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Abstract

In the field of aerodynamics, the geometrical and flow conditions of a certain shape
are usually considered to be constants, while in reality they exhibit some stochas-
ticity, which can have a varying effect on its performance. This thesis, stresses
aerodynamic cases in which the geometrical-manufacturing uncertainties of a cer-
tain shape are taken into account, by proposing a computational process capable to,
firstly, evaluate the stochasticity of their performance (uncertainty quantification)
and, secondly, to optimize their stochastic performance (robust design).

Therefore, this thesis presents the development of software, implementing the non-
intrusive Polynomial Chaos Expansion and the Karhunen-Loève Transform theories,
in order to perform aerodynamic uncertainty quantification and robust design op-
timization on 2D shapes with manufacturing uncertainties. The Karhunen-Loève
Transform theory is used to simulate the real-time uncertainties that may occur
during the manufacturing of aerodynamic shapes. The theory of Polynomial Chaos
is based on the use of orthogonal polynomials to model the stochasticity of a cer-
tain phenomena, by analyzing its stochastic input and quantifying its stochastic
output, though the form of its statistical moments. The Karhunen-Loève Trans-
form software developed as well as the OpenFOAM© Computational Fluid Dynam-
ics solvers are coupled to an in-house non-intrusive Polynomial Chaos Expansion
code, so as to quantify the stochastic aerodynamic performance of 2D imperfect
geometries. Additionally, robust design is performed on such imperfect geometries,
parameterized through Volumetric B-Splines, by optimizing the statistical moments
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of their performance, with respect to the design variables controlling the parameter-
ized shape. This is achieved through the incorporation of the continuous adjoint op-
timization algorithm, developed by PCOpt/NTUA in the OpenFOAM environment,
into the aforementioned Karhunen-Loève Transform and non-intrusive Polynomial
Chaos coupled algorithm.

The Karhunen-Loève Transform code is designed to recreate imperfect perturbations
on any 2D geometry and when combined the generalist nature of the non-intrusive
Polynomial Chaos Expansion mathematical tool, it grants the ability to the pro-
posed method to cope with a wide variety of aerodynamic cases with shape un-
certainties. Simultaneously, the deterministic adjoint optimization method greatly
mitigates the computational cost needed to perform the uncertainty quantification
and robust design processes, when compared to other stochastic methods often em-
ployed in literature, such as the Evolutionary Algorithms.
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Στην αεροδυναμική, οι γεωμετρικές και ροϊκές συνθήκες ενός σώματος που έρχεται

σε επαφή με ρευστό, συνήθως, θεωρούνται σταθερές, ενώ στην πραγματικότητα εμ-

φανίζουν κάποια στοχαστικότητα, η οποία μπορεί να έχει μικρότερες ή μεγαλύτερες

επιπτώσεις στην απόδοσή τους. Η παρούσα διπλωματική εργασία, αναφέρεται σε α-

εροδυναμικά προβλήματα στα οποία οι γεωμετρικές-κατασκευαστικές ατέλειες των εν

λόγω σωμάτων, λαμβάνονται υπόψη. ΄Ετσι προτείνεται μια υπολογιστική μέθοδος για

την ποσοτικοποίηση της στοχαστικής απόδοσης (ποσοτικοποίηση αβεβαιότητας) ατε-

λών σωμάτων αλλά και τη βελτιστοποίηση της στοχαστικής τους απόδοσης (στιβαρός

σχεδιασμός).

Για το λόγο αυτό στην παρούσα εργασία, αναπτύσσεται λογισμικό, που αξιοποιεί τις

θεωρίες του μη-επεμβατικού Αναπτύγματος Πολυωνυμικού Χάους και του μετασχη-

ματισμού Karhunen-Loève για την εκτέλεση αεροδυναμικής ποσοτικοποίησης αβε-

βαιότητας και στιβαρού σχεδιασμού σε διδιάστατες γεωμετρίες με κατασκευαστικές

ατέλειες. Ο μετασχηματισμός Karhunen-Loève χρησιμοποιείται για την προσομοίωση

των ατελειών που, πιθανά, διαμορφώνονται στην επιφάνεια αεροδυναμικών σωμάτων,

κατά την κατασκευή ή τη λειτουργία τους. Η θεωρία του Πολυωνυμικού Χάους, βασίζε-

ται στη χρήση ορθογωνικών πολυωνύμων για τη μοντελοποίηση της στοχαστικότητας

ενός φαινομένου, αναλύοντας τις αβέβαιες μεταβλητές εισόδου και υπολογίζοντας τις

στοχαστικές τους εξόδους, με τη μορφή της μέσης τιμής και της τυπικής απόκλι-

σης. Ο κώδικας μετασχηματισμού Karhunen-Loève καθώς και οι επιλύτες υπολογι-

στικής ρευστοδυναμικής, σε περιβάλλον OpenFOAM©, ενοποιούνται με τον κώδικα

μη-επεμβατικού Αναπτύγματος Πολυωνυμικού Χάους, με σκοπό την ποσοτικοποίση

αβεβαιότητας σε διδιάστατες γεωμετρίες με κατασκευαστικές ατέλειες. Επιπλέον, ο
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αεροδυναμικός στιβαρός σχεδιασμός εκτελείται σε τέτοιες ατελείς γεωμέτριες, παραμε-

τροποιώντας τις τελευταίες με τη μέδοθο προσέγγισης Volumetric B-Splines και βελτι-

στοποιώντας τη μέση τιμή και την τυπική απόκλιση της αεροδυναμικής τους απόδοσης,

ως προς τα σημεία ελέγχου των παραμετροποιημένων υπολογιστικών χωρίων. Τα πα-

ραπάνω πραγματοποιούνται με την ενσωμάτωση του λογισμικού συνεχούς συζυγούς

μεθόδου βελτιστοποίσης, της ΜΠΥΡ& Β/ΕΜΠ, στον προαναφερόμενο πεπλεγμένο

κώδικα, σε περιβάλλον OpenFOAM.

Το λογισμικό μετασχηματισμού Karhunen-Loève, σχεδιάζεται ώστε να δύναται να πα-

ράξει κατασκευαστικές ατέλειες σε οποιαδήποτε διδιάστατη γεωμετρία, γεγονός που σε

συνδυασμό με τη γενικότητα του μη-επεμβατικού Αναπύγματος Πολυωνυμικού Χάους,

προσδίδει τη δυνατότητα στην προτεινόμενη μέθοδο να εκτελέσει ποσοτικοποίηση αβε-

βαιότητας ή στιβαρό σχεδιασμό σε μία ποικιλία αεροδυναμικών προβλημάτων με γεω-

μετρικές ατέλειες. Ταυτόχρονα, η χρήση της συζυγούς μεθόδου μειώνει σημαντικά το

κόστος των υπολογιστικών διεργασιών που παρέχει η προτεινόμενη μέθοδος, σε σχέση

με αντίστοιχες προσπάθειες που χρησιμοποιούν στοχαστικές μεθόδους βελτιστοποίη-

σης, όπως τους Εξελικτικούς Αλγορίθμους.
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Chapter 1

Introduction

In recent years, the ever improving performance of modern computer systems in
combination with the enhancement of computational methods has led to an increasing
use of Computational Fluid Dynamics (CFD) for the purpose of industrial Computer
Aided Engineering (CAE) in applications related to fluid mechanics. Modern CFD
software can simulate the flow around or inside the shapes faster and more accurately,
making them available for the purpose of shape optimization procedure and aerodynamic
robust design. Thus, the number and the cost of the experiments needed to evaluate
new engineering designs have been thoroughly decreased.

1.1 Shape Optimization

In general, the goal of the optimization mathematical problem of a certain objec-
tive function, is to compute the values of it’s variables that maximize or minimize
the said function. These variables are referred to as design or optimization variables.

In the case of shape optimization, according to the control theory adapted to
CFD-based optimization, the geometry to be optimized is controlled by a number
of variables, which consist the design variable vector (~b ∈ RN) of the optimization
process. For instance, these could be the control point coordinates of Bézier–Bernstein
polynomials that parameterize the shape under consideration. The quality of the
shape to be optimized is evaluated by computing the objective function, which is
usually an integral quantity related to the fluid flow field. The objective function
can be defined either at (part of) the boundaries, such as the total drag or lift force
exerted on a body, or in a volume inside the geometry, such as the noise induced by
the turbulent flow.

One way of classifying CFD-based optimization methods w.r.t. the number of objective
functions, to: single objective optimization (SOO) and multi objective optimization
(MOO) [1]. SOO applies when a single objective function is optimized whereas MOO
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applies when more than one objective functions are to be simultaneously optimized.

A second classification for optimization methods, is one that reflects the way the
optimal set of design variables is computed: stochastic or deterministic [1]. This
diploma thesis focuses exclusively on the latter. On the one hand, the stochastic
optimization methods pseudo-randomly generate values for the design variables and
heuristic algorithms are implemented in order to faster reach the optimal solution.
The optimization process is concluded when either the objective function has converged
to its optimal value or the user-defined maximum number of optimization cycles
is reached. Examples of such methods would be the evolutionary algorithms. The
deterministic or gradient-based optimization methods (GBM) rely on the computation
of sensitivity derivatives (SD), which consist the gradient of the objective function
w.r.t. the design variables. This allows a controlled convergence towards the optimal
solution, faster than the one achieved with stochastic methods.

In deterministic shape optimization cases, the shape in question is updated in the
direction dictated by the sensitivity derivatives. To do so, the flow field, the objective
function value and the new SD field are computed on the current geometry. This
process is repeated until the same criterion, as the one mentioned for stochastic
methods, is met. Since the values of the sensitivity derivatives tend to be nullified
near local minima, it is possible for this method to get entrapped into a local
optimum. As a result, the algorithm may converge to a local rather than the global
optimal solution, which is the main disadvantage of a GBM. Such a disadvantage
does not occur in stochastic methods, as long as the maximum number of optimization
cycles (generations) is not quite low.

The flow-chart for the generalized CFD-based optimization algorithm is presented
in Figure 1.1, thus summarizing and visualizing everything that has been stated so
far.

2



Figure 1.1: The generalized CFD-based optimization algorithm flow chart. A stochas-
tic or deterministic method, either coupled or uncoupled to the fluid flow solver, is
implemented in order to update the design variable vector bnew. Depending on the
optimization method, the fluid flow solver can be called either once or more times.
This process repeats itself for the updated values of the design variables until a certain
convergence criterion is met and only then the design variable vector that optimizes
the objective function bopt can be obtained.

1.2 Aerodynamic Robust Design

In order to fully grasp the difference between the processes of shape optimization
and robust design optimization (RDO), an additional classification concerning the
input variables to the problem must be introduced. These variables can be grouped
into two categories, according to the variation associated with their values. In the
first class of variables their variation is assumed to be defined by a certain stochastic
distribution and can, therefore, be quantified through the use of statistical measures
such as the mean (µ) or the standard deviation (σ) of the input variable in question.

Variables with no stichasticity are already introduced as design variables (~b), while
those that have some degree of variation are known as environmental, robust or
uncertain variables (~c ∈ RM). It must be clear that in real-life scenarios every
variable of a problem is governed by a certain degree of uncertainty, therefore in
reality, every variable is an uncertain variable. Yet in the world of CAE, which
variables of a simulation are considered to be uncertain is a decision made by the
user. For instance, one case of airfoil aerodynamic RDO could focus on a robust
design w.r.t. the Mach number of the flow, thus considering all other variables, such
as the angle of attack or Reynolds number as design variables, with zero variance.

3



In contrast, a different airfoil RDO w.r.t. the angle of attack, would consider every
other variable including the Mach number as design variables. In the scientific
literature, such design cases are a.k.a. as design/optimization under uncertainties.

Therefore, a design case of which all variables consist of design variables, can be
called a shape optimization (without uncertainties) case and its solution is known as
deterministic optimum or optimal design point. In SOO, the deterministic optimum
is defined as the point where the objective function displays is global minimum
or maximum value, depending if the case in question requires minimization or
maximization, respectively. Whereas, a robust design case has both design variables
and uncertain variables as inputs (≡ (b1, b2, ..., bN , c1, c2, ..., cM) ∈ RN+M) and the
solution of such a case is named robust optimum or robust design point. The robust
optimum may not necessarily be the aforesaid optimum, but is defined as the point
around which the objective function exhibits extrema for all corresponding values
of the uncertain variables within their respective distribution [2]. The optimum and
robust design points of a SOO (maximization of the objective function f(x) ∈ R) is
displayed in Figure 1.2.

Figure 1.2: The difference between the optimal design point (blue) and the robust
design point (red) of the performance objective function f(x) (black). In this specific
case the robust optimum happens to be a local maximum while also displaying lower
variation in it’s close vicinity, compared to the deterministic optimum, for all the
corresponding values of the uncertain variable x.

Specifically, shape optimization cases of aerodynamic bodies opting to posses an
optimized aerodynamic performance within a certain range of their respective design
variables, can be established as aerodynamic robust design cases. In this category of
cases, in order to properly describe the algorithmic steps needed to culminate in a
robust design point, the definition of the aerodynamic robustness metric (FR) must
be introduced. This metric that represents the robustness of the original objective
function (F ) a.k.a. the Quantity of Interest (QoI), is dependent upon the statistical
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moments of F , most commonly referring to: the mean (µF ) and standard deviation
(σF ) . In RDO cases, the aerodynamic robustness metric replaces the QoI as the
quantity to be optimized by either a stochastic or deterministic optimization process.
The value of FR is dependent on the values µF and σF , which are computed through
the Uncertainty Quantification (UQ) process.

The algorithmic steps needed to implement aerodynamic RDO are the following:

� Definition of the initial values of the design and uncertain variable vectors (b
and c respectively)

� Application of deterministic or stochastic RDO method, utilized to update
the design variable vector bnew. Either way the statistical moments of the QoI
must be computed through a process of UQ for the design variable vector b
and the uncertain variable vector c, under consideration. Thus, the process of
numerically solving the flow field equations, in order to compute the flow field
variables and the QoI, is executed as part of the UQ algorithm. Upon that,
the statistical moments of F , computed through the UQ loop, are utilized to
compute the aerodynamic robustness metric FR.

� Application of an optimization convergence criterion. If the criterion is met,
the process terminates by defining the optimal set of the design variables bopt
that result to the robust design point. Otherwise, this process repeats itself
for the updated design variable vector bnew.

The aforementioned steps of a typical aerodynamic robust design algorithm are,
also, visualized through a flow-chart, in Figure 1.3.

More specifically, there is a variety of deterministic methods (e.i. Method of Mo-
ments) [3], [4] and stochastic (e.i. Monte Carlo, intrusive or non-intrusive Poly-
nomial Chaos Expansion)[5], [6], [7], [8], [9] available in order to perform the task
of UQ. Stochastic UQ methods determine a certain number values of uncertain
variables to be evaluated, thus computing the moments µF and σF . On the other
hand, deterministic UQ methods rely on the formulation of PDEs to be solved,
either coupled or uncoupled from the CFD solver, in order to compute the statistical
moments of the QoI.

Yet the implementation of the UQ process may still vary on the optimization method
used to renew the design variable vector. For stochastic optimization methods the
UQ is performed as described above. In contrast, for GBMs the computation of the
derivatives of the robustness metric FR, a.k.a. the robust SDs, is needed to renew
the design variables. Subsequently the UQ process must also be implemented for
the SDs of the QoI, in order to compute the gradients of the statistical moments
of the QoI: ∇µF ∈ RN and ∇σF ∈ RN . The gradient of robustness metric ∇FR is
computed using these previously mentioned quantities.
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Figure 1.3: The generalized CFD-based RDO algorithm flow-chart.

In this thesis, the UQ and RDO process is performed through stochastic methods.
Specifically, Monte Carlo and non-intrusive Polynomial Chaos Expansion are employed
for UQ, while only the later are used for RDO. More information about these
methods is disclosed in Chapter 3. Furthermore, only deterministic methods are
implemented in order to compute and renew the design variables of the case under
consideration. Hence, for deterministic RDO the computation of the SDs of the QoI
is essential. The uncertain variables w.r.t. which the UQ and RDO is performed
are considered to be the shape uncertainties, which are generated through the
Karhunen-Loève Transform, further explored in Chapter 4.

1.2.1 Computation of Sensitivity Derivatives

Given that this thesis focuses solely on GBMs, this Subsection is dedicated to the
different methods available, in order to compute the SD, mentioned in Section 1.1.
This step is also instrumental in deterministic RDO methods, therefore the QoI F
is displayed as dependent on both design bn, n ∈ [1, N ] and uncertain variables
ci, i ∈ [1,M ]. In general, the efficiency of GBMs is highly dependent on how the
sensitivity derivatives are computed.

The Finite Differences Method

The most straightforward method of computing the SDs is by using finite differences
(FD) [1]. The computation of a first derivative of F w.r.t. the design variable ,
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then this design variable is perturbated by an infinitesimally small, user-defined
quantity, ε. Thus, the QoI is re-evaluated for the perturbated design. For instance,
a second-order, central difference FD scheme is formulated, as displayed in equation
1.1

δF

δbn
=
F (b1, ..., bn + ε, ..., bN , c1, ..., cM)− F (b1, ..., bn − ε, ..., bN , c1, ..., cM)

2ε
(1.1)

Despite its simple implementation, since it requires only the re-computation of the
value of the objective function, this method poses great concerns because of its two
main drawbacks. First and foremost, the cost of the FD method scales linearly
with the number of the design variables, N , as it requires 2N evaluations of F by
solving the flow equations, making it impracticable for optimization problems a large
number of design variables. The second downside is the dependence of the computed
derivatives from ε, the value of which cannot be determined a priori. The use of a
too “small” value is not always the answer to the aforementioned problem as it can
introduce round-off errors. In addition, for each design variable, the flow equations
must be fully converged two additional times in order to compute the perturbated
values of F , an event that should not be taken for granted in any CFD case.

The Complex Differences Method

An alternative method for the computation of the SDs is the complex variable (CV)
method [1] according to which the computation of the SD is executed as

δF

δbn
=
Im[F (b1, ..., bn + iε, ..., bN , c1, ..., cM)]

ε
(1.2)

where Im is the imaginary part of the complex function F and i =
√
−1.

From equation 1.2, it can be assumed that the round-off errors cease to exist, since
there is no subtraction of two very close values as in the case of FD. Subsequently,
this method is independent from the value of ε and, thus, there is no need for the
flow equations to be fully converged. Nevertheless, the cost of the complex variable
method still scales linearly with N , specifically requiring N evaluations of the QoI.

The Direct Differentiation Method

Another alternative, is the direct differentiation (DD) method [1], according to
which the flow equations are differentiated w.r.t. the design variables and the N
linear systems that arise are solved to define the derivatives of the flow variables
w.r.t. to the design variables. Given that the SDs are expressed in terms of these
fields, their final computation is straightforward. DD is harder to implement than
FD, since a new flow solver has to be developed, increasing its implementation cost.
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Moreover, the method’s cost still scales with N , making it inadequate for large scale
simulations.

The Adjoint Method

The adjoint method of computing the sensitivity derivatives required by GBMs is
the alternative that has a cost practically independent from the number of the
design variables N [1]. As a result, this method is a perfect choice for large
industrial optimization and RDO problems. In order to achieve this independence,
an augmented objective function is defined, by adding the volume integrals of the
residuals of the flow equation (also referred to as the primal or state equations),
multiplied by the adjoint (or co-state or dual) variable fields, to F . Considering that
the residuals of the primal equations must be zero, F ≡ Faug. After differentiating
the augmented objective function and re-arranging the resulting terms, the system of
field adjoint equations (FAE) and adjoint boundary conditions (ABC) is formulated,
the numerical solution of which leads to a N-independent computation of the SDs.
The numerical solution of the aforementioned system has a computational cost
equivalent to the cost of the primal equations’ solution.

There are two different approaches [10] on how the aforementioned adjoint method
can be applied, that differ from each other in the sequence that the differentiation
of the objective function and the discretization of the flow equations happen. In
the discrete adjoint approach, the residuals of the primal equations that are added
to the objective function are in their discrete form and the resulting system of
adjoint equations and adjoint boundary conditions after the differentiation is already
discretized and ready to be numerically solved. On the other hand, in the contin-
uous adjoint approach, the residuals of the primal equations that are added to
the objective function are in their continuous form and the resulting system of
adjoint equations and the boundary conditions have to be discretized, in order to
be numerically solved

There is a general consensus, that both discrete and continuous adjoint methods
can produce sensitivity derivatives with sufficient accuracy to be used in common
optimization problems. Nevertheless, the discrete approach is more accurate in
computing the SD especially on coarse meshes, since it takes the primal discretization
schemes into consideration, although its implementation can become cumbersome
when higher discretization schemes are used. On the other hand, the continuous
adjoint outweighs the discrete one in terms of CPU cost and memory requirements
per iteration. Continuous approach also leads to better physical understanding of
the adjoint system, since closed-form expressions exist for the field adjoint equations,
their boundary conditions and the sensitivity derivatives expression.

In this diploma thesis, the continuous adjoint method is applied in aerodynamic
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robust design cases so as to compute the SDs of the QoI. The mathematical formulation
and software programming of the adjoint solver for incompressible fluid flows has
been performed by the PCOpt/NTUA within the OpenFOAM© environment.

1.2.2 Computation of Robustness Metric and its derivatives

Once the UQ process has been completed for the QoI as well as its SDs, the
computation of the robustness metric FR follows.The way of defining the robustness
metric depends greatly on the stochastic distribution of the uncertain variables.

A common approach to tackle the uncertainty problem is known as Design for
Six Sigma (DFSS) [11] [12], which is an engineering design process based on the
assumption that every uncertain variable (ci, i ∈ [1,M ]) follows a normal distribution
around it’s mean value µi and within a certain range of six standard deviations σi
of the respective variable ci. It is a well known fact, according to the mathematical
formulation of the normal distribution, that 99.73 % of the values of a stochastic
variable, following such a distribution, can be found within the interval [µ−3σ, µ+3σ]
or, in other words, in the six sigma range.

Therefore, a way of defining the robust metric FR ∈ R in accordance with the
DFSS, is the following

FR = µF + κ σF (1.3)

where the parameter κ ∈ [−3,+3], is user-defined and its algebraic value determines
the approach and the goal of the RDO process.

The absolute value of κ, acts as a weight, determining whether the µF or the σF
is prioritized during the optimization. Meaning that, a small absolute value for κ
indicates that an optimized mean value of the objective function is desired, while
its variation (quantified through the standard deviation) is of lesser interest. In
contrast, a selection of a larger absolute value for κ designates the desire for the
robustness metric to display an optimized variation, while it’s mean value is being
regarded as secondary. Furthermore, the sign of κ indicates whether the designer’s
approach is pessimistic or optimistic. For example, in a minimization RDO case, a
positive sign selection for κ signifies the worst case scenario and, consequently an
pessimistic design approach, while a negative sign indicates the opposite.

Likewise, according to the DFSS, the gradient of the robustness metric, a.k.a. the
robust sensitivity derivative vector ∇FR ∈ RN is defined as

∇FR = ∇µF + κ∇σF (1.4)
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1.2.3 Design Variable Update Method

There are various methods available to update the design variables bn , n ∈ [1, N ]
, always dependent on the computation of either the sensitivity derivatives for
optimization problems or the robust sensitivity derivatives for RDO problems. The
method used in this thesis and one of the simplest GBMs, implementing 1st order
derivatives, is the steepest descent.

A general expression for the renewal of the design variable vector ~b ∈ RN , in RDO
cases, is the following

~bnew = ~bold + η ~p (1.5)

where the definition of ~p distinguishes the different update methods, while η serves
to scale the step length of each “descent”. The value of η can be determined through
the expression

η =
∆bmax
∆bact

(1.6)

where ∆bmax is the user-defined maximum allowed displacement of the design variables
bi and ∆bact is the maximum displacement of each design variable, as computed by
equation (1.5) for η = 1.

Steepest Descent Method

As mentioned, while this method is one of the simplest when it comes to its conception
and its implementation, it often lacks efficiency when compared to other 2nd order
derivative methods such as the BFGS method. Nevertheless, the steepest descent
is considered a consistent benchmark method, essential to test an optimization or
robust design process in its preliminary stages. This is the reason this method has
been selected to meet the needs of this thesis.

In RDO cases, the vector ~p is defined as the gradient of the robustness metric
FR for the old value of the design variables boldn . As such, ~p is defined as

~p = ±∇F old
R (1.7)

where the sign dictates the direction of the optimization, in other words whether it
opts to the maximization or minimization of FR. A positive sign signifies maximization,
while a negative implies minimization.

Given that the adjoint solver developed by the PCOpt/NTUA classifies all optimization
cases as de facto minimization cases, the incorporated steepest descent scheme takes
on the form

~bnew = ~bold − η ∇F old
R (1.8)
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1.3 Thesis Objectives and Layout

The goal of this diploma thesis is the aerodynamic robust design of 2D bodies
w.r.t. manufacturing imperfections. To be more specific, a code is developed implementing
the Karhunen-Loève Transform, in order to model the imperfections of the geometries
in question. This computational tool is then incorporated into the UQ and RDO
processes, thus considering the imperfect geometry of the aerodynamic bodies as the
only uncertain variables. The process of UQ is performed through the stochastic
methods of non-intrusive Polynomial Chaos Expansion and Monte Carlo, by making
use of an in-house code including both methods developed and validated by PCOpt/NTUA.
Finally, the aerodynamic RDO employs the adjoint method for the computation of
the SDs of the QoI, coupled with the niPCE method to compute the robustness
metric FR and its gradient ∇FR, in accordance with the DFSS.

Furthermore, the rest of this diploma thesis is structured as follows:

� Chapter 2: The mathematical formulation and the numerical solution of the
flow field, a.k.a. the primal equations and their respective adjoint equations is
described, for the purpose of computing the SDs of the desired QoI. Additionally,
a description of the grid displacement strategy following the displacement of
the shape during the process of RDO, is presented.

� Chapter 3: The mathematical theory concerning the stochastic uncertainty
quantification methods Monte Carlo and non-intrusive Polynomial Chaos Ex-
pansion is introduced and analyzed, for both one and multiple uncertain
variables. For the second method, both Full Grid and Smolyak/Sparse Grid
integration methods are included.

� Chapter 4: The mathematical formulation of the Karhunen-Loève Transform will
be presented. In addition, a description of the algorithmic steps used to
guide the development of software implementing the aforementioned transform
for the the recreation of manufacturing imperfections in the shape of 2D
aerodynamic bodies, will take place. Also, two application of the Karhunen-Loève
Transform will be included.

� Chapter 5: The software generating Karhunen-Loève Transform shape uncertainties
as well as OpenFOAM grid generators and flow solvers are incorporated in the
in-house niPCE code for the purpose of performing UQ on 2D geometries
with shape uncertainties. Moreover, the aforementioned coupled algorithm
is applied to the NACA 0012 isolated airfoil, thus performing UQ for two
QoI: the lift and drag coefficients. Furthermore, UQ is performed on the
E387 airfoil with shape uncertainties, in order to compute the robust SDs of
the drag coefficient. In both cases, cross-reference between the non-intrusive
Polynomial Chaos Expansion and the Monte Carlo computed results take
place, so as to validate the method.

� Chapter 6: Integration of the continuous adjoint solver and of a parameterized
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mesh movement strategy into the aforementioned coupled algorithm. This
all-encompassing code is implemented to perform aerodynamic RDO on the
isolated E387 airfoil and the TU Berlin compressor stator cascade [13], considering
the recurring KLT-modeled shape imperfections to be the uncertain variables
of the problem.
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Chapter 2

CFD Analysis and Adjoint
Problem Formulation

In this chapter the mathematical formulation of steady state incompressible flow
field equations and their respective adjoint field equations, as well as the numerical
methods utilized to achieve their solution are thoroughly presented. This part is
needed in order to further clarify the process used to compute the QoI and the SDs,
for the needs of UQ and RDO, respectively.

2.1 Primal Problem

2.1.1 Flow Field Modeling

All CFD cases dealt with in this thesis, are flows around 2D aerodynamic bodies such
as airfoils or turbomachinery blades. Such flows, if not highly turbulent beforehand,
then turbulence is most likely to develop close to the solid surfaces and in their
wake. Turbulence in a flow is defined by the semi-random development of unsteady
pressure and velocity fluctuations, creating coherent vortex structures named eddy
vortices.

As a general rule, the Navier-Stokes (NS) equations can fully predict viscous, steady
and unsteady flows within a certain domain with defined boundary conditions. Yet
the prediction of turbulent flow phenomena in their whole spatial and temporal scale
spectrum, an infinitely small cell size during meshing, as well as painstakingly small
time domain discretization. Such simulations, called direct numerical simulations,
in which the NS are numerically solved without any turbulence modeling, has an
unbearable computational and clock-time cost, thus making them unfeasible in most
cases with limited computational resources. Specifically for the needs of this diploma
thesis, the employment of DNS is unacceptable since the solution of the flow field,
a.k.a. primal problem, is part of a larger procedure, either UQ or RDO.
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A more widespread approach for the simulation of turbulent flows is the use a method
first proposed by Reynolds in 1985, the Reynolds-Averaged Navier-Stokes (RANS)
equations [1, 14, 15]. The concept of this method, still valid today, is based on
the decomposition of the flow field variables into their mean and their fluctuating
components. Thus, the random perturbation of the flow variables caused by the
turbulence of the flow is taken into account through the use of turbulence model
equation, thus bypassing the costly DNS for turbulent flows. For this thesis, the
system of the RANS and turbulence model equations constitute the primal problem.

In accordance with the Einstein convention, for which repeated indices imply summation,
the RANS system of equation for incompressible steady flows is presented in equations
(2.1),(2.2) in non-conservative form:

� The conservation of mass, a.k.a. continuity equation is

∂vj
∂xj

= 0 (2.1)

� The conservation of momentum equation is

vj
∂vi
∂xj

=− 1

ρ

∂p

∂xi
+

∂

∂xj

[
ν

(
∂vi
∂xj

+
∂vj
∂xi

)]
+

∂

∂xj

(
−v′iv

′
j

)
, i = 1, 2, 3 (2.2)

where vi indicate the mean velocity components, p stands for the mean pressure and
ρ = ρ designates the constant density of the fluid. An overbar ‘¯ ’ symbolizes the
mean value , while the ’ ′ ’ symbolizes the perturbation of a flow variable. In equation
(2.2), the only term including flow variable fluctuations is the Reynolds stress or
turbulent shear stress tensor τ ′ij/ρ = −v′iv′j. In order to fully get rid of velocity
fluctuations that appear only in the RANS equations, an expression modeling the
Reynolds stresses as variables wholly dependent on the mean velocity components
is needed. One way to overcome any reference to the turbulent fluctuations comes
through the acceptance of the Boussinesq Hypothesis [14],[15], suggested by Boussinesq
in 1877 and still widely adopted today:

τ ′ij/ρ = −v′iv′j = νt

[(
∂vi
∂xj

+
∂vj
∂xi

)
− 2

3
k δji

]
(2.3)

where δji indicates the Kronecker delta, νt the turbulent kinematic viscosity, a.k.a. eddy
viscosity (measured in m2/s) and k the turbulent kinetic energy, defined as

k =
1

2
v′iv
′
i (2.4)
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Hence, after including the Boussinesq hypothesis (2.3) into the momentum equation
(2.2), the Reynolds stress tensor is expressed in terms of the turbulent viscosity νt,
as a new unknown field variable. Thus the conservation of momentum equation is
expressed by

vj
∂vi
∂xj

=− 1

ρ

∂p

∂xi
+

∂

∂xj

[
(ν + νt)

(
∂vi
∂xj

+
∂vj
∂xi

)]
, i = 1, 2, 3 (2.5)

The introduction of the aforementioned νt field causes the need of one more equation,
so as to close the system. This closure problem can be treated with the addition of
algebraic or differential turbulence models in the system of primal equations [14].
Given that turbulence models do not directly simulate the turbulent fluctuations,
they are imbued with decades of experimental data on turbulent flows. Therefore,
some models can be more fine-tuned than others for use in certain application fields,
i.e. the k−ε model is genrally preferred in heat transfer applications. The turbulence
models used to compute the turbulent viscosity, therefore taking the Boussinesq
hypothesis, into account, are referred to as eddy viscosity models (EVMs). Such a
model is the one used exclusively in this thesis, the Spalart–Allmaras turbulence
model [16], presented in Subsection 2.1.2.

2.1.2 The Spalart–Allmaras Turbulence Model

The Spalart–Allmaras is a relatively simple and low cost mixing length model,
implementing one transport partial differential equation (PDE) for the computation
of the turbulent viscosity νt. It is calibrated on empirical data from 2D wall-bounded
flows such as flat plates, wakes and mixing layers [16]. The model provides satisfactory
predictions for boundary layers with severe pressure gradients, as well as fair to good
results in aerospace applications, such as airfoils and wings [16]. Its governing PDE
is assembled as a function of the Spalart–Allmaras variable ν̃ and is defined as

vj
∂ν̃

∂xj
− ∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃

∂xj

]
− cb2

σ

(
∂ν̃

∂xj

)2

−ν̃ P (ν̃)+ν̃ D (ν̃)=0 (2.6)

where the first and second terms on the LHS of the PDE (2.6) correspond to the
convection and diffusion (bulk and turbulent) terms of ν̃, while νt being the turbulent
viscosity, formulated as a function of the later

νt = fv1 ν̃ (2.7)

In addition, the production P (ν̃) and dissipation terms are modeled as

P (ν̃)=cb1Ỹ , D(ν̃)=cw1fw(Ỹ )
ν̃

∆2
(2.8)
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where Ỹ is given by

Ỹ =Yfv3 +
ν̃

∆2κ2
fv2 , Y =

∣∣∣∣eijk ∂vk∂xj

∣∣∣∣ (2.9)

with Y standing for the vorticity magnitude and ∆ being the distance of cell of
vertex centres from the wall boundaries. Given that OpenFOAM uses a finite
volume cell-centered discretization of the governing equations [17], ∆ represents
the respective distance of cell centres.

