’ elsewhere. The fact that p’ is defined
everywhere in space, transforms our boundary value problem to a free field problem,
the Green’s function of which is already known. Thus, the wave equation can be
solved as in a free field problem.

In the following part, a wave equation for the new generalized pressure variable
p' is derived, by applying the wave operator on both sides of eq. [1.48] Upon doing
that, the gradient and the time derivative of the Heaviside function will appear.
Those two terms are calculated below.

The Dirac function can be defined using the Heaviside function as

_dH(f)

d(z) o
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and, also, has the following definition

o
) =4 2 L
0, ifx#0

Since the Heaviside function depends on f we have that

_dH(f)
i

Also, the time derivative of the Heaviside function can be written as

VH(f) = —=Vf=040f)Vf (1.49)

OH(f) _ dH(f)0f of
= e — 1.50
ot af ot o) ot ( )
2
Next step, as mentioned, is to apply the wave operator — —— —V? on both sides

of eq. [1.48] First, the second-order time derivative of the RHS is

1 02 , 100 , 10 ( ,0H 10 o'\

2 U = G5 {Ot(Hp ﬂ =2 (P W) Tz (Ha) =
1[0 ( ,0H oH 8p %'
- {a (pﬁ) "o ot +H8t21

The Laplacian operator applied on the RHS of eq. gives

V-V(HY) =V @pVH)+ V- (HVp) =

=V - (pVH)+VH- -Vp +HV*p
Therefore, the application of the wave operator on both sides of eq. [[.48] yields

2 1/
2o T BT

1 0% 1 0?
L = Ho ol BV o (05 |+ 5 5 = V- VH) -V H -

c2 Ot Ot

ia (,8H> 1 OH oy’
t 2

0? . .
Let L be the wave operator, — —— — V? ; then, the above equation can be written

2at2
as:
N+ L0 (yOHN [ LOHOY oo v vy
L) = HLW + 55 (P50 ) + 550 o7 — vV @'VH) = VH- VY,

where L[p'] = Qp. Using egs. and [1.50, we have

L) = 10, + o (WG ) + 500G oy =V WV - 31)VF - Vi
(1.51)

The last four terms on the RHS of eq. exist only on the body surface, since
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they all contain the Dirac function §(f), which is zero everywhere, except on the
body surface.

Next, we evaluate the time derivative of f. The wave equation was derived under
the assumption of small pressure perturbations around a mean value py. In the case
of a deformable body, this means that any deformations of the boundary surface of
the body, i.e. any perturbation of f, would have to be very small as well, as large
boundary deformations would generate large pressure perturbations. Since pertur-
bations of the surface shape -if any- have to be so small, they can safely be neglected
and the body can, in effect, be considered as non-deformable in the analysis that
follows. This means, that the second and third term of the RHS of eq. also
vanish, since they contain the term ?9_{’ which is equal to zero.

The unit normal vector to the body boundary (pointing from the surface towards
the receiver) is

n=(VI/IVf)=o (1.52)
Given the above, eq. takes the form
LlpT=H(f)Qp =V - (W'o(f)Vf) = d(/)VS- VP (1.53)

Eq. is the non-homogeneous wave equation, written for the new generalized
variable p’. As stated above, what is important is that the variable p’ is defined over
the entire space, which allows us to solve eq. by using the Green’s function
solution method for free field problems (no sound reflection). We multiply the RHS
term by the free field Green’s function G and integrate over all (infinite) space Vi
and time to obtain an expression for the pressure field p’ (x,t). Thus, we have

poc = [ [ {HIQ, - Ve WANVED - 30 Vef - Vel GV (e
poct) = [ [ {HUNQ.G - (Ve WS)VefC) ~ HOUNIVeS ViG] (150
— 8(f)Vef - Ve G}V (€)dr

According to eq. Vef =n|Vef|. Eq. therefore becomes

v - [ T {H(DQ,G — Ve - W(FnIVesIG) (1.55)

00 J Vo

+0(f)|Vef] [p'n -V¢G —Gn- Vgp’} }dV(f)dT

Upon integrating over all space, V., the second term (divergence term) in the
above integral is transformed into a surface integral over the bounding surface of
Vo (which is a surface that contains all bodies). On the bounding surface 6(f) = 0,
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therefore this term vanishes.We can also rewrite the terms n- VG and n - V¢p' as:
n-V.G = and n-Vep = n/ Eq. [1.55 now becomes:

P (%, ) //m{ QpG+5()|v§f|{%—Gg—p”dwg)m;»

Vel [ 5 - 6% avie) | ar

(1.56)

yixo - | Z{ [ n(pecavie+

Voo

Since the source term (), is non-zero only within the source volume Vg, which is of
finite extent, it follows that

H(f)QpGdV (&) = | H(f)QpGdV(§)

Vo Vs

/ : 9(x)5(f

can be used to transfer a volume integration to the surface S defined by f = 0,
(i.e. the surface of the body). Thus, the second volume integral can be reduced to
a surface one. An explanation about the derivation of eq. can be found in [2].
Therefore

s gt —og v = [ (v5 -6 ) aste

oVp:f=0

Relation

Z/ (xs) |vf| (1.57)

S;(f=0)

Eq. now becomes

v = [ Z{ [ QG+ / (p%—(zgi )dS@)}dT (1.58)

Vp:f=

The volume integral in eq. contains the source term )p multiplied by the
Heaviside function. It should be pointed out that, from its definition in eq. [1.47],
the Heaviside function is equal to 1 anywhere outside the body. Since the source
Vs is outside the body Vg, H(f) will be non-zero inside Vg. Therefore, the volume
integral in eq. is non-zero. If the Heaviside function was defined on another
surface Vg, for instance a surface including both the source and body seen in fig.
, then the volume integral in eq. would vanish, since H(f) would be zero
anywhere inside Vy, including the source volume V.

The second integral in eq. [1.58| is a surface one. The integration surface is the
surface on which f =0, i.e. the body surface.
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The Green’s function for the 3D case is equal to Gy = d(g)/(4nr), where
g=t—7—r/cand r = |x — £| is the distance between source and receiver.
By inserting G into eq. [1.58], the following form of the equation can be derived.

Before doing so, let us reformulate some terms:

,0Gy  ,0Goor p (0 [(d(g) or p [00(g)1 o (1\\ or
pazzpawm‘—(a(ﬁfnéaza g%?*ﬁwa(;>a;
(001 By or g (00 ()L g

47r dg Orr on 4w \ dg Or c/r r? n

= ()

Wheredg—dng— d (T—t+z>d7'2>dg:1-d7'=d7'
dr dr c

Therefore,
0G) 1 do 1 0\ or
— =P = | = 1.59
Poon = i ( drcr ) on (1.59)
The partial derivative gT can be written as:
0 .
a—Z:n-Vgr:—n-VIr:—n-eT:—% (1.60)

dé 1
Term p/ - which appears on the RHS side of eq. [1.59| can be written as:
Ter

,ﬁi_i@W® w>

drer  cr or or

Therefore, eq. becomes

0G| 1 /10pd) 1 0y ,6)\ Or
oo 2 (2P0 DOy 0 ) 9T 1.61
on 4m (cr or cr Ot on (1.61)
1 9(p'9) , : : :
Term — appearing on the r.h.s. of eq. |[1.61| vanishes upon integration over
cr

7, because a physical signal cannot have existed for all times, i.e p'(7 = —o0) = 0.

Eq. can now be rewritten as:
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47y

1 (9]9 , 0\ Or 0 Op
/ < (_; ar Ur )871 47r7’8n)d5(§):>

oVp:f=0

/ H(f Qp T, §) AV (€)+
Vs

4rr

p(x,t) /H Qpr dV(§)+

1 / 1 .0p or ,0 0r  d0p
4

S L ALl QPR

cr Ot On r20n  ron
oVp:f=0

Using eq. [1.60 the above equation finally takes the form:

o1 /H 128 ey L / G:y+1£@LE@Qw@

A7y 4 73 cr? Or  ron

(1.62)

There are two terms in eq. The first is a volume integral which corresponds
to the influence of the source and a surface integral, roughly summing the pressures
and their derivatives on the Kirchhoff integration surface. In the above analysis, the
integration surface chosen was that of the body. Since that integration surface does
not contain the source, the presence of the volume integral in eq. is intuitively
expected so that the presence of the source can be taken into account.

It is also logical that, if the integration surface was chosen so that the source was
included inside it, only the second (surface) integral in eq. would remain. That
is easy to prove mathematically as was done right after the derivation of eq.
(the Heaviside function which multiplies the source term will be zero inside Vg), but
can also be intuitively understood. If the integration surface is chosen to contain
the source, the contribution of the source term is taken into account when summing
the pressure and its derivatives on the new integration surface, because these will
be influenced by everything contained in it. Therefore, the source contribution does
not have to be added as a separate volume integral.

The Kirchhoff integral can be seen as a special case of[1.62, where the integration
surface contains not only the bodies Vz but also any sources Vs. The new integra-
tion volume, containing both bodies and sources, is symbolized with V. Because
the source is placed inside Vy, the volume integral in eq. vanishes as mentioned
above during the evaluation of eq. for Vy instead of V.
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Therefore, eq. takes the form:

(xof) = n, r-ndpy 19y
pxt) = 4 / ( e + cr? Ot r@n)ds(ﬁ) (1.63)

oVp:f=0

Eq. has been derived for a medium at rest, a stationary receiver and a non-
moving integration surface and allows the computation of the pressure at any receiver
position outside a closed integration surface containing all bodies and sources, if the
pressure perturbation p’ and the pressure perturbation derivatives %—’: and g—f; on
the surface are known.

The Kirchhoff formula for a non-moving Kirchhoff surface and an observer at
rest in a medium in uniform flow, can be derived in a similar fashion to eq. [2]
and is given by the following formula

1 1 r-n\dp (1—M*)r-n M, 1 opf
(x.1) = — M, @ TR e — = g
P, ) 47 / Lr*( + r* ) or + r* P r* Vep r* On 5()
oVp:f=0
(1.64)

where M,, = n - M is the surface normal component of the Mach number of the
medium and 7* = /(M - 1)2 + (1 — M?)r?

1.4 Monopoles

A monopole is a source that radiates sound equally well in all directions. The
simplest example of a monopole would be a sphere whose radius alternately contracts
and expands sinusoidally, removing and introducing fluid into the surrounding area
respectively. A boxed loudspeaker also acts as an omnidirectional monopole source
at low frequencies. The equation giving the velocity potential induced by a monopole
is derived in the following manner: Let us consider the non-homogeneous wave
equation with a source term (). According to the Green’s function method, the
solution to the wave equation

2
Ty eve=q
18 .
b(x, 1) / / Glx — &1 — 1)Q(E, 7)dV (£)dr (1.65)
Voo —00

where « is the position vector of the receiver and & is that of the source. The dis-
tance between source and receiver is symbolized by r = |x — £|
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The 3D Green’s function for the wave equation is given by the following equation:

S(r—t+|x—¢&l/e)
inlx — €

Gx—&1—1t)=

Thus eq. becomes:

o= [ [ 5<T_4§TL':|£'/C>@( YAV (€)dr / Q8 e sf'/c)dwg)

Voo —00

If the source Q(x,t) is at the origin, then Q(x,t) = ¢(t)d(x) and, from the above
equation, the velocity potential is:

 falt—x—€/0s@) . alt—Ix—€l/o)
o) = [ ¢ wx-g VO Ty

Voo

b(x, 1) = ﬁq(t /o) (1.66)

Time t — r/c is referred to as the "retarded time”. A signal that reaches the
receiver at time ¢ has been emitted by the source at time ¢ — r/c, where r is the
distance between source and receiver and c is the speed of sound. In other words,
the signal needs time r/c to travel the distance between source and receiver.

If ¢ is a simple harmonic function of time, then q(t — r/c) = Ae®*"/9) and eq.
can be rewritten as:

A
P(x,t) = —ewt=1/0) (1.67)

dmr
This is the pressure field generated by a monopole - a single source which is con-
centrated at one point and whose amplitude changes sinusoidally with time. A
monopole is a source that radiates sound equally well in all directions. This can be
seen from eq. where there is no dependence of the pressure perturbation on
the orientation of the vector between monopole and receiver.

1.5 Dipoles

A dipole can be seen as two monopoles with equal but opposite strengths ¢ positioned
close together(at a small distance compared to the wavelength of sound). While one
source expands the other source contracts and the surrounding fluid is moved back
and forth, producing sound. A physical example of a dipole would be an unboxed
loudspeaker (while the front is pushing out, the back is sucking inwards). A sphere
oscillating back and forth also acts as a dipole.

A dipole does not radiate sound equally well in all directions. A receiver standing
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on the dipole oscillation axis, at a distance r from the dipole, will perceive a much
more intense sound than any other receiver who is at the same distance from the
dipole, but is not standing on the oscillation axis. A receiver standing on an axis
perpendicular to the dipole oscillation axis will perceive no sound at all. Therefore,
the dipole directivity pattern therefore has the form shown in fig. [I.2}

270"

Figure 1.2: Dipole directivity pattern. (From [2])

In fig. the dipole oscillation axis is horizontal, therefore the maximum sound
is perceived on that axis. At 90° and 270° i.e. vertical to the dipole oscillation axis,
the radiated sound is minimal - almost zero.

Let us now derive the dipole equation (see [5]). Two monopoles of equal and
opposite strengths ¢(t) and —¢(t) are positioned at a small distance from each other.
The monopole of strength —g(t) is placed at & and the one with strength ¢(¢) is
placed at (x + d). The distance between the receiver and the first monopole is r,
whereas the distance between receiver and second monopole is r 4 §r. The pressure
fluctuations caused by the two monopoles can be superimposed and the pressure
fluctuation for the dipole can be written as

t— ) t—
r+or r
Since the distance |d| between the two monopoles is sufficiently small, one can
use FD to express % [%} as follows :
q(t = (r+9r)/c) gt —r/c)
i q(t —r/c) _ r+or r
ox; r ;i +di — x5

Therefore:

r—+or r ox;

gt = (r+0r)/c) _qlt—r/c) _di{q(t—T/C)}

21



With ¢ being a simple harmonic function of time, i.e. g(t —r/c) = Ae(t=r/e),

eq|1.68 becomes

iw(t—r/c)
o) = di | 2

Ox;

A7y

or using a different notation:
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Chapter 2

Noise Prediction Results

In the present chapter, the KIM is used to compute the aeroacoustic pressure per-
turbation caused by a monopole and a dipole source, at a receiver. In the case of
monopoles and dipoles, analytical equations giving the pressure perturbation caused
by the source at any position, are also available. This allows the comparison of the
results obtained through the KIM to those yielded by use of the analytical relations.
Using simple acoustic sources with known analytical solution to check the validity
of aeroacoustic computation is common practice (see [6], [7] and [§]). Next, opti-
mization of the source position is performed, to find a position which gives a desired
"target” pressure perturbation at a receiver position. The optimization algorithm
used is the steepest descent method.

Deterministic optimization methods use the derivatives of the objective function
F w.r.t. the design variables b,, i.e. 6 F'/0b,,. To find a local minimum of a function ¥’
using steepest descent, one takes steps proportional to the negative of the gradient
of the function at the current point. The design variables are therefore renewed
based on the values of the sensitivity derivatives as follows

prew = pold — oy §F /5b, (2.1)

The sensitivity derivatives are computed through analytical differentiation of the
KI and, also, through FD for the purpose of comparison. The noise propagation is
examined for a quiescent fluid in 3D space.

2.1 Pressure Perturbation Generated by a Dipole
- Analytical Solution Compared with the KI

2.1.1 Mathematical Formulation

The velocity potential induced by a dipole with directivity vector d (i.e. oscillation
axis), is given by the following equation (see [§])
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4 R*

The pressure perturbation at the receiver position Z and time ¢ can be derived using
the linearized Bernoulli equation and is

¢<x,t>:v( A ew—fn).g (2.2)

q 9 | =
P (Z,t) = —po {8—(? +V. qu] (2.3)
where V = (Vi, Vo, V3) is the mean flow speed along the z,y, and z axis respectively.
Without loss of generality, it can be assumed that the mean flow is along the x
direction. Eq. then becomes

¢ aﬂ (2.4)

p(7,t) = —po {5 +Vx%

where:

po is the fluid density

A is the dipole oscillation amplitude

w is the dipole oscillation frequency

My is the Mach number defined as My = |V|/cq

PN T

Assuming that the dipole is placed at (0,0,0), R and R* are defined as follows
(see [9]):

R* = \/a? + 32(y? + 2?) (2.5)

R = [~Myx + R*]/3* (2.6)

For very low Mach numbers (low flow speed compared to the speed of sound in
the medium), § becomes 1 and both R* and R tend to coincide with the distance

between dipole and receiver d = y/x? + y? + 22 .

