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In this thesis, turbomachinery blade shape parameterization methods are further
extended for use in an industrial design-optimization loop. Having the distinction
between node-based blade representations (that use all CFD grid nodes as design
variables) and CAD-based blade representations (that use geometrical quantities
with a clear physical meaning as design variables, according to the method and tool
developed by PCOpt/NTUA under the name GMTurbo) in mind, the software to
bridge the two types of representation is programmed. The GMTurbo parameteri-
zation method is an indispensable part of an Evolutionary Algorithm optimization
workflow, since it provides a complete representation of the blade using a limited
amount of variables.

To be able to use the GMTurbo software in an optimization loop, even when
only node-based representations are available, a Reverse Parameterization Tool
(RPT), that performs the conversion from a node-parameterized to the equivalent
GMTurbo-parameterized blade is programmed in this thesis, as an add-on to the
GMTurbo software. In order to perform CFD simulations on the GMTurbo geom-
etry, a surface Grid Adaptation Tool (GAT) is also programmed, its purpose being
to adjust the initial surface CFD grid to the GMTurbo geometry, converting the
GMTurbo representation back to the CFD grid representation.

To demonstrate the performance of the RPT and the GAT, comparisons on the ge-
ometry and CFD-results of the node-based blade shape and the equivalent reparam-
eterized shape are performed in hydroturbine applications. Finally, Evolutionary
Algorithm shape optimization of blades, the geometry of which is given in node-
based form, is performed after converting them to the GMTurbo parameterization
using the RPT. The GAT, is then integrated into the optimization workflow, its role
being to generate a grid for each EA candidate blade geometry.



Edvixd Metoofio ITohuteyvelo
Yxor ) Mryavohoywy Mnyavixoy

Touéag Pevotov

Epyaoctripio Ocpuixwdy XtpoAounyavey
Movdada ITagdAAnine YPA & BeAitiotonoinong

IMeoyepappatiopndg evog ‘Ilicw-cs-CAD’ Epyaisiou yia tnv
Avdivorn xow BeAtiotonoinon Iltepuywoeswy XtooBihounyavaoy.
Blounyavixée E@opuoyeég
Amiwpotiny epyacta
Moapxérha Zopund
EmufBiénwy: K. X. Tavvdxoyrov, Kadnyntic EMII

H Simhopotin auth epyacta agopd uedddoug mapauetponolnong ntepuylnwy otpofilo-
unyavev. H didxpion petadld twv mAeyuatixoy avanapac tdocwy xou v CAD avo-
TOEUC TACEWY TNG LOPPNC YEWUETPLWY (€8 TTEPLYIWY) YEQUEOVETIUL UE TNV oVATTUEY
oyetxol hoytouwol. H CAD avanapdotact mou Yenoyomoleitol 6Ty SITAOUTIXN
oty epyaocio tparypatonoeitar ue to Aoyouxd GMTurbo to onolo avoartiydnxe oto
Epyoaothiplo Ogpuixv Mtpofihounyavody tou EMII xou otnpileton otig facixés évvoleg
TV OTEOPBLAOUNYAVGY YL TNV TapaueTeoTolnon tTepuylwy. Elvor tdavixd yio yévveon
e YewueTplog o Behtiotonoinor wopgric ttepuyiny ue E&ehixtinoic Alyopituoug,
ool Yenoulomolel TEQLOPIOUEVO aptdud UETUBANTGY oyedlaouol yia vo Teptypddel To
TTEQUYLO.

o v yiver eguety) i yeron tou GMTurbo, axdua xou oTic TEPITTOOE TOU P6VO
T0 MAéYUa Tou Ttepuyiou elvon Slodéctuo, TpoypoupaTicTNXE AoYlouwxd ‘avTticTpopng
nopapetponoinonc’ (Reverse Parameterization Tool, RPT) nou nparypatonotel t ye-
Tatponr) Tou mAgyuoatog oe GMTurbo yopgy| wg enéxtaor oto Aoyiouxd GMTurbo.
[ v mparypatoroinon egapuoyoy Trohoyiotinic Peuotoduvouxrc oty CAD ye-
wuetplo, ovantiooeta éva AoYlowx6 ‘tpocupuoyic emgavetaxol tAéypatoc’ (Grid
Adaptation Tool, GAT), 1o onolo dnuovpyel Théypa YOpw oand tn CAD yewyetpla
HE XATAAANAT) TUROUOPPWOT) TOU 0PYLXOV.

o v a€loroyniel n motétnTa 1600 Tou AoYLoULXoU avTioTEOPNE TaPAUETEOTOINoNG
(RPT), 600 xou tou Aoylopxol mpocapuoyhc enpavelaxol mhéypotoc (GAT), ouy-
xplvovTol ol YEWUETPIEC xou Tot UTOAOYLoVEVTA POtXd PEYEDT UETOE) TNG apyIXhAC %ol
NG TopaUETEOTOMUEVNG YEwUEeTplag. TEélog, mpayuatoroleiton 1 BeAtiotonoinon pop-
@he, pe ™ Yeron Egehminav Alyoplduwy, ttepuyiwy twv onolwy 1 yewueTtpla elvor
otdéouun o pop@t| TAEypatog, uetd Ty uetatponr) toug oe GMTurbo popgy| yéow
tou RPT. To hoyouxéd npocupupoyic empaveiaxol nhéyuatog (GAT) mou npoypop-
wotio Txe yenotwonoleltal yior TN Snuioupyio TAEYHaTOC YUpw and xdle YEWUETElo TOU
onutovpyel 0 eehxTixdg olyopriuoc.
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Chapter 1

Introduction

1.1 Turbine Blades Representation

Methods for the design and optimization of blades, based on aerodynamic or hydro-
dynamic criteria, is a key research topic in turbomachines. Turbomachinery blade’s
shapes vary, depending on the application, the operating conditions which they are
designed for, manufacturing constraints etc. Thus, there are many types of turboma-
chines, to fit different operational requirements. They can be thermal or hydraulic,
depending on the fluid that provides or absorbs energy. Thermal turbomachines
are classified into two categories; compressors and turbines, while hydraulic turbo-
machines classify into pumps and turbines. These machines can be axial, radial or
mixed flow, depending on the inlet and outlet flow direction. In the case of a mul-
tistage turbine or compressor, one has to design the shape of the blades for every
stage. Turbomachines often involve Inlet Guide Vanes, that are stationary blades
placed ahead of the first stage.

The above are just a few examples of the variety of turbomachinery blades used
by the industry. Blade geometrical representation is essential for their design. Pa-
rameterization is the process of composing a geometry according to an algorithm,
by firstly determining a set of design variables that correspond to the input to this
algorithm. Different sets of parameters produce different shapes. There are various
ways to parameterize a blade which, from a certain point of view, can be classified
into node-based and CAD-based methods.



Figure 1.1: Francis and Propeller Turbine runners.

Figure 1.2: IGV stationary
blades.

b/ /a

Figure 1.3: A compressor stage with 36 blades.

Node-based methods consider the blade as a surface grid that consists of distinct
nodes given by their Cartesian coordinates and the connectivity between them. This
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representation, although it offers the possibility to directly proceed to CFD simu-
lations, is rather inconvenient in an optimization loop. Shape optimization using
node-based representation may produce rough shapes and thus, invalid geometries.
A smoothing technique is, thus, necessary to smooth these irregularities out.

Alternatively, CAD-based representation is employed. This type of representation
describes the blade using parametric geometry. A blade can be described with
one (or more) NURBS surfaces which are controlled by their control points. Such
a representation can be modified or optimized by displacing the control points.
The number of design variables is significantly reduced in comparison to node-based
methods, while the use of parametric geometry guarantees a smooth result. However,
such CAD-based methods have to be followed by a surface grid generator or morpher
before generating the 3D CFD grid and running a CFD simulation.

To enforce the parameterization with physical concepts, intuitive algorithms are de-
veloped that use notions from the theory of turbomachines, such as the meridional
contour, metal angles, thickness profiles, etc. In terms of optimization, this type of
parameterization provides the design variables with a geometric meaning, therefore
during a stochastic optimization, the designer can further reduce the number of
the design variables, by choosing to modify the parameters that have the greatest
impact on the objective function. For gradient-based optimization, the parameteri-
zation algorithm must provide the derivatives of grid nodal positions w.r.t the design
variables, in order to compute sensitivity derivatives. This is done by the chain rule
as follows

SF  6F oz
oby, oz}, ob,,
~~ ~~ (1.1)
From Fromthe
Adjoint dif ferenatiation
of the parameterization
model

Parameterization methods that construct the blade using parametric geometry and
turbomachinery notions are used extensively in blade design, because they combine
a strong geometric sense while introducing a small number of design variables that
is ideal for the optimization.

For instance, [I] proposes the following parameterization method:

A blade can be constructed by first defining its meridional contour, then its mean
camber lines in hub and shroud and finally, superposing thickness to the mean
camber lines interpolated surface, resulting to the final blade. This method considers
the meridional contour to be formed by 7 patches that are defined by 7 Bézier or
B-spline curves along the hub and 7 along the shroud (fig. . Each Bézier curve
has 3 control points. The blade lies on patch 4 of the meridional contour.



outlet

inlet

Axis of rotation

Figure 1.4: The parameterization of the meridional contour according to [1).

Next step is the definition of the two mean camber lines that lie on the meridional
revolved surfaces of hub and shroud. These are defined by a cubic Bézier curve
of the f(u) angle distribution from leading edge (LE) (u=0) to trailing edge (TE)
(u=1) that is the angle between the meridional plane and the tangent to the camber
line at each streamwise position (fig. . To place this mean camber line in a
circumferential position, angles 6 = ata (;) of the LE or TE have to be defined for

hub and shroud.

0 1/3 2/3 1 u

Figure 1.5: The 3D surface of a meridional curve (left) and the definition of angle
B(u) distribution(right). From [1].



Interpolation of the two mean camber lines leads to a thickless blade. Imposition
of a thickness profile on this blade results the final blade. The thickness profile
definition is seen in fig. :

eliptic constant parabolic

[

camberline

u;

] .
- -

Figure 1.6: Definition of the thickness profile. It consists of three parts, the eliptic
the constant and the parabolic. w; and us are measured along the camberline. From

.

The method presented for parameterizing blade shapes is the ancestor of the method
this diploma thesis is based upon. This method, with some improvements made in
the meantime, is implemented in the parameterization software GMTurbo, which
is developed and used by the PCOpt/NTUA [2, [3]. Briefly, this software takes the
necessary input values, that are the design variables of the blade, and returns the
NURBS surface representations of the two sides of a 3D blade, pressure and suction,
in a CAD compatible form (IGES format) (fig. [L.7)).

A

b

Input parameters IGES file

Figure 1.7: The GMTurbo generates the CAD compatible geometry of the blade,
using the necessary parameters.

Having already emphasized on the value of intuitive parameterization methods in
optimization, the need of a reverse parameterization tool compatible to GMTurbo
rises. The Reverse Parameterization Tool (RPT) that is developed in this diploma
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thesis as an add-on tool to the GMTurbo software, is a code that can translate a
CFD grid of a turbomachine blade into a set of geometric parameters; compatible
with the GMTurbo input parameters (figure[L.8). This conversion, from CFD grid to
GMTurbo parameters, is needed if a blade CFD grid already exists and modifications
(e.g. shape optimization) to the geometry have to be made without using any node-
based parameterization or smoothers.

The case where the geometry is provided only as a CFD grid is very common.
The design of a blade could have been carried out using parameterization tools that
exist in the industry but are not compatible with each other, thus non exchangeable.
Therefore, the standard data format when exchanging geometries, is the CFD grid.
The information grids provide is very precise (connectivity, coordinates, boundary
patches), so they are exchangeable, since the only difference is in the format and not
the information each grid includes. Such format conversions are performed using grid
transformation software, that exists at PCOpt/NTUA. Since grids are extensively
used to represent the shape of blades in turbomachines, the implementation of the
RPT within the parameterization algorithm, which is the subject of this diploma
thesis, is a useful tool which may become an indispensable part of an optimization
that uses GMTurbo as the geometry generation software.

Reverse

GMTurbo

CFD Grid Parameters

Figure 1.8: The RPT uses the information provided by the CFD Grid in order to
compute the parameters of GMTurbo.

To be able to perform CFD simulations around the GMTurbo blade, a mesh has to be
created around the geometry. In this thesis, a surface Grid Adaptation Tool (GAT)
is developed that adapts the initial surface grid to the reparameterized geometry,
using the 2D spring analogy technique developed by PCOpt/NTUA in [4] (fig. [L.9).
The volume grid results from the deformation of the initial volume grid, in order
to make it fit to the adapted surface grid provided by GAT. The 3D deformation is
carried out using the 3D spring analogy technique also developed by PCOpt/NTUA
[4]. That way the complete reparameterization is achieved and CFD runs can be
performed to the geometry that is now available in both CAD and grid format.



Grid
Adaptation
Tool
(GAT)

3D
Spring Analogy
Morpher

CFD
Volume Grid

CFD
Surface Grid

IGES
geometry

Figure 1.9: To create a grid around the reparameterized surface, the GAT is devel-
oped that adapts the initial surface grid to the CAD geometry. Then the volume grid
is displaced to fit to the adapted surface grid, using the 3D spring analogy technique.

1.2 Optimization of Turbine Blades using EA

An evolutionary algorithm (E.A.) is a software, implementing a bio-inspired search
method that optimizes a set of design variables w.r.t one or more target function(s),
computed by an evaluation software. The software used in this diploma thesis, is the
EASY (Evolutionary Algorithms SYstem) platform, developed at PCOpt/NTUA
[5]. The evaluation code is a combination of the parameterization tool, the grid
morpher, the CFD solver and the post processor code that computes the objective
values from the results of the CFD software (fig. [1.10).

In this thesis, the optimization (using the GMTurbo parameterization) of a blade,
the geometry of which is given as a CFD grid, w.r.t. some objective functions,
is made possible. Before the optimization begins, the RPT programmed in this
diploma thesis (in C++) generates the GMTurbo parameterization that describes
the given node-based geometry. After specifying a set of the GMTurbo parameters
as design variables, the optimization is set. The sequence of tasks of fig. [1.10]
is called for every candidate geometry. In this diploma thesis, a surface grid dis-
placement technique is also programmed (in C++) in order to be able to perform
CFD simulations on the new, slightly different geometry. Also, post-processors of
the CFD results are programmed (in Fortran 77) to compute the objective function
values used by EASY.



Initial Geometry

v v

CFD Grid GMTurbo
Form \
y

Geometry
Generation
(GMTurbo)

Reverse
Parameterization
Tool (RPT)

Surface Grid
Adaptation
(GAT)

\ 4
3D Spring

Analogy Technique

v

CFD
(PUMA)

Stochastic
Methods < Y
(EASY)

Optimization

Gradient Based
Methods [ v

Figure 1.10: Shape optimization of a turbomachinery cascade. Flowchart of the
successive tasks that should be accomplished during one evaluation of a single individual
(if stochastic optimization is performed) or an optimization cycle (if gradient methods
are used). The initial geometry can be provided either in GMTurbo format or in CFD
grid format (or in different formats that are not discussed in this thesis). In the rather
common case where the CFD grid is available, the pre-processing of the optimization
includes the conversion of the geometry from grid format to GMTurbo format. The
software written in bold represents the integrated tools of PCOpt/NTUA. The software
written in red corresponds to the steps that were programmed in this thesis to make 8
the optimization possible.



1.3 Structure of this Diploma Thesis

The chapters of this diploma thesis are the following:

Chapter |2| Introduction to parametric geometry, focusing on NURBS Curves
and Surfaces, that is the main parametric representation used by GMTurbo.

Chapter (3| Presentation of the GMTurbo software. The parameterization
method used by the PCOpt/NTUA is explained in detail.

Chapter [4] Presentation of the RPT that was programmed.

Chapter [5| Presentation of the GAT developed and programmed in this
diploma thesis, as well as its incorporation into the optimization workflow.

Chapter [6]| Presentation of the PUMA CFD solver used in this thesis and the
post processing of the results.

Chapter [7| Applications of the RPT and GAT are presented, in order to
demonstrate the method and software performance. Three shape optimiza-
tions are carried out, proving that the RPT and GAT are successfully inte-
grated in the optimization procedure.

Chapter |8| Conclusions and ideas for future work.
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Chapter 2

Basics of Parametric Geometry

2.1 Introduction

Geometry representation has always been a fundamental part of the designing pro-
cedure of machines. The different components of the machine can be seen as curves
or surfaces in the 2D or 3D space. It is essential that a convenient method of
representation is used to make geometry handling as flexible as possible.

The two main methods of representing a curve or a surface are implicit equations
and parametric functions. The following analysis focuses on curves but the same
definitions and properties, with just a few modifications, apply to surfaces as well.

The implicit or cartesian equation of a curve in the xy-plane is given by
fla,y) =0 (2.1)
The same curve’s parametric function is
C(u) = (z(u),y(u),a <u<b (2.2)

where x and y are both functions of a single parameter w.

Parametric Geometry uses a single parameter to describe a curve and two parameters
to describe a surface. It also has a great geometric sense as it uses polynomials that
have certain useful properties. For the implementation of parametric curves and
surfaces, algorithms that perform geometric operations are found in the literature.
Some of the reasons why parametric representation is much more preferable than
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implicit representation, during blade design and optimization, are listed below:

e Adding a third coordinate z to an arbitrary curve is a natural extention to
eq. of the parametric representation. On the other hand, in implicit
representations, arbitrary 3D curves can only be mapped on the xy-plane
or yz-plane. In aerodynamic or hydrodynamic simulations, the use of 3D
geometries is fundamental, therefore the use of parametric geometry becomes
indispensable.

Cartesian representation of bounded curves or surface patches require the spec-
ification of an interval for every curve. On the other hand, the representation
of bounded segments, is built in the definition of parametric representation,
just by restricting the parameter u to a predefined [a, b] interval.

Parametric representation provides a natural direction for the curve and a rate
of traversal, as u goes from a to b. This information is not produced by the
cartesian representation but it is important to have it, because it provides
an ordered sequence to the points of the curve which is really useful when
programming software implementations of parametric geometry and gives the
designer a sense of the position of each point along the curve.