The model functions read

fv1 =
χ3

χ3 + c3
v1

, fv2 =
1(

1 + χ
cv2

)3

fv3 =
(1 + χfv1)

cv2

[
3

(
1+

χ

cv2

)
+

(
χ

cv2

)2
](

1+
χ

cv2

)−3

χ =
ν̃

ν
, fw=g

(
1 + c6

w3

g6 + c6
w3

)1/6

g = r+cw2(r
6−r) , r=

ν̃

Ỹ κ2∆2
. (2.10)

The constants of the model are cb1 = 0.1355, cb2 = 0.622, κ= 0.41, σ = 2/3, cw1 =
cb1
κ2

+ (1+cb2)
σ

, cw2 = 0.3, cw3 = 2, cv1 = 7.1 and cv2 = 5. The Levi–Civita symbol, eijk,
used in the vorticity magnitude Y , is

eijk =


+1 (i, j, k) ∈ (1, 2, 3), (2, 3, 1), (3, 1, 2)
−1 (i, j, k) ∈ (1, 3, 2), (3, 2, 1), (2, 1, 3)

0 i = j, j = k, k = i
(2.11)

2.1.3 The Low and High Reynolds Number Models

The Spalart–Allmaras model as described until now, is sufficient in areas of fully
developed turbulent flow, far from solid-fluid interaction, where turbulent shear
stresses dominate over bulk stresses. Yet, near the solid boundary, where viscous
phenomena thrive, specified terms need to be added to the turbulence model, in
order to better simulate the effect of such phenomena.

One approach is the Low Reynolds number model, according to which the laminar
or viscous sublayer of the boundary layer is resolved numerically by including the
effects of bulk viscosity into the formulation of turbulence model in use, in the form
of near wall damping additional terms. This method requires very dense grids near
the wall to produce adequate results, due to the steep velocity gradients appearing
in the viscous sublayer and the buffer zone, as displayed in 2.2. This method though
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accurate when properly implemented is quite costly.

Figure 2.1: Comparison of near-wall mesh quality between Low-Re (a) and High-Re
number (b) turbulence models.

An alternative solution and the one adopted for the CFD analysis present this
thesis, is referred to as High Reynolds number turbulence model. In this method,
wall functions, meaning analytical expressions combined with experimental data
are introduced for the computation of the mean velocity on the cell centres of the
near-wall regions. For this method, the distance of the first cell centre off the wall,
should lie in the logarithmic region of the turbulent boundary layer, hence the value
of the non-dimensional wall distance y+ (defined in (2.12)) can be up to 100, in
order not to compromise the method’s accurately.

y+ =
uT y

ν
, uT =

√
τw
ρ

(2.12)

where y is the cell centre from the wall and τw is the wall stress.

Consequently, given that the laminar sublayer is not resolved, the near-wall meshing
does not necessarily need to be as fine as that required in the previously mentioned
Low-Re model, as displayed in Figure 2.1. In the Spalart–Allmaras model, the
wall functions, used to approximate the value of νt at the cell closest to the wall,

are formulated as νt = u2τ
∂U/∂n

, where uτ is computed based on the y+ value. The

formulation for the computation of y+, as programmed in OpenFOAM©, follows
Spalding’s Law [18]. This models the inner sublayer and the logarithmic region of
the boundary layer with a single equation:

y+ =v+ + e−κB
[
eκv

+ − 1− κv+ − (κv+)2

2
− (κv+)3

6

]
(2.13)

where κ is the von-Karman constant equal to 0.41 and B ≈ 5.5.

This equation came as a result of best fit between the curve of y+ = u+ which
is valid in the viscous sublayer and u+ = Ey+/κ which is valid in the logarithmic
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Figure 2.2: The non-dimensional velocity u+ profile w.r.t. the non-dimensional wall
distance y+ spanning form the solid wall to the log-law of a turbulent boundary layer.

region. E = e−κB is an empirical constant equal to 9.793.

2.1.4 Primal Equations and Boundary Conditions

All the previous analysis culminates in the full determination of the primal problem
equations used to simulate the a steady-state turbulent flow of an viscous, incompressible
fluid, by rearranging equations (2.1),(2.5) and (2.6).

Rp=−∂vj
∂xj

=0 (2.14a)

Rv
i =vj

∂vi
∂xj
− ∂

∂xj

[
(ν + νt)

(
∂vi
∂xj

+
∂vj
∂xi

)]
+
∂p

∂xi
=0 , i = 1, 2, 3 (2.14b)

Rν̃ =vj
∂ν̃

∂xj
− ∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃

∂xj

]
− cb2
σ

(
∂ν̃

∂xj

)2

−ν̃ P (ν̃)+ν̃ D (ν̃)=0 (2.14c)

Last but not least, the boundary conditions needed for the closure of the primal
problem are presented, in a generalized formulation for 2D computational meshes
exclusively used in the present thesis, as follows:

� Inlet: at the inlet to the computational domain, Dirichlet boundary conditions
are imposed on the velocity components vi according to the wanted freestream
velocity value and zero-Newmann condition is used on the pressure p. For the
Spalart–Allmaras model variable ν̃, a Dirichlet condition is imposed.

� Outlet: at the exit boundary of the computational domain, zero-Neumann
boundary conditions are imposed on the velocity components vi and the Spalart–Allmaras
variable ν̃, while zero-Dirichlet conditions are imposed on the pressure p.
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� Solid Walls: at the wall boundaries of the domain, zero-Dirichlet, a.k.a. no-
slip, boundary conditions are imposed for vi and zero-Neumann on p. Finally,
a zero-Dirichlet boundary condition is utilized for ν̃.

The aforementioned boundaries are visualized for computational meshes around
airfoils in Figure 2.3.

Figure 2.3: Generalized 2D boundaries of computational domains around isolated
airfoils.

Outside of Figure 2.3, for meshes generated in turbomachinery blade cascades, one
more boundary condition must be imposed. In the mesh boundary above and
below the blades, periodic conditions are imposed, according to which all the primal
problem variables vi, p, ν̃ on each and every cell centre are mirrored between these
two boundaries.

2.2 Adjoint Problem

As previously mentioned, the continuous adjoint method is used in this thesis for
the computation of the SDs of a certain objective function F , referred to as QoI
for the purposes of UQ and RDO. These SDs are the derivatives of F w.r.t. the
design variables of the shape optimization case in question. This is achieved by
adding to F the volume integrals of the primal problem’s PDEs multiplied with the
adjoint variable fields, thus creating the augmented objective function Faug. The
key feature of the adjoint solver, developed by PCOpt/NTUA and utilized in this
thesis, is that it does not neglect the variations of the turbulent viscosity νt as
often assumed in literature. This assumption, according to which the only the mean
flow quantities are affected by the shape, may lead to inaccurate SDs and seriously
affect the optimization process [19]. The adjoint model formulated by taking this
assumption into account is referred to as frozen turbulence model and culminates to
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system of adjoint equation without the adjoint to the turbulence model PDEs. The
more meticulous approach, followed by PCOpt/NTUA, requires the differentiation
of the turbulence model PDEs w.r.t. the design variables bn, consequently reaching
to the formulation and solution of the adjoint to turbulence model.

2.2.1 The Three Continuous Adjoint Formulations

According to the literature, three distinct approaches are available for the formulation
of the continuous adjoint method: the FI, the SI and the E-SI approaches. All
approaches culminate to the same expression for the field adjoint equations (FAE)
and the adjoint boundary conditions (ABS). Yet, they differ on the final expression
for the SDs of F .

The FI method, being the first chronologically to be proposed, includes both boundary
and field integrals in the formulation of the SDs, hence the name Field Integrals (FI).
It is clearly the most accurate as well as the most costly of the three approaches,
due to the integration of the entire field and the need of computing the grid or mesh
sensitivities δxk/δbn [20]. The second formulation, known as reduced gradient, takes
its name from the fact that only boundary, a.k.a. Surface Intervals (SI approach) are
contained in the SD formulation, getting rid of the costly computation of the grid
sensitivities. Consequently this approach is characterized by a low computational
cost, especially for problems with many design variables, making it an interesting
prospect. However this simplification does not guarantee an accurate SD prediction
[21], particularly for coarse meshes. Finally, the third approach, the Enhanced
Surface Integrals (E-SI), combines the advantages of both previous formulation,
producing accurate SDs at a reduced computational cost [21].

For a more detailed analysis on the three aforementioned formulations, the reader is
pointed to the bibliography [20] and [21]. Though all adjoint formulations are briefly
analyzed, only the E-SI approach is implemented in this thesis, so as to compute
the SDs, and thus it is described more thoroughly.

The generalized augmented objective function is defined, according to the Einstein
convention, as follows

Faug = F +

∫
Ω

Ψi Ri dΩ (2.15)

where Ri ≈ 0 the residuals of the state PDEs, Ψi their corresponding adjoint
variables, i = 1, 2, ..., E with E the number of state equations, while Ω the computational
domain. By differentiating w.r.t. the design variable bn, the total derivatives δ/δbn
of Faug appear

δFaug
δbn

=
δF

δbn
+

δ

δbn

∫
Ω

Ψi Ri dΩ (2.16)
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The different ways the total derivative of the integral in eq. (2.16) is expanded,
cause the distinct FI and SI (enhanced or not) formulations.

The FI Approach

The FI approach dictates the development of the aforementioned term as follows

δ

δbn

∫
Ω

Ψi Ri dΩ =

∫
Ω

Ψi
δRi

δbn
dΩ +

∫
Ω

Ψi Ri
δ(dΩ)

δbn
(2.17)

According to [19], the derivative of dΩ domain in the RHS of eq. (2.17) assumes the
form

δ(dΩ)

δbn
=

∂

∂xk

(
δxk
δbn

)
dΩ (2.18)

Therefore, the inclusion of eq. (2.17) and (2.18) in eq. (2.16) yields

δFaug
δbn

∣∣∣∣
FI

=
δF

δbn
+

∫
Ω

Ψi
δRi

δbn
dΩ +

∫
Ω

Ψi Ri
∂

∂xk

(
δxk
δbn

)
dΩ (2.19)

Eq. (2.19) comprises the basis for the FI adjoint formulation and contains the grid
variations of xk. By developing the terms in eq. (2.19) according to the primal
problem state equations described in Subsection 2.1.4, the derivative of Faug is
formulated as

δFaug
δbn

∣∣∣∣
FI

=
δF

δbn
+

∫
Ω

(
ui
δRv

i

δbn
+ q

δRp

δbn
+ ν̃a

δRν̃

δbn

)
dΩ +

+

∫
Ω

(
uiR

v
i + qRp + ν̃aR

ν̃
) ∂

∂xk

(
δxk
δbn

)
dΩ

(2.20)

where ui the adjoint velocity components, q the adjoint pressure and ν̃a the adjoint
Spalart–Allmaras variable, whereas Rv

i , R
q and Rν̃ the residuals of the primal

problem PDEs, as presented in (2.14).

Since the residuals of the primal equations must be close to zero over the whole
domain, Faug = F and consequently δFaug

δbn
= δF

δbn
. The development of the total

derivatives of Rv
i , R

q and Rν̃ w.r.t. to bn yields the corresponding derivatives of
the state variables vi, p, τij (stress tensor components) and ν̃ as well as their
corresponding spatial derivatives [21]. By differentiating the objective function F
w.r.t. to bn and by employing the chain rule, the eq. (2.21) proven in [19], as well
as the Green-Gauss theorem, integrals of expressions multiplied by δvi/δbn, δp/δbn
or δν̃/δbn arise.

δ

δbn

(
∂Φ

∂xk

)
=

∂

∂xk

(
δΦ

δbn

)
− ∂Φ

∂xk

∂

∂xj

(
δxk
δbn

)
(2.21)
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The SI Approach

The appearance of the spatial gradients of the grid sensitivities ∂
∂xk

(
δxk
δbn

)
is the

main drawback of the FI formulation, since their numerical computation by the FD
in clock-time expensive for a large number of design variables [22]. The SI method
circumvents this drawback by applying the Leibniz theorem for the differentiation
of volume integrals with variable boundaries. For a quantity Φ ∈ Ω and controlled
boundaries S = S(~b) = ∂Ω, the application of the Leibniz theorem yields

δ

δbn

∫
Ω

ΦδΩ=

∫
Ω

∂Φ

∂bn
δΩ +

∫
S

Φnk
δxk
δbn

δS (2.22)

With the use of the Leibniz theorem on eq.(2.16), it yields

δFaug
δbn

∣∣∣∣
SI

=
δF

δbn
+

∫
Ω

Ψi
δRi

δbn
dΩ +

∫
S

Ψi Ri nk
δxk
δbn

dS︸ ︷︷ ︸
LB−term

(2.23)

Eq. (2.23) constitutes the base of the SI method and in its RHS the last integral is
labeled Leibniz (LB) term. In literature [23], the LB-term is often neglected in SI
adjoint formulation, assuming that the primal equations are satisfied also close to
the moving boundaries of the computational domain. This indeed happens in fine
grids, where this assumption may not compromise the accurate computation of the
SDs. In contrast, depending on the case or the grid’s coarseness along the boundary,
the inclusion of the LB-term may be critical for the correct computation of the SDs.
An interesting proposition of replacing the LB-term with the expression present in
eq. (2.24), is proven in [23]∫

S

ΨiRink
δxk
δbn

dS = −
∫

Ω

∂

∂xj

(
−uivj

∂vi
∂xk
− uj

∂p

∂xk
−

−τaij
∂vi
∂xk

ui
∂τij
∂xk

+ q
∂vj
∂xk

)
δxk
δbn

δΩ

(2.24)

where τij = ν
(
∂vi
∂xj

∂vj
∂xi

)
is the stress tensor and τaij = ν

(
∂ui
∂xj

∂uj
∂xi

)
is the adjoint stress

tensor.

This adaptation of the SI approach can yield adequate results, rivaling those of
the FI approach [23]. However, an inclusion of this transformed LB-term a.k.a. the
V-term requires the computation of ∂xk/∂bn in Ω, causing the method’s cost to scale
linearly with the number of design variables, thus leading to a cost comparable to
that of the SI method.
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The E-SI Approach

The E-SI formulation aims to abolish the computation the field integrals containing
the ∂xk/∂bn terms, by solving the adjoint to a hypothetical grid displacement PDE
[22], [23]. A Laplace equation is assumed to be the grid displacement PDE (gdPDE)
for this thesis. This grPDE is formulated as follows

Rm
i =

∂2mi

∂x2
j

= 0 (2.25)

where mi are the Cartesian displacements of the grid nodes. Along the boundary,
mi represents the displacement of the boundary points. Following the adjoint
methodology, to derive the adjoint gdPDE, a new term is added to the augmented
function of eq. 2.15, containing the field integral of the laplacian grid displacement
PDE multiplied by the adjoint to mi variable. The resulting δ/δbn field integrals
are expanded using the Leibniz theorem.

The extra field integral of the laplacian grid displacement PDE is also included
since the analysis is based on the E-SI continuous adjoint approach.

Faug=F+

∫
Ω

uiR
v
i dΩ+

∫
Ω

qRpdΩ+

∫
Ω

ν̃aR
ν̃dΩ+

∫
Ω

ma
iR

m
i dΩ (2.26)

where Ω is the computational domain, ui the adjoint velocity, q the adjoint pressure,
ν̃a the adjoint turbulence (or adjoint Spalart-Allmaras) variable and ma

i the adjoint
to mi variable. It should be noted that the third integral of eq. 2.26 would be
excluded if the ’frozen turbulence’ assumption were made.

By employing the Leibniz and the Green-Gauss theorem we receive

δFaug
δbn

∣∣∣∣
E−SI

=
δF

δbn
+

δ

δbn

∫
Ω

(
uiR

v
i + qRp + ν̃aR

ν̃ +ma
iR

m
i

)
dΩ (2.27)

=
δF

δbn
+

∫
Ω

ui
∂Rv

i

∂bn
dΩ+

∫
Ω

q
∂Rp

∂bn
dΩ+

∫
Ω

ν̃a
∂Rν̃

∂bn
dΩ

+

∫
S

ma
i nj

∂

∂xj

(
δxi
δbn

)
dS−

∫
SW

∂ma
i

∂xj
nj
δxi
δbn

dS+

∫
Ω

∂2ma
i

∂x2
j

δxi
δbn

δΩ

+

∫
S

(
uiR

v
i + qRp + ν̃aR

ν̃ +ma
iR

m
i

)
nk
δxk
δbn

dS (2.28)

where S is the boundary of the computational domain, S = SI∪SO∪SW ∪SWP
. The

boundaries SI , SO, SW and SWP
refer to the inlet, outlet, fixed and controlled (thus

parameterized) wall boundaries of the domain, respectively. Also, nk stands for the
components of the unit outward vector which is normal to the surface. Since the only
parameterized boundary is SWP

and for the non-controlled boundaries δxk/δbn = 0,
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we have

δFaug
δbn

∣∣∣∣
E−SI

=
δF

δbn
+

∫
Ω

ui
∂Rv

i

∂bn
dΩ+

∫
Ω

q
∂Rp

∂bn
dΩ+

∫
Ω

ν̃a
∂Rν̃

∂bn
dΩ

+

∫
SWP

ma
i nj

∂

∂xj

(
δxi
δbn

)
dS−

∫
SWP

∂ma
i

∂xj
nj
δxi
δbn

dS+

∫
Ω

∂2ma
i

∂x2
j

δxi
δbn

δΩ

+

∫
SWP

(
uiR

v
i + qRp + ν̃aR

ν̃ +ma
iR

m
i

)
nk
δxk
δbn

dS (2.29)

The FAE are derived by zeroing the terms that multiplied with the aforementioned
state variable derivatives in the volume integrals of eq. 2.20, while the ABC are
derived by zeroing these terms that manifest in the respective surface integrals. The
remaining terms yield the final formulation for the SDs. For a more generalized
expression for the SDs, achieved through the FI formulation, the reader is referred
to [21].

At this point, a sharp distinction must be made between symbols δ()/δbn and
∂()/∂bn. δΦ/δbn denotes the total (or material) derivative of an arbitrary quantity
Φ and represents the total change in Φ by varying bn, whereas ∂Φ/∂bn denotes
the partial derivative of Φ and represents the variation in Φ due to changes in the
flow variables excluding the contributions from the space deformation. δΦ/δbn and
∂Φ/∂bn are related with the following expression depending if they are computed
on the interior of Ω or on the boundary of Ω.

Interior of Ω
δΦ

δbn
=
∂Φ

∂bn
+
∂Φ

∂xk

δxk
δbn

(2.30)

Surface - Boundary of Ω

δsΦ

δbn
=
∂Φ

∂bn
+
∂Φ

∂xk
nk
δxm
δbn

nm (2.31)

Before proceeding with analysing the integrals appearing on the RHS of eq. (2.20)
the following observation must be made. Since ∂()/∂bn takes into account only
changes in the flow variables and excludes changes in the shape/volume of the flow
domain, spatial differentiation and partial differentiation w.r.t. the design variables
can commute, i.e.

∂

∂bn

(
∂φ

∂xj

)
=

∂

∂xj

(
∂φ

∂bn

)
(2.32)

In general, this is not valid for the total derivative, i.e.

δ

δbn

(
∂φ

∂xj

)
6= ∂

∂xj

(
δφ

δbn

)
(2.33)
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2.2.2 Differentiation of the Objective Function

In this thesis, two different objective functions are used as QoI for the purposes of UQ
or RDO. These objective functions are defined either on volume of the computational
domain, either specified surfaces of it. Therefore, a generalized objective function F
formulation, encompassing both surface and volume integrals, with S and Ω their
respective domains, can be defined as

F =

∫
Ω

FΩdΩ +

∫
S

FSinidS (2.34)

where ni the unit surface normal vector, while FSi and FΩ the integrands on either
a surface or a volume of the domain, respectively. The differentiation of F w.r.t. bn
yields

δF

δbn
=

δ

δbn

∫
Ω

FΩdΩ +
δ

δbn

∫
S

FSinidS (2.35)

The differentiation of the surface integral on the RHS of eq. (2.35) can be expanded
as follows

δ

δbn

∫
S

FSinidS =

∫
S

(
∂FSi
∂p

∂p

∂bn
+
∂FSi
∂vk

∂vk
∂bn

+
∂FSi
∂τkj

∂τkj
∂bn

+
∂FSi
∂ν̃

∂ν̃

∂bn

)
nidS +

+

∫
S

ni
∂FSi
∂xk

∂xk
∂bn

nkdS +

∫
S

FSi
∂ni
∂bn

dS +

∫
S

FSini
δ(dS)

δbn
(2.36)

Furthermore, by applying the Leibniz integral rule for the differentiation of volume
integrals with moving boundaries, the respective integral in eq. (2.35) assumes the
form

δ

δbn

∫
Ω

FΩdΩ =

∫
Ω

∂FΩ

∂bn
dΩ +

∫
S

FΩ nk
δxk
δbn

dS (2.37)

Given the F is dependent upon the state variables of the primal problem, eq. (2.37)
can be expanded as follows

δ

δbn

∫
Ω

FΩdΩ =

∫
Ω

F́ vi
Ω

∂vi
∂bn

dΩ +

∫
Ω

F́ p
Ω

∂p

∂bn
dΩ +

∫
Ω

F́ ν̃
Ω

∂ν̃

∂bn
dΩ +

∫
S

F́ vi
S

∂vi
∂bn

dS +

+

∫
S

F́ p
S

∂p

∂bn
dS +

∫
S

F́ ν̃
S

∂ν̃

∂bn
dS +

∫
S

FΩ nk
δxk
δbn

dS

(2.38)

where FΦ
Ω includes the partial derivative ∂F/∂Φ as well as any term resulting the

implementeation of the Green-Gauss theorem for integrals of the form
∫

Ω
∂
∂bn

(
∂Φ
∂xj

)
dΩ.

Finally, by substituting eq. (2.36) and (2.38) in eq. (2.35), the final expression
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for δF/δbn arises

δF

δbn
=

∫
Ω

F́ vi
Ω

∂vi
∂bn

dΩ +

∫
Ω

F́ p
Ω

∂p

∂bn
dΩ +

∫
Ω

F́ ν̃
Ω

∂ν̃

∂bn
dΩ +

∫
S

(
F́ vi
S +

∂FSk
∂vi

nk

)
∂vi
∂bn

dS +

+

∫
S

(
F́ p
S +

∂FSi
∂p

ni

)
∂p

∂bn
dS +

∫
S

(
F́ ν̃
S +

∂FSi
∂ν̃

ni

)
∂ν̃

∂bn
dS +

∫
S

∂FSi
∂τkj

∂τkj
∂bn

nidS +

+

∫
S

ni
∂FSi
∂xk

∂xk
∂bn

nkdS +

∫
S

FSi
∂ni
∂bn

dS +

∫
S

FSini
δ(dS)

δbn
+

∫
S

FΩ nk
δxk
δbn

dS

(2.39)

The generalized expression for δF/δbn presented in eq. (2.39), includes the partial
derivatives of the flow variables w.r.t. the design variables. This expression is later
specified for the three different objective functions implemented in this thesis. The
numerical computation of such derivatives would require the solution of N systems
of equations similar to the primal equations. It is, therefore, clearly stated why
methods such as the adjoint differentiation are ought to be employed in shape
optimization problems, given that they circumvent the costly direct computation
of the derivatives in question by solving the adjoint equations.

Force Coefficient

The objective function used to optimize the total force exerted on a certain solid
wall boundary of the computational domain can be formulated as a dimensionless
coefficient as follows

CF =

∫
Sw
ρ (−τijnj + pni) ridS

1
2
ρAwU2

∞
(2.40)

where p denotes the mean static pressure, ρ the fluid density, vi the mean velocity
vector components, τij the stress tensor components and ni the outward pointing
unit normal vector components. In addition, ri is the user-defined direction in
which the force vector should be projected (e.g. parallel to the farfield velocity to
optimize drag), while Sw indicates the aforementioned solid wall boundary and Aw
its respective surface area.

Given that only incompressible fluid flows (ρ = const.) are simulated in this thesis,
eq. (2.40) can be simplified as follows

CF |incomp. =

∫
Sw

(−τijnj + pni) ridS
1
2
AwU2

∞
(2.41)

Differentiation of the incompressible force objective function (2.41) w.r.t. the design
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variable yields

δCF
δbn

∣∣∣∣
incomp.

=
2

AwU2
∞

[∫
Sw

∂

∂bn
(−τijnj + pni) ridS +

+

∫
Sw

(−τijnj + pni)
∂ri
∂bn

dS +

∫
Sw

(−τijnj + pni) ri
δ(dS)

δbn

] (2.42)

The force projection vector ~r ∈ R3 is constant, causing the second integral in the
RHS of eq. (2.42) to be to zero, because ∂ri/∂bn = 0, and it assumes the final form

δCF
δbn

∣∣∣∣
incomp.

=
2

AwU2
∞

[∫
Sw

(
−nj

∂τij
∂bn

+−τij
∂nj
∂bn

+ ni
∂p

∂bn
+ p

∂ni
∂bn

)
ridS +

+

∫
Sw

(−τijnj + pni) ri
δ(dS)

δbn

] (2.43)

Total Pressure Losses

The objective function used to minimize the total pressure losses between two
boundaries of the computational domain is given by the expression

FPt = −
∫
SI,O

(
p+

v2
i

2

)
vjnjdS (2.44)

where vi indicates the mean velocity vector components, whereas the SI,O indicate
the inlet and outlet boundaries of the domain, respectively. The units of FPt as
defined in eq. (2.44) are m5/s3, thus signifying power losses per units of density.

Differentiation of this objective function w.r.t. the design variable yields

δFPt
δbn

= −
∫
SI,O

∂

∂bn

(
p+

v2
i

2

)
vjnjdS −

∫
SI,O

(
p+

v2
i

2

)
∂vj
∂bn

njdS −

−
∫
SI,O

(
p+

v2
i

2

)
vj
δ(njdS)

δbn

(2.45)

Given that the boundaries serving as the domain of all surface integrals in eq. (2.45)
constitute immovable, non-controlled boundaries during the omptimization process,
the third integral of the RHS in the aforementioned eq. is equal to zero, since
δ(njdS)/δbn = 0. Therefore, the final form for δFPt/δbn arises

δFPt
δbn

= −
∫
SI,O

∂p

∂bn
vjnjdS −

∫
SI,O

(
vivj + p+

v2
i

2

)
∂vj
∂bn

njdS (2.46)
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Velocity Angle

The objective function used to optimize the angle of the velocity vector of a certain
boundary of a 2D computational domain is defined as

α = atan

(∫
SO
v2 dS∫

SO
v1 dS

)
(2.47)

where SO indicates the immovable outlet boundary of the domain, as used in later
simulations. The units of α as defined in eq. (2.47) are radians.

Differentiation of this objective function w.r.t. the design variable yields

δα

δbn
=

∫
SO
v1 dS · δ

δbn

(∫
SO
v2 dS

)
+
∫
SO
v2 dS · δ

δbn

(∫
SO
v1 dS

)
(∫

SO
v1 dS

)2

+
(∫

SO
v2 dS

)2 (2.48)

The surface integrals domain present in 2.48, is a non-controlled boundary and,
therefore, it is not affected by the design variables displacement (δ(dS)/δbn = 0),
yielding

δ

δbn

(∫
SO

vj dS

)
=

∫
SO

δvj
δbn

dS +

∫
SO

vj
δ(dS)

δbn
=

∫
SO

δvj
δbn

dS , j = 1, 2 (2.49)

According to (2.49), eq. (2.48) becomes

δα

δbn
=

∫
SO
v1 dS ·

∫
SO

δv2
δbn

dS +
∫
SO
v2 dS ·

∫
SO

δv1
δbn

dS(∫
SO
v1 dS

)2

+
(∫

SO
v2 dS

)2 (2.50)

2.2.3 Differentiation of the Primal Equations

Now that the expression for the derivatives of the objective function is defined,
the partial derivatives of the primal equation w.r.t. the design variables have to be
formulated, as dictated by eq. (2.20).

The differentiation of the continuity eq. (2.14a) yields

∂Rp

∂bn
= − ∂

∂xj

(
∂uj
∂bn

)
(2.51)
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while the respective partial derivative of the momentum eq. (2.14b) assumes the
form

∂Rv
i

∂bn
=
∂vj
∂bn

∂vi
∂xj

+ vj
∂

∂xj

(
∂vi
∂bn

)
− ∂

∂xj

[
(ν + νt)

∂

∂bn

(
∂vi
∂xj

+
∂vj
∂xi

)]
−

− ∂

∂xj

[
∂νt
∂bn

(
∂vi
∂xj

+
∂vj
∂xi

)]
+

∂

∂xi

(
∂p

∂bn

)
, i = 1, 2, 3

(2.52)

where ∂νt/∂bn can be computed as follows

∂νt
∂bn

=
∂νt
∂ν̃

∂ν̃

∂bn
with

∂νt
∂ν̃

=fv1 +ν̃
∂fv1
∂ν̃

= fv1 +
3c3
v1
χ3(

χ3 + c3
v1

)2 (2.53)

Moreover, the partial derivative of the Spalart–Allmaras turbulence model eq. (2.14c)
is formulated as

δRν̃

δbn
=
∂ν̃

∂xj

∂vj
∂bn

+ vj
∂

∂xj

(
∂ν̃

∂bn

)
− ∂

∂xj

[(
ν +

ν̃

σ

)
∂

∂xj

(
∂ν̃

∂bn

)]
− 1

σ

∂

∂xj

(
∂ν̃

∂bn

∂ν̃

∂xj

)
− 2

cb2
σ

∂ν̃

∂xj

∂

∂xj

(
∂ν̃

∂bn

)
+ ν̃

(
− ∂P
∂bn

+
∂D

∂bn

)
+ (−P +D)

∂ν̃

∂bn
(2.54)

The differentiation of the production and dissipation terms presented in eq. (2.8),
yields

− ∂P
∂bn

+
∂D

∂bn
=Cν̃

∂ν̃

∂bn
+C∆

∂∆

∂bn
+CY

1

Y
emjk

∂vk
∂xj

emli
∂

∂bn

(
∂vi
∂xl

)
(2.55)
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where

CY =

(
−cb1−cw1C

r

Ỹ

)
fv3 (2.56)

C∆ =− 2

∆3

[
cw1r C

(
∆2− ν̃fv2

κ2Ỹ

)
+cw1fwν̃−cb1

fv2
κ2
ν̃

]
(2.57)

Cν̃ =

(
−cb1−cw1C

r

Ỹ

)(
∂fv3
∂ν̃

Y +
fv2
κ2∆2

+
∂fv2
∂ν̃

ν̃

κ2∆2

)
+cw1C

r

ν̃
+cw1

fw
∆2

(2.58)

C=
cw1 ν̃

2

∆2

[
1 + cw2(6r

5 − 1)
] c6

w3

g6 + c6
w3

(
1 + c6

w3

g6 + c6
w3

)1/6

(2.59)

∂fv2
∂ν̃

=− 3

νcv2

(
1 +

χ

cv2

)−4

(2.60)

∂fv3
∂ν̃

=
1

cv2

(
fv1
ν

+χ
∂fv1
∂ν

)[
3

(
1+

χ

cv2

)
+

(
χ

cv2

)2
](

1+
χ

cv2

)−3

+
1

νc2
v2

(1+χfv1)

(
3+2

χ

cv2

)
c2
v2

(
1+

χ

cv2

)−3

−3
(1+χfv1)

νc2
v2

[
3

(
1+

χ

cv2

)
+

(
χ

cv2

)2
](

1+
χ

cv2

)−4

(2.61)

A more thorough analysis of the continuous adjoint equation to the Spalart-Allmaras
model can be found in [19], [24].

2.2.4 Field Adjoint Equations and Adjoint Boundary Con-
ditions

By substituting eqs. 2.51, 2.52, 2.54 and (2.39) into eq. 2.29 we receive the final
expression of the material derivative of the augmented objective function w.r.t. the
design variables.

δFaug
δbn

=

∫
S

BCui
∂vi
∂bn

dS+

∫
S

BCp ∂p
∂bn

dS+

∫
S

BC ν̃a ∂ν̃
∂bn

dS+

∫
S

BCma ∂

∂xj

(
δxi
δbn

)
dS

+

∫
S

(−uinj +
∂FSk
∂τij

nk)
∂τij
∂bn

dS−
∫
S

ν̃a

(
ν+

ν̃

σ

)
∂

∂bn

(
∂ν̃

∂xj

)
njdS

+

∫
Ω

Ru
i

∂vi
∂bn

dΩ+

∫
Ω

Rq ∂p

∂bn
dΩ+

∫
Ω

Rν̃a
∂ν̃

∂bn
dΩ+

∫
Ω

Rma

k

δxk
δbn

dΩ

+

∫
SWp

ni
∂FSWp,i

∂xm
nm

δxk
δbn

nkdS+

∫
SWp

FSWp,i
δni
δbn

dS+

∫
SWp

FSWp,ini
δ(dS)

δbn

−
∫
SWP

∂ma
i

∂xj
nj
δxi
δbn

dS+

∫
Ω

ν̃ν̃aC∆
∂∆

∂bn
dΩ+

∫
S

ma
iR

m
i nk

δxk
δbn

dS (2.62)

30



where

BCui =uivjnj+(ν + νt)

(
∂ui
∂xj

+
∂uj
∂xi

)
nj−qni+ν̃aν̃

CY
Y
emjk

∂vk
∂xj

emlinl

+
∂FSk
∂vi

nk+F́ v
S,i (2.63)

BCp=ujnj+
∂FSi
∂p

ni+F́
p
S (2.64)

BC ν̃a = ν̃avjnj+

(
ν+

ν̃

σ

)
∂ν̃a
∂xj

nj−
ν̃a
σ

(1 + 2cb2)
∂ν̃

∂xj
nj+

∂FSk
∂ν̃

nk+F́ ν̃
S (2.65)

BCma =ma
i nj (2.66)

After setting the multipliers of ∂vi/∂bn, ∂p/∂bn, ∂ν̃/∂bn and δxk/δbn, in the volume
integrals of eq. 2.62 to zero, the field adjoint equations are derived.
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Rq=−∂uj
∂xj

+ F́ p
Ω =0 (2.67)

Ru
i =uj

∂vj
∂xi
− ∂(vjui)

∂xj
− ∂

∂xj

[
(ν+νt)

(
∂ui
∂xj

+
∂uj
∂xi

)]
+
∂q

∂xi
+F́ v

Ω,i

+ν̃a
∂ν̃

∂xi
− ∂

∂xl

(
ν̃aν̃
CY
Y
emjk

∂vk
∂xj

emli

)
=0 , i=1, 2, 3 (2.68)

Rν̃a =−∂(vj ν̃a)

∂xj
− ∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃a
∂xj

]
+

1

σ

∂ν̃a
∂xj

∂ν̃

∂xj
+ 2

cb2
σ

∂

∂xj

(
ν̃a
∂ν̃

∂xj

)
+ν̃aν̃Cν̃ +

∂νt
∂ν̃

∂ui
∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
+ (−P+D) ν̃a + F́ ν̃

Ω =0 (2.69)

Rma

k =
∂2ma

k

∂x2
j

+
∂

∂xj

{
uivj

∂vi
∂xk

+uj
∂p

∂xk
+τaij

∂ui
∂xk
−ui

∂τij
∂xk
−q ∂vj

∂xk

}
=0 (2.70)

After satisfying the field adjoint equations, the remaining terms in eq. 2.62 are

δFaug
δbn

=

∫
S

BCui
∂vi
∂bn

dS+

∫
S

BCp ∂p
∂bn

dS+

∫
S

BC ν̃a ∂ν̃
∂bn

dS+

∫
S

BCma ∂

∂xj

(
δxi
δbn

)
dS

+

∫
S

(−uinj +
∂FSk
∂τij

nk)
∂τij
∂bn

dS−
∫
S

ν̃a

(
ν+

ν̃

σ

)
∂

∂bn

(
∂ν̃

∂xj

)
njdS

+

∫
SWp

ni
∂FSWp,i

∂xm
nm

δxk
δbn

nkdS+

∫
SWp

FSWp,i
δni
δbn

dS+

∫
SWp

FSWp,ini
δ(dS)

δbn

−
∫
SWP

∂ma
i

∂xj
nj
δxi
δbn

dS+

∫
Ω

ν̃ν̃aC∆
∂∆

∂bn
dΩ+

∫
S

ma
iR

m
i nk

δxk
δbn

dS (2.71)

The system of the field adjoint PDEs is closed with the adjoint boundary conditions.
The ABC are imposed aiming to eliminate the surface integrals that contain the
partial derivatives of the state variables w.r.t. the design variables, namely the first
six and the last integral of eq. 2.71 which contain the surface integrals of ∂vi/∂bn,
∂p/∂bn, ∂vi/∂bn, ∂ν̃/∂bn,∂(δxi/δbn)/∂xj, ∂τij/∂bn, ∂(∂ν̃/∂xj)/∂bn and δxi/δbn. For
the sake of completeness these terms are rewritten as follows.
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I1 =

∫
S

BCui
∂vi
∂bn

dS (2.72)

I2 =

∫
S

BCp ∂p
∂bn

dS (2.73)

I3 =

∫
S

BC ν̃a ∂ν̃
∂bn

dS (2.74)

I4 =

∫
S

BCma ∂

∂xj

(
δxi
δbn

)
dS (2.75)

I5 =

∫
S

(−uinj +
∂FSk
∂τij

nk)
∂τij
∂bn

dS (2.76)

I6 =

∫
S

ν̃a

(
ν+

ν̃

σ

)
∂

∂bn

(
∂ν̃

∂xj

)
njdS (2.77)

I7 =

∫
S

ma
iR

m
i nk

δxk
δbn

dS (2.78)

At this point, the final expressions of the adjoint boundary conditions are presented,
whereas their detailed derivation can be found in [19]. The adjoint boundary
condition of the adjoint gdPDEs is the same for all boundaries, namely ma

k = 0, so
that integral I4 is eliminated. Also, since ma

k = 0 along all boundaries, integral I7,
which is the equivalent of LBterm discussed in 2.2.1, also vanishes in all boundaries.