Eq. can be rewritten as:
O, 1) = Vi d = V(o) - d

and 1y = el (=%)]

where 1, =

47 R*
The gradient of ) can be written as: Vi = 1) - Vibg + 1y - Vi1, where

1 =P1(RY) o = a(R)

I 4 )

Vo 4 (R*)>?
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Ty = 220 R o iy = — L (-8R = vy = 2 4vR
OR Co Co

where OR u
VR=—VR*+ (_—0 o,o)

OR* Bz
The gradient of 1 is:

Vi = — [WlCOaR* +47T(R) ]%VR +¢17/J2 <ﬁ2 ,0,0>

1 1
where VR* = R*( x, %y, 5°z) and g]?* - 32

Thus, the velocity potential can finally be written as:

| |
0= = [0+ ] P+ B+ )+ M, (2

The time derivative of ¢ can be computed as follows:

_ > 00 _ 0 A _w (%) .7
Oa,t) =V d= = = at(w'd>_v(at) d

Since only )5 is a function of time,

81/} = wl 81/}2 = Ww1tPy = WY =

% — Vi) - d = iV - d= it

0
In order to compute the pressure from eq. ,the partial derivative 0_¢ should
x
be computed. Eq. can be rewritten as:

1 ) wM,
o= —Aﬂbzﬁf\z + “ﬁﬁﬂzW;daﬁ

where
w A

_l’_
coB?  4m(R*)?

Ay =iy

and
Ny =ad, + 62(ydy + zd,)

The spatial derivative of ¢ w.r.t x is:
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99 A 1 Oy 1 1 OR*

Ny WY Wi - Sy VT WY Al
ox ox w2R* 2 Vor R 2+ 1w2(R*)2 or 2 2.8)
1 0Ny OYy  w Oy w '
Aﬂ/&ﬁ o7 + D7 ¢26052M0d:c +Z¢1%K52Modx
where
orR* x
or  R*
o _
or ¢
Ny O OR* B Ax
or  OR* Ox A ( R*)3
Oby iwIR iw 1 OR*
9r 1/1255 = ¢2c—0@ [ My g ]
oA, W oY B 2A  OR* . Ax w +i
o cB? Oz 47T(R*)3 or 27T(R*)3 2c08> R

The pressure perturbation can analytically be computed from eq. at any point ¥
and time t. The analytical computations can be compared with the outcome of the
KI formula (eq. [1.63). To that end, a Fortran code was written, which performs both
analytical and KI-based computation of the pressure at an receiver, and compares
the two as follows: The analytical expressions are used to compute the pressure
perturbation:

e at an receiver position 7 = (z,v, 2)
e at the nodes of a spherical surface grid, centered at the dipole location.

The spherical surface acts as our KI surface. By integrating on it, the pressure
perturbation at the receiver position ¥ = (z,y, z) is computed.

The pressure perturbation at receiver position ¥ = (z,y, z) through the use of
KI is given by the equation:
1 /[F-ﬁp’(f,ﬂ 7 nop 10p

S

i r r2 cor? Ot (#7m) = g (®T)| 45

All terms in the integral must be computed at the retarded time 7, which is
the emission time of the signal that reaches the receiver at time t. The retarded
time is 7 =1t — %, where 1 is the distance between the receiver and each integration
surface node. Using the dipole equations, the pressure and pressure derivatives at
the receiver time t are obtained. Their values at the retarded time 7 are computed
through linear interpolation.

Regarding the terms needed for the integration:
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e The pressure perturbation p'(#,t) is computed at all the nodes of the KI sur-
face, by use of the analytical dipole equations as described above. It is easy
to interpolate and obtain the pressure perturbation p'(Z, 7) at retarded time.

e The time derivative of p/(Z,t), %—’;/(f, 7), is computed through use of FD and

linear interpolation in time, in order to obtain its value at the retarded time
T.

e The normal derivative %—f;(.f, 7) is equal to:

8—p:V’~A E)p_@pn +8_pn +a—pn2
Y 0z

on pn:@n_ﬁ_xm dy

where 7 is the unit normal vector of each integration element d.S. The gradient
Vp' is computed through FD and then used to obtain the normal derivative
g%. Again, the gradient at retarded time 7 is linearly interpolated.

2.1.2 Results

Directivity pattern and pressure perturbation intensity

The subsequent computations have been made with the use of the analytical formulas
that have so far been presented in this section, for a source in quiescent medium
with the following characteristics

e dipole oscillation axis orientation (1,0,0) i.e. x-axis
e oscillation frequency w = 2rad/sec

e oscillation amplitude A = 0.05m

e source position (0,0,0)

The dipole directivity pattern, computed by the code is presented in fig.
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Figure 2.1: Dipole source. Polar plot of dipole directivity pattern in non-moving
medium on the z-y plane. The dipole is placed at (0,0,0) and oscillates along the z-axis
(horizontal). For a fixed receiver - source distance, mazximum pressure perturbation is
perceived on the dipole oscillation axis. Receivers placed on the y-axis (vertical one)
receive no pressure perturbation.

The directivity pattern is produced by keeping the receiver at a constant distance
of Im from the source, but changing the angle 6 (using a step df = 3°) that the
vector pointing from the source to the receiver forms with the dipole oscillation axis.

As can be seen from the fig. [2.1] if the receiver is not placed on the dipole
oscillation axis, it will have to be moved closer to the dipole in order to record the
same pressure perturbation magnitude as a receiver placed on the oscillation axis.

In fig. the pressure time series at a receiver kept at a constant distance of 7m
from the source, but placed at three different angles 8 = 0°, = 45° and 6 = 90° is
shown. The receiver is displaced on the x-y plane to produce the directivity pattern.
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Figure 2.2: Dipole source. Pressure perturbation time-series at a receiver placed at
three different angles 6 = 0°, 8 = 45° and 0 = 90° relative to the oscillation axis. The
receiver - source distance is kept constant (7m) and the source is placed at (0,0,0). The
computations were done using the analytical egs. [2.4 and[2.3. The mazimum pressure
perturbation (red curve) occurs on the oscillation axis. The blue curve corresponds to
an angle 6 = 90° where, as expected, no pressure perturbation is perceived.

Analytical results compared with the KI

As already mentioned in section[1.3] the KIM allows the computation of the pressure
perturbation at any receiver position outside a closed integration surface containing
all bodies and sources, if the pressure perturbation p’ and the pressure perturbation
derivatives 88—{ and %—’: on the surface are known. The KIM is now applied i n order
to compare the pressure perturbation time-series at an receiver with the time-series
at the receiver obtained by directly using the analytical equations to 2.8 It is
reminded that the used KI surface is a sphere of radius 1, with the source placed at
its center.
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Figure 2.3: Dipole source. Pressure perturbation time series at a receiver. It can be
seen that the time series produced through the use of the KIM (purple curve) almost
completely coincides with the results obtained through the use of the analytical relations
(green line). The source is placed at (0,0,0) whereas the receiver at (7,0,0).

As can be seen the KIM and the analytical formula produce almost identical
results, which verifies the correctness of the way the KIM was implemented in the
created Fortran KI code for the aeroacoustic pressure perturbation computation.

2.2 Computing the Optimal Dipole Position for a
User-Defined Target Pressure at the Receiver

Having the tools to compute the pressure perturbation at any desired receiver po-
sition, either through the KIM, or the analytical equations to the next step
is to proceed to optimize the source position with the aim of obtaining a desired
pressure time series at the receiver. The optimization process can be described as
follows:

e The source was initially placed at (0,0,0) and the pressure perturbation time
series at the receiver placed at (7,0,0) was computed.

e The computed time-series was stored and set as desired target pressure time-
series at the receiver position.
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e The source was then placed at a position other that the initial, thus evoking
a pressure time-series at the receiver, different than the target time-series set
in the previous step.

e The sensitivity derivatives of the pressure perturbation at the receiver w.r.t
the source coordinates are computed either with the use of FD or through the
direct differentiation of the KI expression (eq w.r.t the source coordi-
nates. Those two processes will be described in more detail in the text that
follows.

e Having obtained the sensitivity derivatives, the steepest descent method was
used to update the design variables (i.e. the source coordinates), in a way that
will lead to the minimization of the difference between pressure perceived at
the receiver and the target pressure.

To begin with the optimization precess, an objective function to be minimized
must be defined. Since the aim is for the pressure time-series at the receiver p = p(t)
to coincide with the target time-series, it makes sense to define an objective function
dependent on the squared difference of the two time series. Thus, the objective
function J is expressed as:

T
1
I= 7 [ -y (2.9)
0
Not squaring the difference would allow the objective to take negative values and a

zero pressure time series p'(t) does indeed minimize a quantity that can be negative,
thus preventing us from ending up with a time series that matches the target one

e

Our design variables b, = (by, b, b3), as already mentioned, are our source coor-
dinates (xs, ys, zs) and are updated using the steepest descent method as

6J
prew — pnew _ old _ "~
S ‘rs n5b1

o0J
bnew — g new old
ys ys n5b2
6J
bnew _ new _ old
The derivatives 6% = (SSTJI’ (%, 357‘2) are computed from eq. in the following
manner
r 571 [ 5 — pl)
1 1 p—p
dt:—:— 20p — pl) ——dt = 2.10
0 0
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The computation of (;STJ and the application of steepest descent therefore re-

quires the computation of the derivatives %. This computation is implemented in
two ways in the code: first, through the FD and, then, by directly differentiating
the analytical formula of the KI (eqi1.63)).

Finite Differences

Applying the FD method is fairly simple. Since the pressure can be computed at
any point, either analytically or through the use of the KIM, the sensitivity deriva-
tives i.e the total derivative of the pressure at the receiver position w.r.t the design
variable b, = x, for instance can be expressed as

o _ph—1h
obi — db,

where pl, is the pressure perturbation at the receiver if the source is displaced by
a very small quantity db; relative to its initial position, towards the positive of the
x-axis. Respectively, pf, corresponds to the pressure perturbation at the receiver if
the source is displaced by —db;. The FD method is very simple, but has a cost that
scales with the number of design variables N, rendering it unsuitable for use in large
scale optimization problems.

Before presenting the results of the optimization, one thing should be noted.
Since the intensity of the received pressure perturbation depends on both the dis-
tance from source and the angle between the source-receiver vector and the dipole
oscillation axis, there are many positions in space where the source can be placed and
evoke the desired target pressure time-series at the receiver. If the angle increases
from 6 = 0° (receiver placed on the dipole oscillation axis), towards # = 90° the per-
ceived pressure magnitude drops if the source-receiver distance remains unchanged.
If, however, the receiver is displaced closer to the source, the same magnitude as
that of p; can still be experienced. To conclude, the fact that the target pressure
is computed with the source placed at (0,0,0) does not mean that the optimiza-
tion process should find that position as the one that gives the desired pressure at
the receiver. The optimal source position depends on where the source is initially
located.

Fig. 2.4 shows the decreasing objective function value during optimization when
the source was initially placed at (-2,-1,-3).
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Figure 2.4: Dipole source. Objective value vs Number of optimization cycles. The
source is initially placed at (-2,-1,-3). Observer is, as always, at (7,0,0). The obtained
optimal source position is (0.4179, -0.6088, -1.8259)

For the above run, the source was initially placed at (-2,-1,-3) and the receiver,
as always, at (7,0,0). It is reminded that the target pressure has been computed for
a source placed at (0,0,0). At the end of the optimization, the dipole is placed at
(0.4179, -0.6088, -1.8259). The pressure time-series resulting at the receiver position,
compared with the target pressure can be seen in fig[2.5
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Figure 2.5: Dipole source. Pressure evoked at the receiver at (7,0,0) by a source
placed at (0.4179, -0.6088, -1.8259) (purple line) after optimization, compared with
the target pressure (blue). The difference between the two curves is practically invisible.

Next, the source is initially at (-16, -5, -7). The final source position obtained
after optimization is at (xs,ys, zs) = (—1.854,—0.520, —4.008). The course of the
objective is presented in fig[2.0]
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Figure 2.6: Dipole source. Objective value vs number of optimization cycles. The
source is initially placed at (-16,-5,-7). Observer is at (7,0,0).
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The comparison of the obtained pressure at the receiver and the target pressure

is seen in fig. 2.7
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Figure 2.7: Dipole source. Pressure at the receiver at (7,0,0) caused by a source
placed at (-1.854, -0.520 , -4.008) (purple line) after optimization, compared with the
target pressure (blue). The two time series coincide completely.

Below a list of final source positions (x, ys, zs) obtained after optimization, all of
which produce the desired pressure perturbation time-series at the receiver placed
at (7,0,0). The final column of the matrix, denoted with d is the distance between
source and receiver.

T Ys Zs d
0.7991456 1.6818595 —1.9785377 6.7226378
3.4600903  0.0000000  4.3087021 5.5763675
0.6636761 —1.6883515 —1.6883515 6.7712675
1.1719837 —2.3357192  1.9852843  6.5850369
0.3780577 1.8353126  0.0000000 6.8715713
3.2557120 —2.7816742 —3.2441594 5.6817228
0.9800299 —0.5895790 2.7789459  6.6565895
0.7991456 —1.9785377 1.6818595 6.7226378
1.4840865 2.3847840  2.3847840  6.4652680
3.0080183  2.9795164  2.9795164 5.8043910
0.9342282 —0.2511221 —2.7709413 6.6734373
1.0384263 0.2634159  2.9005639 6.6349846
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Analytical Differentiation of the KI

Having used FD to find the source position that gives the desired pressure at the re-
ceiver, we now proceed to compute the sensitivities by differentiating the KI. Thus,
eq. is differentiated w.r.t the design variables (by, b, b3) which are the source
coordinates (g, ys, z5). It was observed, that the inclusion of the terms arising from
the differentiation w.r.t. the normal direction n produces negligible differences in
the resulting sensitivities. It is, therefore, excluded from the analysis that follows.

After exclusion of the termlgi, eq. is written as
1 7N T;N; Op
= — — = 1dS = — [ GidS 2.12
P = ( r? P+ (915) 4T / ( )
S

If z; is the j-th coordinate of a node of the Kirchhoff surface (j=1,2,3) and 27 the
j-th coordinate of the receiver, then

— z;)? (2.13)

r; =" —x, (2.14)

=L (2.15)

is the unit normal vector pointing from node to receiver.

Differentiation of eq. yields
1 d(dS)
i / “ s
S

(2.16)

5G
47T5b /GdS 47r 5b

dS in eq. [2.16

Term 4i /
S
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The integral 417r

6Gid5 1 ) <T1n1p+ i E)p)ds

b, ar | ob, ot

& st (o) 5, () os
ob, P\ ) s,
o (rn;\Op Tn; & (Op
+£( )a* cr@(atﬂds

Let A=5- ( )“ B=1 ( )E O—@( )aﬂs o b,
S

Each of the terms A, B,C and D is developed separately. First, some terms that
are needed for the computation of A, B, C' and D are developed.
Differentiation of eq. gives

7’80 ec

"
- .TJ \/7
rec

Taking eqs. and into account and since the receiver maintains the same
position during optimization, yields

or .0z,
R 2.1
ob,, J(Sb (2.17)
The total derivative of r; w.r.t. b, is
or; ) ox;
! = ree _x;) = —— 2.1
5, ab, T = g (2.18)
The partial derivative of the retarded time 7 w.r.t. z; is
or _ 90 (,_ry__lor 11 (@7° — ;) — 4 (a7 — ;) =
Oz, N Oz, c) c 0z, o e2r I Oz, J
87’ ’fj
L 2.1
Ox; c (2.19)
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Finally, the total derivative of a function f = f(x;, 7(x;),b,) can be written as

Of _ 0f oby , Of ox; , Of o7
ob,, ob,, 6b, 8xj(5bn ot b,
of 6b,  Of dx; Of (OT
= b, 0b, | Oz 0b, E(a_bn
_ﬁ ﬁ%_‘_afaT(sxj

~ Ob, Oz 0b,  OT Oz Ob,

o7 oy
&xj 5bn

(2.20)
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The computation of the terms A to D follows:
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Finally,

D= ﬁ(a)

_ ﬂﬁz{ 0%p dxy O*pijdx;  O*p

Jtdz, 5b, | OF ¢ ob, | b,

cr

/

Final expression for the derivatives %

Having computed the terms A,B,C and D,nthe final expression for the derivatives
/

—— can be assembled:

oby,
opt 1 o1 1 Op]ox;
ob, Am (BFiffs = s) [r3p+ cr? 6t] by,
s
1 -fﬂAlz ap 7217%@ 82]7 f'j 82]? 5l’j
— —— || =dS
+47r | 72 Oz * cr (at(?xj c 0t? ) | db,
s
LT B T a(a—bnﬂds
S
— — — 2.21
+47r _7"2p cr 8t] by, (221)
S

where the last integral containing the term % is in our case zero, since the
Kirchhoft surface elements do not change in size dS or orientation (i.e their normal
vector 7n; does not change) over the course of optimization, but are translated parallel
to themselves, following the movement of the source. (It is reminded that the design

variables are the coordinates of the source, while the receiver is kept at a constant

. op Op 0O’ % Op O dp .
t . The t - — —— — —— —and — the ab
position) e terms p, -, Du; Otd,’ 9 Db, O an . appearing in the above

integrals need to be computed and, then, interpolated for the retarded time 7 in order
/

to perform the integration and compute % These terms can be computed in the
n

manner presented in the beginning of the present section, i.e. through the use of FD
and linear interpolation to obtain their values at retarded time. To check whether
the derivatives computed through eq. are correct, they are compared with the
ones computed by FD. The two methods, i.e eq. and FD, produce very similar
results and both methods are successful at performing optimization of the source
position, but the slight differences in the computed derivatives mean that even if the
starting position of the source is the same both for FD and the analytical formula,
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the two methods will not give the same final position for the source. However,
as it will be seen, both point to positions that minimize the objective to a very
satisfactory degree.

