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Euyoeiotisg

Apyind 9éhw va exppdon T Potid euyveopocsivn You Teog Ty untépa hou Atvar xou
™V Ylaywd pou Mogia, yio Tnv unopovy), eviidppuvorn xon GeovTido TOU ATAGYERA OV
Tpocégepay, xod)’ Ohn T ddpxela g Lwhc pou. H owoyévela pou umrple, yio uéva,
TAVTOTE €VOl TUAGVAS EUTIOTOCUVNC o OTARIENG amd TNV 0y 1) TS OYOAXNS Hou Lw-
A, MEYPL TO TENOG TWV POLTNTIXGY oL Yedvwy. Auth 1 gpyocia, eivor mpwntioTwe
aplepwuévn ot exclveg, we uio oeuvr) Evoelln euyvwuoolvng yio tic Yuoleg mou éxavay
V1oL EUEVA XM XOL YLOL TO PWTEWVS TUPADBELYUA TTOU LOU €8GOV [UE TN 0TdoT (WG TOUC.

Nixdw, axdun, tnv emdupla va suyopiothiow tov x. Kuptdxo Tavvdxoyiou yia to
Yeovo xou TNV xadodrynor mou pou mapetye xaddg xou Yoo TNV EUTOTOCUVT TOU €-
TEdECE 0TO TPOoWTS Yo, xaTd TN Teplodo TNe cuvepyastag Yac. And Tov xapd Tou
Topoxohovdoloa to pordnudta tou 6idaoxe oto EMIIL, péypet xou tnv ohoxhpwon tne
OLMAWUATIXAG HoL pyaciag, Vewp® TKS 1) EUTELRla Xou 1) TEYVOYVWGOIa TOU ETEDRUCAY
xooploTid TN BLEDPUVOT) TOU EVOLUPEROVTOS XU TWYV YVOOEWY Lo, GGV apopd TO
YVWOTIXG TOU OVTIXEIUEVO, TEYUO Yo TO OO0 TOU Eludl EUYVOUWY.

Emdupd, eniong, va euyaptotion 6ho ta uéhn tne MIITP&B/EMII nou cuvéBooy
oTNV exnévnoT TNg Tapoloug epyactag xou Witepa Tov utodhpio AwddxTopa Avopéa
Mogyétn yio ) dapxr| Borjlela xou T EVOTOYES TUPATNEYOELS OV Uou TapelyE, o-
Totednmote Tig ypectaotnxa. AvtioTtorya, ¥éhw va evyapiothow toug Ap. Eudyyeho
Hamoutor| Kuoyayid xouw Ap. BoagBdoo Acoltrn yio tn forideia mou pou mpocépepay oe
OLdipopor OTABLAL TNG DOUAELES [UOU.

Téhog, b Vo pmopolco Vo uny euyaploTHOW Toug Gihoug ot GUVABEAPOLS Lo Ar-

unten Korogwhd, ®otn Moavé xan Xapdhouno Kaneiépn mou ftav dimho pou péypet
T0 TéAOC TNG PorTNTXAC Uou Lwhg.
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Abstract

In the field of aerodynamics, the geometrical and flow conditions of a certain shape
are usually considered to be constants, while in reality they exhibit some stochas-
ticity, which can have a varying effect on its performance. This thesis, stresses
aerodynamic cases in which the geometrical-manufacturing uncertainties of a cer-
tain shape are taken into account, by proposing a computational process capable to,
firstly, evaluate the stochasticity of their performance (uncertainty quantification)
and, secondly, to optimize their stochastic performance (robust design).

Therefore, this thesis presents the development of software, implementing the non-
intrusive Polynomial Chaos Expansion and the Karhunen-Loeve Transform theories,
in order to perform aerodynamic uncertainty quantification and robust design op-
timization on 2D shapes with manufacturing uncertainties. The Karhunen-Loeve
Transform theory is used to simulate the real-time uncertainties that may occur
during the manufacturing of aerodynamic shapes. The theory of Polynomial Chaos
is based on the use of orthogonal polynomials to model the stochasticity of a cer-
tain phenomena, by analyzing its stochastic input and quantifying its stochastic
output, though the form of its statistical moments. The Karhunen-Loeve Trans-
form software developed as well as the OpenFOAM®© Computational Fluid Dynam-
ics solvers are coupled to an in-house non-intrusive Polynomial Chaos Expansion
code, so as to quantify the stochastic aerodynamic performance of 2D imperfect
geometries. Additionally, robust design is performed on such imperfect geometries,
parameterized through Volumetric B-Splines, by optimizing the statistical moments



of their performance, with respect to the design variables controlling the parameter-
ized shape. This is achieved through the incorporation of the continuous adjoint op-
timization algorithm, developed by PCOpt/NTUA in the OpenFOAM environment,
into the aforementioned Karhunen-Loeve Transform and non-intrusive Polynomial
Chaos coupled algorithm.

The Karhunen-Loeve Transform code is designed to recreate imperfect perturbations
on any 2D geometry and when combined the generalist nature of the non-intrusive
Polynomial Chaos Expansion mathematical tool, it grants the ability to the pro-
posed method to cope with a wide variety of aerodynamic cases with shape un-
certainties. Simultaneously, the deterministic adjoint optimization method greatly
mitigates the computational cost needed to perform the uncertainty quantification
and robust design processes, when compared to other stochastic methods often em-
ployed in literature, such as the Evolutionary Algorithms.
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LNV AEQOBUVOULXT|, Ol YEWUETEIXES O POIXEC CUVIXES EVOC COUATOC IOV EpYETOL
o€ EMAYPY| UE PEVCTO, CLVATWLS, VEWEOLVTUL CTAUERES, EVE GTNY TEAYUXTIXOTNTA EU-
paviCouv %dmol CTOYACTIXOTNTA, 1 OTolo UTOPEL VoL €YEL UXPOTERES 1) UEYURITERES
EMUTTOOoE oty anodoon Toug. H mapoloa dimhwuotin epyacio, avapeépeton o€ o-
€OOUVUUIXE TEOBAAUATO GTA OTIO{OL Ol YEWUETPIXEG-XATUAOXEVACTIXEG ATEAELES TWV EV
AOYw owudTev, Aoupdvovtar unddn. Etol npoteiveton pior utohoyiotixy| uédodog yia
TNV TOGOTIXOTOINCN TNG OTOYAC TIXNAG ATOBOOTG (nooouxonoinon cxﬁsﬁoaémwg) oTe-
AV 0WPETWY ahhd xon T BEATIOTOTOMNON TNG OTOYACTIXNS TOUS ATOB0CTG (GTLﬁupég
oYEBUOUOC).

[o t0 Aéyo autd otnv Tapoloa gpyacio, avamTUOoETHL AOYLoUXO, Tou alloTolel Tig
Yewpleg tou un-emepPotixod Avantiypatog Hohvwvupxol Xdoug xot Tou PeTooy -
potiopoy Karhunen-Loeve yia tnv extéheorn agpoduvouxfic mocotixonoinong ofde-
BoudtnTog 1o oTYPuEo) CYEDIOUOL OF OIOUCTATEG YEWHUETPIEG UE XUTUOHEUNO TIXES
atéreteg. O petaoynuatiopog Karhunen-Loeve ypnowomote{ton yio Ty tpocouoinon
TV OTEAELDY TOU, THoVE, OLUOPPOVOVTUL GTNV ETLPAVELN UEQODLVIUULIXMY COUITGLY,
xotd TNV xataoxeun 1) T Aettovpyta Toug. H dewpio Tou IHlohvwvupixot Xdoug, Boaoile-
Tow 6TN) YEHOT 0pVOYWVIXWY TOAUWVIUWY YLl TN HOVIEAOTOINGT TNG O TOY UG TIXOTNTOC
evog pouvopévou, avahbovtag Tig af3éBaieg ueTafAnTtég elo6dou xou utohoyilovTag Tig
OTOY O TIXES TOUG €EODOUC, PE TN UOP@T TNG UEONC TWAC XL TG TUTXAC OmOXAL-
ong. O xiddwoag petaoynuatiopol Karhunen-Loeve xodog xou ot emhiteg umoloyi-
OTUXAC PEVCTOBLUVOUXTS, O TEPUSGANOY OpenFOAM® | evonotoivia UE TOV XOOLXA
un-emeuBatieod Avamtiyuoatoc Hohvwvupxol Xdoug, pe oxond tnv mocotixomolon
ofePardtnTog O OWLICTUTEG YEWUETPIEG UE XUTAOKELAOTIXEC aTéAelec. Emmiéoy, o
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AEPOBUVIIXOS O TYBUPOC OYEDLUOUOE EXTEAE(TOL OE TETOLEG ATEAEIC YEWUETELES, TORUE-
TPOTOLWVTAS TIG TeEAEUTaleg e TN pédoYo mpocéyyione Volumetric B-Splines xon Beti-
O TOTIOWWVTUG TN MECT) TWT X0 TNV TUTIXT) ATOXALOT) TNG AELODUVOUIXTS TOUS amddOCT,
(¢ TEOG T ONUELN EAEYYOU TWV TUQUUETROTIOMNUEVWY UTOAOYLO TIXWY Ywelwy. Ta ma-
CATAVE TROYUATOTOLOUVTAL PE TNV EVOWUATWOT TOU AOYLoPX0U cuvEY0Ug culuyolg
uetédou Bertiotonolong, e MIITP& B/EMII, otov npoavogepduevo nenheyuévo
xwotxa, o mepBdihov OpenFOAM.

To hoyouxd petaoynuatiopod Karhunen-Loeve, oyedidleton khote vor dOvortan vo mo-
OGEEL XUTUAOEVAC TIXEG UTEAEIEG OE OTOLUONTTOTE OLOLAC TUTY) YEWUETELN, YEYOVOC TIOU OF
OLVBLOOUOS UE TN) YEVIXOTNTA TOL ur-enepfatixol Avaniypoatog ITohuwyuuixol Xdoug,
TEOGHIBEL TN BUVATOTNTA GTNY TEOTEWVOUEVT HEY0DO0 Vo exTEAETEL TOGOTIXOTOLNGT) Of3e-
Boudtntog 1 oTPopd oyedlaoud o Wio ToLAlN AEPOBUVOLXGY TEOBANUATWY UE YEW-
uetpxéc atéhetec. Toautdypova, 1 yeron e ouluyolc Uuedodou UELDVEL CNUAVTIXG TO
%OGTOC TWV UTOAOYIC TIXMV DIERYACLWY TOU TUREYEL 1) TROTEWOUEVN uEV0dOG, 08 OYEoT
ue avtioTolye Tpoomdieleg ToU yenowonololy GToY Ao TXES ueVddoug PehtioTonoln-
ong, omwe Toug E&ehixtinoie Alyopliuoucg.
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Nomenclature

CFD Computational Fluid Dynamics
CAE Computer Aided Engineering
NTUA National Technical University of Athens
PCOpt Parallel CFD & Optimization unit
GBM Gradient Based Method
SO0 Single Objective Optimization
MOO Multi Objective Optimization
RDO Robust Design Optimization
[8[®) Uncertainty Quantification
CPU Central Processing Unit
DNS Direct Numerical Simulation
NS Navier-Stokes
RANS Reynolds-Averaged Navier-Stokes
SD Sensitivity Derivatives
PDE Partial Differential Equation

gdPDE grid displacement Partial Differential Equation
Qol Quantity of Interest

CpP control point
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FAE Field Adjoint Equations

ABC Adjoint Boundary Conditions
MC Monte Carlo
PCE Polynomial Chaos Expansion

niPCE non-intrusive Polynomial Chaos Expansion

iPCE intrusive Polynomial Chaos Expansion
PDF Probability Density Function
GQ Gauss Quadrature
GHQ Gauss-Hermite Quadrature
KLT Karhunen-Loeve Transform
KLE Karhunen-Loeve Expansion
EFS Equivalent Flow Solution
RHS Right Hand Side
LHS Left Hand Side
a.k.a. also known as

w.r.t. with respect to
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Chapter 1

Introduction

In recent years, the ever improving performance of modern computer systems in
combination with the enhancement of computational methods has led to an increasing
use of Computational Fluid Dynamics (CFD) for the purpose of industrial Computer
Aided Engineering (CAE) in applications related to fluid mechanics. Modern CFD
software can simulate the flow around or inside the shapes faster and more accurately,
making them available for the purpose of shape optimization procedure and aerodynamic
robust design. Thus, the number and the cost of the experiments needed to evaluate
new engineering designs have been thoroughly decreased.

1.1 Shape Optimization

In general, the goal of the optimization mathematical problem of a certain objec-
tive function, is to compute the values of it’s variables that maximize or minimize
the said function. These variables are referred to as design or optimization variables.

In the case of shape optimization, according to the control theory adapted to
CFD-based optimization, the geometry to be optimized is controlled by a number
of variables, which consist the design variable vector (5 € RY) of the optimization
process. For instance, these could be the control point coordinates of Bézier—Bernstein
polynomials that parameterize the shape under consideration. The quality of the
shape to be optimized is evaluated by computing the objective function, which is
usually an integral quantity related to the fluid flow field. The objective function
can be defined either at (part of) the boundaries, such as the total drag or lift force
exerted on a body, or in a volume inside the geometry, such as the noise induced by
the turbulent flow.

One way of classifying CFD-based optimization methods w.r.t. the number of objective
functions, to: single objective optimization (SOO) and multi objective optimization

(MOO) [1]. SOO applies when a single objective function is optimized whereas MOO
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applies when more than one objective functions are to be simultaneously optimized.

A second classification for optimization methods, is one that reflects the way the
optimal set of design variables is computed: stochastic or deterministic [1]. This
diploma thesis focuses exclusively on the latter. On the one hand, the stochastic
optimization methods pseudo-randomly generate values for the design variables and
heuristic algorithms are implemented in order to faster reach the optimal solution.
The optimization process is concluded when either the objective function has converged
to its optimal value or the user-defined maximum number of optimization cycles
is reached. Examples of such methods would be the evolutionary algorithms. The
deterministic or gradient-based optimization methods (GBM) rely on the computation
of sensitivity derivatives (SD), which consist the gradient of the objective function
w.r.t. the design variables. This allows a controlled convergence towards the optimal
solution, faster than the one achieved with stochastic methods.

In deterministic shape optimization cases, the shape in question is updated in the
direction dictated by the sensitivity derivatives. To do so, the flow field, the objective
function value and the new SD field are computed on the current geometry. This
process is repeated until the same criterion, as the one mentioned for stochastic
methods, is met. Since the values of the sensitivity derivatives tend to be nullified
near local minima, it is possible for this method to get entrapped into a local
optimum. As a result, the algorithm may converge to a local rather than the global
optimal solution, which is the main disadvantage of a GBM. Such a disadvantage
does not occur in stochastic methods, as long as the maximum number of optimization
cycles (generations) is not quite low.

The flow-chart for the generalized CFD-based optimization algorithm is presented
in Figure [I.T] thus summarizing and visualizing everything that has been stated so
far.



Deterministic or Stochastic
Computation of b__

Figure 1.1: The generalized CFD-based optimization algorithm flow chart. A stochas-
tic or deterministic method, either coupled or uncoupled to the fluid flow solver, is
implemented in order to update the design variable vector bpe,. Depending on the
optimization method, the fluid flow solver can be called either once or more times.
This process repeats itself for the updated values of the design variables until a certain
convergence criterion is met and only then the design variable vector that optimizes
the objective function by can be obtained.

1.2 Aerodynamic Robust Design

In order to fully grasp the difference between the processes of shape optimization
and robust design optimization (RDO), an additional classification concerning the
input variables to the problem must be introduced. These variables can be grouped
into two categories, according to the variation associated with their values. In the
first class of variables their variation is assumed to be defined by a certain stochastic
distribution and can, therefore, be quantified through the use of statistical measures
such as the mean (i) or the standard deviation (o) of the input variable in question.

Variables with no stichasticity are already introduced as design variables (l;), while
those that have some degree of variation are known as enwvironmental, robust or
uncertain variables (¢ € RM). Tt must be clear that in real-life scenarios every
variable of a problem is governed by a certain degree of uncertainty, therefore in
reality, every variable is an uncertain variable. Yet in the world of CAE, which
variables of a simulation are considered to be uncertain is a decision made by the
user. For instance, one case of airfoil aerodynamic RDO could focus on a robust
design w.r.t. the Mach number of the flow, thus considering all other variables, such
as the angle of attack or Reynolds number as design variables, with zero variance.

3



In contrast, a different airfoil RDO w.r.t. the angle of attack, would consider every
other variable including the Mach number as design variables. In the scientific
literature, such design cases are a.k.a. as design/optimization under uncertainties.

Therefore, a design case of which all variables consist of design variables, can be
called a shape optimization (without uncertainties) case and its solution is known as
deterministic optimum or optimal design point. In SOO, the deterministic optimum
is defined as the point where the objective function displays is global minimum
or maximum value, depending if the case in question requires minimization or
maximization, respectively. Whereas, a robust design case has both design variables
and uncertain variables as inputs (= (by, by, ..., by, ¢1, Ca, ..., cpr) € RYTM) and the
solution of such a case is named robust optimum or robust design point. The robust
optimum may not necessarily be the aforesaid optimum, but is defined as the point
around which the objective function exhibits extrema for all corresponding values
of the uncertain variables within their respective distribution [2]. The optimum and
robust design points of a SOO (maximization of the objective function f(x) € R) is
displayed in Figure|1.2]

f@

ﬁ.’;ig'f

Deterministic Robust

Optimum Optimum
Figure 1.2: The difference between the optimal design point (blue) and the robust
design point (red) of the performance objective function f(x) (black). In this specific
case the robust optimum happens to be a local maximum while also displaying lower
variation in it’s close vicinity, compared to the deterministic optimum, for all the
corresponding values of the uncertain variable x.

Specifically, shape optimization cases of aerodynamic bodies opting to posses an
optimized aerodynamic performance within a certain range of their respective design
variables, can be established as aerodynamic robust design cases. In this category of
cases, in order to properly describe the algorithmic steps needed to culminate in a
robust design point, the definition of the aerodynamic robustness metric (Fg) must
be introduced. This metric that represents the robustness of the original objective
function (F) a.k.a. the Quantity of Interest (Qol), is dependent upon the statistical

4



moments of ', most commonly referring to: the mean (ur) and standard deviation
(cr) . In RDO cases, the aerodynamic robustness metric replaces the Qol as the
quantity to be optimized by either a stochastic or deterministic optimization process.
The value of Ffg is dependent on the values ur and o, which are computed through
the Uncertainty Quantification (UQ) process.

The algorithmic steps needed to implement aerodynamic RDO are the following:

e Definition of the initial values of the design and uncertain variable vectors (b
and c respectively)

e Application of deterministic or stochastic RDO method, utilized to update
the design variable vector b,,.,,. Either way the statistical moments of the Qol
must be computed through a process of UQ for the design variable vector b
and the uncertain variable vector c, under consideration. Thus, the process of
numerically solving the flow field equations, in order to compute the flow field
variables and the Qol, is executed as part of the UQ algorithm. Upon that,
the statistical moments of F', computed through the UQ loop, are utilized to
compute the aerodynamic robustness metric Fig.

e Application of an optimization convergence criterion. If the criterion is met,
the process terminates by defining the optimal set of the design variables by,
that result to the robust design point. Otherwise, this process repeats itself
for the updated design variable vector b, .

The aforementioned steps of a typical aerodynamic robust design algorithm are,
also, visualized through a flow-chart, in Figure [1.3]

More specifically, there is a variety of deterministic methods (e.i. Method of Mo-
ments) [3], [4] and stochastic (e.i. Monte Carlo, intrusive or non-intrusive Poly-
nomial Chaos Expansion)[5], [6], [7], [8], [9] available in order to perform the task
of UQ. Stochastic UQ methods determine a certain number values of uncertain
variables to be evaluated, thus computing the moments pr and op. On the other
hand, deterministic UQ methods rely on the formulation of PDEs to be solved,
either coupled or uncoupled from the CFD solver, in order to compute the statistical
moments of the Qol.

Yet the implementation of the UQ process may still vary on the optimization method
used to renew the design variable vector. For stochastic optimization methods the
UQ is performed as described above. In contrast, for GBMs the computation of the
derivatives of the robustness metric Fg, a.k.a. the robust SDs, is needed to renew
the design variables. Subsequently the UQ process must also be implemented for
the SDs of the Qol, in order to compute the gradients of the statistical moments
of the Qol: Vur € RY and Vop € RY. The gradient of robustness metric VFj is
computed using these previously mentioned quantities.



Deterministic or Stochastic Computation of b_,

Uncertainty Quantification

Figure 1.3: The generalized CFD-based RDO algorithm flow-chart.

In this thesis, the UQ and RDO process is performed through stochastic methods.
Specifically, Monte Carlo and non-intrusive Polynomial Chaos Ezpansion are employed
for UQ, while only the later are used for RDO. More information about these
methods is disclosed in Chapter [3] Furthermore, only deterministic methods are
implemented in order to compute and renew the design variables of the case under
consideration. Hence, for deterministic RDO the computation of the SDs of the Qol

is essential. The uncertain variables w.r.t. which the UQ and RDO is performed
are considered to be the shape uncertainties, which are generated through the
Karhunen-Loeve Transform, further explored in Chapter [4]

1.2.1 Computation of Sensitivity Derivatives

Given that this thesis focuses solely on GBMs, this Subsection is dedicated to the
different methods available, in order to compute the SD, mentioned in Section [I.1]
This step is also instrumental in deterministic RDO methods, therefore the Qol F
is displayed as dependent on both design b,, n € [1, N] and uncertain variables
¢, 1 € [1, M]. In general, the efficiency of GBMs is highly dependent on how the
sensitivity derivatives are computed.

The Finite Differences Method

The most straightforward method of computing the SDs is by using finite differences
(FD) [1]. The computation of a first derivative of F' w.r.t. the design variable ,
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then this design variable is perturbated by an infinitesimally small, user-defined
quantity, e. Thus, the Qol is re-evaluated for the perturbated design. For instance,
a second-order, central difference FD scheme is formulated, as displayed in equation

inl

oF F(bl, ---,bn + €, ...7bN,Cl, ...,CM) - F(bl, ...,bn — €, .‘.,bN,Cl, ...,CM)
n €

Despite its simple implementation, since it requires only the re-computation of the
value of the objective function, this method poses great concerns because of its two
main drawbacks. First and foremost, the cost of the FD method scales linearly
with the number of the design variables, N, as it requires 2N evaluations of F' by
solving the flow equations, making it impracticable for optimization problems a large
number of design variables. The second downside is the dependence of the computed
derivatives from €, the value of which cannot be determined a priori. The use of a
too “small” value is not always the answer to the aforementioned problem as it can
introduce round-off errors. In addition, for each design variable, the flow equations
must be fully converged two additional times in order to compute the perturbated
values of F', an event that should not be taken for granted in any CFD case.

