Interdepartmental Postgraduate Studies Program "Computational Mechanics"

Computational Techniques & Solution Algorithms

FORMULA SHEET (for the exams)

(In the exams you will not have access to books or notes.

You may only bring this formula sheet. with you)

K.C. GIANNAKOGLOU

Approximate Factorization methods SIP & MSIP

Stencil for node (i,j):

С	F	K
В	E	Η
Α	D	G

Corresponding to

I-1,J+1	I,J+1	I+1,J+1
I-1,J	I,J	I+1,J
I-1,J-1	I,J-1	I+1,J-1

The SIP algorithm for 9-diagonal matrices (capital letters stand for its diagonals) computes the Lower (diagonals: a,b,c,d,e) and Upper (unit entries in the main diagonal; other diagonals: f,g,h,k) triangular matrices, according to the formulas:

$$\begin{split} a_{i,j} &= A_{i,j} \\ b_{i,j} &= \frac{B_{i,j} - \psi f_{i-,j+1} C_{i,j} - a_{i,j} f_{i-1,j-1}}{1 - \psi f_{i-1,j} f_{i-1,j+1}} \\ c_{i,j} &= C_{i,j} - b_{i,j} f_{i-1,j} \\ d_{i,j} &= \frac{D_{i,j} - 2 \psi a_{i,j} g_{i-1,j-1} - a_{i,j} h_{i-1,j-1} - b_{i,j} g_{i-1,j}}{1 + 2 \psi g_{i,j-1}} \\ e_{i,j} &= E_{i,j} - a_{i,j} k_{i-1,j-1} - b_{i,j} h_{i-1,j} - c_{i,j} g_{i-1,j+1} - d_{i,j} f_{i,j-1} + \\ &+ 2 \psi (c_{i,j} f_{i-1,j+1} + d_{i,j} g_{i,j-1}) + \psi (a_{i,j} g_{i-1,j-1} + c_{i,j} k_{i-1,j+1}) \\ f_{i,j} &= \left(F_{i,j} - 2 \psi c_{i,j} [f_{i-1,j+1} + k_{i-1,j+1}] - b_{i,j} k_{i-1,j} - c_{i,j} h_{i-1,j+1} \right) / e_{i,j} \\ g_{i,j} &= \left(G_{i,j} - d_{i,j} h_{i,j-1} \right) / e_{i,j} \\ h_{i,j} &= \left(H_{i,j} - \psi d_{i,j} g_{i,j-1} - d_{i,j} k_{i,j-1} \right) / e_{i,j} \\ k_{i,j} &= K_{i,j} / e_{i,j} \end{split}$$

The restarted GMRES method:

Solution of the linear system Ax = q ($r^n = b - Ax^n$); selected basis size=m. In each generation (n+1), the solution is updated as

$$x^{n+1} = x^n + \sum_{i=1}^m \beta_i v^i = x^n + U^m B_m$$

where B_m is the column arrays of $\beta_{_{\!\it I}}$. The following two equations are valid

$$AU^{m} = U^{m}H_{m} + w^{m}e_{m}^{T} = U^{m+1}\overline{H}_{m}$$

and

$$(U^m)^T A U^m = H_m$$

(notations as in the course)/

The computation of array B results from the minimization of $\|r^0 - U^{m+1}\overline{H}_m B_m\|_2$.

The Arnoldi algorithm, in two variants, follows:

in, in two variants, renews.			
Variant (A1)	Variant (A2)		
$v^1 = \frac{r^0}{\left\ r^0\right\ }$	$v^1 = \frac{r^0}{\left\ r^0\right\ }$		
DO j=1,m	DO j=1,m		
$w^j = Av^j$	$w^j = Av^j$		
do i=1,j	do i=1,j		
$h_{ij} = (w^j, v^i)$	$h_{ij} = (w^j, v^i)$		
enddo	$w^{j} = w^{j} - h_{ij}v^{i}$		
$w^{j} = w^{j} - \sum_{i=1}^{j} h_{ij} v^{i}$	enddo		
$\left\ h_{j+1,j} = \left\ w^j \right\ _2$	$\left\ h_{j+1,j} = \left\ w^{j}\right\ _{2}$		
$v^{j+1} = \frac{w^j}{h_{j+1,j}}$	$v^{j+1} = \frac{w^j}{h_{j+1,j}}$		
ENDDO	ENDDO		