Next, the optimization is run using the analytical formula to compute 5‘%. The
sensitivity derivatives are subsequently computed and steepest descent is performed.
At the same time, in each optimization cycle, 5% and the sensitivities based on FD
are also computed, without being used anywhere in the code. They are however
recorded and compared with the derivatives produced through the analytical for-

mula. The main steps are therefore the following
1. Start with source at arbitrary position,

2. compute 5% through FD at current source position,

3. compute 5‘% through eqi2.21| at current source position,

4. compute sensitivities 5% based on 6%’; computed through eq. @
5. compute sensitivities (;;TJ based on ;Tp computed through FD,

6. record sensitivities produced by FD and through analytical computation for
comparison

7. use the sensitivities computed based on the analytical formula to descend and
renew source position and

8. return to step 2.

As a first test, the source was initially placed at (-0.1,0,0) - (x5, ys, 25) = (0,0,0) is
a position that produces the target time series (since the target pressure time series
was computed for a source at (0,0,0)). The comparison of the sensitivities produced
through FD and analytical formula can be seen in figs. and
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Figure 2.8: Dipole source. Comparison of the sensitivities 0.J/6by = §J/0xs produced

using the derivatives 0p/doby of the analytical formula compared with FD. The
sensitivities coincide almost completely.
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Figure 2.9: Dipole source. Comparison of the sensitivities 6J/dby = §J/dys produced
using the derivatives 0p/dby of the analytical formula compared with FD. Both
methods give very small sensitivities. More specifically, FD give zero sensitivities in

the y direction, whereas the analytical formula gives sensitivities with of the order
of 107, Both methods give very similar results.
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As mentioned the source was initially placed at (-0.1,0,0). After the end of the
optimization it was placed at (1.94-1073 , 1.17-1075,0). The pressure perturbation
induced at the receiver coincides with the target pressure time series as can be seen

in fig. .11

0.0002

" pobs"
‘ptarget’
0.00015 | plarg
o
a
E 0.0001 L
g
E 5e-05 |
g
2] 0 L
5
w
D -5e-05 |
(=1
=
& -0.0001 |
=0
(=]
[
@ 000015 |
_00002 1 1 1 1 i i
o} 0.5 1 15 2 25 3 35

time(sec)

Figure 2.11: Dipole source. Pressure time series at receiver caused by a dipole placed
at the position (1.94-1073 , 1.17-1075,0) after optimization, compared to the target
pressure time series.

2.3 Pressure Perturbation Generated by a Monopole
- Analytical Solution Compared with the KI

2.3.1 Mathematical Formulation

For a monopole, the induced velocity potential is given by the equation:

oz, t) = 47;4R*e[iw<t_§§)] (2.22)

Again, in order to compute the pressure perturbation from eq. [2.4] the deriva-

0 .
tives —QS and — should be computed. For the time derivative, Fri wao.

ot Ox 5
The spatial derivative —¢ is:
Ox
a¢ _ % (e(iw(t—R/co))) R — e(iw(t—R/co))% _
ox (R*)?
A , 0 ’ oOR*
— | Rrew=R/co)) = (;,(t — R — pliw(t=R/co)) 27" |
Am(R*)? ( ‘ Ox (ieo( [co)) e Ox
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dp Aeliw(t—F/co)) ( woR GR*)

dr — An(R*)? \ ¢ Ox Ox _

Now, OR/0xz and OR*/Jx should be computed, in order to obtain the final ex-
pression for d¢/dx. According to eq. :
or* 1 x

or 2R R
and according to eq.

OR 1 0 1 OR*

L ()

Finally, eq. becomes

(iw(t—R/co)) :
g _ A=) (_Ei (~My+ =) R - i)

dr  4r(Rr)? co 12 R R
Ae(iw(t_R/CO)) w 1 €T
e (S VN S
i (oo )
Ae(iw(t—R/Co)) iwR* COBQx
= — —MyR" +x) —
i a0 )~ )

Ae(iw(t—R/e0)) (in*(—MOR* + )+ COﬂZ‘r)
47T(R*)2 COBQR*
Aeliw(t—R/co))

B _W (iwR*(—MoR* + z) + cof°x)
0

Aeliw(t=R/co)) ,
= (—iwMy(R")* + iwR*z + ¢ °z) =

- 47T00ﬁ2(R*)3
o Ae(iw(t—R/CO)) ) . ' .
5= e (MR — (o 4 w)) (224)
0

: 0 L
Having computed —gb, the pressure at any point is computed through eq. [2.4

and the analytical calculations are compared with the results of the KI, similarly to
the dipole case.
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2.3.2 Results

Directivity pattern and pressure perturbation intensity

The following results are derived for a monopole with the characteristics listed below

e oscillation frequency w = 2rad/sec

e oscillation amplitude A = 0.05m

e source position (0,0,0)

The monopole directivity pattern is presented in fig. 2.12]
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Figure 2.12: Monopole source. Polar plot of monopole directivity pattern in non-

moving medium on the z-y plane.
emits sound uniformly in all directions, i.e.

The source is placed at (0,0,0). The monopole
the perceived pressure perturbation is

solely dependent on the distance from the monopole and not on the angular position

of the receiver.
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The fact that there is no dependence on the angular position of the receiver is
also confirmed by the following graph. Three observers are placed at a constant
radius of 7m from the monopole source, but at different angles w.r.t the x-axis, i.e.
at 0,45 and 90° respectively. The pressure signal received by all three observers
is, as can be seen in fig. 2.13] exactly the same.

0.0015 = | . . .
: : : : 'Udeg'
_ 0.001 -
&
z
S 0.0005 -
o
£
£ 0 :
Q
o
g
S5  .0.0005 -
o
g
< _0.001 .
-0.0015 | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5
time(sec)

Figure 2.13: Monopole source. Pressure perturbation time series at a receiver placed
at three different angles 8 = 0°, 0 = 45° and 0 = 90° relative to the z-axis. The receiver
- monopole distance is kept constant at 7m with the monopole placed at (0,0,0). All
three receivers record the same acoustic pressure perturbation, as expected.
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Analytical Results Compared with the Results Obtained through the Use
of KI

Next, the results obtained through the use of the analytical expressions for monopole
are compared to those yielded by the use of KI.

- . —

0.0008 T T T T T
; ; : ‘analytical' ——
'Kirchhoff' ——— _|
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time(sec)

Figure 2.14: Monopole source. Pressure perturbation time-series at receiver posi-
tioned at (-10,2,-6). Source position (0,0,0). The time-series produced through the
use of the KIM (purple curve) coincides with the results obtained through the use of
the analytical monopole formulas.

As can be seen the results obtained through the KIM coincide with those pro-
duced by the analytical formulas [2.2] to
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2.3.3 Computing the optimal Monopole Position for a Cer-
tain Target Pressure at the Receiver

Next step is to optimize the monopoles’ position to achieve a certain target pressure.
The steps followed for the optimization process are the same as the ones presented
in the previous section for the dipole i.e. the source is initially placed at (0,0,0) and
the pressure computed at the receiver (7,0,0) is set as target. Then, the source is
placed at an arbitrary position and the optimization starts, by computing the sen-
sitivities through FD or through analytical differentiation of the KI and performing
steepest descent until a position that minimizes the objective is reached.

The objective function is the same as in the case of the dipole (see eq. ,
therefore the sensitivity derivatives fb—‘]l are computed from eq. . 0 g again,

Ie 5bn
computed either through FD or by directly differentiating the analytical formula of

the KI (eq1.63).

It should, once more, be noted that there is no single position that gives us the
desired pressure distribution at the receiver. Since the monopole emits wave sig-
nals uniformly in all directions, if the distance between source and receiver is kept
constant, the pressure signal at the receiver remains unchanged. This means that
the locus of the source positions that minimize the objective function is a sphere
centered at the receiver.

Finite Differences

o
Below the results obtained after the computation of P through FD are presented.

0by,
Fig. shows the decreasing objective function value during optimization, when

the initial source position is at (-10,2,-6)
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Figure 2.15: Monopole source. Objective value vs. number of optimization cycles.
The source is initially placed at (-10,2,-6). The receiver is, as always, at (7,0,0).

At the end of the optimization, the monopole is placed at (0.1703 , 1.4964 ,
-0.3403). At that position the pressure at the receiver completely coincides with the
target pressure. Below is a list of final source positions (x,ys, zs) obtained after
optimization, all of which produce the desired pressure perturbation time-series at
the receiver placed at (7,0,0). The final column of the matrix denoted with d is
the distance between source and receiver, which is invariably very close to 7, as

expected.

T Ys Zs d
0.1702824  1.49638861 —0.34026859 7.000000296
9.5230317 —6.52943378 0.02863951  7.000001045
1.2471189 —3.95728275 —0.49424404 7.000000342
6.0333524 —6.93293655 —0.00052205 7.000001219
2.7421377  5.55609373  —0.02098918 7.000000661
7.0000000 —7.00000124 0.00021696  7.000001243

Analytical Differentiation of the KI
Here, the sensitivities obtained through the use of FD are compared to those yielded

by eq. 2.21] The optimization starts with the source placed at (5, 3, —2), the receiver
is placed at a constant position (7,0,0) and the target pressure has been computed
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(as in all previously examined cases), as the pressure induced at the receiver, when
the source is at (0,0,0). At the end of the optimization, the source is placed at
(3.6045, 5.0932, -3.3954), i.e.at a distance of approximately 7m from the receiver.
The pressure time series induced at the receiver by a monopole located there, com-
pletely coincides with the target pressure.

The optimization steps were performed using the sensitivities produced by eq.
but in each cycle, the sensitivities were also computed through FD and the results
were stored for the comparison that follows.
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Figure 2.16: Monopole source. Comparison of the sensitivities §J/dby = 0J/dx

obtained using the derivatives 0p/dby of the analytical formula with those obtained
through FD. The sensitivities coincide almost completely.
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Figure 2.17: Monopole source. Comparison of the sensitivities 6.J/5ba = §.J/0ys
obtained using the derivatives 0p/dby of the analytical formula with those obtained
through FD. The two methods produce almost identical results.
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Figure 2.18: Monopole source. Comparison of the sensitivities §.J/5bs = §J/dzs
obtained using the derivatives dp/dby of the analytical formula with those obtained
through FD.The sensitivities resulting from the two methods are almost identical.

The presentation of the above results concludes the first part of the present
thesis. Ultimately, the advantage of the KIM is that it is a tool that enables the
computation of noise without the need of costly CFD computations over a domain
that extends from the source up to the observer in the source far-field. The method
uses only CFD data obtained in the near-field of the source and propagates this
information to the far-field where the induced noise is computed. In this thesis
the KIM was used to predict the noise generated by sources, for which analytical
equations for the induced pressure are available, but that was for demonstration
purposes. The value of the KIM can be seen when coupled with a CFD software to
perform noise prediction in the far-field of the CFD domain.
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Part 11

Continuous Adjoint-based Shape
Optimization
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Chapter 3

Continuous Adjoint Formulation
for Incompressible, Steady-State
Flow

In the first part of this thesis, the Kirchhoff Integral Method for aeroacoustic noise
prediction was tested in the case of simple acoustic sources (monopole, dipole). The
second part, carried out at BMW Munich, is also partly related to noise generation,
which is always unwanted in industrial applications. In the automotive industry,
some common sources of noise and, therefore, of discomfort are the Heating, Ven-
tilation and Air Conditioning (HVAC) units and the exhaust system. Part of the
second chapter of this thesis concerns itself with shape optimization for noise reduc-
tion. This is done not through the use of acoustic analogies, but rather by choosing a
"noise-related” objective function i.e. an objective whose reduction has been shown
to also minimize noise levels.

3.1 The PCOpt/NTUA Software

During the last years, a key research activity in PCOpt/NTUA was the development
of adjoint-based methods for the computation of first- and higher-order derivatives
of objective functions used in aerodynamic optimization. The development was
based on in-house flow solvers (for both compressible and incompressible flows, us-
ing time-marching techniques for systems of hyperbolic equations and, for incom-
pressible flows in particular, the pseudo-compressibility technique) and OpenFOAM
(pressure-based method for incompressible flows). The continuous adjoint method-
ology utilized is this thesis was developed in the OpenFOAM-2.3.1 environment by
the PCOpt/NTUA and its distinguishing features are

1. The full differentiation of turbulence models and

2. The fact that it accounts for the grid sensitivities (for the first time in contin-
uous adjoint).
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In contrast to all previous works on continuous adjoint, [10] introduced the con-
tinuous adjoint method to both the mean-flow and turbulence (Spalart—Allmaras)
equations by overcoming the frequently made assumption of neglecting variations
in turbulent viscosity, commonly known as ”frozen turbulence asumption”. It was
demonstrated that the adjoint to the turbulence equations is really needed for the
accurate computation of the sensitivity derivatives. Not solving the adjoint to the
turbulence model equation(s) results in wrong and, what is worse, wrongly signed
sensitivities that may mislead the optimization algorithm. The same work has been
extended to variants of the k — e model.

The second distinctive feature of the software is, as mentioned, the way it ac-
counts for the griéd sensitivities i.e. the derivatives of the grid coordinates w.r.t. the

Tk

design variables, 5= The basic idea of the adjoint methodology, which is the avoid-
dp

ance of the computation of costly terms such as 5> can be extended to the grid

sensitivities. The computation of ‘;g—’“ can, thus, be avoided by differentiating a grid

displacement model and deriving an adjoint grid displacement equation[TT].

3.1.1 Three Continuous Adjoint Formulations for Shape Op-
timization (SI - FI - ESI)

The continuous adjoint approach for shape optimization, in flows governed by the
Navier-Stokes equations can be formulated in three different ways, each of which pro-
duces a different expression for the sensitivity derivatives|[11]. All three formulations
give rise to the same adjoint mean flow equations and the same adjoint boundary
conditions. The first formulation, leads to an expression including only boundary;,
i.e.surface integrals (S1 approach). This means that it has a low computational cost,
but can lack accuracy. The second formulation results in a sum of both boundary
and field integrals and can be referred to as F'I. The F'I approach is accurate but
costly, because of the need to integrate over the volume of the domain and, also, the

oxy,

need to compute g% The Enhanced ST (E — ST) approach, eliminates the need to

compute ‘;f—k, thus reducing the cost, while maintaining an accuracy as high as that
of the F'I formulation in the computed sensitivities [I1].
Next, follows a brief presentation of the three formulations. All formulations

start with the definition of the augmented function F,,, as

Fog = F + / U, Ryd) (3.1)
Q

where F' is the objective function, R; = 0, i=1,2,..,N (N = number of primal equa-
tions) are the state equations, U; are the adjoint variables and {2 the computational
domain. Differentiation of eq. w.r.t. the design variables gives

0Fpy OF 6
i el L (3.2)
Q
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The difference between the F'I and both the SI and ESI formulations lies in
the way that the differentiation % Jo, Ui R;dQ) is performed.

In the FI approach, the term is further developed as follows

5 B SR; 5(dQ)
Q Q

Q

e = e (5r)dand 5-(82) = 52 (52) — ot o2, (57%) and the

Green-Gauss theorem, eq. [3.3] yields a ﬁnal expressmn for the sensitivity derivatives,
containing field integrals of %2 £[11]. This is the basis of the so-called F'I adjoint
formulation.