Parametric representation is associated with meaningful geometrical proper-
ties. The valuable properties, such as continuity along the curve, the fact that
control points pull the curve towards them, the convex hull property and oth-
ers that are presented in detail in this chapter, provide a better view of the
geometry to the designer. Aerodynamic and hydrodynamic shape optimization
using evolutionary algorithms would not be possible using implicit representa-
tion, because the selection of different geometries is stochastic, thus the design
variables may take on values that expose the aerodynamic and hydrodynamic
shape to unexpected deformations, that lead to discontinuity of the shape or
violate the manufacturing constraints. Using parametric representations, the
designer is able to apply deformations that always produce smooth results.

This chapter is an introduction to the basic definitions of parametric geometry that
are going to be used extensively in the parameterization and reversed parameteri-

zation algorithms that will be presented in the following chapters.

2.2 Parameterization using Basis Functions

In eq. [2.2] it is obvious that letting the variables (), y(u), z(u) be any function of
u, a wide range of curves can be produced. Restricting the functions x(u), y(u), z(u)
to a specific form may reduce the flexibility but, on the other hand, provides a
number of valuable attributes that come from the mathematical properties of these



functions. These functions are given by the equation

C(u) = Z Fi(u)ay (2.3)

where F;(u) are basis functions, that vary according to the desired properties of the
parametric representation, and a; are the coefficients of the basis functions.

2.2.1 Power Basis Function

Polyonomials is a powerful tool in the parameterization method. The simplest poly-
nomial basis function, that is hardly ever used because of its poor properties and
geometric meaning, is the power basis function Fj(u) = u’, that forms the N
degree parametric curve

N
C(u) = Z u'a; = ag + aju + agu® + ... + anu’Y (2.4)
=0
1 I I ! !
Coefficients of ° ! |
Power Basis Eunction Oa
08 e —— B
st _— —
o4l - — -
a1 ! ! ! !
o2t
0 dg | | | | a3
0 0.2 0.4 0.6 0.8 1

Figure 2.1: Polynomial ag + aju + agu® + agu® in black line. The coefficients, in
the form of ”control” points appear in red but they do not hold an obvious geometric
meaning.
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2.2.2 Bézier Curves

Power basis functions have a purely algebraic sense and do not provide any geomet-
ric sense to the parameterization. This weakness is overcome by the use of other
polynomials as basis functions namely the Bernstein polynomials, that are given by
the formula:

BN(u) = ————u'(1 —u)N 2.5
M) = - (25)
1 T T T T
osf\ )
Bos Bsa
0.6 -\ R R e —
\_Bis Baz
04F e — e .
Y BV S N N -
0 | |
0 0.2 0.4 0.6 0.8 1
u u
Figure 2.2: 3% degree Bernstein Figure 2.3: 7" degree Bernstein
Polynomial. Polynomial.
Forming the N* degree Bézier curve:
N
C(u) =Y _ B (u)P; (2.6)
i=0

The P; coefficients are referred to as Control Points or Bézier Points because,
according to the basis function 2.5 they act like "magnets” to the curve, control-
ling its shape. The representation of a Bézier curve can also be explained, purely
geometrically, based on the recursive De Casteljau’s algorithm [6].

14



1 . . T T
Control Poljygon —o— P2
S T e
st — -
Py | |
04 o i e N -
o2t/
0 IDO | I I L PS
0 0.2 0.4 0.6 0.8 1

Figure 2.4: Bézier Curve with 4 control points, the same points that are used as
coefficients in the curve of figure [2.1. Herein the geometric meaning of the control
points is obvious. The first and last points are interpolated by the curve, while the
intermediate points pull the curve towards them.

2.2.3 B-Splines

The above mentioned parametric representations use a single polynomial along the
[a,b] interval. Alternatively, partially continuous polynomials can be used, that
is segments of parametric curves of different degree and basis function, defined in
subsets of the interval [a, b] (e.g. [a, uol,[uwo, u1] , ... , [thm,b]) that maintain continuity
at the breakpoints wug, u1, .., u, (figure . This extension of the definition of the
Polynomial Basis Function curves yields the definition of the B-Splines curves. Their
distinguishing feature is that they provide local support, as the functions are defined
in specific intervals. Therefore, any displacement of the control points affects only
a certain interval, providing better handling and accuracy to the resulting curve.
Furthermore, lower degree is required in order to interpolate or approximate N
points (in contrast to Bézier curves where the degree of the polynomial has to be
exactly N —1).
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Ug Uy Up Ug Uy Us

Figure 2.5: Partially continuous curve.  Parameter values where the func-
tion changes, are called breakpoints and are given in the form of vector U =
[uo, w1, U2, ug, g, us| which is called knot vector.

Knot Vectors:

A knot vector is an array that contains the breakpoints of a partially continuous
polynomial in increasing order. In figure 2.5 the knot vector is U = [ug, uy, ..., U]
and determines the shape of the curve. A knot vector can be Uniform, Open-Uniform
or Non-Uniform. Uniform knot vectors are the vectors for which w;,; —u; = const.
(e.g. U=10,1,2,3,4,5] ). Open-Uniform knot vectors are Uniform knot vectors
that have k-equal knot values at each end, as in

u; = U, 1<k
Uipg —u; =const., k—1<i<m+1 (2.7)
U; = U, 1>m+1

For k=3 and m =5 a valid knot vector is U = |[0,0,0, 1,2, 3,4,4, 4]. Lastly, Non-
Uniform knot vectors is the most general case. The only constraint is the typical
one: U; L Ujyq-

An important property of a knot vector is the effect of the multiplicity of a knot w;
in the vector U. The multiplicity of w;, is the number of times this knot is found
in U and it is associated with the differentiability of the function at wu;.

B-Spline Basis Function:

The basis function of a p* degree B-Spline Curve with a knot vector U = [ug, 1, ..., Upy,]
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is given by the recursive formula:

Nio(u) I, uy < u < u
() =
v 0, otherwise

U — Uy Uitpt1 — U
Nip(u) = ———Njp1(u) + ——————Nip1p-1(u
up( ) Uity — Us P 1(u) Uiipp1 — Uit i+1p 1(u)

Every basis function N;, is a linear combination of functions N;,_; and N;_q,_;
of a degree p — 1, with weights depending on the knot vector U.

Figure 2.6: Third-degree B-Spline basis functions with a knot wvector U =
[0,0,0,0,0.2,0.4,0.6,0.8,1,1, 1, 1].

The properties of the B-Spline Basis Functions that result from their definition, eq.
2.8| are the following:

e Function N;, is non-zero for u € [u;, u;1p41). For example, in figure N33
is active only in the interval [us,u7]) = [0,0.8)

e At any knot span [u;, uj11), the non-zero basis functions are at most p+1,namely
Nj—pp s Njp. In figure 2.6 in the interval [us, us]) = [0,0.2) only functions
Nos, ..., N33 are active.

o N;, >0 for every i,p and u.
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° Z;:Z._p N;,=1for any u € [u;, ujt1).

e All the derivatives of N;, exist in the interior of a knot span [u;, u;41). At
knot w;, function N;, is p — k times continuously differentiable, where k is
the multiplicity of the knot (figure [2.7).

| | | |
12+ U=(0,0,0,0.2,0.4,0.6,0.8,1,1,1) —— ]

U=(0,0,0,0.2,0.4,0.6,0.6,0.8,1,1,1) ——

0 0.2 0.4 0.6 0.8 1

Figure 2.7: Set of 2" B-Spline basis functions. One set of basis functions has
multiplicity k = 1 for uw = 0.6 and the other has k = 2 at the same knot. The effect

of multiplicity is obvious as differentiability at this knot decreases while multiplicity
imcreases.

e N, has exactly one maximum value for p > 0.

e The B-Spline basis function with a knot vector
U=10,0,0,1,1,1 (2.9)
p+1 p+1
yields the Bernstein polynomials.
e If m + 1 is the number of the knots in the knot vector U = [ug, ..., U], n + 1
the number of the N;, functions and p the degree of the polynomials, then it
is easily proved that

n=m-p-—1 (2.10)
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1 1
U=(0,0,0,0.2,0.4,0.6,0.8,1,1,1) —— U=(0,0,0,0.5,1,1,1) ——
0.8 0.8
0.6 >( >< 0.6
0.4 \ / 0.4
0.2 0.2
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
1 ;
U=(0,0,0,1,1,1) ——
0.8
0.6
0.4
0.2
0
0 02 04 06 08 1

Figure 2.8: The effect of the knot vectors to the B-Spline basis functions. Three
sets of 2™ degree basis functions are presented. At each breakpoint a basis function
becomes zero and another one takes non-zero value. Therefore, the basis functions act
like switches that activate and deactivate at the breakpoints.

‘\ 5 § . Degree 2
‘ ‘ . Degree 3

Figure 2.9: The effect of the polynomial degree to the B-Splines basis functions. The

shape of each function obviously changes as the degree changes, as well as the number
of functions according to eq. @
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B-Spline Curve
A B-Spline curve of degree p is given by the formula:

C(u) = Z N, (u)P; (2.11)

that uses the polynomials of eq. as basis functions.The knot vector is a Non-

Uniform vector:
U=[a,a,a,Upi1, ..., Um—p-1,D0,b,b (2.12)

p+1 p+1

Usually @ = 0 and b = 1. According to this definition, the properties of the
B-Splines Curves are:

e Endpoint Interpolation: C(0) = Pg and C(1) =P, .

e Affine Invariance: An affine transformation is applied to the curve by applying
it to its control points.

e Strong Convex Hull property: The curve lies into the convex hull of it’s control
points. Moreover for u € [u;, u;11), C(u) is contained in the convex hull of
the points P;_p, ..., P; .

e Local Modification Schemes: Displacement of the control point P; effects
C(u) only in the interval [u;, wiypi1).

e Moving along the curve from uw = 0 to u = 1, the basis functions N;, act
like switches. As u passes wu;, the function N;_,_;,, which is the coefficient
of Pj_p_1 takes zero value, cancelling the effect of this control point, while
N, ,, takes a non-zero value, activating the effect of P;.

e Variation Diminishing property: There is no line that intersects the curve more
times than it intersects its control polygon.

e Given that C(u) is a linear combination of the basis functions N;, the
continuity and differentiability follows that of the basis functions. Hence, in
the interior of a knot span, C(u) is infinitely differentiable, while at a knot of
multiplicity k, it is at least p — k times continuously differentiable.

Rational B-Spline Curve:

Polynomials as basis functions are certainly well suited for parametric curves and
surfaces. However, they lack the ability of exact representation of some geometric
shapes, such as conics circle, ellipse, hyperbola. These curves are widely used during
the design of an engine, so the need of a parameterization that can represent them
is essential. This need leads to the definition of the Rational B-Spline curves that
are presented in detail in section [2.3]
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2.3 Non-Uniform Rational B-Splines(NURBS)

A NURBS Curve, as the acronym implies, is a Rational B-Spline curve, with a
Non-Uniform knot vector. Therefore, it is given by

_ 2ig Nip(w)wiPs
> ico Nipwi

N
S¥

C(u) , a<u (2.13)

where N, the B-Spline basis functions.

Control points P; , weights w; and the non-uniform knot vector

U=a,a,a,Ups1, .. Up—p—1,b,0,b (2.14)

p+1 p+1

can vary, providing a variety of curves. Alternatively, the curve is described by eq.

and the basis functions by eq. [2.16],
C(u) =) Ri,P; (2.15)

B Ni7p(U)w7;
> o Njp(w)w;

The properties of a NURBS curve have already been partly mentioned as properties
of B-Spline curves; however, these are repeated briefly for completeness:

R p(u)

(2.16)

o R;,(u) >0 for every i,p,u € [0,1]
Yoo Rip(u) =1 for every w € [0,1]
Rop(0) = R p(0) =1

e For p >0, R;,(u) has exactly one maximum value for u € [0, 1]

e Local support: R;,(u) = 0 for w ¢ [u;, u;4ps1). This leads to the ability of
local modifications. Displacing the control point P; or changing the weight
w; effects only the part of the curve where w € [u;, uipi1).

e All the derivatives of R;,(u) exist in the interior of a knot span. For u = u;
the function is p—k times conituously differentiable, where k is the multiplicity
of the knot. The same applies to C(u), being a linear combination of R;,(u).

o If w, =1 for every i, R;,(u) = N;,, the NURBS curve yields a B-Spline
curve.
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e Endpoint Interpolation: C(0) = Py and C(1) = Py,
e Affine Invariance

e Strong Convex Hull property

e Variation Diminishing property

e A NURBS curve without internal knots becomes a Bézier Curve. It is now
obvious how the NURBS curve is the most general parametric representation
since, by choosing appropriate parameters (weights and knot vectors), one can
achieve a Bézier or B-Spline curve, using the basis function of the NURBS
curve.

2.4 NURBS Surfaces

The ability of representing whole surfaces in space is crucial in a 3D design. Curve
C(u) is a vector-valued function of one parameter. It is a mapping of a straight line
segment wu € [0, 1] into the 3D space. Surface S(u,v) = (z(u,v),y(u,v), z(u,v)) is
a two parameter vector-valued function that maps a (u,v) plane to the 3D space.

For every aforementioned parametric representation of a curve, the definition can
expand to a S(u,v) Bézier, B-Splines and NURBS surface. Only NURBS surfaces
are analyzed here since, as in curves, their basis function contains all the other
parametric surfaces basis functions by definition.

A NURBS surface is given by the formula:

o Z;n:o Nip(w)Njg(v)w; ;i Py
> ico 2jeo Nip(w) Ny g (0)w; 5

S(u,v) = ,0<u,v<1 (2.17)

where P, ; are the grid-like control points, w; ; are the weights and N;,(u) and
N ,(v) are the Non-Uniform Rational B-Spline Basis Functions with the knot vec-
tors:

U =1[0,0,0, %11, Ump-1,1,1,1 (2.18)
p+1 p+1

V =100,0,0,0p11, e, Unp-1,1,1,1 (2.19)
q+1 q+1
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Figure 2.10: A NURBS Surface with 9 control points and knot vectors U =
[0’ 0’ 0’ ]" ]‘7 1]7 V = [07 07 07 17 17 1]

Alternatively, eq. is used and the basis functions change to eq.

S(u,v) = ) Rij(u, )Py (2.20)

i=0 j=0

N, p(u)N; o (v)w; 4
Rij(u,v) = s (2.21)
’ 2 =0 210 Niep (1) Nig(v)wpe
The properties of the NURBS surface are analogous to the ones of the NURBS
curve:

e R, ;(u,v) >0 for every 4,j,uand v.
o > o2 o Rij(u,v) =1for (u,v)€[0,1] x[0,1]
e Local Support. R;;(u,v) =01if (u,v) ¢ [wi, Uitpr1) X [Vj, Vjrqs1)

e In any region [wio, Uio+1) X [Vjo, Vjo+1) at most (p+ 1)(¢ + 1) basis functions
are non-zero,moreover R;;(u,v) # 0 for ip —p < i <ip and jo—p < j < Jo

o If p>0and ¢>0then R;;(u,v) attains exactly one maximum value.

e Ryo(0,0) = R,0(1,0) = Ry (0,1) = R, m(1,1) = 1, which means that the
control points on the four corners are interpolated by the surface.

e Affine Invariance
e Strong Convex Hull property

e Local Modification Scheme
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S(u,v) is p — k times differentiable with respect to u at the knot wu; of
multiplicity £ and ¢ — k times differentiable with respect to v at the knot wv;
of multiplicity k.

2.5 Fundamental Geometric Algorithms

Computational operations on parametric geometries are achieved through a series of
algorithms that can be found in literature. These algorithms perform various tasks
to the geometry and can be programmed and used to simplify the implementation
of NURBS curves and surfaces in programming codes. They are used extensively in
this thesis, during the programming of the RPT and GAT.

Interpolation of a set of points with NURBS curves. Computation
of the control points of a NURBS curve of a user defined degree, so that the
NURBS curve passes through the points.

Approximation of a set of points with NURBS curves. Computation
of a user-defined number of control points of a NURBS curve of a user defined
degree, so that the NURBS Curve is as close to these points as possible.

Approximation of a set of points with NURBS curves using Con-
straints. Sometimes, constraints have to be applied during approximation,
so that the resulting curve satisfies some requirements, such as point interpo-
lation or derivative specification.

Local Nonrational Cubic Curve Approximation. Approximation of a
set of points with a cubic Bezier curve, that also interpolates one of the points
(presented in appendix B).

Projection of a point onto a NURBS Curve.
Projection of a point onto a NURBS Surface.

Inversion of point of a NURBS curve. Computation of the parameter u
of a point that is known to lie on the curve.

Inversion of point of a NURBS Surface. Computation of the parameters
(u,v) of a point that is known to lie on the surface.

Intersection between two NURBS Surfaces. Computation of the curve
that belongs to both surfaces.

Intersection between two NURBS Curves. Computation of the point
that belongs to both curves.
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Chapter 3

Turbomachinery Blade

Parameterization

The blade parameterization this thesis is based upon is an intuitive method that
exploits fundamental notions of turbomachinery to represent a blade. This method
is programmed and used by the PCOpt/NTUA in the GMTurbo parameterization
software [3| [7] and is presented in detail in this chapter. The implementation of
the geometric shapes needed throughout the parameterization is carried out using
parametric NURBS curves and surfaces, as discussed in the previous chapter.

3.1 Meridional Plane

The first step of the parameterization procedure is to create the meridional contour
of the turbomachine. For a blading that revolves around the z axis, the meridional
contour is an (7, z) projection of the axisymmetric parts of the blade, namely, the
inlet and outlet planes, the hub and shroud, the LE and TE trace as the turboma-
chine revolves. These parts, being axisymmetric, exhibit symmetry around z axis,
thus they can fully be represented on the (r, z) plane and, then, by revolution to a
certain angle 6 around the z axis , translate into (z,y, z) coordinates through the
equation

(,y,z) = (rcosd, rsind, z) (3.1)

Therefore, the first step is the definition of six meridional (r,z) NURBS curves.
Namely, two meridional boundary curves (inlet and outlet), two meridional genera-
trices (hub and shroud) and two meridional edge curves (LE and TE) (fig{3.1)).
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To make it possible to superpose information about the metal angles and thickness
profiles, at different spanwise positions of the blade, projected streamlines are com-
puted as a linear interpolation between the hub and shroud generatrices, defined
in the previous step. It is noted that the word streamwise refers to a distribu-
tion of data from inlet to outlet, while spanwise refers to a distribution from hub
to shroud. Therefore, the blade can be seen as a combination of streamwise and
spanwsie distributions of data. The blade meridional contour becomes

h(u,v) = (r(u,v), z(u,v)) (3.2)

where shroud, hub, inlet, outlet, LE and TE are given by h(u,0), h(u,1), h(0,v),
h(1,v), h(urg,v) and h(urg,v), respectively.