Inlet Boundaries SI

At the inlet boundaries since Dirichlet boundary conditions are imposed on vi and
ν̃, δvi/δbn = 0 and δν̃/δbn = 0. Since SI in a non-controlled boundary, δxk/δbn = 0
and taking into consideration eq. 2.31, ∂vi/∂bn = 0 and ∂ν̃/∂bn = 0. This means
that I1 = I3 = 0.

Integrals I2 and I5 are eliminated by demanding

u〈n〉=−
∂FSI ,j
∂p

nj (2.79a)

uI〈t〉=
∂FSI ,k
∂τij

nkt
I
inj +

∂FSI ,k
∂τij

nkt
I
jni (2.79b)

uII〈t〉=
∂FSI ,k
∂τij

nkt
II
i nj +

∂FSI ,k
∂τij

nkt
II
j ni (2.79c)

where tIi , t
II
i are the components of the tangent to the surface unit vectors. The

first tangent vector tIi can be defined as an arbitrary unit vector parallel to SI ,
whereas tIIi forms an orthogonal system with n and tIi . Quantities uI〈t〉 and uII〈t〉
are the components of the adjoint velocity in the tIi , t

II
i directions respectively. It
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should be noted that if F is not defined at the inlet of the computational domain,
the adjoint velocity components are zero along SI . Integral I6 is zeroed by imposing
a zero Dirichlet condition to ν̃a, i.e. ν̃a = 0.

Finally, since no boundary condition for q results from the elimination of any of the
seven boundary integrals already discussed, a zero Neumann boundary condition is
employed.

Outlet Boundaries SO

At the outlet boundaries since a Dirichlet boundary condition is imposed on p,
δp/δbn = 0. Since SO is fixed, δxk/δbn = 0 and taking into consideration eq. 2.31,
∂p/∂bn = 0. As a result, integral I2 vanishes automatically. Due to the distance of
the outlet boundary from the controlled area, an almost uniform velocity profile can
be assumed along SO, meaning that δτij/δbn = 0 along SO. Hence, integral I5 can
be neglected.

In order to eliminate I1, its integrand quantity is set equal to zero, i.e.

BCui =uivjnj+(ν + νt)

(
∂ui
∂xj

+
∂uj
∂xi

)
nj−qni+ν̃aν̃

CY
Y
emjk

∂vk
∂xj

emlinl

+
∂FSk
∂vi

nk+F́ v
S,i=0 (2.80)

Eq. 2.80, which can be analysed in three scalar equations, i = 1, 2, 3, includes four
unknown quantities (the adjoint pressure q and the three components of the adjoint
velocity ui). Therefore, one of them may take on an arbitrary value. This is chosen
to be the normal component of the adjoint velocity u〈n〉, on which a zero Neumann
boundary condition is imposed. By multiplying equation 2.80 with ni a Dirichlet
condition for the adjoint pressure is derived

q=u〈n〉v〈n〉+2(ν + νt)
∂u〈n〉
∂n

+
∂FSO,k
∂vi

nink+F́ v
SO,i

ni

+ν̃aν̃
CY
Y
emjk

∂vk
∂xj

emlinlni=0 (2.81)

The outlet adjoint tangential velocity is computed by multiplying eq. 2.80 with the
tangent to the surface vectors tli , l=1, 2.

0=v〈t〉u
l
〈t〉+(ν + νt)

(
∂ul〈t〉
∂n

+
∂u〈n〉
∂tl

)
+
∂FSO,k
∂vi

nkt
l
i+F́

v
SO,i

tli

−ν̃aν̃
CY
Y
emjk

∂vk
∂xj

emzinzt
l
i , l=1, 2 (2.82)
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Finally, a Robin-type boundary condition is imposed on ν̃a in order to eliminate
integral I3.

BC ν̃a = ν̃avjnj+

(
ν+

ν̃

σ

)
∂ν̃a
∂xj

nj+
∂FSO,k
∂ν̃

nk+F́ ν̃
SO

=0 (2.83)

It must be noted that term ν̃a
σ

(1 + 2cb2)
∂ν̃
∂xj
nj has been eliminated from eq. 2.83

with regards to eq. 2.65 where BC ν̃a was originally defined, because of the zero
Neumann boundary condition imposed on ν̃ for the outlet boundaries.

Unparameterized Wall Boundaries SW

Since ν̃ is equal to zero on the wall boundaries, integral I3 vanishes. However,
this is not the case for the gradient of ν̃ and in order to eliminate integral I6 a zero
Dirichlet boundary condition imposed on ν̃a. The boundary conditions imposed on
the adjoint velocity conditions are derived following the same procedure presented
for the inlet boundaries. For the sake of completeness these boundary conditions
are

u〈n〉=−
∂FSW ,j

∂p
nj (2.84a)

uI〈t〉=
∂FSW ,k

∂τij
nkt

I
inj +

∂FSW ,k

∂τij
nkt

I
jni (2.84b)

uII〈t〉=
∂FSW ,k

∂τij
nkt

II
i nj +

∂FSW ,k

∂τij
nkt

II
j ni (2.84c)

Finally, a zero Neumann boundary condition is imposed on q.

Parameterized Wall Boundaries SWP

The main difference between parameterized and non-parameterized wall boundaries
is the fact that the parameterized boundaries may change during the optimization.
Thus, δxk/δbn 6= 0 and the total and partial derivatives of the flow quantities are
different and are linked through eq. 2.31. In addition, the total variations in the
normal and tangent surface vectors are not zero, contributing extra terms during
the formulation of the adjoint boundary conditions [19].

2.2.5 Adjoint to the Distance Equation

After satisfying the field adjoint equations along with their adjoint boundary conditions,
eq. 2.71 takes the form of eq. 2.85. To this equation are included some extra terms
that arise from the derivation of the adjoint boundary conditions at the controlled
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boundaries [19, 25].

δFaug
δbn

=TWF
SD −

∫
SWp

SD1
∂τij
∂xm

njt
I
inmnk

δxk
δbn

dS−
∫
SWp

SD1τij
δ(njt

I
i )

δbn

δxk
δbn

dS

+

∫
SWp

SD2,iv
I
〈t〉
δtIi
δbn

dS−
∫
SWp

SD2,i
∂vi
∂xm

nmnk
δxk
δbn

dS

−
∫
SWp

[(
ν+

ν̃

σ

)
∂ν̃a
∂xj

nj+
∂FSz
∂ν̃

nz+F́
ν̃
S

]
∂ν̃

∂xm
nmnk

δxk
δbn

dS

−
∫
SWp

(−u〈n〉+φ〈n〉〈n〉)
(
τij
δ(ninj)

δbn
+
∂τij
∂xm

nm
δxk
δbn

nkninj

)
dS

−
∫
SWp

φ〈tI〉〈tI〉

(
τij
δ(tIi t

I
j )

δbn
+
∂τij
∂xm

nm
δxk
δbn

nkt
I
i t
I
j

)
dS

−
∫
SWp

(φ〈tII〉〈tI〉+φ〈tI〉〈tII〉)

(
τij
δ(tIIi t

I
j )

δbn
+
∂τij
∂xm

nm
δxk
δbn

nkt
II
i t

I
j

)
dS

−
∫
SWp

φ〈tII〉〈tII〉

(
τij
δ(tIIi t

II
j )

δbn
+
∂τij
∂xm

nm
δxk
δbn

nkt
II
i t

II
j

)
dS

+

∫
SWp

ni
∂FSWp,i

∂xm
nm

δxk
δbn

nkdS+

∫
SWp

FSWp,i
δni
δbn

dS+

∫
SWp

FSWp,ini
δ(dS)

δbn

−
∫
SWP

∂ma
i

∂xj
nj
δxi
δbn

dS+

∫
SWp

AWF
∆

∂∆P

∂bn
dS+

∫
SW

AWF
∆

∂∆P

∂bn
dS

+

∫
Ω

ν̃ν̃aC∆
∂∆

∂bn
dΩ (2.85)
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where

SD1 =−uI〈t〉+φ〈tI〉〈n〉+φ〈n〉〈tI〉 (2.86)

SD2,i=(ν+νt)

(
∂ui
∂xj

+
∂uj
∂xi

)
nj−qni+

∂FSWp,k

∂vi
nk+F́ v

SWp,i
(2.87)

φij =
∂FSWp,k

∂τij
nk (2.88)

TWF
SD ,

∫
SWP
AWF

∆
∂∆P

∂bn
dS and

∫
SW
AWF

∆
∂∆P

∂bn
dS summarize the contribution of the wall

functions differentiation to the sensitivity derivatives [26]. As can be seen, all but
the last term of eq. 2.85 are surface integrals, which can be computed at a cost that
is, practically, negligible when compared to the solution of the primal or the adjoint
equations. However, this is not the case for the last field integral which contains the
distance variation for the entire domain w.r.t. the design variables. The simplest
way to compute this variation is through finite differences, i.e. by perturbating each
of the design variables by an infinitesimally small quantity ε in the positive and
negative directions and re-computing nodal distances for the entire domain. Then,
the total distance variation would be

δ∆

δbn
=

∆(bn + ε)−∆(bn − ε)
2ε

(2.89)

Having computed the total distance variation, the partial variation of ∆ appearing
in the last field integral of 2.85 can be calculated through eq. 2.30 as follows

∂∆

∂bn
=
δ∆

δbn
− ∂∆

∂xk

δxk
δbn

Nevertheless, the finite differences method has the same issues as the ones described
in the introduction of this diploma thesis, namely the requirement to make 2N
computations of the distance field (for instance by an exhaustive search of all cell
centers with all boundary faces) and the sensitivity of the result from the value of ε.

An alternative and more cost-effective way to deal with ∂∆/∂bn is to apply the
adjoint methodology in order to eliminate the term containing this variation. There
are various PDEs that can be used to compute the distances field ∆. Hamilton-Jacobi
equation has shown to produce a very good approximation to the Euclidean distance
field and to be numerically robust [19, 27]. Hamilton-Jacobi equation reads

R∆ =
∂ (cj∆)

∂xj
−∆

∂2∆

∂x2
j

− 1 = 0 (2.90)

where cj = ∂∆/∂xj. The boundary conditions of eq. 2.90 consist of a zero Dirichlet
condition for the solid wall boundaries and ∂∆

∂xi
ni = 1 for the rest of the domain

boundaries. This equation can be viewed as an additional primal PDE to be solved,
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meaning that it should be added to the augmented objective function, eq. 2.26
which now becomes

Faug=F+

∫
Ω

uiR
v
i dΩ+

∫
Ω

qRpdΩ+

∫
Ω

ν̃aR
ν̃dΩ+

∫
Ω

ma
iR

m
i dΩ︸ ︷︷ ︸

T1

+

∫
Ω

∆αR
∆dΩ︸ ︷︷ ︸

T2

(2.91)

where ∆α is the adjoint to the distance field variable. The differentiation of Faug
follows the same methodology presented in section 2.2.1. We have

δFaug
δbn

=
δT1

δbn
+
δT2

δbn
(2.92)

The development of δT1/δbn led to eq. 2.85. δT2/δbn is developed using the Leibniz
theorem, as follows

δT2

δbn
=

δ

δbn

∫
Ω

∆aR
∆dΩ=

∫
Ω

∆a
∂R∆

∂bn
dΩ+

∫
SWp

∆aR
∆nk

δxk
δbn

dS (2.93)

After differentiating the Hamilton-Jacobi equation and substituting the result in eq.
2.93, we receive

δT2

δbn
=

∫
S

2∆a
∂∆

∂xj
nj
∂∆

∂bn
dS+

∫
SWp

∆aR
∆nk

δxk
δbn

dS−
∫

Ω

2
∂

∂xj

(
∆a

∂∆

∂xj

)
∂∆

∂bn
dΩ (2.94)

By integrating eq. 2.94 into 2.85, the expression where the multiplier of ∂∆/∂bn in
the resulting volume integrals should be set to zero, is derived. Thus, the adjoint to
the distance field equation is derived

R∆α = −2
∂

∂xj

(
∆α

∂∆

∂xj

)
+ ν̃ν̃aC∆ = 0 (2.95)

where the first of the terms in the RHS of eq. 2.95 is contributed by the differentiation
of the Hamilton-Jacobi equation 2.90, whereas the second one from the differentiation
of the Spalart-Allmaras equation.

Having satisfied the field adjoint distance equation along with the proper boundary
condition [25], the terms that should be added to the sensitivity derivatives expression
replacing the last field integral

∫
Ω
ν̃ν̃aC∆

∂∆
∂bn
dΩ of equation 2.85 are∫

Ω

ν̃ν̃aC∆
∂∆

∂bn
dΩ =

∫
SWp

∆aR
∆nk

δxk
δbn

dS−
∫
SWp

2∆a
∂∆

∂xj
nj
∂∆

∂xm
nmnk

δxk
δbn

dS (2.96)
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2.2.6 Final Expression of the Sensitivity Derivatives

Taking everything into consideration, the final expression for the sensitivity derivatives
reads

δFaug
δbn

=TWF
SD −

∫
SWp

SD1
∂τij
∂xm

njt
I
inmnk

δxk
δbn

dS−
∫
SWp

SD1τij
δ(njt

I
i )

δbn

δxk
δbn

dS

+

∫
SWp

SD2,iv
I
〈t〉
δtIi
δbn

dS−
∫
SWp

SD2,i
∂vi
∂xm

nmnk
δxk
δbn

dS

−
∫
SWp

[(
ν+

ν̃

σ

)
∂ν̃a
∂xj

nj+
∂FSz
∂ν̃

nz+F́
ν̃
S

]
∂ν̃

∂xm
nmnk

δxk
δbn

dS

−
∫
SWp

(−u〈n〉+φ〈n〉〈n〉)
(
τij
δ(ninj)

δbn
+
∂τij
∂xm

nm
δxk
δbn

nkninj

)
dS

−
∫
SWp

φ〈tI〉〈tI〉

(
τij
δ(tIi t

I
j )

δbn
+
∂τij
∂xm

nm
δxk
δbn

nkt
I
i t
I
j

)
dS

−
∫
SWp

(φ〈tII〉〈tI〉+φ〈tI〉〈tII〉)

(
τij
δ(tIIi t

I
j )

δbn
+
∂τij
∂xm

nm
δxk
δbn

nkt
II
i t

I
j

)
dS

−
∫
SWp

φ〈tII〉〈tII〉

(
τij
δ(tIIi t

II
j )

δbn
+
∂τij
∂xm

nm
δxk
δbn

nkt
II
i t

II
j

)
dS

+

∫
SWp

ni
∂FSWp,i

∂xm
nm

δxk
δbn

nkdS+

∫
SWp

FSWp,i
δni
δbn

dS+

∫
SWp

FSWp,ini
δ(dS)

δbn

−
∫
SWP

∂ma
i

∂xj
nj
δxi
δbn

dS+

∫
SWp

AWF
∆

∂∆P

∂bn
dS+

∫
SW

AWF
∆

∂∆P

∂bn
dS

+

∫
SWp

∆aR
∆nk

δxk
δbn

dS−
∫
SWp

2∆a
∂∆

∂xj
nj
∂∆

∂xm
nmnk

δxk
δbn

dS (2.97)

2.3 Mesh Parameterization and Movement

In GBM shape optimization, once the SDs of a certain objective function are
computed and can be utilized to improve the current geometry, so as to improve the
performance of the geometry w.r.t. the current objective function. In GBM robust
design shape optimization cases, the robust SDs of a certain QoI are computed
through either a stochastic or a deterministic uncertainty quantification method
and, then, in the same manner, the geometry in question is updated according the
robust SDs, leading to a more robust performance w.r.t. to the selected QoI. In order
for this process to take place, a mesh movement tool must be employed, with the
ability to accurately morph the nodes of the meshed geometry towards the direction
dictated by the respective SDs (robust or not). In order to accomplish this task, the
computational grid can either be re-meshed according to the updated geometry or
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it can be deformed in the area affected by the new geometry. Due to the fact, that
later option yields by far a lower computational cost, especially when it comes to
complicated 2D meshes, it is most often preferred.

In this thesis, the only method used both parameterize and to morph the mesh
around the to-be optimized shape are the volumetric B-Splines [28], integrated
into the OpenFOAM© code in conjunction with the continuous adjoint solver by
PCOpt/NTUA.

2.3.1 Volumetric B-Splines

For the parameterization of a specific part of the computational mesh that includes
the shape to-be optimized, the user defines a 3D structured control grid a.k.a. con-
trol or morphing box. The box is defined by defining the Cartesian coordinates
bijkm , m ∈ [1, 3] , i ∈ [0, I] , j ∈ [1, J ] , k ∈ [1, K] of the ijk-th control point, as well
as the number I, J, K of control points per grid direction.

The Cartesian coordinates ~x = [x1, x2, x3]T = [x, y, z]T of the computational mesh
points within the aforementioned control box are defined as

xm(u, v, w) = Ui,pu Vj,pv Wk,pw b
ijk
m , m = 1, 2, 3 (2.98)

where U, V, W indicate the B-Splines basis polynomial functions, pu, pv, pw their
respective degrees and ~u = [u1, u2, u3]T = [u, v, w]T the mesh point parametric
coordinates.

Once the parametric coordinates vector ~u are known, the computation of the Cartesian
coordinates vector ~x of any parameterized flow field mesh point is effortless and can
be conducted at a negligible computational cost. In order to accurately compute the
mesh parametric coordinates a mapping form R3(x, y, z) → R3(u, v, w) is needed,
thus allowing the volumetric B-Splines to reproduce any geometry with machine
accuracy [28]. Therefore, the parametric coordinates (u, v, w) of a said point with
Cartesian coordinates ~r = [xr, yr, zr]

T can be computed by solving the system (2.99),
as long as the user-defined control points, knot vectors and basis function degrees
are known.

R(u, v, w) =

 x(u, v,m)− xr = 0
y(u, v,m)− yr = 0
z(u, v,m)− zr = 0

 (2.99)

where xm(u, v, w) are computed by utilizing eq. (2.98), based on the given bijkm
control points coordinates. The 3x3 system of eq. (2.99) can be solved independently
for each and every parameterized mesh point through the Newton-Raphson method,
once the Jacobian matrix ∂xm/∂uj , m, j = 1, 2, 3 is computed and inverted. The
Jacobian is computed analytically through a closed form expression resulting by
differentiating eq. (2.98) w.r.t. the components of ~u.
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The aforementioned process must be performed only once at the beginning of the
optimization loop, justifying the name ”training phase” of the method. Then, once
the displacement of the control points ∂~bijk is defined (either through the SDs or
the robust SDs), the Cartesian coordinates of each computational mesh point that
resides within the morphing box can be inexpensively computed through th use of
eq. (2.98).

2.4 The SIMPLE Finite Volume Method

The numerical solution of the primal and the adjoint problem, as thoroughly presented
in the respective Subsections 2.1 and 2.2, is performed by employing the SIMPLE
pressure based method [29]. First proposed by B. Spalding and S. Patankar in the
early 1970s, it is nowadays a generalized and widespread finite volume algorithm,
finding application in a variety of CFD cases. The algorithm, culminates to a
numerical solution for the NS-Spalart–Allmaras equations by iterating the following
steps:

1. Initialization of the pressure field p∗.

2. Computation of the uncorrected velocity ~v ∗ and Spalart–Allmaras variable
fields ν̃ ∗ through the solution of the discretized momentum and Spalart–Allmaras
equations.

3. Computation of the uncorrected mass fluxes at cell faces.

4. Computation of the pressure-based correction.

5. Computation of the corrected pressure p with the selected under-relaxation
factor.

6. Correction of the face mass fluxes.

7. Correction of the velocity ~v and ν̃ fields from their uncorrected field values ~v ∗

and ν̃ ∗ by implementing the velocity correction formulas.

8. Reiteration of process by assuming the corrected pressure field p to be the new
initial pressure field p∗.

The same algorithmic steps can be implemented for the solution of the adjoint
system, where the aforementioned flow variables are switched to their respective
adjoints.

The iterative process comes to end once the predefined convergence criterion is met
or when the maximum number of iteration is reached. The convergence criterion,
being the residual between the old and renewed value of the flow variable, is to be
selected so as not to compromise the final solution’s accuracy. For the version of the
SIMPLE algorithm available in OpenFOAM© a maximum convergence criterion to
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achieve a trustworthy result is equal to 10−6.

The convergence process may be complicated by several factors such as the density
of mesh not being sufficient in areas with steep velocity gradients or the discretisation
schemes used for the NS equations. Another parameter greatly affecting the convergence
are the under-relaxation factors. These are weights used to conduct a linear interpolation
between the old and the renewed values of the field variables. Their values practically
vary between 0.25 to 0.8. The greater the under-relaxation factor the quicker the
convergence, yet the lesser the error stability. Meaning that a selection of a high
relaxation factor may backfire, by causing an instability to occur in some, if not all,
of the flow variable’s residuals.

An integral part in the SIMPLE algorithm, is the discretization schemes of the
primal or adjoint field equations. More about this topic can be found in [29], for it
is not covered in this thesis.
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Chapter 3

Stochastic Uncertainty
Quantification Methods

In this chapter the two stochastic methods of UQ, utilized in this diploma thesis,
are presented and explained. The first, Monte Carlo (MC) being the easiest in
implementation and yet the most costly, is mostly used to verify the results of
the faster and more robust second method, the non-intrusive Polynomial Chaos
Expansion (niPCE), in later stages of this thesis. Other deterministic UQ methods,
such as the Method of Moments [19], [3], [4] are not explored in the present thesis.

3.1 Monte Carlo

The MC method [5], [6], being the most typical and straightforward stochastic UQ
method, is based on the seemingly simple concept that if an exceedingly large variety
of inputs values are given to the uncertain variables of a problem then the statistical
moments of each exited QoI will converge towards their real statistical moments.
Therefore, the larger the stochastic input pool for the uncertain variables, the more
accurate the prediction. The values of the input pool are computed through the
use of random number generators, following the predetermined distribution if the
uncertain variables.

In CFD-based UQ as well as RDO cases, this method is rarely used due to the
several thousands of replicates often needed for the method to produce accurate
results. Consequently, the employment of such a method nested into a greater
optimization loop is mostly considered unacceptable, due to its great computational
cost. Especially, for this thesis, the implementation of the MC method nested into
an RDO loop, utilizing the adjoint GBM to compute the SDs, signifies that each
optimization step requires the numerical solution of the primal and the adjoint (also
measured in two EFS) problems multiple thousands of times, thus mitigating the
advantage of the adjoint method. This is mainly the reason for which the MC
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method is only used for the UQ results verification.

3.2 Polynomial Chaos Expansion

The Polynomial Chaos expansion (PCE) was first proposed by N. Wiener in 1938
[30], then only encompassing uncertain variables following a normal distribution
through the use of orthogonal Hermite polynomials. However, D. Xiu and G. E.
Karniadakis [7] developed the generalized Polynomial Chaos theory, based on the
Wiener-Askey approach [31] on the generalization of the orthogonal polynomials.
The method today can be implemented for uncertain variables following any known
statistical distribution. Yet, in the current diploma thesis, since the PCE is applied
in conjunction with the DFSS approach, thus accepting a normal distribution for
the uncertain variables of the RDO problem, only the initial Hermite polynomials
are employed.

In general two methods of implementing the PCE exist, the intrusive (iPCE) and
non-intrusive methods [8]. For the first, the expansion is applied on the inputs
and the outputs of the case in question, thus generating a new set of governing
PDEs, an boundary conditions. Therefore, these inputs and outputs are modeled as
polynomials of order k. It is clear that this method lacks the ability to be generalized,
given that for different cases, chaos order k and uncertain variables the governing
equations are altered and with them, their solution approach, be it either analytical
or numerical. In contrast, the niPCE methods produce a finite number of sample
values for the uncertain variables of the case under consideration for which the case’s
governing equations should be solved, a process a.k.a. sampling. Consequently, the
governing PDEs and governing conditions are treated as a black box. Especially
for CFD-based UQ or RDO the NS equations are solved independently, for all the
value-sets of the uncertain variables designated by the niPCE method. Nevertheless,
it is implied that the computational cost, w.r.t. the clock-time, of niPCE methods
scales with the number of sampling flow evaluations, dictated by them.

To conclude, the main drawback of niPCE methods, when compared with the
intrusive ones, is their much higher computational cost due to the need for multiple
evaluations. Yet, niPCE methods are de facto generalized due to their decoupled
nature from the case in question, avoiding the painstaking ad-hoc implementation
of their iPCE counterparts. Consequently, the same non-intrusive approach is
employed in this thesis, on two different RDO scenarios.
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3.3 1D non-intrusive PCE

According to the Polynomial Chaos Expansion theory, a function F = F (x) ∈ R
(referred to as the QoI of the case under consideration) with x ∈ R being an
uncertain variable following a specified stochastic distribution, can be expanded
through an appropriate series of polynomials. This expansion offers the potential to
analytically compute the statistical moments of the QoI F , by selecting a suitable
cut-off point for it. The computation of the first and the second statistical moments,
a.k.a. the mean value and standard deviation of the QoI are of interest in most cases.

Assuming an uncertain variable x distributed according to a probability density
function w(x) and P = {p0(x), p1(x), ..., pi(x), ...} a family of polynomials pi, with
i the maximum rank of each polynomial, respectively. In accordance with the PCE
theory, F (x) can approximated by a different function f(x) with the same stochastic
input x, defined as a linear combination of the polynomials belonging in P :

F (x) u f(x) :=
∞∑
i=0

aipi(x) (3.1)

where ai ∈ R and f : R −→ Y j R .

The n-th statistical moment of the set Y can be computed as

〈yn〉 =

∫
D

(f(x))nw(x)dx =

∫
D

(
∞∑
i=0

aipi

)n

w(x)dx

⇒ 〈yn〉 =
∞∑
i1=0

· · ·
∞∑
in=0

ai1 · · · ain
∫
D

pi1 · · · pinw(x)dx

(3.2)

The aforementioned integrals, though complex, can be solved analytically due to
their polynomial nature. Hence, theoretically every statistical moment of a function
F can be calculated. However, equation (3.2) can be simplified by defining P as a
specific family of polynomials, known as orthogonal polynomials [32].

3.3.1 Orthogonal Polynomials

The most important feature of orthogonal polynomials is that the inner product
(Galerkin projection) of whichever two polynomials (pi(x)) of the same family P ,
with their corresponding weight function w(x) within their domain D, is equal to
zero, unless the two aforementioned polynomials are identical. This property, is
depicted as

〈pi(x), pj(x)〉w =

∫
D

pi(x)pj(x)w(x)dx = 〈pi(x), pj(x)〉w δ
j
i (3.3)
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where δji is the Kronecker Delta. The definition (3.3) greatly facilitates the solution
of equation (3.2).

In case i = j, the inner product (3.3) assumes the form of the w−norm of polynomial
pi(x), as depicted below

〈pi(x), pj(x)〉w = ||pi(x)||2w = γi (3.4)

where the square root of the new variable
√
γi, signifies the normality metric of the

pi polynomial. This parameter is not necessarily equal to 1 though, when it is, the
orthogonal polynomial family is defined as canonical.

A common characteristic of all the various stochastic distributions and their corresponding
families of orthogonal polynomial pn, is that their first (zero degree) polynomial is
p0(x) = 1 , ∀ w(x).

Each stochastic distribution corresponds to a specific family of orthogonal polynomials
pn(x), each defined in a certain domain x ∈ D and with a certain probability
density function w(x). For example, the normal distribution, used exclusively in
this thesis, is associated with by the Hermite polynomial family Hen(x), defined in
the domain D = (−∞, +∞). Also, the probability density function of a single
uncertain variable following a normal distribution with a mean value µ and a
standard deviation σ, is given

N (µ, σ2) : w(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

(3.5)

3.3.2 1st and 2nd Statistical Moments

In order to calculate the first statistical moment, a.k.a. the mean value (µF ) or
expectation (E(F )), equation (3.2) is displayed for n = 1

µF = E(F ) =
〈
y1
〉

=
∞∑
i1=0

ai1

∫
D

pi1w(x)dx =
∞∑
i=0

ai

∫
D

piw(x)dx (3.6)

The convenience of orthogonal polynomials stems from the following property, according
to which the computation of any statistical moment (3.2), can be greatly simplified
∀ i > 0 ∫

D

pi(x)w(x)dx =

∫
D

pi(x) · 1 · w(x)dx = 〈pi(x), p0(x)〉w δ
0
i = 0 (3.7)

Furthermore, given that
∫
D
w(x)dx = 1, by taking into account that the total

possibility of any distribution is equal to 1 as well as p0(x) = 1, eq. (3.6) assumes
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the form

µF = a0

∫
D

p0w(x)dx+
∞∑
i=1

ai

∫
D

piw(x)dx = a0 (3.8)

The second statistical moment, a.k.a. the variance (var()), can be computed as

var(F ) =
〈
y2
〉
− µ2

F (3.9)

while the standard deviation (σ), being the square root of the variance, is defined
as

σF =
√
var(F ) =

√
〈y2〉 − µ2

F (3.10)

According to the PCE theory, 〈y2〉 is given by

〈
y2
〉

=
∞∑
i1=0

∞∑
i2=0

ai1ai2

∫
D

pi1pi2w(x)dx (3.11)

By using the orthogonality properties described in eqs. (3.3) and (3.4), eq. (3.11)
is simplified as 〈

y2
〉

=
∞∑
i=0

a2
i

∫
D

p2
iw(x)dx = a2

i γi (3.12)

The γi parameter can be further simplified through the use of canonical orthogonal
polynomial families, a.k.a. ortho-canonical. A way to generate such families comes
by dividing the polynomials pn by their normality metric γn, as displayed

p̃n(x) =
pn(x)

||pn(x)||
=
pn(x)

γn
(3.13)

Consequently, ||p̃i(x)||w = 1, and by using ortho-canonical polynomials, eq. (3.12)
becomes 〈

y2
〉

=
∞∑
i=0

a2
i (3.14)

and the standard deviation from eq. (3.10) becomes

σF =

√√√√ ∞∑
i=0

a2
i − a2

0 =

√√√√ ∞∑
i=1

a2
i (3.15)

Thus, by knowing the probability distribution the uncertain variable x follows
and its corresponding ortho-canonical polynomials, the PCE coefficients ai can be
computed. A critical choice is the cut-off points of the series in eqs. (3.8) and (3.15),
in order to compute the mean value and standard deviation of F .
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3.3.3 Polynomial Chaos Expansion Coefficients

So far, the statistical moments of QoI function F (x) were defined for an infinite
number of terms in their respective expansions. Thus, prior to the calculation of
the PCE coefficients ai, the cut-off point k, a.k.a. as chaos order of the expansion
must be decided. It can be assumed, that the higher the value of k, the higher
becomes the accuracy of PCE-computed statistical moments, while simultaneously
the computational cost is expected to increase. The importance of the choice of
chaos order k, stems from the aforementioned equilibrium between accuracy and
cost.