The Complex Differences Method

An alternative method for the computation of the SDs is the complex variable (CV)
method [I] according to which the computation of the SD is executed as

oF Im[F(by,...,b, +i€,....;bn, C1, ...y Cr)]
5b, €

(1.2)

where I'm is the imaginary part of the complex function F' and ¢ =v/—1.

From equation [1.2] it can be assumed that the round-off errors cease to exist, since
there is no subtraction of two very close values as in the case of FD. Subsequently,
this method is independent from the value of € and, thus, there is no need for the
flow equations to be fully converged. Nevertheless, the cost of the complex variable
method still scales linearly with IV, specifically requiring N evaluations of the Qol.

The Direct Differentiation Method

Another alternative, is the direct differentiation (DD) method [1], according to
which the flow equations are differentiated w.r.t. the design variables and the N
linear systems that arise are solved to define the derivatives of the flow variables
w.r.t. to the design variables. Given that the SDs are expressed in terms of these
fields, their final computation is straightforward. DD is harder to implement than
FD, since a new flow solver has to be developed, increasing its implementation cost.
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Moreover, the method’s cost still scales with N, making it inadequate for large scale
simulations.

The Adjoint Method

The adjoint method of computing the sensitivity derivatives required by GBMs is
the alternative that has a cost practically independent from the number of the
design variables N [I]. As a result, this method is a perfect choice for large
industrial optimization and RDO problems. In order to achieve this independence,
an augmented objective function is defined, by adding the volume integrals of the
residuals of the flow equation (also referred to as the primal or state equations),
multiplied by the adjoint (or co-state or dual) variable fields, to F'. Considering that
the residuals of the primal equations must be zero, F' = F,,,. After differentiating
the augmented objective function and re-arranging the resulting terms, the system of
field adjoint equations (FAE) and adjoint boundary conditions (ABC) is formulated,
the numerical solution of which leads to a N-independent computation of the SDs.
The numerical solution of the aforementioned system has a computational cost
equivalent to the cost of the primal equations’ solution.

There are two different approaches [10] on how the aforementioned adjoint method
can be applied, that differ from each other in the sequence that the differentiation
of the objective function and the discretization of the flow equations happen. In
the discrete adjoint approach, the residuals of the primal equations that are added
to the objective function are in their discrete form and the resulting system of
adjoint equations and adjoint boundary conditions after the differentiation is already
discretized and ready to be numerically solved. On the other hand, in the contin-
uwous adjoint approach, the residuals of the primal equations that are added to
the objective function are in their continuous form and the resulting system of
adjoint equations and the boundary conditions have to be discretized, in order to
be numerically solved

There is a general consensus, that both discrete and continuous adjoint methods
can produce sensitivity derivatives with sufficient accuracy to be used in common
optimization problems. Nevertheless, the discrete approach is more accurate in
computing the SD especially on coarse meshes, since it takes the primal discretization
schemes into consideration, although its implementation can become cumbersome
when higher discretization schemes are used. On the other hand, the continuous
adjoint outweighs the discrete one in terms of CPU cost and memory requirements
per iteration. Continuous approach also leads to better physical understanding of
the adjoint system, since closed-form expressions exist for the field adjoint equations,
their boundary conditions and the sensitivity derivatives expression.

In this diploma thesis, the continuous adjoint method is applied in aerodynamic

8



robust design cases so as to compute the SDs of the Qol. The mathematical formulation
and software programming of the adjoint solver for incompressible fluid flows has
been performed by the PCOpt/NTUA within the OpenFOAM® environment.

1.2.2 Computation of Robustness Metric and its derivatives

Once the UQ process has been completed for the Qol as well as its SDs, the
computation of the robustness metric Fr follows.The way of defining the robustness
metric depends greatly on the stochastic distribution of the uncertain variables.

A common approach to tackle the uncertainty problem is known as Design for
Siz Sigma (DFSS) [11] [12], which is an engineering design process based on the
assumption that every uncertain variable (¢;, i € [1, M]) follows a normal distribution
around it’s mean value p; and within a certain range of six standard deviations o;
of the respective variable ¢;. It is a well known fact, according to the mathematical
formulation of the normal distribution, that 99.73 % of the values of a stochastic
variable, following such a distribution, can be found within the interval [u—30, u+30]
or, in other words, in the six sigma range.

Therefore, a way of defining the robust metric Fg € R in accordance with the
DFSS, is the following
Fr=pr+rop (1.3)

where the parameter k € [—3, +3], is user-defined and its algebraic value determines
the approach and the goal of the RDO process.

The absolute value of k, acts as a weight, determining whether the ur or the op
is prioritized during the optimization. Meaning that, a small absolute value for &
indicates that an optimized mean value of the objective function is desired, while
its variation (quantified through the standard deviation) is of lesser interest. In
contrast, a selection of a larger absolute value for x designates the desire for the
robustness metric to display an optimized variation, while it’s mean value is being
regarded as secondary. Furthermore, the sign of k indicates whether the designer’s
approach is pessimistic or optimistic. For example, in a minimization RDO case, a
positive sign selection for k signifies the worst case scenario and, consequently an
pessimistic design approach, while a negative sign indicates the opposite.

Likewise, according to the DFSS, the gradient of the robustness metric, a.k.a. the
robust sensitivity derivative vector VFr € RY is defined as

VFR:VMF—FI{VO'F (14)
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1.2.3 Design Variable Update Method

There are various methods available to update the design variables b, , n € [1, N]
, always dependent on the computation of either the sensitivity derivatives for
optimization problems or the robust sensitivity derivatives for RDO problems. The
method used in this thesis and one of the simplest GBMs, implementing 1st order
derivatives, is the steepest descent.

A general expression for the renewal of the design variable vector be RV , in RDO
cases, is the following . .
prew — bold 4 7727 (15)
where the definition of p’ distinguishes the different update methods, while 7 serves
to scale the step length of each “descent”. The value of 17 can be determined through

the expression
Abmax

— 1.6
U (1.6)

where Ab,,4. is the user-defined maximum allowed displacement of the design variables
b; and Ab, is the maximum displacement of each design variable, as computed by

equation (1.5 for n = 1.

Steepest Descent Method

As mentioned, while this method is one of the simplest when it comes to its conception
and its implementation, it often lacks efficiency when compared to other 2nd order
derivative methods such as the BFGS method. Nevertheless, the steepest descent
is considered a consistent benchmark method, essential to test an optimization or
robust design process in its preliminary stages. This is the reason this method has
been selected to meet the needs of this thesis.

In RDO cases, the vector p is defined as the gradient of the robustness metric
Fg for the old value of the design variables b%. As such, ' is defined as

p=+tVFg (1.7)

where the sign dictates the direction of the optimization, in other words whether it
opts to the maximization or minimization of Fr. A positive sign signifies maximization,
while a negative implies minimization.

Given that the adjoint solver developed by the PCOpt/NTUA classifies all optimization
cases as de facto minimization cases, the incorporated steepest descent scheme takes
on the form

gnew — B’old —n VFI%ld (18)
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1.3 Thesis Objectives and Layout

The goal of this diploma thesis is the aerodynamic robust design of 2D bodies
w.r.t. manufacturing imperfections. To be more specific, a code is developed implementing
the Karhunen-Loéve Transform, in order to model the imperfections of the geometries

in question. This computational tool is then incorporated into the UQ and RDO
processes, thus considering the imperfect geometry of the aerodynamic bodies as the

only uncertain variables. The process of UQ is performed through the stochastic
methods of non-intrusive Polynomial Chaos Expansion and Monte Carlo, by making

use of an in-house code including both methods developed and validated by PCOpt/NTUA.
Finally, the aerodynamic RDO employs the adjoint method for the computation of

the SDs of the Qol, coupled with the niPCE method to compute the robustness
metric Fr and its gradient V Fg, in accordance with the DFSS.

Furthermore, the rest of this diploma thesis is structured as follows:

e Chapter 2: The mathematical formulation and the numerical solution of the
flow field, a.k.a. the primal equations and their respective adjoint equations is
described, for the purpose of computing the SDs of the desired Qol. Additionally,
a description of the grid displacement strategy following the displacement of
the shape during the process of RDO, is presented.

e Chapter 3: The mathematical theory concerning the stochastic uncertainty
quantification methods Monte Carlo and non-intrusive Polynomial Chaos Fx-
pansion is introduced and analyzed, for both one and multiple uncertain
variables. For the second method, both Full Grid and Smolyak/Sparse Grid
integration methods are included.

e Chapter 4: The mathematical formulation of the Karhunen-Loeve Transform will
be presented. In addition, a description of the algorithmic steps used to
guide the development of software implementing the aforementioned transform
for the the recreation of manufacturing imperfections in the shape of 2D
aerodynamic bodies, will take place. Also, two application of the Karhunen-Loeve
Transform will be included.

e Chapter 5: The software generating Karhunen-Loeve Transform shape uncertainties
as well as OpenFOAM grid generators and flow solvers are incorporated in the
in-house niPCE code for the purpose of performing UQ on 2D geometries
with shape uncertainties. Moreover, the aforementioned coupled algorithm
is applied to the NACA 0012 isolated airfoil, thus performing UQ for two
Qol: the lift and drag coefficients. Furthermore, UQ is performed on the
E387 airfoil with shape uncertainties, in order to compute the robust SDs of
the drag coefficient. In both cases, cross-reference between the non-intrusive
Polynomial Chaos Expansion and the Monte Carlo computed results take
place, so as to validate the method.

e Chapter 6: Integration of the continuous adjoint solver and of a parameterized
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mesh movement strategy into the aforementioned coupled algorithm. This
all-encompassing code is implemented to perform aerodynamic RDO on the
isolated E387 airfoil and the T'U Berlin compressor stator cascade [13], considering
the recurring KL T-modeled shape imperfections to be the uncertain variables

of the problem.
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Chapter 2

CFD Analysis and Adjoint
Problem Formulation

In this chapter the mathematical formulation of steady state incompressible flow
field equations and their respective adjoint field equations, as well as the numerical
methods utilized to achieve their solution are thoroughly presented. This part is
needed in order to further clarify the process used to compute the Qol and the SDs,
for the needs of UQ and RDO, respectively.

2.1 Primal Problem

2.1.1 Flow Field Modeling

All CFD cases dealt with in this thesis, are flows around 2D aerodynamic bodies such
as airfoils or turbomachinery blades. Such flows, if not highly turbulent beforehand,
then turbulence is most likely to develop close to the solid surfaces and in their
wake. Turbulence in a flow is defined by the semi-random development of unsteady
pressure and velocity fluctuations, creating coherent vortex structures named eddy
vortices.

As a general rule, the Navier-Stokes (NS) equations can fully predict viscous, steady
and unsteady flows within a certain domain with defined boundary conditions. Yet
the prediction of turbulent flow phenomena in their whole spatial and temporal scale
spectrum, an infinitely small cell size during meshing, as well as painstakingly small
time domain discretization. Such simulations, called direct numerical simulations,
in which the NS are numerically solved without any turbulence modeling, has an
unbearable computational and clock-time cost, thus making them unfeasible in most
cases with limited computational resources. Specifically for the needs of this diploma
thesis, the employment of DNS is unacceptable since the solution of the flow field,
a.k.a. primal problem, is part of a larger procedure, either UQ or RDO.
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A more widespread approach for the simulation of turbulent flows is the use a method
first proposed by Reynolds in 1985, the Reynolds-Averaged Navier-Stokes (RANS)
equations [, 14 15]. The concept of this method, still valid today, is based on
the decomposition of the flow field variables into their mean and their fluctuating
components. Thus, the random perturbation of the flow variables caused by the
turbulence of the flow is taken into account through the use of turbulence model
equation, thus bypassing the costly DNS for turbulent flows. For this thesis, the
system of the RANS and turbulence model equations constitute the primal problem.

In accordance with the Einstein convention, for which repeated indices imply summation,
the RANS system of equation for incompressible steady flows is presented in equations

(2.1)),(2.2) in non-conservative form:

e The conservation of mass, a.k.a. continuity equation is
0v;
— =0 2.1
0 (2.1)

e The conservation of momentum equation is

_ 9y _ 10p 0 [ (0v 0 o [ -
v]axﬂ' N paxi—i_&xj {I/(axj—i_axi)}_'—aJ?j( Uivj) o i=123 (22)

where v; indicate the mean velocity components, p stands for the mean pressure and

p = p designates the constant density of the fluid. An overbar ‘=’ symbolizes the
mean value , while the ”’” symbolizes the perturbation of a flow variable. In equation
, the only term including flow variable fluctuations is the Reynolds stress or
turbulent shear stress tensor 7/;/p = —Kv; In order to fully get rid of velocity
fluctuations that appear only in the RANS equations, an expression modeling the
Reynolds stresses as variables wholly dependent on the mean velocity components
is needed. One way to overcome any reference to the turbulent fluctuations comes
through the acceptance of the Boussinesq Hypothesis [14],[15], suggested by Boussinesq
in 1877 and still widely adopted today:

Tz]/p v;v; U [(amj + 83:1) 3 k51:| ( 3)

where 53 indicates the Kronecker delta, v; the turbulent kinematic viscosity, a.k.a. eddy
viscosity (measured in m?/s) and k the turbulent kinetic energy, defined as

1——
k = —.

5 v (2.4)

!/
7
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Hence, after including the Boussinesq hypothesis into the momentum equation
, the Reynolds stress tensor is expressed in terms of the turbulent viscosity v,
as a new unknown field variable. Thus the conservation of momentum equation is
expressed by

vﬂaxj o Pa$i+8xj [(V—i— vt) (8xj+8x,;)1 , 1=1,2,3 (2.5)

The introduction of the aforementioned v field causes the need of one more equation,
so as to close the system. This closure problem can be treated with the addition of
algebraic or differential turbulence models in the system of primal equations [14].
Given that turbulence models do not directly simulate the turbulent fluctuations,
they are imbued with decades of experimental data on turbulent flows. Therefore,
some models can be more fine-tuned than others for use in certain application fields,
i.e. the k—e model is genrally preferred in heat transfer applications. The turbulence
models used to compute the turbulent viscosity, therefore taking the Boussinesq
hypothesis, into account, are referred to as eddy viscosity models (EVMs). Such a
model is the one used exclusively in this thesis, the Spalart-Allmaras turbulence

model [16], presented in Subsection [2.1.2]

2.1.2 The Spalart—Allmaras Turbulence Model

The Spalart—Allmaras is a relatively simple and low cost mixing length model,
implementing one transport partial differential equation (PDE) for the computation
of the turbulent viscosity v;. It is calibrated on empirical data from 2D wall-bounded
flows such as flat plates, wakes and mixing layers [16]. The model provides satisfactory
predictions for boundary layers with severe pressure gradients, as well as fair to good
results in aerospace applications, such as airfoils and wings [16]. Its governing PDE
is assembled as a function of the Spalart—Allmaras variable 7 and is defined as

or 0 N\ O] ew (N
i an ) ae] 5 (an) PR@P®=0 20

where the first and second terms on the LHS of the PDE (2.6]) correspond to the
convection and diffusion (bulk and turbulent) terms of v, while 14 being the turbulent
viscosity, formulated as a function of the later

Vy = fvl v (27)

In addition, the production P(v) and dissipation terms are modeled as

PO =cpY , D@)=corfulV)—

— (2.8)
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where Y is given by

8Uk

v
AN2.2 Cijk )

Y=Yot 555

fv2 > Y=

(2.9)

J

with Y standing for the vorticity magnitude and A being the distance of cell of
vertex centres from the wall boundaries. Given that OpenFOAM uses a finite
volume cell-centered discretization of the governing equations [I7], A represents
the respective distance of cell centres.

The model functions read

3 1

- X — _
fm o X3+C§,1 ) fvz <1+L>3
Cuy
1 ; 2 -3
£, = LExw) 3(1+1)+(1> (Hl)
Cov2 Cov2 Co2 Cov2

> 1+C,[6U 1/6
()

9%+ Cy
v

g = r+c,,(rf=r), r== . 2.10
(=) e (2.10)
The constants of the model are ¢, = 0.1355, ¢ = 0.622, Kk =0.41, 0 =2/3, ¢,y =
%—F(Hi—”), Cw2=0.3, w3 =2, ¢,1 =T7.1 and ¢, =5. The Levi-Civita symbol, e;jy,

used in the vorticity magnitude Y, is

+1 (i,j,k) € (1,2,3), (2,3,1), (3,1,2)
€ijk = —1 (iujv k) S (17372)7 (37 71>7 (2717?)) (21]‘)
0 i=j, j=k k=i

2.1.3 The Low and High Reynolds Number Models

The Spalart—Allmaras model as described until now, is sufficient in areas of fully
developed turbulent flow, far from solid-fluid interaction, where turbulent shear
stresses dominate over bulk stresses. Yet, near the solid boundary, where viscous
phenomena thrive, specified terms need to be added to the turbulence model, in
order to better simulate the effect of such phenomena.

One approach is the Low Reynolds number model, according to which the laminar
or viscous sublayer of the boundary layer is resolved numerically by including the
effects of bulk viscosity into the formulation of turbulence model in use, in the form
of near wall damping additional terms. This method requires very dense grids near
the wall to produce adequate results, due to the steep velocity gradients appearing
in the viscous sublayer and the buffer zone, as displayed in[2.2] This method though
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accurate when properly implemented is quite costly.

Piecewise-linear Non-linear
A 'a' A

[ ]

[ ] [ ]

a Y Y

[]

-

(a) Resolved (b) Wall function

Figure 2.1: Comparison of near-wall mesh quality between Low-Re (a) and High-Re
number (b) turbulence models.

An alternative solution and the one adopted for the CFD analysis present this
thesis, is referred to as High Reynolds number turbulence model. In this method,
wall functions, meaning analytical expressions combined with experimental data
are introduced for the computation of the mean velocity on the cell centres of the
near-wall regions. For this method, the distance of the first cell centre off the wall,
should lie in the logarithmic region of the turbulent boundary layer, hence the value
of the non-dimensional wall distance y* (defined in (2.12)) can be up to 100, in
order not to compromise the method’s accurately.

yt=E = (2.12)

v P

where y is the cell centre from the wall and 7, is the wall stress.

Consequently, given that the laminar sublayer is not resolved, the near-wall meshing
does not necessarily need to be as fine as that required in the previously mentioned
Low-Re model, as displayed in Figure 2.1 In the Spalart—Allmaras model, the
wall functions, used to approximate the value of 1, at the cell closest to the wall,

are formulated as v, = %, where u, is computed based on the y* value. The

formulation for the computation of y*, as programmed in OpenFOAM®, follows
Spalding’s Law [I§]. This models the inner sublayer and the logarithmic region of
the boundary layer with a single equation:

(k) (k)

yt=ovt 4e P e —1— ot — 5T g (2.13)

where x is the von-Karman constant equal to 0.41 and B ~ 5.5.

This equation came as a result of best fit between the curve of y* = u™ which
is valid in the viscous sublayer and u™ = Ey*/k which is valid in the logarithmic
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Figure 2.2: The non-dimensional velocity u™ profile w.r.t. the non-dimensional wall
distance y* spanning form the solid wall to the log-law of a turbulent boundary layer.

region. E = ¢ "8 is an empirical constant equal to 9.793.

2.1.4 Primal Equations and Boundary Conditions

All the previous analysis culminates in the full determination of the primal problem
equations used to simulate the a steady-state turbulent flow of an viscous, incompressible

fluid, by rearranging equations ({2.1)),(2.5) and (2.6).

ov;
p:——] —
R == =0 (2.14a)
v 8%‘ 8 8vi 8vj ap . .
R} =v; oz, o, |:(V + 1) (ﬁxj —i—axi)} +axi =0, =123 (2.14b)

; ov 0 N O] e (N
v (0 )~ (o) Pr@D@=0 et

Last but not least, the boundary conditions needed for the closure of the primal
problem are presented, in a generalized formulation for 2D computational meshes
exclusively used in the present thesis, as follows:

e Inlet: at the inlet to the computational domain, Dirichlet boundary conditions
are imposed on the velocity components v; according to the wanted freestream
velocity value and zero-Newmann condition is used on the pressure p. For the
Spalart—Allmaras model variable v, a Dirichlet condition is imposed.

e Outlet: at the exit boundary of the computational domain, zero-Neumann
boundary conditions are imposed on the velocity components v; and the Spalart—Allmaras
variable v, while zero-Dirichlet conditions are imposed on the pressure p.
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e Solid Walls: at the wall boundaries of the domain, zero-Dirichlet, a.k.a. no-
slip, boundary conditions are imposed for v; and zero-Neumann on p. Finally,
a zero-Dirichlet boundary condition is utilized for v.

The aforementioned boundaries are visualized for computational meshes around
airfoils in Figure

o~ ";,u,p!

Figure 2.3: Generalized 2D boundaries of computational domains around isolated
airfoils.

Outside of Figure [2.3] for meshes generated in turbomachinery blade cascades, one
more boundary condition must be imposed. In the mesh boundary above and
below the blades, periodic conditions are imposed, according to which all the primal
problem variables v;, p, v on each and every cell centre are mirrored between these
two boundaries.

2.2 Adjoint Problem

As previously mentioned, the continuous adjoint method is used in this thesis for
the computation of the SDs of a certain objective function F', referred to as Qol
for the purposes of UQ and RDO. These SDs are the derivatives of F' w.r.t. the
design variables of the shape optimization case in question. This is achieved by
adding to F' the volume integrals of the primal problem’s PDEs multiplied with the
adjoint variable fields, thus creating the augmented objective function Fg,,. The
key feature of the adjoint solver, developed by PCOpt/NTUA and utilized in this
thesis, is that it does not neglect the variations of the turbulent viscosity v; as
often assumed in literature. This assumption, according to which the only the mean
flow quantities are affected by the shape, may lead to inaccurate SDs and seriously
affect the optimization process [19]. The adjoint model formulated by taking this
assumption into account is referred to as frozen turbulence model and culminates to
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system of adjoint equation without the adjoint to the turbulence model PDEs. The
more meticulous approach, followed by PCOpt/NTUA, requires the differentiation
of the turbulence model PDEs w.r.t. the design variables b,,, consequently reaching
to the formulation and solution of the adjoint to turbulence model.

2.2.1 The Three Continuous Adjoint Formulations

According to the literature, three distinct approaches are available for the formulation
of the continuous adjoint method: the FI, the SI and the E-SI approaches. All
approaches culminate to the same expression for the field adjoint equations (FAE)
and the adjoint boundary conditions (ABS). Yet, they differ on the final expression
for the SDs of F.