V0=1 V0=O.8 V0=0.6 V0=0.4 V0=0.2 V0=O

Ug=1

Outlet

Shroud

Up=U g

r

Figure 3.1: Meridional contour of a Francis hydroturbine blade. The streamline
projections (blue lines) lie between hub and shroud.

Each projected streamline h(u,vy) = (r(u,vy), 2(u, vg)) corresponds to a revolved

surface (fig. by adding the angle § using eq. [3.1]
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Conformal Mapping:
Every surface can be described by two parameters, using a transformation from 3D
coordinates to a 2D plane. Hereupon, the conformal mapping is introduced. It is

known that a 3D surface of revolution can be mapped onto the 2D (m, ) plane
through the transformation

D(vg) : (r(u,vg)cosh, r(u,vy)sind, z(u,vy)) — (m(u,vy),6) (3.3)

where m(u,vg) is given by

m(u,vy) = /Ou \/Tu(tv:gi ;}:)Zu(tUO)th (3.4)

Figure 3.2: Conformal mapping of a revolved surface to (m,0) coordinates.

The mapping is conformal (see appendix A). The most important property of
any conformal mapping is the angle preservation property. Conformal mappings
preserve the magnitude and direction of the angle between two curves [8). This
property contributes to a better understanding of the parameterization, considering
that the angles defined on the (m, @)-plane to be presented in the next section, are
preserved on the (x,y, z) surface as well.
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SHROUD

HUB

Figure 3.3: Surfaces of revolution that result from the (r, z) streamlines of figure .
It is noted that for a vy = const., that is, for a streamline between hub (vo = 1)and
shroud (v = 0), the (r, z) projected streamline, the (r,0,z) surface of revolution and
the ®(vg) transformation to (m,0) plane have equivalent geometric meaning.

3.2 Mean Camber Line Parameterization

At each spanwise position vy € [0,1], a mean camber line is defined, to add in-
formation about the blade’s metal angles. The mean camber line is chosen to be
represented by a cubic Bézier curve on the (m, ) plane given by the transformation
®(vg) . The four control points of the cubic Bézier curve are defined by six parame-
ters that correspond to different angles at the LE and TE of the mean camber line,
providing the designer with a better understanding of the mean camber line’s slope
along the arc length. These are:

e O, and O are the peripheral positions of the LE and TE respectively.

e [rr and frg are the metal angles. These are the angles between the tangent
to the mean camber line at the LE or TE and the tangent to the circle that
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revolves around z-axis and passes through the LE or TE respectively (an
m = const. circle in fig. that passes through the LE and TE points).

e ) r and d0pp are the angles that determine magnitudes (g and (rg respec-
tively. These magnitudes specify for how long the directions fpr and Brg are
kept.

Figure 3.4: Definition of control points of a cubic Bezier mean camber line, from
angles Org , Ore , BLe , PrE , OLE and OTE.

According to fig. the control points Pg, P, P2, P3 are functions of 0, , 07k ,
BLE , BrE s CLE, CrE and Opg, Org given by:

Po = (mre,0LE) (3.5)

P3 = (mTE, QTE) (36)

where mpg = m(urg, vo) and mrp = m(urg, vo) from equation [3.4]
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Point P is the intersection point between the tangent lines at LE and TE, defined
by the angles Srp and Srg. Points Py and Py are functions of (g and (rg:

Py = (pPo+ (1 - CLE)f) (3.7)

Py, = (rePs+ (1 - CTE)f) (3.8)

Alternatively, using dp g and drp angles, control points Py and Po are given as
solution to the systems:

(Pa—M) - (P3g — M) = cosorg||P2 — M|| - ||Ps — M|| (3.10)

where M is the midpoint of the PoP3 chord.

Through this cubic Bezier parameterization, spanwise distributions of 0. , Org |,
Bre , Bre , 0rg and d0rp are defined, producing the mean camber line for each
spanwise position as seen in fig. |3.5| .

m(utg,0) . m(utg,1)

Figure 3.5: Spanwise mean camber lines, defined on the (m,8) plane(left figure), and
transformed to the 3D space through equation (right figure). Each mean camber
line lies on the corresponding surface of revolution.
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3.3 Blade Thickness Profiles

By determining the mean camber line on each surface of revolution, a skeleton of the
blade has been defined. The superposition of streamwise thickness profiles, along
each spanwise position of the blade, creates the final blade. The thickness profile is
imposed in two steps, to increase flexibility. First, the normalized thickness profiles
(t) with respect to the normalized arc-length (s) of the mean camber line is defined
separately for the pressure and suction sides. Then, a thickness factor (t;) that
scales the thickness profiles is specified for each profile, resulting to a thickness
distribution at each spanwise position vy € [0, 1]:

(3.11)

Figure 3.6: The thickless blade (mean camber surface) on the left, composed by
interpolation of the mean camber lines in the 3D space. On the right, the thickness
profiles are superposed.

Having determined a mean camber line p,,¢ for the spanwise section on the (m,0)
plane, the imposition of the thickness profiles requires the computation of the normal
vector np,e(s,vg) at each normalized arc length s point of the mean camber line
and the application of the equation (to both pressure and suction side with the
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appropriate sign):

tF5(s, v
Cig(&%) = Mypg(5,00) £ Ny (s, UO)WS,U?))
(3.12)
tSS(s,vo)

r2(m(s,vg))

where r(m(s,vp)) is the corresponding radius of the (m,0) point pme(s, ve) of the
mean camber line, through ®'(vy), and is used to transform the legnth #(s,vy) of
the 3D space to a length on the (m,0) plane (see appendix A). These airfoil curves
(eq. [3.12) are mapped back onto the (z,y, z) coordinates, through ®~!(v), to create
the 3D skeleton of the blade(figure [3.6] ).

Criz%(‘S? UO) = :u’m0(87 UO) + nm9(87 UO)

The final step is the skinning of the two sides, to create two NURBS surfaces, using
an algorithm that passes a smooth surface through a set of curves, giving rise to the
final 3D blade (fig. [3.7)).

Figure 3.7: The final skinned blade surface.
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Chapter 4

Reverse Parameterization Tool

(RPT)

A CFD grid is a common but unhandy form of representation of a blade’s shape,
since, in terms of design, it is not easy to modify the geometry given in grid form.
It is thus essential that it is converted to a more useful CAD form, so that changes
in the geometry can be made. In this thesis, the CAD representation is the blade
design parameterization GMTurbo presented in chapter [3| A software to transform
a CFD grid into a GMTurbo compatible form is the main purpose of this thesis and
this is presented in this chapter.

4.1 Turbomachine Blade Grids

A CFD 3D grid summarizes the following information:
e A set of nodes, with their (z,y, z) coordinates.
e The connectivity of these nodes.

e The boundary patches of the volume grid, namely surface patches formed by
the nodes that have already been defined. These are the patches where the
various boundary conditions must be applied by the CFD solver.

The RPT is programmed to reparameterize structured surface grids, composed by
quads. The boundary patches of these grids must be in a standardized format and
contain the following:
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e An Inlet and an Outlet Patch where the CFD solver applies the inlet and
outlet boundary conditions.

e Wall Patches i.e. solid boundaries where the wall boundary conditions are
applied. These usually are hub and shroud patches, pressure and suction side
patches and a trailing edge patch. In turbomachinery CEFD grids, wall patches
might be rotating (with the exception of the shroud that is usually stationary
or the stationary blades), thus the computation of the velocity flow variables
depends on the speed of the rotating parts.

The trailing edge type can vary. In the most common cases, it is rounded,
sharp or blunt type. In the cases analyzed in this thesis the trailing edge type
is blunt, so the blade in the trailing edge is cut off, and the thickness at that
point is represented by a trailing edge patch (fig. .

e Periodic Patches. When the CFD domain has a periodic repeating nature
(repeating geometry and flow field), periodic boundary conditions are applied
on the periodic patches. In the grids used in this thesis, the periodic patches
surround each blade as seen in fig.

INLET

TRAILING
EDGE

y

PERIODIC
SIDE 1

Figure 4.1: Standard patches of the CEFD grid used for the analysis of a turboma-
chinery blading.

4.2 Reverse Parameterization of a Blade

Starting with a turbomachinery surface grid like the one presented in section |4.1}, a
back-to-CAD method, converting the CFD grid to the parameterization presented
in chapter (3| is described below. The meridional contour, mean camber lines and
thickness profiles of the existing grid are to be computed.
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4.2.1 Meridional Contour of the Grid

The first step is the computation of the meridional contour. Having the surface grid
of the meridional patches, namely hub, shroud, inlet and outlet, the (r, z) generatri-
ces of each meridional surface are computed. The edge between the surface grid of
a meridional patch with one of the periodic patches (whichever) (fig. is a node
representation of one generatrix of the meridional surface in (x,y, z) coordinates.
Projecting this generatrix onto the (r, z) plane using equations

r= VT

Z =2z

(4.1)

produces the meridional projection of hub, shroud, inlet and outlet patches. Also,
projecting the grid edges that correspond to the LE and TE onto the (r, z) plane,
produces the meridional curves of the two edges. The hub and shroud generatrices
are, then, approximated by a NURBS curve of a user-defined degree and number of
control points.

WM%MWIN f

I il
A ‘mﬂ"m“ﬂ“ ﬂmlu i
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Figure 4.2: The CFD surface grid. Figure 4.3: The meridional contour,

The axisymmetric patches namely hub as it results from the projection of the
(black), shroud (black), inlet (red) and azisymmetric patch nodes and the edge
outlet (green) are shown. nodes onto the (r, z)-plane.

Next, a user-defined number of N spanwise generatrices is generated. Having the
NURBS curves of hub and shroud at the meridional plane (in (r,z) coordinates),
a linear interpolation of the control points, produces intermediate streamlines (in
NURBS representation)(fig. [4.4). After defining the N generatrices, the operations
take place for each spanwise generatrix, thus the following are applied to each and
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every spanwise generatrix, in order to attain spanwise distributions of data.

r

Figure 4.4: A linear interpolation between the control points of the hub and shroud
results to the control points of the intermediate spanwise generatrices.

4.2.2 Mean Camber Line and Thickness Data Computation

Based on the (r,z) NURBS curve of the N generatrix, a revolved surface in the
(x,y, z) space and the ® transformation function to the (m, #) plane are generated.

A NURBS revolved surface that rotates around the z-axis to a certain angle 6, can be
computed using a single (r, z) NURBS generatrix. Rotating this generatrix control
points at discrete angles from 0 to 6, leads to sets of control points of type (r,0;, z).
These control points generate a NURBS revolved surface with angle of revolution 6,
the generatrix of which is the initial (r, z) generatrix. The cartesian representation
of the (r,0, z) surface points is given by

(z,y,2) = (rcosb, rsinb, z) (4.2)

Using the N*® (7, 2)-generatrix and eq. , a transformation function ® that maps
every (r,0, z) point of the revolved surface to the (m,#) plane can be computed.
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Figure 4.5: Up to this point, the revolved surfaces of the spanwise generatrices of
figure [4.4), between hub and shroud have been produced by the RPT. The grid of the
blade lies within hub and shroud and intersects the spanwise revoved surfaces. In
the RPT, instead of superposing data to the spanwise revolved surfaces, as in the
GMTurbo, data is extracted from the spanwise revolved surfaces.

Pressure and Suction sides:

The definition of the pressure and suction side curves that lie on the revolved surface
is the result of the intersection between the blade grid and the revolved surface pro-
duced. An algorithm that finds the intersection points between a structured surface
grid consisted of quads and the NURBS surface that intersects it, was developed in
order to find the points that lie both on the revolved surface and the blade (appendix
B ), resulting to a set of points such as in fig.

Having identified the airfoil (x,y, z) points in the 3D space and using the transfor-
mation function ® that has also been defined (knowing the (r,z) generatrix), the
blade (x,y,z) points can transform to (m,#) coordinates and the analysis turns
from 3D cartesian space to the (m, #)-plane (fig. [4.7). It is helpful to approximate
the (m, 6) points of the two sides of the airfoil with two NURBS curves in order to
achieve a continuous representation of the two sides. To do so, a NURBS constrained
approximation algorithm was programmed, so that the resulting curves respect the
continuity of first derivative at the LE (appendix C).
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Figure 4.6: Discrete points (in red) of the blade grid that lie on the surfaces of
revolution.

Figure 4.7: The points of fig. transformed into the (m, 0 )-plane and approximated
by NURBS curves, creating spanwise airfoils on the (m,0)-plane.
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Mean Camber Line:

To compute the mean camber line of an existing blade airfoil, on a 2D plane, an
algorithm was developed that computes the line referred to as the Exact Mean
Camber Line because it is computed according to the following definition; a line
joining the leading and trailing edges of an airfoil equidistant from the upper and
lower surfaces(appendix D).

To produce a mean camber line compatible with the parameterization method of
chapter |3 (4 point Bézier representation), the exact mean camber line points are
approximated with a Cubic Bézier curve that is referred to as the 4 Point Mean
Camber Line. A cubic Bézier approximation technique enforced with constraints
was developed to approximate the exact mean camber line points, while preserv-
ing (through constraints), the endpoints (LE and TE preservation) and endpoint
tangents (metal angles preservation) of the airfoil (appendix E).

! | | | | | | |
: Exact Mean Camber Line

Cubic Bezier
Mean Camber Line

Figure 4.8: The exact (grey) and cubic Bézier (blue) mean camber lines. The blade
airfoil contour is also shown in black and red.

Having computed the Cubic Bézier Mean Camber Line, hence F,, P, P, P3, the
angles 6, 3, § are computed from their definitions (fig. |3.4)):

O =Poy Org =Pgsy (4.3)
Pio—Pop P2y —Psp
= atan (G H =g} o = atan( 5 20— ) -
Bre = atan Prm— Pom BrEe = atan Py Dy (4.4)
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Figure 4.9: FEquations IB, @ @ applied to each spanwise 4 point mean camber
line, result to spanwise distributions of the angles 0,3,5. The discrete red points are
extracted from the surface grid, for every spanwise position. Then, a NURBS curve
interpolation provides the continuous spanwise distribution of the angles (black lines).
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Thickness Profiles:

The last step to the complete reparameterization of the blade grid is the computation
of the thickness profiles, that are a combination of the non-dimensional streamwise
thickness profiles for each spanwise position and the spanwise thickness factor dis-
tribution, described in section [3.3. Having the pressure and suction side NURBS
representations and the mean camber line cubic Bézier representation, the normal
distances of the mean camber line to both sides are computed, resulting to the two
thickness profiles (£(u)) described in eq. [3.11] Then, dividing each profile with its
maximum value that is the thickness factor of the profile, t;(v) (fig ), leads to
the non-dimensional thickness profiles (£(v)) (fig |4.10]).
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Figure 4.10: Streamwise thickness profiles.
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Figure 4.11: Spanwise thickness factor distributions.
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Chapter 5

Grid Adaptation Tool (GAT)

The back-to-CAD method presented in chapter {] generates a geometry that can
be easily modified and optimized, simply by altering the CAD design variables
of GMTurbo. However, through this transformation, the nodal representation is
lost, when modifying the CAD parameters. To make it possible to perform CFD
simulations on the modified CAD geometry a grid has to be generated around the
geometry. To avoid mesh generation, the initial grid is exploited. A surface grid
adaptation tool (GAT) that adapts the initial CFD grid, to the reparameterized
CAD geometry is developed in this thesis. Using the 3D spring analogy technique,
the initial volume grid is displaced to fit to the adapted surface grid resulted from
the GAT. The final volume grid has the same number of nodes, same connecitvity
and same quality as the initial grid.

The conversion from GMTurbo representation back to node-based representation is
presented in this section.

5.1 Description of the GAT Method

The grid adaptation method developed in this thesis, adapts the initial surface grid
to the CAD geometry. The method takes advantage of the availability of an initial
grid (that is taken for granted in this thesis) to generate a new one around the CAD
geometry. It is performed in two steps. First, the surface grid of the reparameterized
wall patches is computed, by projecting the initial CFD surface nodes onto the
reparameterized NURBS surfaces, for the various wall patches namely Hub, Shroud,
Pressure Side, Suction Side, Trailing Edge (fig/5.1). By doing so, the structure
and connectivity of the surface grid are maintained and only the coordinates of
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the nodes are adapted to the reparameterized (and, consequently, slightly changed)
surface shape. Then, the volume grid of the whole CFD domain is morphed w.r.t
the displacement of the surface grids computed in the previous step.

PRESSURE
SIDE

TRAILING \
EDGE

SUCTION
SIDE

Figure 5.1: Wall patches of a blade grid of a Francis Turbine.

5.1.1 Step 1: Surface Grid Adaptation

To compute the surface grid of the reparameterized geometry of each patch, the
wall patch nodes of the initial grid are projected onto the corresponding NURBS
surfaces, obtaining a 2D representation of each surface. Then, in 2D coordinates
the necessary morphing is performed and the morphed 2D grid is then transformed
back to 3D coordinates.

Figure 5.2: The GAT uses the initial mesh (left) and the NURBS curves of the wall
patches resulted from the GMTurbo(right) to create a new mesh with the same con-
nectivity as the initial but node coordinates adapted to the parameterization surfaces.
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The patches are separated into two categories. In the first category, the Pressure
Side, Suction Side and Trailing Edge Patches are NURBS surfaces, each point of
which is represented by two parameters (u,v). The second category, includes the
patches Hub and Shroud that can be represented from a NURBS revolved surface
each point of which can be represented by the NURBS surface (u,v) parameters or
the (m, ) parameters through the conformal mapping. It is preferable to use the
(m, 0) representation instead of the (u, v) representation of the NURBS revolved sur-
face, since the first preserves the periodicity of the nodes that belong to the periodic
patches. Two nodes in (z,y, z) coordinates, that have a periodic connection, have a
specific angular (6) pitch difference. This pitch is preserved when transforming into
(m, 0) parameters, maintaining the periodicity of the nodes. Consequently, each one
of the five wall patches corresponds to a parametric surface which, by definition, can
be represented by 2 parameters ((u,v) or (m,8)).