Thus, for a cut-off point k for the expansion, the function F and its mean value
µF and standard deviation σF can be expanded as

F (x) u
k∑
i=0

aip̃i(x) (3.16)

µF u a0 (3.17)

σF u

√√√√ k∑
i=1

a2
i (3.18)

Thus, eq. (1.3) for the computation of the robustness metric FR according to the
DFSS, assumes the form

FR u a0 + κ

√√√√ k∑
i=1

a2
i (3.19)

The computation of the k + 1 PCE coefficients ai, the Galerkin projection as well
as the ortho-canonical polynomials p̃i are reused in equation (3.20)

〈f(x), p̃i(x)〉w =

〈
k∑
j=0

aj p̃j(x), p̃i(x)

〉
w

=
k∑
j=0

aj

∫
D

p̃j(x)p̃i(x)w(x)dx

⇒ 〈f(x), p̃i(x)〉w = ai||p̃i(x)||2w = ai , i = 0, 1, ..., k

(3.20)

In addition, according to eq. (3.1) the QoI function F (x) can be replaced as

〈f(x), p̃i(x)〉w =

∫
D

f(x)p̃i(x)w(x)dx u
∫
D

F (x)p̃i(x)w(x)dx , i = 0, 1, ..., k (3.21)

Thus, eqs. (3.20) and (3.21) lead to the final equations for the ai coefficients

ai =

∫
D

F (x)p̃i(x)w(x)dx , i = 0, 1, ..., k (3.22)
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In order to successfully compute the PCE coefficients by making use of eq. (3.22),
it is essential to assume the chaos order k and the stochastic distribution of the
uncertain variables. Therefore, the PDF, weight functions and ortho-canonical
polynomial family should, thus, all be known to user.

The integration present in eq. (3.22), when not solved analytically requires the
call to the QoI function F (x) a finite number of times. In this diploma thesis, any
call to F (x) refers to the solution of the primal problem as described in Section
2.1. Hence, in aerodynamic UQ and RDO cases, the computational cost of methods
using PCE coefficients, scales with the number of times the QoI (F ) is computed.

3.3.4 Differentiation w.r.t. the Design Variables

Since a gradient based RDO is used in this thesis, the gradients (∇µF , ∇σF ) of
the 1st and 2nd statistical moments must be computed as mentioned in Subsection
1.2.2. These, can be computed by differentiating the statistical moments w.r.t. the
design variables bn, as follows

∂µF
∂bn

u
∂a0

∂bn
, n = 1, 2, ..., N (3.23)

∂σF
∂bn

u
∑k

i=1 ai
∂ai
∂bn√∑k

i=1 a
2
i

=
1

σF

k∑
i=1

ai
∂ai
∂bn

, n = 1, 2, ..., N (3.24)

where the derivatives of the PCE coefficients can be computed by directly differentiating
eq. (3.22) w.r.t. to the design variables, resulting to

∂ai
∂bn

=
∂

∂bn

(∫
D

F (x,~b)p̃i(x)w(x)dx

)
=

∫
D

∂F (x,~b)

∂bn
p̃i(x)w(x)dx , i = 0, 1, ..., k

(3.25)
given that, according to the previous analysis, the QoI is dependent on a single
uncertain variable x ∈ R and many design variables comprising the design variable
vector ~b ∈ RN .

Finally, the derivatives of the robust metric FR, a.k.a. the robust SDs, can be
formulated by combining eqs. (3.23) and (3.24) with eq. (1.4) of Subsection 1.2.2

∂FR
∂bn

=
∂µF
∂bn

+ κ
∂σF
∂bn

u
∂a0

∂bn
+ κ

∑k
i=1 ai

∂ai
∂bn

σF
, n = 1, 2, ..., N (3.26)

3.3.5 Gauss Quadrature Integration

Having defined the PCE coefficients analytically in eq. (3.22), a common way
of numerically computing them, referred to as Gauss Quadrature (GQ) [32], are
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explained.

According to the base GQ integration method, the integral of a function h(x) within
a domain D can numerically be computed as the sum of NGQ terms, each term being
a product of a weight ri and a value of the function h, computed for specific values of
its variable x, referred to as Gauss nodes z′i. This definition is formulated as follows∫

D

h(x)dx =

NGQ∑
i=1

ri h(z′i) (3.27)

The greater the number of nodes, the higher the method’s accuracy and computational
cost, given that more calls of the h(x) function are needed.

Let h(x) = w(x)f(x), where w(x) denotes the probability function (defined according
to the stochastic distribution of the uncertain variable x) and f the polynomial
approximation of the QoI function F from eq. (3.1). The weights and Gauss nodes
are re-defined as ωi and zi, respectively, thus converting eq. (3.27) to

∫
D

h(x)dx =

∫
D

w(x)f(x)dx =

NGQ∑
i=1

ωi f(zi) (3.28)

For one uncertain variable, the GQ is a easy to implement and affordable method
for the integration of equations (3.22) and (3.25), partly due to the fact that
ortho-canonical polynomials are for the expansion of f(x). The roots of orthogonal
polynomials are all are simple, real and within their respective domain D, while
their number is equal to the polynomial’s degree. These roots define the Gauss
nodes zi and constitute the best possible distribution of nodes for the minimization
of the GQ method’s error [32]. Therefore, for the selected cut-off point k a.k.a. chaos
order, NGQ = k + 1 Gauss nodes are needed for maximum accuracy and the values
of the nodes zi are defined the roots of the polynomial pk+1(x). In the meantime,
the weights ωi are defined as

ωi =
Ak+1

Ak
· γk
p′k+1(zi)pk(zi)

(3.29)

where Ak the coefficient of the xk term of the orthogonal polynomial of degree k
and so on.

The probabilists’ Hermite polynomial family Hen(x) is implemented for the solution
of integrals (3.22) and (3.25). Thus the integration method takes the name Gauss
Hermite Quadrature (GHQ). This orthogonal polynomial family, differing a bit from
the physicists’ Hermite polynomial family, is thoroughly explored in Appendix B
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and simply defined as a recurring formula

Hek+1(x) = x Hek(x)− k Hek−1(x) , He0(x) = 1 and He1(x) = x (3.30)

where the coefficient of the xk term of the polynomial Hek(x) is equal to Ak = 1
and the w-norm of this family is defined as

||Hek(x)||2w = γk = 〈Hek(x), Hek(x)〉w =

∫ +∞

−∞
(Hek(x))2w(x)dx = k! (3.31)

The Hermite polynomials presented in eq. (B) correspond to the standardized
normal distribution (with µ = 0 and σ = 1). Hence, their probability density
function, from equation (3.5), assumes the form

w(x) =
1√
2π
e−

x2

2 (3.32)

According to the eq. (3.13), the probabilists’ Hermite polynomials can be converted
to an ortho-canonical through this process

H̃ek(x) =
Hek(x)

||Hek(x)||
=
Hek(x)√

k!
(3.33)

and their w-norm is formulated as follows

||H̃ek(x)||2w = 1 , ∀ k = 1, 2, ... (3.34)

causing Ak = 1/
√
k!.

Given that not every normal distribution is standardized, a specific transform must
be applied so as to convert the uncertain variable from the standardized normal
distribution z ∈ N (0, 1) to the generalized normal distribution x ∈ N (µ, σ2). This
is done through the linear transform

x− µ
σ

= z → dx = σdz (3.35)

Therefore, according to the transform (3.35), the weight function (3.5), eq. (3.22),
for i = 0, 1, ..., k assumes the analytical form

ai =

∫ +∞

−∞
F (x)H̃ei(

x− µ
σ

)w(x)dx =
1√
2π

∫ +∞

−∞
F (σz + µ)H̃ei (z) e−

z2

2 dz (3.36)
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and by implementing GHQ to numerically solve the integral (3.36), the final form
emerges

ai =

∫ +∞

−∞
F (x)H̃ei(

x− µ
σ

)w(x)dx =
k+1∑
j=1

ω
(k+1)
j F (σz

(k+1)
j + µ)H̃ei

(
z

(k+1)
j

)
(3.37)

Meanwhile, by employing the GHQ method, the integral for the computation of the
derivatives of the PCE coefficients, eq. (3.25), becomes

∂ai
∂bn

=
∂

∂bn

(∫ +∞

−∞
F (x)H̃ei(

x− µ
σ

)w(x)dx

)
=

=
k+1∑
j=1

ω
(k+1)
j

∂

∂bn

(
F (σz

(k+1)
j + µ)

)
H̃ei

(
z

(k+1)
j

) (3.38)

where the (k+1) index on the terms ωj and zj signify that they constitute solutions
of the probabilists’ Hermite polynomial Hek+1, i.e. the one of degree k + 1, where
k the selected chaos order for the niPCE method.

Additionally, the weights ωj, according to equation (3.29), can be computed as

ω
(k+1)
j =

Ak+1

Ak
· γk

H̃e
′
k+1(z

(k+1)
j )H̃ek(z

(k+1)
j )

=
1

(k + 1)H̃e
2

k(z
(k+1)
j )

(3.39)

Finally, the niPCE mean value of a QoI function F (x), for x following N (µ, σ), by
implementing the GHQ integration, is formulated as

µF = a0 =
k+1∑
j=1

ω
(k+1)
j F (σz

(k+1)
j +µ)H̃e0

(
z

(k+1)
j

)
=

k+1∑
j=1

ω
(k+1)
j F (σz

(k+1)
j +µ) (3.40)

given that H̃e0 = 1, while the respective mean value’s gradient (3.23) w.r.t. the
design variable bn is computed as

∂µF
∂bn

=
∂a0

∂bn
=

k+1∑
j=1

ω
(k+1)
j

∂

∂bn

(
F (σz

(k+1)
j + µ)

)
(3.41)

Furthermore, the niPCE standard deviation of a QoI function F (x), for x following
N (µ, σ), by implementing the GHQ integration, is formulated as

σF =

√√√√ k∑
i=1

a2
i =

√√√√ k∑
i=1

[
k+1∑
j=1

ω
(k+1)
j F (σz

(k+1)
j + µ)H̃ei

(
z

(k+1)
j

)]2

(3.42)
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while the corresponding standard deviation’s gradient eq. (3.24), w.r.t. the design
variable bn, assumes the form

∂σF
∂bn

=
1

σF

k∑
i=1

[
k+1∑
j=1

ω
(k+1)
j F (σz

(k+1)
j + µ)H̃ei

(
z

(k+1)
j

)]
·

·

[
k+1∑
j=1

ω
(k+1)
j

∂

∂bn

(
F (σz

(k+1)
j + µ)

)
H̃ei

(
z

(k+1)
j

)] (3.43)

3.4 Multi-dimensional non-intrusive PCE

In this Subsection the niPCE method is generalized for a QoI function F = F (~x)
dependent on multiple uncertain variables, constituting the uncertain variable vector
~x = [x1, x2, ..., xM ]T ∈ RM . For D1, D2, ..., DM the domain of each of the respective
components of ~x, the domain of the QoI function can be defined as

~D = D1 ×D2 × · · · ×DM (3.44)

Given that each uncertain variable xn follows a certain stochastic distribution, with
a corresponding probability density function wn(xn) , n = 1, 2, ...,M , according to
the PCE theory F can be approximated through a linear combination of polynomials
being part of the family Ψ = {ψ0(~x), ψ1(~x), ..., ψM(~x), ...}, as follows

F (~x) u f(~x) :=
∞∑
i=0

aiψi(~x) (3.45)

where ai ∈ R and f : ~D j RM −→ Y j R .

Let the multidimensional probability density function a.k.a. the product of the
aforementioned distributions wj(xj) be defined as

W (~x) =
M∏
j=1

wj(xj) = w1(x1) w2(x2) · · ·wM(xM) (3.46)

Therefore, the n-th statistical moment of the set Y is formulated

〈yn〉 =

∫
~D

(f(~x))nW (~x)d~x =

∫
~D

(
∞∑
i=0

aiψi(~x)

)n

W (~x)d~x =

=

∫
D1

∫
D2

· · ·
∫
DM

(
∞∑
i=0

aiψi(~x)

)
· · ·

(
∞∑
i=0

aiψi(~x)

)
︸ ︷︷ ︸

n times

M∏
j=1

wj(xj) dx1dx2 · · · dxM

(3.47)
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And by applying the distributive property, eq. (3.47) becomes

〈yn〉 =
∞∑
i1=0

· · ·
∞∑
in=0

ai1 · · · ain
∫
D1

· · ·
∫
DM

ψi1(~x) · · ·ψin(~x)w1(x1) · · ·wM(xM) dx1 · · · dxM

(3.48)
Again, the definition of ψi as multi-dimensional orthogonal polynomials may greatly
simplify the expressions of the statistical moments (3.48).

3.4.1 Multi-dimensional Orthogonal Polynomials

Multi-dimensional orthogonal polynomials possess the same properties with their
one-dimensional counterparts described in Subsection 3.3.1, if each polynomial psin
of order k is defined as a product of one-dimensional orthogonal pil , in such a fashion
that the sum of their degrees il is equal to the desired order k. These polynomials
assume the form

ψn(~x) = ψmkj (~x) =
M∏
l=1

pil(xl) ,
M∑
l=1

il = k (3.49)

The index mk
j is included for now and will be explained later. Thus, the simpler n

index is used to describe the degree a multi-dimensional polynomial ψ.

According to the definition of polynomials belonging in the Ψ family, given in eq.
(3.49), the Galerkin projection (inner product) of any two of these polynomials is
equal to zero, except if the two are identical. Two polynomials of the Ψ family are
identical only if all consecutive indexes il of all the polynomials pil that comprise
them are equal. This inner product between two multi-dimensional polynomials, of
degrees i and j, yields

〈ψi(~x), ψj(~x)〉W =

∫
~D

ψi(~x)ψj(~x)W (~x) d~x =

=

∫
D1

· · ·
∫
DM

M∏
l=1

pil(~xl)
M∏
l=1

pjl(~xl)
M∏
l=1

wl(~xl) dx1 · · · dxM =

=
M∏
l=1

(∫
Dl

pil(xl)pjl(xl)wl(xl)dxl

)
=

M∏
l=1

(
δjlil

∫
Dl

p2
il
(xl)wl(xl)dxl

)
=

=
M∏
l=1

(
δjlil
) ∫

D1

· · ·
∫
DM

M∏
l=1

[
p2
il
(xl)wl(xl)

]
dx1 · · · dxM =

= δji

∫
~D

M∏
l=1

(
p2
il
(xl)
)
W (~x) d~x = δji

∫
~D

(ψi(~x))2W (~x) d~x

(3.50)
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Therefore, concluding to the expression

〈ψi(~x), ψj(~x)〉W =

∫
~D

ψi(~x)ψj(~x)W (~x) d~x = 〈ψi(~x), ψi(~x)〉W δji (3.51)

Now, the Galerkin projection of two identical polynomials (i = j) of the Ψ family,
is equal to the W-norm of the ψi polynomial, which is proven by

〈ψi(~x), ψi(~x)〉W =

∫
~D

ψ2
i (~x)W (~x) d~x =

=

∫
D1

· · ·
∫
DM

M∏
l=1

p2
il
(~xl)

M∏
l=1

wl(~xl) dx1 · · · dxM =

=
M∏
l=1

(∫
Dl

p2
il
(xl)wl(xl)dxl

)
=

M∏
l=1

(
||pil(xl)||2wl

)
=

=

(
M∏
l=1

||pil(xl)||wl

)2

= ||ψi(~x)||2W

(3.52)

where the W-norm of ψi is defined as ||ψi(~x)||W =
∏M

l=1 ||pil(xl)||wl .

To summarize, eq. (3.52) is simplified to

〈ψn(~x), ψn(~x)〉W = ||ψn(~x)||2W = γn (3.53)

where
√
γn depicts the normality metric, now defined for multidimensional orthogonal

polynomials ψn. As already stated in Subsection 3.3, if γn = 1 then the ψn
polynomials are part of the ortho-canonical families, a subset of orthogonal polynomial
families. Also, if, in all expression concerning multi-dimensional orthogonal polynomials,
the number of uncertain variables is set M = 1, then the corresponding expressions
for 1D polynomials, explored in 3.3, will emerge.

In eq. (3.49) it is stated that a multi-dimensional polynomial ψ of order k, is
to a product of M 1D polynomials pil , of which the sum of their degrees il is equal
to the initial order k. There is, thus, a need to describe the different combinations
of M number of integers in which the integer k can be expanded. According to the
mathematical field of set theory and combinatrics, these combinations are referred to
as multiset of k and the greater the value of k, the greater the multiset or the number
of different combinations of integers. Specifically, number of possible combinations
is given by expression (3.54).((

M
k

))
=

(
k +M − 1

k

)
=

(k +M − 1)!

k!(M − 1)!
=
M(M + 1)(M + 2) · · · (M + k − 1)

k!
(3.54)
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Additionally the index j used in eq. 3.49, serves to classify the aforementioned
combination as follows

1 6 j 6

(
k +M − 1

k

)
(3.55)

This classification is relative and does not take into account the possible combinations
of integers with a sum smaller than the respective k.

According to combinatorics, the number of combinations of M integers with a sum
lower or equal to kmax is calculated as(

kmax +M
kmax

)
=

(kmax +M)!

k!M !
=
M(M + 1)(M + 2) · · · (M + kmax)

kmax!
(3.56)

The, aforementioned and previously not explained, index mk
j of eq. (3.49), is used

to provide an absolute classification for all possible combinations of integers, adding
up to k = 0, 1, 2, ..., kmax. This index scales as follows

0 6 mk
j 6

(kmax +M)!

kmax!M !
− 1 (3.57)

This algorithmic method of classification is known as Full Factorial Design is based
on the restriction dictating that the sum of the indexes of 1D polynomials pil
(producing the ψmkj (~x)) cannot be greater than the maximum desired chaos order

kmax. In this manner, the surplus indexes are eliminated and the right number of
combinations remain.

3.4.2 1st and 2nd Statistical Moments

At long last, now that multi-dimensional orthogonal polynomials are defined, it is
high time to apply their simplifying properties in eq. (3.48) in order to formulate
the first and second statistical moments of F (~x), without the application of any
cut-off points to the respective series, for now.

According to eq. (3.48) for n = 1, the first statistical moment, aka the mean
value, yields

µF =
〈
y1
〉

=

∫
~D

f(~x)W (~x)d~x =
∞∑
i=0

ai

∫
~D

ψi(~x)W (~x)d~x (3.58)

Given
∫
Di
w(xi)dxi = 1 ∀ i (as explained in Subsection 3.3.2), then, regardless of

the distribution, the product of them becomes∫
~D

W (~x)d~x =

∫
D1

w(x1)dx1 · · ·
∫
DM

w(xM)dxM = 1 · 1 · · · 1 = 1 (3.59)
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thus proving that the total possibility of the appearance of all phenomena is equal
to 1.

In addition, the zero degree polynomial is equal to ψ0(~x) = 1, given that is a product
of 1D unit polynomials, regardless of the stochastic distribution W (~x). Thus this
property in conjunction with the definition described in eq. (3.51) gives∫

~D

ψi(~x)W (~x)d~x =

∫
~D

ψi(~x) · 1 ·W (~x)d~x =

∫
~D

ψi(~x)ψ0(~x)W (~x)d~x = 0 ∀ i > 0

(3.60)
Therefore, by utilizing eq. (3.59) and (3.60), eq. (3.58) assumes the form

µF = a0

∫
~D

ψ0(~x)W (~x)d~x+
∞∑
i=1

ai

∫
~D

ψi(~x)W (~x)d~x =

= a0

∫
~D

1 ·W (~x)d~x =⇒ µF = a0

(3.61)

Furthermore, it is reminded that the second statistical moment is used to compute
the variance of of F . The standard deviation of a quantity, according to eq. (3.9) is
defined as the square root of its variance. Therefore, the second statistical moment
is formulated from eq. (3.48) for n = 2 as follows

〈
y2
〉

=

∫
~D

(f(~x))2W (~x)d~x =
∞∑
i1=0

∞∑
i2=0

ai1ai2

∫
~D

ψi1(~x)ψi2(~x)W (~x)d~x (3.62)

By applying the orthogonality property (3.51) and the multi-dimensional W-norm
definition (3.53), eq. (3.62) becomes

〈
y2
〉

=
∞∑
i=0

a2
i

∫
~D

ψ2
i (~x)W (~x)d~x =

∞∑
i=0

a2
i ||ψi(~x)||2W =

∞∑
i=0

a2
i γi (3.63)

The use of ortho-canonical polynomials ψ̃i(~x) gives γi = 1. This can be easily done,
by dividing the orthogonal polynomials of any family with their respective normality
metric, as stated below

ψ̃i(~x) =
ψi(~x)

||ψi(~x)||
=
ψi(~x)
√
γi

(3.64)

Thus, giving rise to the most simplified formulation for the 2nd moment:

〈
y2
〉

=
∞∑
i=0

a2
i (3.65)
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According to eq. (3.10) and (3.65), the standard deviation of F (~x) assumes the form

σF =

√√√√ ∞∑
i=0

a2
i − a2

0 =

√√√√ ∞∑
i=1

a2
i (3.66)

3.4.3 Polynomial Chaos Expansion Multi-Dimensional Co-
efficients

In the same manner as in Subsection 3.3.3, in order to compute the PCE coefficients
ai for a finite number of terms, a cut-off point must be set by the user, to the
expansion of f(~x) from (3.45). According to the previous analysis, f can be expanded

intoNcut =

(
kmax +M
kmax

)
terms, comprising all viable combinations of 1D orthogonal

polynomials, with the sum of their degrees being lesser or equal to the desired chaos
order k. The expansion of f along with, the mean value and the standard deviation
of F assume the forms

F (~x) u f(~x) =
Ncut∑
i=0

aiψ̃i(~x) (3.67)

µF u a0 (3.68)

σF u

√√√√Ncut∑
i=1

a2
i (3.69)

and the expression for the robustness metric FR for multiple uncertain variables
assumes the same form (3.19), with the one presented in Subsection 3.3.3.

The Galerkin projection of f and multi-dimensional ortho-canonical polynomials
ψ̃ is expanded in two distinct manners〈

f(~x), ψ̃i(~x)
〉
W

=

∫
~D

f(~x)ψ̃i(~x)W (~x) d~x u
∫
~D

F (~x)ψ̃i(~x)W (~x) d~x (3.70)

〈
f(~x), ψ̃i(~x)

〉
W

=

〈
N∑
l=0

alψ̃l(~x), ψ̃i(~x)

〉
W

= ai||ψ̃i(~x)||2W = ai (3.71)

Eqs. (3.70) and (3.70) are utilized to compute the niPCE coefficients ai, as follows

ai u
∫
~D

F (~x)ψ̃i(~x)W (~x) d~x , i = 1, 2, ..., N (3.72)

It is reminded that, in this thesis, all uncertain variables follow normal distributions.
Therefore, their corresponding probabilists’ Hermite polynomials are implemented,
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in their canonical form (H̃e). Consequently, the approximate polynomial expansion
of the QoI function, for M uncertain variables xl, each with their respective mean
value µl and standard deviation σl for l = 1, 2, ...,M , becomes

F (~x) u
Ncut∑
i=0

(
ai

M∏
l=1

H̃eil

(
xl − µl
σl

))
(3.73)

For M uncertain variables following standardized normal distributions N (with µ =
0 and σ = 1), the multidimensional probability density function, according to (3.46)
and (3.32), is formulated as

WHe(~x) =
M∏
j=1

1√
2π
e−

x2j
2 =

1

(2π)
M
2

· e−
1
2

∑M
j=1 x

2
j (3.74)

Additionally, given that the Hermite polynomials’ domain is D = [−∞,+∞] and
that all uncertain variables follow a standardized normal distribution, the analytical
expression for the niPCE coefficients ai become

ai =
1

(2π)
M
2

∫ +∞

−∞

∫ +∞

−∞
· · ·
∫ +∞

−∞
F (~x)ψ̃i(~x)e−

∑M
j=1 x

2
j

2 dx1dx2 · · · dxM (3.75)

On the other hand, according to eq. (3.5), when each of the M uncertain variables
follows a generalized normal distribution (xj ∈ N (µj, σ

2
j ) , j = 1, 2, ...,M), the the

generalized analytical expression for the coefficients formulates as

ai =

∫ +∞

−∞

∫ +∞

−∞
· · ·
∫ +∞

−∞
F (~x)ψ̃i(~z)

 M∏
j=1

e−
z2j
2

σj
√

2π

 dx1dx2 · · · dxM (3.76)

where each component of the vector ~z ∈ RM is defined, in order to denote the linear
transform between generalized xj and standardized zj normal distributions, as

zj =
xj − µj
σj

, j = 1, 2, ...,M (3.77)

3.4.4 Differentiation w.r.t. the Design Variables

The derivatives of the 1st and 2nd statistical moments w.r.t. the design variables
(bn , n = 1, 2, ..., N), for the multiple uncertain variables (xj , j = 1, 2, ...,M), are
formulated as

∂µF
∂bn

u
∂a0

∂bn
, n = 1, 2, ..., N (3.78)
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∂σF
∂bn

u
∑Ncut

i=1 ai
∂ai
∂bn√∑Ncut

i=1 a2
i

=
1

σF

Ncut∑
i=1

ai
∂ai
∂bn

, n = 1, 2, ..., N (3.79)

Given that the QoI function is also dependent upon the design variables F = F (~b, ~x),
the derivatives of the PCE coefficients can be computed by directly differentiating
eq. (3.76) w.r.t. to the design variables, resulting to

∂ai
∂bn

=
∂

∂bn

∫ +∞

−∞

∫ +∞

−∞
· · ·
∫ +∞

−∞
F (~b, ~x)ψ̃i(~z)

 M∏
j=1

e−
z2j
2

σj
√

2π

 dx1dx2 · · · dxM

 =

=

∫ +∞

−∞

∫ +∞

−∞
· · ·
∫ +∞

−∞

∂F (~b, ~x)

∂bn
ψ̃i(~z)

 M∏
j=1

e−
z2j
2

σj
√

2π

 dx1dx2 · · · dxM , i = 1, 2, ..., Ncut

(3.80)

The derivatives of the robust metric FR = FR(~b, ~x), a.k.a. the robust SDs, can be
formulated by combining eqs. (3.78) and (3.79) with eq. (1.4), as

∂FR
∂bn

=
∂µF
∂bn

+ κ
∂σF
∂bn

u
∂a0

∂bn
+ κ

∑Ncut
i=1 ai

∂ai
∂bn

σF
, n = 1, 2, ..., N (3.81)

3.4.5 Cubature Integration

The numerical solution of the integrals in eqs. (3.76) and (3.80) is achieved through
the Gauss Quadrature, a method a.k.a. Cubature when implemented in multi-dimensional
integrals.

This method is defined in a similar manner with the definition used for simple
integrals eq. (3.28), in Subection 3.3.5. For a function h(~x) = W (~x)f(~x) ∈ R, its
Cubature integration is formulated as∫

~D

h(~x)d~x =

∫
~D

W (~x)f(~x)dx =

NGQ∑
j=1

Ωj f(~zj) (3.82)

where Ωj =
∏M

l=1 ωjl indicates the weight product corresponding to a certain Gauss
Node combination ~zj = [zj1 , zj2 , ..., zjM ].

The numerical solution of the integral in eq. (3.82), requires all possible Gauss
Node combinations in all dimensions present in the ~zj vector. This means that
the f function has to be computed for NGQ number of combinations, given that
j ∈ [1, NGQ], thus directly affecting the method’s computational cost. The sum of
all Gauss Nodes, for the solution of integral (3.82), is referred to as Full Grid.
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In Subsection 3.3.5, it is stated that when implementing the GQ method for the
computation of the niPCE coefficients ai and their derivatives, the number of Gauss
Nodes needed for the simple integrals is dependent on the chaos order k and is equal
to k + 1. Generalizing the aforementioned statement, for M-dimensional integrals
the number of Gauss Nodes as well as the number of the F functions calls in eqs.
(3.76) and (3.80) are equal to (k + 1)M . Therefore, the computational cost of the
niPCE method using Full Grid GQ integration scales exponentially with the number
M of uncertain variables that are taken into account. The exponential scaling of
the number of nodes needed for the numerical solution of an integral, w.r.t. the
number of its dimensions, is known as curse of dimensionality. This property of
numerical integration has to be taken into account for problems with a large number
of uncertain variables, given that a Full Grid integration can lead to a practically
unfeasible implementation, due to its great computational and clock-time cost. The
way the curse of dimensionality has an impact on the CPU cost of niPCE coefficients
computation is displayed in Table 3.1.

M

k 1 2 3 4 5 6

0 1 1 1 1 1 1

1 2 4 8 16 32 64

2 3 9 27 81 243 729

3 4 16 64 256 1024 4096

4 5 25 125 625 3125 15625

5 6 36 216 1296 7776 46656

Table 3.1: QoI function calls for the computation of niPCE coefficients through
use of Full Grid GQ numerical integration, for different values of chaos order k and
uncertain variables M . The scaling of the function call with the number of uncertain
variables, a.k.a. the number of dimensions in the integral, is exponential, following the
(k + 1)M rule.

Nevertheless, the use of Full Grid GQ integration, alongside with the employment
of multi-dimensional canonical Hermite polynomials ψ̃ for the solution of eqs. (3.76)
and (3.80) yields

ai =
k+1∑
j1=1

k+1∑
j2=1

· · ·
k+1∑
jM=1

(
M∏
l=1

ωjl

)
F (~b, xj1 , xj2 , ..., xjM ) ψ̃i(zj1 , zj2 , ..., zjM ) (3.83)
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∂ai
∂bn

=
k+1∑
j1=1

k+1∑
j2=1

· · ·
k+1∑
jM=1

(
M∏
l=1

ωjl

)
∂F (~b, xj1 , xj2 , ..., xjM )

∂bn
ψ̃i(zj1 , zj2 , ..., zjM ) (3.84)

where zjl the Gauss Nodes, computed as the roots of the ψ̃k+1 polynomials, ωjl their
corresponding weights (more data in Appendix B) and zjl are defined as

xjl = σl · zjl + µl , jl = 1, 2, ..., k + 1 and l = 1, 2, ...,M (3.85)

To conclude, through Full Grid GHQ integration, the niPCE mean value of F
assumes the form

µF = a0 =
k+1∑
j1=1

k+1∑
j2=1

· · ·
k+1∑
jM=1

(
M∏
l=1

ωjl

)
F (~b, xj1 , xj2 , ..., xjM ) ψ̃0(zj1 , zj2 , ..., zjM )

(3.86)
while its derivatives w.r.t. the design variables bn becomes

∂µF
∂bn

=
∂a0

∂bn
=

k+1∑
j1=1

k+1∑
j2=1

· · ·
k+1∑
jM=1

(
M∏
l=1

ωjl

)
∂F (~b, xj1 , xj2 , ..., xjM )

∂bn
ψ̃0(zj1 , zj2 , ..., zjM )

(3.87)
Meanwhile, the computation of the niPCE standard deviation of F , by makinguse
of the Full Grid GHQ integration, yields

σF =

√√√√Ncut∑
i=1

a2
i =

=

√√√√Ncut∑
i=1

[
k+1∑
j1=1

k+1∑
j2=1

· · ·
k+1∑
jM=1

(
M∏
l=1

ωjl

)
F (~b, xj1 , xj2 , ..., xjM ) ψ̃i(zj1 , zj2 , ..., zjM )

]2

(3.88)

and its derivatives w.r.t. the design variables are formulated as

∂σF
∂bn

=
1

σF

Ncut∑
i=1

ai
∂ai
∂bn

=

=
1

σF

Ncut∑
i=1

[
k+1∑
j1=1

k+1∑
j2=1

· · ·
k+1∑
jM=1

(
M∏
l=1

ωjl

)
F (~b, xj1 , xj2 , ..., xjM ) ψ̃i(zj1 , zj2 , ..., zjM )

]
·

·

[
k+1∑
j1=1

k+1∑
j2=1

· · ·
k+1∑
jM=1

(
M∏
l=1

ωjl

)
∂F (~b, xj1 , xj2 , ..., xjM )

∂bn
ψ̃i(zj1 , zj2 , ..., zjM )

]
(3.89)
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where the number of niPCE coefficients is given by the expression

Ncut =

(
k +M
k

)
=
M(M + 1)(M + 2) · · · (M + k)

k!
(3.90)

3.4.6 Smolyak Sparse Grid Integration

In this Subsection, a less costly method under certain circumstances, is introduced,
for the numerical computation of the integrals, present in niPCE coefficients and
their derivatives ((3.76) and (3.80), respectively).

Up until now, these integrals where computed by employing the GHQ method,
while using all (k+ 1)M Gauss Nodes for the integration. These nodes are the roots
zjl of the multi-dimensional Hermite polynomials ψ(~zj), which are products of 1D
Hermite polynomials Hejl(zjl), of degree jl. The amount of different combinations
of degrees, and therefore roots, is equal to (k + 1)M , given that:

jl = 1, 2, ..., k + 1 ∀ l = 1, 2...,M

This set of nodes used for the GQ method is referred to as Full Grid GQ integration.
According to Table 3.1, the curse of dimensionality, makes the implementation of
Full Grid integration practically impossible for problems with a large number of
uncertain variables (M ≥ 4).

The Smolyak Sparse Grids [33] first proposed by Smolyak in 1963, so as to circumvent
the curse of dimensionality in GQ integration, by requiring a smaller number of
Gauss Nodes for the computation of the integral. Consequently, when applied in UQ
or RDO problems, less calls to the QoI function F are needed (an action synonymous
with the costly solution of either only the primal problem, if UQ is preformed, or
also of the adjoint problem, if RDO takes place), leading to a reduced computational
cost. The real advantage of the Smolyak Grids lies, especially in problems with a
large number of uncertain variables M , given that, with this method, the integrals
can be computed with a slightly reduced accuracy, but, on the other hand, with a
far lesser number of Gauss Nodes and therefore for an inferior cost.

Nevertheless, the Smolyak Grids are not introduced in this work, so as to totally
replace the Full Grid GQ integration. Their use is, mainly, to complete the GQ
integration method as a whole, by switching between one method, when the other
yields an unfeasible computational cost.

That said, the process needed for the creation of Smolyak Sparse grid for a specific
M -dimensional integral, is the following:

1. For the selected chaos order k (the higher its value, the higher the accuracy
along with the cost), the possible combinations of polynomial degrees jl, also
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culminating to the number NSM of Gauss Nodes of the grid, have to fullfill
the criterion

M ≤
M∑
l=1

jl ≤M + k (3.91)

The addition of definitions |j| =
∑M

l=1 jl and M +K = q to (3.91), yield

M ≤ |j| ≤ q (3.92)

According to criterion (3.92), the span of each of the degrees jl is defined as

j1 = 1, ..., d1

j2 = 1, ..., d2

· · ·
· · ·
· · ·

jM = 1, ..., dM


(3.93)

where the product of maximum degrees yields the total number of nodes
NSM =

∏M
l=1 dl = d1 d2 · · · dM .