The FI method, being the first chronologically to be proposed, includes both boundary
and field integrals in the formulation of the SDs, hence the name Field Integrals (FI).
It is clearly the most accurate as well as the most costly of the three approaches,
due to the integration of the entire field and the need of computing the grid or mesh
sensitivities dxy/0by [20]. The second formulation, known as reduced gradient, takes
its name from the fact that only boundary, a.k.a. Surface Intervals (SI approach) are
contained in the SD formulation, getting rid of the costly computation of the grid
sensitivities. Consequently this approach is characterized by a low computational
cost, especially for problems with many design variables, making it an interesting
prospect. However this simplification does not guarantee an accurate SD prediction
[21], particularly for coarse meshes. Finally, the third approach, the Enhanced
Surface Integrals (E-SI), combines the advantages of both previous formulation,
producing accurate SDs at a reduced computational cost [21].

For a more detailed analysis on the three aforementioned formulations, the reader is
pointed to the bibliography [20] and [2I]. Though all adjoint formulations are briefly
analyzed, only the E-SI approach is implemented in this thesis, so as to compute
the SDs, and thus it is described more thoroughly.

The generalized augmented objective function is defined, according to the Einstein
convention, as follows

Fouy = F+/\II,~ R; d (2.15)
Q

where R; =~ 0 the residuals of the state PDEs, W, their corresponding adjoint
variables, 1 = 1,2, ..., ' with F the number of state equations, while €2 the computational
domain. By differentiating w.r.t. the design variable b,,, the total derivatives §/db,,

of Fi., appear

O Faug B oF )
5, = E + m o U; R; dQ (2.16)
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The different ways the total derivative of the integral in eq. ([2.16]) is expanded,
cause the distinct FI and SI (enhanced or not) formulations.

The FI Approach

The FI approach dictates the development of the aforementioned term as follows

J OR; 5(dQY)
— | U, R dQY= | ¥, — d2 v, Ry —= 2.17
5, Jo /Q 5, T /Q 50, (217)
According to [19], the derivative of df2 domain in the RHS of eq. (2.17) assumes the
form
5(dQY) 0 (dxy
=— | — ) dQ 2.1

Therefore, the inclusion of eq. (2.17) and (2.18]) in eq. (2.16]) yields

5 Foy a SR o (o
B 7S TN IR SN (LI 10 2.1
o 5bn+/9 i, @ +/Q Zp”axk(ab)d (2.19)

0by,
Eq. (2.19) comprises the basis for the FI adjoint formulation and contains the grid
variations of xp. By developing the terms in eq. (2.19) according to the primal
problem state equations described in Subsection the derivative of Fj,, is

formulated as
6 F g 5_F+/ JORY R ORV\
Ob |py Obn  Jo \"ob, T5b, 50,

~ D 0 &Ek
R+ qR” + 7,R") 2 (225 4o
—|—/ﬂ(quz + qR? + U,R") Do (5bn)

(2.20)

where u; the adjoint velocity components, ¢ the adjoint pressure and v, the adjoint
Spalart—Allmaras variable, whereas RY, R4 and R” the residuals of the primal
problem PDEs, as presented in ([2.14)).

Since the residuals of the primal equations must be close to zero over the whole
domain, F,,, = F' and consequently 5?529 = (%. The development of the total
derivatives of RY, R? and R” w.r.t. to b, yields the corresponding derivatives of
the state variables v;, p, 7;; (stress tensor components) and 7 as well as their
corresponding spatial derivatives [2I]. By differentiating the objective function F
w.r.t. to b, and by employing the chain rule, the eq. proven in [19], as well

as the Green-Gauss theorem, integrals of expressions multiplied by dv;/db,,, dp/db,,

or 0v/db,, arise.
So(ovy_ 0 (s o0 o (in .
ob, \ Ox} Oxy, \ 0b, Oxy, Ox; \ oby,
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The SI Approach

The appearance of the spatial gradients of the grid sensitivities a%k <‘§bﬂ> is the

main drawback of the FI formulation, since their numerical computation by the FD
in clock-time expensive for a large number of design variables [22]. The SI method
circumvents this drawback by applying the Leibniz theorem for the differentiation
of volume integrals with variable boundaries. For a quantity ® € 2 and controlled
boundaries S = S (5) = 09, the application of the Leibniz theorem yields

| @30= / 50+ / P (2.22)

With the use of the Leibniz theorem on eq.(2.16)), it yields

6Fuy|  OF SR, o
= e % a0t [ R 2 as 2.23
5 |, Obn /Q 5, &0 T / " 5, (2.23)
LBjrterm

Eq. constitutes the base of the SI method and in its RHS the last integral is
labeled Leibniz (LB) term. In literature [23], the LB-term is often neglected in SI
adjoint formulation, assuming that the primal equations are satisfied also close to
the moving boundaries of the computational domain. This indeed happens in fine
grids, where this assumption may not compromise the accurate computation of the
SDs. In contrast, depending on the case or the grid’s coarseness along the boundary,
the inclusion of the LB-term may be critical for the correct computation of the SDs.
An interesting proposition of replacing the LB-term with the expression present in

eq. (2.24)), is proven in [23]

0, dS — — [ o . 28 28
/ Fin g~ ob, S / Oz, ( it oxy, Y oxy,

_a 81},- 87” e 0v; \ oz
ij@ T 8xk a’Ek 5bn

(2.24)

— 00

- Ovs .
%i? is the stress tensor and 7% =v
x; Ox; 1)

%a_“i) is the adjoint stress

where 7;; =v < Do, Doy

tensor.

This adaptation of the SI approach can yield adequate results, rivaling those of
the FI approach [23]. However, an inclusion of this transformed LB-term a.k.a. the
V-term requires the computation of dxy/0b, in €2, causing the method’s cost to scale
linearly with the number of design variables, thus leading to a cost comparable to
that of the SI method.

22



The E-SI Approach

The E-SI formulation aims to abolish the computation the field integrals containing
the Oxy/0b, terms, by solving the adjoint to a hypothetical grid displacement PDE
[22], 23]. A Laplace equation is assumed to be the grid displacement PDE (gdPDE)
for this thesis. This grPDE is formulated as follows

Rm B 8277%

' 8$?

=0 (2.25)

where m; are the Cartesian displacements of the grid nodes. Along the boundary,
m; represents the displacement of the boundary points. Following the adjoint
methodology, to derive the adjoint gdPDE, a new term is added to the augmented
function of eq. 2.15] containing the field integral of the laplacian grid displacement
PDE multiplied by the adjoint to m; variable. The resulting ¢/0b,, field integrals
are expanded using the Leibniz theorem.

The extra field integral of the laplacian grid displacement PDE is also included
since the analysis is based on the E-SI continuous adjoint approach.

Fog=F+ / u; RV A+ / gRPAQ+ / Do R7 A1+ / miRTAQ  (2.26)
Q Q Q Q

where €2 is the computational domain, u; the adjoint velocity, ¢ the adjoint pressure,
VU, the adjoint turbulence (or adjoint Spalart-Allmaras) variable and m¢ the adjoint
to m; variable. It should be noted that the third integral of eq. would be
excluded if the 'frozen turbulence’ assumption were made.

By employing the Leibniz and the Green-Gauss theorem we receive

5 F g oF |

_ 2 RV P 1 o RV aR™Y dQ) 2.2
B | S 56 (quZ%—qR + U, R” + m{R") d (2.27)
5F 3R” ORP (9R”
= LdQ) Q
TR R Tl T Va gy 4
ox; om¢ 6:6 0?me x;
i 7 i 7 0
/m ”Ja ( )ds / 9z, "5, 40T /Q 07 5b,°
/(ulR” +qu+uaR”+m“Rm) nk%dS (2.28)
S

where S is the boundary of the computational domain, S = S;USoU Sy USw,. The
boundaries Sy, So, Sw and Sy, refer to the inlet, outlet, fixed and controlled (thus
parameterized) wall boundaries of the domain, respectively. Also, ny stands for the
components of the unit outward vector which is normal to the surface. Since the only
parameterized boundary is Sy, and for the non-controlled boundaries dxy/db,, = 0,
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we have

O Foug oF 8R“ (3Rp aR”
5 | pgs Sbn  Jo 0, T ), T, K
o 0 [(Ox; am ox; 9?mg¢ 5x2
<[, g (m) 5= G Stase [ G
+/ (ulRf qR? + U, R” —i—m“Rm) nk%dS (2.29)
Swp

The FAE are derived by zeroing the terms that multiplied with the aforementioned
state variable derivatives in the volume integrals of eq. [2.20] while the ABC are
derived by zeroing these terms that manifest in the respective surface integrals. The
remaining terms yield the final formulation for the SDs. For a more generalized
expression for the SDs,; achieved through the FI formulation, the reader is referred
o [21].

At this point, a sharp distinction must be made between symbols 6()/db, and
9()/0by,. 6®/db,, denotes the total (or material) derivative of an arbitrary quantity
® and represents the total change in ® by varying b,, whereas 0®/0b, denotes
the partial derivative of ® and represents the variation in ® due to changes in the
flow variables excluding the contributions from the space deformation. 6®/db,, and
0P /0b,, are related with the following expression depending if they are computed
on the interior of € or on the boundary of (2.

Interior of 2
od B od 00 dxy,

0% _ 0% 0% 0m 9.
5b, — Ob. | Dy b, (2.30)

Surface - Boundary of €2

02 _ 0% 0% 0um
b, Ob, " Oz ¥ o,

- (2.31)

Before proceeding with analysing the integrals appearing on the RHS of eq.
the following observation must be made. Since J()/0b, takes into account only
changes in the flow variables and excludes changes in the shape/volume of the flow
domain, spatial differentiation and partial differentiation w.r.t. the design variables
can commute, i.e.

0 ([ 0¢ 0 [ 0¢
— [ == 2.32
0b,, ((%cj) 81'] <8b ) (2.32)
In general, this is not valid for the total derivative, i.e.
o [ 09 g (o
S (et ) I 2.
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2.2.2 Differentiation of the Objective Function

In this thesis, two different objective functions are used as Qol for the purposes of UQ
or RDO. These objective functions are defined either on volume of the computational
domain, either specified surfaces of it. Therefore, a generalized objective function F
formulation, encompassing both surface and volume integrals, with S and €2 their
respective domains, can be defined as

F:/FQdQ—i-/FSZTLZdS (2.34)
Q S

where n; the unit surface normal vector, while Fg, and F, the integrands on either
a surface or a volume of the domain, respectively. The differentiation of F' w.r.t. b,

yields
SF 6 5
FodQ) + — Fon, 2.
o 6b/ ad0+ S / o nydS (2.35)

The differentiation of the surface integral on the RHS of eq. (2.35]) can be expanded
as follows

0 6’FS ap (9F5 8vk an 8Tkj (9F5 85
[ Fomas = [ (G 5h : : 5 OV .dS
3by J TS /S( p Oy Doy Ob, | Oryy Obn | 00 8bn) it

OFs, Oxy, on; d(dS)
+/ Dz, b, nde—i—/ Szabn +/S 5,1 5.

Furthermore, by applying the Leibniz integral rule for the differentiation of volume
integrals with moving boundaries, the respective integral in eq. (2.35)) assumes the

form 5 oF 5
Q Tk

Given the F'is dependent upon the state variables of the prlmal problem, eq. ([2.37)
can be expanded as follows

(2.36)

1) ov dp ov ov;
F Q= Ja F? Q FX——dQ) FYi
5. | Fad /Qab /Qabd+/ Qabd+/ S 9b,
(9p (9y 0xy,

(2.38)

where F includes the partial derivative OF/0® as well as any term resulting the

implementeation of the Green-Gauss theorem for integrals of the form fQ % ( o ) ds.

Finally, by substituting eq. (2.36) and (2.38) in eq. (2.35), the final expression
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for 0 F/6b,, arises

5—F:/F” av’dQJr/F” ade+/F98—dQ+/ (FgwaFSk )a”’ds+

6b, 2 0b 20b ob ) ob
’ aFS 6p ‘= 8F5A ov an. GTk'
FE d F¢ : d — 2 = n.d
+/S(S op )ab S*/(ﬁaa )(%S o Frey Dby, 90T
(2.39)

The generalized expression for 0 F'/db, presented in eq. , includes the partial
derivatives of the flow variables w.r.t. the design variables. This expression is later
specified for the three different objective functions implemented in this thesis. The
numerical computation of such derivatives would require the solution of N systems
of equations similar to the primal equations. It is, therefore, clearly stated why
methods such as the adjoint differentiation are ought to be employed in shape
optimization problems, given that they circumvent the costly direct computation
of the derivatives in question by solving the adjoint equations.

Force Coeflicient

The objective function used to optimize the total force exerted on a certain solid
wall boundary of the computational domain can be formulated as a dimensionless
coefficient as follows

[s, p(=Tin; + pny) ridS

%pAngo

where p denotes the mean static pressure, p the fluid density, v; the mean velocity
vector components, 7;; the stress tensor components and n; the outward pointing
unit normal vector components. In addition, r; is the user-defined direction in
which the force vector should be projected (e.g. parallel to the farfield velocity to
optimize drag), while S,, indicates the aforementioned solid wall boundary and A,
its respective surface area.

Cp = (2.40)

Given that only incompressible fluid flows (p = const.) are simulated in this thesis,

eq. (2.40) can be simplified as follows

fS (—Tijnj +pni) erS
CFlincomp. = %AwUQ (241>

Differentiation of the incompressible force objective function (2.41)) w.r.t. the design
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variable yields

0Cr
by,

2 0
= m |:/ % (—Tijn]‘ —I—pnz) T’ZdS +

ar; 6(dS)
+/ —Tiin; + pn; dS+/ —Tiinj + png) T }
s, ( VAR ) 8b S ( VAR ) 5bn

incomp.

(2.42)

The force projection vector ¥ € R3 is constant, causing the second integral in the
RHS of eq. (2.42)) to be to zero, because dr; /b, = 0, and it assumes the final form

2 87’27 8n] 8]) an
= Yy T i dS
incomp. Ango |:/Sw ( n] 8bn - ] ab n ab + ab ) T

o(dS
+/ (-TijTLj —|—pn2~) T ( )}
Su 0b,

0Cp
by,

(2.43)

Total Pressure Losses

The objective function used to minimize the total pressure losses between two
boundaries of the computational domain is given by the expression

2
Fpt = —/ (p + U—l> v]-nde (244)
Sr,0 2

where v; indicates the mean velocity vector components, whereas the S; o indicate
the inlet and outlet boundaries of the domain, respectively. The units of Fp, as
defined in eq. (2.44) are m>/s?, thus signifying power losses per units of density.

Differentiation of this objective function w.r.t. the design variable yields

5Fpt - 8 U2 81)]
_5bn = _/Sz,o ab, (p+ 2>anjd5—/51,o <p+ > a, —n;dS —

- P )% s,

Given that the boundaries serving as the domain of all surface integrals in eq. ([2.45])
constitute immovable, non-controlled boundaries during the omptimization process,
the third integral of the RHS in the aforementioned eq. is equal to zero, since

d(n;dS) /b, = 0. Therefore, the final form for § Fp, /6b,, arises

5Fp 8 2 (91}
= — 24
5, /s b, vjn]dS /SI’O (Uﬂ)] +p+ ) a, —2In;dS (2.46)
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Velocity Angle

The objective function used to optimize the angle of the velocity vector of a certain
boundary of a 2D computational domain is defined as

ds
a = atan fSOL (2.47)
fSO U1 dS

where Sp indicates the immovable outlet boundary of the domain, as used in later
simulations. The units of « as defined in eq. (2.47)) are radians.

Differentiation of this objective function w.r.t. the design variable yields

5_@ fs v, dS - 2~ (fs vgd5>+fs vy dS - 6b <fs v dS)
b, (o v dS) + (fo, v2dS)”

The surface integrals domain present in [2.48 is a non-controlled boundary and,
therefore, it is not affected by the design variables displacement (5(dS)/db, = 0),
yielding

0 (/ de3> /%dSJr/ vy o2l /%ds j=1,2  (2.49)
(56 So So So So

According to (2.49), eq. (2.48) becomes

(2.48)

da fs vy dS - fs g?ﬁi ds+fs vg dS - fs gvl ds

bn (i1 dS) + (fy, v2ds)”

(2.50)

2.2.3 Differentiation of the Primal Equations

Now that the expression for the derivatives of the objective function is defined,
the partial derivatives of the primal equation w.r.t. the design variables have to be
formulated, as dictated by eq. (2.20)).

The differentiation of the continuity eq. ([2.14a)) yields

ORP 0 (0
L 51
ob,  Ou; <8bn> (2:51)
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while the respective partial derivative of the momentum eq. (2.14b]) assumes the

form
oz, Yob, \ox; ' Ox;
0

OR; _0v; Ovi 0 (90U
ob, b, dx; ' Ox; \ b,

2.52
L [ (0 N, D (Y, 252
(93(:j (%n 8LU]' 8:61 8:61 (%n ’ Y
where 0v;/0b,, can be computed as follows
Ovy  Ov ov oy 3 fv1 3¢
227 with == = f,, +—3" 2.
ab ay @b w1t fv1 fv1 (X3 n 631)2 ( 53)

Moreover, the partial derivative of the Spalart—Allmaras turbulence model eq. (2.14c))
is formulated as

i (2)- 2 (D) (2)
oby, (‘h] ob ?0x; \ by, Oz, o) Ox; \ Ob,
19 (@ﬁ) _ ot OV O (@)

o Oxj \ Ob, Oz, o Oz, 0x; \ Ob,

- oP 0D 81/

The differentiation of the production and dissipation terms presented in eq. (2.8)),
yields

oP 0D ov 0A vy, 0 <6vi) (2.55)

o o Yo T +CYY€””’“3 S 3 \ D
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where

Cy: <_Cb1 Cw1 )fvg (256)

__i o Vfu Jus ~
Car= e [cwer(A 5Y>+Cw1fwy Cblﬁ } (2.57)

S afva fU2 afvg v r fw
Cl,—( Chy — Cup, C= ) < 9 Y+ 2A2+ Bh R2A2)—|—cw165+cw1§ (2.58)

2 6 6 \ /6
Cu, V 5 ng 1+ ng
C= A7 [1+ cu, (6r° — 1)] Fre (g6+cg,) (2.59)
afvz 3 X -
= (1 + C—) (2.60)
0oy L [ fu Ofu X -
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ov ¢y, ( v X ov ) ( Cos +cv2
1
+— (1+va1)(3+2—> cr, <1+1>
vy, Cuy Cuy
1 2 —4
gt g X)X X (2.61)
vel, Coy Coy Coy

A more thorough analysis of the continuous adjoint equation to the Spalart-Allmaras
model can be found in [19], [24].

2.2.4 Field Adjoint Equations and Adjoint Boundary Con-
ditions

By substituting eqs. [2.51] [2.52] [2.54] and (2.39) into eq. we receive the final
expression of the material derivative of the augmented objective function w.r.t. the
design variables.

0F g 2 OV; » Op / 5 ov / ma O 0 [dx;
5, /BCZ 5. dS—i—/BC 5. dsS+ SBC 0. dS+ SBC (9 5, dS

8ng aTw v 0 ov
+/( win; + Ire )8b ds— / (1/—1— ) (axj)n]ds
/R a”’dm/ R 2P dQ+/ g OV dQ+/ R 0% 1)

©ob ko 6b,
OFsy, . oy (5nz §5(dS)
+/SZ oz ™50, ”kds+/ 50459, ds+/ S S
omé bz, amm. 0Tk
_/5 6xj nj— 5, —dS+ /Qw/aCA—dQ—i-/m R; nk—dS (2.62)
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where

BC!=uvjn;+ (v + vy) (gz; + gZZ) nj—qn;+v,U
I 3(;;5; nk+F§Z

BCp:ujnj—i—aai;ni—l—Fg

BCD‘;ZIZLanﬁ (V—l—g) Z—an—% (14 2c,) g?

BC™* =mjin;

Cy
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T
J

0vk

OFs,
o

EmiiTY

(2.63)

(2.64)

(2.65)

(2.66)

After setting the multipliers of dv;/0b,,, Op/0b,,, Ov/0b,, and dx} /b, in the volume
integrals of eq. to zero, the field adjoint equations are derived.
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Oz,
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J 81‘2 alll'j (9.%]' alll'j (9:1:'2 8
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a a2mz 0 a’Ui ap 3ul a’]’ij avj
me _ . A e L — 9
Hi o3 + ox; {uzv] Oy, u; Oy, 7 Oxy, i Oxy, q(’?xk } 0 (2.70)

After satisfying the field adjoint equations, the remaining terms in eq. are

F
0 e /BCZ gzzds+ / Ber pdS+ / BC”a—dS / Bem - (&”Z)ds

8ng 87’2]
+/é—umj+ ir ) dS /z/a (V+ )(% (ij)n]ds

OFsy, . 5 T on; 5(dS)
T, TR F * Fo n.
+/SQZ TR */ 50459, dS*/ S S
om¢ oz, oy,
— d —dQ SR ——d 2.71
/SW &Ejnjéb S+/QVVaCA +/mR nkéb S (2.71)

The system of the field adjoint PDEs is closed with the adjoint boundary conditions.
The ABC are imposed aiming to eliminate the surface integrals that contain the
partial derivatives of the state variables w.r.t. the design variables, namely the first
six and the last integral of eq. which contain the surface integrals of dv;/0b,,
Op/ by, 0v;/0by,, OV /0b,,,0(0x;/0by,) [0z, OTi; /by, O(OV/0x;)/0by, and dz;/0b,,. For

the sake of completeness these terms are rewritten as follows.
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/ e Vs (2.72)

i 9,
L= / 8o P s (2.73)
b,
L= / Be7 9 45 (2.74)
ST o, ‘
ma 2,
/SBC o (%)dS (2.75)
. 8ng 87’@]
1'5—/5( win; + ore )8b as (2.76)
v 8 ov
Ig= 2,
; / (y+ ) i (a%) n;dS (2.77)
I= / me Rmnk%dS (2.78)

At this point, the final expressions of the adjoint boundary conditions are presented,
whereas their detailed derivation can be found in [I9]. The adjoint boundary
condition of the adjoint gdPDEs is the same for all boundaries, namely mj = 0, so
that integral I, is eliminated. Also, since m} = 0 along all boundaries, integral I7,
which is the equivalent of LBterm discussed in also vanishes in all boundaries.

Inlet Boundaries S;

At the inlet boundaries since Dirichlet boundary conditions are imposed on v; and
v, dv;/db, = 0 and 6v/0b, = 0. Since S in a non-controlled boundary, dx/db, = 0
and taking into consideration eq. [2.31], dv;/0b, = 0 and dv/0b,, = 0. This means
that [1 = Ig = 0.