Projecting a single point onto a parametric surface, results the closest to this (z, y, 2)
point that also belongs to the parametric surface. The latter can also be discribed
with two parameters (u, v), since it belongs to the parametric surface. Consequently,
projecting all the nodes of a wall surface patch to its parametric surface produces a
2D grid of parameters (figs. [5.3} [5.4). Repeating the procedure for every one of the

five wall patches, five 2D grids of parameters are computed.
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Figure 5.3: The projection of the surface grid onto the NURBS reparameterized
surface at the left can be transformed into 2D (u,v) points, resulting to a 2D grid

(right figure).
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theta

Figure 5.4: The projection of the surface grid onto the NURBS reparameterized
revolved surface at the left can be transformed into 2D (m,0) points, resulting to a 2D

grid (right figure).

However, the edges of the grid are not projected onto the edges of the surface (fig.
, . To force the surface grid to fit the NURBS surface, a deformation is
applied to the 2D parameters of each wall patch computed earlier. The deformation
is performed using the 2D Spring Analogy Technique developed and used at the
PCOpt/NTUA [4]. This software takes a 2D grid (computed earlier by projecting
the surface nodes onto parametric surfaces) and the 2D position of the edge nodes
of the grid as input and distributes the internal nodes, w.r.t the edge positions.

The position of the edge nodes can be found with the following technique. The edges
of the surfaces are 3D NURBS curves provided by the parameterization, since they
are the intersections of the various NURBS surfaces resulting from GMTurbo (fig
. The edge nodes of the adapted grid must belong to those edge curves. Thus,
the edge nodes of the initial grid are distributed onto the 3D edge curve (using the
distance distibution they had in the initial grid). Since they belong to the 3D edge
curve, they also belong to the wall NURBS surface, thus they are represented by
two parameters provided by the NURBS surface ((u,v) or (m,#)) . These edge
parameters are given as an input to the 2D spring analogy morpher. The moprhing
practically slides the nodes on the surface to make the surface grid fit the edges of
the NURBS surface.

After morphing the 2D grid, the displaced parameters of the surface nodes are
found. It is easy to go back to 3D, using the equations of the corresponding surface
(S(u, v) for pressure side, suction side and trailing edge and ®~! for hub and shroud),
attaining the displaced (x,y, z) surface patches.
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Figure 5.5: The projection of the mesh onto the NURBS surfaces is not accurate,
since the edge nodes are not projected onto the actual edges of the surface. The need
to displace the surface mesh to fit the edges of the parameterization (red line) comes
up.

Figure 5.6: The edges according to the reparameterization (black curves) are different
than the projections of the edges of the initial grid onto the reparameterized surfces.
Thus a 2D spring analogy morphing takes place to displace the projected grid (red grid)
w.r.t the edge positions of the parameterization.

5.1.2 Step 2: Volume Grid Adaptation

Using the surface wall patches computed on the previous step, a deformation to the
initial volume grid can be applied using the 3D spring analogy technique [4], to adapt
the internal volume grid, with respect to the position of the surface patches. This
deformation results to a volume grid of the reparameterized CAD blade. This grid
has the same structure and connectivity as the initial one but has been displaced in
terms of coordinates.
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Figure 5.7: The resulting grid is very close to the initial, depending on the user de-
fined accuracy selected for the reparameterization (e.g. number of generatrices, number
of control points in NURBS approzimations etc).

5.2 The GAT used in an EA Optimization

To generate a grid on the GMTurbo geometry, during an EA optimization, the
method presented in section is used. However, the method is separated; a part
of it runs only once, before the optimization begins, as a pre-processing step and
the rest is integrated into the optimization workflow and creates the grid for every
candidate geometry.

To be more specific, the first part of the method, the projection of the surface nodes
onto the NURBS surfaces of the parameterization, is common for every candidate
geometry, since it just provides the connectivity of the various patches in 2D co-
ordinates. Mapping back to the corresponding NURBS surface of the current EA
evaluation, provides the new coordinates of the surface grid. Thus, the 2D para-
metric grid of each wall patch (fig. [5.1)) is created once, at the begining of the
optimization. It is morphed for each candidate geometry, according to the edge po-
sitions of that geometry. The rest of the method follows as presented in section [5.1
and is integrated to the EA workflow to be repeated for every candidate geometry.
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Chapter 6

CFD Analysis

In this chapter, the governing equations with their boundary conditions that are
solved in all hydrodynamic applications in this thesis using the CFD software PUMA
developed by the PCOpt/NTUA in [9] [4] [3] are presented. The post processing that
is performed is also presented. For more insight to the details of the various CFD
methods that concern similar hydrodynamic cases and the pre and post processing
of the CFD software used in these cases, the reader is referred to [10].

6.1 Hydraulic Turbomachines

Hydraulic Turbomachines, turbines and pumps, are used when energy is needed to
be absorbed from or provided to a working fluid in liquid form. Hydroturbines are
installed in places where water of high total pressure is available. Depending on
the inlet flow conditions, hydroturbines are separated into three leading categories:
Francis turbines, that are radial turbomachines, Kaplan (and propeller) turbines,
that are axial turbomachines and Pelton turbines that are impulse-type turbines.
In Kaplan turbines the pitch of the blades can be changed in order to increase
performance in various operating conditions. Propeller turbine blades on the other
hand, are build into their shaft allowing only one fixed pitch for any operating
condition.

Operating Point: The operating point of the turbine is predefined by the instal-
lation site. The hydraulic head H[m] of the installation and the volume flow rate
of the water Q[m?/s], are given by the hydrological analysis of the site, as mean
measurements for a long time period. (H,Q) points vary during the year, giving
multiple operating points for a turbine to operate. The rotational speed n[RPM]
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of the turbine is also predefned by the type of the generator that is connected to
the turbine. Based on the design, each Operating Point on the (H,Q) diagram has
a specific efficiency 7, that is computed from the governing equations of the flow
on the turbine. Using this operating point, the boundary flow conditions can be
computed [10].

WHII]
j‘

Figure 6.1: Guide vanes, propeller runner and draft tube.

Reaction Turbines:

Reaction turbines are the turbines for which the static pressure changes when the
fluid passes through the rotor. Reaction rotors possess blades that use this pressure
distribution to make them rotate. Since this thesis focuses on blades, reaction
turbines are the main subject of interest.

Reaction turbine types are two, Francis and Kaplan (or propeller). Francis turbines
are mixed flow reaction turbines that operate at average head values. Kaplan and
propeller turbines are axial reaction turbines that operate at average to high head
values.

The spiral casing and the guide vanes are the first components of the turbine, up-
stream of the rotor. The spiral casing, regulates the flow rate of the fluid (Q), so
that it is equally distributed at the peripheral direction of the inlet to the rotor.
The guide vanes can revolve at a certain angle around their axis and provide the
inlet flow with a swirl, that creates a velocity profile at the inlet.
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The rotor types vary, accroding to the flow of the fluid in the inlet and outlet planes.
In Francis rotors the flow enters at the radial direction and exits axially, while in
Kaplan and propeller rotors the inlet and outlet boundaries are both axial.

The outlet of the rotor is connected to the draft tube, in order to restore the static
pressure of the fluid. To be more specific, the draft tube or diffuser is a duct that
is placed at the outlet of the rotor (fig. [6.1). It decelerates the fluid that exits the
rotor, increasing the static pressure, so that no back-flow occurs at the outlet of the
draft tube. This gives the rotor the capability for lower outlet pressure, thus further
energy absorption from the fluid, without the fear of backflows. The draft tube has
a high contribution to the total efficiency of the turbine.

Figure 6.2: The Francis turbine that is analyzed in chapterl]. Radial flow inlet and
axial outlet.

Figure 6.3: The Propeller turbine that is analyzed in chapter E Awxial inlet and
outlet.
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6.2 The GPU-enabled CFD Solver PUMA

In order to examine the performance of a turbomachine, the incompressible GPU-
enabled flow solver PUMA (Parallel Unstructured Multi-row Adjoint) developed
by PCOpt/NTUA is used [3]. This software numerically solves the Navier-Stokes
equations along with a turbulence modelling equation on a computational domain,
using the vertex-centered, finite volume method on unstructured grids. Structured
or block structured grids like the ones presented in this thesis, are treated by PUMA
as unstructured. The implementation on GPUs provide a remarkable speed up in
comparison with CPU implemented softwares, reducing the turnaround time of a
CFD evaluation.

6.2.1 Flow Equations

The governing equations are the non-dimensional steady-state Navier-Stokes equa-
tions for incompressible fluid flows, written in a rotating frame of reference and using
the artificial compressibility method [11], are expressed as

8U 8 inv 8 VLS
-1 m nk nk — 1

Eq. represents four equations with four unknown flow variables U,,, = [% u ug

where % is the kinematic pressure (since density is assumed constant) and u? (m =
1,2, 3) the velocity components in the absolute reference frame. Variable 7 is the

pseudo-time step used to stabilize the system of PDEs. The inviscid f* viscous

r° fluxes and the source terms S,, are defined as:

ufl 0 0
A, R A
fz"rliv _ ujlélu};% +p61k vliCs | Tk - €1lkw€u1]€4 (6 2)
— — = )
" uy Uyt + poag, " Tok EpWrly,
A R A
us Uy + pdsy T3k E3EWeUY,

where ¢;; is the Kronecker symbol, €, the Levi-Civita symbol and wy, the rotational
speed of the frame.

Relative (uf) and absolute (u

velocity uf using the equation

A

2) velocities are linked through the rotating frame

A _ R F
um_um+um

(6.3)
ul = epwr () — 28)
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The viscous stress tensor is given by

v+ <8u;;‘ out
Tkm

n 4
Reg \ Oz, &L*k) (6.4)

where v is the kinematic viscosity, v; the eddy viscosity computed by the turbulence
model and Rejy the Reynolds number resulting from the non-dimensionalization of
the equations. Finally, matrix I';! is the preconditioning matrix used to stabilize
the system of PDEs and lead to a robust numerical solution, by giving appropriate
values to the parameters a and (3 [12],

7 000

A R
ul_;# 10 0

-1
Lo = ug + aull (6.5)
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6.2.2 The Spalart-Allmaras Turbulence Model

In this diploma thesis, all applications are simulated using the Spalart-Allmaras
[13] turbulence model, implemented in the PUMA solver. In this model, the eddy
viscosity is given by

Vy = val (66)

@+8(ule;) — 1 9 (V+,j)ﬁ +c ﬁ@
or oxy, Reyo | Oz, 0xy, %2 9z Oy
. N2 (6.7)
~ Cp, 1%
_Cbl(l_ftz)SV+R_€()(Cw1fw_pft2> (Z) =0

53



where A stands for the distance from the closest wall boundary. The parameters of
eq. are given by

~ 3 A g, A
v X X ou’t Ou
= —, v1 — 3, 13> vzl_—7 S = EkmE r_m Ta
X=7 Jou X3+l Jon L+ Xfu \/M M, oz,
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Co =T1, p =0.1355, ©, = 0622, ¢ = 2 4
K o

2
Cwy, = 0.3, cCyy, =2.0, o= 3 k=041, ¢,=12, ¢, =05

6.2.3 Boundary Conditions

In order to solve the system of PDEs and appropriate boundary conditions
should be defined and implemented. The GPU solver is equipped with a wide range
of boundary condition options. In this section, the boundary conditions used in the
numerical prediction of flows within turbomachine blade passages shown in chapter
[7] are presented.

Wall Boundary Conditions:

In low-Reynolds turbulence modelling, the absolute velocity is set equal to the

wall velocity
v =) k=1,2,3 (6.9)

Variable v is set equal to zero, i.e. v = 0.

In the case of the high-Reynolds approach, the Spalding’s [14] expression is used.
This equation models both the viscous sublayer and the logarithmic region of the
turbulent boundary layer and is used for computing the non-dimensional velocity
(u™) given the non-dimensional height (y*). The Spalding’s expression reads,

+)2 +)3
yT=ut +e P [e"“‘+ —1—kut — (m; S (mg ) (6.10)
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where k = 0.41 is the Von Karman’s constant , B = 5.5 and

Yu,
Y= V
(6.11)
ut =2
Ur

In y is the distance from the wall surface and w, is the friction velocity. The
shear stresses on the wall are computed based on ..

The mean flow equations boundary condition for the wall shear stress tensor in high-
Reynolds grids cannot be computed by eq. because the grid isn’t sufficiently fine
for the differentiation of the velocity. Thus, the wall function method is employed,
that is based on the fact that the first node of the grid, next to the wall, is in the
log-law region, for both vertex-centered and cell-centered grids. The friction velocity
u, can be computed at this node, through egs. using the velocity value
of the mean flow equation’s previous iteration. The boundary condition of the wall
shear stresses of the flow equations is computed as a function of wu,.

Eq. proposed by [15] is used to compute v; and through eq. the boundary
condition for v of the Spalart-Allmaras model is computed.

KB[ KU + (KU+)2

v = vee "Bl — 1 — kut — 5 ] (6.12)

Inlet Boundary Conditions:

At the inlet of the domain, the three velocity components must be available, while
pressure is extrapolated from the interior of the domain. The former are

vt = |vt|sind,
A_ A :

vy = |vj'|cosby sinby (6.13)

v = |vt|cosbcosby
Thus, angles 6, 6, and the velocity magnitude |v;!| are specified by the user.
Outlet Boundary Conditions:
At the outlet, one quantity must be specified and three are extrapolated from the
interior. This quantity is the (static) back pressure. This pressure is a reference
pressure, thus the static pressure value at any grid node is relative to the back

pressure.
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6.3 Post-processing

In order to analyze the CFD results, some post processing scripts were programmed
in this thesis that compute useful metrics from the discrete flow field data. The
post-processing of the CFD results is an indispensable part of an EA optimization
workflow, since it computes the objective or constraint functions of candidate so-
lutions. The following are some metrics of great importance during hydroturbine
design-optimization.

6.3.1 Pressure Coefficient

The pressure coefficient is a dimensionless quantity that describes the static pressure
distribution at each point along an airfoil. In 3D geometries, it usually needs to
be computed along isospan blade sections, from hub to shroud. In hydrodynamic
applications, it is computed as

P — DREF
C,=—FF"— 6.14
P pgH, (6.14)

where p is the static pressure on the blade surface, prrr the reference pressure at
the outlet, also used as a boundary condition (section , g the gravitational
acceleration and H, the theoretical hydraulic head that corresponds to the total
hydraulic energy that is absorbed by the turbine.

6.3.2 Outlet Velocity Profile

During a hydraulic design, it is important to quantify the outlet conditions of the
rotor. The outlet of the rotor is the inlet to the draft tube that is a component of
significant impact in terms of efficiency. To make the two components compatible,
the velocity profile at the outlet of the rotor is computed and applied to the inlet of
the draft tube, to compute the total efficiency of the turbine.

The outlets of the rotors analyzed in this thesis are all axially directed, so the outlet
patch has a constant z coordinate. Thus, having constant z, the CFD data at
the outlet are placed on a 2D surface patch containing the peripheral and radial
direction. The velocity cylindrical components are computed along discrete radial
zones r; (fig. [6.4), and integrated along the peripheral direction, to compute a single
velocity vector for each radial zone ¢&(r;).
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Figure 6.4: The outlet patch of a runner is separated into radial zones r;, so that a
single velocity vector is computed for each zone &(r;), by averaging the absolute velocity
components of the CFD data that belong to these zones.

To transform the Cartesian absolute velocity vector to cylindrical coordinates the
cylindrical directions are computed

= (0,0, 1)

L

== 6.15
7 (19

0=7rxm

the projection of the computed absolute velocity vectors onto the unit vectors in the
cylindrical coordinate system, given by the inner products of the velocity and the
unit vectors of eq. produce the absolute velocity cylindrical components, that
are then non-dimensionalized by /2gH .

u-m
Crn =
2gH
u-r
Cr = .
3o (6.16)
a0
Cyp =
29H
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Integrating each velocity coordinate k = 1,2,3 along the peripheral direction, for
each radial zone r;, produces mean values of the velocity components at each zone,

ce(ry) = / m(w/ cp(u,r)dudr, k=1,2,3 (6.17)

min

6.3.3 Efficiency

The efficiency of a turbomachine rotor is defined by the ratio of the power that is
absorbed by the rotor shaft divided by the power that is provided by the working
fluid

—

W-T

= 6.18
P,,in — P, out ( )

n
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Chapter 7

Validation of the RPT and GAT

and Optimization

In this thesis, grid-to-CAD and CAD-to-grid blade geometry conversions take place.
The Reverse Parameterization Tool (RPT) presented in chapter {4 converts a CFD
grid to a CAD representation (GMTurbo representation), that can easily be opti-
mized, since it consists of a small number of design variables. However, optimization
using a CAD parameterization, requires the gemeration of a grid for the candidate
geometry in order to compute the flow field and the objective functions using CFD
software. The Grid Adaptation Tool (GAT) that is presented in chapter [5| was
programmed to fulfill that need, creating a volume grid around the CAD geometry.

The RPT and GAT are tested and validated in this chapter. CFD runs are performed
for both the initial and the reparameterized geometries; the latter has been generated
with the RPT and the grid created by the GAT. In all cases, the CFD boundary
conditions are computed according to the operating point and the solver uses the
Spalart-Allmaras turbulence model with wall functions. The results demonstrate
the level of accuracy both in geometry and flow solution terms. Three different
geometries are studied and presented in order to highlight the capabilities of both
the RPT and GAT.

7.1 Francis Runner

A Francis hydroturbine optimized below is a mixed flow type turbine the geometry
of which can be seen in fig. [7.1] Reparameterizing the blade its runner leads to the
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geometry of fig. [7.2] that needs to be as close to the initial as possible.

Figure 7.1: Francis runner: Wall patches along with the inlet (red) and outlet (green)
patches.

Figure 7.2: Francis runner: Initial (grey) and reparameterized (red) geometries
(using N="7 generatrices in the reparameterization), plotted together.

In order to quantify the deviation between the two blades of fig the field of the
variables d given by

d = \/da? + dy* + d2? (7.1)

where dx, dy, dz is the x,y, z distance between initial nodal positions and the corre-
sponding positions on the reparameterized blade. The results of such a comparison
can be seen in fig. [7.3] and It is obvious that the accuracy of the reparameteri-
zation is strongly connected to the number of generatrices chosen for the reparam-
eterization.
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Figure 7.4: Francis runner: Deviation

Figure 7.3: Francis runner: Deviation of the two blades, using N=20 genera-

of the two blades, using N=7 generatri- trices in the reparameterization. Much

ces in the reparameterization. smaller deviations than in fig. [7.3 can
be seen.