2. The Full Grid GQ weights ωjl of the orthogonal polynomials defined in (3.82)
of Subsection 3.4.5, are utilized to produce the Smolyak redefined weights
Wn ∀ n = 1, 2, ..., NSM , as follows

Ωn = (−1)q−|j|
(
M − 1
q − |j|

) M∏
l=1

ωjl (3.94)

3. The integral is computed with a Sparse Grid of Gauss Nodes as∫
~D

f(~x) d~x =

NSM∑
n=1

Ωnf(~zn) =

=

d1∑
j1=1

d2∑
j2=1

· · ·
dM∑
jM=1

[
(−1)q−|j|

(
M − 1
q − |j|

) M∏
l=1

ωjl

]
f(zj1 , zj2 , ..., zjM )

(3.95)

According to step 2, the amount of nodes used both in Full and Sparse grids are
displayed in Table 3.2, on order to fully understand the capabilities and shortcomings
of the two methods. It is clear, that the Full Grid has a smaller implementation
costand is therefore a better choice for M = 1, 2, 3 ∀ k. For M = 4 the cost of the
two methods is in the same order of magnitude, giving the ability to both methods
interchangeably. On the other hand, for a greater number dimensions, the cost of
the Full Grid integration, for any value of k > 1, is a least an order of magnitude
greater than the respective cost of Sparse grid integration.
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Full Grid / Smolyak Sparse Grid

M

k 1 2 3 4 5 6

0 1/1 1/1 1/1 1/1 1/1 1/1

1 2/3 4/5 8/7 16/9 32/11 64/13

2 3/5 9/13 27/25 81/41 243/61 729/85

3 4/9 16/29 64/69 256/137 1024/241 4096/389

4 5/17 25/65 125/177 625/401 3125/801 15625/1457

5 6/33 36/145 216/441 1296/1105 7776/2433 46656/4865

Table 3.2: Gauss Nodes for the computation of niPCE coefficients through use of
Full Grid and Smolyak Sparse grid GQ numerical integration, for different values of
chaos order k and uncertain variables M .

Finally, the implementation of Smolyak Sparse grid GHQ integration, for the computation
of the niPCE coefficients ai from (3.76), yields

ai =

d1∑
j1=1

· · ·
dM∑
jM=1

[
(−1)q−|j|

(
M − 1
q − |j|

) M∏
l=1

ωjl

]
F (~b, xj1 , ..., xjM ) ψ̃i(zj1 , ..., zjM )

(3.96)
while for the derivatives of ai w.r.t. the design variables bn

∂ai
∂bn

=

d1∑
j1=1

· · ·
dM∑
jM=1

[
(−1)q−|j|

(
M − 1
q − |j|

) M∏
l=1

ωjl

]
∂F (~b, xj1 , ..., xjM )

∂bn
ψ̃i(zj1 , ..., zjM )

(3.97)
where ~zj = (zj1 , zj2 , ..., zjM ) the Gauss Nodes, q = M + k, while

xjl = σl · zjl + µl and |j| =
M∑
l=1

jl

Finally, from eqs. (3.96) and (3.97), the mean value and standard deviation of F ,
as well as their derivatives, are formulated accordingly, using the same strategy as
the one followed in Subsection 3.4.5.
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Chapter 4

Modeling of Manufacturing
Imperfections

The mathematical formulation of the stochastic processes used to model the inevitable
shape imperfections generated on mechanical parts during the manufacturing procedure,
is presented in this chapter.

4.1 Karhunen-Loève Transform

During the manufacturing of mechanical parts, the occurrence of a certain differentiation
between the shapes of the designed and the finished product is generally expected.
The stochasticity of the manufacturing process, such as the quality degradation of
cutting tools, is largely responsible for such occurrences. This phenomena appears,
for example, during the large-scale production of lifting bodies such as aircraft
wings, hydrofoils or turbomachinery blades. The shape differentiation of the finished
product when compared with the original design must respect the tolerances specified
by the manufacturer, otherwise the product is deemed a failure and be disposed. Yet,
even if the imperfections do not overstep their specified tolerance boundaries, these
have a non-trivial impact on the aerodynamic performance of the manufactured
lifting body.

In this diploma thesis, the mathematical tool used to model these imperfections
is known as the Karhunen-Loève Transform (KLT) [34, 35, 36, 37, 38]. The KLT
comprises a stochastic process used over a finite space or time span.

4.1.1 Karhunen-Loève Expansion

The Karhunen-Loève Expansion (KLE) is used to compute stochastic perturbations
on the surface of an imperfect part. This perturbation E(s) is expanded into an
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orthogonal set of deterministic functions fn(s) according to the following formula

E(s) =
∞∑
n=1

√
λncnfn(s) (4.1)

where s indicates the dimensional curvilinear coordinate of the shape in question,
cn indicates a set of random variables to be determined and λn indicates some
constants, yet to be defined.

In eq. (4.1), the probabilistic
√
λncn and deterministic fn(s) parts of the expansion,

must be considered separately.

In order to recreate a randomly generated imperfect shape realization X(s,~c), the
perturbation expansion w(s) is superimposed on the nominal shape X̄(s) in the
direction of the surface normal vector. Specifically in the case of 2D aerodynamic
bodies, such as airfoils, the perturbation is superimposed on the mean nominal airfoil
geometry X̄(s) using the following equation

X(s,~c) = X̄(s) + E(s)~n(s) = X̄(s) +
∞∑
n=1

√
λncnfn(s)~n(s) (4.2)

where s ∈ [0, smax] and smax is defined as the total length of the contour of the shape
under consideration (in this case an airfoil), whereas ~n(s) indicates the surface unit
normal vector.

4.1.2 Covariance Kernel

It is essential to explain and define the statistical moments that describe the stochastic
perturbation process described in eq. (4.1). Evidently, the process has zero mean
due to the fact the mean nominal geometry is included in eq. (4.2). However, the
variance off all the possible of the expansion E(s), from eq. (4.1), can be modeled
through the covariance kernel or covariance function.

By definition of the covariance function is bounded, symmetric and positive definite
[35]. Thus, it has the spectral decomposition [37, 38]

C(s1, s2) =
∞∑
n=1

λnfn(s1)fn(s2) (4.3)

The type of covariance function used in the KLT process greatly impacts the eigenvalues
and the mathematical formulation of the eigenfunctions used to describe the stochastic
perturbations of eq. (4.2). In this thesis, the covariance kernel used to generate the
imperfections of 2D shapes is exponential [34, 35, 36, 37] and is represented by the
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formula
C(s1, s2) = σ2e−

|s1−s2|
l (4.4)

where s1, s2 ∈ [0, smax] represent positions on the airfoil profile and l indicates the
correlation length, which in return, describes the frequency of the perturbations.
The σ parameter is known as the standard deviation of the perturbations and is a
user-defined dimensional parameter that serves to scale the absolute magnitude of
the perturbations. The value of this parameter has no physical significance, as the
scaling of the perturbations can be achieved also through the range or the statistical
moments that define the distribution of the uncertain variables cn. For this thesis,
given that the standard deviation of the imperfections is not defined, its value is
assumed to be σ = 1 and can, therefore, be practically omitted.

The eigenvalues λn and the eigenfunctions fn used in the KLE model eq. (4.2),
are obtained by solving the following integral equation∫

D

C(s1, s2)fn(s2)ds2 = λnfn(s1) (4.5)

where D indicates the domain where the coordinates s1, s2 are defined.

Due to the fact that the covariance kernel has the properties mentioned above,
the eigenvalues and eigenfunctions that consist the solution of the integral eq. (4.5)
have the following properties [35]:

� The set of eigenfunctions is orthogonal and complete. The eigenfunctions can
be normalized in the sense ∫

D

fn(s)fm(s)ds = δmn (4.6)

where δmn is the Kronecker delta.

� Each eigenvalue corresponds to a finite number of linearly independent eigenfunctions,
at most. In the present case of exponential kernels, each eigenvalue corresponds
to a single eigenfunction.

� There are at most a countably infinite number of eigenvalues.

� All eigenvalues are positive real numbers.

� Every covariance kernel admits to the uniformly convergent expansion of eq.
(4.3)
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In the case of the exponential kernel (4.4) and of a non-symmetric interval D =
[a, b] , a, b ∈ R for which s1, s2 ∈ D, the integral eq. (4.5) takes the following form∫ b

a

σ2e−
|s1−s2|

l fn(s2)ds2 = λnfn(s1) (4.7)

Since the correlation length l, meaning the frequency of the manufacturing imperfections,
is a value difficult to define even by the manufacturer, for the purpose of shape
imperfections modeling, it is often assumed that l = |a − b| = b − a. Especially
in the case of aerodynamic bodies, for which the limits of the interval D are often
defined as a = 0 and b = smax, the correlation length is, therefore, defined as l = smax
(with accordance to the previous assumption).

4.1.3 Solution of the Integral Equation

At this point, it would be useful to specify the known and unknown data of the
KLT process. Whenever a new nominal geometry is introduced, in order to create
an imperfect realisation of it, the contour smax of the nominal geometry is computed.
Thus, the range of the variables s1, s2 and, consequently, the interval D = [a, b] of the
integral eq. (4.7) can be defined. In addition, if no more empirical data are available,
the correlation length l and the standard deviation σ can be defined, respectively, in
consonance with the assumptions mentioned in Subsection 4.1.2. Finally, the vector
of uncertain variables ~c must be designated either by a random number generator
or by a specific process such as niPCE if, for example, UQ must be performed.

Once all the above parameters are known, we can proceed to the analytical solution
of eq. (4.7), so as to calculate the needed eigenvalues and eigenfunctions. Equation
(4.7) can be written in the following form∫ s1

a

σ2e−
s1−s2
l fn(s2)ds2 +

∫ b

s1

σ2e
s1−s2
l fn(s2)ds2 = λnfn(s1) (4.8)

Differentiating eq. (4.8) w.r.t. s1 ∈ [a, b] and applying the Leibniz integral rule gives

− σ2

l

∫ s1

a

e
s2−s1
l fn(s2)ds2 +

∂s1

∂s1

σ2f(s1) +
σ2

l

∫ b

s1

e
s1−s2
l fn(s2)ds2 −

∂s1

∂s1

σ2f(s1) = λn
dfn(s1)

ds1

⇒ −
∫ s1

a

e
s2−s1
l fn(s2)ds2 +

∫ b

s1

e
s1−s2
l fn(s2)ds2 =

lλn
σ2

dfn(s1)

ds1

(4.9)
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Differentiating eq. (4.9) again w.r.t. s1 and using again the Leibniz rule yields

1

l

∫ s1

a

e
s2−s1
l fn(s2)ds2 −

∂s1

∂s1

f(s1) +
1

l

∫ b

s1

e
s1−s2
l fn(s2)ds2 −

∂s1

∂s1

f(s1) =
lλn
σ2

df 2
n(s1)

ds2
1

⇒ −
∫ s1

a

e
s2−s1
l fn(s2)ds2 +

∫ b

s1

e
s1−s2
l fn(s2)ds2 − 2lf(s1) =

l2λn
σ2

df 2
n(s1)

ds2
1

(4.10)

After rearranging and replacing eq. (4.8) into eq. (4.10), the following differential
equation is obtained

λn
d2fn(s1)

ds2
1

= (
−2σ2l + λn

l2
)fn(s1) (4.11)

By defining the new variable ωn as

ωn =
2σ2l − λn
l2λn

> 0 (4.12)

and, hence, the eigenvalues [37] can be calculated by

λn = σ2 2l

1 + (ωnl)2
> 0 (4.13)

By setting s1 = s, eq. (4.11) assumes the following form

d2fn(s)

ds2
+ ω2

nfn(s) = 0 , a ≤ s ≤ b (4.14)

To find the boundary conditions of the differential eqs. (4.14), (4.8) and (4.9) are
evaluated at the integral boundaries, at s = a and s = b. Therefore, the boundary
conditions become 

fn(a)− l dfn(a)
ds

= 0

fn(b) + l dfn(b)
ds

= 0

(4.15)

Furthermore, eq. (4.14) has four distinct solution forms [36]:

1. λn = 0

2. 0 < λn < 2σ2l

3. λn = 2σ2l

4. λn > 2σ2l

For case (1), if λn = 0 then, according to eq. (4.12), ωn is ill defined, due to division
by zero.
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For case (2), if 0 < λn < 2σ2l then

2σl − λn > 0 ⇒ ωn =
2σ2l − λn
l2λn

> 0 (4.16)

which respects the definition of ωn, according to eq. (4.12).

For case (3), if λn = 2σ2l then ωn = 0 which violates the definition of ωn, according
to eq. (4.12).

For case (4), if λn > 2σ2l > 0 then

2σ2l − λn < 0 ⇒ ωn =
2σ2l − λn
l2λn

< 0 (4.17)

which again violates the definition of ωn, according to eq. (4.12).

Thus, integral eq. (4.7) cannot be satisfied for the cases (1), (3) and (4).

For 0 < λn < 2σ2l, it is assumed that the solution can be given by

fn(s) = c1 cos

[
ωn

(
s− a+ b

2

)]
+ c2 sin

[
ωn

(
s− a+ b

2

)]
(4.18)

where c1, c2 ∈ R to be defined.

By substituting the eq. (4.18) into the boundary conditions (4.15), the following
equations are formulated

c1[1− ωnl tan(ωn
b−a

2
)]− c2[tan(ωn

b−a
2

) + ωnl] = 0

c1[1− ωnl tan(ωn
b−a

2
)] + c2[tan(ωn

b−a
2

) + ωnl] = 0
(4.19)

Non-trivial solutions can be achieved only when the determinant J of the homogeneous
system (4.19) is equal to zero [35]. Meaning that, if J 6= 0, then the inevitable
solution of eqs. (4.19) is c1 = c2 = 0 Thus, J takes the following form

J = 2[ωnl + (1− (ωnl)
2) tan(ωn

b− a
2

)− ωnl tan2(ωn
b− a

2
)] ⇒

J = 2[ωnl + tan(ωn
b− a

2
)][1− ωnl tan(ωn

b− a
2

)] = 0

(4.20)
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By setting the determinant of eq. (4.20), to zero and after rearranging, the following
transcendental equations [34] are derived

ωnl + tan(ωn
b−a

2
) = 0

1− ωnl tan(ωn
b−a

2
) = 0

(4.21)

For n being an even number, the value of ωn > 0 is given by the ordered solution to
the transcendental equation

ωnl + tan(ωn
b− a

2
) = 0 (4.22)

and for n being an odd number, the value of ωn > 0 is given by solving the
transcendental equation

1− ωnl tan(ωn
b− a

2
) = 0 (4.23)

At this point, the first 20 eigenvalues λn are computed through the solution of the
transcendental equations (4.22),(4.23) by making use of eq. (4.13) and are plotted
in Figure 4.1 for different values of input parameters a, b, σ, l.

So, for n even

c2 =
ωnl + tan(ωn

b−a
2

)

1− ωnl tan(ωn
b−a

2
)
c1 = 0 and fn(s) = c1 cos

(
ωn(s− a+ b

2
)

)
(4.24)

Also, for n odd

c1 =
1− ωnl tan(ωn

b−a
2

)

ωnl + tan(ωn
b−a

2
)
c2 = 0 and fn(s) = c2 sin

(
ωn(s− a+ b

2
)

)
(4.25)

Furthermore, c1, c2 can be computed using the orthogonality eq. (4.6) of the eigenfunctions

For n even : c2
1

∫ b

a

cos2

(
ωn(s− a+ b

2
)

)
ds = 1 ⇒ c1 =

1√
b−a

2
+ sin(ωn(b−a))

2ωn

(4.26)

For n odd : c2
2

∫ b

a

sin2

(
ωn(s− a+ b

2
)

)
ds = 1 ⇒ c2 =

1√
b−a

2
− sin(ωn(b−a))

2ωn

(4.27)
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Figure 4.1: KLT eigenvalue decay for the exponential kernel of eq. (4.4) and, also,
for σ = 1, a = 0 and b = l = 1, 2, 3.

To summarize, the eigenfunctions [34] are determined by the following formula

fn(s) =


cos(ωn(s−a+b

2
))√

b−a
2

+
sin(ωn(b−a))

2ωn

, for n even

sin(ωn(s−a+b
2

))√
b−a
2
− sin(ωn(b−a))

2ωn

, for n odd

(4.28)

By making use of eq. (4.28), the first six eigenfunctions are computed and plotted
in Figure 4.2, for s ∈ [0, 1].

4.1.4 KLT Algorithmic Formulation

Now that the mathematical formulation the Karhunen-Loève Transform has been
fully defined, it is possible to describe the algorithmic steps needed to compute a
random imperfect realization of a 2D geometry.

First and foremost, the nominal 2D geometry must be given in the form of either
a number of discrete coordinate points or a function of s. Either way, this input
defines the variable X̄(s) in eq. (4.2). Subsequently, the contour smax of the nominal
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Figure 4.2: First six KLT eigenfunctions for the exponential kernel (4.4) and, also,
for s ∈ [a, b] = [0, 1], b = l and σ = 1.

geometry and, thus, the interval D = [0, smax] of the integral eq. (4.7) is computed,
under the assumption that the covariance kernel as the one in (4.4), is employed. If
no more data is shared by the designer or the manufacturer of the geometry, then
the correlation length can be assumed l = smax (according to the assumptions made
in Subsection 4.1.2).

Once all this is defined, the algorithm, implementing the KLT to generate an
imperfect geometry, can be described by the following steps:

1. Analytical or numerical solving of the transcendental equations (4.21) for a
vast range of the variable ωn > 0, in order to find a finite number of eigenvalues
λn, by making use of eq. (4.13).

2. Specifying the number of the first eigenvalues and their respective eigenfunctions
that is included in the KLE of eq. (4.1), according to either a predefined
criterion or via other ad-hoc methods.

3. Computation of the surface unit normal vectors ~n via an analytical or a
numerical method, depending on the description method for the nominal
geometry.

4. Randomizing the values of the KLT uncertain variable vector ~c, by means of
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a random number generator. The dimension of ~c was defined in Step 2 and is
equal to the number of eigenvalues included in the KLE.

5. Computation of the random geometry perturbation through the KLE formulas
and superimposition of this perturbation on the nominal geometry, according
to eq. (4.29)

Steps 4 and 5 can be repeated independently within a loop, so as to compute more
than one random imperfect 2D geometries.

4.2 KLT Applications

4.2.1 Flat Plate

First, the KLT process is applied on a flat plate, for simplicity reasons, in order
to understand the basic functions of the process on a plain 2D geometry. To put
it simply, the KLE perturbations are superimposed on the a straight line, in the
direction perpendicular to it, hence, creating a number of oscillating continuous
lines.

The parameters of the applications are defined simply, by using all assumptions
mentioned in Section 4.1. Therefore, for a flat plate of 1 meter in length, with no
curvature and parallel to the x-axis of the Cartesian coordinate system the KLT
parameters are set as s ≡ x ∈ [a, b] = [0, 1] m, l = b = 1 m and σ = 1 m.
The input file, containing the plate’s equally spaced coordinates, is comprised by
100 coordinate points, meaning that the discretization step of the plate is equal to
∆s = ∆x = 0.01m.

For the implementation of KLT on the flat plate, an algorithm that can apply
the KLE on a 2D geometry is developed in C++. According to the transform’s
properties presented in Subsection 4.1.2 the solution of the integral eq. (4.5) can
produce at most an infinite number of eigenvalues and their respective eigenfunctions.
It is self-evident that an algorithm must use a finite number of eigenvalues in order
to compute the KLE of the imperfections (4.1). Thus, the question of how many
modes should be used during the KLT process has arisen. Given that, an acceptable
number M ∈ N (as defined in eq. (4.29)) of eigenvalues and eigenfunctions to be
included in the KLE is not pre-determined, a parametric analysis is w.r.t. M taking
place. The value of the cut-off point M , simultaneously, determines the dimension
of the vector of uncertain variables cn, n ∈ [0,M ] needed for the process. For
this application and the next (see in Subsection 4.2.2), the values of the uncertain
variables cn are produced by the pseudo random number generator rand(), of C++.
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Here, eq. (4.2) is rewritten with defined cut-off point M :

X(s,~c) = X̄(s) +
M∑
n=1

√
λncnfn(s)~n(s) (4.29)

The purpose of the parametric analysis is to better understand the effect that the
value of M has on the shape of the imperfect realizations of the nominal geometry.
Seven imperfect realization of the flat plate are generated, each time for 5, 10 and
20 modes included in the KLE, thus, M is assuming the values 5, 10, and 20,
accordingly.

The maximum magnitude of the perturbations in flat plate KLT imperfect renderings
is purposely set as 50% of the initial plate’s length, for display reason, given that the
complexity of the perturbation’s osculation is of interest here and not its magnitude.

The imperfect plates computed by including the 5, 10 and 20 first eigenvalues and
their corresponding eigenfunctions in the KLE modeling the perturbations can be
found in Figures 4.3, 4.4 and 4.5, respectively.

Figure 4.3: The nominal flat plate (black) and seven imperfect realizations of it
(other colors), generated through KLT by including the first 5 modes (M = 5) and
plotted in scale.
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Figure 4.4: The nominal flat plate (black) and seven imperfect realizations of it
(other colors), generated through KLT by including the first 10 modes (M = 10) and
plotted in scale.

Figure 4.5: The nominal flat plate (black) and seven imperfect realizations of it
(other colors), generated through KLT by including the first 20 modes (M = 20) and
plotted in scale.

As expected, the random imperfect realizations of the flat plate get more complex
as more modes are included in the KLE. This observation contradicts the fact of
eigenvalue decay, as stated previously in Figure 4.1. To be more precise and to
further strengthen this point, for this application, the sum of the first 5, 10 and 20
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eigenvalues are presented as a percentage of the sum of all calculated eigenvalues, in
Table 4.1. Yet, as we progress from Figures 4.3 to 4.5, it is clear that the increase
of M causes the imperfect lines to be become more oscillated, given that more and
more high frequency eigenfunctions (Figure 4.2) are added to the expansion that
simulates the imperfections.

Number of Modes (M)
∑M

n=1 λn/
∑

n λn

5 98.15 %

10 99.25 %

20 99.68 %

Table 4.1: Sum of the first KLT eigenvalues of the flat plate, for M = 5, 10, 20.

4.2.2 NACA 0012 Airfoil

The KLT process is, now, applied on a 2D aerodynamic body, such as an airfoil, in
order to showcase the capabilities of the process in recreating a number of stochastic
imperfect realizations of the said body, thus, simulating the final manufactured
product. The KLT is implemented on the NACA 0012 airfoil and, thus, the parameters
of the process must be defined.

The domain of the integral eq. (4.5) is defined as D = [0, smax], where smax =
2.03918 m represents the perimeter of a NACA 0012 airfoil with a unit chord. The
correlation length of the covariance kernel is set l = smax. In addition, the number
d of eigenvalues and corresponding eigenfunctions that are used in the KLE to form
the stochastic perturbations must be defined. After some attempts on different
airfoils it can be assumed that only the first five eigenvalues and eigenvalues might
be sufficient, given that the following criterion is satisfied with 5 modes, in most
cases. ∑M

n=1 λn∑
n λn

≥ 0.96 (4.30)

Specifically, for the NACA 0012 airfoil, the sum of the first five eigenvalues consists
the 97.26 % of the sum of all calculated eigenvalues. Consequently, to define each
imperfect airfoil, five uncertain variables cn are needed.

Therefore, for this application, eq. (4.29) assumes the following form

X(s,~c) = X̄(s) +
M=5∑
n=1

√
λncnfn(s)~n(s) (4.31)

For the implementation of KLT on a specified airfoil, the same software as the one
mentioned in Subsection 4.2.1 is used. A similar algorithm is coupled with the
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niPCE in-house code developed by the PCOpt/NTUA in FORTRAN and used in
later stages of this diploma thesis, so as to perform UQ [3] and aerodynamic RDO
w.r.t. manufacturing imperfections. The input file, that describes the NACA 0012
profile, contains 200 coordinate points.

For this application only, the standard deviation of the perturbations σ of the
covariance kernel (4.4) is replaced by a different parameter that serves to define the
maximum absolute magnitude of the KLE perturbation (4.1), so as to simulate the
equivalent manufacturing tolerance of the lifting body. Thus, this new parameter
renders parameter σ obsolete, given its only actual purpose is to scale the KLE
perturbations (4.1). Nevertheless, this post-processing is bypassed, in later use of
this software (for the purposes of UQ and RDO), considering that the magnitude
of the perturbations are dictated by the statistical moments defining the uncertain
variables. For this application, the maximum imperfection magnitude is assumed,
arbitrarily, to be the 0.3 % of the airfoil’s chord length.

Additionally, a Hann-like weighted cosine function, such as those used in signal
processing, is optionally utilized to damp the KLE perturbation close to the trailing
edge of the airfoil. In this application, this post-processing is required to keep the
trailing edge coordinates unchanged and always maintain a sharp trailing edge. The
formula used for the computation of the weighted Hanning window coefficient CHann
can be described in eq. (4.32)

CHann(s) =


1− cos( π

2 p
s

smax
) , for s

smax
< p

1 , for p 6 s
smax

6 (1− p)

1− cos( π
2 p

1−s
smax

) , for s
smax

> 1− p

(4.32)

where p ∈ [0, 1] indicates the user-defined percentage of the contour smax of the
airfoil. The coefficient produced from eq. (4.32) is plotted, for different values of p,
in Figure 4.6.

It is assumed that for this particular airfoil, the damping of the perturbations should
take place, for each side of the airfoil, at the 8 % of it’s contour (p = 8%). Thus,
the final form of the KLE formula used in this algorithm is given by

X(s,~c) = X̄(s) + CHann(s)
M=5∑
n=1

√
λncnfn(s)~n(s) (4.33)

Finally, by defining the rest of the parameters as described previously, seven random
realisations of the NACA 0012 airfoil are being computed and displayed in Figure
4.7.
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Figure 4.6: The Hanning Window coefficient CHann computed and plotted for p =
10% (blue) and p = 20% (red).

Figure 4.7: The nominal (black) and seven imperfect (other colors) NACA 0012
airfoils, generated through KLT, not in scale (above) and in scale (below).
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Chapter 5

Uncertainty Quantification with
Manufacturing Imperfections

In this chapter, a description of the integration of the previously mentioned KLT
software (used to compute imperfect 2D geometries) coupled with the OpenFOAM
mesh generators and fluid flow solvers into the in-house niPCE software takes place.
Also, various simulations concerning the UQ of the aerodynamic performance of 2D
bodies with their manufacturing imperfections, are presented.

5.1 Integration of KLT software and OpenFOAM

solvers into the niPCE software

The software developed in C++ that implements the KLT onto a 2D geometry,
in order to generate an imperfect shape, thus simulating a manufactured final
mechanical part, is named foilKLT. As the name reveals, this software specializes
into 2D aerodynamic bodies such as isolated or turbomachinery blade airfoils. The
core algorithm is vastly based upon the generalized algorithm of KLT application on
2D shapes, as presented in Subsection 4.1.4. Its purpose is to be coupled with a CFD
solver, so as to compute the QoI needed for the process of UQ, performed through the
non-intrusive Polynomial Chaos Expansion code developed by the PCOpt/NTUA.

The data defining the nominal aerodynamic body is given to foilKLT in the form
of discrete points (coordinates) in a date file (set airfoil.dat for now). Then
KLT is implemented to create an imperfect realization of the nominal geometry.
Another data file, named KLT.ini, is utilized to define the KLT process parameters,
the input and output file names, while, also, giving the option whether or not
to apply on the final imperfect geometry, the Hanning Window or the absolute
KLE perturbations magnitude post-processing subroutines, that were thoroughly
described in Subsection 4.2.2. The imperfect body outputted by the program has
the same format as the input geometry file and has a variable file name (set impFoil
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for this thesis).

The most important difference of foiKLT w.r.t. the aforementioned KLT algorithm,
is that the random number generator, mentioned in Step 4 (see Subsection 4.1.4),
used to designate the values of the uncertain variables cn, is replaced by an additional
input file of variable name. As such, the uncertain variable vector ~c used in the KLE,
can be defined through an outside source, in this specific case by the niPCE in-house
code through a data file (usually named task.dat).

Because the input and the output files of foilKLT are 2D Cartesian coordinate data
files, the problem, of integrating them into the OpenFOAM 3D mesh configuration,
arises. The easiest solution to this problem would be to integrate the imperfect 2D
geometry coordinates into the input file of the OpenFOAM mesh generator (e.g.
blockMeshDict for the blockMesh mesher), used to create the mesh in the first place,
thus re-meshing for every call of foilKLT. While practical, this solution is costly,
especially in scenarios with complex geometries that require mesh generation of
significant computational cost. To avoid this shortcoming, the source OpenFOAM move-
DynamicMesh solver can be implemented, so as to only re-mesh the solid boundaries
defining the geometry under consideration, as well as the mesh close to them. The
moveDynamicMesh can only accept certain triangulated surface file formats (i.e.
.stl, .obj, .vtk, .tri etc) as inputs, in order move specific mesh regions. Thus,
an additional software is developed in C++, named preSucOBJ, for the purpose
of converting the imperfect 2D geometry file into a triangulated 3D surface file,
specifically in the .obj file format. In order for the aforementioned process to take
place, the to-be imperfect wing length must be specified. Finally, once all the above
are executed, the displacement Laplacian solver moveDynamicMesh has renewed
the polyMesh directory, re-defining the mesh region of the flow field. Then, the
OpenFOAM solver runs, which for this specific chapter is the incompressible flow
solver simpleFoam. Once the flow solver has converged to a solution for the flow
field variables, one or more QoI (e.g. drag coefficient etc) are computed and written
into a final communication file (usually named task.res) which is, then, inputted
into the niPCE software thus closing the process of computing the QoI.

This whole process is called and performed several times when the niPCE code
is executed, while it is highly recommended to run the CFD code in parallel execu-
tion, in order to dramatically reduce the wall-clock time, a.k.a. response time, of the
operation in question. In Figure 5.1, the flow-chart of the QoI computation process
is presented.
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Figure 5.1: The QoI computation process flow-chart, including the names of the
communication/data files of the software used in it. This process is repeated as many
times as dictated by the niPCE algorithm, depending mostly on the dimension M of
the uncertain variable vector and the order k of the Chaos Expansion polynomials.
For simplicity reasons, the niPCE algorithm is displayed as a black box, in order to
better focus on the computation of the QoI.

5.2 Uncertainty Quantification: NACA 0012 air-

foil

In this section the initial conditions, the mesh, the flow field and the QoI results
(without uncertainties) of the NACA 0012 airfoil CFD case are presented. The
algorithm described in Section 5.1, is then applied on the case in question, in order
to assess the potential of the KLT in UQ with manufacturing uncertainties. UQ
results, computed for several values of the chaos order parameter k, are displayed
and compared with MC results, due to its simplicity and accuracy [3], if, at least,
an adequate number of replicates is used.

5.2.1 Flow Field Initial Conditions and Mesh

The flow field around the airfoil is considered to be steady, incompressible and
turbulent. The NACA 0012 chord has been set to 1 meter. The flow initial
conditions and properties are displayed in Table 5.1. The flow is solved on a
structured, 2D and cell centered C-type grid, consisting of 160 × 135 quadrilateral
elements, generated through blockMesh. The farfield boundaries of the mesh around
the airfoil are set to a 10 chord lengths away form it. The mesh in question is
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Farfield V elocity Magnitude U∞ 26 m/s

Farfield V elocity Angle α 2.0 o

Kinematic V iscocity ν 10−5 m2/s

Density ρ 1.225 m3/kg

Reynolds Number Rec 2.6 · 10+6

Table 5.1: The constant initial condition of the NACA 0012 CFD-case.

visualized in Figures 5.2 and 5.3.

Figure 5.2: NACA 0012 airfoil: structured C-type mesh.

Figure 5.3: NACA 0012 airfoil: structured C-type mesh, close up view of the airfoil’s
leading (above) and trailing edges (below).

The turbulence model used in this CFD case, is the Spalart–Allmaras one [16], while
a common assumption in airfoil flow field is used, which dictates that ν̃/ν = 5,
at the inlet boundary. Hence, the initial condition for the turbulence model are:
Spalart–Allmaras model variable ν̃ = 5·10−5 m2/s and turbulent kinematic viscosity
νt = 1.29 · 10−5 m2/s. The OpenFOAM’s nutUSpaldingWallFunction High-Re wall
function [18] is utilized to compute the velocity of the near-wall cell centers, that
are affected by viscous flow phenomena, further analyzed in Subsection 2.1.3. For
this model to have an acceptable accuracy, the first cell center must lie into the
log-law region of the boundary layer, meaning that the non-dimensional distance
between its cell center and the wall must be y+ < 100. In order to verify the use of

86



High-Re wall functions for this particular mesh, the distribution of y+ is plotted for
the pressure and suction sides of the airfoil, in Figure 5.4.

Figure 5.4: Non-dimensional wall distance y+, plotted for the pressure and the suc-
tion side of the mesh around NACA 0012 airfoil.

5.2.2 CFD Results without Uncertainties

The flow field equations system is solved by making use of the SIMPLE finite volume
algorithm [29], implemented through OpenFOAM©’s executable simpleFoam, as
described in Subsection 2.4. 2nd order finite volume schemes are used to discretize the
div() and grad() operators present into the RANS and Spalart–Allmaras equations.
A converged solution is reached in 1400 iterations and the convergence chart of the
mean flow variables is presented in Figure 5.5.

The lift (CL) and drag (CD) coefficients are used as QoIs in Subsection 5.2.3 and
their current values, computed for no uncertainties are displayed in Table 5.2.
Furthermore, the velocity magnitude U and the turbulent kinematic viscosity νt
fields, close to the airfoil, are visualized in Figure 5.6.

NACA 0012 Aerodynamic Coefficients

CL CD
0.210755 0.011127

Table 5.2: NACA 0012 airfoil: lift and drag coefficients for the constant flow condi-
tions described in Table 5.1 (α = 2 o, Rec = 2, 600, 000).

87



Figure 5.5: NACA 0012 airfoil: convergence plot of the flow field equations. The
convergence criterion is set at a residual equal to 10−6.

Figure 5.6: NACA 0012 airfoil: velocity magnitude U (above) and turbulent viscosity
νt (below) contours around the airfoil, computed for the nominal shape.
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5.2.3 Chaos Order Parametric Analysis & Results Valida-
tion

The UQ process is performed through niPCE for the flow around an imperfect NACA
0012 airfoil. The imperfections are modeled with the KLT algorithm presented in
Section 5.1. The solution of the flow equations is achieved with the configuration
thoroughly described in Subsection 5.2.2.