Integrals I, and 5 are eliminated by demanding

0Fs
Un) = apl ’ J (2.79&)
OF, F.
I S,k I Sr.k I
= t:n,; “nptin, 2.79b
0= g, "M + o,y ( )
OF, F.
Jis Sk II S,k 11
= “nit;'n; + ———nit:'n; 2.79¢
(t) aTi] kbi 145 + 87—1’3’ kbj ( )
where t/,t/1 are the components of the tangent to the surface unit vectors. The

first tangent vector t! can be defined as an arbitrary unit vector parallel to Sy,
whereas t/! forms an orthogonal system with n and t!. Quantities ufw and ufg

are the components of the adjoint velocity in the ¢!, t/! directions respectively. It
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should be noted that if F' is not defined at the inlet of the computational domain,
the adjoint velocity components are zero along S;. Integral Ig is zeroed by imposing
a zero Dirichlet condition to v, i.e. v, = 0.

Finally, since no boundary condition for ¢ results from the elimination of any of the
seven boundary integrals already discussed, a zero Neumann boundary condition is
employed.

Outlet Boundaries Sp

At the outlet boundaries since a Dirichlet boundary condition is imposed on p,
dp/db, = 0. Since Sy is fixed, dx/db, = 0 and taking into consideration eq. [2.31]
Op/0b, = 0. As a result, integral I vanishes automatically. Due to the distance of
the outlet boundary from the controlled area, an almost uniform velocity profile can
be assumed along So, meaning that d7;;/db, = 0 along So. Hence, integral I5 can
be neglected.

In order to eliminate [y, its integrand quantity is set equal to zero, i.e.

ou; Ou; _C ov
BC!=uvjn;+ (v + 1) ((%cj +8_91:Z) nj_qni_l_VaV?Yemjka_J;jemlinl
OF. ,
+5 % e+ F8, =0 (2.80)
Vi ’

Eq. [2.80] which can be analysed in three scalar equations, i = 1,2, 3, includes four
unknown quantities (the adjoint pressure ¢ and the three components of the adjoint
velocity w;). Therefore, one of them may take on an arbitrary value. This is chosen
to be the normal component of the adjoint velocity u,y, on which a zero Neumann
boundary condition is imposed. By multiplying equation [2.80] with n; a Dirichlet
condition for the adjoint pressure is derived

Oy  OF ,
q= )V +2(v + 1) ayy + aié’k”i”’f*Fgo,i”i
_C 0
—i—VaV?Yemjka—?;emlmmi:O (2.81)

The outlet adjoint tangential velocity is computed by multiplying eq. with the
tangent to the surface vectors ¢ | [=1,2.

o, 9 OF
_ I 9Umn) Sok 4l v 4l
0=vgyue+( + ) ( on | o >+ Gu, it Lo i
NNCY avk
—VaV?emjk%emzmzté s l:1,2 (282)
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Finally, a Robin-type boundary condition is imposed on 7, in order to eliminate
integral 3.

v

L OV4 OF,
BC”“:Vavjnj+<l/+—) Y Souk

Nj+—4x<
(9.1'j J ov

- ne+Fy =0 (2.83)

It must be noted that term % (14 2¢,) %nj has been eliminated from eq. [2.83
J

with regards to eq. where BC" was originally defined, because of the zero
Neumann boundary condition imposed on v for the outlet boundaries.

Unparameterized Wall Boundaries Sy,

Since v is equal to zero on the wall boundaries, integral I3 vanishes. However,
this is not the case for the gradient of 7 and in order to eliminate integral I a zero
Dirichlet boundary condition imposed on ,. The boundary conditions imposed on
the adjoint velocity conditions are derived following the same procedure presented
for the inlet boundaries. For the sake of completeness these boundary conditions
are

0Fs,,
Un) == —5; “n; (2.84a)
OFs, & OFs,, 1
“€t>: GTZ_nkt{nj—i_aTanth'Wi (2.84b)
OFsy, i OFs,, &
“g): aTZ ”kth”jJraTant;Im (2.84c¢)

Finally, a zero Neumann boundary condition is imposed on q.
Parameterized Wall Boundaries Sy,

The main difference between parameterized and non-parameterized wall boundaries
is the fact that the parameterized boundaries may change during the optimization.
Thus, 0z /0b, # 0 and the total and partial derivatives of the flow quantities are
different and are linked through eq. 2.31] In addition, the total variations in the
normal and tangent surface vectors are not zero, contributing extra terms during
the formulation of the adjoint boundary conditions [19].

2.2.5 Adjoint to the Distance Equation

After satisfying the field adjoint equations along with their adjoint boundary conditions,
eq. takes the form of eq. [2.85] To this equation are included some extra terms
that arise from the derivation of the adjoint boundary conditions at the controlled
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boundaries [19, 25].
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where

8Dy = —ufy+durymy+ Py ery (2.86)
8Ui ou; 8PWS . 2
SDy ;= (v+1) <8xj + 8xj) n;—qn;+ a;; knk—i-FSWp’i (2.87)
aFSW k
= Wk 2.88
¢J aTij N ( )

& Sw AR - 987 1S and /. Sor AR - 8AP dS summarize the contribution of the wall

functions differentlatlon to the sen81t1v1ty derivatives [26]. As can be seen, all but
the last term of eq. are surface integrals, which can be computed at a cost that
is, practically, negligible when compared to the solution of the primal or the adjoint
equations. However, this is not the case for the last field integral which contains the
distance variation for the entire domain w.r.t. the design variables. The simplest
way to compute this variation is through finite differences, i.e. by perturbating each
of the design variables by an infinitesimally small quantity € in the positive and
negative directions and re-computing nodal distances for the entire domain. Then,
the total distance variation would be

%_ A(b, +€) — A(b, —¢)
ob, 2¢

(2.89)

Having computed the total distance variation, the partial variation of A appearing
in the last field integral of can be calculated through eq. as follows

OA  6A  OA dxy,
db,  0b, Oy, oby

Nevertheless, the finite differences method has the same issues as the ones described
in the introduction of this diploma thesis, namely the requirement to make 2N
computations of the distance field (for instance by an exhaustive search of all cell
centers with all boundary faces) and the sensitivity of the result from the value of e.

An alternative and more cost-effective way to deal with dA/db, is to apply the
adjoint methodology in order to eliminate the term containing this variation. There
are various PDEs that can be used to compute the distances field A. Hamilton-Jacobi
equation has shown to produce a very good approximation to the Euclidean distance
field and to be numerically robust [19} 27]. Hamilton-Jacobi equation reads

, 2
9(e,8) _ A% —1=0 (2.90)

R% =
Oz, 8x

where ¢; = 0A/0z;. The boundary conditions of eq. m 2.90| consist of a zero Dirichlet
condition for the solid wall boundaries and ‘M Sa i = 1 for the rest of the domain
boundaries. This equation can be viewed as an addltlonal primal PDE to be solved,
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meaning that it should be added to the augmented objective function, eq.
which now becomes

Faug=F+/ uiR;’dQ+/ qR”dQ+/ ﬁaR”dQ+/ ng;”dQ+/ ALRA2dQ (2.91)
Q Q Q Q Q

-~ -~

T1 T2

where A, is the adjoint to the distance field variable. The differentiation of F,,,
follows the same methodology presented in section We have
0y 0Ty 0T

5b, —m + % (2.92)

The development of §77 /b, led to eq. 015 /0b,, is developed using the Leibniz
theorem, as follows

0T, 6 A OR” PN
02 0 A, RAd0= [A, A ROk s 2.93
5b,  db, /Q /Q ab,, /SWP "5, (2.93)

After differentiating the Hamilton-Jacobi equation and substituting the result in eq.

2.93] we receive

0 OA  0A A / 0A
m—/SQA "B njab dS+ /A R nk dS axj < 3%) . dQ  (2.94)

By integrating eq. into the expression where the multiplier of 0A/0b,, in
the resulting volume integrals should be set to zero, is derived. Thus, the adjoint to
the distance field equation is derived

)

Ao

=27 (A,
R 2%(

0A

8%) +0,Cr =0 (2.95)

where the first of the terms in the RHS of eq. is contributed by the differentiation
of the Hamilton-Jacobi equation [2.90] whereas the second one from the differentiation
of the Spalart-Allmaras equation.

Having satisfied the field adjoint distance equation along with the proper boundary
condition [25], the terms that should be added to the sensitivity derivatives expression
replacing the last field integral [, ﬁzzzCA%dQ of equation are

. 0A A Oxp OA  OA oxy,
— = — 2\, 2.
/Qw/aCA (%ndQ /SAWZR g 5, dS — /s . nja Ny e —— 5, ds (2.96)

Wp
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2.2.6 Final Expression of the Sensitivity Derivatives

Taking everything into consideration, the final expression for the sensitivity derivatives
reads

Oowy _ gy / sp, 27 tfnmnk—ds / SDu7y Onste) 0o
S

3by, o O 8b,  db,,
, ot v om
+/ SDy vl o -dS— /SDI o= dS
swy 5D, Swy Oxg " Oby

aVa, 3FS L, aV 5Ik
— ' i 7| 07 Sai
/SWPKH ) oy o T S] gz gy -5

o(nin;)  Om;  Ox
—/(—u<n>+¢<n>(n>) (Tij (5bnj) +6x,inmc57:nknmj> dS

Swp

(tith)  Ory w4
/Cb 1) (1) (Tz] +(933 nm(ST ktt ds

0(t't])  Om; Sy
_/ngi(tHMtI) +¢<t1><tﬂ>) <Tij 5bn] + a ] 6b tzﬂt; ds

o(t{'tl) or;  dmy
Siitﬂ><tﬂ> (Tij 5bn] —|—a Jn E ktthJH dsS

OF
+/niﬂnméﬂnkds /Fgwld S+ /FSW 1, 2195)
S obn, Sw,

omg (SZEl WF@AP
/SW dz; " 5b,, +/SWA ab, /AA b,
Sz OA  OA Sz
—i—/AaRAn —dS— /QA S dsS 2.97
sw by T (2.97)

2.3 Mesh Parameterization and Movement

In GBM shape optimization, once the SDs of a certain objective function are
computed and can be utilized to improve the current geometry, so as to improve the
performance of the geometry w.r.t. the current objective function. In GBM robust
design shape optimization cases, the robust SDs of a certain Qol are computed
through either a stochastic or a deterministic uncertainty quantification method
and, then, in the same manner, the geometry in question is updated according the
robust SDs, leading to a more robust performance w.r.t. to the selected Qol. In order
for this process to take place, a mesh movement tool must be employed, with the
ability to accurately morph the nodes of the meshed geometry towards the direction
dictated by the respective SDs (robust or not). In order to accomplish this task, the
computational grid can either be re-meshed according to the updated geometry or
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it can be deformed in the area affected by the new geometry. Due to the fact, that
later option yields by far a lower computational cost, especially when it comes to
complicated 2D meshes, it is most often preferred.

In this thesis, the only method used both parameterize and to morph the mesh
around the to-be optimized shape are the wvolumetric B-Splines [28], integrated
into the OpenFOAM® code in conjunction with the continuous adjoint solver by
PCOpt/NTUA.

2.3.1 Volumetric B-Splines

For the parameterization of a specific part of the computational mesh that includes
the shape to-be optimized, the user defines a 3D structured control grid a.k.a. con-
trol or morphing box. The box is defined by defining the Cartesian coordinates
bisk - m € [1,3], i €[0,1], j €[1,J], k € [1, K] of the ijk-th control point, as well

as the number I, J, K of control points per grid direction.

The Cartesian coordinates ¥ = [z, %9, 23]7 = [x,v, 2|7 of the computational mesh

points within the aforementioned control box are defined as

T (1, v, W) = Ui pu Vi Wipuo bk m=1,2,3 (2.98)
where U, V, W indicate the B-Splines basis polynomial functions, pu, pv, pw their
respective degrees and @ = [uy,us, u3]’ = [u,v,w|’ the mesh point parametric
coordinates.

Once the parametric coordinates vector « are known, the computation of the Cartesian
coordinates vector Z of any parameterized flow field mesh point is effortless and can
be conducted at a negligible computational cost. In order to accurately compute the
mesh parametric coordinates a mapping form R3(z,y, z) — R3(u,v,w) is needed,
thus allowing the volumetric B-Splines to reproduce any geometry with machine
accuracy [28]. Therefore, the parametric coordinates (u,v,w) of a said point with
Cartesian coordinates 7 = [z,., ., z,]7 can be computed by solving the system ,
as long as the user-defined control points, knot vectors and basis function degrees
are known.

z(u,v,m) —x, =0
R(u,v,w) = | y(u,v,m) —y, = (2.99)
z(u,v,m) — 2z, =0

where x,,(u,v,w) are computed by utilizing eq. (2.98)), based on the given b“*
control points coordinates. The 3x3 system of eq. ([2.99)) can be solved independently
for each and every parameterized mesh point through the Newton-Raphson method,
once the Jacobian matrix dz,,/0u; , m,j = 1,2,3 is computed and inverted. The
Jacobian is computed analytically through a closed form expression resulting by
differentiating eq. w.r.t. the components of .
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The aforementioned process must be performed only once at the beginning of the
optimization loop, justifying the name ”training phase” of the method. Then, once
the displacement of the control points 06 is defined (either through the SDs or
the robust SDs), the Cartesian coordinates of each computational mesh point that
resides within the morphing box can be inexpensively computed through th use of
eq. (2.98).

2.4 The SIMPLE Finite Volume Method

The numerical solution of the primal and the adjoint problem, as thoroughly presented
in the respective Subsections and [2.2] is performed by employing the SIMPLE

pressure based method [29]. First proposed by B. Spalding and S. Patankar in the

early 1970s, it is nowadays a generalized and widespread finite volume algorithm,

finding application in a variety of CFD cases. The algorithm, culminates to a

numerical solution for the NS-Spalart—Allmaras equations by iterating the following

steps:

1. Initialization of the pressure field p*.

2. Computation of the uncorrected velocity ¢ * and Spalart—Allmaras variable
fields v * through the solution of the discretized momentum and Spalart—Allmaras
equations.

3. Computation of the uncorrected mass fluxes at cell faces.
4. Computation of the pressure-based correction.

5. Computation of the corrected pressure p with the selected under-relaxation
factor.

6. Correction of the face mass fluxes.

7. Correction of the velocity ¢ and v fields from their uncorrected field values v *
and v * by implementing the velocity correction formulas.

8. Reiteration of process by assuming the corrected pressure field p to be the new
initial pressure field p*.

The same algorithmic steps can be implemented for the solution of the adjoint
system, where the aforementioned flow variables are switched to their respective
adjoints.

The iterative process comes to end once the predefined convergence criterion is met
or when the maximum number of iteration is reached. The convergence criterion,
being the residual between the old and renewed value of the flow variable, is to be
selected so as not to compromise the final solution’s accuracy. For the version of the
SIMPLE algorithm available in OpenFOAM®© a maximum convergence criterion to

41



achieve a trustworthy result is equal to 107°.

The convergence process may be complicated by several factors such as the density

of mesh not being sufficient in areas with steep velocity gradients or the discretisation
schemes used for the NS equations. Another parameter greatly affecting the convergence
are the under-relaxation factors. These are weights used to conduct a linear interpolation
between the old and the renewed values of the field variables. Their values practically
vary between 0.25 to 0.8. The greater the under-relaxation factor the quicker the
convergence, yet the lesser the error stability. Meaning that a selection of a high
relaxation factor may backfire, by causing an instability to occur in some, if not all,

of the flow variable’s residuals.

An integral part in the SIMPLE algorithm, is the discretization schemes of the

primal or adjoint field equations. More about this topic can be found in [29], for it
is not covered in this thesis.
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Chapter 3

Stochastic Uncertainty
Quantification Methods

In this chapter the two stochastic methods of UQ, utilized in this diploma thesis,
are presented and explained. The first, Monte Carlo (MC) being the easiest in
implementation and yet the most costly, is mostly used to verify the results of
the faster and more robust second method, the non-intrusive Polynomial Chaos
Ezpansion (niPCE), in later stages of this thesis. Other deterministic UQ methods,
such as the Method of Moments [19], [3], [4] are not explored in the present thesis.

3.1 Monte Carlo

The MC method [5], [6], being the most typical and straightforward stochastic UQ
method, is based on the seemingly simple concept that if an exceedingly large variety
of inputs values are given to the uncertain variables of a problem then the statistical
moments of each exited Qol will converge towards their real statistical moments.
Therefore, the larger the stochastic input pool for the uncertain variables, the more
accurate the prediction. The values of the input pool are computed through the
use of random number generators, following the predetermined distribution if the
uncertain variables.

In CFD-based UQ as well as RDO cases, this method is rarely used due to the
several thousands of replicates often needed for the method to produce accurate
results. Consequently, the employment of such a method nested into a greater
optimization loop is mostly considered unacceptable, due to its great computational
cost. Especially, for this thesis, the implementation of the MC method nested into
an RDO loop, utilizing the adjoint GBM to compute the SDs, signifies that each
optimization step requires the numerical solution of the primal and the adjoint (also
measured in two EFS) problems multiple thousands of times, thus mitigating the
advantage of the adjoint method. This is mainly the reason for which the MC
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method is only used for the UQ results verification.

3.2 Polynomial Chaos Expansion

The Polynomial Chaos expansion (PCE) was first proposed by N. Wiener in 1938
[30], then only encompassing uncertain variables following a normal distribution
through the use of orthogonal Hermite polynomials. However, D. Xiu and G. E.
Karniadakis [7] developed the generalized Polynomial Chaos theory, based on the
Wiener-Askey approach [31] on the generalization of the orthogonal polynomials.
The method today can be implemented for uncertain variables following any known
statistical distribution. Yet, in the current diploma thesis, since the PCE is applied
in conjunction with the DFSS approach, thus accepting a normal distribution for
the uncertain variables of the RDO problem, only the initial Hermite polynomials
are employed.

In general two methods of implementing the PCE exist, the intrusive (iPCE) and
non-intrusive methods [8]. For the first, the expansion is applied on the inputs
and the outputs of the case in question, thus generating a new set of governing
PDESs, an boundary conditions. Therefore, these inputs and outputs are modeled as
polynomials of order k. It is clear that this method lacks the ability to be generalized,
given that for different cases, chaos order k and uncertain variables the governing
equations are altered and with them, their solution approach, be it either analytical
or numerical. In contrast, the niPCE methods produce a finite number of sample
values for the uncertain variables of the case under consideration for which the case’s
governing equations should be solved, a process a.k.a. sampling. Consequently, the
governing PDEs and governing conditions are treated as a black box. Especially
for CFD-based UQ or RDO the NS equations are solved independently, for all the
value-sets of the uncertain variables designated by the niPCE method. Nevertheless,
it is implied that the computational cost, w.r.t. the clock-time, of niPCE methods
scales with the number of sampling flow evaluations, dictated by them.

To conclude, the main drawback of niPCE methods, when compared with the
intrusive ones, is their much higher computational cost due to the need for multiple
evaluations. Yet, niPCE methods are de facto generalized due to their decoupled
nature from the case in question, avoiding the painstaking ad-hoc implementation
of their iPCE counterparts. Consequently, the same non-intrusive approach is
employed in this thesis, on two different RDO scenarios.
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3.3 1D non-intrusive PCE

According to the Polynomial Chaos Expansion theory, a function F' = F(z) € R
(referred to as the Qol of the case under consideration) with x € R being an
uncertain variable following a specified stochastic distribution, can be expanded
through an appropriate series of polynomials. This expansion offers the potential to
analytically compute the statistical moments of the Qol F', by selecting a suitable
cut-off point for it. The computation of the first and the second statistical moments,
a.k.a. the mean value and standard deviation of the Qol are of interest in most cases.

Assuming an uncertain variable z distributed according to a probability density
function w(x) and P = {po(x), p1(x),...,pi(x),...} a family of polynomials p;, with
i the maximum rank of each polynomial, respectively. In accordance with the PCE

theory, F'(x) can approximated by a different function f(z) with the same stochastic
input z, defined as a linear combination of the polynomials belonging in P:

F(z) = f(x) = Zaipi(a:) (3.1)

where a; e Rand f:R— Y CR.

The n-th statistical moment of the set Y can be computed as

") = /D (f (2)" w(e)de = /D (fjaipi>nw<x>dx

1=0

- - (3.2)
i1=0 in=

The aforementioned integrals, though complex, can be solved analytically due to
their polynomial nature. Hence, theoretically every statistical moment of a function
F can be calculated. However, equation can be simplified by defining P as a
specific family of polynomials, known as orthogonal polynomials [32].

3.3.1 Orthogonal Polynomials

The most important feature of orthogonal polynomials is that the inner product
(Galerkin projection) of whichever two polynomials (p;(z)) of the same family P,
with their corresponding weight function w(x) within their domain D, is equal to
zero, unless the two aforementioned polynomials are identical. This property, is
depicted as

(i), p;(2)),, = /D pil@)pj(@)w(z)dz = (pi(z), p;(x)),, ] (3.3)
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where 5? is the Kronecker Delta. The definition (3.3)) greatly facilitates the solution
of equation (|3.2)).

In case i = j, the inner product (3.3|) assumes the form of the w—norm of polynomial
pi(x), as depicted below

(pi(@), p;(2)),, = llpi(@)I[s = 7 (3-4)

where the square root of the new variable ,/7;, signifies the normality metric of the
p; polynomial. This parameter is not necessarily equal to 1 though, when it is, the
orthogonal polynomial family is defined as canonical.

A common characteristic of all the various stochastic distributions and their corresponding
families of orthogonal polynomial p,, is that their first (zero degree) polynomial is

po(z) =1, V w(zx).