Using the relations

The aim of the ST approach is to avoid the appearance of field integrals of the
grid sensitivities 6” . To that end, the Leibniz theorem is used, which states that

| @ = / 22A0 + / @nk%dS (3.4)

The term - [, U;R;d<) is, therefore, written as

0 5l’k
" /\I/RdQ / el dQ+/\IfRnk5bndS (3.5)
Q S

where S is the boundary of €). This results in the following expression for the
sensitivity derivatives

5(Ek
oby,

F F
0Fug _ OF +/\1; O, 0%k 45 (3.6)

5b.  ob. b, dQ*/‘I’R”’“
Q S

Eq. is the origin of the ST adjoint formulation. The final expressions for the
sensitivity derivatives for the F'I and ST formulations for incompressible, steady-
state laminar flows can be found in [I1]. The last term in eq. is called LBterm,
which stands for Leibniz term. Moving asymptotically from the inside of the com-
putational domain (where the state equations are satisfied) towards the boundary,
it can be assumed that the state equations are also satisfied on the boundary, there-
fore, LBterm is usually ignored. However, the contribution of the LBterm can
become very important, depending on the specific case [I1I]. The F'I and ST for-
mulations are mathematically equivalent and should produce the same sensitivities.
However, omission of the L Bterm leads to disparity between the sensitivity deriva-
tives produced by the two approaches. Computing the L Bterm presents substantial
numerical difficulties (regarding its discretization on the boundary), rendering its
inclusion into the sensitivity derivatives expression impractical. It can be shown
that the LBterm is mathematically equivalent to a volume integral containing the
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grid sensitivities, which is a more easily computable alternative to the LBterm [11].
However, the cost of computing this volume integral scales linearly with the number
of design variables, rendering this approach as costly as the FI formulation. The
Enhanced SI (E — SI) formulation aims at the complete elimination of the field
integrals of %’j in the sensitivity derivatives expression. The same philosophy of
the adjoint methodology, which eliminates the need of computing volume integrals
of the variation of the state variables w.r.t. the design variables, can be extended
to the grid sensitivities[II]. The grid displacement model used, is mathematically
described by the Laplacian gdPDEs and reads
m 82mi

R = 8—90? =0 (3.7)
where m; are the Cartesian displacements of the nodes of the grid, whereas x;
are the Cartesian coordinates of the nodes of the grid. When the position of the
boundary nodes is renewed during optimization, the computed displacements of the
boundary nodes are the boundary conditions used to solve eqs. and to compute
the new positions of the internal nodes of the geometry. Therefore, following the
adjoint methodology, and with the aim of eliminating the need of computing gi—:, a
new term is added to the augmented function and the following expression for the
sensitivities is obtained

g _OF | 5
§b,  6b, b,

J )
RY — P — aRm
/ulRldQ—i— 5, qRPdS) + 5 /ml R™dQ) (3.8)
Q ) 0

where m{ is the adjoint to the Cartesian displacements m;. Further developing
eq. leads to the derivation of an adjoint equation for the grid displacements
m; and finally to an expression for the sensitivity derivatives that is free of field
integrals of the grid sensitivities. In conclusion, the F'I approach is, because of
the field integrals of the grid sensitivities, computationally costly. However, since
no terms are neglected in the F'I approach, it is also accurate. The ST approach,
is computationally cheap, but, because the LBterm is ignored, less accurate than
FI. If the LBterm is not ignored, the two methods are mathematically equivalent.
However, inclusion of the LBterm presents numerical difficulties, or, in the case
where it is substituted by the mathematically equivalent volume integral mentioned
above, the computational cost is increased, so that the cost becomes as high as that
of the F'I formulation. The E — ST formulation proposed in [I1] ;maintains the high
accuracy of the F'I approach, while the two major advantages of ST are still valid:
cost independence from the number of design variables and sensitivity derivatives
free of field integrals|11].

The concept of using an adjoint grid displacement model to eliminate the need of
grid sensitivities computation, has been proposed in the literature of discrete adjoint
methods[12],[I3]. The first time, however, that such a formulation was proposed in
the continuous adjoint literature was in [11].
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Shape optimization in the present thesis was performed using the E — ST for-
mulation, which is presented below.

3.2 State equations

In the present section, the continuous adjoint, [14] [15], [16], [I7] approach to steady-
state incompressible flows is presented. The Spalart-Allmaras turbulence model [14]
has been used. The following analysis can be found in much greater detail in the
PhD Thesis of Dr. E.M. Papoutsis, [I4] and in [I§]. Using the Einstein convention,
where repeated indices denote summation, the steady-state Navier-Stokes equations

for an incompressible flow and the Spalart-Allmaras turbulence model are written
as [14], [19], [20]

_ Oy,
8$]‘
RY o0 |:(V+Vt) <8w+a“j)]+ Op =0, i=1,2(,3) (3.9b)

izvja_l'j_a_l’j 8x]~ 8:70, 6%_

RP—y 29 [(wﬁ) aﬂ}—Cbz(aﬁ)Q—DP(D)—kﬂD(D):O (3.9¢)

= — — —— — - _— -
J
Or; Oz, o)0x;| o \Oz,

RP = =0 (3.9a)

where v; are the velocity components, v is the bulk viscosity, 1, the turbulent viscos-
ity and p is the static pressure divided by the constant density (its units are therefore
m?/s?).The turbulence state variable is 7 and the eddy viscosity coefficient can be
written as

V= val

P(v) and D(7) are the production and dissipation terms [I4]. The production
and dissipation terms depend, among other quantities, on the distance A from the
wall.

Furthermore, since the E — SI formulation is being used, eqs. [3.7 are to be
included in the state equations. Egs. and along with their boundary condi-
tions, are the primal / state equations of the optimization problem. The boundary
conditions required to close the problem are:

e At the inlet and walls: Dirichlet condition for velocity v; and for the turbulence
model variables and zero Neumann conditions for the pressure.

e At the outlet: A Dirichlet condition for p (usually zero) and Neumann condi-
tions for v; and the turbulence variables (internal aerodynamics).

61



3.3 Introduction of the Adjoint Variables

The aim of an optimization problem is the minimization of an objective function
F in the design space defined by a vector of design variables b. The objective
function may depend directly on the design variables b but there is also an indirect
dependence, since F' is a function of the flow variables U, which in turn depend on
the design variables b (if the design variables i.e. the geometry changes the flow
field will change in turn). The vector of primal variables U contains v;, p and the
turbulence model variable. The objective function F' can therefore be written as
F=F (U(b),b).

There are various methods to compute 6 F'/db,,. There is the FD method which
as already mentioned has a cost that scales with the number of design variables
N. Another method is that of direct differentiation, where the state equations
are differentiated w.r.t. the design variables in order to obtain the values 6U /db,,.
N systems of equations must be solved in order to find the derivatives oU /db,,
meaning this method also scales with the number of the design variables. The
adjoint methodology has the advantage that its cost is independent of N.

Application of the continuous adjoint methodology starts with the introduction
of an augmented objective function. Here, the aforementioned £ — ST formulation
is used.

Faug=F+/uiR§dQ+/qudQ+/DaR”dQ+/m§R;”dQ (3.10)
Q Q Q Q

where 2 is the computational domain, u; is the adjoint velocity and ¢ the adjoint
pressure and m{ the adjoint grid displacements. Note that from eq. - 3.9 RY, RP, R”
and R]" are zero for every solution to the primal state equations and the value of F
is therefore the same as that of F,,.

As mentioned above, the goal is to compute the derivatives of F' w.r.t. the design
variables, or equivalently 0F,,,/0b,.

By differentiating eq[3.10/and through the use of the Leibniz (eq[3.4) and Green-
Gauss theorem, we obtain

§Fpy OF 6 s R Y
Ml RTT o dQ+—/ 5. R7dO)
oF aRv pyas _oR’ Sz,
:— L Q Q _Z
5o, ) e, E ) T, Vagp, +/mnfax3 (66 )ds
8m ow; 0?m¢ dx; Oxx,
_ Q v p V a m _
/SW oz, "5, " /Q 922 b, +/(u’R HOR R R g, S
(3.11)

The boundary of the computational domain S consists of the inlet S; and outlet
So, the fixed walls Sy and the controlled walls Sy,. The components of the unit
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vector normal to the surface are denoted by n;, and xj are the grid nodes positions.

For the non-controlled boundaries % =0.

The total derivative of a quantity ® can be written as

5d 9D 9D Sy

5, = o, oy 5, (3.12)

The above definition of the total derivative can be seen in analogy with the

definition of the material derivative in fluid dynamics i.e. %’ aaf + gi’ ‘?t”

For an arbitrary quantity ® computed on a surface (such as the pressure on the
surface of an airfoil), eq. takes a slightly different form. Since any sufficiently
small surface deformation can be seen as a normal perturbation, only the normal
part of the surface deformation velocity dxy/db, causes a change in ®, hence

6@ E)CD 8(I> 6xm

3.4 Differentiation of the Objective Function

The computation of the sensitivity derivatives § F,,/0b,, through eq requires an
expression for dF'/b,. In the general case, an objective function will consist both
of volume and surface integrals. The normal vector to the surface appears in the
definition of most surface objective functions and, therefore, a general objective can
be written as

S Q
Differentiation of eq. w.r.t. b, yields
oF 9 o
AdS+—[ Fadf) 3.15
5, aby g s gy ) e (3.15)

The detailed derivation of the expressions for the surface and volume integral on
the RHS of eq. can be found in [14]. The surface integral is written as

0 8Fg (%k GFS 8]) aFg aTk] 6ng ov
b, F simidS = 5 Ovy aTdS < op ob, an, ot O Ob, a5+ < o0 b,
8F5 nm nde / t %nk dS—/Fg.nméﬂnde
3 S ' 5bn
(3.16)
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whereas the volume integral can be written as

5 v . Op 7 v
5 Fad2= /Fmab a0+ /Fgab dQ+/FQab dQ+/FSzab

) o 5
+/ Sazf S+ aTdS+/Fan§ds (3.17)

The expression results from applying the Leibniz theorem on % fQ FodS) and the
Green-Gauss theorem, if necessary, i.e. if any differential operators of v;, p or  are
included in the expression of Fy. The quantity £ includes the partial derivatives

88%, plus any term that might result from the use of the Green-Gauss theorem for
. o [ o®
integrals of the form [, 5- B ) dsd.

Given the above, the final expression for §F'\db,, is

oF ov; » Op _ Ov . 0Fg ov;
FY s ds2 5——df) Fg, g as

b / g5, +/ 25 +/ 250, +/( sit g0 ”)ab

OF S; “p 8p / OF S; b ov /8F5k (97”
+/S( ap nZ+FS) b, dsS+ 5% ni+Ey a. S+ =y £ 3, as

0Tk O0Fs,  dxy / on; / d(dS)
F — Fon,; 1
—F/Swi)nk 5, d8+/ a$m — Ny 5, ndS+ . (5bnds+ Sw;glnz 5b. (3 8)

The above equation includes the partial derivatives of the flow variables w.r.t. the
design variables. The aim of the adjoint methodology is to avoid the computation
of those terms, which for N design variables would require the solution of N systems
of equations similar to the Navier-Stokes.

3.5 Derivation of the Adjoint Equations

Now, having an expression for (?TF, a final expression for ‘H;bﬂ can be obtained.
Going back to eq. [3. 11, one sees that an expression also has to be derived for the

ORP OR?
partial derivatives > T T and b

Differentiation of eqgs. yields

ORP d (v
b, ax](ab> (3.19)
and
ORY v Ovi |\ 0 (Du\ 0 (Op\_ 0 [ 20 (u) 0 (O
db, 0b, dx; ' Ox; \ b, )  Ox; \b,) Ox; Y ox; \ b, ) " dx; \ Ob,
0 8Vt 8?}2' 8vj
Ox; {a_bn <3Ij+3$z‘>] (3:20)
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The differentiation of the turbulence model equation, eqf3.9d yields

OR v ou, | 0 (00\ 0 [(, ¥\ 0 (90\] 10 (0500
ob,, _8mj ob,, ](’hj ob,, Oz, o) Ox; \ 0b, o O0xj \ 0b, Ox;

cpr OU O ov ~ orP 0D ov
~ 2 o o (aT) +”(_£+37) (=P+ D)z (3:21)

where the fact that the partial derivatives w.r.t. b, and z; are interchangeable has
been used. The continuous adjoint to the Spalart-Allmaras model can be found in
great detail in [14].

Finally, differentiation of eq. produces

b, a_bn( 0x? ) 022 (8bn) =0 (3:22)

The integrals fQ u; 2 o R0, fQ 984 and [, 7o 2 o, 9R” () appearing in eq. [3.11|can now
be expressed using eqs. 9 3 0 [3.21] and the Green—Gauss theorem. Regarding
the volume integral fQ U dQ the use of eq. and the Green-Gauss theorem

yields
0 (0v; Ov Jdq Ov;
—q— | == | dQ=— In;d ——2dQ 2
/Q Yoz, <8bn> o0, S*/ 0z, b, (3:23)

The integrals [, uiaa—ffdQ and [ Da%dﬁ are analyzed in the same manner. After
this step the final expression for the sensitivity derivatives of the objective function
F can be derived

OF,, Ou;  Ou, e 0 OFs v
g:/|:u7;7)jnj+(7/+yt)( = uj)nj—qni—i-uau—y P P 1 nk+Fs} i
s

3by Ox; | Oz, Y % on, v, b,
+/S(ujnj+a§; 1+F”)§bp ds
+/S {ﬂavjnj + <1/ + ) gZ‘; %(1 + 2cb2)§—fjnj + agf’“ g + FS] %ds
—l—/bg—umj + %Fsk )87—” ds /Va (1/ + N) 8? <§;>njd5
/Rygb /Rq%dm/gawg—bndm/ R" %d@
+ /S Z"%"mzb npdS+ / FSW gZ’ds+ /S . FSWp’inidgC[f )
+ / %Z nggj ds + /Q aaacAg—idQ (3.24)

where R}, R?, R”™ and R}]'* are given by eqs. [3.25] [3.26|[3.27| and |3.28 respectively.
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Four volume integrals containing the terms whose computation is to be avoided,
namely gTU:L’ 8%’;, 687” and axk can be seen in the above expression. The multipliers
of those terms in the Volume integrals are set to zero. Thus, the adjoint set of
equations is obtained. To sum up, the process of deriving the adjoint equations
started with the Navier-Stokes, turbulence model and gdPDEs. To compute g;’;,
8%, gTDn and ‘;gb”—: with Direct Differentiation one would have to solve the primal
equations and compute the objective function. Then, the primal equations would
be differentiated w.r.t. each design variable b, in order to compute %’ 8‘97’; 8% and
‘g—:. This would be done N times i.e. N such systems of equations would have to be
solved. This is where the adjoint comes in. An augmented objective function Fp,,
was defined, which is the same as the objective function F', with the addition of
some zero integrals. The integrals are as many as the primal state variables, so that
during their differentiation, the derivatives of each primal state variable w.r.t. b,, will
emerge. When differentiating the objective function F' w.r.t. b,, the "unwanted”
ggz’ (%” , aabl; and 8” appear. However, the introduction of the zero integrals
in the expression of Faug has also led to the appearance of gTv:n 3‘97’;, (%1 and ‘ng:,
multiplied with expressions containing the adjoint variables. This allows us to group
together all terms containing gg’, E?bp , 887” and ‘%k respectively, and demand that
their multipliers be zero. This can be done, smce the adjoint fields are artificial,
introduced to facilitate the process of computing the sensitivity derivatives.

The derived adjoint equations therefore read

terms

RI=— gzj +F2=0 (3.25)
R gt O e (G e ) |+

%ag; _a% (ﬁaﬁ%emjkg%’;emh) —0, i=1,2(,3) (3.26)
ot [ B ()

i, C %g;‘; (g;f] + ‘;ZJ) 4 (=P + D)o + FZ =0 (3.27)

o 0*mj 0 ov; op . Ou; 07ij ov; |

and the expression for the sensitivity derivatives after the elimination of the volume
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integrals containing the adjoint equations is

F ., Ou;  Ou, . .C 0 OFs, .| Ov;
g:/[uivjnj—k(y—l—l/t)( Yi, uj)nj—qni—i—yay—y ; ﬂemlmﬁ—sknk—i—Fg’i} Higs
S

30, dx; | O, Y "%z, au; b,
+/S(ujnj+a§p Z+F”)§5 ds
+/S [ﬁavjnj + <1/ + ) ng %(1 + 2cb2)g—;nj + agf’“ e + FS] %ds
o on s )
+ /S Zlag%nmgbknde / Fa, gb ds+ /S . stpyini%f)
%TZ] ngfz ds + / D7,Ca bAn dQ (3.29)

Had the ST formulation been used instead, the derived expression of the sensitivity
derivatives would have been the same, but

oxp
1. The LBterm, i.e. /(uJB” + qRP + U, R + Fg)ﬁnkdé’ would be present in
Sw,
the ST sensitivity derivatives.
om¢  ox;

2. The term

ox, n; 5. dS would not be present
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3.6 Adjoint Boundary Conditions

Just as the adjoint field equations were derived to eliminate the volume integrals
containing the partial derivatives of the primal state variables w.r.t. the design
variables, the adjoint boundary conditions are in turn derived so that the surface
integrals containing these derivatives are eliminated. For the sake of brevity, let
I, I,, I3 be the first, second and third and fourth integral respectively in eq.
ie.

I = /S[uivjnﬁr(u + 1) (gz; +ZZZ) nj—Qnﬁrﬁaz}%emjkg_:j’;emlmﬁ%nwrpgﬂ] g_;ids
I = A(Uj”j+aai;ni+F§)§_ids
e

v\ 0 ([ ov
Is= [0, — = = |n;dS
o= foolo 2 ) (3 )
The derivation of the adjoint boundary conditions can be found in [I4] in great
detail.

Inlet S;

The primal boundary conditions applied at inlet boundaries are

e Dirichlet boundary conditions for the velocity. Since velocity is fixed at the inlet,
dv; /b, = 0. Since the inlet is a non-controlled boundary i.e. dxy /b, =0 and taking
eq[3.12] for the material derivative into account, it follows that dv;/db, = dv;/0b,, =
0. This means that the the first integral in eq[3.29] is zero i.e. I; = 0. The same
applies to the third integral I3, since a Dirichlet boundary condition is imposed on
v at the inlet as well. Thus, Is = 0 at the inlet.

e Zero Neumann condition for the pressure.