In terms of CFD, runs for both cases, with the same initial conditions, were per-
formed, and the post processing of the results is presented in figs[7.5] and The
reparameterized blade used in these CFD runs is approximated using N=10 genera-
trices. By comparing the flow profiles computed with the initial and reparameterized
geometries, we easily conclude that they are very close to each other and their in-
evitable shape difference is so small that the flow practically does not "see” it.
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s e s s s s s s Cpy Initial
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Figure 7.5: Francis runner: Cylindrical components of the absolute velocity along
the radius at the outlet of the initial and reparameterized runner.

61



06 T T T T T T T 1 T T T T T T T T T
Initial Geometry Initial Geometry
0.5 Reparameterized Geometry N=10 — 0.8 | Reparameterized Geometry N=10 .
rameterized Geometry N=20 . Reparameterized Geometry N=20
04 o\ N R ————
0.3 b N
o Q
o P oL TN o
[ e e e e e e
T N T
0 -
-0.1 Il Il Il Il Il Il Il Il Il 3
0 0.102030405060.70809 1 0 0.102030405060.70809 1
chord chord
Hub Shroud
0.8 T T T T T T T T
07 b Initial Geometry .
) Reparameterized Geometry N=10
0.6 b Reparameterized Geometry N=20
0.5 e
0.4
o 03
0.2
0.1
0
ool 0o
0 0.102030405060.70809 1
chord
Mid-span

Figure 7.9: Francis runner: Chordwise C), profiles at three different blade spanwise
postions of the initial two reparameterized runners, one for N=10 generatrices and
one for N=20. The difference in the C), profiles in shroud, is significantly reduced in
the case of N=20.

7.2 Propeller IGVs and Runner

This case is concerned with the flow field in a propeller hydroturbine, computed
concurrently with the flow field around its inlet guide vanes, using the mixing plane
method that is provided by the GPU solver when relative motion between the com-
ponents of a turbine occurs (Rotor Stator Interface, RSI). This method circumfer-
entially averages the values at the intersection plane computed from the one blade
row, providing the other with a uniform in the circumferential direction flow field,
achieving communication between the two domains.

The geometry of the two domains, guide vanes and the runner is seen in fig. [7.10
and while the deviations of the two blades are seen in fig. [7.12] [7.13] [7.14]
Again, increasing the number of generatrices, increases the accuracy of the
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reparameterization.

The CFD results presented in figl7.19] and [7.20] concern the reparameterized ge-
ometries for both guide vanes and runner. The guide vanes are approximated with
N=13 generatrices while the runner is approximated using N=11 generatrices. The
comparison between the flow fields around the initial and the reparameterized blades
again show that the flow is almost not affected by the slight geometry differences. It
is interesting that this happens in this case as well since, in contrast to the Francis
runner of section there are two reparameterized blades (both rotor and stator).

Figure 7.10: Propeller IGVs and run-
ner: Geometry of the guide vanes up-
stream to the runner.

Figure 7.11: Propeller IGVs and run-
ner: Geometry of the runner.
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Figure 7.13: Propeller IGVs and run-
ner: Deuviation of the two inlet guide
vanes, using N=18 generatrices in the
reparameterization. Much better agree-
ment between the two geometries com-
pared to the one obtained in fig.

with N=8 generatrices.

Figure 7.12: Propeller IGVs and run-
ner: Deviation of the two guide vanes,
using N=8 generatrices in the reparam-
eterization.
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Figure 7.14: Propeller IGVs Figure 7.15: Propeller IGVs

and runner: Deviation of the and runner: Deviation of the
two runner blades, using N=8 two runner blades, using N=18
generatrices in the reparameter- generatrices in the reparameter-
1zation. 1zation.
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Figure 7.19: Propeller IGVs and runner: Chordwise C), profiles at three different
blade spanwise postions for the initial and reparameterized geometries.
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Figure 7.20: Propeller IGVs and runner: Cylindrical components of the absolute
velocity along the radius at the outlet of the runner.

7.3 Optimization

The RPT, except from the flexibility it provides to alter the parameterization from a
node-based to a CAD-based form, was mainly developed to support an optimization
loop as a pre-processing step. It makes it possible to optimize a blade geometry,
given in a node-based form, using the GMTurbo software. The benefits of this
procedure are the following; first, the use of GMTurbo geometry generator within
the optimization loop is advantageous in terms of design variable number because
the geometry is described by a small number of parameters that also have great
physical significance and are ideal for an optimization. Second, no need for extra
geometry modifications is required (for example, optimizing the blade shape using
the node-based parameterization must be followed by a smoothing software in order
to restore a smooth geometry). However, the need of a grid generator or morpher
to create a grid around the CAD geometry is indispensable.

In the previous section, it is shown that, in terms of geometry, the RPT and GAT
provide a grid that is very close to the initial. Also, in terms of CFD, the results
appear to be sufficiently close. Having validated the two softwares, their integration
within an EA based optimization workflow is safe in terms of results accuracy.

In this section, three optimization runs of the case presented in section are car-
ried out, using different sets of design variables. The objective function in all runs is
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the maximization of the efficiency of the Guide Vanes - Runner domain as a whole
(defined in section [6.3.3)). A (u, A) = (10,20) EA with 10 parents and 20 offspring
assisted by metamodels is used. The latter (Radial Basis Function Networks) are
activated after the first 30 CFD evaluations have been completed and stored in the
DB. Then, on each generation the offspring population members are approximated
based on a local metamodel and the top 2 promising members (based on the meta-
model prediction) are re-evaluated on the CFD tool. A termination criterion of 200
evaluations on the CFD was set for the first two runs and a criterion of 250 evalua-
tions for the third. Each evaluation has a total duration of approximately 15 min.
and the CFD solver runs on two NVIDIA Tesla K40 GPUs.

7.3.1 Guide Vane Optimization: 16 design variables

In the first optimization, the design variables are 16: 8 spanwise control points for
the 8 distribution of the LE and 8 for the /3 distribution of the TE. The convergence
history of the optimization is presented in fig. and the resulting geometry
compared to the baseline one can be seen in [7.22]
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Figure 7.21: EA-based optimization of the IGV blades of the propeller hydroturbine
(16 design variables): Increase in the efficiency in terms of the number of evaluations
of the FA.
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Figure 7.22: EA-based optimization of the IGV blades of the propeller hydroturbine
(16 design variables): Initial (red) and optimized (gray) IGV blades.

7.3.2 Guide Vane Optimization: 32 design variables

In the second optimization, the number of the design variables is increased. The
thickness factors along the span of the blade are added as design variables resulting
to a total of 32 design variables (8 xXfrg , 8 XfrE, 8 X tfps, 8 X trss). The con-
vergence history of the optimization is presented in fig. [7.23] The optimized blade
shape (fig. [7.24]) is further deformed, in comparison with the previous optimization.
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Figure 7.23: FEA-based optimization of the IGV blades of the propeller hydrotur-
bine (32 design variables): The increase in the efficiency in terms of the number of
evaluations of the FA.
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Figure 7.24: EA-based optimization of the IGV blades of the propeller hydroturbine
(82 design variables): Initial (red) and the optimized (gray) IGV blades.

Comparing the two optimized geometries as resulted after the same number of eval-
uations one can observe that the increase in the objective function value is almost
doubled when the design variable number is increased. The increase in the design
variables practically increases the EA search space and makes it possible to capture
a better result.

The optimized geometries appear to have a spanwise displacement because the de-
sign variables are spanwise parameters of the blade. Any manufacturing constraint
can be applied to the geometry shape by bounding the shape deformation, that
EASY can handle. Also, by choosing a suitable set of design variables, the desirable
shape can result. The great value of the GMTurbo parameterization software, within
an optimization, is highlighted here. The design variables have a physical sense that
can provide the designer with the ability to roughly predict the displacements the
blade will undergo during the stochastic optimization and, thus, chose to optimize
those variables that are significant for the application.

7.3.3 Guide Vane and Runner Optimization: 32 design vari-

ables

In the third case, shape optimization of both the guide vanes and the runner occurs.
The design variables concern both blades. Specifically, a set of 16 design variables
(8 XBLE, 8 XPrE) are used to optimize the Guide Vane geometry, and the same 16
design variables (8 X 8.g, 8 Xfrg) are used for the runner. The convergence history
of the optimization is presented in fig. The optimized guide vane and runner

blade are also shown in figs. and [7.27]
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Comparing this optimization with the optimization presented in section [7.3.1] it is
noted that for equivalent number of evaluations, the shape optimization of both
the runner and the guide vanes, provides a better result. The contribution of the
runner however is not very drastic in terms of efficiency increase. That is due to the
fact that the limits of the guide vane design variables are set to £5° of the initial
geometry values, while the limits of the runner design variables are set to +2° of the
initial geometry values. Consequently, in this optimization the guide vanes have a
greater ability to deform and thus, increase the efficiency.
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Figure 7.25: FA-based optimization of both the IGV blades and propeller hydrotur-
bine (32 design variables): The increase in the efficiency in terms of the number of
evaluations of the FA.

Figure 7.26: EA-based optimization of both the IGV blades and propeller hydrotur-
bine (32 design variables): Initial (red) and the optimized (gray) guide vanes.
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Figure 7.27: FEA-based optimization of both the IGV blades and propeller hydrotur-
bine (32 design variables): Initial (red) and the optimized (gray) runner blades.
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Chapter 8

Overview and Conclusions

8.1 Overview

In this diploma thesis, software that transforms blade geometries from one param-
eterization method to another is developed, programmed and tested. The distinc-
tion between node-based and CAD-based methods is highlighted. A node-to-CAD
method is programmed to transform a CFD grid into a GMTurbo form and is re-
ferred to as the Reverse Parameterization Tool (RPT). To create a grid around the
GMTurbo geometry, the Grid Adaptation Tool (GAT) is programmed that adapts
the initial CFD grid to the GMTurbo surfaces. Using the RPT and GAT, it is
made possible to optimize the shape of a blade, that is initially provided
in a node-based (CFD grid) form, using the GMTurbo parameterization,
that was not possible so far.

Benefits are as follows:

e Most geometries are exchanged via a CFD grid, because it is a parameteriza-
tion that is compatible with any CFD software. Thus, to optimize such ge-
ometries, the node-based parameterization has to be used, that is sometimes
expensive in terms of design variables and requires extra software to smoothen
the geometry roughness. Having the geometry in CAD form is much more
general /portable and, thus, more convenient during design.

e The GMTurbo parameterization is ideal for use in optimization workflows,
since the parameters it uses are much less than those of a nodal parameteriza-
tion and have physical meaning. Thus, any optimization that can be carried
out using GMTurbo is preferable.

To be more specific, in this diploma thesis, the following were presented, developed
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and validated:

e First, an introduction to the basics of the parametric geometry was made that
is used extensively in Computer Aided Design. NURBS curves and surfaces are
the main form of representation in most CAD techniques, including the GMTurbo
software of PCOpt/NTUA. Thus, a detailed introduction to the mathematical back-
ground of these geometric notions is indispensable. Since the software programmed
in this thesis is implemented in the GMTurbo parameterization software, the latter
is described in detail in this thesis.

e The main topic of the thesis is the development and programming of the RPT and
GAT. The RPT is the software that converts a blade geometry given in CFD grid
format, to a GMTurbo format. That way the geometry can be optimized through the
optimization workflow that is used in PCOpt/NTUA, using the GMTurbo geometry
generation software. The RPT performs various geometrical operations on the grid
geometry to produce the final GMTurbo format, that are described in chapter 4| and
in more detail in the appendices.

The Grid Adaptation Tool (GAT) is also developed in order to perform CFD simu-
lations on the GMTurbo reparameterized geometry. It adapts the initial grid to the
GMTurbo geometry using the 2D and 3D Spring Analogy Morphers.

e To validate the RPT and GAT, three different turbine blades are reparameterized.
A Francis blade, a propeller blade and a Guide Vane are all transformed to GM-
Turbo and Grid Adaptation is performed around these reparameterized blades using
GAT. Comparisons between the initial and reparameterized geometries, in terms of
geometry and CFD results are performed showing that the results are similar, thus
the reparameterization is accurate. After validating the RPT and the GAT, the
GAT is integrated to the optimization workflow, and the hydrodynamic optimiza-
tion of the of a node-based parameterized guide vane, using the GMTurbo software
is performed, proving that the optimization of a geometry given in CFD grid is now
possible using the RPT.

8.2 Proposals For Future Work

During the development of this diploma thesis, ideas for further expansion of the
presented tools came up, that can enhance their abilities and make them compatible
with even more applications. Some of these are

e The development of the RPT for grids that have a different structure than the
one presented in section [£.1] The RPT is programmed for meshes with trailing
edges of a specific type (blunt). Thus, different TE types can be included in
the method. It would also be useful to adapt the method to unstructured
grids.
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e The development and integration of an extended RPT into the GMTurbo for
other components, like ducts, the parameterization of which is also included
in GMTurbo.

e The development-extension of the RPT for conversions of other parametric
types to GMTurbo form (e.g. NURBS Surfaces to GMTurbo).
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Appendix A

Conformal Mapping

For a mapping of a surface S(u,v) to a surface P(u,v) through the transformation
function ® : S(u,v) — P(u,v) to be conformal, it is sufficent to prove that there
exists a function ¢(u,v) > 0 such that

gij(u7 U) = C<u7 U).gij(ua U)u fOTi,j c 17 2 (Al)

where g;; and g;; the coefficients of the first fundamental form of S(u,v) and P(u, v)
[8]. The most important property of every conformal mapping is the angle preser-
vation property. Conformal mappings preserve the magnitude and direction of the
angle between two curves. [§]

The mapping of a surface of revolution S(u,0) = (r(u)cosd,r(u)sind, z(u)) to a
(m, 0) plane is given by the transformation

O : (r(u)costd, r(u)sind, z(u)) — (m(u),0) (A.2)

with

m(u) = /0 ' W“(tf(;; (0 (A.3)

The mapping is conformal according to eq[A.1]

For a point s that lies on the revolved surface S(u,v) = (r(u)cost, r(u)sind, z(u))
the partial derivatives w.r.t u and 6 are given by

Os :<8T(“)c039, Or(u) sind, 8z(u)>
%7; ou ou ou (A.4)
5 :( — r(u)sind, r(u)cosb, O)
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and for a p point on the (m,#) plane p(u, ) = (m,#) the partial derivatives w.r.t u
and 0 are

p _(Vrult) + z(t)

%0

the first fundamental coefficients of s are given by

B - Js 0Os <8r(u)>2+ (8z(u)>2

ST ou ou ou ou
Js Os
_ 2.2 _ A6
T 0u 06 0 (4.6)
_0s 0O0s
Gs—%%—T(U,)

while the first fundamental form coefficients of p, by

s o o (a0) (5

_ _ Ju
P Ou ou r2(u)
op 0 A7
R (A7)
ou 00
dp Ip
Gp=— —=1
P00 00
from egs. and the relationship between the coefficients
E
E,=-"
()
F
F,=—"-= .
p 7“2(16) 0 (A 8)
G
G,=—-
")
that prove that the mapping |A.2|is conformal with conformal factor — 7 The
r2(u

square of the distance between two points s and s + ds on surface S is given by the
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first fundamental form of s
I, = Eg =ds-ds = E.du® 4 2F,dudf + G ,db* (A.9)

and the square of the distance between two points p and p + dp on the (m, 6) plane
is given by the first fundamental form of p

I, = =dp-dp = Eydu® + 2F,dudf + G,d6? (A.10)

Combining eq. and eq. [A.10] it is easily proved that the relationship between
the magnitudes on the two surface representations S(u, ) and (m, 6) is given by

ls =r(u)l, (A.11)

Consequently, the mapping used to transform a revolved surface into a (m, 0) plane,
given by eq. [A.2] being conformal, preserves angles and scales the magnitudes by a

factor of r(u) (eq. |[A.11]).
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Appendix B

Surface Structured Grid-NURBS Surface
Intersection

During reverse parameterization, the need to separate the blade to iso-span sections
from hub to shroud comes up. To do this, the intersection between the blade surface
grid, and the iso-span revolved surfaces has to be computed.

The intersection points between a NURBS revolved surface and the structured sur-
face quad grid (of a blade) are computed. First, the grid nodes of the blade are
placed into a 2D matrix [4, j]|, using the structured connectivity. The lines and rows
of the matrix correspond to spanwise (constant-i) or streamwise(constant-j) sets of

nodes as demonstrated in fig[B.1]

Figure B.1: One spanwise set of nodes in blue and one streamwise set of nodes in
red.

These sets of nodes create lines that are considered to be composed of straight
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line segments between the nodes (15 degree interpolation). The algorithm that has
been developed searches for an intersection of every line segment of a spanwise line
(AB in fig[B.1]) with the revolved surface. Once it is found, the intersection for the
next iso-stream line is sought. Therefore, the problem of grid-surface intersection
is converted into a line-surface intersection problem. The line-surface intersection
problem is described below.

Let A and B be two neighbouring nodes along a spanwise line (fig. [B.2)). The
analytical equation of the AB line in 3D space is:

r—2x
flao) = ——
rp — T
Y —Yya
g(y)—m
ZB—ZAA (Bl)
hz) = ——4
ZB — ZA

Figure B.2: Grid Line - Surface intersection

Also, if z, y and z belong to the revolved surface S(u,v) they can be written as
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z(u,v), y(u,v), z(u,v) and, thus, f(x) becomes f(u,v), g(y) becomes g(u,v) and
h(z) becomes h(u,v). This transformation along with equation produces the
non-linear two equation system:

{fonzaen =tk - (G0 =) .

with the unknowns @ = [u,v]. Newton-Raphson iterative method is used to solve
the non linear system. Thus, the jacobian of the matrix w.r.t. the unknowns is
needed:

OF OF @ 1 _@ 1 @ 1 _@ 1
; du v Ourp—1xa Ouyp—ya Ovrp—x4 OVYR—Ya

06 0G| | 1 0 1 a1 0

ou Ov ourg—xs Ouzgp—24 OVIXB—Ta OVZg— 24

(B.3)
The derivatives of the surface coordinates x,y, z w.r.t. u or v are computed using
the equation of the partial derivatives of a NURBS surface w.r.t. its parameters
that is found in litterature [6].
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Appendix C

Constrained NURBS Approximation of
Pressure and Suction Sides

Least Squares Curve Approximation:

The standard least-squares NURBS curve approximation algorithm is presented

herein [6]. Let Qq, ..., Qm be the set of m + 1 2D points to be approximated by

a NURBS curve of a user defined degree p and a user defined set of n + 1 control

points given by

X NPy
im0 Nipti

The Qo, ..., Qm points are approximated in the least-squares sense, defining a func-
tion to minimize

C(u) , u€0,1] (C.1)

m+1

F= Z (Qk - C(ak)>2 (C.2)

To avoid the nonlinear problem, only the control points P; are sought. Weights w;
are set equal to 1, the parameters u; that correspond to the approximation points
are computed by normalizing the distance of the Q; points to a [0, 1] interval (eq
and the knot vector is precomputed using methods that are proven to be appropriate
for the approximation.