Each stochastic distribution corresponds to a specific family of orthogonal polynomials
pn(x), each defined in a certain domain z € D and with a certain probability
density function w(z). For example, the normal distribution, used exclusively in
this thesis, is associated with by the Hermite polynomial family He, (x), defined in
the domain D = (—o0, +00). Also, the probability density function of a single
uncertain variable following a normal distribution with a mean value p and a
standard deviation o, is given

N(p,0?): w(x) = e 3(532)’ (3.5)

3.3.2 1st and 2nd Statistical Moments

In order to calculate the first statistical moment, a.k.a. the mean value (up) or
expectation (E(F)), equation (3.2) is displayed for n = 1

pr =E(F) = (y') = Za”'l /Dpl-lw(a:)da: = Zai /Dpiw(:t)dx (3.6)

11=0

The convenience of orthogonal polynomials stems from the following property, according
to which the computation of any statistical moment (3.2)), can be greatly simplified
Vi>0

[ ptau@is = [ pia) -1 w@ds = @) @), i =0 @7)

D

Furthermore, given that fD w(x)dx = 1, by taking into account that the total
possibility of any distribution is equal to 1 as well as po(z) = 1, eq. (3.6) assumes
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the form

pr = aO/ pow(z)dx + Zai/ piw(z)dr = ag (3.8)
The second statistical moment, a.k.a. the variance (var()), can be computed as

var(F) = (y*) — 1% (3.9)

while the standard deviation (o), being the square root of the variance, is defined

0w = Voar(F) = /() — i3 (3.10)

According to the PCE theory, (y?) is given by

(v*) = Z Zailaiz /Dpz'lpz'gw(x)dx (3.11)
11=012=0

By using the orthogonality properties described in eqs. (3.3) and (3.4)), eq. (3.11)
is simplified as

y=> da /D prw(z)de = aly; (3.12)
=0

The v; parameter can be further simplified through the use of canonical orthogonal
polynomial families, a.k.a. ortho-canonical. A way to generate such families comes
by dividing the polynomials p,, by their normality metric ~,, as displayed

(1) = pn(l‘) :pn(x)
@) = @l =

Consequently, ||p;(z)||, = 1, and by using ortho-canonical polynomials, eq. (3.12])

becomes -
<y2> = Z a? (3.14)
i=0

and the standard deviation from eq. (3.10) becomes

(3.13)

op = ia?—agz ia? (3.15)
i=0 i=1

Thus, by knowing the probability distribution the uncertain variable z follows
and its corresponding ortho-canonical polynomials, the PCE coefficients a; can be
computed. A critical choice is the cut-off points of the series in egs. (3.8]) and (3.15)),

in order to compute the mean value and standard deviation of F.
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3.3.3 Polynomial Chaos Expansion Coefficients

So far, the statistical moments of Qol function F(z) were defined for an infinite
number of terms in their respective expansions. Thus, prior to the calculation of
the PCE coefficients a;, the cut-off point k, a.k.a. as chaos order of the expansion
must be decided. It can be assumed, that the higher the value of k, the higher
becomes the accuracy of PCE-computed statistical moments, while simultaneously
the computational cost is expected to increase. The importance of the choice of
chaos order k, stems from the aforementioned equilibrium between accuracy and
cost.

Thus, for a cut-off point k& for the expansion, the function F' and its mean value
ur and standard deviation op can be expanded as

F(z) = Z a;pi(x) (3.16)

Hr = ag (317)

(3.18)

Thus, eq. (1.3 for the computation of the robustness metric Fr according to the
DFSS, assumes the form

(3.19)

The computation of the k + 1 PCE coefficients a;, the Galerkin projection as well
as the ortho-canonical polynomials p; are reused in equation ([3.20))

(f(2),pi(x)),, = <Z ajﬁj(x)vﬁi(x)> = Zaj/ pj(x)pi(w)w(z)dr

j=0
= (f(2),pi(2)),, = aillp(@)|[}, = ai , =01,k

In addition, according to eq. the Qol function F'(x) can be replaced as
(f(x),pi(z)), = /Df(:v)ﬁi(x)w(:v)dx ~ /DF(a:)ﬁi(x)w(a:)d$, i=0,1,...k (3.21)

Thus, egs. and lead to the final equations for the a; coefficients
o= /D Fla)p(2)w(z)de , i=0,1,.. k (3.22)
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In order to successfully compute the PCE coefficients by making use of eq. ,
it is essential to assume the chaos order k and the stochastic distribution of the
uncertain variables. Therefore, the PDF, weight functions and ortho-canonical
polynomial family should, thus, all be known to user.

The integration present in eq. , when not solved analytically requires the
call to the Qol function F'(z) a finite number of times. In this diploma thesis, any
call to F'(z) refers to the solution of the primal problem as described in Section
2.1} Hence, in aerodynamic UQ and RDO cases, the computational cost of methods
using PCE coefficients, scales with the number of times the Qol (F') is computed.

3.3.4 Differentiation w.r.t. the Design Variables

Since a gradient based RDO is used in this thesis, the gradients (Vug, Vog) of
the 1st and 2nd statistical moments must be computed as mentioned in Subsection
[1.2.2] These, can be computed by differentiating the statistical moments w.r.t. the
design variables b, as follows

O, 9%
b, — b, ’

n=1,2 N (3.23)

k da; k
aO'F ~ Zizl Q; 31?71 1 Z 8@2'
~ =— > a5,
abn Zk CLQ or i1 (9bn

i=1""

n=12..,N (3.24)

where the derivatives of the PCE coefficients can be computed by directly differentiating
eq. (3.22)) w.r.t. to the design variables, resulting to

=,

A 7 F(x,b
gZL - 6%1 (/D F(fc’bm(m)w(@d“’) = /D %g:)ﬁi(x)w(l’)dl’ , i=0,1,...,k
(3.25)
given that, according to the previous analysis, the Qol is dependent on a single

uncertain variable x € R and many design variables comprising the design variable
vector b € RV,

Finally, the derivatives of the robust metric Fg, a.k.a. the robust SDs, can be

formulated by combining eqgs. (3.23) and (3.24) with eq. (1.4)) of Subsection [I.2.2)

k da;

OFr  Our Oor _ Oag D i1 Gyt
= ~ L =1,2,....N 3.26
6bn abn + K abn abn + K op , n ) &y ) ( )

3.3.5 Gauss Quadrature Integration

Having defined the PCE coefficients analytically in eq. (3.22), a common way
of numerically computing them, referred to as Gauss Quadrature (GQ) [32], are
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explained.

According to the base GQ integration method, the integral of a function h(x) within
a domain D can numerically be computed as the sum of Ng( terms, each term being
a product of a weight r; and a value of the function h, computed for specific values of
its variable x, referred to as Gauss nodes z;. This definition is formulated as follows

NGQ

/D h(z)dz = Z ri h(2) (3.27)

The greater the number of nodes, the higher the method’s accuracy and computational
cost, given that more calls of the h(x) function are needed.

Let h(z) = w(x) f(x), where w(x) denotes the probability function (defined according
to the stochastic distribution of the uncertain variable ) and f the polynomial
approximation of the Qol function F' from eq. . The weights and Gauss nodes
are re-defined as w; and z;, respectively, thus converting eq. to

NgQ

/D h(z)dz = /D w(z) f(x)de = Z w; f(2) (3.28)

For one uncertain variable, the GQ is a easy to implement and affordable method
for the integration of equations and , partly due to the fact that
ortho-canonical polynomials are for the expansion of f(z). The roots of orthogonal
polynomials are all are simple, real and within their respective domain D, while
their number is equal to the polynomial’s degree. These roots define the Gauss
nodes z; and constitute the best possible distribution of nodes for the minimization
of the GQ method’s error [32]. Therefore, for the selected cut-off point k a.k.a. chaos
order, Ngo = k + 1 Gauss nodes are needed for maximum accuracy and the values
of the nodes z; are defined the roots of the polynomial pg.i(x). In the meantime,
the weights w; are defined as

o A1 ) Tk
Z Ap Pl (z0)pe(2:)

(3.29)

where A, the coefficient of the z* term of the orthogonal polynomial of degree k
and so on.

The probabilists’ Hermite polynomial family He,, (z) is implemented for the solution
of integrals and . Thus the integration method takes the name Gauss
Hermite Quadrature (GHQ). This orthogonal polynomial family, differing a bit from
the physicists’ Hermite polynomial family, is thoroughly explored in Appendix
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and simply defined as a recurring formula
Hep1(x) =z Hep(x) — k Hep_1(x) , Heg(x) =1 and Hey(z) = x (3.30)

where the coefficient of the z* term of the polynomial Heg(x) is equal to A;, = 1
and the w-norm of this family is defined as

—+00

Iﬁkﬁxmi—vk—<H@ﬁﬂJﬂ%@»w—l/ (Hex(z))" w(x)dz = k! (3.31)

—00

The Hermite polynomials presented in eq. correspond to the standardized
normal distribution (with 4 = 0 and ¢ = 1). Hence, their probability density
function, from equation (3.5)), assumes the form

w(x) = ! e (3.32)

According to the eq. (3.13)), the probabilists” Hermite polynomials can be converted
to an ortho-canonical through this process

Hep(z)  Heg(w)

Hep(z) = = (3.33)
|[Hey(x)]| VE!
and their w-norm is formulated as follows
|Hew(x))2 =1, ¥ k=1,2, .. (3.34)

causing Ay, = 1/Vk!.

Given that not every normal distribution is standardized, a specific transform must
be applied so as to convert the uncertain variable from the standardized normal
distribution z € N(0,1) to the generalized normal distribution = € N'(u,0?). This
is done through the linear transform

T~ p
g

Therefore, according to the transform (3.35)), the weight function (3.5)), eq. (3.22)),

for © = 0,1, ..., k assumes the analytical form

=2z — dr =o0dz (3.35)

400 T — +o0 — 22
a; = /_ F(z)He,( M)w(a:)d:v = \/%/_ F(oz+pu)He; (2)e”zdz (3.36)

0o o
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and by implementing GHQ to numerically solve the integral (3.36]), the final form
emerges

+o0 o k41
a; = / F(o)He,(*—yw(z)dr = 3wV R0 4 u)HeZ< <.’““>) (3.37)

J
g
0o j=1

Meanwhile, by employing the GHQ method, the integral for the computation of the
derivatives of the PCE coefficients, eq. (3.25]), becomes

22; - a% (/_:O F(z)Hey(~ - M)w(az)dx) _

k+1 P
_ Zw§k+1)37 (F( (k+1) 4 M)) He, < (k+1)>
1

(3.38)

where the (k+ 1) index on the terms w; and z; signify that they constitute solutions
of the probabilists’” Hermite polynomial Hey.1, i.e. the one of degree k + 1, where
k the selected chaos order for the niPCE method.

Additionally, the weights w;, according to equation (3.29), can be computed as

A 1
S _ Akt Vk — (3.39)

’ A H€k+1( )He( kH)) (k+ )Hek( (kH))

Finally, the niPCE mean value of a Qol function F(z), for z following N (u, o), by
implementing the GHQ integration, is formulated as

k+1
wp = ag = ij('kH)F(U (k+1)+ﬂ>H€ < k+1> Zw(kﬂ)F k+1)+,u) (3.40)
j=1

given that PTeO = 1, while the respective mean value’s gradient (3.23) w.r.t. the
design variable b,, is computed as

Our _ dag N~ i) 9 (k+1)
P _ Ot _ (k+1) O k+1
%, ~ ob, — 2= o, (Flo5 +w) (3.41)

Furthermore, the niPCE standard deviation of a Qol function F'(x), for x following
N (u, o), by implementing the GHQ integration, is formulated as

k k

RTINS

i=1 =1

k+1

2
DI ad Al —I—/L)HQ( .’““))] (3.42)

J=1
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while the corresponding standard deviation’s gradient eq. (3.24]), w.r.t. the design
variable b,,, assumes the form

+

&fp _ i [Z (k+1) 7 k+1) +M)H€z < J(k+1)>] ‘

[%wwﬂ) 0 < (o (k+1)+u)) [/—j_éi <Z§k+1)>]

(3.43)

3.4 Multi-dimensional non-intrusive PCE

In this Subsection the niPCE method is generalized for a Qol function F' = F(Z)
dependent on multiple uncertain variables, constituting the uncertain variable vector
T = [11,29,....,20]7 € RM. For Dy, Dy, ..., Dy the domain of each of the respective
components of Z, the domain of the Qol function can be defined as

D=D;xDyx-x Dy (3.44)

Given that each uncertain variable z,, follows a certain stochastic distribution, with
a corresponding probability density function w,(z,), n = 1,2,..., M, according to
the PCE theory F' can be approximated through a linear combination of polynomials
being part of the family U = {¢y(Z), ¥1(Z), ..., vu(Z), ...}, as follows

o0

F(7) = f(£) = ajhi(Z (3.45)

=0
where ¢; e Rand f: DCRMY — Y CR.
Let the multidimensional probability density function a.k.a. the product of the
aforementioned distributions w,(xz;) be defined as

M

W (&) = [ [ wi(e;) = wi(1) walwa) - - war () (3.46)

j=1

Therefore, the n-th statistical moment of the set Y is formulated

S (3.47)



And by applying the distributive property, eq. (3.47)) becomes

<yn>:Z...Zail...ain/D -] Wi (Z) -y (B)wi (1) - war(war) day - daag
(3.48)

Again, the definition of ¢; as multi-dimensional orthogonal polynomials may greatly
simplify the expressions of the statistical moments ((3.48]).

3.4.1 Multi-dimensional Orthogonal Polynomials

Multi-dimensional orthogonal polynomials possess the same properties with their
one-dimensional counterparts described in Subsection [3.3.1] if each polynomial psi,
of order k is defined as a product of one-dimensional orthogonal p;,, in such a fashion
that the sum of their degrees 7; is equal to the desired order k. These polynomials
assume the form

M

Ya(@) = szl (@), Y =k (3.49)

=1

The index m? is included for now and will be explained later. Thus, the simpler n

index is used to describe the degree a multi-dimensional polynomial .

According to the definition of polynomials belonging in the ¥ family, given in eq.
, the Galerkin projection (inner product) of any two of these polynomials is
equal to zero, except if the two are identical. Two polynomials of the ¥ family are
identical only if all consecutive indexes 7; of all the polynomials p;l that comprise
them are equal. This inner product between two multi-dimensional polynomials, of
degrees 7 and 7, yields

= /D1 /Dlelpil(ﬁ)ljf[Pﬂ(mlf[wl(m dwy---dry =
— ﬁ (/Dl pil(xl)pjl(xl)wl(xl)d:cl> = 11_4[ ((5{} /Dl i (xl)wl(:vl)d:vl> = (3.50)

:ﬁ (97) /Dl /D ﬁ [0} (x)wi(ay)] day - - dwyy =
- 55/51]\_4[ (P2 (z2)) W(Z) di = 6! /5 (0:(2))2 W(Z) dF
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Therefore, concluding to the expression
(@) 5@y = [ G@E@W @) 47 = (@@ 8 (351

Now, the Galerkin projection of two identical polynomials (i = j) of the ¥ family,
is equal to the W-norm of the ¢/; polynomial, which is proven by

<w>m5W—/Wf (%) di =

M M
/Dl /DMle H jz)dl‘l"'dxM:

=1 =1

Il (/] rhtowitaas ) - T (sl =

=1 =1

(Hszl ) Ile> = |lvs(@)|

where the W-norm of v; is defined as |[¢;(Z)||w = [T~y [1Pi, (1) ], -

~

(3.52)

To summarize, eq. (3.52)) is simplified to

(Un(T), Yn(@D))yy = @)y = 7 (3.53)

where /7, depicts the normality metric, now defined for multidimensional orthogonal
polynomials 1,. As already stated in Subsection [3.3] if +, = 1 then the 1,
polynomials are part of the ortho-canonical families, a subset of orthogonal polynomial
families. Also, if, in all expression concerning multi-dimensional orthogonal polynomials,
the number of uncertain variables is set M = 1, then the corresponding expressions

for 1D polynomials, explored in will emerge.

In eq. it is stated that a multi-dimensional polynomial v of order k, is
to a product of M 1D polynomials p;,, of which the sum of their degrees i; is equal
to the initial order k. There is, thus, a need to describe the different combinations
of M number of integers in which the integer k£ can be expanded. According to the
mathematical field of set theory and combinatrics, these combinations are referred to
as multiset of k and the greater the value of k, the greater the multiset or the number
of different combinations of integers. Specifically, number of possible combinations
is given by expression ([3.54]).

(( J\]j)) _ ( k:+z\k4—1 ) _ (Z!j(tj\y_—li)! :M(M+1)(M+]§!)---(M+k—1)

(3.54)
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Additionally the index j used in eq. [3.49, serves to classify the aforementioned
combination as follows

k+M—1) (3.55)

<7 <

This classification is relative and does not take into account the possible combinations
of integers with a sum smaller than the respective k.

According to combinatorics, the number of combinations of M integers with a sum
lower or equal to k.. is calculated as

( kmaz + M ) _ (Kmaz + M)V M(M +1)(M +2)--- (M + kpaa) (3.56)

k!M! N kmaa:!

kmax

The, aforementioned and previously not explained, index m;? of eq. (3.49)), is used
to provide an absolute classification for all possible combinations of integers, adding
up to k=0,1,2, ..., ke This index scales as follows
k< (kmaz+M)! .

0<m;

iR (3.57)

This algorithmic method of classification is known as Full Factorial Design is based
on the restriction dictating that the sum of the indexes of 1D polynomials p;
(producing the v, (Z)) cannot be greater than the maximum desired chaos order
Kmaz- In this manrjler, the surplus indexes are eliminated and the right number of
combinations remain.

3.4.2 1st and 2nd Statistical Moments

At long last, now that multi-dimensional orthogonal polynomials are defined, it is
high time to apply their simplifying properties in eq. in order to formulate
the first and second statistical moments of F(Z), without the application of any
cut-off points to the respective series, for now.

According to eq. (3.48) for n = 1, the first statistical moment, aka the mean
value, yields

wr= (') = [ F@W@E =30, [ @@ (3.59)

Given [, w(z;)dz; = 1V i (as explained in Subsection [3.3.2), then, regardless of
the distribution, the product of them becomes

/ﬁvv@)df:/ w(xl)dxl---/DMw(xM)d:vM —11--1=1 (3.59)

Dy
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thus proving that the total possibility of the appearance of all phenomena is equal
to 1.

In addition, the zero degree polynomial is equal to ¥y (Z) = 1, given that is a product

of 1D unit polynomials, regardless of the stochastic distribution W (&). Thus this
property in conjunction with the definition described in eq. (3.51)) gives

/13 G(E)W (2)di = /D Gi(T) -1 W (R)di = /D Gi(F) (@)W (R)AT = 0¥ i > 0

(3.60)
Therefore, by utilizing eq. (3.59) and (3.60)), eq. (3.58)) assumes the form
i =ao [ o@W @i+ Y ai [ e Wiads -
b =1 P (3.61)

:a0/1W(f)df = WUF = Qo

D

Furthermore, it is reminded that the second statistical moment is used to compute
the variance of of I'. The standard deviation of a quantity, according to eq. is
defined as the square root of its variance. Therefore, the second statistical moment
is formulated from eq. for n = 2 as follows

() = /D @ W@dE =33 ana /D b @, (W (DT (3.62)

11=012=0

By applying the orthogonality property (3.51) and the multi-dimensional W-norm
definition (3.53)), eq. (3.62) becomes

=Y d [@wai =Y @@l =Y a . 66)
=0 i=0 i=0

The use of ortho-canonical polynomials zzz(f) gives ; = 1. This can be easily done,
by dividing the orthogonal polynomials of any family with their respective normality
metric, as stated below

- Vi(@) (D)

@O =@l = v

Thus, giving rise to the most simplified formulation for the 2nd moment:

(v)=> da (3.65)

(3.64)
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According to eq. (3.10) and (3.65)), the standard deviation of F'(Z) assumes the form

op = ia? —ad = ia? (3.66)
i=0 i=1

3.4.3 Polynomial Chaos Expansion Multi-Dimensional Co-
efficients

In the same manner as in Subsection |3.3.3] in order to compute the PCE coefficients
a; for a finite number of terms, a cut-off point must be set by the user, to the
expansion of f(Z) from (3.45)). According to the previous analysis, f can be expanded

kmax + M

3 terms, comprising all viable combinations of 1D orthogonal
max

into N.,; =

polynomials, with the sum of their degrees being lesser or equal to the desired chaos
order k. The expansion of f along with, the mean value and the standard deviation
of F' assume the forms

F(@) = f(@)= Y ai(?) (3.67)
HE = ag (3.68)

(3.69)

and the expression for the robustness metric Fr for multiple uncertain variables
assumes the same form (3.19)), with the one presented in Subsection m

The Galerkin projection of f and multi-dimensional ortho-canonical polynomials
1 is expanded in two distinct manners

(rari@), = [ rapawe i = [ F@i@w@a @)

(7(@). 3 > <Zanm (@) > B @l =a 37
W
Egs. (3.70) and (3.70) are utilized to compute the niPCE coefficients a;, as follows
%&[F@%@W@Mﬂi:szN (3.72)
P>

It is reminded that, in this thesis, all uncertain variables follow normal distributions.
Therefore, their corresponding probabilists’ Hermite polynomials are implemented,
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in their canonical form (fffe) Consequently, the approximate polynomial expansion
of the Qol function, for M uncertain variables x;, each with their respective mean
value y; and standard deviation o; for [ = 1,2, ..., M, becomes

F(7) ~ NZ (aiﬁffeil (x’;“l)> (3.73)

=0 =1

For M uncertain variables following standardized normal distributions N (with y =
0 and o = 1), the multidimensional probability density function, according to ((3.46))
and (3.32)), is formulated as

M

1 “”JQ 1 1M 2
Wie(Z) = e T = ceT2 = 3.74
Additionally, given that the Hermite polynomials’ domain is D = [—o0, +00] and

that all uncertain variables follow a standardized normal distribution, the analytical
expression for the niPCE coefficients a; become

“+00 —+o0 +oo - J\/L
a; = M / / / V,ZJZ 2 de’ldl’Q dJ?M (375)
(27)

On the other hand, according to eq. (3.5)), when each of the M uncertain variables
follows a generalized normal distribution (z; € N'(u;,07) , j=1,2,..., M), the the
generalized analytical expression for the coefficients formulates as

M z

+oo +oo +oo e~
i(2) dxidze - - - dx 3.76
/ / / 7/1 JE[ oV 2T e M ( )

1

where each component of the vector Z € R is defined, in order to denote the linear
transform between generalized z; and standardized z; normal distributions, as
m — . X
=10 M (3.77)

gj

3.4.4 Differentiation w.r.t. the Design Variables

The derivatives of the 1st and 2nd statistical moments w.r.t. the design variables
(b, , n=1,2,...,N), for the multiple uncertain variables (z; , j =1,2,..., M), are

formulated as 9 5
1223 Qo
N — =12 ... N .
o, b, T o (3.78)
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Neut . da; Neut
0 = Ai5pt 1 0 i
O 2l ion, Y amt, n=1,2..N (3.79)
ob, ZzN:clut a2 OF ‘= ob,,
Given that the Qol function is also dependent upon the design variables F' = F (g, ),
the derivatives of the PCE coefficients can be computed by directly differentiating
eq. (3.76) w.r.t. to the design variables, resulting to

2
_E
2

aai a —+o00 —+o00 —+oco -~ M e
400 p+oo +o0 8F(5, )~

The derivatives of the robust metric Fr = FR(I;, 7), a.k.a. the robust SDs, can be

formulated by combining eqs. (3.78) and (3.79) with eq. ([1.4), as

Ncut da;

OFr  Oup Jdop _ Oag >t iyt
= =~ n =12,..,.N 3.81

abn abn + K 8bn 8bn + K op , n ) &y ) ( )

N ‘&f,‘m <

(&

oV 2T

dridry---dry , 1 =1,2, ..., New

=

Jj=1

(3.80)

3.4.5 Cubature Integration

The numerical solution of the integrals in egs. (3.76]) and (3.80]) is achieved through
the Gauss Quadrature, a method a.k.a. Cubature when implemented in multi-dimensional
integrals.