The integrals I and I4 can be eliminated by demanding

0Fs, . ,
UjN; = Uy = — 8;“ ni—Fg, (3.30a)
0Fs 0Fs
1 I,k I Ik I
Uppy = =gt ng+ Sngting (3.30b)
) 87’1‘]‘ J 87—@']‘ J
0Fg 0Fs
17 1,k I7 1,k 17
Uy = = ngt; g+ =gty ng (3.30¢)
) aTij J 8Tij J
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where ¢!, t! are the components of the tangent to the surface unit vectors. One of
them e.g. t! can be an arbitrary unit vector parallel to the surface, whereas the
other, tZH , forms an orthogonal system with n and ¢ .

Eq[3.30p gives the normal component of the adjoint velocity, whereas eq[3.30b
and its two tangential components. Since the above three velocity components
at the inlet are, as can be seen, functions of the objective function F', they are zero
in the case that F' is not defined on the inlet.

The three integrals I1, I, I3, I, have been eliminated, giving the boundary condi-
tions for the three components of the adjoint velocity, but no boundary condition has
been derived for the adjoint pressure ¢q. For that reason, a zero Neumann boundary
condition for ¢ is applied. Finally, a zero Dirichlet boundary condition is imposed

on 7,, rendering eq. |3.29) independent of - (ab )nj, ie Is = 0.

Outlet Sp

At the outlet the following boundary conditions for the primal state variables apply
e A Dirichlet boundary condition for the pressure, which means that dp/db,, = 0.
Again taking into account that the outlet is - like the inlet - a fixed boundary, it
follows that dp/db, = Op/db, = 0. Therefore Iy = 0.
e zero Neumann conditions for the velocity components v; and for 7. This means

that g2n; = 3% =0 and f7n; = 3 =0, thus I; = 0
J

Since the outlet is at a distance from the controlled boundaries, an almost uni-
form velocity profile can be assumed along Sop and thus negligible shear stresses

(since the stress tensor is defined as 7;; = (v + 1) (6”’ + BUJ)). This means the

integral I, can be neglected.

In order to eliminate I, it is set equal to zero, i.e.

. .C ov OF -
>nj—qni+uav7yemjk ax]; emlmﬁ avs;k nk—l—FS,i =0 (331)

ﬁui 1 8uj
8xj 8x,

wvinHv+1) (

That gives rise to three equations (for i=1,2,3) with four unknown quantities
i.e. the adjoint pressure q and the three components of the adjoint velocity wu;.
After a zero Neumann boundary condition is imposed on the normal component
of the adjoint velocity u.,~, the boundary conditions for the adjoint pressure and
tangential components of the velocity can be derived by decomposing egs. [3.31]into
their normal and tangential components. The expression for the adjoint pressure g
is thus derived by multiplying eq. with the normal to the surface vector, n;.
Therefore
8u<n>+8F507k , ~ ~CY @Uk

nni+Fg it 0 —=emir=—
on ov; v So TRy T Ox;

4= Uy Viny+2(V + 1) emiimn; =0 (3.32)

An expression for the tangential adjoint velocity components is derived by mul-
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tiplying eq. with the tangent to the surface vectors, ti,1=1,2

Oufy  u OF Cy 0
) (n) So, ar - Ly Vg
vnu?w—l—(y + Vt) ( o —+ atl + U(.) knktl""FSo,itl'_VQVTQmjka_xjemzmztli:0

(3.33)

Finally, a Robin-type boundary condition for 7, can be obtained by setting

I3 = 0, taking into account that % = 0. Therefore:
J

v\ 07, OF. L
VaUjnj + (V + g) 8—;713' + %nk +Fg, =0 (3.34)
J

Non-controlled / Fixed Wall Boundaries Sy

The primal boundary conditions applied on the fixed wall boundaries are: a zero
Dirichlet condition for 7 (= Is = 0), a no penetration condition for the velocity,
a zero Neumann condition for the pressure and the law of the wall for the normal
component of the stress tensor along Sy. A zero Dirichlet boundary condition
imposed on 7,, leads to the elimination of the fifth integral in eq. ie. Is = 0.
The elimination of the integral Iy yields

OF ,
Uy = — a‘;W‘Zni—FgW (3.35)

Further development of I; and I gives the following

OF, 0
e K e (3.30)
] )
and 9 9
= () (Gt G Yt (3.37)
¥ 1

where u, is the adjoint friction velocity. Finally, a zero Neumann condition is
imposed on the adjoint pressure q.

Controlled Wall Boundaries, Sy,

The boundary conditions for the primal state variables on paramaterized wall bound-
aries, are the same as the ones imposed on non-controlled walls. Contrary however
to the case of fixed walls, dxy/db, is not zero, since for controlled boundaries the
position of the boundary nodes x; changes during optimization. Thus, the total
and partial derivatives of flow quantities do not coincide. In addition, the total
variation of the normal and tangent to the surface vectors are not zero, leading to
the appearance of some extra terms during the formulation of the adjoint boundary
conditions [14].
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3.6.1 Final Expression for the Sensitivity Derivatives

Having produced the adjoint field equations and derived their boundary conditions,
the remaining terms in eq. will form the final expression for the sensitivity
derivatives, which is as follows

F g I
O Fag :T%F—/ SD, O n-t-fnmnkéﬂdS / SDq7i; O(nit; )&deS
Sw,

ob, me I 0b, Sw, ob, ob,
+ SD zv b dS / SDy i ——nm,n dS
/SW 2170 6b,, Swy a;pm " 5b,,

oy,  OFs o S
— ailr3 I -k
Jo L 2) Goems T+ | mmmitas

d(nin;) 87’2] dxy
/SWP U(n) + (b(n)(n)) (le 5bn + a (5b 7 NETGN dS

6<t1t1) 87—1] 5‘7319 1,1
/SWP Qb ><7’Z] (5{) + o nmgnkt tj)dS

5(75117%) oti;  Oxp
1) Iy (1T Tii - + Z] —_— tthI-) dsS
/swp (t Purye >)( N e !

o(t"t;")  Omy oy
Swpcbtn G0 (Tw 5bnj + 8x;nmmnkt{1t§f> ds

OFsw,, — ox on; 5(dS)
0Lk S + / Fs, ,—’ds+/ Fy, nio\22)
/SWp L ' Swy, i by, Sw, W ob,,

P
+ / AVAVFM / N / ﬁﬁaCA%dQ oy i g
SWp ab Sw ab Q

ob, oz, 1 5b,,
(3.38)
where
SDy = —U{@ + ¢<t1><n> + Pmy el (3.39)
ou;  Ou, aFSWp -
SDy; = (v + 1) <3:13j + 8atj) F—qn; + —i”“nk + FSWW- (3.40)
OFg,, .
ij = = 3.41
¢] aTij s ( )

This is a general expression that can be used with any objective function com-
prising surface and volume integrals. As can be seen, eq. contains only one
field integral and, therefore, all but the last term in it can be computed at a cost
practically negligible compared to that of solving the primal and adjoint equations.
The computation of the last term in eq. can be done through use of finite
differences, which would however increase the cost, making it scale with the number
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of design variables N and would perhaps also be less accurate. As an alternative
way of dealing with the differentiation of the distance A from the wall, the adjoint
methodology can be applied to avoid the computation of 5 aA . The Hamilton-Jacobi

equation (Ra = g;A) AagA —1 =0, where ¢; = STAj), Which gives a very good

approximation of the Euclidean distance field[14], can be used as the PDE governlng
A [21]. The same procedure is then used to eliminate the field integral of 2 ab , as
was used to eliminate all other "unwanted” volume integrals so far, namely, one
more integral comprising the product of the adjoint distance variable A% with the
Hamilton-Jacobi equation is added to the expression of the augmented function.
The term containing % is then eliminated by setting its multiplier equal to zero,
thus giving rise to the adjoint equation for the distance A [14].

One more thing to be noted is that the primal grid displacement variables m;
are contained in neither the adjoint gdPDEs eq. nor in the final expression
for the sensitivities eq. Therefore, the solution of the primal gdPDEs is not
required for the computation of the sensitivity derivatives (of course they must be
solved to renew the internal mesh). Only the adjoint gdPDEs must be solved for
the computation of the sensitivities. The adjoint gdPDEs depend on adjoint flow
quantities, but do not affect the solution of the adjoint flow problem. This means,
that the adjoint gdPDEs can be solved at a very low cost, at a post-processing stage,
after the solution of the adjoint flow PDEs.

This concludes the theory on the continuous adjoint formulation used in the
simulations presented in the following chapter.
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Chapter 4

Shape Optimization Results

4.1 BMW Workflow : ShapeModule

ShapeModule is the BMW shape optimization workflow into which the PCOpt
OpenFOAM-based primal and adjoint solvers were integrated. ShapeModule al-
lows the user to connect to various tools or solvers which will compute the primal
and adjoint solution and, then, communicate the necessary geometry (optimization
patch i.e. part of the geometry being optimized) and sensitivity derivatives back
to ShapeModule where the necessary geometry updates for optimization will be
computed. ShapeModule is functionally divided into three different sections :

e Core : Database, Vertex morphing implementation
e Algorithmic : Optimization algorithms like Steepest descent.

e Interface : Responsible for sending the sensitivities to ShapeModule and re-
turning the geometry updates to the software responsible for solving the primal
and adjoint problems.

Before optimization can be performed using ShapeModule, a .json (JavaScript
Object Notation) file has to be setup to configure the simulation and the individual
solvers for primal and adjoint solution should also be configured.

The .json file contains optimization settings such as the optimization algorithm to
be used, list of objectives and constraints, name and type of output files, maximum
allowed displacement (step size), as well as function type and filtering radius used
on the sensitivities and displacements.

4.1.1 Vertex Morphing

Vertex Morphing [22], [23], [24] is a geometry parameterization that allows an easy
to setup, node-based shape optimization . In node-based optimization methods,
the shape variation is described through the nodes of the discretized (i.e. meshed)
geometry. In other words, the surface node positions are the design variables. An

73



immediate advantage of node -based methods is that all the available degrees of
freedom are used as design variables, thus giving a larger design space. In a larger
design space the objective is allowed to take on a wider range of values, which can
possibly allow it to reach a lower value during optimization. A disadvantage is
the possible shape irregularities (resulting surface can be ”"noisy”). The solution to
this issue would be the application of a distance-dependent smoothing filter on the
resulting sensitivities and displacements of each node, which weighs the sensitivities
/displacement of the node with those of its neighbors.

4.2 Integration of the PCOpt Solvers into Shape-
Module

In this present master thesis, the task of coupling the OpenFOAM-based Primal
and Adjoint Solvers developed by PCOpt/NTUA with the BMW optimization soft-
ware ”ShapeModule” was performed. ShapeModule is responsible for receiving the
computed sensitivities, smoothing them, performing steepest descent and updating
the surface mesh, using the technique known as ” Vertex Morphing” [22], [23], [24].

A simplified diagram of the whole procedure is as follows
e Solve the primal equations.

e Solve the adjoint equations.

e Compute sensitivity derivatives.

e Send sensitivities to ShapeModule.

e ShapeModule smoothes these sensitivities and computes surface-node displace-
ments using steepest descent.

e The computed displacements are smoothed and sent back to OpenFOAM.

e Volume mesh is updated in OpenFOAM (Updated through mesh movement,
not remeshing). More specifically, OpenFOAM uses the surface node dis-
placements computed by ShapeModule as boundary conditions to solve the
Laplacian gdPDEs (egs. and compute the new internal nodes positions.

So, the first step was the coupling between the PCOpt/NTUA software and
ShapeModule, ensuring 1/O compatibility, i.e. ensuring that the sensitivity deriva-
tives are sent into Shape-Module in the format expected by the latter.
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4.3 Cases - Results

4.3.1 3D S-Bend Tube

The coupling of the PCOpt flow and adjoint solvers with ShapeModule was first
tested on the simple case of a 3D duct with an S-Bend geometry and a circular
cross-section.

Minimization of Total Pressure Losses (Ap;) in a Laminar Flow

The aim of this run was to minimize the total pressure losses Ap; from the inlet
to the outlet. A Reynolds number of 1000 was chosen (laminar flow). Regarding
the boundary conditions, at the inlet a Dirichlet boundary condition of 1.2m/s
and a Neumann boundary condition on the pressure was chosen. At the outlet,
a Dirichlet B.C. of 0 Pa on the pressure (incompressible flow) and a Neumann
zero gradient condition on the velocity were imposed. Along the solid walls, zero
Dirichlet conditions on the velocity and zero-gradient conditions for the pressure
were imposed.
The objective function is

1
J = —/ (p + 51)7;2)ande (41)
Sr1,0

Differentiation of the above objective function yields

0J _ Oy LYo nds - L 20
5, /Sz,o 5, (p—l— 5 Vi )v]n]dS /Sz,o (p~|— =V )5b n;dS
_ /g,,o (p+ S )U]—ébn

Since the above integrals are defined over the duct inlet and outlet, which are fixed

i.e. non-controlled patches, the third integral on the RHS of the above equation is
0by,

Therefore, we have

= 0 over the above boundaries.

zero, since

0J ) 1 1 or
m:‘/s,,o 35, P+ 3 )eimidS = / (o 50 g5mdS

op o0 (1
= — —v;n;dS — / — (—viQ)v-n»dS
/s,,o b, 77 S10 0bn \ 2 3T

1 ov;
/SI,O (p U )(Sb n]
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The optimization process ran for 34 cycles and stopped due to worsening of the
mesh quality. Mesh failure is expected to happen at some point, since the mesh is
updated through adaptation and not remeshed after each cycle. The convergence

can be seen in fig.

I I I !
‘'sbend_losses laminar_obj' —w»—

Objective value

0.65

0 5 10 15 20 25 30 35
Optimization Cycle

Figure 4.1: Ap; optimization of the S-bend duct, laminar flow. Objective function
convergence. Quer the course of 34 optimization cycles, there has been a reduction of
38.3% in the objective value.

The final geometry of the duct in comparison with its initial form is presented
in fig. [4.2
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Figure 4.2: Ap; optimization of the S-bend duct, laminar flow. Duct initial (above)
and final (below) geometry.
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The inward or outward displacement of the geometry nodes can be seen more
clearly in fig. where the cumulative normal displacement field (i.e. the total
displacement vectors projected on the respective normal-to-the-surface vectors) is
depicted.

normalDisplacement
-3.633e-03

—0.003

o

-0.002

-2.245e-03

Figure 4.3: Ap, optimization of the S-bend duct, laminar flow. Cumulative normal
displacement field on the final geometry. Blue coloring indicates inward displacement
of the nodes w.r.t. their initial position, whereas green yellow and red indicate outward
displacement.

The velocity field inside the duct for the initial and final geometry can be seen in
figs. [4.4 and [£.5] The section on which velocity isolines are plotted is the symmetry
plane of the duct.

U Magnitude
1.8872+00

6

—0.000e+00

Figure 4.4: Ap; optimization of the S-bend duct, laminar flow. Velocity field inside
the duct for the initial geometry. Section along the duct symmetry plane.
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U Magnitude
—1.887e+00

Figure 4.5: Ap; optimization of the S-bend duct, laminar flow. Velocity field inside
the duct for the final geometry. Section along the duct symmetry plane.

The total pressure inside the duct can be seen in figs. and [4.7]

_2.936e+00

| &
—0

-6.284e-01

Figure 4.6: Ap; optimization of the S-bend duct, laminar flow. Total pressure inside
the duct for the initial geometry. Section along the duct symmetry plane.
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Figure 4.7: Ap; optimization of the S-bend duct, laminar flow. Total pressure field
inside the duct for the final geometry. Section along the duct symmetry plane.
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”Minimization of Total Pressure Losses (Ap;)” Objective Function in Tur-
bulent Flow

Next, the S-Bend duct was optimized for a turbulent flow, using the total pressure
losses objective.

The case was left to run for 25 cycles. The objective function decreased up until
the 18th cycle, upon which the optimum was reached and the objective function
value oscillated around the optimum value. Thus, the simulation was manually
stopped. The objective function values during the optimization can be seen in fig.

£y

| T I T T
'shend_losses_turbulent_obj' —w—

0.95
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0.85
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Objective value
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0.7

0.65

0.6 i
0 2 4 6 8 10 12 14 16 18

Optimization Cycle

Figure 4.8: Ap; optimization of the S-bend duct, turbulent flow. Objective function
value during the optimization. After 16 optimization cycles, there has been a reduction
of 38.86% in the objective value. After the 18th cycle there is an oscillation of the
objective around a value, since the optimum has been reached.

The final geometry and the field of the cumulative normal displacement can be
seen in fig. [4.9
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normalDisplac
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Figure 4.9: Ap, optimization of the S-bend duct, turbulent flow. Cumulative normal
displacements field on the final geometry.

The total pressure field inside the initial and final duct geometry can be seen in

figs. [L.T0} [L.1]

Figure 4.10: Ap; optimization of the S-bend duct, turbulent flow. Total pressure for
the initial geometry. The section shown is along the duct symmetry plane.
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Figure 4.11: Ap; optimization of the S-bend duct, turbulent flow. Total pressure
field inside the duct for the final geometry. The section presented is along the duct
symmetry plane.