UTO:O

Qi — Qi—1| (€.3)

Yoo 1Qi — Qial

The endpoint interpolation constraint naturally yields the first and last control

U; = Uj—1 + :1,...,m
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points:
Po=Qo
(C.4)
P, = Qm

and the system of m + 1 equations is reduced by two. Thus by defining the function

Rk = Qk — N07p(117k>Q0 — Nn,p<7fk)Qm /{7 = 1, M — 1 (C5)

F becomes
F =3 Q- Clm)) = S (Ri - S Ny ()P

= kl( — >0 Nip(w )Pi>'< — SN ( )Pi>

(C.6)
= 07 [Ruce Ric = 25005 Vo () (R - P)
(0 Vi ()P ) (015 N ()P )|
o . OF
To minimize F with respect to the unknowns Py, ¢ = 1,...,n, derivatives P, are
¢
computed and set equal to zero, so
OF e _ n—
= X (= 2N () R+ 2N (1) S Ni ()P ) = 0
oP,
— >0y Nep()Rac + 3000 D000 Noy (i) Ny (1) Py = 0 (C.7)

ZZE( ?élNe,p(Uk)Ni,p(?fk))Pi: o Nip () Rac

which is a two linear systems of n — 1 equations of 2 x n — 1 unknown coordinates
of the control points P,.

Constrained Least Squares Curve Approximation:

To approximate the pressure and suction side points of an airfoil with two distinct
NURBS curves (one for each side), the first derivative continuity constraint at the
LE point (which is the first point of both curves) emerges. If the constraint isn’t
included, the two curves will have point continuity (since leading edge belongs to
both curves), but the slopes will be different at this point resulting to a non fea-
sible geometry that will be pointy in the leading edge. To achieve a smooth blade
there, the control points of the two curves are computed within the same system
of equations, adding an extra constraint equation that implies equality of the first
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derivatives at the leading edge for the two curves.

SS . .
Qi e o * ¢ . . QSSmSS
PS SSe° .
QO = QO .:. .. PS
o e
. .
QIPS LI . . R . . Q Mpg

Figure C.1: The PS and SS points to be approximated. The LE is common for the
two sides, while the TE in each side is different, because the TFE type of the 3D blade
is ”blunt” thus the blade is cut-off at the trailing edge, resulting to an open 2D airfoil.

The mpg+ 1 pressure side points QG®, ..., QLS . and the mgg+ 1 suction side points

S5, Ei;s are going to be approximated. Let npg + 1 be the number of control
points of the pressure side, and ngg + 1 the number of control points of the suction
side. Also, pps and pgg the corresponding degrees. The endpoint interpolation gives

the equations
PES = P = QF° = Q5 = L

PS __ PS

P> = Qs (C.8)
SS __ SS

Pnss ~ ¥mgg

The first derivative of a p* degree NURBS curve at the first point, u = 0, is given
by the equation

C'(u) = L (P; — Py) (C.9)

Up+1

Consequently, the constraint of first derivative continuity is given by the equation

ps(0) = —Clg5(0) (C.10)
o bps Pss
P
LIPS (pPs _ pps) — - IS5 (pgs _ pgs) (C11)
pps+1 Upgs+1

In the least-square sense, k functions Fy are defined, the sum of which is minimized
to provide the coordinates of the control points of the two curves, satisfying the
above mentioned continuity constraint. For k € [1, mpg + 1] functions Fy concerns
the approximation of the points of the pressure side ,for k € [mpg, mpg + mgs — 1]
the same for suction side, and for k = mpg+mgg, Fy is the extra constraint equation
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2
Fk:(RPS CPS(al )) 1 <k<mps+1

2
Fk = (RES — Css(ﬂgs)) mps < k < mpg+mgs — 1
F = L5 (pPs _pPs) PSS (pss_ pss) k = mps + mss
Upps+1 Upss+1
(C.12)

f — ZmPS+mSS F
2 2
T (RES —OPS@uf®) DT (RE - 0S@E) (e

pps Pss
(PSS PES) P (PES - PRY)
Uppg+1 Upgg+1

of
and, by computing the derivatives —— and setting them equal to zero, two systems

oP
(2D points, one system for each coordinate) of npg + ngg — 2 equations with npg +
ngs — 2 unknowns each, that can readily be solved.

Constrained Approximation
Least square Approximation
Tangent at LE

Points to approximate (]

Figure C.2: The same set of points are approximated with both standard and con-
strained approximation methods, presented with the same number of control points
and degrees. The tangent equality at the leading edge, with the constrained method is
obvious.
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Appendix D

Computation of the Mean Camber Line
of an Existing Airfoil

The mean camber line is the line joining the leading and trailing edges of an airfoil,
equidistant from the upper and lower sides. To compute the mean camber line of
an existing airfoil, a geometric method was developed. This method requires the
parametric representation of the two sides of the airfoil, pressure and suction (two
NURBS curves) and provides a set of ordered points, from the LE to the TE, that
lie in the middle of the two sides.

Let N be the number of the points of the mean camber line to be computed. One of
the airfoil sides (whichever) is divided into N points (Ag...An) and the opposite, to
k x N points (Byg...Bxxn) where k is a positive integer. The attempt to produce a
set of My, ..., My points that belong to the mean camber line is made, with a ”trial
and error” method. The first point on the mean camber line (Mg = Ag = By) is, of
course, the leading edge. Starting from point A (fig. of the N-discretized side,
line (A1B;) connecting A; to the first point on the opposite side By is created. The
midpoint M of this line belongs to the mean camber line, only if A;Bj is orthogonal
(within a certain margin) to the tangent of the mean camber line at point M. The

inner product

MM A:B,;

’M01\~/[|) ) ]A1B1‘) <e (D.1)

(

where e is a very small number. If this statement is true, point M becomes point
M, and i = ¢+ 1 ,7 the counter of the points A;. Else, if orthogonality isn’t reached
yet, j = j+1, where j is the counter of the points B; and the same step is repeated.
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Figure D.1: The proposed algrithm. For every A;, a B; for which AB-M; 1M =0

18 sought.

N=10,k=12
N=100,k=100

Figure D.2: The resulting mean camber lines. The mean camber line in red results

from a coarser discretization and is less accurate than the blue line.
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Appendix E

Constrained Point Approximation with
Cubic Bézier Curve

Having two NURBS curves for pressure and suction side of the airfoil (PS(u) and
SS(u) , u € [0,1]), and a set of Q, ..., Qx exact mean camber line points (com-
puted in appendix Z), the cubic Bézier representation of the mean camber line is
sought, because the cubic or 4-point Bézier representation of the mean camber line is
required to compute angles 6 , 3, § of the GMTurbo parameterization. The approx-
imation is carried out by imposing point interpolation at the LE and TE, tangent
interpolation at the same endpoints and, finally, minimizing the distance between
the curve and the Q; points.

First, the LE and TE are interpolated by points Py and P53
Po =PS(0) =SS(0) = LE

P, — PS(1) —2+ SS(1) _TE

The tangents at the LE and TE (fl and T;) are predefined by the shape of the
airfoil
T, - PS'(0) =0
(E.2)
T - (PS(1) —SS(1)) =0
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T T T T
Exact

R Bezier ]

Figure E.1: The tangent to the airfoil Figure E.2: The tangent to the airfoil
at the LE is orthogonal to the tangent to at the TFE s orthogonal to the tangent
the mean camber line at the LE. to the mean camber line at the TE.

thus points P; and P, are given by

P1 = P() + CLTl
(E.3)
Py, =P3 + 0T,
The cubic Bézier curve that is sought is given by the equation
C(u) = Pos® + 3s*uPy + 3su’Py + P3u® (E.4)
where s = 1 — w. Combining eq. and eq[E.4]
C(u) = Po(s® + 35%u) + T1(35*u)a + Ta(2s5u*)b + P3(u® + 3su?) (E.5)

To minimize the distance between points Qg..Qx and curve C(u), a function F is
defined

k
F=Y (Qi-c@)) =0 (E.6)

0
the parameter w; is assigned to each exact mean camber line point Q; with respect
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to the point’s normalized arc length

1[0 — 0
0 (E.7)
U; = Uj—1 + k’Ql Qlil‘ Zzl,,k’
Zz‘:o Qi — Qi1

eq. is a linear system of two equations with two unknowns a and b, that can
readily be solved.
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Kegpdhawo 1

Eicoaywyn

1.1  Avoarapdotoaocr nrepuylwy cTeolithounyo-

’ ’
VOV Mo Bs)\‘uc Tonoinon

O aepoduvopxdg xaL LBEOBUVUIXOG GYEDLACUOS TTEQUYWOEWY O TROBLAOUNYAVOY O-
motehel avtixeluevo €peuvag ueyding onuaciog. Ot eQupuoYEéc TwV GTEOBLAOUNY VOV
elvon oo TOAAEG, GUVETOC 1) TOLUALL TOU GUVAVTETOL (¢ TTEOS T HopYT) Toug Elvor
LeYSAN. Tiot To Adyo auto, elvon onuavTixy 1 ETAOYY TOU XATIAANAOU TEOTOV TEPLY PO
g - TopAUETEOTOINONG TWY TTEPLYIWY TNg oTeoflthounyavic, WoTe va eCUTNEETEL Tig
AVEYHES TOU OYEDACUOL. 1TN Simhwpatiny| auTr gpyacio donplvovton xar avahbovto
0Lo TEOTOL TEPLYPAPNG TNG YEWUETElog VO epuyiou. O mpwtog elvon 1 meptypapn
ToU TTEPUYIOL W¢ TAéYUa UToAoYIo TiXTg peuaToduvouxc (TPA) xou o Bedtepog puéow
CAD.

H reprypagny oe popen mhéyuatog TPA, ebvar and éva olivoro x6ufwv mou avamopl-
o T00V DLAXELTA TN YEWUETElO ot Blvel TN BUVATOTNTA VLot GUECT) AVAAUCT|, TNG PO UE
™ yenon Aoylouwxol TPA, npocpépovtag mAnpogopies yia tar poixd peyédn yiow amo
T0 TTEPLYLO.

Me tov 6po CAD evvoeitar omolodhnote hoylouxd AaBaver (¢ €l6000 XATOIEG ToEO-
HETEOUC 1) pUOT) TwV OTIolwY 0pIEToL Ao TO (5L0 TO AOYLOUXO XOU TORAYEL T YEWUETELA.
To CAD hoytopxd dieuxollvouy Tn BLadxacio Tou oYEBLoUol Xl TN BEATIOTOTO-
{nong, ol oL TUEAUETEOL TTOU YENOULOTOLOUY EYOLUY GUY VA YEWUETELXY onuacio xat 1
ueTaBoh Toug eyyudTon €val TTEQPUYLO OUAAG YWEIC ACUVEYELES.

Yy dimdopatixr epyocio auth To CAD Aoylouxd nou yenoyomoleiton efvar T0 Ao-
yiouxéd GMTurbo mou éyel avantuydel and tn MIITP&B. Autéd yenowonolel napo-
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ExAua 1.1: TopoorpdPfiror timov Francis kar tomov Propeller.

Yyxue 1.2: Abovikés ovumeotnig pe 36 trepya.

uétpoug, 1 @Oon Twv onolwv oyetiletan dueoa ue N VYewpla TV OTEOBLAOUNYAVEOY
(HeonuBewvY| Tour, Ywvieg UETEAAOU XAT) YLol VoL XOTOHOXEVAOEL TO TTepUyto. Efvon 18a-
VIXT| Yo To oyedlaopd xan Tr BedTio tomoinom ttepuyiwy Sedouévou OTL oL ToRAUETEOL
ToL yenowonotel Eyouv Quolxy| onuacta xot elvon TEpLOpLopEVOL apriuoy, xdTL Tou
amoTEAEL YeYdho O6pehog o Uia BehTioTomoinon e e€ehxTind olyopLiuo.

Efvar onuavtixd hotndy va umdpyet 1 duvatdtnta Tng evowudtwone tou GMTurbo oe
x&e Pertiotonoinon (oy[LA). Stny mepintwon mou 1 apywed yewuetplo divetan ano
éva mAéypo TPA, n Behtiotonoinon ye GMTurbo etvar od0Ovatrn. o o Adyo autod
070 TAAiOL0 TNG BIMALUATIXAG aUTHS epyaociog, avantiooetar Aoyiouxd Aviictpogng
Hopayetponoinone (Reverse Parameterization Tool (RPT)) mou mpayuatonotel ™
uetatporh evée mhéypatoc TPA oe nopapetponoinon GMTurbo (oy. [1.3).

Ov CAD yewyetpleg mapdho mou dardétouy yeydin euehilio o Véuata oyedlaong xou
TpoToTOlNoNG TNE YEWPETElG, Exouv Eva Bactnd pelovéxTtnua. XeetdlovTon TAEYUATO-
Toinon mpoxeyévou va egappociel omolocdhrote xwotxag TPA yiow and 1 yewye-
Tplo. XN Simhowpoter auty| epyasio avartiocetan Aoylopwd Ipocapuoyic Empo-
vetaxol [Iéypatoc (Grid Adaptation Tool (GAT)) yUew aro GMTurbo yewyetpla,
oUUPOVOL UE TO OTOL0 TO 0Py X0 TAEYHO TEOCUPUOLETAL TNV VEX YEWUETPlA UE T YeY|oN
oL 2A xou 3A Aoyiouxot [apaudppwong [Iéyuatog ye tn pédodo twv Tpopuixcyv
Ehotnpiov mou éyet avantuydel oty MIITP&B (oy. .



Reverse

GMTurbo

CFD Grid
Parameters

Exhuwe 1.3: To Aoyopuké RPT.

Grid
Adaptation
Tool
(GAT)

3D
Spring Analogy
Morpher

CFD
Surface Grid

IGES
geometry

ExAua 1.4: To Aoyiopxo GAT.

Volume Grid

1.2 AvTtixelpevo tng Awmiwpoatixng Epyaciog

Y Simhouated| auty| epyacta tpoypauuatilovtoL:

o Aoyouxd Avtiotpogne Iapoyetponoinone RPT (C++) 1o omnolo petatpénet
éva mAéyua TPA oe nopapétpouc ouufotéc ye 1o CAD loyiouxd GMTurbo

YLt TN SLEUXOALYOT) TOU OYEBLOUOY xat TNg BeATioToTolnoTg.

o Aoyouwé Ipooappoyic Hiéyuatoc GAT (C++) mou dnuiovpyel Théypo yopw

amo v GMTurbo yewuetpia.

o Metenelepyaotéc nou eneepydlovian Tor amoteAéopata Tou Aoylouxol TPA
(Fortran 77). Xuyxexpwéva, utoloyilouv tn xatavour Tou adido TaTtou GUVTE-
Aeo T Tleong xoTd WXOS LIGO-YRUUUMY TOU TTEPLYIOU, TIG XUALVOPIXEC CUVTETY-
uéveg TNg ToryUTNTaC oTNY €000 TOU POTOEN XATA UAXOS TNS aBIdC TUTNG axTivag

xou Tov Bodud amddoone Tng oTEOBLAOUNYAVAC.



Initial Geometry

GMTurbo \
Form | |

¢ i *

Geometry

CFD Grid

Generation

Parameterization (GMTurbo)

Reverse
Tool (RPT)

Adaptation
(GAT)

'

3D Spring
Analogy Technique

CFD
(PUMA)

Stochastic ¢
Methods <

(EASY) o
Optimization

Gradient Based
Methods [

Surface Grid

YyAue 1.5: Tna v exkivnon uiag PeAtiotomoinong pe tn xpnon tov adyopiduov
mou gatvetar oto oxnua ya tny abloAéynon elvar arapaitnto n apxikn YewpeTpia va
Bpioketar o€ popeny ovuPaty pe to CAD Aoyopukd, €6¢d to GMTurbo. Xe mepintwon
Tou uovo to méyua TPA eivar sradéouo ya tny avarapdotaon tng apyikng YeUETPIAS,
avto mpémer va petatpanel o€ wodtvaun GMTurbo popen pe to Aoyopukéd Avtiotpoens
Iapapetporoinons (RPT) nov mpoypaupatiletar. I'a tn BeAtiotonoinon, evappovilovtar
T Aoywouikd mou gatvovtar oto oxnua. Ilpoypaupatiletar Aoywopuxé Ilpooappoyns
IINéyparos (GAT) ya Tn dnuovpyla mAéypatos tdvw otn GMTurbo yewpetpia.
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Kegpdiowo 2

GMTurbo

To hoywouxd GMTurbo Pociletar otn yerion Pacixwy evvoldy and T Yewplo Tov
G TEOPBLAOUNY VMY YL TN TapauETEOTOMoT evog tTepuyiou. H xotaoxeur| Tou ntepu-
Yiou mephauBdver ta e€¥g:

2.1 MeonuPBewo Eninedo

Apywd opllovtan oo NURBS xaunOiec oto 1z eninedo mou meptypdpouy Tic ueonuPoet-
véc twv hub, shroud, ei0680u, €€680U XL TOV AHUGY TEOCTTWONG XAl EXPUYNG TOU
TtepuUyiou (ox. . Me tov tpbT0 0UTO 0 YEHoTNG opllEl TN UeoNUBEWT Tour Tou
ntepuyiou oto peonufewo eninedo. oot TapeuoAr| Twv onueiwy eréyyou Tov
xoumuAwy hub xou shroud, dnulovpyet evdidueoee xoumiieg 6to YeonuPevé eninedo ot
omoleg ebvan oL yevétepeg Tou trepuylou. Kde yevétepa oto 1z enlnedo anoteAel pla
€X TEPLOTRPOYTE ETPAvELd 0ToV 3A Yo av TeptoTpagel Ylpw amd Tov dlova z Tng
o tpofhounyovig.