This method is defined in a similar manner with the definition used for simple
integrals eq. (3.28), in Subection [3.3.5] For a function h(Z) = W(Z)f(Z) € R, its

Cubature integration is formulated as

[ wtaa = [ @@ =39 1) 382

where Q; = Hlj\il wj, indicates the weight product corresponding to a certain Gauss
Node combination Z; = [2),, 2j,, .-y Zjy, |-

The numerical solution of the integral in eq. , requires all possible Gauss
Node combinations in all dimensions present in the z; vector. This means that
the f function has to be computed for Ngg number of combinations, given that
J € [1, Nggl, thus directly affecting the method’s computational cost. The sum of
all Gauss Nodes, for the solution of integral , is referred to as Full Grid.
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In Subsection [3.3.5 it is stated that when implementing the GQ method for the
computation of the niPCE coefficients a; and their derivatives, the number of Gauss
Nodes needed for the simple integrals is dependent on the chaos order k and is equal
to k 4+ 1. Generalizing the aforementioned statement, for M-dimensional integrals
the number of Gauss Nodes as well as the number of the F' functions calls in eqgs.
and are equal to (k + 1)™. Therefore, the computational cost of the
niPCE method using Full Grid GQ integration scales exponentially with the number
M of uncertain variables that are taken into account. The exponential scaling of
the number of nodes needed for the numerical solution of an integral, w.r.t. the
number of its dimensions, is known as curse of dimensionality. This property of
numerical integration has to be taken into account for problems with a large number
of uncertain variables, given that a Full Grid integration can lead to a practically
unfeasible implementation, due to its great computational and clock-time cost. The
way the curse of dimensionality has an impact on the CPU cost of niPCE coefficients
computation is displayed in Table

M
k 1 2 3 4 ) 6
0 1 1 1 1 1 1
1 2 4 8 16 32 64
2 3 9 27 81 243 729
3 4 16 64 256 1024 4096
4 ) 25 125 625 3125 15625
5 6 36 216 1296 7776 46656

Table 3.1: Qol function calls for the computation of niPCE coefficients through
use of Full Grid GQ numerical integration, for different values of chaos order k and
uncertain variables M. The scaling of the function call with the number of uncertain
variables, a.k.a. the number of dimensions in the integral, is exponential, following the
(k+ )M rule.

Nevertheless, the use of Full Grid GQ integration, alongside with the employment
of multi-dimensional canonical Hermite polynomials ¢ for the solution of egs. ([3.76))

and (3.80]) yields
k+1 E+1 k+1 "
Z Z Z (H w]z) b Ly Ljogs -y ij) wi(zju Zjzy ZjM) (3'83>

Jj1=1 j2=1 Jm=1
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8@1 AR LA AR an.T STy ey Tiny) ~
Z Z Z ijl JlabJQ M wi(zjmzjza“'?sz) (384>

J1=1 jo=1 Jm=1

where z;, the Gauss Nodes, computed as the roots of the {/;kﬂ polynomials, wj, their
corresponding weights (more data in Appendix and z;, are defined as

zj, =01z, +w, i=12,...,k+1 and 1 =1,2,... M (3.85)
To conclude, through Full Grid GHQ integration, the niPCE mean value of F
assumes the form
k41 kt1 k+1

HE = Qo = Z Z Z <HUJ],> b Ljys Ty, ""ij) JO(ZJ'UZJ'W ""ZJ'M)

J1=1 jo=1 Jm=1
(3.86)
while its derivatives w.r.t. the design variables b,, becomes

aﬂF o a@o o — aF b Lji1s Lo, '--7ij) s
= Z Z Z ijz b ¢0<Zj1’ Ry +ees ZjM)

J1=1 ja=1 jm=1
(3.87)
Meanwhile, the computation of the niPCE standard deviation of F', by makinguse
of the Full Grid GHQ integration, yields

Newe [ k41 k+1 k+1 2
= § : § : § : E : Hwﬂ b leﬂxjw“wij)wi(zjlvzjzv“'ﬂsz)

i=1 Lji1=1 jo=1 Jm=1

(3.88)

and its derivatives w.r.t. the design variables are formulated as

Ncut

Jdor 1 80&

ob,  of ab

i=1

Ncut k?"rl k+1 k+1
:EE : E : E : § : ijl b Ij1,$j2,-~,$jM) wi(zjwzjw“wzjzw) )

1=1 jo=1 Jm=1

k41 k41 k+1 8Fb:13 D) ~
LZ Z Z (Hwﬂl) Jlabn 2 ¢i(zj17zj27“'7zjzu)]

1=1 ja=1 Jm=1

(3.89)
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where the number of niPCE coefficients is given by the expression

f = (3.90)

N, = < k+M) M(M+1)(M;2)...(M+k)

3.4.6 Smolyak Sparse Grid Integration

In this Subsection, a less costly method under certain circumstances, is introduced,
for the numerical computation of the integrals, present in niPCE coefficients and

their derivatives ((3.76]) and (3.80]), respectively).

Up until now, these integrals where computed by employing the GHQ method,
while using all (k+ 1) Gauss Nodes for the integration. These nodes are the roots
z;, of the multi-dimensional Hermite polynomials ¢(Z;), which are products of 1D
Hermite polynomials Hej,(zj,), of degree j;. The amount of different combinations
of degrees, and therefore roots, is equal to (k + 1)™, given that:

=12 k+1V 1=12..M

This set of nodes used for the GQ method is referred to as Full Grid GQ integration.
According to Table [3.1] the curse of dimensionality, makes the implementation of
Full Grid integration practically impossible for problems with a large number of
uncertain variables (M > 4).

The Smolyak Sparse Grids [33] first proposed by Smolyak in 1963, so as to circumvent
the curse of dimensionality in GQ integration, by requiring a smaller number of
Gauss Nodes for the computation of the integral. Consequently, when applied in UQ
or RDO problems, less calls to the Qol function F are needed (an action synonymous
with the costly solution of either only the primal problem, if UQ is preformed, or
also of the adjoint problem, if RDO takes place), leading to a reduced computational
cost. The real advantage of the Smolyak Grids lies, especially in problems with a
large number of uncertain variables M, given that, with this method, the integrals
can be computed with a slightly reduced accuracy, but, on the other hand, with a
far lesser number of Gauss Nodes and therefore for an inferior cost.

Nevertheless, the Smolyak Grids are not introduced in this work, so as to totally
replace the Full Grid GQ integration. Their use is, mainly, to complete the GQ
integration method as a whole, by switching between one method, when the other
yields an unfeasible computational cost.

That said, the process needed for the creation of Smolyak Sparse grid for a specific
M-dimensional integral, is the following:

1. For the selected chaos order k (the higher its value, the higher the accuracy
along with the cost), the possible combinations of polynomial degrees j;, also
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culminating to the number Ngj; of Gauss Nodes of the grid, have to fullfill

the criterion
M

M<Y j<M+k (3.91)

=1

The addition of definitions |j| = Zf\il jiand M + K = q to (3.91)), yield
M <|j|<q (3.92)
According to criterion (3.92)), the span of each of the degrees j; is defined as

( jl = 17"'7d1 )
jQ - 17"'7d2
b (3.93)

L jM = 1,...,dM )

where the product of maximum degrees yields the total number of nodes
Noy =l di=didy -+ du

2. The Full Grid GQ weights w;, of the orthogonal polynomials defined in (3.82))
of Subsection [3.4.5 are utilized to produce the Smolyak redefined weights
W,V n=12,..,Ngy, as follows

Q, = (_1)q—|j| ( . |]| ) Hw]l (3.94)
3. The integral is computed with a Sparse Grid of Gauss Nodes as
Nsm
/ RSP ILNC
di  da dn
_ZZ Z [ ya=lil ( q—|j| )Hwﬂ] (Zjys Zigy s Zing )

Jj1=1j2=1 Jm=1

(3.95)

According to step 2, the amount of nodes used both in Full and Sparse grids are
displayed in Table[3.2] on order to fully understand the capabilities and shortcomings
of the two methods. It is clear, that the Full Grid has a smaller implementation
costand is therefore a better choice for M = 1,2,3 V k. For M = 4 the cost of the
two methods is in the same order of magnitude, giving the ability to both methods
interchangeably. On the other hand, for a greater number dimensions, the cost of
the Full Grid integration, for any value of &k > 1, is a least an order of magnitude
greater than the respective cost of Sparse grid integration.
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Full Grid / Smolyak Sparse Grid
M

k 1 2 3 | 4 5 6
0 1/1 1/1 1/1 1/1 1/1 1/1
1 2/3 4/5 87 16/9 32/11 64/13
2 3/5 9/13 27/25 81/41 243/61 729/85
3 4/9 16/20 | 64/69 | 256/137 | 1024/241 | 4096/389
4 5/17 25/65 125/177 625/401 3125/801 | 15625/1457
5 6/33 | 36/145 | 216/441 | 1296/1105 | 7776/2433 | 466564865

Table 3.2: Gauss Nodes for the computation of niPCE coefficients through use of
Full Grid and Smolyak Sparse grid GQ numerical integration, for different values of
chaos order k and uncertain variables M.

Finally, the implementation of Smolyak Sparse grid GHQ integration, for the computation
of the niPCE coefficients a; from ({3.76)), yields

dng
_ Z Z q |1 ( B ) Hwﬂ b ijl,w-aij) wi(zjnm’sz)
q |J|
J1=1 Jm=1 (3 96)

while for the derivatives of a; w.r.t. the design variables b,

0a; o OF (5,2, .y 25,,) ~
L — _1)a—ldl Ju o tiv) T .
ob,, ]231 jzl [( b ( q— |j| ) Hwﬂ ob,, Vi(Zj15 -+ Zjur)

(3.97)
;) the Gauss Nodes, ¢ = M + k, while

M
= Zjl
=1

Finally, from eqs. (3.96) and (3.97)), the mean value and standard deviation of F,
as well as their derivatives, are formulated accordingly, using the same strategy as
the one followed in Subsection [3.4.5]

where Z; = (zj,, Zjy, .-

T = 01 Zj +/le and ’jl
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Chapter 4

Modeling of Manufacturing
Imperfections

The mathematical formulation of the stochastic processes used to model the inevitable
shape imperfections generated on mechanical parts during the manufacturing procedure,
is presented in this chapter.

4.1 Karhunen-Loeve Transform

During the manufacturing of mechanical parts, the occurrence of a certain differentiation
between the shapes of the designed and the finished product is generally expected.
The stochasticity of the manufacturing process, such as the quality degradation of
cutting tools, is largely responsible for such occurrences. This phenomena appears,
for example, during the large-scale production of lifting bodies such as aircraft
wings, hydrofoils or turbomachinery blades. The shape differentiation of the finished
product when compared with the original design must respect the tolerances specified
by the manufacturer, otherwise the product is deemed a failure and be disposed. Yet,
even if the imperfections do not overstep their specified tolerance boundaries, these
have a non-trivial impact on the aerodynamic performance of the manufactured
lifting body.

In this diploma thesis, the mathematical tool used to model these imperfections
is known as the Karhunen-Loéve Transform (KLT) [34], 35l 136, 37, B38]. The KLT
comprises a stochastic process used over a finite space or time span.

4.1.1 Karhunen-Loéve Expansion

The Karhunen-Loéve Expansion (KLE) is used to compute stochastic perturbations
on the surface of an imperfect part. This perturbation E(s) is expanded into an
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orthogonal set of deterministic functions f,(s) according to the following formula

E(S) = Z \/A_ncnfn(s) (4'1)

where s indicates the dimensional curvilinear coordinate of the shape in question,
¢, indicates a set of random variables to be determined and )\, indicates some
constants, yet to be defined.

In eq. (4.1)), the probabilistic v/A,c, and deterministic f,(s) parts of the expansion,
must be considered separately.

In order to recreate a randomly generated imperfect shape realization X (s, ¢), the
perturbation expansion w(s) is superimposed on the nominal shape X (s) in the
direction of the surface normal vector. Specifically in the case of 2D aerodynamic
bodies, such as airfoils, the perturbation is superimposed on the mean nominal airfoil
geometry X (s) using the following equation

X(s,8) = X(s) + B(s)ii(s) = X(s) + 3 v/ A fuls)ii(s) (4.2)

where s € [0, Syuqaz] and Spq. is defined as the total length of the contour of the shape
under consideration (in this case an airfoil), whereas 7i(s) indicates the surface unit
normal vector.

4.1.2 Covariance Kernel

It is essential to explain and define the statistical moments that describe the stochastic
perturbation process described in eq. (4.1)). Evidently, the process has zero mean
due to the fact the mean nominal geometry is included in eq. (4.2). However, the

variance off all the possible of the expansion E(s), from eq. (4.1]), can be modeled
through the covariance kernel or covariance function.

By definition of the covariance function is bounded, symmetric and positive definite
[35]. Thus, it has the spectral decomposition [37, [3§]

Cs1,8) = > Anfuls1) fu(s2) (4.3)

The type of covariance function used in the KLT process greatly impacts the eigenvalues
and the mathematical formulation of the eigenfunctions used to describe the stochastic
perturbations of eq. . In this thesis, the covariance kernel used to generate the
imperfections of 2D shapes is exponential [34], 35 [36, [37] and is represented by the
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formula

C(s1,82) = e (4.4)
where s1, g € [0, Spmaz| represent positions on the airfoil profile and [ indicates the
correlation length, which in return, describes the frequency of the perturbations.
The o parameter is known as the standard deviation of the perturbations and is a
user-defined dimensional parameter that serves to scale the absolute magnitude of
the perturbations. The value of this parameter has no physical significance, as the
scaling of the perturbations can be achieved also through the range or the statistical
moments that define the distribution of the uncertain variables ¢,,. For this thesis,
given that the standard deviation of the imperfections is not defined, its value is
assumed to be ¢ = 1 and can, therefore, be practically omitted.

The eigenvalues \, and the eigenfunctions f,, used in the KLE model eq. (4.2)),
are obtained by solving the following integral equation

/I;C(Sl, SQ)fn(SQ)dSQ = )\nfn(sl) (45)

where D indicates the domain where the coordinates s;, s, are defined.
Due to the fact that the covariance kernel has the properties mentioned above,

the eigenvalues and eigenfunctions that consist the solution of the integral eq. (4.5))
have the following properties [35]:

e The set of eigenfunctions is orthogonal and complete. The eigenfunctions can
be normalized in the sense

Ln@M@mzw (4.6)

where 6, is the Kronecker delta.

e Each eigenvalue corresponds to a finite number of linearly independent eigenfunctions,
at most. In the present case of exponential kernels, each eigenvalue corresponds
to a single eigenfunction.

e There are at most a countably infinite number of eigenvalues.
e All eigenvalues are positive real numbers.

e Every covariance kernel admits to the uniformly convergent expansion of eq.

#-3)
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In the case of the exponential kernel (4.4) and of a non-symmetric interval D =
[a,b], a,b € R for which sy, so € D, the integral eq. (4.5)) takes the following form

b .,
/Uzelﬂllf (s2)dse = Apfn(s1) (4.7)

Since the correlation length [, meaning the frequency of the manufacturing imperfections,

is a value difficult to define even by the manufacturer, for the purpose of shape
imperfections modeling, it is often assumed that [ = |a — b] = b — a. Especially
in the case of aerodynamic bodies, for which the limits of the interval D are often
defined as a = 0 and b = s,,,4,, the correlation length is, therefore, defined as | = s,,,45
(with accordance to the previous assumption).

4.1.3 Solution of the Integral Equation

At this point, it would be useful to specify the known and unknown data of the
KLT process. Whenever a new nominal geometry is introduced, in order to create
an imperfect realisation of it, the contour s,,4, of the nominal geometry is computed.
Thus, the range of the variables sy, so and, consequently, the interval D = [a, b] of the
integral eq. can be defined. In addition, if no more empirical data are available,
the correlation length [ and the standard deviation o can be defined, respectively, in
consonance with the assumptions mentioned in Subsection 4.1.2] Finally, the vector
of uncertain variables ¢ must be designated either by a random number generator
or by a specific process such as niPCE if, for example, UQ must be performed.

Once all the above parameters are known, we can proceed to the analytical solution
of eq. (4.7)), so as to calculate the needed eigenvalues and eigenfunctions. Equation
(4.7) can be written in the following form

51 s1—89 b s1—89
/ ol 1 fn(SQ)d32+/ e T fu(s9)dsy = Anfn(s1) (4.8)

S1

Differentiating eq. (4.8) w.r.t. s; € [a,b] and applying the Leibniz integral rule gives

0 210 0
- —/ (s9)dss + I 52 f(s1) + g—/ 2 (s9)dsy — o ——0?f(51) = \n
8 51 [ S1 a S1
by [ dfy,
= —/a (s2)dss + /51 e (s2)dsg = F%ﬁl)

(4.9)
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Differentiating eq. (4.9) again w.r.t. s; and using again the Leibniz rule yields

1 %Y s9—s 0s; 1 7 s-s dsq _l)‘ndf;%(‘sl)
7/a e 1 fn(82)d82—a—81f(81)+7/516 ’ fn(32)d32_a_81f(31>_ o2 ds?

S1 s9—s81 b $1—89 12)\71 d 2 S
= —/ e T fu(sa)dss —l—/ e T fu(so)dse —20f(s1) = p f?ii;)
a 1

s1

(4.10)

After rearranging and replacing eq. (4.8]) into eq. (4.10)), the following differential
equation is obtained

d? f,(s1) B —2021 + \,

MEGE = (T k) (4.11)
By defining the new variable w,, as
2021 — \,

and, hence, the eigenvalues [37] can be calculated by

o, 2

A =0 ——— 4.1
" 01+(wnl)2>0 (4.13)

By setting sy = s, eq. (4.11)) assumes the following form

den(S)
ds?

To find the boundary conditions of the differential eqs. (4.14), (4.8) and (4.9) are
evaluated at the integral boundaries, at s = a and s = b. Therefore, the boundary

conditions become

+wifa(s) =0, a<s<b (4.14)

fn(a) - ldeia) =0
(4.15)

fu(b) + 1820 = @

Furthermore, eq. (4.14)) has four distinct solution forms [36]:

1. A\,=0

2. 0< M\, <202
3.\, =20%

4. N\, > 20°%

For case (1), if A,, = 0 then, according to eq. (4.12)), w, is ill defined, due to division
by zero.
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For case (2), if 0 < A\, < 202 then

2% — A,
21—\ >0 = wnzalT>0 (4.16)

which respects the definition of w,, according to eq. (4.12]).

For case (3), if A\, = 20 then w,, = 0 which violates the definition of w,,, according

to eq. (4.12).
For case (4), if A, > 202l > 0 then

2021 — A,
25—\, <0 = w”:Ul?—An<O (4.17)

which again violates the definition of w,, according to eq. (4.12)).

Thus, integral eq. (4.7)) cannot be satisfied for the cases (1), (3) and (4).

For 0 < A\, < 2021, it is assumed that the solution can be given by

fuls) = 1 cos [wn (s - a;b)] + epsin {wn (s - “‘2”’)] (4.18)

where ¢1, ¢o € R to be defined.

By substituting the eq. (4.18]) into the boundary conditions (4.15)), the following
equations are formulated

[l — wpl tan(w, %5%)] — coftan(w,5%) + w,l] = 0
(4.19)
1]l — wyl tan(w, %52)] + eftan(w, 5%) 4+ w,l] = 0

Non-trivial solutions can be achieved only when the determinant J of the homogeneous
system (4.19)) is equal to zero [35]. Meaning that, if J # 0, then the inevitable
solution of eqgs. (4.19) is ¢; = co = 0 Thus, J takes the following form

b—
J = 2wl + (1 — (w,l)?) tan(wn—a) — wyl tan?(w,
2 (4.20)

b—
J = 2Jwpl + tan(wnTa)][l — wyl tan(wy,
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By setting the determinant of eq. (4.20)), to zero and after rearranging, the following

transcendental equations [34] are derived
wyl + tan(w,5%) =0
(4.21)
1— wnltan(wnl’_T“) =0
For n being an even number, the value of w,, > 0 is given by the ordered solution to

the transcendental equation

) =0 (4.22)

wpl + tan(w,
and for n being an odd number, the value of w, > 0 is given by solving the
transcendental equation

b—a
2

) =0 (4.23)

1 — wyl tan(w,

At this point, the first 20 eigenvalues A, are computed through the solution of the

transcendental equations (4.22)),(4.23)) by making use of eq. (4.13) and are plotted
in Figure for different values of input parameters a, b, o, [.

So, for n even

Wyl + tan(w, %5¢

3 b
) c1 =0 and f,(s) = ¢ cos (wn(s _at

Co =
S| — wyl tan(w, %5%)

)) (4.24)
Also, for n odd
1= wyl tan(w, 5%)

wyl + tan(w, %)

ca =0 and f,(s) = cysin (wn(s _ ¢ ;_ b)) (4.25)

Furthermore, ¢y, ¢2 can be computed using the orthogonality eq. (4.6|) of the eigenfunctions

b
b 1
For n even : c%/ cos? (wn(s— ot )) ds=1 = ¢ =
a 2 \/b—_a 4 sinwn(b=0))
2 2wn
(4.26)
b
b 1
For n odd : cg/ sin? (wn(s— ot )) ds=1 = ¢ =
a 2 \/b—_a . sin(wn (b—a))
2 2wn,
(4.27)
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Figure 4.1: KLT eigenvalue decay for the exponential kernel of eq. (4.4)) and, also,
foro=1,a=0andb=1=1, 2, 3.

To summarize, the eigenfunctions [34] are determined by the following formula

cos (wn (s— “TH’ )

e+l for n even
2 2wn
o) = (4.28)
sin(wn(s_ﬂ))
2 for n odd

\/b;a,w ’

2 2wn,

By making use of eq. (4.28)), the first six eigenfunctions are computed and plotted
in Figure [4.2} for s € [0, 1].

4.1.4 KLT Algorithmic Formulation

Now that the mathematical formulation the Karhunen-Loeve Transform has been
fully defined, it is possible to describe the algorithmic steps needed to compute a
random imperfect realization of a 2D geometry.