The velocity field for the initial and final geometry can be seen in figs.

U Magnit
1

E14
l 10.5

Figure 4.12: Ap; optimization of the S-bend duct, turbulent flow. Velocity field for
the initial geometry. Section along the duct symmetry plane.

Figure 4.13: Ap; optimization of the S-bend duct, turbulent flow. Velocity field for
the final geometry. Section along the duct symmetry plane.
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”Noise” Minimization

Next, the same geometry was optimized anew, using an objective function that is
linked to noise generation (see [25]). This objective function is given by

J = / v, 2dS) (4.3)

where v; is the turbulent viscosity and ' is a volume area, where it is desired to
minimize turbulence and, therefore, the associated noise. In the case of the S-Bend
tube, €’ is chosen to be a volume at the exit of the tube, as can be seen in fig. [4.14]

@
)
2
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<!
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<

Noise Zone

_—

-0.0300 -0.0200

Figure 4.14: ”Noise” optimization of the S-bend duct. Noise zone defined at the exit
of the tube. This is the volume area Q' where the noise-related objective is defined.

The differentiation of the above noise-related objective function yields

5J 6 [ [ O / , O
55, ob. /Q/ v, 2dQ) = b, ds) + . viny 5, ds =
o oy 5 Oxy
m = /Q/ 2Vta_bndQ + /S/ Vy nkmds (44)

where the Leibniz theorem was used.

The first term on the RHS of eq. [4.4] contributes to the Field Adjoint Equations,
whereas the second one to the Sensitivity Derivatives.

This case ran for 22 optimization cycles. During the first 3 cycles the objective
decreased, whereas for the cycles 4 to 9 the objective oscillated, alternately increasing
and decreasing. From the 9th cycle on, the objective dropped steadily. The results
of the optimization can be seen in figs. and
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Figure 4.15: ”"Noise” optimization of the S-bend duct. Objective function conver-

gence. The total reduction in the objective corresponds to 31.46%.
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normalDispl

Figure 4.16: "Noise” optimization of the S-bend duct. Cumulative normal displace-
ment field on the final geometry. Blue coloring indicates inward displacement of the

nodes w.r.t their initial position, whereas green, yellow and red indicate outward dis-
placement of the nodes.
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4.3.2 The HVAC Duct

Minimization of ”Noise” in the HVAC Duct

The second geometry that was optimized was that of an HVAC duct. The objective
being minimized is the "Noise” objective function defined in eqf4.3] The geometry
of the duct, the controlled patch and the volume where the objective function is
defined can be seen in fig. (in blue and green respectively).

Figure 4.17: ”Noise” optimization of the HVAC duct. Controlled patch(blue) and
objective integration volume(green).

The optimization ran for 33 cycles, after which the objective values began os-
cillating and the process was manually stopped. The oscillation of the objective
was caused by oscillatory behavior in the primal solution. The convergence of the
objective function can be seen in fig.
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Figure 4.18: ”Noise” optimization of the HVAC duct. Objective function evolution
during optimization. QOwver the 33 optimization cycles, there has been a reduction of
99.99% in the objective function value compared to its initial value.
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The initial and final geometry can be seen in figs. and

Figure 4.19: "Noise” optimization of the HVAC duct. Initial HVAC duct geometry.

Figure 4.20: ”"Noise” optimization of the HVAC duct. Final HVAC duct geometry.
The inlet is the lower end of the duct, whereas the outlet the upper end.
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The inward or outward displacement of the geometry nodes can be seen in fig.
4.21] where the cumulative normal displacement field is depicted.

noit

Figure 4.21: ”"Noise” optimization of the HVAC duct. Cumulative normal displace-
ment field on the final geometry. Blue coloring indicates inward displacement of the
nodes w.r.t their initial position, whereas green, yellow and red indicate outward dis-
placement of the nodes.

Minimization of Total Pressure Losses Ap, for Laminar Flow in the HVAC
Duct

Next, the geometry of the HVAC Duct was optimized, with the aim of minimizing
the total pressure losses from inlet to outlet. The case ran for 16 cycles, after which
the mesh failed. The objective decreased for the first 14 cycles and then oscillated
during the last two, until the run stopped at the 16th cycle. The convergence of the
objective function can be seen in fig.
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Figure 4.22: "Ap,” optimization of the HVAC duct. Objective function evolution
during optimization. After 1 optimization cycles, the reduction in the objective has

been 9%.

The initial and final shape of the ducts is presented in figs. and 4.24]
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Figure 4.23: "Ap;” optimization of the HVAC duct. Initial HVAC duct shape.

Figure 4.24: "Ap,” optimization of the HVAC duct. Final HVAC duct shape.
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The cumulative normal displacement of the geometry nodes can be seen in fig.
4.20

Figure 4.25: "Ap;” optimization of the HVAC duct. Cumulative normal displace-
ment field on the final geometry. Blue coloring indicates inward displacement of the
nodes w.r.t their initial position, whereas green, yellow and red indicate outward dis-
placement of the nodes.

The area of the duct with the most pronounced displacement is the 90° bend
after the inlet. The nodes of the bend have been displaced outwards, i.e. in the
direction of the normal vector, to reduce the curvature of the bend and thus the
pressure losses.
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Chapter 5

Summary-Conclusions

The first part of this thesis deals with the use of the Kirchhoff Integral Method for
noise computation. Aeroacoustic analogies, such as the KIM, are extremely useful
when noise prediction must be performed at the far-field of a source, rendering
the cost of CFD computations prohibitive. The method allows the pressure at a
receiver to be predicted, by integrating the pressure and its derivatives on a surface
enclosing the source. To test the correctness of the code implementing the Kirchhoff
mathematical formula, mononpoles and dipoles were chosen as noise sources, for
which analytical equations giving the induced pressure field exist. This allowed the
comparison of the pressure calculated by the KIM to that given by the analytical
formulas. During the comparison, coincidence of the results was observed.

Next optimization of the source (monopole or dipole) position was performed af-
ter defining an appropriate objective function, which was the integral of the squared
difference of the pressure time-series at the receiver and a target pressure time-series.
Having thus defined the objective function, the derivatives of the pressure w.r.t. the
design variables (i.e. source coordinates) were required in order to compute the sen-
sitivity derivatives and perform steepest descend. For that reason, the KI formula
was analytically differentiated, yielding an analytical formula for the computation
0p'/0b,. The same derivatives were computed using finite differences, and the re-
sulting sensitivities were compared. Again the two methods produced very similar
results.

In the first part of the thesis, is was thus demonstrated that pressure computation
can be performed without the need for analytical or CFD calculations over a domain
extending from acoustic source to observer. Instead, the KIM can be used for noise
prediction, using the CFD or analytically obtained data from a domain in the near-
field of the source. It was also demonstrated that the KI Formula can be analytically
differentiated and used for the computation of the sensitivity derivatives required
to perform optimization of the source position in order to achieve a target pressure
at the receiver. In the future, the implementation of the KIM could be coupled
with CFD to perform shape optimization for aeroacoustic noise reduction. To use
the adjoint method for that, the differentiation of the KIM performed in this thesis,
would also have to be coupled with the adjoint problem to the flow.

In the second part of this master thesis, the continuous adjoint method developed
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by PCOpt/NTUA was coupled with the BMW optimization workflow ”ShapeMod-
ule”. The adjoint formulation used was the Enhanced SI formulation, which avoids
the calculation of the grid sensitivities in the inside of the domain, thus having the
advantage of low cost while maintaining high accuracy in the computed sensitivites.
The fully differentiated Spalart-Allmaras model was used to deal with the variation
of the turbulent viscosity, thus avoiding the ”frozen turbulence assumption”, which
has been shown to produce much less accurate and, sometimes, wrongly signed
sensitivities. After the integration of the PCOpt software into ShapeModule, two
geometries were optimized. One was an HVAC duct of a passenger vehicle. The aim
there was to minimize noise perceived by the passengers. To that end, an appro-
priate noise-related objective function was chosen, which is defined as the volume
integral of the squared turbulent viscosity. Minimization of this objective has been
shown to minimize noise as well. The other geometry optimized was an S-bend duct
with a circular cross-section. The ducts shape was optimized using two different ob-
jective functions. The first one is the "noise” objective function, which was also used
for the HVAC duct and the other is the "total pressure losses” objective function,
which, as denoted by its name, aims at the minimization of the total pressure losses
between inlet and outlet. Optimization of the S-bend geometry using the ”total
pressure losses” objective was performed both for laminar and turbulent flows.

The coupling between the two softwares was successful and there was a very sat-
isfactory reduction per cycle in the objective function for all cases (Even higher
reductions could have been obtained if the geometry was being remeshed instead of
updated). Especially in the case of the HVAC duct with the surrogate objective for
noise, there was a dramatic decrease in the objective function.
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Aegpoaxovotixy] IIpoBAedn BopdBouv pe yeron ng pe-
Yo60L ohoxAnpwuatog Kirchhoff

To mpiTo YEpog Tng apovcag epyactag aoyoleiton ye tn yerorn e KIM yo tov
umoloylouo6 tou YopBou. O agpouxouotixég avaroyieg, omwe 1 KIM, etvar eCanpetind
Yenotuee 6tay 1 tpoBiedn Tou YopiBou tpéncet vo tporyatoromdel poxpld omd Ty TN
ToL YopUBou, xahoTMVTIC TO X60T0¢ TV UTohoYtlopwy CFD ot éva ywelo extetvéuevo
amd Y TNYH €wg xon Tov 0éxTr amayopeutind. H uédodog emitpénel v mpoBiedn
¢ Teong o€ Evay BEXTY), HECK OAOXATIPWNOTNE TNG THEOTC XOL TWV THUPAY YWY TNG OF
wae emipdvela ou mepueheler Ty TNy h. o var Soxapaotel 1 opdotnTar Tou xOOLXA TOoU
epopuolet Tov podnuatixd tomo Kirchhoff, enehéynoay éva povémoro xou éva Simodro
o¢ mNyEg YoplPou. To autéc TIc TNYES UTdEYOUY aVOAUTIXEC EELOWOELS TOU BivouV
T0 emaryouevo medlo mieone. Autod emétpede T olyxpion Tne Teone mou utohoyloTXE
am6 to KIM pe autr mou diveton amd toug avoiutixoug tomoug. Koatd tn obyxpeion,
ToRUTNENINHE CUUTTOOT) TV ATOTEAECUATOV.

Y11 ouvéyela, tpaypatomoinxe BeAtioTonolnon tne Véong Tnyhc, agol oploTnxe
HLat XU TEAANAT cLVEETNOT XOGTOUS W TO OAOXAPWHA TOU TETEAYWVOU TNG OLIPORdC
NG YPOVOOELRAS TNG TEONG OF EVary DEXTY Xou YIS YPOVOOELRES Tieomg-otdyou. 'Eyo-
VToG 0ploEL ETOL TN GLVEETNOT XOGTOUG, Ol THEAYWYOL TNE TEGNC WS PO TIC METUPBAN-
Té¢ oyedlaopol (BnAady Tic CUVTETAYHEVES TG TNYTG) AMALTOUTOUVTOL Yol TOV UTOAO-
YIOUO TV Topay®ywy svacinoiag xou Ty mpayuatonoinor andtoung xodéoou. Ia
T0 AOYO auto, o TOTog tou Kl dagopliotnxe avolutind, divovtag €T0L VoY AVIAUTIXG
T0TO Yo TOV UTOOYLOPG TV O0p'/db,. Ot Biec mapdywyol utohoyloTnxay Yenotuo-
TOLOVTOG TEMEQUOUEVES DLUPOPES XL OL TPOXVUTTOVCES euonoinoieg cuyxplinxay. Ko
TdAL oL 800 pgYodol Edwouy TapATANCLY ATOTEAEGUATOL.

O timog tou ohoxhnpapatoc Kirchhoff e€dyetan petd and enthuon tne xupotinic
e&lowong (eZ. uéow tne uedddou twv cuvapthoewy Green [4]. H xupatixd e&iow-
on ebvon Wi devTERPNG TAENG LTEPPOAXOL TUTOU Yeauuixr Blapopixy| e&iowon yio TNV
TEPLYROPY) XUUBTOVY (PWTOC, OXOUCTIXDY XAT.) Xt TEOXVOTTEL HETH omtd avodLETodY Ty
ellonoeny Navier-Stokes mou diénouv TNy oY) EVOC GUUTIEGTOU GUVEXTIXOV PELGTOV
[T, 2], [B]. H telih poper tne xupatinic e&iowong, Yeouuévne yia Ty axous Tix)
o), elvan

1 a2p/
(@) o7

—Ap =Q, (5.1)

omou @, 0 6po¢ TNYNC
[Mo axivnto péoov, otodepd B€xTn xou oxivtn empdvelsr ohoxAfwong, o TOTog
Tou ohoxAnpwuatog Kirchhofl yedgpeto

, 1 r-n, r-ndp 10y
t) = — DRy 2RO 29 Vs 5.2
Pix.t) 4 / ( O T r@n) (5:2)
oVp:f=0

OTIOU T ElVOLL 1 AMOCTACT) AVHUESH OTO EXACTOTE GTOLYELD TNG ETUPAVELUS OAOXAPWONG
Kirchhoff xo tov 8eéxtn, n ebvor 10 xdeto oty emgdvea Kirchhoft didvuoua, pe
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xorevduvon omd TV empdveld Tpog Tov BéxTn xat T = |r| elvon 1 andotaoy YeTald
oTouyelou xon 0€xTY, OTWS Qalvetal xon oTo oy. 5.1

Receiver

Source
Kirchhoff
Integratio

Surface S

Yyxnue 5.1: Inyn, empdveia olokAnpwons kai 6€KTng

H €&. EMTEENEL TOV UTohoyiopd e mieong p'(x,t) o onowdrrnote Yéon
BetoxUEVT EXTOC LG ETLPAVELUS OAOXAARWONC 1) 0Tl ECOXAE(EL OOl TOL GEOUATA Xol

Z 7 7 4 4 4 7 4

TIc TNYES, av 1 dotopay ) e mieong p xon oL mopdyemyol %i; WO %% EVOL YVOWOTES
/7 4 /4 / / 4 7 /

enl tng emgdveog. O tocodTnTeg P, %l; 2Ol ‘g% TEETEL VO UTOAOYLOTOUV GE YPOVO

T=t—r/c. O ypdvog T elvan 0 “xoduotepnuévos ypovoc'. ‘Eva ofjua tou @idver otov
0éxtn o ypovo t e€enéupldn and Ty mnyY| oe yedévo t —r/c, 6mou 1 elvou 1 ambGTOON
HETOCY TYHC Xo ToRaTNENTH o ¢ efval 1) ToyTNTOL TOU Ayou.

Ou mnyéc fyou mou perethdnxay otny epyacio auty| etvar povomoia xou dimoha. To
HOVOTOAO lvan Uil YY) TOU EXTEUTEL NYO OHOLOHOPQI TPOG OAES Tig dleudivoelg. H
elowomn mou Bivel To BUVOUIXO TNE TaOTNTASC TOU ETEYETOL Amd EVol LOVOTIOAO €lvolt

_ i iw(t—r/c)
o(x,t) = p—_— (5.3)
6mou A To TAATOC X0t W 1) CUYVOTNTA TOAAVIWONS TN TNYNAS.

Ye avtileon pe to yovomolo, €va BImOAO BEV EXTEUTEL 1) O OUOLOUOPPA TEOC OAES
T dieudivoelg. H axdhoudn xgpaor diver To Suvopuxd Tng TayOTNTAS TOU ETEYETOL
and Eva OlTolo y

_ A gw(t=r/e) | |
o(x,t) =V {47#6 ] d (5.4)
6mou d 1o Bidvuoua xoteuduvtixétntoc (dnh. 1 diediuvorn tou dEova TadVTwoNe Tou
OLtHAOL).

Or mopamdve ovaAuTnéS EELIOMOELS YLal HOVOTIOAO %ot TO BiTOAO, YeNoWoTol0VTAL
TEO¢ ENAAHUELOT TWYV ATOTEAECUSTWY Tou divel 1 oyéon tou Kirchhoff. H ypron anidv
OXOUCTIXWY TINYWV UE YVWOTY avaAuTixr) AooT) ebvon cuvAing TeonTixy| Yo Tov EAEY YO
g opdotnTac utoloytouwy agpooxovotxic (BA. [6], [7], [8]).

Mo Ty mepinTeon Tou LovoTohou, 1) GUYXELOT TNG YPOVOCELRAS TNG DLTARUY S TNS
mleone mou mpoxinTEL Yéow ohoxAnpwuatog Kirchhoff, ye avtrv nou npoxintel yéow
TV AVOIAUTIXOY OYECEWY, QaiveTon 6T0 o). 5.2. (H ogdoom Tou Yoplfou e€etdleTon
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o€ oxiVNTO PEVGTO GTOV TEWLICTATO YWEO).