Y10 ornuelo autd elodyeTar 1 EVvola Tou GUUHOPPOL UeTacyNuatiopol. Mio ex mepl-
OTPOYAC ETLPAVELN UE YEVETELON Lot XUUTOAY 72 UTtopel Vo uetaoynuatiotel oto (m, 0)
eninedo cUUPLVL UE T GUVEETNOT

D (vg) : (r(u,vg)cosh, r(u,vy)sind, z(u,vy)) — (m(u,vy), o) (2.1)

émou 1 ouvdpTtnon m(u, vy) diveton omd

m(u, vo) = /0 ) \/T“(t’vof el ), (2.2)

r(t, vo)

5



‘Etot, agol Yewpeiton 61t xdie evoLdueon xoumdn tou oy. amotehel EX TEQIGTROPNG
empdveta tou petaoynuatileton obuuoppo oto (m, #) eninedo, 1 avdhuon Twv YeYedDY
o€ xde ex TEPLOTEOPHC EPAVELY, avdpeca oo hub xou shroud, uropel vo petopepiet
oto 2A eninedo (m,0).

V0=1 V0=0.8 V0=0.6 VO=O'4 VO=0.2 V0=0

Outlet

Shroud

Inlet

Up=ULE

U0=0

r
Yyxnue 2.1: O xpnotns apyikd opiler tn peonufpvr) tour) touv trepuyiov opilovtag
TS 6 peonufprvés kaumides (hub, shroud, eloodos, éodog, akun mpéomtwons, akur
expuynis). O xopos katd purkos tov ntepuyiov duakprronoleital e N (apiduds opildpevos
ané o xprioTn) wanéxyovoes kKaumTUAe Tov mpokUTTouy and ypaupukn tapepPorn peta&d
twv hub ka1 shroud.

2.2 Meéon I'papun Kugtotntag

H péon ypopph xuptdtnrag, neptypdpeton oto eninedo (m, #) ue uio xounOin Bézier 4
onuelwy (xuBu Bézier). Ta 4 onueio ehéyyou, opilovton ue Tn YehHom TwY OYETXOY
HeTaED Toug Yowwy (6 yYovies: Brr, Bre, 0Lk, Ore, e, orE) (o). , UE oXOTO
va Yivel To ca@ric 1 YEOUETEWT oTnuacion Twy Tapauétewy. Autéc opiCovtar w¢ e€Xg

Po = (mrE,0LE) (2.3)

Pz = (mrg, 07r) (2.4)
To onuelo P civar 10 OTUElD TOUNG TWV EQUTTOUEVRY OTIC UXUES TEOCTTWONG XAl
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exuYnc, Tou opilovton amd T yYwvies Brp xou Brg. To onueioc Py xou Py elvon
CUVUPTACELS TWV OLp XU Orp CUUPOVL UE TIC EELOWOELS

(P1—M) - (Po—M) = cosorg||P1 — M|| - ||Po — M| (2.5)

(P2 — M) - (P3 — M) = cosdrg||P2 — M|| - ||P5 — M| (2.6)

onou M ebvar to yéco tng PoP3 yopdrc.

Yy 2.2: Ta onueila eAéyyov Tng HéonNS Ypaupns KUPTOTNTAS Kal 01 OXETIKES YwrieS
peta&v tovs. Avagépetar evoeiktikd 0t o1 ywvie§ Brp ka1 Brg €lval o1 ywvie§ petdAdov
0TS AKUES TPOOTTWONS Kal €KQUYNS Kal o1 ywvies O kail Orp elvar o1 tepipepelakés
Uéoeis twv akuwy avty.

2.3 Koatavour, Idyouc

‘Eyovtag oploel pio péon ypouun xuptotntag o xdlde €x MEQIOTEOPNC EMPAVELNCS,
€yel onuovpyniel to tTepdyto pndevixol mdyouc. Axohoulel 1 unépleon xotavo-
MOV Téyoug oTig 600 TAEURES, uTEpTiEong ot uToTiEoNG, XUTd Prix0og Tou TTEPLYIoU,
nou opileton pe 1 yprion 8Vo ueyeddv (t(u,vo) = t(u)ts(vp)). To mpdto ebvor 1 xo-
T8 UAHOC NG YOEONG adLAC TUTY XUTAVOUT) TTdYOUS TOU TTEPLYiou f(u) H xaroavoun
auth tolhamhaoidleton pe évay ouvteheoTh édyouc ¢S (vg) xan t5(vg) yio var mépet

7



oloctdoelg. Amnopével 1 moapeuBoly| pe 6o NURBS emgdvelee towv xotd prixog tou
TTEQUYIOU OEPOTOMY, Yol TNV OAOXAIPWOT) TNG XaTaoxeLnc Tou TTepuyiou. H xatoavo-
un myoug uneptileTton oTic 800 TAEUPEC TN MEOTNC YRUUUNS XUPTOTNTAS CUUPWVOL UE
Tov TUTO:!

tsz’dei (S, UO)
r2(m(s,vo)) (2.7)

Ciig% (3; UO) = ll’m9<87 UO) + nm6(57 UO)

émou r(m(s,vg)) etvon n avtiotoryn axtivar ToU ONUEIOL tme(S, Vo) TNC HEONC YEUUUNS
XVETOTNTOS, X0 YENOUOTOLELTAL Y10l VO UETACY NUAUTIOEL TO Uhx0g t(s,v) Tou 2A Y WEOU
oe avtioTotyo pixog oto (m, #) eninedo.

N
%

Eyhue 2.3: Opiletar pia péon ypauun kuptotntas o€ kdle (m, 0) erninedo (aproepd).
To ntepUyo pundevikol Tdxous TPOKUTTEL €MTTPéPorTas 0to 3A YWpo e Tov avTioTpopo
oUppopgo petaoynuations ®1 (dekid).

@ Shroud

e

\ 7

///
)/
Vi
/
)/

Y

yz

Vi
/

N

YyAue 2.4: Treptifevtar katavoués ndyovg oe kdle péon ypapun kuptotntas otg 6Uo
TA€UpéS olupwra e tny egiowon (aprotepd). Or kaumiAeg mdyous, mapepBillortan
aré 600 NURBS emgdveies, pia ywa tny mievpd ureprmieons kair pia yia tny mhevpd
vrornieons (6e&id).



Kegdhowo 3

Aoyiouxo Avtiotpopng
[Topopetponoinone (Reverse

Parameterization Tool)

Hpoxeévou va elvon duvath 1 enclepyaoio plag yewpetpiog ue tn yenon tou GMTur-
bo, 1 yewuetplo aut) teénel vo Peloxetan o cupPath pe tov GMTurbo popgr,. Na
TEELYPAPETAL ONAADY| ATd TIC TUPAUUETEOUS TTOU TUQOUGLAC TNXAY GTO XEPAAANO

‘Eva ttepiyio umopet va €yel oyedlaotel pe onotodrnote CAD hoyiouwd. Ilpoxeyuévou
va Behtiotonoiniel pe to hoyiouxd GMTurbo, ogethet vo puetatpanel oe xoTtdhAnAn
nop@n. IIoAd cuyvd plo yewuetplo Tou unopel va mpocpyeton amd T Prounyavie me-
erypdgeton o pop@r mAéyuatog. H avdmtuin hoyiouixol mou petotpénel éva TAEyua
TPA oe GMTurbo mopayetponoinon avantdoceton og qUTH TN SITAGUATIXT EpYaoia
xaL EVOWUT@veEToL 6T0 Aoytomxé GMTurbo.

H pédodoc mou axohovdeiton meprypdpeton amd To e€rc Brvotos

3.1 TYrohoyiwopds MeonuBewhc Toure

Apyixd mparypatonoleiton 0 UTOAOYIOPOS TNS UeonUBewvhAc Tourc Tou mAéypatog. O
UTIOAOYIOUOS TWV UECTIUPEIVOY XOUTUAGY, YiVETOw pe TNV TEoBoAR Twv onueinv Tou
avipeouy oTic avtioTolye 3A xoumdieg Tou TAEYpaTOoC, oTo 12 eninedo. Agol mpo-
Brndolv dhot oL xouPot, ot cuvéyela tapeufdirovtan and xotdhhnhec NURBS xop-
mokec. Evdiopéone v xoumuiey hub xo shroud nou urohoylotnxay, unoloyiCovto
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N (oprduode opilduevoc amd 10 yerotn) xaundheg, wg NURBS xouniiec, to onuela
eMEYYOU TV OTOIWY TEOXUTTOUY antd YeuuuxT| TUPEUBOAT) TV onuelny EAEYYOU TKV
hub xou shroud xapmuidy. O xaumiieg auTtéc Umopolv Vo amoTeEAEGOUY YEVETELRES €X
TEPLO TEOPY|G EMLPAVELNS YUPW amd TovV 2 dova, xot’ avahoyla e oautée tou GMTurbo.
Y€ QUTEG TIC EX TEQIOTPOPTNC ETULPAVELEG Vo UTOAOYIGTOUV Tal DEBOUEVA U0 TO TAEYHA
Tou TTEPLYioU.

Outlet

r r

Yyxnue 3.1: Troloyiletar apyikd n peonuppiv toun tov mAéyuatos kai, 0T ovvéyela,
Onpovpyolvtal o1 €vOIdETeS 10ATEYOUTES VEVETEIPES.

3.2 7Ymroloyiopog IThevpdv Yrepnicong »ouw Y-

ronisong

[t Tov UTOAOYIOUO TV TAEUPKOV UTEPTIECTC X UTOTHECTC TEOYEUUUITIOTNIXE oh-
Yopruog mou Beloxel Ty Toun UETAEY BOUNUEVOU ETLPAVELNXOL TAEYUNTOG (msp\')wo)
xow NURBS ex nepiotponic emupdvetag. Ot ToEg Tou TTEQUYIOU UE TIC EX TEQLOTEOPTC
ETUPAVELEC TTOL LTIOAOYIG TNV BEBOUEVOL OTL AVAXOLY GE Uiol EX TEQIC TROPNG ETLPAVELL,
umopoLy vo teptypapoly and (m, f) cuvtetaypévec. Emtuyydveta, Aoindy, o utolo-
YIOUOC TV %aTd uixo¢ Tou mtepuyiou agpotounyv oe 2A avarapdotoor. Amouével
x&ie pla amo autéc Tic acpotouéc va exppactel xatd GMTurbo, dniady| ¢ ula péon
Yeouur xuptdTnToac (oe xuPun Bézier popcpr']) %ol 500 HUTAVOUES TdY OUC.

10



YyAue 3.2: Ilpoypappatiletar akydpiduos mov vroloyiler tny toun petaél empdreag
mou Oivetar o€ dakpitr) popgny (Sounuévo emgpaveiaxéd mAéyua) kar NURBS ek mepiotpo-
¢S empdveas.

3.3 TYmnoloyvyiopog Meong 'papung Kuetotntacg

H péon yeouur| xuptdtntag unoroyileton o 800 Bripata. Apyixd urtohoyilovton onueia
evdpéowe (Exact Mean Camber Line) twv 800 mievpov oto (m,6) eninedo mou
umoloyloTnxe 6To TeonyoUUEVo Brua. XTr cuvéyel autd To onueio TpooeyyilovTon
amd pla xuPBuey xounOhn Bézier. H mpooéyyilon yivetar ye meploptopols otar oxpola
ornuelor oL OTIC EQATTOUEVES TV oxpalwy onuelwy. H xuPu Bézier xaumOin ogelhet
(1) va mepvder amd to onueior TpdoTTWONG Ko EXPUYRS, (2) vo elvon xddetn oty
EQATTOUEVT OTNY o TEOOTTOONS X0t (3) x&detn 610 TTEPUYLO OTNV oXUT| EXPUYTC.
'Etot, vnoloyilovton ta ornuela ehéyyou tne xuPuic Bézier mou meprypdpel tnv uéon
YEUUUT XUETOTNTOC, XOL UETATEENOVIAL OTIC AVTIOTOLYES YWVIEC TNG TUPUUETPOTOMOTG
oUUPOVOL UE TOUG TUTOUG:

O =P
LE 0,0 (31)
Ore = Psyp
-P
ﬁLE atan 1,0 0,0
Pl,m - PO,m (3 2)
o = atan (20 = P22 ) |
e P2 m P3 m

11



MP; - MP,
0L = acos <—|>

| MPy||MPy
M_PQ . M_Pg )
|

5TE:acos< - -
| M P5||M Py

| | | | | |
Exact Mean Camber Line

Cubic Bezier
Mean Camber Line

Yyxnue 3.3: H péon ypappun kuptotntas 0mws mpokUnTel and Tov UTOAOYIOHS onUelwYy
mov 10anéxouy and TS TAEUPES uTepTiecons kal vronieons (e yKkpL xpdua) Kat 1 mpocéy-
yion wng and pia kuPikr) Bézier kapuniAn (umke ypauun) nov arotedel Ty GM Turbo piéon
YPaun KupToTNTAS.

3.4 TYmnoloyvyiopog Katavouneg Ildyoug

Ov xdleteg amootdoelg g péong YeuUUNS XUETOTNTOC, Amd TIC AEQOTOUEC TOU U-
TohoyloTnxay Bivouy TNY xaTavour) TyouS XATd UAXOS TG Y0edAC TOU TTEPLYIOU.
AlpvTog TNV xatovour) aUTAY UE TN MEYLOTN TN TG (mou arotelel To CUVTEAEOTY
Ty 0US), TEOXUTTEL 1) ABLAC TUTH XATAVOUT| T8 OUC.

Yuvenwg €youv untohoylolel, 1 ueonuBevh Tour TN oTEOPBIAOUNYAVAS, XATAVOUES Yid
¢ yoviee 3, 0, § (oy. XoTd Yfxog tou mtepuyiou mou Blvouv TN UEoT) YEUUUT
xuptoTnTac xotd GMTurbo xan xatavopés ndyoug (ox. Yl TIG TAEUPES LUTERTEDTG
xou umonieong oe xdle xatd urxoc Véon. Oloxinpwveton €tol 1 xotd GMTurbo
TopUpETEOTONOT Tou TtTEpUYioL.
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Spanwise v,

0.8 | 1 0.8 I 1
=
0.6 | 1 o 06 1
2
] LE |
c
04 - S 04f -
®
0.2 B 0.2 ]
0 0
B 0
1
0.8 -
=
o 06
2
3
C
§ o4l
(9]
0.2
0
é
EyAue 3.4: O1 katavopés twy ywvidy Kata HNKoS TOU TTEPUYIOU.
1 1
0.8 0.8 -
o
0.6 > 06
2
0.4 g
S 04
®
0.2 |
02
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 .
u Thickness Factor

ExAue 3.5: Katavoués ndyous katd prjkog tng xopdrs (apiotepd) kai n katavourj twy
OUVTEAETTAY TdYOUS Katd KOS Tou TTepuyiov (bebid).
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Kegpdhawo 4

Aoyiouxo llpocopuoyng
[TAévypatog (Grid Adaptation
Tool)

Meratpénovtog éva maéypo TPA oe popgr cupfoty| ue to GMTurbo ye ) yefjon tou
Aoyiouixol Avtictpogne Hapouetponoinong, mpoxdntel 1 mhnpogopio tng CAD avo-
TOEAC TUONG TNG YEWUETPlaC, Tou elvon TOAD To €dyeno Ty ot Véuato oyedlaouol xou
BehtioTonoinong. 261600, Ue AUTHY T1) HETATEOTY|, YEVETAL 1) TASYHOTIXY| AVATHEAO To-
on. Auté oudfaivel eneldr ol dVo yewpetpieg, TAéyuo TPA xou GMTurbo ntepiyto,
0ev elvan yewpetpixd Towtéonues, arid to GMTurbo mteplyio mou mpoximntel omod
t0 Aoyiound Avtiotpogne Hapoauetponolnong eivon pio tpocéyyion twv ornuelwy Tou
0P YOV ETULPAVELAXO) TAEYUATOC.

[ tov Aoyo autdy, yeetdletan dnuovpyio TAéyuatog méve otn GMTurbo yewuetpla,
Teoxeévou va unopel va emhuiel 1 por| tévew oe auth. ‘Etot avantiooeton Aoylopxd
Hpocapuoytc I éyuatoc to omolo utoloyilel TAéyua Téve ot GMTurbo yewuetpla,
EXUETAAAEVOUEVO TO apyixd Théyua TPA. To mhéyua mou mpoxinTel etvor (Btou aprduod
XOUPLY, Blag ToloTNTAS Xa (Blag Boung UE TO apyLxo.

H dnuovpyla miéyuotog AauBdvel yopa oe 6Vo Briuata. Apyixd dnutovpyeiton emipo-
velod mAéyua mhve oty GMTurbo yewuetplo xou, otn cuvéyela, T0 aEyXd OYXIXO
TAEY MO TORUUOPPOVETHL BACEL TOU ETLPAVELUXOD.
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4.1 llpoocapuoy? Emgpaveioxol 1TAEyuatog

o T Snioupyio emgavetoxol mAéyuatog téve otnvy GMTurbo yewuetpla, tpocap-
HOLETOL TO OPYIXO ETLPAVELUNO TAEYHA, TEVL OTo OTEEES Opla Tng yewuetplag. Ta
OTEPEY OPLAL, UTEOYOUV TAUTOY POV OF UOPPT ETLPAVELNXOL TAEYUATOS XL OE ORGP
GMTurbo. Autd etvor (oy. [.1)):

o Ilhevpd Trepnicong

IThevpd Tronieong
e Hub

Shroud

e 1Idyoc tou mtepuyiov oTNV axur| ExQUYTC

PRESSURE
SIDE

TRAILING \
EDGE

SUCTION
SIDE

YxAue 4.1: Ta oteped dpia Twy YewUETPIOY TOU HeAETOVTAL.