First and foremost, the nominal 2D geometry must be given in the form of either
a number of discrete coordinate points or a function of s. Either way, this input

defines the variable X (s) in eq. (4.2)). Subsequently, the contour s,,q, of the nominal
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Figure 4.2: First siv KLT eigenfunctions for the exponential kernel (4.4) and, also,
fors€fa, b]=10,1],b=10and o = 1.

geometry and, thus, the interval D = [0, s,,4.] of the integral eq. is computed,
under the assumption that the covariance kernel as the one in , is employed. If
no more data is shared by the designer or the manufacturer of the geometry, then
the correlation length can be assumed [ = 5,4, (according to the assumptions made

in Subsection {4.1.2)).

Once all this is defined, the algorithm, implementing the KLT to generate an
imperfect geometry, can be described by the following steps:

1. Analytical or numerical solving of the transcendental equations (4.21]) for a
vast range of the variable w,, > 0, in order to find a finite number of eigenvalues

An, by making use of eq. (4.13)).

2. Specifying the number of the first eigenvalues and their respective eigenfunctions
that is included in the KLE of eq. (4.1]), according to either a predefined
criterion or via other ad-hoc methods.

3. Computation of the surface unit normal vectors 7 via an analytical or a
numerical method, depending on the description method for the nominal
geometry.

4. Randomizing the values of the KLT uncertain variable vector ¢, by means of
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a random number generator. The dimension of ¢ was defined in Step 2 and is
equal to the number of eigenvalues included in the KLE.

5. Computation of the random geometry perturbation through the KLE formulas
and superimposition of this perturbation on the nominal geometry, according

to eq. (4.29)

Steps 4 and 5 can be repeated independently within a loop, so as to compute more
than one random imperfect 2D geometries.

4.2 KLT Applications

4.2.1 Flat Plate

First, the KLT process is applied on a flat plate, for simplicity reasons, in order
to understand the basic functions of the process on a plain 2D geometry. To put
it simply, the KLE perturbations are superimposed on the a straight line, in the
direction perpendicular to it, hence, creating a number of oscillating continuous
lines.

The parameters of the applications are defined simply, by using all assumptions
mentioned in Section [4.1] Therefore, for a flat plate of 1 meter in length, with no
curvature and parallel to the x-axis of the Cartesian coordinate system the KLT
parameters are set as s = x € [a, b] = [0, 1] m, l = b =1m and 0 = 1 m.
The input file, containing the plate’s equally spaced coordinates, is comprised by
100 coordinate points, meaning that the discretization step of the plate is equal to

As = Az = 0.01 m.

For the implementation of KLT on the flat plate, an algorithm that can apply
the KLE on a 2D geometry is developed in C++. According to the transform’s
properties presented in Subsection the solution of the integral eq. can
produce at most an infinite number of eigenvalues and their respective eigenfunctions.
It is self-evident that an algorithm must use a finite number of eigenvalues in order
to compute the KLE of the imperfections (4.1). Thus, the question of how many
modes should be used during the KLT process has arisen. Given that, an acceptable
number M € N (as defined in eq. ([£.29)) of eigenvalues and eigenfunctions to be
included in the KLE is not pre-determined, a parametric analysis is w.r.t. M taking
place. The value of the cut-off point M, simultaneously, determines the dimension
of the vector of uncertain variables ¢,, n € [0, M] needed for the process. For
this application and the next (see in Subsection , the values of the uncertain
variables ¢, are produced by the pseudo random number generator rand(), of C++.
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Here, eq. (4.2)) is rewritten with defined cut-off point M:

X(s,0) = X<S) + Z \/)\—ncnfn<5)ﬁ<3) (4.29)

The purpose of the parametric analysis is to better understand the effect that the
value of M has on the shape of the imperfect realizations of the nominal geometry.
Seven imperfect realization of the flat plate are generated, each time for 5, 10 and
20 modes included in the KLE, thus, M is assuming the values 5, 10, and 20,
accordingly.

The maximum magnitude of the perturbations in flat plate KL'T imperfect renderings
is purposely set as 50% of the initial plate’s length, for display reason, given that the
complexity of the perturbation’s osculation is of interest here and not its magnitude.

The imperfect plates computed by including the 5, 10 and 20 first eigenvalues and
their corresponding eigenfunctions in the KLE modeling the perturbations can be

found in Figures [4.3] and [4.5] respectively.
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Figure 4.3: The nominal flat plate (black) and seven imperfect realizations of it
(other colors), generated through KLT by including the first 5 modes (M = 5) and
plotted in scale.
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Figure 4.4: The nominal flat plate (black) and seven imperfect realizations of it
(other colors), generated through KLT by including the first 10 modes (M = 10) and
plotted in scale.
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Figure 4.5: The nominal flat plate (black) and seven imperfect realizations of it
(other colors), generated through KLT by including the first 20 modes (M = 20) and
plotted in scale.

As expected, the random imperfect realizations of the flat plate get more complex
as more modes are included in the KLE. This observation contradicts the fact of
eigenvalue decay, as stated previously in Figure 4.1, To be more precise and to
further strengthen this point, for this application, the sum of the first 5, 10 and 20
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eigenvalues are presented as a percentage of the sum of all calculated eigenvalues, in
Table Yet, as we progress from Figures to [4.5] it is clear that the increase
of M causes the imperfect lines to be become more oscillated, given that more and
more high frequency eigenfunctions (Figure are added to the expansion that
simulates the imperfections.

Number of Modes (M) | M X/, A
) 98.15 %
10 99.25 %
20 99.68 %

Table 4.1: Sum of the first KLT eigenvalues of the flat plate, for M =5, 10, 20.

4.2.2 NACA 0012 Airfoil

The KLT process is, now, applied on a 2D aerodynamic body, such as an airfoil, in
order to showcase the capabilities of the process in recreating a number of stochastic
imperfect realizations of the said body, thus, simulating the final manufactured
product. The KLT is implemented on the NACA 0012 airfoil and, thus, the parameters
of the process must be defined.

The domain of the integral eq. (4.5)) is defined as D = [0, Syaz|, Where S0 =
2.03918 m represents the perimeter of a NACA 0012 airfoil with a unit chord. The
correlation length of the covariance kernel is set | = s,,,4.. In addition, the number
d of eigenvalues and corresponding eigenfunctions that are used in the KLE to form
the stochastic perturbations must be defined. After some attempts on different
airfoils it can be assumed that only the first five eigenvalues and eigenvalues might
be sufficient, given that the following criterion is satisfied with 5 modes, in most

cases.
> uet Ao
Zn )\n
Specifically, for the NACA 0012 airfoil, the sum of the first five eigenvalues consists

the 97.26 % of the sum of all calculated eigenvalues. Consequently, to define each
imperfect airfoil, five uncertain variables ¢, are needed.

> 0.96 (4.30)

Therefore, for this application, eq. (4.29)) assumes the following form

X(5,8) = X(5)+ 30 VAweufuls)i(s) (131)

For the implementation of KLT on a specified airfoil, the same software as the one
mentioned in Subsection 4.2.1] is used. A similar algorithm is coupled with the
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niPCE in-house code developed by the PCOpt/NTUA in FORTRAN and used in
later stages of this diploma thesis, so as to perform UQ [3] and aerodynamic RDO
w.r.t. manufacturing imperfections. The input file, that describes the NACA 0012
profile, contains 200 coordinate points.

For this application only, the standard deviation of the perturbations o of the
covariance kernel is replaced by a different parameter that serves to define the
maximum absolute magnitude of the KLE perturbation , so as to simulate the
equivalent manufacturing tolerance of the lifting body. Thus, this new parameter
renders parameter o obsolete, given its only actual purpose is to scale the KLE
perturbations . Nevertheless, this post-processing is bypassed, in later use of
this software (for the purposes of UQ and RDO), considering that the magnitude
of the perturbations are dictated by the statistical moments defining the uncertain
variables. For this application, the maximum imperfection magnitude is assumed,
arbitrarily, to be the 0.3 % of the airfoil’s chord length.

Additionally, a Hann-like weighted cosine function, such as those used in signal
processing, is optionally utilized to damp the KLE perturbation close to the trailing
edge of the airfoil. In this application, this post-processing is required to keep the
trailing edge coordinates unchanged and always maintain a sharp trailing edge. The
formula used for the computation of the weighted Hanning window coefficient Cyann

can be described in eq. (4.32))

1—cos(555—), for 2

<P

Smazx

CHan'rL<S) = 1 s fOT p < . < (1 _p) (432)

Smax

1 —cos(&2=), for == > 1—p

2P Smax Smax

where p € [0,1] indicates the user-defined percentage of the contour s, of the
airfoil. The coefficient produced from eq. (4.32)) is plotted, for different values of p,

in Figure [4.6]

It is assumed that for this particular airfoil, the damping of the perturbations should
take place, for each side of the airfoil, at the 8 % of it’s contour (p = 8%). Thus,
the final form of the KLE formula used in this algorithm is given by

X(5.8) = X(5) + Cronn() Y Ve fu8)(5) (4.33)

Finally, by defining the rest of the parameters as described previously, seven random
realisations of the NACA 0012 airfoil are being computed and displayed in Figure
5}
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Figure 4.6: The Hanning Window coefficient Cgann computed and plotted for p =
10% (blue) and p = 20% (red).
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Figure 4.7: The nominal (black) and seven imperfect (other colors) NACA 0012
airfoils, generated through KLT, not in scale (above) and in scale (below).
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Chapter 5

Uncertainty Quantification with
Manufacturing Imperfections

In this chapter, a description of the integration of the previously mentioned KLT
software (used to compute imperfect 2D geometries) coupled with the OpenFOAM
mesh generators and fluid flow solvers into the in-house niPCE software takes place.
Also, various simulations concerning the UQ of the aerodynamic performance of 2D
bodies with their manufacturing imperfections, are presented.

5.1 Integration of KLT software and OpenFOAM
solvers into the niPCE software

The software developed in C++ that implements the KLT onto a 2D geometry,
in order to generate an imperfect shape, thus simulating a manufactured final
mechanical part, is named foil KLT. As the name reveals, this software specializes
into 2D aerodynamic bodies such as isolated or turbomachinery blade airfoils. The
core algorithm is vastly based upon the generalized algorithm of KLT application on
2D shapes, as presented in Subsection[4.1.4] Its purpose is to be coupled with a CFD
solver, so as to compute the Qol needed for the process of UQ, performed through the
non-intrusive Polynomial Chaos Expansion code developed by the PCOpt/NTUA.

The data defining the nominal aerodynamic body is given to foil KLT in the form
of discrete points (coordinates) in a date file (set airfoil.dat for now). Then
KLT is implemented to create an imperfect realization of the nominal geometry.
Another data file, named KLT'.ini, is utilized to define the KLT process parameters,
the input and output file names, while, also, giving the option whether or not
to apply on the final imperfect geometry, the Hanning Window or the absolute
KLE perturbations magnitude post-processing subroutines, that were thoroughly
described in Subsection [£.2.2] The imperfect body outputted by the program has
the same format as the input geometry file and has a variable file name (set impFoil
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for this thesis).

The most important difference of foirKLT w.r.t. the aforementioned KLT algorithm,
is that the random number generator, mentioned in Step 4 (see Subsection [4.1.4)),
used to designate the values of the uncertain variables ¢,,, is replaced by an additional
input file of variable name. As such, the uncertain variable vector ¢ used in the KLE,
can be defined through an outside source, in this specific case by the niPCE in-house
code through a data file (usually named task.dat).

Because the input and the output files of foil KLT are 2D Cartesian coordinate data
files, the problem, of integrating them into the OpenFOAM 3D mesh configuration,
arises. The easiest solution to this problem would be to integrate the imperfect 2D
geometry coordinates into the input file of the OpenFOAM mesh generator (e.g.
blockMeshDict for the blockMesh mesher), used to create the mesh in the first place,
thus re-meshing for every call of foilKLT. While practical, this solution is costly,
especially in scenarios with complex geometries that require mesh generation of
significant computational cost. To avoid this shortcoming, the source OpenFOAM move-
DynamicMesh solver can be implemented, so as to only re-mesh the solid boundaries
defining the geometry under consideration, as well as the mesh close to them. The
moveDynamicMesh can only accept certain triangulated surface file formats (i.e.
.stl, .obj, .vtk, .tri etc) as inputs, in order move specific mesh regions. Thus,
an additional software is developed in C++, named preSucOBJ, for the purpose
of converting the imperfect 2D geometry file into a triangulated 3D surface file,
specifically in the .obj file format. In order for the aforementioned process to take
place, the to-be imperfect wing length must be specified. Finally, once all the above
are executed, the displacement Laplacian solver moveDynamicMesh has renewed
the polyMesh directory, re-defining the mesh region of the flow field. Then, the
OpenFOAM solver runs, which for this specific chapter is the incompressible flow
solver simpleFoam. Once the flow solver has converged to a solution for the flow
field variables, one or more Qol (e.g. drag coefficient etc) are computed and written
into a final communication file (usually named task.res) which is, then, inputted
into the niPCFE software thus closing the process of computing the Qol.

This whole process is called and performed several times when the niPCE code
is executed, while it is highly recommended to run the CFD code in parallel execu-
tion, in order to dramatically reduce the wall-clock time, a.k.a. response time, of the
operation in question. In Figure [5.1], the flow-chart of the Qol computation process
is presented.
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Qol

. . Statistical
niPCE.ini Moments
—_——
Y
task.dat task.res
KLT.ini
airfoil.dat
impFoil
.obj files
polyMesh
—

Figure 5.1: The Qol computation process flow-chart, including the names of the
commaunication/data files of the software used in it. This process is repeated as many
times as dictated by the niPCE algorithm, depending mostly on the dimension M of
the uncertain variable vector and the order k of the Chaos Expansion polynomials.
For simplicity reasons, the niPCE algorithm is displayed as a black box, in order to
better focus on the computation of the Qol.

5.2 Uncertainty Quantification: NACA 0012 air-
foil

In this section the initial conditions, the mesh, the flow field and the Qol results
(without uncertainties) of the NACA 0012 airfoil CFD case are presented. The
algorithm described in Section |5.1} is then applied on the case in question, in order
to assess the potential of the KLT in UQ with manufacturing uncertainties. UQ
results, computed for several values of the chaos order parameter k, are displayed
and compared with MC results, due to its simplicity and accuracy [3], if, at least,
an adequate number of replicates is used.

5.2.1 Flow Field Initial Conditions and Mesh

The flow field around the airfoil is considered to be steady, incompressible and
turbulent. The NACA 0012 chord has been set to 1 meter. The flow initial
conditions and properties are displayed in Table 5.1l The flow is solved on a
structured, 2D and cell centered C-type grid, consisting of 160 x 135 quadrilateral
elements, generated through blockMesh. The farfield boundaries of the mesh around
the airfoil are set to a 10 chord lengths away form it. The mesh in question is
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Farfield Velocity Magnitude | Uy 26 m/s
Farfield Velocity Angle Q@ 2.0°
Kinematic Viscocity v 107° m?/s
Density p | 1.225 m3/kg
Reynolds Number Re. | 2.6-10%6

Table 5.1: The constant initial condition of the NACA 0012 CFD-case.

visualized in Figures [5.2] and
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Figure 5.2: NACA 0012 airfoil: structured C-type mesh.
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Figure 5.3: NACA 0012 airfoil: structured C-type mesh, close up view of the airfoil’s
leading (above) and trailing edges (below).

The turbulence model used in this CFD case, is the Spalart—Allmaras one [16], while
a common assumption in airfoil flow field is used, which dictates that 7/v = 5,
at the inlet boundary. Hence, the initial condition for the turbulence model are:
Spalart—Allmaras model variable 7 = 5:107° m?/s and turbulent kinematic viscosity
vy = 1.29-107° m?/s. The OpenFOAM’s nutUSpaldingWallFunction High-Re wall
function [18] is utilized to compute the velocity of the near-wall cell centers, that
are affected by viscous flow phenomena, further analyzed in Subsection [2.1.3] For
this model to have an acceptable accuracy, the first cell center must lie into the
log-law region of the boundary layer, meaning that the non-dimensional distance
between its cell center and the wall must be y* < 100. In order to verify the use of
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High-Re wall functions for this particular mesh, the distribution of y* is plotted for
the pressure and suction sides of the airfoil, in Figure [5.4]
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Figure 5.4: Non-dimensional wall distance y*+, plotted for the pressure and the suc-
tion side of the mesh around NACA 0012 airfoil.

5.2.2 CFD Results without Uncertainties

The flow field equations system is solved by making use of the SIMPLE finite volume
algorithm [29], implemented through OpenFOAM®©’s executable simpleFoam, as
described in Subsection[2.4l 2" order finite volume schemes are used to discretize the
div() and grad() operators present into the RANS and Spalart—Allmaras equations.
A converged solution is reached in 1400 iterations and the convergence chart of the
mean flow variables is presented in Figure |5.5]

The lift (Cp) and drag (Cp) coefficients are used as Qols in Subsection and
their current values, computed for no uncertainties are displayed in Table [5.2]
Furthermore, the velocity magnitude U and the turbulent kinematic viscosity v
fields, close to the airfoil, are visualized in Figure 5.6

NACA 0012 Aerodynamic Coef ficients
OL C1D
0.210755 0.011127

Table 5.2: NACA 0012 airfoil: lift and drag coefficients for the constant flow condi-
tions described in Table (e =2° Re.=2,600,000).
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Figure 5.5: NACA 0012 airfoil: convergence plot of the flow field equations. The
convergence criterion is set at a residual equal to 107°.
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Figure 5.6: NACA 0012 airfoil: velocity magnitude U (above) and turbulent viscosity
vy (below) contours around the airfoil, computed for the nominal shape.
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5.2.3 Chaos Order Parametric Analysis & Results Valida-
tion

The UQ process is performed through niPCE for the flow around an imperfect NACA
0012 airfoil. The imperfections are modeled with the KLT algorithm presented in
Section The solution of the flow equations is achieved with the configuration
thoroughly described in Subsection [5.2.2]

The only input parameter of the case in question that is considered uncertain is
the airfoil geometry. Specifically, the NACA 0012 airfoil is assumed to display a
variation within its manufacturing tolerances. This uncertainty is quantified through
the uncertain variable vector ¢ € RM of the KLE. The dimension of ¢ is set equal
to M = 5, given that it is considered to be a middle ground solution between
the complexity of the KLT-generated imperfect geometries and the mitigation of
computational cost. The KLE standard deviation is set equal to ¢ = 1 (so as to
simplify this variable, for which no empirical data are given), while the statistical
moments of the uncertain variables ¢;, used to produce the KLT stochastic shape

imperfection (eq. (4.29))), are defined as
w=0m , 0,=2-102m V 1=1,2,..,5 (5.1)

Another decision taken, so as to reduce the computational cost of the UQ), is the use
of Smolyak Sparce grids [33] instead of full grids to define the uncertain variables
(further analysis in other Chapters not yet completed). This method greatly reduces
the sample points needed for the niPCE, mitigating consequently the computational
cost of the GQ integration. Thus, a parametric analysis is held on the order k of the
Chaos Expansion polynomials, while MC is used as benchmark method for verifying
the computed results [3]. The computational cost of each niPCE run for both the
Smolyak and the full grids, measured in Equivalent Flow Solution (EFS) time given
that it is equal to the number of Gauss Nodes, is displayed in Table

The UQ parametric analysis of the niPCE method (with Smolyak grids), for the
Qols, Cp and C, are computed and displayed in the Figures[5.7and [5.8], accordingly.
The MC-computed UQ, for 5000 sample runs, is also included, for the purposes of
result comparison and validation. The same data is also presented, in the aggregate,
in Table |5.3] along with the specific error of the niPCE results when compared with
the corresponding MC results.
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niPCE — Smolyak (M =5)
k piep (%0 A) pic, (%0 A) JCD (% A) oc, (%0 A)
1 | 1.125-1072 (0.05) | 2.137- 107" (0.43) | 9.028 - 1075 (0.84) | 1.207- 102 (9.60)
2 | 11241072 (0.05) | 2.159- 1071 (0.61) | 9.452- 1077 (5.57) | 1.479 - 102 (10.73)
3 | 11291072 (0.39) | 2.133- 1071 (0.57) | 9.584- 10 (7.05) | 1.373- 1072 (2.79)
4 | 1.124-1072(0.04) | 2.157- 1071 (0.55) | 9.570- 10~ (6.89) | 1.436- 102 (4.59)
|MC|  1125-107° | 2.146-10° 8.953-107 1335102 |

Table 5.3: NACA 0012 airfoil UQ with manufacturing imperfections. UQ) case with
M =5and k=1 to k =4. Mean value and standard deviation of the Cp and Cf,
computed through niPCE with Sparse grid GHQ and compared with the outcome of
MC with 5000 replicates. For each column, the niPCE result with the lowest relative

error is highlighted in bold.
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Figure 5.7: NACA 0012 airfoil drag coefficient UQ with manufacturing imperfec-
tions. Results computed with MC, for 5000 samples, and with niPCE, for chaos order

k=1 tok=4.
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Figure 5.8: NACA 0012 airfoil lift coefficient UQ with manufacturing imperfections.
Results computed with MC, for 5000 samples, and with niPCE, for chaos order k =1
to k=4.

Finally, enough data has been gathered in order to select the optimal value for the
chaos order k, so as to continue with the aerodynamic RDO of lifting bodies with
manufacturing imperfections. This analysis has took both the increase of CPU cost
and the fluctuating accuracy of the niPCE method into account, in response to the
increase of k. Therefore, the illustrated of £ consists of a MOO optimization problem
with two objectives: the minimization of the cost and the error of the UQ results.
The average specific error of all niPCE-computed UQ results when compared to the
ones computed through the MC method, is plotted w.r.t. their computational cost

in Figure [5.9| (according to Tables [3.2] and [5.3).

As illustrated in Figure the dominant solutions, defining the Pareto Front of
this parametric analysis, are the UQ results for £ = 1 and k£ = 3, with mean relative
errors of 2.73 % and 2.70 %, respectively. These two solutions combine the lowest
CPU cost and the highest average accuracy. Any of the two dominant solutions
for the chaos order is a viable option for the user in this specific application. Yet,
the difference in their mean accuracy can be considered unnoticeable, while their
respective CPU cost difference is quite vast (by an order of magnitude). Given
that both solutions are relatively accurate when it comes to the mean value of the
Qols, the one for k = 1 computes more accurately the standard deviation of the
drag coefficient, while the other for £ = 3 is more accurate for the computation of
the standard deviation of the lift coefficient (as assumed form Table [5.3)). Yet, this
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result may simply be circumstantial and thus no general rule can be deduced from
this analysis without further investigation. Anyhow, the lowest chaos order £ = 1
for the niPCE method with Smolyak integration, has proven to be relatively viable
in its UQ results, while simultaneously boasting the lower possible clock-time cost.
It is the main reason for which it becomes the selected chaos order value for the
simulations to come, in this thesis.
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Figure 5.9: NACA 0012 airfoil: average specific error and CPU cost of niPCE-
computed UQ results, for k =1 to 4.