0.0008 — - T T \
: : ‘analytical
'Kirchhoff' ——— _

0.0006

0.0004

0.0002

-0.0002

pressure perturbation(Pa)
o

-0.0004

-0.0006

,00008 Il Il | | Il Il
0 0.5 1 15 2 25 3 35

time(sec)

Eyxhue 5.2: Movérodo. Xpovooepd tns datapayris tng mieons oe 6éktn oo (-10,2,-
6). IInyn tomodetnuérn oto (0,0,0). H ypovooepd mov mpokUmtel ané Ti§ avaAuTikéS
OXEo€IS ToU UovoTilov (Tpdowvo) TUUTITTEL TATIPWS JLE aUTIY TOU TPOKUTTEL and Xprion
Tou odokAnpauatos Kirchhoff.

Aol €ywve avolutier Sgpdplon tou tOTou tou Kirchhoff, mporypautomowidnxe,
onwg avagepdnxe, Beatiotonolnon tng Veong tng mNyrg WoTe va emtevydel cuyxe-
XEUWEVT Yeovooelpd Tieong otov oextr. H olyxpion twv mapay®yny euacinciog tou
meoxUTToLY and dapodplor tou Kirchhoff ye auvtéc mou npoxintouy and nencpacuéveg
Olapopéc mapouctdletal oTo oy. 5.3. (Ta ATOTEAEGHATO TOU TRMTOU UEQOUS TUPOUGL-
dlovton avohuTixd oTo TAARES (oryYAx6) Xeluevo).

15e-07 T T T \
: 'd)_dbl analytical' —w—
'dj_db1_finite_diff' —a—

le-07 H : . : H 4

5¢-08 H ! 4

Sensitivity derivatives dJ/dbl

-5e-08

-le-07 L 1 i i i i
0 10 20 30 40 50 60 70

Number of Optimization Cycles

IxAue 5.3: Movémodo. Xdykpion mapaydywy evawoinoias 6J/6by = §J/éxs mov
Tpoékuvay amo mapaydyion tov ookAnpauatos tov Kirchhoff pe avtés mov mpoékuvipay
arno memepaouéves owapopés. Ilapatnpeitar TAnpng tdution twy Tapaysywy.
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BeAtiotonoinon Mogoprc pe Xerion tng 2uveyolg Xu-
Cuyolc Medooou

To debtepo TuAua TN epyaotac, viomoiinxe otnv BMW Movdyou xon oyetiCe-
Tow €V UEREL UE TNV Ttoparywy Y| YoplBou. Mtnv avtoxivntoflounyavia, cuvidelg tnyég
YopUBou xou, cuvendg, duopopiog eivan ot yovedee HVAC (Heating, Ventilation and
Air Conditioning) xad¢ xar to ouotiata e€dtuone. Mépog tou deutépou Turuo-
T0¢ aoyoheiton ue TN PehtioTonolnon Yopghc pE oTéYo TN elworn YopdBou. Autod
0ev ylvetar Yyéow TN yeHone UEVOdwWY TNG AEPOUXOVCTIXAC UAAY UECW ETAOYHC [LOGC
XATHIAANANG UTOXATEC TATNG (surrogate) CLVAPTACEWS XOGTOUG, 1) EAdyloTOTOINCT TNG
omolag €yel detydel 6Tl ehayiotomorel xou T enineda YopUfou. T 1t PehticTonoln-
on uopenc yenowonotinxe to avantuydév otnv MIITP&B /EMII xau Baciouévo
oe OpenFOAM-2.3.1 ouluyéc hoyiouwod, oe oUleuln Ue To Aoylouixd BeATioToTo-
inonc e BMW ShapeModule. H culuyric dlatinwon mou yenowonotfinxe ftav
n enhanced SI, n onola amogedyel ToV LTOAOYIOUO TWV ToEAYWYWY gucinoiag Tou
TAEYHATOC GTOV OYX0 TOU UTOAOYIOTIXOU Ywpelou, £Y0ovTag ETOL TO TASOVEXTNUA TOU
YouNnhol x60TOUC XaL BlaTNE®VTUS ToEdAANAa LVPNAT axplBeta 6TIc UTOAOYLLOUEVES
evatodnotec. To mhpwe dagoptotéy povtého Spalart-Allmaras yenotuomoinxe yia
VoL amogeLy Vel 1 «mopadoy ) Torywuévne TOePncy, 1 omolo €yel amodery el 6Tl Tapdyel
TohD My dTepo oxpiBelc xou eviote ec@ahuéva Tpoonuacuéveg evancinoieg. Metd tnv
evouudTwon tou Aoylouixol Tou PCOpt oto ShapeModule, Beitiotonomdnxay dbo
vewpetpleg. H pla etvon évag aywyoc HVAC evog emPotinod oyfuatog. Xtoyoc tay
1 ehayiotomoinom tou Yoplfou mou avtihopBdvovtor ot emiPdtec. o To oxond autod
EMEAEYT) L0 XATEIAANAT UTOXATAC TATY CUVEETNOT ®xOGTOUC Yia Tov Vopufo, 1 omola
optletar »S TO YWELXO OAOXAAPWUN TOU TETEUYWVOU TNG TURBOOBOUS CUVEXTIXOTNTOG
o€ évay 6Yxo ohoxhApwaong xovtd otnyv ¢é€odo tou aywyoL. H ehayiotonolnon authg
NG CUVAPTNONG %60ToUg €yel amodetydel 6Tl ehayloTonolel xan Tov oyeTl{OUEVO YE
Vv T0eBn YépuBo. O Blog aywyds BerTioTono|Inxe xaL k¢ TEOSC TIC ATWAELES OMXTAC
mleong and v elcodo oty €£odo.

H é2n Bertiotonoimnieioa yewmuetpla Aoy évag aywyde S-Bend xuxdnric dwotourg,
o omolog PeitioTonoinxe apyxd ¢ TEOG TIC UMMAEIEC OAC Tiieong (OTp(oTY'] O
TUERWONC POT|) XA, GTNV CUVEYELX, UE YPNHON TNS UTOXATACTUTNG CUVARTNONS XOGTOUG
YL Tov Vépufo.

H cuveyric ouluyrc puedodoroyio mou yenowomoinxe otny gpyacio xou 1 onola
avamtoynxe ond v MIITP&B/EMII éyet 600 iadtepa yopoxtnptotixd

1. TIAApng Sapodptorn poviehwy TopBng xou

2. To 6 ypenowwornoteltan 1 culuyng pédodog yiow TV ATOYUYT UTOAOYIGUOD TWV
ooy My Wy evotcdnoiog Tou TAéyuatoc (grid sensitivities) (yior medt @opd oTNV
ouvey ouluyt uédodo).

Ye avtideon ye oha tar mponyolueva €pya TEvew oTn ouveyr) ouluyy| uévodo, To
[10] etofyarye v yeron tne ouveyols culuyolc Yedddou 600 Y T EEIOMOELS TNG
uéomne pofc 600 xau Yt Tic €EIOMOELS Tou wovtéhou topPne (Spalart-Allmaras) amoge-
OYOVTAG TN LY VY| TUEAOOY | TOL VL AUEAOUVTOL Ol TORAY(YOL ToU TURPROBOUS LEWBOUS
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O¢ TEOS TG YETUPBANTES OYEDUOUOY, XOWVME YVOO T WG (TUEAdOY ) TaYWUEVNS TOp-
Bre>. Amodelydnxe otL 1 Slapdpiom Tou Hovtérou TOpPNE xat 1 egapuoyn Tng ouluyolg
ued6d0L elvon amoEalTNTY YLot TOV 0xEL3Y) UTOAOYIGUO TeV Topay®ywy euatcuncioc. H
un entivon e (/tov) ouluyolc(/wv) ediowoews(/wv) tTou povtéhou tiEBne odnyet
o€ MNvJOOUEVES %O, AXOUN YELPOTEQN, ECPUAUEVO TTROOCTUAOUEVES TUPAY Y OUS EU-
oUnotlog mou unopel vo tapamhavicouy Tov alyoprduo Peitiotonoinong. Ilepiocdtepeg
AETTOPERELES OYETIXG UE TNV BlapdpeLom Tou povtéhou TOpPng Spalart-Allmaras urogo-
Ov va Beedoly ota [10], [14] xou [18].

To BelTtepo YapuxTNELOTIXG YVOPLoPX TOU hoylouixol eivan, 6w avapépinxe, o
TPOTOC UE ToV oTolo yepllETon TIg Topary@Youg eucncinolag Tou TAEYUUTog, dnAadY| Tic
TORUYWYOUS TV CUVTIETAYUEVOY TOU TAEYHATOS WG TROS TIG UETUBANTES oY EBLAoUO0
%’:. H Baowr 10éa g ouluyoie pedodou, mou eivon 1 amo@uY T ToU UTOAOYLOUOU TV
OpwY, TV 0oV 0 UTOAOYIOUOS X0OTI(EL, OTWE T.Y. TOU 557’;,

OTIC TapayYyoug euonoinciog Tou TAéyuatoc. O uToAOYIOUOS TOU gbi: umopel €Tol Vo
amo@eLy Vel Ue TN OLaPOELOT) TOU UOVIEAOU PETATOTIUONG TOU TAEYHATOS Xou dNutovpyla

wag ouluyolg e&lowoNg UETATOTIONG TOU TAEYUOTOS [11].

uropel vor emextodel

H ouveyric ouluyric mpocéyyion yia Tn BeATioTonoinom Lop@nc oy AUATOS, O POEC
mou SinovTal and Ti¢ e€lowoelg Navier-Stokes pnopel vo dtatunwiel ye tpeig dlago-
EETIXO0C TEOTOUG, XoEVAS AT TOUG OTOlOUG TUPAYEL Lol DLUPORETIXT| EXPEACT] Yid
TIC TOPAYWYOUS evancUnciog [1I]. Ot npoxintouvcec ouluyeic e€loWOELS Xou OpLUXES
ouvirixeg elvorn (BIEC xou YLl TIC TEELS DLATUTIOELS.

H rpotn datinwot, odnyel ot pla éx@pact) Tou TERLAUPBEVEL UOVO OAOXANPOUTA
ota 6pLo TS YEWUETRLaG, Snhady empovetoxd ohoxhnpouata (tpocéyyton SI). Autd
onuodver 6TL €yl younhd UTOAOYIOTIXG xOOTOC, AhAG uTtopel, avd TtepintTwon, vo voTepel
oe axplBeta. H dedtepn dlatimwon odnyel og Eva dipolopa 1660 ETLPAVELAXODY OGO X0l
YWEWOV ONOXANEWUATOVY X avapépeTton w¢ 1. H datinwon F'I elvon yev axplfrc,
OAAGL EYEL, AOYR TWV YWELXWY ONOXANPOUTLY, XoOS TNG aveyXNG UTOAOYIOUOU TOV

§Zk 4 7 2, ’ ’

5555 UPNAG xdotoc. H mpooeyyion Enhanced ST (B — SI) eZahelper tnv ovdryxn uro-
’ 5$k , /, , ’ /7 ,

AOYIOUOL TV GE GTOV OYXO0 TOU UTOAOYLGTIXOU Y 0plou, PELOVOVTOS £T0L TO XGOTOG,

umohoytlovtag TopdAAnAa TI¢ Tapay@yous evancincioc pe axpifela avtioToryn authc
e FI Swtinwong [1I].

Hopaxdte nopovotdletar suvortixd n ouveyic oLluyhc npocéyyion, [14] [15], [16],
[17] oe ypovixd péviuee, acuunicotes pogc. Xepnowonowjinxe to woviého tOEBNG
Spalart-Allmaras [14]. H oxdérouvdn avdhuon propet vo Beedel pe neplocdtepes Ae-
ntopépetec oo [14] xou [18].

Xenowonowwvtag tov cupfBohioud Einstein, émou ol emavokopBavouevol deixteg
onhwvouv dipolon, ol e€ionoelg Navier-Stokes yio Uiot aoUUTIESTY), YEOVIXA UOVIUN
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e0Y| xou To povtého toeBng Spalart-Allmaras yedgovton we [14], [19], [20]

_ 9y _
(9.1']‘_

v 81}1- 0 8'111' a’Uj 3p . . ,
R} =wv, o, o1, |:<I/+Vt) (&Uj +83:i>} +(9xi =0, i=12(,3) (5.53")

RV = 0 (5.50)

g

;O 0 P\ o] a0\ /
. 02, o, KV+ )a%}_ o (89@-) —PP(@)+7D(7)=0 (5.5Y)

OTOL V; €VOL OL CUVIGTWOES TNG ToyUTNTAG, ¥ Vol 1) CUVEXTIXOTNTA, Iy 1) TUEBWONG
CUVEXTIXOTNTO XoL P 1) OTOTXA TeEoT Blanpoluevn pe 11 otadepr) tuxvotnta. H ueto-
BANTY xatdoTaong Tou woviéhou TOeBNS elvar To ¥ xon To TuEPROdES 1EMOES uTopEl va
Yeopel wg vy = Ufr. P(P) xou D(7) ebvan or dpot maporywyric xou xatacteoghc [14].
Or dpot mapaywyNg xou xaTac TeoPNC eCaETMVTAL, UETAED GAADY TOCOTATWY, UTd TNV
ambéoTocn A and Tov Tolyo.

Emniéov, 6edouévou otL yenowonoteitan 1 £ — ST dwtdnwor, ol e€lo®oElg
Teémel va oupnepAngdoly oTic edlomoelg xatdotaong. Ot ed. 5.4 xou ol e€loWOELS Ue-
TotémoNg Tou TAEYpaTog pall ue Tig oploxés cuviixeg ebval oL eELIGWOELS TTOU OLETOLY
10 TEOPBANUa Behtiotonoinone. Ou ouluyels e€looelg €youy we e€ng

Rq:—g—szng:O (5.6)
Rf:ujg—Z—a(g—;jz)—ai% |:<V + 1) (gu; ggﬁ)}—%gjﬁ + F§,
Nagi_ail (~aﬁ(“;femjkg—zemh) 0,i=1,2(,3) (5.7)
oSyl g [ B ot ()
—FﬁaﬁCp—i—%g;jj (g:; + gZ”> 4 (—P 4 D)+ FZ =0 (5.8)
o g e g g, g i | <0 (69

O ouluyeic optaxéc cuvifixeg TapouctdlovTon 6To TAARES XEUEVO Xou TOROAElTOVTAL
yioe Aoyoug cuvtopiag. Metd v eaywyr| 1wV culuydy eEIGHOEWY XL TWV OPLIXDY
TOUC GUVINXAY, 1) TEAXT EXPEUOT) TWV THEAYOYwY evatodnotag etvan
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OF,, oT;j oxy,
5bn9 =Ty — o SD, ax; Nt N g —— dS— ,, SD\Tij———=

; ot! ov; oxy,
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v\ 0r, 0Fg ov oy,
_ Ve TS r Tk
/Swp {(V " U) axj R ov et S‘| 0Ty, Oy by, as

d(nin;)  Ory  dwy
_/SWP(—u(m +¢<n)(n>)(7'ij 5bnj + 8x;nm_5bn nknmj) ds
o(tit)  om;  dxi g
— v | T’ I =gttt ) dS
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Sy or.  ox
/ tII>(tI (t1><t11>) (7—2_] 5bn'7 + a .7 5bk t{lt‘g) dS

oIty ory; o
P (T” 5 +ax;"mﬁfn’“t?t?)ds

OFsy . by on; 5(d
/ JFp—L i o dS+ FSW dS+/ Fs,, nzﬁ
Sw, Swyp, b Swp, o

™ by, 0by,

P OAP 0A om¢  dx;
+/ / AX —|—/ D0, Ca——dS2— —dS

Swy = 8b Sw 3" by, Q b, w OT; 50,
(5.10)

6ToV
SD1 = —upy + dierym) + Siuy(er (5.11)
ou;  Ou, aFSWp -
SDy; = (v+ 1) (835]- + axi)nj —qn; + Ti”“nk + FSWW (5.12)
OFs,,

ij = - 5.13

Auth elvan o yevixr éxgpoon mou unoget va yenowonoindel ye oTolBHTOTE GUVIETH-
o1 ®XOGTOUC TERLAOHPBAVOUGH YWwEWE Xou ETLPAVELxd ohoxhnpauota. Onwe gatveto, 7
€. 5.9 mepLEyEl UOVO Vol YWEd ONOXAHOWUA, X0l ETOPEVLSC OAOL TANY TOU TEAEUTALOU
OPOL UTOPOVY VoL UTOAOYIGTOOV UE VA TEUXTIXE aUeANTED xOoToC. O UTOAOYIOUOS
ToL TeEheuTaou 6pou oTNY EX. umopel vou Ylvel ue Tn yefor TEMEQUOUEVKY OLo-
POV, TEAYHA TOL OUwS Vo lye S ATOTEAEOUN TO XOOTOC Vol AUEAVEL YEUUULXS
uE Tov apliud TV PeTofBANTOY oyedlaouod N. ¢ eVoAoxTIxdC TEOTOC AVTIUETOI-
one e dapodplone e ambéoTacne A and tov tolyo, 1 edloworn Hamilton-Jacobi

(Ra = %A%ﬁﬁ —1=0, érnou ¢; = aA) 1 omola divel pLo TOhD XA TPOGEYYLON
i j
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Tou eLxAeidelov Tediou andotaong [14], uropel va yenowonomiel wc MAE Siénovoa
v andotaon A [21].