The only input parameter of the case in question that is considered uncertain is
the airfoil geometry. Specifically, the NACA 0012 airfoil is assumed to display a
variation within its manufacturing tolerances. This uncertainty is quantified through
the uncertain variable vector ~c ∈ RM of the KLE. The dimension of ~c is set equal
to M = 5, given that it is considered to be a middle ground solution between
the complexity of the KLT-generated imperfect geometries and the mitigation of
computational cost. The KLE standard deviation is set equal to σ = 1 (so as to
simplify this variable, for which no empirical data are given), while the statistical
moments of the uncertain variables cl, used to produce the KLT stochastic shape
imperfection (eq. (4.29)), are defined as

µl = 0m , σl = 2 · 10−3 m ∀ l = 1, 2, ..., 5 (5.1)

Another decision taken, so as to reduce the computational cost of the UQ, is the use
of Smolyak Sparce grids [33] instead of full grids to define the uncertain variables
(further analysis in other Chapters not yet completed). This method greatly reduces
the sample points needed for the niPCE, mitigating consequently the computational
cost of the GQ integration. Thus, a parametric analysis is held on the order k of the
Chaos Expansion polynomials, while MC is used as benchmark method for verifying
the computed results [3]. The computational cost of each niPCE run for both the
Smolyak and the full grids, measured in Equivalent Flow Solution (EFS) time given
that it is equal to the number of Gauss Nodes, is displayed in Table 3.2.

The UQ parametric analysis of the niPCE method (with Smolyak grids), for the
QoIs, CD and CL, are computed and displayed in the Figures 5.7 and 5.8, accordingly.
The MC-computed UQ, for 5000 sample runs, is also included, for the purposes of
result comparison and validation. The same data is also presented, in the aggregate,
in Table 5.3, along with the specific error of the niPCE results when compared with
the corresponding MC results.
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niPCE − Smolyak (M = 5)

k µCD (% ∆) µCL (% ∆) σCD (% ∆) σCL (% ∆)

1 1.125 · 10−2 (0.05) 2.137 · 10−1 (0.43) 9.028 · 10−5 (0.84) 1.207 · 10−2 (9.60)

2 1.124 · 10−2 (0.05) 2.159 · 10−1 (0.61) 9.452 · 10−5 (5.57) 1.479 · 10−2 (10.73)

3 1.129 · 10−2 (0.39) 2.133 · 10−1 (0.57) 9.584 · 10−5 (7.05) 1.373 · 10−2 (2.79)

4 1.124 · 10−2 (0.04) 2.157 · 10−1 (0.55) 9.570 · 10−5 (6.89) 1.436 · 10−2 (4.59)

MC 1.125 · 10−2 2.146 · 10−1 8.953 · 10−5 1.335 · 10−2

Table 5.3: NACA 0012 airfoil UQ with manufacturing imperfections. UQ case with
M = 5 and k = 1 to k = 4. Mean value and standard deviation of the CD and CL
computed through niPCE with Sparse grid GHQ and compared with the outcome of
MC with 5000 replicates. For each column, the niPCE result with the lowest relative
error is highlighted in bold.

Figure 5.7: NACA 0012 airfoil drag coefficient UQ with manufacturing imperfec-
tions. Results computed with MC, for 5000 samples, and with niPCE, for chaos order
k = 1 to k = 4.
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Figure 5.8: NACA 0012 airfoil lift coefficient UQ with manufacturing imperfections.
Results computed with MC, for 5000 samples, and with niPCE, for chaos order k = 1
to k = 4.

Finally, enough data has been gathered in order to select the optimal value for the
chaos order k, so as to continue with the aerodynamic RDO of lifting bodies with
manufacturing imperfections. This analysis has took both the increase of CPU cost
and the fluctuating accuracy of the niPCE method into account, in response to the
increase of k. Therefore, the illustrated of k consists of a MOO optimization problem
with two objectives: the minimization of the cost and the error of the UQ results.
The average specific error of all niPCE-computed UQ results when compared to the
ones computed through the MC method, is plotted w.r.t. their computational cost
in Figure 5.9 (according to Tables 3.2 and 5.3).

As illustrated in Figure 5.9, the dominant solutions, defining the Pareto Front of
this parametric analysis, are the UQ results for k = 1 and k = 3, with mean relative
errors of 2.73 % and 2.70 %, respectively. These two solutions combine the lowest
CPU cost and the highest average accuracy. Any of the two dominant solutions
for the chaos order is a viable option for the user in this specific application. Yet,
the difference in their mean accuracy can be considered unnoticeable, while their
respective CPU cost difference is quite vast (by an order of magnitude). Given
that both solutions are relatively accurate when it comes to the mean value of the
QoIs, the one for k = 1 computes more accurately the standard deviation of the
drag coefficient, while the other for k = 3 is more accurate for the computation of
the standard deviation of the lift coefficient (as assumed form Table 5.3). Yet, this
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result may simply be circumstantial and thus no general rule can be deduced from
this analysis without further investigation. Anyhow, the lowest chaos order k = 1
for the niPCE method with Smolyak integration, has proven to be relatively viable
in its UQ results, while simultaneously boasting the lower possible clock-time cost.
It is the main reason for which it becomes the selected chaos order value for the
simulations to come, in this thesis.

Figure 5.9: NACA 0012 airfoil: average specific error and CPU cost of niPCE-
computed UQ results, for k = 1 to 4.

5.3 Uncertainty Quantification: E387 airfoil

In this section, the same process is applied for the E387, an airfoil most often used
in sailplanes and other low Mach applications. The same initial conditions and flow
solver are applied, with the exception that, this time, the MC and niPCE methods
are employed for the computation and verification of the derivatives of the statistical
moments of a certain QoI w.r.t. to the selected design variables. For this analysis,
the algorithm, presented in Section 5.1, is executed with one slight modification: the
primal problem solver is followed by the adjoint problem solver, both included in the
OpenFOAM© executable adjointOptimisationFoam developed by PCOpt/NTUA,
so as to conduct the sampling of the SDs needed to perform the UQ process.

5.3.1 CFD Analysis without Uncertainties

The flow field around the E387 airfoil is, again, considered to be steady, incompressible,
viscous and turbulent, while the chord has been set to 1 meter in length. The flow
initial conditions and properties are assumed to be identical to those of Subsection
5.2.1, as displayed in Table 5.1.
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The computational C-type mesh generated around the E387 has the same exact
properties (160 × 135 quads) with the one described in Subsection 5.2.1, and is
presented in Figure 5.10: The incompressible primal and adjoint problems for are

Figure 5.10: E387 airfoil: structured C-type mesh.

both solved through the use of the SIMPLE finite volume algorithm by implementing
the same configuration as described in Subsections 5.2.1 and 5.2.2. For a single
run without any uncertainties, the primal and adjoint problems reach a converged
solution after 1665 and 1854 iterations, respectively. The convergence chart for both
problems is presented in Figure 5.11.

Furthermore, the CL and CD coefficients, computed for no uncertainties are displayed
in Table 5.4, while only the second is used as a QoI, mainly for the computation of
it’s derivatives w.r.t. the design variables.

E387 Aerodynamic Coefficients

CL CD (QoI)

0.587956 0.012986

Table 5.4: E387 airfoil: lift and drag coefficients for the constant flow conditions
described in Table 5.1 (α = 2 o, Rec = 2, 600, 000).

Additionally, the static pressure p and the adjoint pressure pa, as well as the ν̃ and
the ν̃a fields, close to the airfoil, are visualized in Figures 5.12 and 5.13, respectively.
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Figure 5.11: E387 airfoil: convergence chart for primal (above) and the adjoint
(below) problem variables. The convergence criterion is set at a residual equal to 10−6

for the primal and 10−7 for the adjoint problem.
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Figure 5.12: E387 airfoil: static (above) and adjoint pressure (below) contours, close
to the airfoil.

Figure 5.13: E387 airfoil: Spalart–Allmaras variable ν̃ (above) and adjoint Spalart–
Allmaras variable ν̃a (below) contours, close to the airfoil.
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Finally the mesh close the surface of the airfoil is parameterized through the use of
Volumetric B-Splines [28]. The control box, a.k.a. the grid of control points dictating
the deformation of the airfoil in accordance with the computed sensitivities and the
selected update method, is displayed in Figure 5.14.

Figure 5.14: E387 airfoil: Volumetric B-Spline 2D control box for the mesh para-
materization. The blue colored control points are inactive (= immovable), while the
magenta colored ones are active, thus constituting the design variables for this prob-
lem. The outline of the E387 is colored in black, while the active control points are
also enumerated from 1-6.

5.3.2 Derivatives of the Robustness Metric Verification

In order to compute the robust SDs, according to equation (1.4), the derivatives
of the mean value and the standard deviation of a QoI w.r.t. the design variables,
must be primarily computed. The selected QoI is the drag coefficient CD, while
the desired design variables are the active Volumetric B-Splines control points, as
presented in Figure 5.14. The aforementioned method for the execution of this task,
are the niPCE and MC methods for the computation of the statistical moments’
derivatives, sampled through the use of the adjoint method.

So as to culminate to relatively accurate result, the MC method is employed for
1000 replicates, i.e. 2000 EFS given that each run requires the solution of both the
primal and the adjoint problems once. Meanwhile, the niPCE method is configured
for a chaos order of k = 1 and for both Full as well as Smolyak Sparse sampling
grids. Therefore, according to Table 3.2, the niPCE sampling runs have a CPU
cost of 2 · 32 = 64 EFS for the Full Grid integration and 2 · 11 = 22 EFS for the
Smolyak grid integration. The use of higher chaos orders, for the niPCE, could
prove costly, especially when included into a RDO algorithm in latter stages of the
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thesis. Similarly with Section 5.2, the niPCE and MC result are compared for the

purpose of validating the first. The UQ results of
∂µCD
∂bn

and
∂σCD
∂bn

are presented in
Tables 5.5 and 5.5, respectively.

∂µCD/∂bn (M = 5)

x− dir y − dir
niPCE (k = 1) MC niPCE (k = 1) MC

n Full Grid Smol. Grid 1000 sam. Full Grid Smol. Grid 1000 sam.

1 2.529 · 10−4 2.862 · 10−4 1.916 · 10−4 2.539 · 10−3 2.521 · 10−3 2.606 · 10−3

2 3.189 · 10−4 3.203 · 10−4 3.155 · 10−4 3.415 · 10−3 3.419 · 10−3 3.405 · 10−3

3 8.382 · 10−4 8.423 · 10−4 8.274 · 10−4 9.521 · 10−3 9.572 · 10−3 9.393 · 10−3

4 4.469 · 10−4 4.834 · 10−4 3.769 · 10−4 3.176 · 10−3 3.146 · 10−3 3.270 · 10−3

5 4.654 · 10−4 4.671 · 10−4 4.611 · 10−4 4.506 · 10−3 4.509 · 10−3 4.497 · 10−3

6 9.549 · 10−4 9.594 · 10−4 9.433 · 10−4 1.078 · 10−2 1.084 · 10−2 1.064 · 10−2

Table 5.5: E387 airfoil UQ with manufacturing imperfections, with M = 5. CD
mean value derivatives w.r.t. the design variables bn computed with the niPCE
(k = 1) method for both Full and Smolyak Sparse grids, as well as MC for 1000
sample runs.

∂σCD/∂bn (M = 5)

x− dir y − dir
niPCE (k = 1) MC niPCE (k = 1) MC

n Full Grid Smol. Grid 1000 sam. Full Grid Smol. Grid 1000 sam.

1 −8.557 · 10−6 −2.693 · 10−6 −4.055 · 10−6 −3.358 · 10−5 −1.923 · 10−5 −3.576 · 10−5

2 1.273 · 10−5 1.209 · 10−5 1.332 · 10−5 1.043 · 10−4 1.037 · 10−4 1.056 · 10−4

3 5.546 · 10−5 5.338 · 10−5 5.715 · 10−5 4.632 · 10−4 4.421 · 10−4 4.835 · 10−4

4 −2.443 · 10−5 −2.010 · 10−5 −1.749 · 10−5 −4.399 · 10−5 −2.368 · 10−5 −5.751 · 10−5

5 1.491 · 10−5 1.417 · 10−5 1.581 · 10−5 9.420 · 10−5 9.428E − 5 9.451 · 10−5

6 5.813 · 10−5 5.609 · 10−5 6.034 · 10−5 3.573 · 10−4 3.357 · 10−4 3.814 · 10−4

Table 5.6: E387 airfoil UQ with manufacturing imperfections, with M = 5. CD
standard deviation derivatives w.r.t. the design variables bn computed with the
niPCE (k = 1) method for both Full and Smolyak Sparse grids, as well as MC for
1000 sample runs.

The conclusion, from Tables 5.5 and 5.6, is that the niPCE statistical moment
derivatives are practically accurate. Though the derivatives computed through the
different methods are not identical, the corresponding derivatives have comparable
magnitudes and the same algebraic sign. Given that, according to the implemented
Steepest Descent method mentioned in Subsection 1.2.3, the design variable update
is scaled w.r.t. a user defined maximum displacement, it is easy to assume that this
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change in the design variables, for all employed UQ methods, may become quite
similar. Therefore, this analysis makes it is safe to assume that for these particular
2D airfoil applications the use of the economic niPCE method for the purposes of
RDO with manufacturing uncertainties can be conducted with a relatively accurate
computation of the 1st degree robust SDs.

When it comes to the values of the derivatives, it is clear that all UQ methods dictate
that in order for the airfoil to minimize drag for the specified range of manufacturing
imperfection generated through KLT, a displacement of the E387 airfoil’s trailing
edge is expected. This interpretation can further be backed by Figures 5.15 and
5.16, while cross-referencing with the index of each active control point from Figure
5.14.

Figure 5.15: E387 airfoil CD mean value derivatives w.r.t. the design variables bn
computed with the niPCE method for both Full and Smolyak Sparse grids, as well as
MC for 1000 sample runs.

98



Figure 5.16: E387 airfoil CD standard deviation derivatives w.r.t. the design vari-
ables bn computed with the niPCE method for both Full and Smolyak Sparse grids, as
well as MC for 1000 sample runs.
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Chapter 6

Robust Design Optimization with
Manufacturing Imperfections

In this chapter, the RDO with manufacturing uncertainties of two 2D shapes is
presented. The manufacturing imperfections are recreated through the KLT software
introduced in Chapter 4, while the primal and adjoint problems are solved though
OpenFOAM©’s adjointOptimisationFoam solver. In order to perform the manufacturing
imperfections RDO, the algorithm described in Subsection 5.1 is inserted into a loop
and with some additions, is repeated as many times as the maximum optimization
cycles, selected by the user. In each loop, the following steps are performed:

1. The niPCE algorithm is called, so as to execute UQ on the user-selected
QoIs (computed through the solution of the primal problem), as well as their
respective SDs (computed through the solution of the adjoint problem).

2. The robust metric (FR) and the robust SDs (δFR/δbn) are computed according
to the DFSS rule (explained in 1.2.2), for the user-defined constant κ.

3. The parameterized initial geometry of the current loop, is displaced, according
to the Steepest Descent method, in the direction dictated by the robust SDs, by
moving the control points of the Volumetric B-Splines morphing box (described
in Subsection 2.3).

The implementation of the aforementioned algorithmic process, on the E387 airfoil
and the TU Berlin TurboLab Stator [13] cascade, embody the two main Sections of
the current Chapter.

6.1 Robust Design: E387 airfoil

For the E387 airfoil the primal problem is formulated in the same manner as in
Section 5.3, meaning that the same simpleFoam configuration, mesh and boundary
conditions are used. Furthermore, the adjoint problem is formulated as described in
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Subsection 5.3.2, with the only exception being that a denser control box is used,
as displayed in Figure 6.1. For every RDO held of the E387 in this Subsection, the
maximum control point displacement is set to ∆bmax = 0.5 · 10−2 m. Finally the
configuration of KLT shape imperfection generator is unchanged, while, according
to the analysis held in Subsection 5.3.2, the niPCE chaos order is set to k = 1, for
which Smolyak Sparse Grid GHQ integration is used.

Figure 6.1: E387 airfoil: Volumetric B-Spline 2D control box for the mesh parama-
terization for the purpose of RDO. The blue colored control points are inactive, while
the magenta colored ones are active, thus constituting the design variables for this
problem. Consequently, a 9 × 6 overall control mesh is used, of which all boundary
control points are set as inactive.

6.1.1 Single-Objective RDO: Robust Drag

Firstly, the E387 airfoil is subjected to single-objective RDO with manufacturing
uncertainties while the selected QoI are the drag coefficient CD, so as to achieve a
minimized drag performance within the user-defined shape imperfection spectrum.
As set in Subsection 4.2.2, the KLT-modes, i.e. the shape uncertain variables, used
are M = 5, while their mean value and standard deviation are defined as

µl = 0 , σl = 2c · 10−3 = 2 · 10−3 m ∀ l = 1, 2, ..., 5

where c = 1 denotes the airfoil chord.

For M = 5, k = 1 and Sparse Grid integration, according to Table 3.2, in each
optimization cycle the primal and adjoint problems are solved 11 times. Therefore,
the computational cost of each cycle amounts to 2× 11 = 22 EFS.
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In addition, the robustness metric, for this specific QoI, is also referred to as ro-
bust CD and is formulated as follows

C
(robust)
D = µCD + κ σCD (6.1)

where κ indicates the DFSS coefficients, defined in Subsection 1.2.2.

Accordingly, the robust SDs, according to which the controlled surfaced is displaced,
assume the form

∂

∂bn
C

(robust)
D =

∂µCD
∂bn

+ κ
∂σCD
∂bn

(6.2)

Finally, in order to fully monitor the aerodynamic performance of the to-be optimized
airfoil, in each RDO loop, UQ is also be performed on the lift coefficient, yielding
the robust CL, as follows

C
(robust)
L = µCL + κ σCL (6.3)

The RDO process is, therefore, executed for five optimization cycles, for three
different values of the DFSS coefficient: κ = −2, 0,+2. Therefore, three different
robust airfoils are yielded, each with a different prioritization over the σCD as well as
the design approach (pessimistic for κ > 0 or optimistic for κ < 0, for minimization
problems). In Tables 6.1, 6.2, as well as Figure 6.2, the mean value and the standard
deviation of CD and CL, respectively, are presented, for the different values of κ, for
each of the five optimization cycles.

κ = +2 κ = 0 κ = −2

Cycle µCD µCL µCD µCL µCD µCL

1 1.300 · 10−2 5.881 · 10−1 1.300 · 10−2 5.881 · 10−1 1.300 · 10−2 5.8814 · 10−1

2 1.227 · 10−2 5.102 · 10−1 1.226 · 10−2 5.099 · 10−1 1.226 · 10−2 5.093 · 10−1

3 1.179 · 10−2 4.490 · 10−1 1.179 · 10−2 4.496 · 10−1 1.179 · 10−2 4.502 · 10−1

4 1.147 · 10−2 4.006 · 10−1 1.147 · 10−2 4.027 · 10−1 1.148 · 10−2 4.048 · 10−1

5 1.124 · 10−2 3.619 · 10−1 1.125 · 10−2 3.654 · 10−1 1.126 · 10−2 3.686 · 10−1

Table 6.1: E387 airfoil RDO with manufacturing imperfections: mean values of CD
and CL for 5 optimization cycles and κ = −2, 0,+2.

It is clear that for the the varying values of κ, the final aerodynamic coefficients have
minor differences. For all cycles and for both the mean value and standard deviation,
the three κ values yield practically the same result. The cause can be found in
Subsection 5.3.2, where it can be observed that the SD standard deviation (∂σF/∂bn)
is a least an order of magnitude lower than the SD mean values (∂/∂bn), for the
same CP. The same takes place for the current control grid (Figure 6.1), making the
subtraction or the addition of ∂σF/∂bn in eq. (6.2), to cause a nearly insignificant
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κ = +2 κ = 0 κ = −2

Cycle σCD σCL σCD σCL σCD σCL

1 2.035 · 10−4 1.697 · 10−2 2.035 · 10−4 1.697E − 2 2.035 · 10−4 1.697 · 10−2

2 1.774 · 10−4 1.695 · 10−2 1.766 · 10−4 1.696E − 2 1.765 · 10−4 1.695 · 10−2

3 1.581 · 10−4 1.686 · 10−2 1.587 · 10−4 1.686E − 2 1.589 · 10−4 1.686 · 10−2

4 1.431 · 10−4 1.677 · 10−2 1.439 · 10−4 1.678E − 2 1.449 · 10−4 1.678 · 10−2

5 1.314 · 10−4 1.672 · 10−2 1.326 · 10−4 1.672E − 2 1.339 · 10−4 1.673 · 10−2

Table 6.2: E387 airfoil RDO with manufacturing imperfections: standard deviation
of CD and CL for 5 optimization cycles and κ = −2, 0,+2.

Figure 6.2: E387 airfoil RDO with manufacturing imperfections:mean value and
standard deviation of CD and CL, respectively, for 5 optimization cycles and κ =
−2, 0,+2.

change to the final values of the robust SDs (∂FR/∂bn). Hence, the generated
robust airfoils as well as their aerodynamic performance is virtually indifferent, yet
this must not be considered a generality in RDO. Yet in this case, greater values
of κ should be used in order to see significant changes. The final robust airfoils are
displayed in Figure 6.3.

Nevertheless, the goal of this RDO analysis, to minimize the mean value as well
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as the spread (standard deviation) of the airfoil’s drag is achieved. For all values of
κ, the µCD and σCD are reduced by approximately 13.5 % and 35 %, respectively.
Naturally, the robust geometries generate lower lift average and variation, due to
the inverse flap-like shape generated in all robust airfoils’ trailing edge that changes
the airfoil’s camber (as observed in Figure 6.3). The µCL and σCL are reduced by
approximately 38 % and 1.5 %, respectively. The seemingly small reduction in σCL is
expected, given that the RDO algorithm is set to minimize the statistical moments
of drag, not lift.

Figure 6.3: E387 airfoil RDO with manufacturing imperfections: three robust airfoil
geometries after 5 optimization cycles, each for a different value of κ = −2, 0,+2.
The robust airfoils are visually compared with the initial airfoil, displayed in black,
both not in scale (A) and in scale (B).

The relative deviation of the aerodynamic coefficients is defined the relative difference
between each coefficient and their respective mean values, as computed for the 11
KLT imperfect airfoils, generated for the 11 Gauss Nodes of the Smolyak Grid GHQ
integration. These values, are presented in Figure 6.4, for the tree final robust
airfoils and for the initial E387 airfoil. This is done in order to properly visualize
the dispersion of the aerodynamic coefficients, caused by the KLT-generated shape
uncertainty, as well as to see, to what extent, this variation is mitigated for the
robust drag airfoils.

To conclude, the maximum relative deviation of CD is reduced by approximately
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39.6 % for all robust airfoils, while the maximum relative deviation of CL is increased
by approximately 1 %, which is anticipated given that σCL is reduced by a relatively
small amount. Overall, the conclusion drawn from these results is that the RDO with
shape uncertainties, designed and executed for this thesis, can successfully optimize
the stochastic performance of a force objective (i.e. drag). The reduction in the
dispersion and, therefore, the standard deviation of a force objective is achievable,
by a significant amount, even though the KLT shape imperfections have a minor
impact on the lift and drag forces exerted on an airfoil, exhibiting maximum relative
variations lower than 3 %.

Figure 6.4: E387 airfoil RDO with manufacturing imperfections: relative deviation
∆CL, ∆CD for the three robust airfoil, as well as for the initial E387 airfoil.

6.1.2 Multi-Objective RDO: Weighted Objectives

Now the E387 airfoil is subjected to multi-objective RDO with manufacturing uncertainties.
For this process to take place, the QoI (F ) is defined as a weighted sum of the
aerodynamic coefficients, thus requiring one adjoint solver instead of two, as formulated
in (6.4). The weights (w) serve to quantify the importance of each of the coefficients.
The goal of this method is mainly to display the ability to perform RDO with shape
uncertainties, in order to achieve a robust drag performance while still being able
to contain the lift reduction.

F = wD CD + wL CL = wD CD − (1− wD) CL (6.4)

where wD ∈ [0, 1], while the lift weight is set to wL = −(1− wD) ∈ [−1, 0], so as to
have only one weight to denote the lift-drag prioritization.
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Additionally, the lift weight is defined as wL ≤ 0, to indicate the intention to
maximize the lift exerted on the airfoil, given that PCOpt/NTUA’s adjoint solver
is a de facto minimization algorithm. Consequently, only one objective function is
formulated and therefore one adjoint solver is needed, leading to a lower computational
cost.

The mean value of this weighted QoI yields

µF = wD µCD − (1− wD) µCL (6.5)

while its standard deviation yields

σF = wD σCD − (1− wD) σCL (6.6)

Thus, the robustness metric assumes the form

FR = µF + κ σF = wD µCD − (1− wD) µCL + κ [wD σCD − (1− wD) σCL ] =

= wD (µCD + κ σCD)− (1− wD) (µCL + κ σCL)
(6.7)

And by including eqs. (6.1) and (6.3) into eq. (6.7), it can be rewritten as

FR = wD C
(robust)
D − (1− wD)C

(robust)
L (6.8)

Correspondingly, the derivatives of the statistical moments are formulated as

∂µF
∂bn

= wD
∂µCD
∂bn

− (1− wD)
∂µCL
∂bn

(6.9)

∂σF
∂bn

= wD
∂σCD
∂bn

− (1− wD)
∂σCL
∂bn

(6.10)

Thus, according to eqs. (6.2), the derivative of the robustness metric a.k.a. the
robust SD assumes the form

∂FR
∂bn

=
∂µF
∂bn

+ κ
∂σF
∂bn

=

= wD

(
∂µCD
∂bn

+ κ
∂σCD
∂bn

)
− (1− wD)

(
∂µCL
∂bn

+ κ
∂σCL
∂bn

)
=⇒

=⇒ ∂FR
∂bn

= wD
∂

∂bn
C

(robust)
D − (1− wD)

∂

∂bn
C

(robust)
L

(6.11)

where C
(robust)
L , similar to its drag counterpart defined as

∂

∂bn
C

(robust)
L =

∂µCL
∂bn

+ κ
∂σCL
∂bn

(6.12)
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The RDO process is, again, executed for five optimization cycles, for κ = +2 and
three different weights: wD = 100, 99.35, 99.25 %. Clearly, for wD = 100 % the lift
terms are removed from eqs. (6.8) and (6.11), thus, swifting to the single-objective
RDO expressions of Subsection 6.1.1. In addition, the lift weights (|wL| < 0.01)
are set to be at least two orders of magnitude lower than the drag weights, because
such is the difference between the robust SDs of the two QoI. Lift weights with a
greater absolute values, would lead to robust lift being prioritized over robust drag
optimization.

Ultimately, three different robust airfoils are designed, each with a different prioritization
over the lift stochastic distribution. For the different values of wD, the robust CD
and CL (as formulated in eqs. (6.1) and (6.3), respectively) are presented in Table
6.3 and Figure 6.5, for each of the five optimization cycles.

wD = 100.00 % wD = 99.35 % wD = 99.25 %

Cycle C
(robust)
D (% ∆) C

(robust)
L (% ∆) C

(robust)
D (% ∆) C

(robust)
L (% ∆) C

(robust)
D (% ∆) C

(robust)
L (% ∆)

1 1.341 · 10−2 (0.0) 5.542 · 10−1 (0.0) 1.341 · 10−2 (0.0) 5.542 · 10−1 (0.0) 1.341 · 10−2 (0.0) 5.542 · 10−1 (0.0)

2 1.263 · 10−2 (5.8) 4.764 · 10−1 (14.0) 1.260 · 10−2 (6.0) 4.745 · 10−1 (14.4) 1.259 · 10−2 (6.1) 4.731 · 10−1 (14.6)

3 1.211 · 10−2 (9.7) 4.152 · 10−1 (25.1) 1.233 · 10−2 (8.0) 4.454 · 10−1 (19.6) 1.251 · 10−2 (6.7) 4.673 · 10−1 (15.7)

4 1.175 · 10−2 (12.4) 3.671 · 10−1 (33.8) 1.220 · 10−2 (9.0) 4.315 · 10−1 (22.2) 1.241 · 10−2 (7.4) 4.580 · 10−1 (17.4)

5 1.150 · 10−2 (14.22) 3.285 · 10−1 (40.7) 1.211 · 10−2 (9.7) 4.224 · 10−1 (23.8) 1.233 · 10−2 (8.0) 4.503 · 10−1 (18.7)

Table 6.3: E387 airfoil RDO with manufacturing imperfections: C
(robust)
D and

C
(robust)
L values, for 5 optimization cycles, κ = +2 and three different objective

weights. The relative divergence (% ∆) from the initial value is also included.

The corresponding final robust airfoils produced for the different values of wD are
displayed in Figure 6.6, and compared with the initial E387 airfoil.

It can be stated that, the goal of this RDO process is met, given that the implementation
of weighted objectives, can halt the ever decreasing values of the robust CL. Yet a
robust airfoil exhibiting both a lower robust drag and a greater lift than the initial
airfoil is not achieved. This is generally expected, given that these two objectives
are incompatible and, thus “conflicting”. Therefore, as observed in Figure 6.6, any
change in the airfoil’s camber generating a lower drag, simultaneously results to
a lower lift force excreted on the airfoil and vice-versa. Thus, the greatest robust
drag reduction is achieved for wD = 100 %, by 14.2 %, while the lowest robust lift
reduction is achieved for wD = 99.25 %, by 18.7 %.

Finally, the relative deviation of the aerodynamic coefficients (CL, CD), as computed
for the 11 KLT-generated imperfect airfoils, are presented in Figure 6.7, for the three
final robust airfoils, as well as for the initial E387 airfoil. As anticipated, the high wD
values lead to a relatively unaffected maximum CL deviation, while the maximum
deviation of CD increases, when the wD value decreases.
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Figure 6.5: E387 airfoil RDO with manufacturing imperfections: C
(robust)
D and

C
(robust)
L values, for 5 optimization cycles, κ = +2 and three different objective

weights.

Figure 6.6: E387 airfoil RDO with manufacturing imperfections: three robust airfoils
after 5 optimization cycles, each for a different value of wD = 100, 99.35, 99.25 % and
for κ = +2. The robust airfoils are visually compared with the initial airfoil, displayed
in black, both not in scale (A) and in scale (B).
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Figure 6.7: E387 airfoil RDO with manufacturing imperfections: relative divergence
∆CL, ∆CD for the three robust airfoil for the three drag weights, as well as for the
initial E387 airfoil.
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6.2 Robust Design: TU Berlin Compressor Sta-

tor

In this section, a CFD analysis of the Test Case 3: TU Berlin Turbolab Stator
cascade [13], is held. Generally a compressor cascade is a simplified 2D model of
real axial compressor stator blade. The boundary conditions, the computational
mesh as well as the solution for the primal problem, without uncertainties, are
presented.

Thereafter, the stator is subjected to multi-objective RDO with manufacturing
imperfection, for two QoI: the total pressure losses (FPt) between the inlet and
outlet boundaries and the velocity or flow angle (α) of the outlet boundary (as
described in Subsection 2.2.2). The KLT software generating the shape uncertainties
is configured for M = 5 modes, while the Hanning window post-processing function
is enabled. The mean value and standard deviation of the KLT uncertain variables
(modes) are defined as follows

µl = 0m , σl = 7 · 10−4 m ∀ l = 1, 2, ...,M (6.13)

6.2.1 Compressor Cascade Initial Conditions and Mesh

The flow around the stator is considered to be steady, incompressible and turbulent.
The blade’s chord is equal to 0.1876 meters. A representation of the blade’s
intersection, as well and some geometrical properties are displayed in Figure 6.8,
taken form [13].

Figure 6.8: TU Berlin compressor stator intersection.

The flow initial conditions and properties are assumed to be constant and their
values are presented in Table 6.4.
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Inlet V elocity U∞ 48 m/s

Inlet V elocity Angle α1 −42 o

Kinematic V iscocity ν 1.339 · 10−5 m2/s

Reynolds Number Rec 6.72 · 105

Table 6.4: The constant initial condition of the TU Belrin compressor stator.

The cascade flow is solved on a hybrid, 2D and cell-centered mesh, consisting of 80039
quadrilateral and 189 triangular elements , generated through the OpenFOAM© meshers
blockMesh and snappyHexMesh. The mesh is visualized in Figures 6.9 and 6.10.

Figure 6.9: TU Berlin compressor cascade: computational mesh.

Figure 6.10: TU Berlin compressor cascade: computational mesh, close up view of
the blade’s leading (left) and trailing edges (right).

The turbulence model used in this CFD case, is once more, the Spalart–Allmaras
model. The initial conditions for the turbulence model eqs. are: Spalart–Allmaras
kinematic viscocity ν̃ = 2.793 · 10−4 m2/s and turbulent kinematic viscosity νt =
2.678 · 10−4 m2/s. OpenFOAM’s nutUSpaldingWallFunction High-Re wall function
[18] is utilized as wall treatment, given that for all first cell centers off the solid wall,
the non-dimensional wall distance amounts to y+ < 100. This claim is verified in
Figure 6.11, where the y+ distributions are plotted.
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Figure 6.11: Non-dimensional wall distance y+, plotted for the pressure and the
suction side of the mesh around TU Berlin compressor stator blade.

6.2.2 CFD Analysis without Uncertainties

The primal equations is solved through use of the executable simpleFoam, discretized
with 2nd order finite volume schemes. A converged solution is reached in 1469
iterations and the convergence chart of the mean flow variables is presented in Figure
6.12.

Figure 6.12: TU Berlin stator cascade: convergence plot of the flow variables. The
convergence criterion is set at a residual equal to 10−6, so as not to compromise the
solution’s accuracy.
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The total pressure losses (FPt) and the outlet velocity angle (α2), computed for no
uncertainties are displayed in Table 6.5. Furthermore, the static pressure p and the
turbulent kinematic viscosity νt contours, close to the blade, are visualized in Figure
6.13. Additionally, the velocity magnitude U close to the trailing and leading edges
are displayed in Figure 6.14.

TU Berlin Compressor Stator Cascade

FPt 0.109231 m5/s3

α2 −2.206o

Table 6.5: TU Berlin compressor cascade: total pressure losses and the velocity angle
for the flow conditions described in Table 6.4 (α1 = −42 o, Rec = 672, 000).

Figure 6.13: TU Berlin compressor cascade: static pressure p (above) and turbulent
kinematic viscosity νt contours (below), for the flow conditions described in Table 6.4.
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Figure 6.14: TU Berlin compressor cascade: velocity magnitude U , close up view of
the blade’s leading (above) and trailing edges (below), with the streamlines also present.