Mo xdde oteped bplo mparypatonotovTo Tor €€NG PBriorta:

e To apywd emgaveioxd mAeypa mpofdiheton ot NURBS emgpdvela mou mpo-
x0Omter and To GMTurbo. IpoxOntel, Aowndy, empavelaxd TAEYUL TOU EYEL TNV
(Do Sour| Ye TO apyd ETPOVELONO TAEYUA xou oL x6ufol Tou Beloxovton Téve
oty NURBS emgdveto tou atepeod opiou (oy. ). To npdPinua mou mpo-
»«0OmTEL amd auTy TN TEoBohY| elvon 6T Tor dptar Tou TAEYpaTOC deV TawTiCovTon ue

oL bpLoL TG Empdvelas (oy. ).
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ExAua 4.2: H mpopon tou apyikod mAéyuatog ndvw otny NURBS emgdveia onuiovp-
yel emaveiaxd mAéyua o1 képufor Tou omoiov Ppiokovtar ndvw otny NURBS emgpdvea.

o Ilpaypatonoeltan Topopudpepwor Tou TEORELANUEVOL TAEYUUTOS WOTE aUTO VA
£QopUOlEL 6T ORIl TNG ETUPAVELAS, XOL VO ATOTEAEL TN BLUXELTY) TEQLYPUPT TNG.
H napopdppoon yivetor, apol ex@paotody Ol GUVTETAYUEVES TV XOUPwY 0TN
Suapopeteind (u, v) 1 (m, 0) neprypogn twy tapouétewy e NURBS emgdvelac.
e oautd Tor 2A TAéyUaTo EQuEUOlETOL TUROUORPWST UE TN YeroT TN uedodou
TWV YRUUUXOY ENATNEIWY.

ExAue 4.3: O1 akués tov mAéyuatos 6év tavtilovtar ue ta dpia tns emgpdreias (kékkvn
ypaypr).
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4.2 Tlopopdppwon Oyxixod ITAEypatog

Agol utoloyiotoly Ta €yxupa emovelaxd TAéypata tdve ot GMTurbo cteped
opla (GX. ), aUTéC ot VEOELS TV ETULPAVELIXODY 0plwY, YENOYLOTOLOUVTUL WS OpLoXY)
cLVIXN Yol VoL UETATOTEGOUY TO ECWTERIXG TAEYUO UE TT| YPNOT| EVOS XMDOXA TOQUUOE-
pwong 3A mAéyuotog Ue TN YéVodo Twv yeopuuwxoy ehatnelny. Etot, mpoxintel éva
€yxupo oyxuxd TAEyua wve oty GMTurbo yewpetpla, oto onolo unopel va emavdet
1 oY) ue xdmoto Aoylouxé TPA.

n\“
\\\‘\
AN
i |\\\\‘\\\\
\\\“{\:\\\:{‘%\\\\‘\\\I\“ﬁ\\‘
\\“ ‘\ i \\:\‘
\\\ \\\\\\\\

i

SR

SRR
o

e
[ \I IR RARTIARET

Yyxnuo 4.4: Me tn owdikaocia tng mpooappoyns TAEYUATOS TPOKUTTEL €MPavelaKo
TAéyHa Awy twv otepedy opiwy mov Ppioketar tdvw ot GMTurbo yewuetpia.
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Kegdhawo 5

Eopapuoyeg »xau BeAticToNOINCT

[ v adlohdynon Tng Mo TOTNTAS TWV U0 AOYIOUIX®Y, ToEOUCLELOVTAL TEELS OLIpO-
PETIXEC YEWUETPlEC TTEPUYIWY LBPOGTEORIAWY Tou apyixd BoloxovTal ot uop@y| TAEY-
wortog, otor onola eqapuolovtar Tor AoYopixd avtioTpopne mopaueTpoTolnong (Yo ™)
dnutovpyior e wodvvoune GMTurbo yewyetplog) xot, oTn GUVEYEL, TO AOYIOUXO
TEOGPUOYAS TAEYRaTOC (ytor T Snuoupyia mAéypatog ent tne GMTurbo yewyetplog).
O tpeig YewpeTpieg elvon SLopopeTinég HeTald ToUg TEOXEWEVOU Vo epeuvnUel 1) oocplBela
v 600 epyareinv (RPT&GAT) oe diagopetinéc yewpetpiec. H allohdynon g porc
yivetar ye tov emAlTn Twv e€lowoewy Navier-Stokes, yvwotd wg PUMA mou é€yet
avantuyvel oty MIITP&B.

5.1 Egoppoyn os uépooteoSiho Francis

H mpdtn egapuoyn agopd udpoctedfulo uewtc poric Francis. I tn olyxplon tng
yewuetplog utoloyiletar 1 andotacy YETAE) TwV (OUPOY TOU dEYIXOU ETLPAVELUXOD
TAEYUOTOS TOU TTEQUYIOU X0 TOU TAEYUATOC TOU TEOXUTTEL UETE TNV EQPUPUOYY| TWV
RPT&GAT (oy. . Hpoypoatonotelton enlong olyxplon towv nediwy porg. To nedia
oUTd LOVTEAOTIOLOUVTOL O TEGOEPL xoTavopés. H mpaytn aopd Tig xUAVORIKEG cuvTe-
TOUYUEVES TNE ToyUTNTAC 6TV €000 TOU POTOPA UBLIC TATOTONUEVES UE Evay o Tadepd
aErduoO XL OL UTONOLTES, TIC XUTOVOUES TOU GUVTEAEGTH| TEOTC XATE UAXOC TNS YOPOTHC
O€ TEELC XATd PHxog tou mrepuyiov Véoeg, hub, shroud xou tnv eviidueon Véon (oy.

p-2)
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0.00036
0.00034
0.00032
0.0003
0.00028
0.00026
0.00024
0.00022
0.0002
0.00018
0.00016
0.00014
0.00012
0.0001
8E-05
6E-05
4E-05
2E-05

d

0.00036
0.00034
0.00032
0.0003
0.00028
0.00026
0.00024
0.00022
0.0002
0.00018
000016
000014
000012
0.0001
8E-05
BE-05
4E-05
2E-05

YyxAue 5.1: Egapuoyn) o€ vépootpéfiro Francis: H andkAion twy 000 yewueTpidy,
apx1knis kar mapapetponomnpérns, yia N=7 yevéteapes (apiotepd) xar N=20 yevéteipeg
(b6e&ad). Xagpdss avédvortag tov apiiud twv yevetepdy avédvetar n axpiBea tns mpocéy-

YIoms.
2 03
[}
c
S 025
£
8 o2
©
8 o015
el
[
= o4
(&)
2 005
[$]
o
[}
>

2
0 0102030405060.70809 1

1/ max

0.6

CpInitial —
Ytk e Gy Initial 0.5

e - c, Iniial T
BT R V\; R ized N=10 0.4

tZReparametenzed N=10 ~°°

! (?F{eparametenzed N=10 0.3
\ / 02
AN e 0.1
0 0
0 0.102030405060.70809 1 ~0.1

Initial Geometry
Reparameterized Geometry N=10

0 0.102030405060.70809 1
chord

T T T T T T
Initial Geometry

Reparameterized Geometry N=10
Reparameterized Geometry N=20

1 ——
] 08 |-
0.6
& 04

0.2

0

Y -

T T T T T
Initial Geometry

Reparameterized Geometry N=10
Reparameterized Geometry N=20

chord

0 0.102030405060.70809 1

chord

Yy 5.2: Egapuoyn oe vdpootpdfiro Francis: Or Sidgopes katavoués twy poikady
pneyelanr, yia N=10 yevéteipes, kal oTny Tepintwon Twy KATAVOUWDY TUVTEAEOTOY TleonS
yia N=20 yevéteipeg.
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5.2 Egoppoyn oc udpocteofiho tirou llgonélag
KE 00Mya TTtEEDYLA

H 8ebtepn eqgapuoyy| apopd évay alovixd 6TeofBiho TUTou Teonélag Ye 0d1Yd TTEPVYLAL.
Egapuolovton to hoytouxd RPT&GAT xon ota otodepd odnyd ntepdyta mou ebvor
ox TG xa oTov afovixd potopa. H olyxpion twv YEOUETPUOY QalveTon GTaL OY.
O Hopatnedvtag to anoteréopata TPA unopel xavelc va dewprioet 6Tt ot 800
yeopetplee elvan poixd oyedov 1oodivopes (oy. [5.5)).

d

0.00036
0.00034
0.00032
0.0003
0.00028
0.00026
0.00024
0.00022
0.0002
0.00018
0.00016
0.00014
0.00012
0.0001
8E-05
6E-05
4E-05
2E-05

d

0.00036
0.00034
0.00032
0.0003
0.00028
0.00026
0.00024
0.00022
0.0002
0.00018
0.00016
0.00014
0.00012
0.0001
8E-05
6E-05
4E-05
2E-05

/

YyxAua 5.3: Egappoyn oe vopootpdfiro timov Ilponédag e 0dnyd treptyra: H andkAi-
01 TV 000 YEWUETPIOY TwY 00NYdY TTEPUYIWY, apX1kol Kal TapajLeTPOTONUEVOU, Yia
N=8 yevétepes (apiotepd) ka1 N=18 yevéteipes (6ekid). Xtn ovykekpiuévn yewuetpia
N=8 yevéteipes elvar apketés, €eKToS anoé ta onueia 6Tov 1) yewuetpia éxel 101a1TepOTNTES
omdte xpedlovtar mepiooitepes yevéteipes yia va efadeiplel n andékAion.

0.0003
0.00028
0.00026
0.00024
0.00022
0.0002
0.00018
0.00016
0.00014
0.00012
0.0001
BE-05
6E-05
4E-05
2E-05

0.0003
0.00028
0.00026
0.00024
0.00022
0.0002
0.00018
0.00016
0.00014
0.00012
0.0001
BE-05
6E-05
4E-05
2E-05

Yxnue 5.4: Egappoyn oe vépootpdfiro timov Ilpomélag ue odonyd ntepiya: H a-
moKA10T) TV OU0 YEWUETPIY TOU poTopa, apX1KNS Kal mapapetporomniévng, yia N=8§
yevéteipes (apiotepd) ka1 N=18 yevétepes (6e&id). Av&dvovtag tov apiud twy yeveter-
pav avédvetal n akpifea tng mpooéyyong.
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0.8 S Initial Geometry
: Reparameterized Geometry

c_m Initial
N I — 0.7
¢, Initial
c_m Reparameterized
¢, Reparameterized
E Reparameterized

Velocity Cylindrical Components

2
0 0.1 02 03 04 05 06 07 08 09 1

M max 2 0 0.1 020304 0506 0.7 0.8 0.9
chord
12 T T T T T T T T T 25 T T T T T T T T T
: : Initial Geometry : : Initial Geometry
1 R Reparameterized Geometry N 2 Reparameterized Geometry 1
0.8 T - TR
0.6
S 04
0.2
0
-0.2
-0.4 1
0 0.10203040506070809 1 0 0.10.20.3040506070809 1

chord chord

Yyxnue 5.5:  Egappoyn oe vopootpdfilo timov Ilpomélag pe odonyd mteplya: Or
oidpopes katavoués twy poikwy ueyebnv, yia N=10 yevéteipes, kar oTny TepinTwon Twy
Katavouwy ovrteAeotwy mieons yia N=20 yevéteipes.

5.3 BeAtiotonoinon Mopync

Agot ta 800 hoylouxd RPT&GAT aliohoydnxay, xou xpldnxe ott 1 GMTurbo ye-
opetpio uropel va Vewpniel xolr) tpoceyylon Tng apyinhic YEWUETPlog Tou Ttepuyiou
Tou dlvetar og pop@n TAEYHATOC, unopel va yenowonotniel ¢ apyxr Aoor yio Pe-
Tiotonoinon pe E&ehxtinoic Ahyoptduouc. To hoyiouxd mou yenowonoleiton yla
Behtiotonolnom eivon 10 Aoylouxd EASY 1o onolo €yet avantuydel omd mn MIITP&B.

Mo tn Bertiotonolnom piag yewuetplog Tou oy xd SiveTon O HOop@T) TAEYUUTOS TEAY o=
TomotolvToL X3 popd oL e€ng evépyeieg. Apyxd to TAéypa uetatpéneton oc GMTurbo
yeouetpio ye 0 yenon tou RPT. Yto onuelo autd, €youvv unohoylotel oo GMTurbo
TOPAUETEOL X0 ETUAEYOVTOL ATd TO YENOTN XATOLEG Amd QUTEC (O PETUPBANTES GYEDLO-
ouol xodwe xan T bpla Toug. ‘Etol 1 fehtictonolnor dlvato vo exxavioeL.

O Tpelc mepintidoeic Tou Tapouctdlovial aopoly Th BEATIO TOTONoT HOPYTC TNE EQOE-
HOYTG TNG EVOTNTOC UE OVTIXEWUEVIXT) CUVEETNOT ToV Bordud ambdd00TC TNE CUVORXTG
odtagng.
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5.3.1 BeAtioTonoinon odnyoyv ntepuyiny (16 pstofBin-

Téc oYESLACUOV)

Yy mentn neplntwon, mpoyuatonoteitan BeATioTonolinom Hoppc HOVO TwV 0dTYKV
ntepuyiy Ye 16 yetafBAnTéc oyediaouol Tou apopoly TS YwVieg YETdAIoL BrE xou
Pre ot 8 xutd prxog Yéoeig Tou mrepuylov. H olyxhion gaiveton oto oy. xaL 1
Pehtiotomotnuévn yewuetpla oto oy. [b.7]
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Yy 5.6: BeAtiotornoinon odnydy ntepuvyiwr: 16 petafAntés oxediaouol : NiyrAi-
on.

ExAue 5.7: BeAnotonoinon odnydy nrepuyinv (16 petafAntés oxediaouod): H apyikn
(kéxKwo ypdua) ka1 n BeAtioronomnpérn (yrpilo xpoua) yeouetpia.
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5.3.2 BeAtiotonoinon odnydyv ntepuyiny (32 pstofBin-

Téc oYESLACUOV)

YNy 0eltepn TEpinTwoT), Tparyyatonoleltal BeATioTonolNC LOPPNC XKoL TIEAL UOVO TKV
odNy®Y TTepLYiny, ahhd pe 32 petoBAntéc oyediaouol. O mpnhteg 16 agopoly Omwe
oTNV EVOTNTA TIC YWVIEC pETdAoL Brp xou Brp ot 8 xatd urxog YEcelg Tou
TTepUYIOL, VK oL LTOAOLTES 16 TouC CUVTEAEOTES Ty OoUC tfs O tfzs oTic Olec xotd
unxog Véoec. H obyxhion galvetan 6o oy. xou 1) BeATioTonotnuévn yewpetpla 6To

oy. p.9
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ExAue 5.8: BeAnwotonoinon odnydy ntepuvyiwr (32 petafAntés oxedaopol): Xoyri-
on.

ExAue 5.9: BeAnotonoinon odnydy nrepuyinv (32 petafAntés oxedaouod): H apyikn
(koxKkwo ypdua) ka1 n BeAtioronomnpérn (yrpilo xpoua) yeouetpia.
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5.3.3 BeAtioctonolnomn odny®y TIEPUYILY Xol TTEPWINAS

H rpltn neplntowon agopd tn tawtdypovn Behtiotonolnon twy odnywy mtepuyiny o
TV TTEPLYlnY TNe TTepwThAC. Ol petoSAnTéc oyediaouol etvor 32 %ot apopoly OAEC
TS Ywvieg uetdhhou Brp xou Brp oc 8 xatd prxog Véoeig Twv odnywy mTepuyiny
xou o€ 8 xotd urxog Yéoeig tng nrepwthc. H olyxhion gaiveton oto oy. XL 1

Behtiotomonuév YewpeTpla 6TO Y. xon [5.12]
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Yyxnue 5.10: BeAniotomoinon o0nywy ntepuyiwy kar ntepwtng: XykAion.
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YxAra 5.11: Beluotormoinon odnydr ntepuvyiwy kar ntepwtrs: H apyikn (kékkivo
xpdua) kar n Bernotorouévn (ykpilo xpdua) yewuetpia twy odnydy ntepuyiov kal

NS TTEPWTINS.
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Kegpdhowo 6

2IVUTEQACUAT

e authy TN SImAouaTiey epyacio TEOYEUUUATIOTIXE AOYIOUIXO avVTICTEOPNG TUPUUE-
Tpomoinong mou yetatpénel mAéyuo TPA oe ouyfotr ue to GMTurbo uoper. Erlong
npoypoupotiotnxe Aoyiouxd Ipocapuoyric IIAéyuatoc to onolo unoloyilel TAéyua
YOpw amd tn GMTurbo yewpetpla. Xuvenwe, eival TAEoV €PXTO VA TEAY-
patonowndel BeAtictonoinoy yewpetplog Tou divetan apyixd o Lopy
TAéypatog pe T xeron tou GMTurbo. Yuyxexpwéva, o autiv TV epyacia,
avarhbdnxay, TeoypoupaticTnxay xon aflohoyinxay To e€nc:

o Avohinxe n uédodog mou oxohovdeitan amo to Aoylouxé GMTurbo yu
TOEUPUETEOTONGT TTERUYIWY GTEOBIAOUN Y AVEY

o Ilpoypappatiotnxav 0o Aoyopwxd. To RPT o to GAT. To RPT yetatpénet
mAéyuo TPA oe nopapétpoug GMTurbo. To GAT Snulovpyel mhéyua méve 6T
GMTurbo yeouetpio. To yev RPT emtpénet tny exxivnon tne BeAtiotonoinong
agol 1 GMTurbo yewyetpio mou mopdyel xataoxeudletar GUECH Amd TIC PETO-
Brntéc oyedoopol. To GAT evowpathvetow otov olyoéprduo allohdylone Tou
EZehutixol Ahyopiduou pall ye dhha hoytouxd (oy. yioo TN onuoupyia
TAéyuotog mave oty CAD yewpetpla oe xdide allohdynon.

o Téhoc alohoyrinue N mMoToHTNTA TV BUO Aoylouxav. T teelc SdapopeTinég
YewueTpleg Tou mpoépyovTa and T Plounyavio, mpoyuatonot|Inxay cuyxplocic
TOU 0EYIXOU TAEYMATOS UE TNV YEWUETELN TOU TEOXUTTEL UETE OO TNV EQUQUO-
v Twv RPT&GAT. O ouyxploeic mou €ytvay elvol YEOUETEIXES xou oLYXPIOELC
poxwv ueyevwyv. Téhog mpaypatomorfinxay Teelc BEATIOTOTOCELS YEWUETEL-
OV 1oL dpywd Beloxovtay oe Yop@r| TAEYHATOS, AmOdEMVOOVTUS OTL O dEYIXOg
0TOY0¢ ERETELY ).
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