H B ouluyhc dladicacio yenoudomoleiton, oTn cUVEYELa, yio TNV e€3Aewn Tou
YWEXOLU OAOXANEOUUTOS TOU %, omwe yenowonotfinxe yior TV e€dheun Ghwy Ty
ANV “aveTOUNTOY YWEIXOY OROXANEOUATLY Ueyel oTiyung. 'Etol to yvouevo tng
ouvluyolcg ambotaong A ue v e€iowon Hamilton-Jacobi npootideton otny éxgpo-
on e enauinuévng cuvdptnong x6otoug. O dpog Tou TEPLEYEL % ToTE eahelpeTan
Vé€TovTog Tov ToAATAACLIG T Tou (60 undéy, e&dyovtag €tot TNy culuyr eiowon yia
v anéotaon A [I4]. Autd ohoxhnpdvouv Ty Jewplia oyetind e ) dtotinwon Tng
ouveyolg culuYolg uedbBOU TOU YENOWOTOLETOL OTIC TPOCOUOLOOELS ToU Vo ToPOU-
OLGTOOY TOROXATE.

To Aoyound Pehtiotonolnong wopgpric tng BMW, ShapeModule, cto onolo ev-
owpotddnxay o emhitng e pofc xou o ouluyhc emthitne tne MIITP&B/EMIT e-
TUTEETEL GTO Yot va ouvdelel ye didgopa epyaheia 1) emAutéc mou Ya Abcouy To
TewTeVOV o T0 oLLUYES TEOBANUA xot, 6T cLVEYEL, Vo oTellouv oto ShapeModule
TI¢ Toparywyoug evatcdnolaug xou To mpog BeATioTomoinoy TUAUL TNG YEWNETRlg OTou
Ol HETATOTUGELS TOV 0ptax®y xOUBwy Yo UTOAOYIGTOUY e YeYion Tng Tey Vi Vertex
Morphing [22], [23], [24]. To Vertex Morphing eivor pia mopagetponoinon e yew-
uetplag pe Bdon toug xouBouc, dnhadT, oL VECEC TWV EMLPAVELAXOY XOUPwY elvor ot
UeTaBANTES oy EdLoUoL. Aucco TAEoVEXTNUA TwV UEVOBWY auT®Y, Efvar To ueyaAlTERO
‘design space’ (neplocdtepec uetoBAnTéc ayedaouon). ‘Eva peovéxtnua etvon mdavég
avoUUAiEg 0T0 oyfud, xadoe N TpoxiTToucH EmLpdVELd UTtopel va efvar "JopuBnong’.
H Aoon o autd 1o {ftnua ebvan 1 e@apuoyr evog @ihtoou eloudhuvong mdve oTic
TEOXUTITOVOES Tapay (YoUS euctoinciog xou oTic Yetatonioelc Tou xdie xouou.

Hapaxdtey mopouctdlovtar eVOETIXG dUO amd TIC TEVIE MEQITTWOOEIC TOU TEEY TN
xav. To amoteréopota topouctdlovtol avaALTIXG 6TO TAYPES XEluEvo.

Elaytotonoinoyn twv OAwxdv Anwiewdv Ilicong (Ap) oe TupBhdn
Po

H Beitiotomoinomn tou aywyol oy fuatog S UE 0TOYO TNV EAXYLOTOTOMON TV ATWAEL-
oV ohxric mieomng (tupBddng por) apédnxe vo Teé€et yior 25 xOxhouc. H ouvdptnon
%OCTOUC UEWVOTAY Pyl ot Tov 187 xUxho 6mou xar cUVEXAIVE oT1 BEATIOTN AUoT).
H olyxhion gatvetoan oto o). 5.4
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T T T T T
'sbend_losses_turbulent_obj' —%—

0.95

0.9

0.85

0.8

0.75

Objective value

0.7

0.65

0.6 I I
0 2 4 6 8 10 12 14 16 18

Optimization Cycle

Yyxnue 5.4: Edayiotonoinon Apy otov aywysé oxnuatos S, tupfwdns pon. “Yotepa
ané 18 xiUkAovs mapatnpettar pelwon 38.86% otny tiur) tns ouvdptnons k6o Tous.

To medio twv adpotoTindy xodétwy Yetatonioewy oty Tehx yewueTplo QafveTo
0TO OY. 5.5

normalDispla

Yyxnue 5.5: FElayiotonoinon Apy otov aywyé oxnuatos S, tuppaons pon. Iledio

atpootikwy kalétwy petatomioewy aTny TEAIKN YewUeTpla.

106



To nedlo g ohxrg tleong evidg Tou aywyol yioL TNV aEytxr| xou TENXT YewUeTpln
qofveton ot oy. 5.6, 5.7.

ptot
1. 146e+02

=70
l 60

YxAuna 5.6: Flaywrtoroinon Ap; otov aywyd oxnuatos S, tuppaddns pon. Olikn
rieon otny apxikn yewpetpia. Toun katd pnkog tov emmédou ouuuEeTpiag Tov aywyol.

ptot
1. 146e+02

=70
l 60

Yyxnue 5.7: Edayiotonoinon Apy otov aywyd oxnuatos S, tupPadng pon. OAixn
mieon €vtos tng TeAikng yewuetpias. Toun katd unkos touv €mmédov OUUMETPIAS TOU
aywyov.

Elaytotonoinoyn Ynoxatdotatng Xuvdetnone Kootoug yia tov
®d6pupo ctov HVAC Aywyd

H 8edtepn yewuetpla mou Bertiotomotinxe Htov auth evogc HVAC aywyol. H mpocg
ehaytoTonolnoT CUVEETNOT OE QUTAY TNV TEPITTWON Vol 1) UTOXATAC TATY GUVEETNOT
x6070U¢ Yo Tov H6pufo, opilduevn o (Bh. [25])

J:/ v, 2 dS) (5.14)

omou v ebvon 1) TUEROONE cuvexTxdTATA o 2 0 dyxog 6mou elvan eTduUNTH 1) EXo-
yotonoinon e ToePne xou Tou oyetlouévou pe autAv Yoplfou. XTn cuyYXEXEUIEVN
nepintwon, emhéyetal w¢ 6yxog ohoxAfpwang (Y, évac dyxoc Aiyo mpwv v €€odo
Tou aywyol. H yewuetpla Tou aywyol, T0 TUpoUETEOTONUEVO TNS TUAUA XL 0 OYXOC
OMOXAPWONE TNG CUVEETNOTS XOOTOUG atvovTol 0To GY. 5.8 (Xpwpauopéva UE UTAE
XU TEdowvo, avtioTolya).
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Xy 5.8: Edayiotonoinon vrokatdotatng ovvdptnong kéatous ya tov Uépufo atov
aywyé HVAC. Ilapapetporonuévo tunpa (UmA€) kar 6ykog oAokApwons tns ouvdptn-

ons kéotovg (mpdowo).

H Behtiotomoinon étpede yio 33 x0xhoug, YeTd Toug onoloug tapouciace ToAaVTw-
TIX CUUTEPLPORE, OTOTE xau TepuatioTnxe. H tohavtwtinh cuurnepipopd otny cuvdp-
TNON *XOGTOUG HTAY ATOTEAECUN TNG TUAAVTWTIXNG CUUTERLPORAC xuTd TNV (ALY TOU
TewTevovtog TeofBiAuatog. H olyxiior| tne @aiveton oto oy. 5.9

Objective value

0.0001
0 5 10 15 20 25 30 35

Optimization Cycle

Iy 5.9: Edayiotonoinon vrokatdotatng ovvdptnong kéatous yia tov UépuBo atov
aywyé HVAC. Metd and 33 kdkAous BeAtiotomoinong, éxel vidpéer peiwon kard 99.99%
oTny Tun s owdptnons K6oTovs, o€ oUYKPIoN UE TNV apX1KN) TNS TIU).

To medio TV adpoioTinwy Yetatonioewmy TeofeBAnuévwy oto xdeto didvucua @o-
tvetar oto oy. 5.10.
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ExAra 5.10: Elayiwotoroinon vrokatdotatns ovvdptnong kéotous ya tov Uépufo
otov aywyé HVAC. Iledio twv alpoiotikoy petatorioewy mpofepAnuévwy oto kdleto
oudvvoua. MrAe xpwuationss avTioTolel o€ NETATOTIOEIS TPOS TO €TWTEPIKG TOU a)w)oU,
€V KIP1vo§ Kal KOKKIVOS XPWUATIOUOS T€ UETATOTIOES TPoS €€w.

Ilepiindn - Luurnepdopoto

Yuvolilovtag, oto TE®TO Pépog TN epyaociuc amedelydn 6Tl 0 uTohoyloudg NG
mleong unopel va mparypatoroinlel ywoelc Ty avdyxn avodutixey 1) CFD utoloyiouovy
o€ €va Tedio oL exTEIVETOL Amd AXOUC TIXT| TNYT| €WC oL TOV TopaTnenTh. Avt autoU,
n KIM uroget va yenoworomdel yioo v mpdBiedn tou Yoplfou, yenowonoidviag to
CED 1) avahutind dedopéva amd Evay ywelo xovtd otny mnyr. Edelyin enlong, 6t o
t0nog tou KI pmopel vo Sopoplotel avolutind xon to anotéleoya, 6p'/oby,, vo yen-
OLIOTIOLELTAL Y10 TOV UTOAOYLOUO TWV TOQUYWY®Y euononoiag Tou amattobvTon yiol TN
BehtioTonolnon tne Véone e mnyNc. Melhovtixd Yo unopodoe va mpayuatonotniel
o0leuen tou oroxhnpwuatog Kirchhoft ue CFD pe otdyo v gradiend-based eiti-
otomoinom Hopghc Yl TV agpooxouoTixh. Lo va yivelr fehtiotonolnon pe Bdon
ouvey ) ouluyT| uédodo meénel va yiver oLLELEN TNV aVAALTIXAC SlaPOELOTC TOU TUTOU
tou Kirchhoff nou mpaypatonofinxe oty epyacio auty|, ye tn culuyy| yédodo yia
™V eof).

Y10 06eUTEpO TUAUY, TRayHaToTolUNXE EmiTLY S 00CeLEn Tou cuvey 0l culuyolg
Aoytouxot tne MITTP/EMII pe to optimization workflow tne BMW, ”ShapeModu-
le” xon tpgydnxay emtuyne 5 tepimtwoeg Behtiotonoinong. H avavéworn tou TAéypo-
TOC YWVOTAY UE TPOCUQUOYT Yiol OAES TIC TEPLTTAOOELS. AuVOTOTNTO aXOUa UEYUADTERNC
uelwone tne ouvapTAoEwe x6oToug Vo elyaue av yvoTay enavamAeyUotonolnorn. e
ONEC TIC TEPLTTAOELS, UTAREE Lol TOAD XavoToLnTLxy| UEltoT) TNG cUVERETNOoNS XOOTOUG
avd xOxho. Ewixd 1 Pertiotonoion tou HVAC aywyol pe ypron g utoxatdotatng
oLVaETNONG XO6GTOUG Yl Tov Yopufo mopouciace o dpopatixy| Petworn g cuvdpTn-
CEWC XOOTOUC.

109



110



Bibliography

[10]

[11]

[12]

Lighthill, MJ: On sound generated aerodynamically i. general theory. Proc. R.
Soc. Lond. A, 211(1107):564-587, 1952.

Delfs, J: Lecture notes Grundlagen der Aeroakustik (Basics of aeroacoustics).

WS 2016/2017.

Rienstra, SW and Hirschberg, A: An introduction to acoustics. Eindhoven
University of Technology, 18:19, 2003.

Roach, GF: Green’s functions. Cambridge Univ. Press, 1982.

Crighton, DG, Dowling, AP, Ffowcs-Williams, JE, Heckl, M, Leppington, FG,
and Bartram, JF: Modern methods in analytical acoustics lecture notes, 1992.

Kapellos, C and Hartmann, M: A continuous adjoint approach for vehicle inte-
rior noise reduction. 2016.

Casalino, D: An advanced time approach for acoustic analogy predictions. Jour-
nal of Sound and Vibration, 261(4):583-612, 2003.

Najafi-Yazdi, A., Bres, GA, and Mongeau, L: An acoustic analogy formulation
for moving sources in uniformly moving media. In Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, volume
467, pages 144-165. The Royal Society, 2011.

Roger, M: Applied Aero-acoustics: prediction methods. The von Karman insti-
tute for fluid dynamics, 1996.

Zymaris, AS, Papadimitriou, DI, Giannakoglou, KC, and Othmer, C: Continu-
ous adjoint approach to the spalart—allmaras turbulence model for incompress-
ible flows. Computers & Fluids, 38(8):1528-1538, 20009.

Kavvadias, IS, Papoutsis-Kiachagias, EM, and Giannakoglou, KC: On the
proper treatment of grid sensitivities in continuous adjoint methods for shape
optimization. Journal of Computational Physics, 301:1-18, 2015.

Nielsen, EJ and Park, MA: Using an adjoint approach to eliminate mesh sen-
sitivities in computational design. AIAA journal, 44(5):948-953, 2006.

111



[13]

[14]

[17]

[18]

[22]

[23]

[24]

[25]

Mavriplis, DJ: Discrete adjoint-based approach for optimization problems on
three-dimensional unstructured meshes. AIAA journal, 45(4):741-750, 2007.

Papoutsis-Kiachagias, EM: Adjoint Methods for Turbulent Flows, Applied to
Shape or Topology Optimization and Robust Design. PhD thesis, Laboratory of
Thermal Turbomachines, NTUA, Athens, 2012.

Mohammadi, B and Pironneau, O: Applied shape optimization for fluids. Oxford
university press, 2010.

Giannakoglou, KC, Papadimitriou, DI, Papoutsis-Kiachagias, EM, and Oth-
mer, C: Adjoint methods in cfd-based optimization: Gradient computation &
beyond. In European Congress on Computational Methods in Applied Sciences

and Engineering-ECCOMAS, pages 10-24, 2012.

Papoutsis-Kiachagias, EM, Giannakoglou, KC, and Othmer, C: Adjoint wall
functions: Validation and application to vehicle aerodynamics, 2014.

Papoutsis-Kiachagias, EM and Giannakoglou, KC: Continuous adjoint methods
for turbulent flows, applied to shape and topology optimization: Industrial ap-
plications. Archives of Computational Methods in Engineering, 23(2):255-299,
2016.

Versteeg, HK and Malalasekera, W: An introduction to computational fluid
dynamucs: the finite volume method. Pearson Education, 2007.

Moukalled, F, Mangani, L, Darwish, M, et al.: The finite volume method in
computational flurd dynamics. 2016.

Papoutsis-Kiachagias, EM, Koch, J, Gkaragounis, K, and Giannakoglou, KC:
A continuous adjoint framework for shape and topology optimization and their
synergistic use. In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference, page 1389, 2018.

Hojjat, M, Stavropoulou, E, and Bletzinger, K: The vertex morphing method
for node-based shape optimization. Computer Methods in Applied Mechanics
and Engineering, 268:494-513, 2014.

Hojjat, M: Node-based parametrization for shape optimal design. PhD thesis,
Universitatsbibliothek der TU Miinchen, 2015.

Bletzinger, K, Hojjat, M, and Stavropoulou, E: Form finding by shape opti-
mization with the vertex morphing method—about the equivalence of sensitivity
filtering and standard spline models.

Papoutsis-Kiachagias, EM, Magoulas, N, Mueller, J, Othmer, C, and Gian-
nakoglou, KC: Noise reduction in car aerodynamics using a surrogate objective

function and the continuous adjoint method with wall functions. Computers &
Fluids, 122:223-232, 2015.

112



	Contents
	I Aeroacoustic Noise Prediction based on the Kirchhoff Integral Method
	Mathematical Background and Theory in Aeroacoustics
	Wave Equation
	Green's Functions
	Kirchhoff Integral
	Monopoles
	Dipoles

	Noise Prediction Results
	Pressure Perturbation Generated by a Dipole - Analytical Solution Compared with the KI
	Mathematical Formulation
	Results

	Computing the Optimal Dipole Position for a User-Defined Target Pressure at the Receiver
	Pressure Perturbation Generated by a Monopole - Analytical Solution Compared with the KI
	Mathematical Formulation
	Results
	Computing the optimal Monopole Position for a Certain Target Pressure at the Receiver



	II Continuous Adjoint-based Shape Optimization
	Continuous Adjoint Formulation for Incompressible, Steady-State Flow
	The PCOpt/NTUA Software
	Three Continuous Adjoint Formulations for Shape Optimization (SI - FI - ESI) 

	State equations
	Introduction of the Adjoint Variables
	Differentiation of the Objective Function
	Derivation of the Adjoint Equations
	Adjoint Boundary Conditions
	Final Expression for the Sensitivity Derivatives


	Shape Optimization Results
	BMW Workflow : ShapeModule
	Vertex Morphing

	Integration of the PCOpt Solvers into ShapeModule
	Cases - Results
	3D S-Bend Tube
	The HVAC Duct


	Summary-Conclusions
	Bibliography