6.2.3 Multi-Objective RDO: Weighted Objectives

For the purpose of multi-objective RDO with shape imperfections, the QoI (F ) is
defined as a weighted sum of the pressure losses and the outlet velocity angle, as
formulated in (6.14).

F = wp Fpt + wα α2 = wp Fpt − (1− wp) α2 (6.14)

where wp ∈ [0, 1] the total pressure loss weight, while the outlet velocity angle weight
is set to wα = −(1− wp) ∈ [−1, 0].

Generally, some the key purposes of stator blade is to achieve a high flow turning,
while keeping the total pressure losses as low as possible. These two functions are
quantified though the flow deviation angle, formulated as θ = α1 − α2 [39], as well
as the total pressure losses Fpt . The increase of the flow turn, is accomplished
through the maximization of the absolute value of θ. For this specific case, given
that α1 = −42 o and |θ| = |α1−α2| = α2 +42 o, the maximization of |θ| is equivalent
with the maximization of α2. Therefore, the outlet velocity angle weight is defined
as a negative value, so as to denote the desired maximization of it’s stochastic
distribution.

In a manner similar to the formulation used in Subsection 6.1.2, the mean value
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and standard deviation of F , assume the form

µF = wp µFPt − (1− wp) µα2 (6.15)

σF = wp σFPt − (1− wp) σα2 (6.16)

Furthermore, the robustness metric is defined as

FR = µF + κ σF = wp F
(robust)
pt − (1− wp) α (robust)

2 (6.17)

where the robust pressure losses (F
(robust)
pt ) and outlet velocity angle (α

(robust)
2 ) are

formulated as
F (robust)
pt = µFPt + κ σFPt (6.18)

α
(robust)

2 = µα2 + κ σα2 (6.19)

Accordingly, the derivatives of the mean vale and standard deviation of F w.r.t. the
design variables become

∂µF
∂bn

= wp
∂µFPt
∂bn

− (1− wp)
∂µα2

∂bn
(6.20)

∂σF
∂bn

= wp
∂σFPt
∂bn

− (1− wp)
∂σα2

∂bn
(6.21)

Finally, the robust SDs are defined as

∂FR
∂bn

=
∂µF
∂bn

+ κ
∂σF
∂bn

= wp
∂

∂bn
F (robust)
pt − (1− wp)

∂

∂bn
α

(robust)
2 (6.22)

where the derivatives of F
(robust)
pt and α

(robust)
2 assume the form

∂

∂bn
F (robust)
pt =

∂µFPt
∂bn

+ κ
∂σFPt
∂bn

(6.23)

∂

∂bn
α

(robust)
2 =

∂µα2

∂bn
+ κ

∂σα2

∂bn
(6.24)

RDO is preformed for κ = +1 and six different weights: wp = 100, 95, 90, 75, 50, 0 %,
in order to produce a variety of robust stator airfoils, with a wide spectrum of
different Fpt to a2 prioritization. Once again the optimization runs for 5 cycles. For
the different values of wp and for each cycle the robust Fpt and a2, as well as their
relative difference (%∆), are presented in Tables 6.6 and 6.7, respectively, while also
in Figures 6.15 and 6.16.

116



F
(robust)

pt [m5/s3] (% ∆)

Cycle wp = 100 % wp = 95 % wp = 90 % wp = 75 % wp = 50 % wp = 0 %

1 0.109838 (0.00) 0.109838 (0.00) 0.109838 (0.00) 0.109838 (0.00) 0.109838 (0.00) 0.109838 (0.00)

2 0.108591 (1.14) 0.108457 (1.26) 0.108677 (1.06) 0.109157 (0.62) 0.109373 (0.42) 0.109500 (0.31)

3 0.107736 (1.91) 0.107527 (2.10) 0.107819 (1.84) 0.108612 (1.12) 0.109025 (0.74) 0.109270 (0.52)

4 0.107113 (2.48) 0.106854 (2.72) 0.107230 (2.37) 0.108178 (1.51) 0.108769 (0.97) 0.109129 (0.65)

5 0.106672 (2.88) 0.106403 (3.13) 0.106780 (2.78) 0.107888 (1.78) 0.108609 (1.12) 0.109085 (0.69)

Table 6.6: TU Berlin stator airfoil RDO with manufacturing imperfections:

F
(robust)
pt values for 5 optimization cycles, κ = +1 and six different weights.

α
(robust)

2 [deg] (% ∆)

Cycle wp = 100 % wp = 95 % wp = 90 % wp = 75 % wp = 50 % wp = 0 %

1 −1.29 (0.0) −1.29 (0.0) −1.29 (0.0) −1.29 (0.0) −1.29 (0.0) −1.29 (0.0)

2 −1.00 (22.0) −0.71 (44.8) −0.62 (51.8) −0.63 (50.6) −0.64 (50.1) −0.65 (49.8)

3 −0.76 (40.8) −0.20 (84.2) −0.02 (98.7) −0.02 (98.7) −0.02 (98.6) −0.02 (98.5)

4 −0.54 (58.0) 0.25 (119.5) 0.55 (142.6) 0.58 (144.9) 0.59 (145.8) 0.60 (146.3)

5 −0.34 (73.8) 0.66 (151.4) 1.06 (182.5) 1.14 (188.6) 1.17 (191.4) 1.19 (192.9)

Table 6.7: TU Berlin stator airfoil RDO with manufacturing imperfections: α
(robust)

2

values for 5 optimization cycles, κ = +1 and six different weights.

Figure 6.15: TU Berlin stator airfoil RDO with manufacturing imperfections:

F
(robust)
pt and α

(robust)
2 values plotted for 5 optimization cycles, κ = +1 and six dif-

ferent weights.

It is clear that, in contrast to Section 6.1, the selected objectives can be “combined”,
through the use of the weighted robustness metric function (eq. (6.17)), producing
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Figure 6.16: TU Berlin stator airfoil RDO with manufacturing imperfections:

F
(robust)
pt - α

(robust)
2 plot for six different weights. All final robust solutions, except

the one for wp = 100 %, are dominant upon all others, constituting the Pareto front
for this RDO case.

robust “hybrid” stators that display enhanced results in both objectives. Specifically,
for weights wp = 95, 90, 75, 50 %, the final geometries display simultaneously the
highly cambered trailing edge (which leads to the increase of α2) as well as the
reduced thickness (which lowers the total pressure losses). This is further supported,
by the fact that the wp = 95 % final robust blade sports the lowest robust pressure
loss of all other robust blades, minimizing its value by 3.13 %, thus overcoming even
the ∆Fpt = 2.88 % of the wp = 100 % robust blade. The hybrid performance of the
final robust blades can be observed in Figure 6.17, where the blade’s contours are
displayed for the different values of wp. The airfoils produced for weights 50 % ≤
wp ≤ 95 %, display both a reduced thickness, which lowers the pressure losses, as
well as as greater camber near the trailing edge, which leads to a greater outlet
flow angle. Besides, as detected in Figure 6.16, the final solution for the weights
wp = 95, 90, 75, 50, 0 %, generate robust Fpt and a2 that are dominant upon all
other solutions, hence representing the Pareto front of this RDO case, w.r.t. the
robust objectives.

Additionally, the mean value of Fpt and α2 are presented in Tables 6.8 and 6.9,
respectively , while their standard deviation is displayed Tables 6.10 and 6.11.
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Figure 6.17: TU Berlin stator airfoil RDO with manufacturing imperfections: the
initial (black) and six robust stator blades after 5 optimization cycles, each for a
different value of wp and for κ = +1, visualized both not in scale (A) and in scale (B).
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µFPt [m5/s3]

Cycle wp = 100 % wp = 95 % wp = 90 % wp = 75 % wp = 50 % wp = 0 %

1 0.109338 0.109338 0.109338 0.109338 0.109338 0.109338

2 0.108207 0.108115 0.108336 0.108777 0.108977 0.109095

3 0.107422 0.107288 0.107585 0.108337 0.108721 0.108947

4 0.106862 0.106712 0.107091 0.107996 0.108552 0.108884

5 0.106447 0.106301 0.106721 0.107772 0.108458 0.108899

Table 6.8: TU Berlin stator airfoil RDO with manufacturing imperfections: mean
value of Fpt for 5 optimization cycles, κ = +1 and six different weights.

µa2 [deg]

Cycle wp = 100 % wp = 95 % wp = 90 % wp = 75 % wp = 50 % wp = 0 %

1 −2.21 −2.21 −2.21 −2.21 −2.21 −2.21

2 −1.93 −1.63 −1.54 −1.56 −1.57 −1.57

3 −1.69 −1.13 −0.94 −0.94 −0.94 −0.94

4 −1.46 −0.67 −0.37 −0.34 −0.33 −0.32

5 −1.26 −0.26 0.14 0.22 0.26 0.28

Table 6.9: TU Berlin stator airfoil RDO with manufacturing imperfections: mean
value of α2 for 5 optimization cycles, κ = +1 and six different weights.

σFPt [m5/s3]

Cycle wp = 100 % wp = 95 % wp = 90 % wp = 75 % wp = 50 % wp = 0 %

1 5.006 · 10−4 5.006 · 10−4 5.006 · 10−4 5.006 · 10−4 5.006 · 10−4 5.006 · 10−4

2 3.842 · 10−4 3.427 · 10−4 3.421 · 10−4 3.809 · 10−4 3.963 · 10−4 4.048 · 10−4

3 3.146 · 10−4 2.399 · 10−4 2.347 · 10−4 2.745 · 10−4 3.051 · 10−4 3.235 · 10−4

4 2.510 · 10−4 1.422 · 10−4 1.388 · 10−4 1.822 · 10−4 2.176 · 10−4 2.453 · 10−4

5 2.261 · 10−4 1.026 · 10−4 5.972 · 10−5 1.168 · 10−4 1.514 · 10−4 1.857 · 10−4

Table 6.10: TU Berlin stator airfoil RDO with manufacturing imperfections: stan-
dard deviation of Fpt for 5 optimization cycles, κ = +1 and six different weights.

σa2 [deg]

Cycle wp = 100 % wp = 95 % wp = 90 % wp = 75 % wp = 50 % wp = 0 %

1 0.92122 0.92122 0.92122 0.92122 0.92122 0.92122

2 0.92517 0.92465 0.92425 0.92442 0.92435 0.92441

3 0.92499 0.92343 0.92277 0.92252 0.92267 0.92264

4 0.92429 0.92155 0.92029 0.91964 0.91931 0.91923

5 0.92387 0.92026 0.91776 0.91673 0.91627 0.91607

Table 6.11: TU Berlin stator airfoil RDO with manufacturing imperfections: stan-
dard deviation of α2 for 5 optimization cycles, κ = +1 and six different weights.
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In Tables 6.6 and 6.7, it is already established that the overall reduction of the
robust pressure losses are relatively small when compared to the reduction of the
robust outlet flow angle, given that for wp = 0 % it is increased by a tremendous
2.5o after five cycles. Accordingly, for the other weights similar, yet lower, relative
differences can be found. At first glance, this reveals that the outlet velocity angle
is greatly affected by geometry changes.

The contents of Tables 6.8, 6.9, 6.10 and 6.11 are visualized, in total, in Figure
6.18. The data in Figure 6.18 provides even further insight in this matter. It can
be deduced that the great increase of a

(robust)
2 is mainly due to the increase of the

mean value of a2, by a maximum of 2.5o, approximately, for wp = 0%. Furthermore,
the reduction of σa2 , if achieved, is seemingly small, with the maximum decrease
being approximately 0.005o, again, for wp = 0 %. This signifies that while the
maximization of the mean value of a2 yields a significant increase, the decrease in
its standard deviation is minute, even for wp.

On the contrary, the reduction in the mean pressure losses generally small, following
the same pattern with the respective robust value. Its highest reduction is 2.78 %
achieved for wp = 95 %. Still, the standard deviation of the total pressure losses, is
greatly mitigated for every weight value, with the highest being 88.1% for wp = 90%.

Finally, in Figure 6.19 the relative deviation of Fpt and the absolute deviation of
α2 are presented, for 32 KLT-generated imperfect renderings of the six final robust
blades as well as for the initial. In Figure 6.19, one can distinguish that the outlet
velocity a2 displays a apparently high deviation. The maximum value of this absolute
deviation is approximately ∆a2 = ±1.5o, which is seemingly unchanged for different
weight values. The maximum absolute deviation is 1.58o and corresponds to the
initial blade, while its value decreases with the decrease of wp, with the lowest
maximum absolute deviation being 1.53o (1.6 % reduction) for wp = 0 %. The
relatively high deviation is expected, given that σa2 has, for the most part, the
same order of magnitude with its respective mean value, as observed form Tables
6.11 and 6.9. This, also, denotes that the outlet flow angle is greatly affected by
the manufacturing imperfection created though KLT. Moreover, the small reduction
of the relative deviation of a2 is also anticipated, due to the, aforementioned, low
reduction of σa2 . On the other hand, when it comes to the total pressure losses
Fpt , a high decrease in its maximum relative deviation is expected, because of the
high reduction of σFpt , previously, documented. The highest Fpt maximum relative
deviation is equal to 1.07 % can be found for the initial TU Berlin blade, while the
lowest is equal to 0.32 % (70.4 % reduction) produced for wp = 90 %, as expected.
Otherwise, the overall influence of the KLT shape imperfections on the total pressure
losses is relatively small, which is also concluded by the fact that the standard
deviation of Fpt is two orders of magnitude lower that its respective mean value, as
displayed in Tables 6.10 and 6.8.
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Figure 6.18: TU Berlin stator airfoil RDO with manufacturing imperfections: mean
value and standard deviation of Fpt and α2 plotted for six different weights.

Figure 6.19: TU Berlin stator airfoil RDO with manufacturing imperfections: ab-
solute deviation ∆α2 and relative deviation ∆Fpt for the six final robust blades and
initial stator blade.
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Chapter 7

Summary and Suggestions

7.1 Summary - Conclusion

In this diploma thesis, a KLT-implementing software is developed, in order to
generate imperfect renderings of 2D geometries. This software alongside with OpenFOAM’s
simpleFoam and adjointOptimisationFoam solvers are integrated into an in-house
code employing the niPCE method, so as to perform aerodynamic UQ and deterministic
RDO, respectively, on 2D bodies with shape imperfections.

The niPCE theory, implemented into the according niPCE in-house software, is
formulated in order to perform single and multi-dimensional UQ w.r.t. the user-defined
QoI, for problems with stochastic input variables following normal distributions.
Therefore, for the computation of the mean value and standard deviation of the
selected QoI, GQ numerical integration with Hermite orthogonal polynomial is
employed. Both Full and Smolyak Sparse grids of Gauss Nodes needed for the
integration can be selected, the later proving especially useful for mitigating the
method’s computational cost of problems with a large number of uncertain variables
(M ≥ 4). Additionally, the niPCE code is, also, adjusted to conduct gradient-based
RDO, by performing UQ to the SDs (computed though the adjoint solver), in order
to produce the derivatives of the aforementioned statistical moments w.r.t. the design
variables a.k.a. the robust SDs. Thus, the computation the robustness metric and
its derivatives, a.k.a. the robust SD (in accordance with the DFSS approach), can
be achieved.

The continuous adjoint method, developed by PCOpt/NTUA and employed in this
thesis, is used to compute the SDs needed for the computation of the robust SDs.
The Enhanced-SI formulation is used, which yields an accurate prediction of the
SDs for a relatively lower computational cost, when compared with the alternative
FI approach.
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The KLT software is designed to generate stochastic perturbations on any 2D surface
of any length and geometry, thus providing the ability to render imperfect recreations
of a wide variety of shapes, such as airfoils or turbumachinery blades. The user
can define the number M , as well as the mean value and standard deviation of
the KLT uncertain variables, thus regulating the oscillation and the range of the
KLT-generated stochastic perturbations, respectively. Moreover, after an application
on a flat surface, it is observed the greater the number of M , the more oscillating are
the yielded perturbations. From the application of the KLT software, on the NACA
0012 airfoil it is deduced that a middle ground solution for the number of uncertain
variables, exhibiting both enough KLT imperfection complexity and a sustainable
computational cost is M = 5.

Once the aforementioned integration is complete, the coupled software is, firstly,
utilized to perform UQ on a NACA 0012 airfoil with manufacturing imperfections,
regarding its aerodynamic coefficients (CL, CD). Five KLT shape uncertain variables
(M = 5) and Smolyak Sparse grid GHQ integration are used, while a parametric
analysis is held w.r.t. the chaos order k used, while all results are compared with
corresponding results produced through the MC method for 5000 samples. From this
analysis, it is concluded that the precision of niPCE-computed UQ for geometries
with stochastic imperfections, is acceptable (mean relative error lower than 3 %) for
lower chaos order values (k ≤ 3), while the higher orders yield an unacceptable
computational cost, even for Sparse niPCE integration grids. Secondly, UQ is
executed on the E387 airfoil with manufacturing uncertainties, for the computation
of the robust SDs, through the MC and niPCE methods, the later by utilizing both
Full as well as Sparse grid integration. Both niPCE results for the robust SD are
seemingly accurate, justifying the adoption of the Smolyak grid integration for the
following RDO, given that it yields a reduced cost and practically the same accuracy
when compared with the Full grid results.

Furthermore, in order to accomplish deterministic shape RDO, certain mesh displacement
strategy must be employed and for that a the Volumentic B-Spline mesh paramaterization
subroutine of PCOpt/NTUA’s code adjointOptimisationFoam, is isolated and integrated
into the niPCE-KLT-Adjoint coupled software. This way, after each optimization
cycle, the pararemeterized mesh region is displaced according to the previously
computed robust SDs and according to the Steepest Descent design variable renewal
method.

The KLT-niPCE-Adjoint coupled software is then executed on the E387 airfoil
and the TU Berlin compressor stator cascade, so as to perform RDO with shape
uncertainties. The E387 airfoil, is subjected, initially, to single-objective robust
drag minimization, i.e. the minimization of its drag stochastic performance. This
RDO analysis is held for different values of the DFSS parameter κ. A conclusions
drawn from this analysis, is that, after 5 RDO cycles, the mean value and standard
deviation of the exerted drag can be reduced by 14 % and 35 %, respectively. Also,
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it is deduced that the results for the three values of κ are virtually indistinguishable,
due to the fact that the derivatives of the standard deviation of the drag coefficient
are negligible, when compared to its respective mean value. In addition, the airfoil is
subjected to multi-objective RDO, namely through the minimization of a weighted
objective function containing both the drag and lift coefficients. The analysis is held
for three different sets of weights, each signifying a different lift to drag prioritization.
The RDO process is successful in producing more balanced robust airfoils, with
optimized results in both robust drag and lift objectives. Overall, though, it is
perceived that the minimization of the stochastic variation of an airfoil’s force
coefficient is achievable, even though the KLT-modeled manufacturing uncertainties
have a minor influence on the forces exerted on a airfoil, given that their respective
maximum relative deviation is lower that 3 %.

Finally, multi-objective RDO with manufacturing uncertainties is held on the TU
Berlin compressor stator cascade, w.r.t. to the total pressure losses and the outlet
velocity angle. The two quantities are again arranged into a weighted objective
function, opting to minimize the mean value of the pressure losses, maximizing the
mean value of the outlet flow angle, while minimizing the standard deviation of
both objectives. The RDO analysis is performed for six different weight values and
the two objectives are proven to be compatible, yielding “hybrid” results sporting
both the reduced thickness and highly cambered trailing edge of their respective
single-objective final robust geometries. Ultimately, from this analysis, it is concluded
that the outlet flow angle is greatly affected by the shape changes and therefore
produces a relatively high standard deviation, with volatile responses to the KLT-
generated uncertainties, which cannot be significantly reduced by the proposed RDO
method. Therefore, while the maximization of its mean value is achievable by a
maximum of approximately 2.5o, the greatest reduction of its standard deviation
achieved is 0.005o. On the other hand, the total pressure losses exhibit a minor
sensitivity to the shape uncertainties, similarly to the force coefficients, but their
standard deviation can be significantly reduced by approximately 90 %, while their
respective mean value is decreased by a maximum of approximately 3 %.

Overall, the proposed method yields the expected results concerning the execution of
aerodynamic UQ and RDO of 2D geometries with shape uncertainties. The method
has been verified on two isolated airfoils and a compressor stator cascade, for three
distinct objective functions. Its computational cost is significant and it scales with
the number of RDO cycles needed, but it is still lower than the expected cost (lower
number of cycles and less evaluations per cycle) of other such methods, which employ
stochastic RDO, i.e. Evolutionary Algorithms.
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7.2 Suggestions for Future Research

The following proposition are made to fuel ideas for the further development of the
this work, in the future:

1. In this work, only geometrical uncertain variables following normal stochastic
distributions are taken into account and, thus, only their corresponding Hermite
family of orthogonal polynomials are used for the numerical GQ integration of
the niPCE coefficients. The generalized Polynomial Chaos theory, that can be
found in [9], is suggested in order to widen the spectrum of different stochastic
distributions that can be used as inputs.

2. The KLT-niPCE-Adjoint algorithm could be used to perform aerodynamic
UQ and RDO with, both, flow and shape uncertainties. Such a computational
process could evaluate and optimize the aerodynamic stochastic performance
of geometries for any, user-defined, stochastic input.

3. The KLT shape imperfection model can further be expanded, in order to
encompass also 3D geometries. According to the KLT theory, the generation
of 3D stochastic perturbations, is feasible and this way the evaluation of
manufacturing imperfections can be performed on complex 3D geometries.

4. The only design variable method, implemented in this thesis, is the Steepest
Descent method. The reason behind this, is that this method provides a fairly
easy formulation, requiring only 1st order sensitivity derivatives (robust or
not) for the update of the design variables. Additionally this method can
only cope with optimization with unconstrained objectives. It is suggested
that the niPCE code, should be improved so as to to receive both 2nd order
sensitivity derivatives as well as objective constraints and compute robust 2nd
order derivatives and robust constraints, giving it thus the ability to work in
conjunction with other design variables update methods, such as the BFGS
or the Constraint Projection methods. Especially the BFGS method, with its
high efficiency, could work perfectly alongside the coupled niPCE-KLT-Adjoint
algorithm, for robust design, given that it often reaches an optimal solution a
lot faster than other methods, when it is already established that each RDO
cycle is quite costly.

5. Other UQ methods could be employed other than the niPCE, for the evaluation
of stochastic QoI as well as their derivatives w.r.t. the design variables. Without
changing the gradient-based method of optimization, in this case the continuous
adjoint method, it is proposed to adopt another stochastic, e.g. the intrusive
PCE method or the deterministic Method of Moments [19], [3], [4] could be
implemented for the formulation of the statistical moments of the aerodynamic
performance of a shape with KLT-produced geometrical uncertainties. Though
the iPCE method lacks the generality of the niPCE, it makes up in higher
accuracy and lower computational cost. Additionally, the Method of Moments
could be utilized for UQ or RDO with KLT shape uncertainties, given that
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this method would greatly reduce the computational cost, while it could be
successfully coupled with 2nd order Quasi-Newton design variables update
methods, such as the aforementioned BFGS, due the higher order derivatives
formulation yielded from this method. Finally other niPCE variants found in
[3] such as the niPCE-Regression or the niPCE-Regression-Adjoint could be
utilized alongside the KLT model, for reasons of cost mitigation, especially
given that elevated numbers M are employed.
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Εισαγωγή

Στην παρούσα διπλωματική εργασία αναπτύσσεται λογισμικό προσομοίωσης γεωμε-

τρικών ατελειών κάνοντας χρήση του μετασχηματισμού Karhunen-Loève Transform
(KLT). Το λογισμικό KLT μαζί με τον επιλύτη συνεχούς συζυγούς μεθόδου της

ΜΠΥΡ&Β/ΕΜΠ, σε περιβάλλον OpenFOAM©, εντάσσονται σε προϋπάρχον λογι-

σμικό μη-επεμβατικού Αναπτύγματος Πολυωνυμικού Χάους (niPCE), με τις κατάλλη-

λες τροποποιήσεις για την εκτέλεση Ποσοτικοποίησης Αβεβαιότητας και αιτιοκρατικού

Στιβαρού Σχεδιασμού σε διδιάστατες γεωμετρίες με κατασκευαστικές ατέλειες.

Η θεωρία niPCE αξιοποιείται για την αξιολόγηση της στοχαστικής αεροδυναμικής

συμπεριφοράς ενός σώματος, υπολογίζοντας τη μέση τιμή και την τυπική απόκλιση

κάποιας Ποσότητας Ενδιαφέροντος (QoI) F (~b,~c), η οποία αποτελεί συνάρτηση τόσο

των μεταβλητών σχεδιασμού (bn , n = 1, 2, ..., N) όσο και των αβέβαιων μεταβλητών

(cm , m = 1, 2, ...,M). Επίσης ο αιτιοκρατικός Στιβαρός Σχεδιασμός για τη βελτιστο-

ποίηση της Μετρικής Στιβαρότητας FR (συνάρτηση-στόχος) απαιτεί την εύρεση των

παραγώγων της ως προς τις μεταβλητές σχεδιασμού, δηλαδή των στιβαρών παραγώγων

ευαισθησίας δFR/δbn, διαδικασία που, επίσης, υλοποιείται μέσω του niPCE. Η συνεχής

συζυγής μέθοδος βελτιστοποίησης χρησιμοποιείται στον αιτιοκρατικό Στιβαρό Σχεδια-

σμό για την εύρεση των παραγώγων ευαισθησίας (SDs), δηλαδή των παραγώγων της

συνάρτησης στόχου ως προς τις μεταβλητές σχεδιασμού που χρειάζονται για τον υ-

πολογισμό των παραγώγων ευαισθησίας της μετρικής στιβαβότητας (robust SDs). Οι

μεταβλητές σχεδιασμού αποτελούν τα ελεύθερα σημεία ελέγχου του παραμετροποιη-

μένου πλέγματος μέσω Volumetric B-Splines. Τέλος η μέθοδος που υιοθετείται για

την ανανέωση των σημείων ελέγχου είναι η μέθοδος της Απότομης Καθόδου.

Μοντελοποίηση Κατασκευαστικών Ατελειών

Οι γεωμετρικές ατέλειες που μπορεί να προκύψουν στην επιφάνεια μηχανικών στοιχείων

που αλληλεπιδρούν με ρευστά, είτε κατά την κατασκευή τους είτε κατά τη λειτουργία

τους (π.χ. επικαθίσεις), μοντελοποιούνται μέσω του μετασχηματισμού KLT. Οι στο-

χαστικές αυτές διαταραχές παράγονται μέσω ενός πεπερασμένου αριθμού ιδιοτιμών λn
και ιδιοσυναρτήσεων fn, οι οποίες συσχετίζονται μέσω της ολοκληρωτικής εξίσωσης

(7.1) που περιλαμβάνει τον εκθετικό Πυρήνα Συνδιακύμανσης (7.2)∫
D

C(s1, s2)fn(s2)ds2 = λnfn(s1) (7.1)

C(s1, s2) = σ2e−
|s1−s2|

l (7.2)

όπου s1, s2 ∈ D, l το μήκος συσχέτισης των διαταραχών και σ η τυπική απόκλιση

του πυρήνα. Στην εργασία αυτή, δεδομένου ότι δε δίνονται τα εμπειρικά δεδομένα

ατελειών για 2Δ αεροδυναμικά σώματα, λ.χ. μεμονωμένες αεροτομές ή αεροτομές

πτερυγώσεων, προτείνονται οι εξής παραδοχές: D = [0, smax] όπου smax η περίμετρος

του σώματος, σ = 1 και l = smax. Οι έξι πρώτες ιδιοσυναρτήσεις για τον εκθετικό
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πυρήνα παρατίθενται στο Σχήμα 7.1.

Σχήμα 7.1: Πρώτες έξι ιδιοσυχνότητες fn(s) για τον εκθετικό πυρήνα (7.2), για
s ∈= [0, 1], l = 1 και σ = 1.

Λαμβάνοντας υπόψη τα παραπάνω, οι ιδιοτιμές και οι ιδιοσυναρτήσεις προκύπτουν από

την επίλυση της εξίσωσης (7.1) και έτσι οι στοχαστικές διαταραχές υπερτίθενται στην

αρχική γεωμετρία (X̄(s)) κατά την κάθετη διεύθυνση σε σχέση με την επιφάνεια, ως

εξής:

X(s,~c) = X̄(s) + CHann(s)
M∑
n=1

√
λncnfn(s)~n(s) (7.3)

όπου s ∈ [0, smax η εφαπτομενική συντεταγμένη στην επιφάνεια του διδιάστατου σώμα-

τος, cn οι στοχαστικές μεταβλητές,M το πλήθος των συναρτήσεων βάσης και των στο-

χαστικών μεταβλητών, ~n(s) το κάθετο διάνυσμα και CHann(s) μία συνάρτηση Hanning
window που μπορεί να χρησιμοποιηθεί, προαιρετικά, για την απόσβεση της KLT δια-

ταραχής κοντά στην ακμή εκφυγής, ώστε να παραμένει μυτερή.

Παρατηρείται ότι όσο μεγαλύτερο είναι το πλήθος των ιδιοσυναρτήσεων M τόσο με-

γαλύτερες και πιο πολύπλοκες είναι οι παραγόμενες διαταραχές, ενώ τόσο μεγαλύτερο

είναι το υπολογιστικό κόστος κατά την Ποσοτικοποίηση Αβεβαιότητας ή το Στιβαρό

Σχεδιασμό. Τελικά επιλέγεται M = 5, καθώς αποτελεί μία μέση λύση μεταξύ της

πολυπλοκότητας των ατελειών και του υπολογιστικού κόστους, ενώ ταυτόχονα ικανο-

ποιεί το κριτήριο (;;) για ένα πλήθος αεροτομών:

∑M
n=1 λn∑
n λn

≥ 0.96.

Τελικά επτά αποδόσεις της αεροτομής NACA 0012 με γεωμετρικές ατέλειες, παρου-

σιάζονται στο Σχήμα 7.2, για M = 5 και για τη συνάρτηση Hanning window ενερ-

γοποιημένη στο 15 % της χορδής, παράγοντας επτά διαφορετικά διανύσματα αβέβαιων

μεταβλητών ~xin μέσω γεννήτριας τυχαίων αριθμών (RNG).
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Σχήμα 7.2: Η αρχική αεροτομή NACA 0012 (μαύρο) καθώς και επτά αποδόσεις της
με ατέλειες (άλλα χρώματα), παραγόμενες μέσω KLT, τόσο σε πραγματική (πάνω) όσο
και σε μη πραγματική κλίμακα (κάτω).

Μη-επεμβατικό Ανάπτυγμα Πολυωνυμικού Χάους

Σύμφωνα με τη θεωρία του Πολυωνυμικού Χάους, μία Ποσότητα Ενδιαφέροντος F =

F (~b,~c) προσεγγίζεται ως γραμμικός συνδυασμός ορθοκανονικών πολυδιάστατων πο-

λυνύμων ψ̃, ως εξής:

F (~b,~c) u
Ncut∑
i=0

aiψ̃i(~c) , Ncut =

(
kmax +M
kmax

)
=

(k +M)!

k!M !
(7.4)

Η μέση τιμή και η τυπική απόκλιση της F προσεγγίζονται ως αθροίσματα των συντε-

λεστών ai του γραμμικού συνδυασμού της εξίσωσης (7.4)

µF u a0 & σF u

√√√√Ncut∑
i=1

a2
i (7.5)

όπου k η τάξη πολυωνυμικού χάους και M = dim(~x) ο αριθμός των αβέβαιων μετα-

βλητών.

Υπολογίζοντας τις παραπάνω στατιστικές ροπές, μπορεί να υπολογιστεί η Μετρική

Στιβαρότητας FR, ενώ για τις παραγώγους της μετρικής απαιτούνται και οι παράγωγοι

των στατιστικών ροπών:

FR = µF + κ σF ⇒
∂FR
∂bn

=
∂µF
∂bn

+ κ
∂σF
∂bn

(7.6)
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όπου κ η παράμετρος DFSS, της οποίας το πρόσημο δείχνει το κατά πόσο είναι απαισι-

όδοξη ή αισιόδοξη η προσέγγιση του σχεδιασμού, ενώ η απόλυτη τιμή της φανερώνει τη

βαρύτητα της τυπικής απόκλισης ως προς τη μέση τιμή. Οι παράγωγοι των στατιστικών

ροπών προσδιορίζονται παραγωγίζοντας τις εξισώσεις (7.5) ως προς bn:

∂µF
∂bn

u
∂a0

∂bn
&

∂σF
∂bn

u
∑Ncut

i=1 ai
∂ai
∂bn√∑Ncut

i=1 a2
i

=
1

σF

Ncut∑
i=1

ai
∂ai
∂bn

(7.7)

Για κάθε τύπο κατανομής που μπορεί να ακολουθούν οι στοχαστικές μεταβλητές cl,
αντιστοιχούν συγκεκριμένες οικογένειες ορθογώνιων πολυωνύμων. Στην περίπτωση

της κανονικής κατανομής την οποία ακολουθούν όλες οι στοχαστικές μεταβλητές σε

αυτήν την εργασία (cl ∈ N (µl, σ
2
l )) αντιστοιχούν τα πιθανοτικά πολυώνυμα Hermite

(Hei(cl)), με πεδίο ορισμού D = [−∞,+∞] και συνάρτηση πυκνότητας πιθανότητας

(PDF) w(cl) = 1
σl
√

2π
e
− 1

2

(
cl−µl
σl

)2
.

Τα πολυδιάστατα πιθανοτικά ορθοκανονικά πολυώνυμα ορίζονται ως το γινόμενο των

αντίστοιχων μονοδιάστατων πολυωνύμων ψ̃i(~c) =
∏M

l=1 H̃eil

(
cl−µl
σl

)
. Η PDF των

ψ̃i, ομοίως, ορίζεται ως το γινόμενο των PDF των αντίστοιχων μονοδιάστατων πο-

λυωνύμων: W (~c) =
∏M

l=1w(cl). ΄Ετσι οι συντελεστές niPCE ai ορίζονται ως εξής:

ai =

∫ +∞

−∞
· · ·
∫ +∞

−∞
F (~b, c1, ..., cM)ψ̃i(z1, ..., zM)W (c1, ..., cM) dc1 · · · dcM (7.8)

όπου zl = cl−µl
σl

, l = 1, 2, ...,M , ενώ οι τιμές της Ποσότητας Ενδιαφέροντος F απαι-

τούν την επίλυση του πρωτεύοντος προβλήματος (πρόβλημα ροής).

Αντίστοιχα, οι παράγωγοι των ai ως προς τις μεταβλητές σχεδιασμού, προκύπτουν

από την παραγώγηση της σχέσης (7.8)

∂ai
∂bn

=

∫ +∞

−∞
· · ·
∫ +∞

−∞

∂

∂bn
F (~b, c1, ..., cM)ψ̃i(z1, ..., zM)W (c1, ..., cM) dc1 · · · dcM

(7.9)

όπου οι παράγωγοι ευαισθησίας ∂F/∂bn υπολογίζονται με την επίλυση του συζυγούς

προβλήματος.

Ο υπολογισμός των ολοκληρωμάτων (7.8) και (7.9) γίνεται με αριθμητική ολοκλήρωση

Gauss Hermite. Η ολοκλήρωση μπορεί να γίνει είτε για πλήρες πλέγμα κόμβων Gauss
είτε για αραιά πλέγματα Smolyak. Στην πρώτη περίπτωση οι τιμές των κόμβων είναι

ίσες με τις ρίζες των ψ̃i, ενώ το πλήθος τους ισούται με (k + 1)M , που είναι ταυτόση-

μο με το κόστος της μεθόδου (μετρούμενο με μονάδα το κόστος μίας αξιολόγησης),

αφού ισούται με τον αριθμό των αξιολογήσεων που απαιτούνται για το υπολογισμό
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των στατιστικών μεγεθών και των παραγώγων τους. Η εκθετικη αύξηση του κόστους

για μεγάλους αριθμούς αβέβαιων μεταβλητών, αντιμετωπίζεται με τη χρήση πλεγμάτων

ολοκλήρωσης Smolyak, που απαιτεί αισθητά μικρότερους αριθμούς αξιολογήσεων για

M ≥ 4, σε βάρος της ακρίβειας των αποτελεσμάτων. Στον Πίνακα 7.1 παρατίθενται οι

διαφορές στο πλήθος των αξιολογήσεων για τα δύο πλέγματα κόμβων Gauss.

Πλήρες Πλέγμα / Πλέγμα Smolyak

Μ

k 1 2 3 4 5 6

0 1/1 1/1 1/1 1/1 1/1 1/1

1 2/3 4/5 8/7 16/9 32/11 64/13

2 3/5 9/13 27/25 81/41 243/61 729/85

3 4/9 16/29 64/69 256/137 1024/241 4096/389

4 5/17 25/65 125/177 625/401 3125/801 15625/1457

5 6/33 36/145 216/441 1296/1105 7776/2433 46656/4865

Πίνακας 7.1: Κόμβοι Gauss, άρα και πλήθος αξιολογήσεων, για τον υπολογισμό των
συντελεστών niPCE, τόσο για πλήρη όσο και για Smolyak πλέγματα ολοκλήρωσης.

Κατά την Ποσοτικοποίηση Αβεβαιότητας ή το Στιβαρό Σχεδιασμό υπό κατασκευαστι-

κές ατέλειες, οι κόμβοι Gauss για το εκάστοτε πλέγμα ολοκλήρωσης αποτελούν τις

τιμές των αβέβαιων μεταβλητών cn που εισάγονται στο μοντέλο KLT για την παραγωγή

γεωμετρικής ατέλειας σε 2Δ σώμα. Οι στατιστικές ροπές των αβέβαιων μεταβλητών

µl, σl ∀ l = 1, 2, ...,M καθορίζονται από τον χρήστη.

Ο κώδικας niPCE που είχε αναπτυχθεί από την ΜΠΥΡ&Β/ΕΜΠ, επεκτάθηκε ώστε να

μπορεί να υπολογίσει τις παραγώγους των στατιστικών μεγεθών της F και κατ΄ επέκτα-

ση των στιβαρών παραγώγων ευαισθησίας για δεδομένο κ, λαμβάνοντας τιμές για τις

παραγώγους ευαισθησίας από εξωτερικό επιλύτη. Στην περίπτωση αυτή χρησιμοποιε-

ίται ο συνεχής συζυγής επιλύτης την ΜΠΥΡ&Β/ΕΜΠ, σε περιβάλλον OpenFOAM©.

Ποσοτικοποίηση Αβεβαιότητας υπό Κατασκευασικές Ατέλειες

Διεξάγεται Ποσοτικοποίηση Αβεβαιότητας των αεροδυναμικών συντελεστών (CD, CL)
μεμονωμένης αεροτομής NACA 0012 με κατασκευαστικές ατέλειες. Η ροή θεωρείται

ασυμπίεστη και χρονικά μόνιμη για Rec = 2, 600, 000 και γωνία πρόσπτωσης a = 2o

και επιλύεται σε δομημένο υπολογιστικό πλέγμα 160× 135 τετραεδρικών κελιών, ενώ

χρησιμοποιείται το μοντέλο τύρβης Spalart–Allmaras . Ο αριθμός των KLT στο-

χαστικών μεταβλητών είναι M = 5 και οι στοχαστικές τους ροπές µl = 0 , σl =
2 · 10−3m ∀ l = 1, 2, ..., 5, ενώ πραγματοποιείται παραμετρική μελέτη ως προς την τάξη

χάους k και σύγκριση των αποτελεσμάτων με τη μέθοδο Monte Carlo για 5000 δείγμα-

τα. Η πιστοποίηση των αποτελεσμάτων για τις δύο μεθόδους περιγράφεται στο Σχήμα

7.3. Στο Σχήμα 7.3 παρατηρείται ότι, στην περίπτωση αυτή, αύξηση της τάξης χάους

δεν συνεπάγεται την αύξηση ακρίβειας. Οι πιο ακριβείς λύσεις παράγονται, κατά μέσο

όρο, για k = 1 και k = 3, όμως αυτό είναι συγκυριακό και δεν μπορεί να γενικευτεί.
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Σχήμα 7.3: Αεροτομή NACA 0012 με κατασκευαστικές ατέλειες: Ποσοτικοποίηση Α-
βεβαιότητας CD, CL για niPCE με τάξη χάους k από 1 έως 4 και γιαMonte Carlo(5000).

Για τις προσομοιώσεις που ακολουθούν επιλέγεται k = 1, διότι παράγει ένα σχετικά

ακριβή υπολογισμό των στατιστικών ροπών για το χαμηλότερο υπολογιστικό κόστος,

καθώς το κύριο μέλημα της εργασίας δεν είναι η υψηλή ακρίβεια αλλά η διερεύνηση και

πιστοποίηση του μοντέλου κατασκευστικών ατελειών για το Στιβαρό Σχεδιασμό.

Στη συνέχεια, πραγματοποιείται Ποσοτικοποίηση Αβεβαιότητας ως προς τις παρα-

γώγους των στατιστικών ροπών όπως ορίζονται στη σχέση (7.7). Η Ποσότητα Εν-

διαφέροντος είναι το CD και η αεροτομή με γεωμετρικές ατέλειες που μελετάται είναι

η Ε387. Οι ροϊκές συνθήκες είναι Rec = 2, 600, 000 και a = 2o, ενώ το υπολογιστικό

πλέγμα είναι δομημένο, με 160× 135 τετραεδρικά κελιά. Οι παράγωγοι υπολογίζονται

σε πλέγμα 3 × 2 ελεύθερων σημείων ελέγχου, για k = 1 και M = 5 τόσο για πλήρη

πλέγματα όσο και για πλέγματα Smolyak, ενώ τα αποτελέσματα συγκρίνονται με της

Monte Carlo, για 1000 δείγματα. Η πιστοποίηση των παραγώγων παρατίθεται στο

Σχήμα 7.4.

Στο Σχήμα 7.4 φαίνεται πως η προτεινόμενη μέθοδος, με τις υιοθετούμενες ρυθμίσεις,

προλέγει ικανοποιητικά τις παραγώγους των στατιστικών ροπών μιας Ποσότητας Εν-

διαφέροντος. Τα αποτελέσματα για αραιά πλέγματα ολοκλήρωσης Smolyak είναι πρα-

κτικά εξίσου ακριβή με τα αποτελέσματα για πλήρη πλέγματα ολοκλήρωσης, για τάξη

χάους k = 1. ΄Ετσι δικαιολογείται η επιλογή αξιοποίησης πλεγμάτων Smolyak για το

σχεδιασμό υπό κατασκευασικές ατέλειες.

Σχεδιασμός στην περίπτωση Κατασκευαστικών Ατελειών

Αρχικά πραγματοποιείται μονοκριτηριακός Στιβαρός Σχεδιασμός με στόχο τη βελτι-

στοποίηση της στοχαστικής συμπεριφοράς της οπισθέλκουσας μεμονωμένης αεροτο-

μής Ε387 για 5 κύκλους βελτιστοποίησης. Διατηρούνται οι ίδιες ροϊκές συνθήκες, το

ίδιο υπολογιστικό πλέγμα και οι ίδιες ρυθμίσεις για το μοντέλο KLT με την παραπάνω

ανάλυση. Επιλέγονται τρείς τιμές της παραμέτρου DFSS: κ = −2, 0,+2. Οι στατιστι-
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Σχήμα 7.4: Αεροτομή Ε387 με κατασκευαστικές ατέλειες: Ποσοτικοποίηση αβεβαι-

ότητας ∂µCD/∂bn και ∂σCD/∂bn για niPCE(k = 1) και για Monte Carlo(1000).

κές ροπές του CD που προκύπτουν σε κάθε κύκλο παρατίθενται στο Σχήμα 7.5.

Σχήμα 7.5: Μονοκριτηριακός σχεδιασμός αεροτομής Ε387 με κατασκευαστικές α-

τέλειες: στατιστικές ροπές CD, CL για 5 κύκλους βελτιστοποίησης και κ = −2, 0,+2.

Επίσης οι τελικές στιβαρές γεωμετρίες καθώς και η απόκλιση των CD, CL από την

αντίστοιχη μέση τιμή τους, αποτυπώνονται στο Σχήμα 7.6. Συνολικά από το Σχήμα

7.5 βγαίνει το συμπέρασμα ότι η προτεινόμενη μέθοδος επιτυγχάνει μείωση τόσο της

μέσης τιμής του CD (κατά 13.5 %) όσο και της τυπικής απόκλισής του (κατά 34.8 %).

Το γεγονός αυτό παρατηρείται και από τη μείωση της μέγιστης σχετικής απόκλισης

του CD στο Σχήμα 7.6. Επιπλέον, από τα Σχήματα 7.5 και 7.6 προκύπτει ότι τα α-

ποτελέσματα δεν επηρεάζονται ιδιαίτερα από τη μεταβολή του κ. Αυτό δεν μπορεί να

γενικευτεί, αλλά αιτιολογείται δεδομένου ότι οι παράγωγοι του CD είναι τουλάχιστον

δύο τάξεις μεγέθους μικρότερες από τις αντίστοιχες παραγώγους της μέσης τιμής του,

όπως φαίνεται στο Σχήμα 7.4.
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Σχήμα 7.6: Μονοκριτηριακός σχεδιασμός αεροτομής Ε387 με κατασκευαστικές α-

τέλειες: η αρχική και οι τελικές στιβαρές γεωμετρίες (αριστερά) και η σχετική απόκλιση

των CD, CL από την αντίστοιχη μέση τιμή (δεξιά).

Στη συνέχεια εκτελείται στην ίδια αεροτομή, δικριτηριακός Στιβαρός Σχεδιασμός ως

προς τη σταθμισμένη συνάρτηση-στόχο wDCD − (1 − wD)CL (που απαιτεί ένα συ-

ζυγή επιλύτη αντί για δύο, για κάθε στόχο), αποσκοπώντας στη βελτιστοποίηση

της στοχαστικής συμπεριφοράς της άνωσης και της οπισθέλκουσας, για 5 κύκλους

βελτιστοποίησης. Για τις ίδιες συνθήκες, επιλέγονται κ = +2 και τρεις τιμές βα-

ρών: wD = 100, 99.35, 99.25 %. Στο Σχήμα 7.7 παρουσιάζονται οι στιβαροί α-

εροδυναμικοί συντελεστές που ορίζονται ως εξής: C
(robust)
D = µCD + κ σCD και

C
(robust)
L = µCL + κ σCL .

Σχήμα 7.7: Δικριτηριακός σχεδιασμός αεροτομής Ε387 με κατασκευαστικές ατέλειες:

στιβαροί συντελεστές CD, CL για 5 κύκλους βελτιστοποίησης και τρεις συνδυασμούς
βαρών.

Οι τελικές στιβαρές γεωμετρίες και η απόκλιση των CD, CL από την αντίστοιχη

μέση τιμή αποτυπώνονται στο Σχήμα 7.8. Παρατηρείται ότι η χρήση σταθμισμένης

136



συνάρτησης-στόχου δύναται να ανακόψει τη δραστική πτώση του C
(robust)
L , από 40.7%

για wD = 100 % σε 18.7 % για wD = 99.25 %. Βέβαια, οι δύο στόχοι είναι αντι-

κρουόμενοι, καθώς όποια μεταβολή στα βάρη που προκαλεί μείωση της οπισθέλκουσας

προκαλεί αύξηση της άνωσης και αντίστροφα. Το γεγονός αυτό παρατηρείται στις δια-

φορές μεταξύ των στιβαρών αεροτομών στο Σχήμα 7.8. Στο Σχήμα 7.8 παρατηρείται

αύξηση της μέγιστης σχετικής απόκλισης του CD με την αύξηση της τιμής του wD,
η οποία όμως παραμένει πάντοτε μικρότερη από την αντίστοιχη απόκλιση της αρχι-

κής αεροτομής. Η ουσιαστικά αμετάβλητη μέγιστη σχετική απόκλιση του CL, είναι

αναμενόμενη λόγω της επιλογής μεγάλων τιμών για τα βάρη wD, που φανερώνει την

ιεράρχηση της οπισθέλκουσας κατά τη σχεδιάση.

Σχήμα 7.8: Δικριτηριακός σχεδιασμός αεροτομής Ε387 με κατασκευαστικές ατέλειες:

η αρχική και οι τελικές στιβαρές γεωμετρίες (αριστερά) και η σχετική απόκλιση των

CD, CL από την αντίστοιχη μέση τιμή (δεξιά).

Τέλος, διεξάγεται δικριτηριακός στιβαρός σχεδιασμός 2Δ σταθερής πτερύγωσης TU
Berlin για 5 κύκλους βελτιστοποίησης. Σκοπός είναι η απόλυτη αύξηση γωνίας απόκλι-

σης της ροής θ = a1 − a2 και η ταυτόχρονη μείωση των απωλειών ολικής πίεσης Fpt .
Δεδομένου ότι η γωνία εισόδου είναι σταθερή και ίση με a1 = −42o αρκεί να μεγιστο-

ποιηθεί η γωνία εξόδου a2 και η συνάρτηση-στόχος ορίζεται wpFpt−(1−wp)a2. Οι ρο-

ϊκές συνθήκες είναι U∞ = 48m/s και Rec = 672, 000, ενώ η χορδή της αεροτομής είναι

ίση με 0.1876m. Η ροή που θεωρείται μόνιμη και ασυμπίεστη επιλύεται σε 2Δ μη δο-

μημένο πλέγμα 80228 κελιών, με περιοδικά όρια. Οι στατιστικές ροπές των 5 αβέβαιων

μεταβλητών του μοντέλου KLT ορίζονται µl = 0 , σl = 2 · 10−3 m ∀ l = 1, 2, ..., 5.
Επίσης επιλέγονται κ = +2 και έξι τιμές βαρών wp = 100, 95, 90, 75, 50, 0 %. Στο

Σχήμα 7.9 αποτυπώνονται η στιβαρή γωνία απόκλισης (α
(robust)

2 = µα2 + κ σα2) και οι

στιβαρές απώλειες ολικής πίεσης (F
(robust)
pt = µFPt + κ σFPt) για τους 5 κύκλους.

Στο Σχήμα 7.9 παρατηρείται ότι οι δύο στόχοι είναι μη αντικρουόμενοι, καθώς οι τελι-

κές τιμές των στιβαρών στόχων για όλα τα βάρη, εκτός από το wp = 100%, αποτελούν

το Μέτωπο Pareto των κυρίαρχων λύσεων. ΄Ετσι, μετά από 5 κύκλους, η μεγαλύτερη

μείωση των στιβαρών απωλειών ολικής πίεσης εμφανίζεται για wp = 95 % και είναι
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Σχήμα 7.9: Δικριτηριακός σχεδιασμός 2Δ σταθερής πτερύγωσης TU Berlin με κα-

τασκευαστικές ατέλειες: απώλειες ολικής πίεσης F
(robust)
pt και γωνία εξόδου α

(robust)
2

(πάνω) και οι τελικές στιβαρές γεωμετρίες σε πραγματική κλίμακα (κάτω).

ίση με 3.1 %, ενώ η μέγιστη αύξηση της στιβαρής γωνίας εξόδου είναι 192.9 % για

το βάρος wp = 0 %. Αντίστοιχα, το γεγονός ότι οι στόχοι είναι μη αντικρουόμενοι

φανερώνεται και από τις ‘υβριδικές’ τελικές στιβαρές αεροτομές, που συνδυάζουν τόσο

το μειωμένο πάχος όσο και την αύξηση της καμπυλότητας στην ακμή εκφυγής, για τα

βάρη wp = 95, 90, 75, 50; %.

Στο Σχήμα 7.10 παρατίθενται οι υπολογιζόμενες στατιστικές ροπές και η συσχέτιση

των αποκλίσεων των a2 και Fpt . Το συμπέρασμα του Σχήματος είναι ότι επιτυγχάνεται

δραστική μείωση της διασποράς και της τυπικής απόκλισης των απωλειών ολικής πίε-

σης (μέγιστη κατά 88.1 % για wp = 90 %), ενώ η μείωση της τυπικής απόκλισης της

γωνίας εξόδου είναι πολύ μικρότερη, όπου επιτυγχάνεται (μέγιστη μείωση 0.005o για

wp = 0 %). Αντίθετα η αύξηση της μέσης τιμής της a2 είναι ιδιαίτερα μεγάλη, με τη

μέγιστη να είναι ίση με περίπου 2.5o. Το ίδια συμπεράσματα προκύπτουν και από τις

τιμές των αποκλίσεων. Η μικρή πτώση της σa2 φανερώνεται και από τη μηδαμινή με-

ίωση της αντίστοιχης μέγιστης απόλυτης απόκλισης. Αντίθετα η πτώση της μέγιστης

σχετικής απόκλισης της Fpt είναι αισθητά μεγάλυτερη για όλα τα βάρη, με τη μέγιστη

να ισούται με 70.4 % για wp = 90 %.
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Σχήμα 7.10: Δικριτηριακός σχεδιασμός 2Δ σταθερής πτερύγωσης TU Berlin με
κατασκευαστικές ατέλειες: στατιστικές ροπές των Fpt , a2 (πάνω) και συσχέτιση της

απόλυτης απόκλισης της a2 με τη σχετική απόκλιση των Fpt (κάτω).

Συμπεράσματα

Η προτεινόμενη μέθοδος αιτιοκρατικού στιβαρού σχεδιασμού υπό κατασκευαστικές

ατέλειες που συνδυάζει τις μεθόδους KLT, niPCE και τη συζυγή μέθοδο. ΄Εχει πο-

σοτικά αποτελέσματα που ποιοτικά είναι τα αναμενόμενα, όσον αφορά τη βελτιστοπο-

ίηση της στοχαστικής αεροδυναμικής συμπεριφοράς ενός 2Δ σώματος με γεωμετρικές

ατέλειες. Η μέθοδος πιστοποιήθηκε τόσο για μεμονωμένες αεροτομές όσο και για

αεροτομές σταθερών πτερυγώσεων, για τρεις διαφορετικές συναρτήσεις-στόχους. Η

μέθοδος έχει σημαντικό υπολογιστικό κόστος που πολλαπλασιάζεται ανά κύκλο βελ-

τιστοποίησης, το οποίο όμως είναι αισθητά μικρότερο σε σχέση με άλλες προσπάθειες

που πραγματοποιούν στοχαστικό Στιβαρό Σχεδιασμό.
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Appendix A

OpenFOAM CFD Validation

In this section of the Appendix, the validation of the CFD method used to numerically
solve the primal problem, as presented in Section 2.1, takes place. Meaning, that
the the results produced by the CFD analysis, through OpenFOAM are compared
with corresponding experimental results found in literature.

In this thesis, three distinct primal problems are solved, both with and without
the inclusion of KLT-generated manufacturing imperfections (explored thoroughly
in Chapter 4), the later integrated within UQ and RDO loops (more information
in Section 5.1). These three CFD cases are mainly distinguished by their varying
initial shape, two of them being airfoils: the symmetric NACA 0012 (Subsection
5.2.2) as well as the E387 (Subsection 5.3.1) and the third being the TU Berlin
compressor stator cascade (Subsection 6.2.2). Nevertheless, only the first two airfoil
cases are verified, given that they have been extensively subjected to wind tunnel
testing and their aerodynamic performance is well documented through the years.
The compressors cascade is a simplified 2D model of the TU Berlin axial compressor
stator blade. The 3D CFD simulation of the stator has been executed and verified
in [40]. The cascade has been extracted from these 3D simulations, so as to be used
as a simplified model for the purposes of this work. Up until now, no experimental
data for this specific cascade are found in literature.

Airfoil: NACA 0012

The NACA 0012 airfoil experimental data used to validate the accuracy of the
OpenFOAM fluid solver can be found in [41], and for now on is referred to as Land-
son et al. experiments, for short. The flow solver configurations, computational
mesh, turbulence model and boundary conditions are exactly the same with the
ones described in Subsection 5.2.1, only changing the far-field velocity to U∞ =
60 m/s, in order to achieve the flow conditions used in the wind tunnel experiments:
Mach = 0.15 and Rec = 6 · 106.
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For these flow conditions the OpenFOAM’s simpleFoam incompressible flow solver
is used, to compute the flow field around the airfoil for three of the same far-field
velocity angles of attack (AoA) used by Landson et al.: AoA = [0.01, 2.15, 4.11] degrees.
The reason for which these AoA are selected is to validate the solver’s accuracy close
to the AoA= 2 deg used in the UQ analysis that takes place in Subsection 5.2.3.

The CD and CL coefficients as computed both through OpenFOAM and the Land-
son et al. experiments, for the aforementioned AoA, are displayed in Table A.1.

Landson et al. OpenFOAM

AoA [deg] CL CD CL CD

−0.01 −0.0122 0.00804 −0.012716 0.007876

2.15 0.2236 0.00823 0.228503 0.008392

4.11 0.4397 0.00879 0.435971 0.009771

Table A.1: NACA 0012 airfoil: aerodynamic coefficients for Rec = 6, 000, 000. Com-
parison between the OpenFOAM-computed and Landson et al. experimental results.

The same comparison is also visualized through the Figure A.1, where the polar
and CL − AoA diagrams for the NACA 0012 airfoil. Meanwhile the relative error
of the CFD results when compared to the corresponding experimental results are
displayed in Figure A.2.

Overall, the results of the OpenFOAM’s solver configurations produce valid results,
especially in for AoA close to zero. As expected the CL results are fairly precise,
given that the pressure field is more or less easily computed accurately for all AoA,
keeping in mind the dominant component of the lift force exerted on an airfoil is
caused by the pressure difference between its suction and pressure sides. This result
also backed by the CFD-computed pressure coefficient (Cp) distribution on to the
airfoil’s surface is relatively accurate as well when compared with the corresponding
experimental distribution, as plotted in Figure A.3.

Nevertheless, even the more complex, due to the its viscous component, CD, requiring
proper treatment (as featured in Subsection 2.1.3) and denser meshing near the
airfoil surface, is computed with relative accuracy. According to Figure A.2, the
lowest relative error is identified for AoA= 2.15 deg, justifying the 2 deg AoA
used in the CL, CD UQ analysis, executed in Subsection 5.2.1, for the same airfoil.
The slightly higher relative error appearing for AoA= 4.11 deg, indicates that a
denser mesh might be required, given that greater velocity gradients as well as some
unsteady phenomena may start to appear.
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Figure A.1: NACA 0012 airfoil: CL − CD polar diagram and CL − AoA diagram
for Rec = 6, 000, 000. The Ladson et al. results are included for all AoA used in the
experiments.

Figure A.2: NACA 0012 airfoil: relative error of the OpenFOAM-generated aero-
dynamic coefficients w.r.t. the results of the Ladson et al. experiments for Rec =
6, 000, 000.
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Figure A.3: NACA 0012 airfoil: pressure coefficient distribution for AoA= 0 deg
and Rec = 6, 000, 000 from both the OpenFOAM analysis and the Ladson et al. exper-
iments.

Airfoil: E387

The experimental data of the aerodynamic performance of the E387 airfoil are
extracted from the [42]. Specifically the Spring 1997, J.Robertson data set are
used and are referred to as Robertson experimental results. The same simpleFoam
solver configuration and mesh are implemented as those mentioned in Subsection
5.3.1. Only the far-field velocity is modified to U∞ = 2 m/s, to attain the Reynolds
number Rec = 200, 000 of the Robertson experiments.

The flow field around the airfoil is computed for five different AoA = [0, 1, 2, 3, 4] degs
and the results are given in Table A.2, in comparison to the Robertson results.

The same comparison is also visualized through Figure A.4, where the polar and
CL − AoA diagrams for the E387 airfoil and through Figure A.5, where the relative
error of the CFD results, when compared to the corresponding experimental results,
are displayed.
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Robertson OpenFOAM

AoA [deg] CL CD CL CD

0 0.371 0.0110 0.372208 0.011169

1 0.477 0.0118 0.479919 0.011952

2 0.585 0.0128 0.587641 0.012983

3 0.703 0.0139 0.694792 0.014277

4 0.799 0.0148 0.801176 0.015822

Table A.2: E387 airfoil: aerodynamic coefficients for Rec = 200, 000. Comparison
between the OpenFOAM-computed and Robertson experimental results.

Figure A.4: E387 airfoil: CL − CD polar diagram and CL − AoA diagram for
Rec = 200, 000 from both the OpenFOAM analysis and the Robertson experiments.

The conclusions drawn from the comparison of the results are very similar to those
described in Subsection A of the Appendix. The CFD accuracy is greater the
for AoA close to zero, while the lowest error for the drag coefficient is found for
AoA=1 deg. Generally, the CL CFD-generated prediction is more precise, while
for AoA=4 deg the CD error is the highest, indicating the need for a denser mesh
near the airfoil. Overall, the OpenFOAM solver configuration is proven to produce
relatively valid results, justifying its integration in UQ and RDO loops, as in Subsection
5.3.2 and Section 6.1, respectively.

145



Figure A.5: E387 airfoil: relative error of the OpenFOAM-generated aerodynamic
coefficients w.r.t. the results of the Robertson experiments for Rec = 200, 000.

Unfortunately, no Cp distributions can be found in [42], in order for such a comparison
to be held.
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Appendix B

Hermite Polynomials

The Hermite orthogonal polynomials are used for the niPCE method for uncertain
variables following normal distributions. Two different categories of Hermite polynomials
exist: the probabilists’ Hermite polynomialsHen used in statistics and the physicists’
Hermite polynomials Hn more often employed in different scientific domains related
to physics. The main difference between the two is based on the formulation
of their respective weight function. Yet both are defined into the same domain
D = [−∞,+∞].

The generalized formula for generating Hermite polynomials of degree n, is formulated
as

Hn(x) = (−1)nw−1(x)
dnw(x)

dxn
(B.1)

where w(x) the weight function.

Weight Functions

The probabilists’ polynomials weight function is defined as

wHe(x) = e−
x2

2 (B.2)

while the physicists’ polynomials weight function is defined as

wH(x) = e−x
2

(B.3)

Polynomial Formula

By integrating the weight function from eqs. (B.2) and (B.3) into the generalized
formula in eq. (B.1), the formulas for each of the two categories, respectively, is
produced.
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A probabilists’ polynomial of n degree is generated by

Hen(x) = (−1)ne
x2

2
dne−

x2

2

dxn
=

(
x− d

dx
()

)n
· 1 (B.4)

while physicists’ polynomials of n degree are generated by

Hn(x) = (−1)nex
2 dne−x

2

dxn
=

(
2x− d

dx
()

)n
· 1 (B.5)

The two definitions are not identical. This is backed by the fact that the first can
be produced through the latter (as well as the opposite), by making use of the
transform

Hen(x) = 2−
n
2 Hn(

x√
2

) ⇐⇒ Hn(x) = 2
n
2 Hen(x

√
2) (B.6)

Recurring Formula

Similarly, from definitions in eqs. (B.4) and (B.5), respectively, the recurring formulas
for the polynomials is defined as

Hen+1(x) = x Hen(x)− n Hen−1(x) (B.7)

Hn+1(x) = 2x Hn(x)− 2n Hn−1(x) (B.8)

while their respective recurring derivatives w.r.t. to x ∈ [−∞,+∞]

He′n(x) =
dHen(x)

dx
= n Hen−1(x) (B.9)

H ′n(x) =
dHn(x)

dx
= 2n Hn−1(x) (B.10)

In addition, in a Hermite polynomial of n degree, the coefficient An of the term to
the power of n is defined, though the use of the recurring formulas, as follows

A(He)
n (x) = 1 , A(H)

n (x) = 2n (B.11)

Orthogonality

Both of the two categories of Hermite polynomials are orthogonal w.r.t. their corresponding
weight function w(x), as follows

〈Hen(x), Hem(x)〉w =

∫ +∞

−∞
Hen(x)Hem(x)e−

x2

2 dx = n!
√

2πδmn (B.12)
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〈Hn(x), Hm(x)〉w =

∫ +∞

−∞
Hn(x)Hm(x)e−x

2

dx = 2nn!
√
πδmn (B.13)

where δmn the Kronecker Delta.

From eqs. (B.12) and (B.13) the w-norms, for the two categories, are formulated〈
He2

n(x)
〉
w

= ||Hen||2w = γ(He)
n = n!

√
2π ,

〈
H2
n(x)

〉
w

= ||Hn||2w = γ(H)
n = 2nn!

√
π

(B.14)

Gauss Hermite Quadrature weights

The weights used in GQ integration are generally defined by the expression

ωj = −An+1

An
· γn
φn+1(xj) φ′n(xj)

(B.15)

where φn a n degree polynomial belonging to a certain orthogonal family and xj the
roots of the aforementioned polynomial.

Meanwhile, the transform between the orthogonal polynomials φ of degrees n + 1
and n is defined as

φn+1(xj) = −An+1An−1

A2
n

· γn
γn−1

· φn−1(xj) (B.16)

By including eq. (B.16) in eq. (B.15), the weights are formulated as

ωj = − An
An−1

· γn−1

φn−1(xj) φ′n(xj)
(B.17)

When implementing the Gauss Hermite Quadrature, the weights are defined with
Hermite polynomials, coefficient and w-norms. Therefore, when probabilists’ Hermite
polynomials are used, according to eqs. (B.4), (B.9), (B.11) and (B.14), the weights
from eq. (B.17) become

ωj =
(n− 1)!

√
2π

Hen−1(xj)He′n(xj)
=

n!
√

2π

n2 He2
n−1(xj)

(B.18)

If physicists’ Hermite polynomials are utilized, eq. (B.17) alongside with eqs. (B.5),
(B.10), (B.11) and (B.14) yields

ωj =
2n (n− 1)!

√
π

Hn−1(xj)H ′n(xj)
=

2n−1 n!
√
π

n2 H2
n−1(xj)

(B.19)

To conclude, during the application of GHQ for the numerical integration of the
niPCE coefficients, in this thesis, the symbol n designating the polynomial degree
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is replaced by k + 1 (given that n = k + 1), where k the niPCE chaos order.

Polynomial examples

According to the polynomials’ formula in eqs. (B.4) and (B.5), respectively, the ten
first Hermite polynomials are produced and displayed.

Probabilists’ Hermite polynomial examples:

He0(x) = 1

He1(x) = x

He2(x) = x2 − 1

He3(x) = x3 − 3x

He4(x) = x4 − 6x2 + 3

He5(x) = x5 − 10x3 + 15x

He6(x) = x6 − 15x4 + 45x2 − 15

He7(x) = x7 − 21x5 + 105x3 − 105x

He8(x) = x8 − 28x6 + 210x4 − 420x2 + 105

He9(x) = x9 − 36x7 + 378x5 − 1260x3 + 945x

Physicists’ Hermite polynomial examples:

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 4

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

H5(x) = 32x5 − 160x3 + 120x

H6(x) = 64x6 − 480x4 + 720x2 − 120

H7(x) = 128x7 − 1344x5 + 3360x3 − 1680x

H8(x) = 256x8 − 3584x6 + 13440x4 − 13440x2 + 1680

H9(x) = 512x9 − 9216x7 + 48384x5 − 80640x3 + 30240x

GHQ roots and weights

The Gauss Hermite Quadrature integration (explored in Subesections 3.3.5 and
3.4.5), used in this thesis for the computation of the niPCE coefficients ai, requires
the roots and the weights of Hermite polynomials. In this thesis, only canonical
probabilists’ polynomials H̃e (as formulated in (3.33)) are employed for the GHQ
integration. Yet, for showcasing reasons, the weights and roots of both default and
canonical probabilists’ Hermite polynomials are presented in Table B.1.
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Hen(x) H̃en(x)

n Roots xj Weights ωj Roots xj Weights ωj

1 0 2.506628275 0 1

2
1

−1

1.25331414

1.25331414

1

−1

0.5

0.5

3

1.732050808

0

−1.732050808

0.417771379

1.671085516

0.417771379

1.732050808

0

−1.732050808

0.1666666667

0.6666666667

0.1666666667

4

2.334414218

0.7419637843

−0.7419637843

−2.334414218

0.11499371

1.13832042

1.13832042

0.11499371

2.334414218

0.7419637843

−0.7419637843

−2.334414218

0.04587585477

0.4541241452

0.4541241452

0.04587585477

5

2.856970014

1.35562618

0

−1.35562618

−2.856970014

0.028218146

0.55666179

1.336868413

0.55666179

0.028218146

2.856970014

1.35562618

0

−1.35562618

−2.856970014

0.01125741133

0.222075922

0.5333333333

0.222075922

0.01125741133

6

3.324257434

1.889175878

0.6167065902

−0.6167065902

−1.889175878

−3.324257434

0.0064064014

0.22212673

1.02478100

1.02478100

0.22212673

0.0064064014

3.324257434

1.889175878

0.6167065902

−0.6167065902

−1.889175878

−3.324257434

0.002555784402

0.08861574604

0.4088284696

0.4088284696

0.08861574604

0.002555784402

Table B.1: GHQ Integration: Roots and weights of probabilists’ Hen(x) as well as

canonical probabilists’ polynomials H̃en(x) for their degrees n spaning from 1 to 6.
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