5.3 Uncertainty Quantification: E387 airfoil

In this section, the same process is applied for the E387, an airfoil most often used
in sailplanes and other low Mach applications. The same initial conditions and flow
solver are applied, with the exception that, this time, the MC and niPCE methods
are employed for the computation and verification of the derivatives of the statistical
moments of a certain Qol w.r.t. to the selected design variables. For this analysis,
the algorithm, presented in Section |5.1} is executed with one slight modification: the
primal problem solver is followed by the adjoint problem solver, both included in the
OpenFOAM® executable adjointOptimisationFoam developed by PCOpt/NTUA,
so as to conduct the sampling of the SDs needed to perform the UQ process.

5.3.1 CFD Analysis without Uncertainties

The flow field around the E387 airfoil is, again, considered to be steady, incompressible,
viscous and turbulent, while the chord has been set to 1 meter in length. The flow
initial conditions and properties are assumed to be identical to those of Subsection

5.2.1] as displayed in Table [5.1]
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The computational C-type mesh generated around the E387 has the same exact
properties (160 x 135 quads) with the one described in Subsection and is
presented in Figure The incompressible primal and adjoint problems for are

jesasas

Figure 5.10: E387 airfoil: structured C-type mesh.

both solved through the use of the SIMPLE finite volume algorithm by implementing
the same configuration as described in Subsections and For a single
run without any uncertainties, the primal and adjoint problems reach a converged
solution after 1665 and 1854 iterations, respectively. The convergence chart for both
problems is presented in Figure |5.11

Furthermore, the C'y and C'p coefficients, computed for no uncertainties are displayed
in Table [5.4] while only the second is used as a Qol, mainly for the computation of
it’s derivatives w.r.t. the design variables.

E387 Aerodynamic Coef ficients
CL OD (QOI)
0.587956 0.012986

Table 5.4: E387 airfoil: lift and drag coefficients for the constant flow conditions
described in Table (v =2°, Re. = 2,600,000).

Additionally, the static pressure p and the adjoint pressure p,, as well as the 7 and
the 7, fields, close to the airfoil, are visualized in Figures[5.12] and respectively.
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Figure 5.11: ES387 airfoil: convergence chart for primal (above) and the adjoint
(below) problem variables. The convergence criterion is set at a residual equal to 1076

for the primal and 10~7 for the adjoint problem.
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Figure 5.12: E387 airfoil: static (above) and adjoint pressure (below) contours, close
to the airfoil.
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Figure 5.13: E387 airfoil: Spalart—Allmaras variable v (above) and adjoint Spalart—
Allmaras wvariable U, (below) contours, close to the airfoil.
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Finally the mesh close the surface of the airfoil is parameterized through the use of
Volumetric B-Splines [28]. The control box, a.k.a. the grid of control points dictating
the deformation of the airfoil in accordance with the computed sensitivities and the
selected update method, is displayed in Figure [5.14]

—
N
W

4 5 6
[ ] ] [ [ ]
] ] | | ]

Figure 5.14: E387 airfoil: Volumetric B-Spline 2D control box for the mesh para-
materization. The blue colored control points are inactive (= immovable), while the
magenta colored ones are active, thus constituting the design variables for this prob-
lem. The outline of the E387 is colored in black, while the active control points are
also enumerated from 1-6.

5.3.2 Derivatives of the Robustness Metric Verification

In order to compute the robust SDs, according to equation , the derivatives
of the mean value and the standard deviation of a Qol w.r.t. the design variables,
must be primarily computed. The selected Qol is the drag coefficient Cp, while
the desired design variables are the active Volumetric B-Splines control points, as
presented in Figure|5.14. The aforementioned method for the execution of this task,
are the niPCE and MC methods for the computation of the statistical moments’
derivatives, sampled through the use of the adjoint method.

So as to culminate to relatively accurate result, the MC method is employed for
1000 replicates, i.e. 2000 EFS given that each run requires the solution of both the
primal and the adjoint problems once. Meanwhile, the niPCE method is configured
for a chaos order of £ = 1 and for both Full as well as Smolyak Sparse sampling
grids. Therefore, according to Table 3.2 the niPCE sampling runs have a CPU
cost of 2-32 = 64 EFS for the Full Grid integration and 2 - 11 = 22 EFS for the
Smolyak grid integration. The use of higher chaos orders, for the niPCE, could
prove costly, especially when included into a RDO algorithm in latter stages of the
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thesis. Similarly with Section [5.2] the niPCE and MC result are compared for the
purpose of validating the first. The UQ results of ngcn L and ngan
Tables [5.5) and [5.5], respectively.

are presented in

Oy, /0b, (M = 5)
x — dir y — dir
niPCE (k=1) MC niPCE (k=1) MC
Full Grid | Smol. Grid | 1000 sam. | Full Grid | Smol. Grid | 1000 sam.
2.529-107* | 2.862-107* | 1.916 - 107* | 2.539- 103 | 2.521-10° | 2.606 - 103
3.189-10"* | 3.203-107* | 3.155-107* | 3.415-103 | 3.419-10° | 3.405- 1073
8.382-107* | 8.423-107* | 8.274-107* | 9.521-103 | 9.572-103 | 9.393 - 1073
4.469-107* | 4.834-107* | 3.769-10* | 3.176- 1073 | 3.146 - 1073 | 3.270 - 1073
4.654-107* | 4.671-107* | 4.611-107* | 4.506 - 1072 | 4.509 - 1073 | 4.497 - 1073
619549-107* | 9.594-107* | 9.433-10~* | 1.078 - 1072 | 1.084-10"2 | 1.064 - 1072

=~ |l w i N~ |3

t

Table 5.5: E387 airfoil UQ with manufacturing imperfections, with M = 5. Cp
mean value derivatives w.r.t. the design variables b, computed with the niPCE
(k = 1) method for both Full and Smolyak Sparse grids, as well as MC for 1000
sample runs.

doc,, |Ob, (M =5)
x — dir y — dir
niPCE (k=1) MC niPCE (k=1) MC
Full Grid Smol. Grid 1000 sam. Full Grid Smol. Grid 1000 sam.

—8.557-107% | —2.693-107% | —4.055-107% | —3.358 -107° | —1.923-10"° | —3.576-10~°
1.273-107° | 1.209-10"° | 1.332-107° | 1.043-107* | 1.037-10~* | 1.056-10~*
5.546-107° | 5.338-107° | 5.715-107° | 4.632-107% | 4.421-107* | 4.835-10~*
—2.443-107° | —2.010-107° | —1.749-107% | —4.399-107° | —2.368-107° | —5.751 - 107°
5| 1.491-107° | 1.417-107> | 1.581-107° | 9.420-107° | 9.428E—5 | 9.451-107°
6| 5.813-107° | 5.609-107° | 6.034-107° | 3.573-10"* | 3.357-10~* | 3.814-10~*

B~ |l w i |~ 3

Table 5.6: ES387 airfoil UQ with manufacturing imperfections, with M = 5. Cp
standard deviation derivatives w.r.t. the design variables b, computed with the
niPCE (k = 1) method for both Full and Smolyak Sparse grids, as well as MC' for
1000 sample runs.

The conclusion, from Tables [p.5] and [5.6] is that the niPCE statistical moment
derivatives are practically accurate. Though the derivatives computed through the
different methods are not identical, the corresponding derivatives have comparable
magnitudes and the same algebraic sign. Given that, according to the implemented
Steepest Descent method mentioned in Subsection [I.2.3] the design variable update
is scaled w.r.t. a user defined maximum displacement, it is easy to assume that this
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change in the design variables, for all employed UQ methods, may become quite
similar. Therefore, this analysis makes it is safe to assume that for these particular
2D airfoil applications the use of the economic niPCE method for the purposes of
RDO with manufacturing uncertainties can be conducted with a relatively accurate
computation of the 1st degree robust SDs.

When it comes to the values of the derivatives, it is clear that all UQ methods dictate
that in order for the airfoil to minimize drag for the specified range of manufacturing
imperfection generated through KLT, a displacement of the E387 airfoil’s trailing
edge is expected. This interpretation can further be backed by Figures [5.15 and

while cross-referencing with the index of each active control point from Figure
b.14l

1x103
9x10
gx10*
7x10
6x10
5x10%
4x10
3x10%,
2x10
1x10%

% - direction

1x1072
1x10%
ax102
8x10°
7x107
6x102
5x103
4x1073
3x103
2% 1{}-3 1 1 1 1

1 2 3 4 5 6

n-th design variable

y - direction

niPCE - Full Grid —e—  niPCE - Smol. Grid —& MC - 1000 samp. —+
Figure 5.15: E387 airfoil Cp mean value derivatives w.r.t. the design variables by,

computed with the niPCFE method for both Full and Smolyak Sparse grids, as well as
MC for 1000 sample Tuns.
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Figure 5.16: E387 airfoil Cp standard deviation derivatives w.r.t. the design vari-
ables by, computed with the niPCE method for both Full and Smolyak Sparse grids, as

well as MC for 1000 sample runs.
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Chapter 6

Robust Design Optimization with
Manufacturing Imperfections

In this chapter, the RDO with manufacturing uncertainties of two 2D shapes is
presented. The manufacturing imperfections are recreated through the KLT software
introduced in Chapter [ while the primal and adjoint problems are solved though
OpenFOAM®’s adjointOptimisationFoam solver. In order to perform the manufacturing
imperfections RDO, the algorithm described in Subsection is inserted into a loop
and with some additions, is repeated as many times as the maximum optimization
cycles, selected by the user. In each loop, the following steps are performed:

1. The niPCE algorithm is called, so as to execute UQ on the user-selected
Qols (computed through the solution of the primal problem), as well as their
respective SDs (computed through the solution of the adjoint problem).

2. The robust metric (F) and the robust SDs (d Fr/db,,) are computed according
to the DFSS rule (explained in , for the user-defined constant k.

3. The parameterized initial geometry of the current loop, is displaced, according
to the Steepest Descent method, in the direction dictated by the robust SDs, by
moving the control points of the Volumetric B-Splines morphing box (described

in Subsection .

The implementation of the aforementioned algorithmic process, on the E387 airfoil
and the TU Berlin TurboLab Stator [13] cascade, embody the two main Sections of
the current Chapter.

6.1 Robust Design: E387 airfoil

For the E387 airfoil the primal problem is formulated in the same manner as in
Section [5.3] meaning that the same simpleFoam configuration, mesh and boundary
conditions are used. Furthermore, the adjoint problem is formulated as described in
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Subsection [5.3.2] with the only exception being that a denser control box is used,
as displayed in Figure 6.1} For every RDO held of the E387 in this Subsection, the
maximum control point displacement is set to Abpe, = 0.5 - 1072 m. Finally the
configuration of KLT shape imperfection generator is unchanged, while, according
to the analysis held in Subsection [5.3.2] the niPCE chaos order is set to k = 1, for
which Smolyak Sparse Grid GHQ integration is used.

I et S

Figure 6.1: E387 airfoil: Volumetric B-Spline 2D control box for the mesh parama-
terization for the purpose of RDO. The blue colored control points are inactive, while
the magenta colored ones are active, thus constituting the design variables for this
problem. Consequently, a 9 X 6 overall control mesh is used, of which all boundary
control points are set as inactive.

6.1.1 Single-Objective RDO: Robust Drag

Firstly, the E387 airfoil is subjected to single-objective RDO with manufacturing
uncertainties while the selected Qol are the drag coefficient Cp, so as to achieve a
minimized drag performance within the user-defined shape imperfection spectrum.
As set in Subsection the KLT-modes, i.e. the shape uncertain variables, used
are M = 5, while their mean value and standard deviation are defined as

w=0, 0y=2c-102=2-102m V [=1,2,....5
where ¢ = 1 denotes the airfoil chord.

For M = 5, k = 1 and Sparse Grid integration, according to Table [3.2] in each
optimization cycle the primal and adjoint problems are solved 11 times. Therefore,
the computational cost of each cycle amounts to 2 x 11 =22 FF'S.
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In addition, the robustness metric, for this specific Qol, is also referred to as ro-
bust C'p and is formulated as follows

CD(robust) = e, 1K ooy (61)

where £ indicates the DFSS coefficients, defined in Subsection [I.2.2]

Accordingly, the robust SDs, according to which the controlled surfaced is displaced,

assume the form
0 C (robust) a,uC'D + K 8O-C’D

b, P ~ b, ab,,
Finally, in order to fully monitor the aerodynamic performance of the to-be optimized
airfoil, in each RDO loop, UQ is also be performed on the lift coefficient, yielding
the robust Cp, as follows

(6.2)

CL(robust) = uc, + K oc, (63)
The RDO process is, therefore, executed for five optimization cycles, for three
different values of the DFSS coefficient: k = —2,0,4+2. Therefore, three different
robust airfoils are yielded, each with a different prioritization over the o, as well as
the design approach (pessimistic for £ > 0 or optimistic for x < 0, for minimization
problems). In Tables 6.2 as well as Figure[6.2] the mean value and the standard
deviation of C'p and C7,, respectively, are presented, for the different values of x, for
each of the five optimization cycles.

K=42 k=20 k=2

Cycle ey, Ho, Hep ey, Hep Hcy,
1 1.300-10"2 | 5.881-10"% | 1.300- 1072 | 5.881 - 107! | 1.300- 1072 | 5.8814 - 101

2 1.227-1072 | 5.102-107% | 1.226 - 1072 | 5.099 - 107! | 1.226 - 102 | 5.093 - 107!
3 1.179-1072 | 4.490-107% | 1.179-1072 | 4.496 - 107! | 1.179- 1072 | 4.502-107!
4 1.147-1072 | 4.006 - 107* | 1.147-1072 | 4.027-107! | 1.148 - 1072 | 4.048-107!
) 1.124-107% | 3.619-107% | 1.125-1072 | 3.654 - 107! | 1.126 - 1072 | 3.686- 107!

Table 6.1: E387 airfoil RDO with manufacturing imperfections: mean values of Cp
and Cy, for & optimization cycles and k = —2,0, +2.

It is clear that for the the varying values of k, the final aerodynamic coefficients have
minor differences. For all cycles and for both the mean value and standard deviation,
the three k values yield practically the same result. The cause can be found in
Subsection[5.3.2 where it can be observed that the SD standard deviation (9o /9b,,)
is a least an order of magnitude lower than the SD mean values (0/0b,,), for the
same CP. The same takes place for the current control grid (Figure [6.1]), making the
subtraction or the addition of dop/db, in eq. (6.2)), to cause a nearly insignificant
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k=42 k=20 K=—2
Cycle ocp ooy ocp ooy ocy, oo,
1 [2035-107* | 1.697-1072 | 2.035-107* | 1.697F —2 | 2.035-10~* | 1.697 - 10~2
2 1.774-107% | 1.695 - 1072 | 1.766 - 10~* | 1.696E — 2 | 1.765-10~* | 1.695 - 102
3 | 1.581-107* | 1.686- 1072 | 1.587-10"* | 1.686E —2 | 1.589 - 10~* | 1.686 - 102
4 | 1.431-107* | 1.677-1072 | 1.439-10~* | 1.678E —2 | 1.449-107* | 1.678 - 102
5 | 1.314-107* | 1.672-1072 | 1.326-10~* | 1.672E — 2 | 1.339-10~* | 1.673 - 102

Table 6.2: ES387 airfoil RDO with manufacturing imperfections: standard deviation
of Cp and Cp, for 5 optimization cycles and k = —2,0,42.
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0.0128 0.55
0.0126
0.0124 0.5
55' 0.0122 g'
0.012 0.45
0.0118
0.0116 0.4
0.0114
0.0112 0.35
0.00021 0.017
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1 2 3 4 5 1 2 3 4 5

Optimisation Cycles Optimisation Cycles

Figure 6.2: FE387 airfoil RDO with manufacturing imperfections:mean value and
standard deviation of Cp and Cp, respectively, for 5 optimization cycles and k
~2.0,+2.

change to the final values of the robust SDs (0Fg/0b,). Hence, the generated
robust airfoils as well as their aecrodynamic performance is virtually indifferent, yet
this must not be considered a generality in RDO. Yet in this case, greater values
of k should be used in order to see significant changes. The final robust airfoils are
displayed in Figure [6.3]

Nevertheless, the goal of this RDO analysis, to minimize the mean value as well
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as the spread (standard deviation) of the airfoil’s drag is achieved. For all values of
K, the uc, and o¢, are reduced by approximately 13.5 % and 35 %, respectively.
Naturally, the robust geometries generate lower lift average and variation, due to
the inverse flap-like shape generated in all robust airfoils’ trailing edge that changes
the airfoil’s camber (as observed in Figure . The pe, and o¢, are reduced by
approximately 38 % and 1.5 %, respectively. The seemingly small reduction in o, is
expected, given that the RDO algorithm is set to minimize the statistical moments
of drag, not lift.

A) Not in scale

0.08 -

0.06 -

nominal
0.04

yic

0.02

B) In scale

0.1
0.08
0.06
0.04
0.02

yic

-0.02
-0.04 H | | | | |

%fc

Figure 6.3: E387 airfoil RDO with manufacturing imperfections: three robust airfoil
geometries after & optimization cycles, each for a different value of k = —2,0,42.
The robust airfoils are visually compared with the initial airfoil, displayed in black,
both not in scale (A) and in scale (B).

The relative deviation of the aerodynamic coefficients is defined the relative difference
between each coefficient and their respective mean values, as computed for the 11
KLT imperfect airfoils, generated for the 11 Gauss Nodes of the Smolyak Grid GHQ
integration. These values, are presented in Figure for the tree final robust
airfoils and for the initial E387 airfoil. This is done in order to properly visualize
the dispersion of the aerodynamic coefficients, caused by the KLT-generated shape
uncertainty, as well as to see, to what extent, this variation is mitigated for the
robust drag airfoils.

To conclude, the maximum relative deviation of Cp is reduced by approximately

105



39.6 % for all robust airfoils, while the maximum relative deviation of C7, is increased
by approximately 1%, which is anticipated given that o¢, is reduced by a relatively
small amount. Overall, the conclusion drawn from these results is that the RDO with
shape uncertainties, designed and executed for this thesis, can successfully optimize
the stochastic performance of a force objective (i.e. drag). The reduction in the
dispersion and, therefore, the standard deviation of a force objective is achievable,
by a significant amount, even though the KLT shape imperfections have a minor
impact on the lift and drag forces exerted on an airfoil, exhibiting maximum relative
variations lower than 3 %.

3 1 1 1 1 1
o o
2k -
1f o .
— @ =} o
=
— 0 g 1
a
< * 0 e
[u]
1 -
k=+2 ®
2r k=0 ® ]
K=-2 ®
o o nominal o
3 1 1 1 1 1
-1.5 -1 -0.5 0 0.5 1 1.5
ACp [%]

Figure 6.4: E387 airfoil RDO with manufacturing imperfections: relative deviation
ACTL, ACp for the three robust airfoil, as well as for the initial E387 airfoil.

6.1.2 Multi-Objective RDO: Weighted Objectives

Now the E387 airfoil is subjected to multi-objective RDO with manufacturing uncertainties.
For this process to take place, the Qol (F') is defined as a weighted sum of the
aerodynamic coefficients, thus requiring one adjoint solver instead of two, as formulated

in (6.4). The weights (w) serve to quantify the importance of each of the coefficients.

The goal of this method is mainly to display the ability to perform RDO with shape
uncertainties, in order to achieve a robust drag performance while still being able

to contain the lift reduction.

F:wDCD—l—wLCL:wDC’D—(l—wD)C’L (64)

where wp € [0, 1], while the lift weight is set to w;, = —(1 —wp) € [—1,0], so as to
have only one weight to denote the lift-drag prioritization.
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Additionally, the lift weight is defined as wy; < 0, to indicate the intention to
maximize the lift exerted on the airfoil, given that PCOpt/NTUA’s adjoint solver
is a de facto minimization algorithm. Consequently, only one objective function is
formulated and therefore one adjoint solver is needed, leading to a lower computational
cost.

The mean value of this weighted Qol yields

pfr = wp pie, — (1 —wp) pey, (6.5)
while its standard deviation yields

op =wpoc, — (1 —wp) oc, (6.6)
Thus, the robustness metric assumes the form

Fr=pr+rop=wp pc, — (1 —wp) pc, + K wp ocp, — (1 —wp) 0¢,] =

6.7
= wp (pep + K 0cy) — (L —wp) (ke + K oc,) &1
And by including egs. (6.1]) and (6.3) into eq. (6.7)), it can be rewritten as
FR — wp CD(robust) _ (1 - wD)CL(robust) (68)
Correspondingly, the derivatives of the statistical moments are formulated as
Opr ucy, pcy
= —(1— 6.9
Do 0, LT wn) T (6.9)
Jdop doc,, doc
= —(1- L 6.10
o 0 Ty, LT wn) (6.10)

Thus, according to eqs. (6.2)), the derivative of the robustness metric a.k.a. the
robust SD assumes the form
oF R 8,up 4 do F
_= K =
ob,, 0b,, ob,,

_ Opcy docy, Apcy, doc,
a-FR o 0 (robust) B 0 (robust)
8bn = Wp a_anD (1 wD)a_anL

where C L(mb“sﬂ, similar to its drag counterpart defined as

0 robus 0 0
CL( b t): ,U‘CL + UCL

b, b, " ob,

T (6.12)
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The RDO process is, again, executed for five optimization cycles, for kK = 42 and
three different weights: wp = 100, 99.35, 99.25 %. Clearly, for wp = 100 % the lift
terms are removed from egs. and , thus, swifting to the single-objective
RDO expressions of Subsection [6.1.1] In addition, the lift weights (Jw,| < 0.01)
are set to be at least two orders of magnitude lower than the drag weights, because
such is the difference between the robust SDs of the two Qol. Lift weights with a
greater absolute values, would lead to robust lift being prioritized over robust drag
optimization.

Ultimately, three different robust airfoils are designed, each with a different prioritization

over the lift stochastic distribution. For the different values of wp, the robust Cp
and Cp, (as formulated in eqs. (6.1) and (6.3]), respectively) are presented in Table
6.3 and Figure [6.5] for each of the five optimization cycles.

wp = 100.00 % wp = 99.35 % wp = 99.25 %
Cycle | CL"D (% A) 0 Ay | oM (%A | o (% A) | e Ay | (% A)
1 1.341-1072(0.0) | 5.542-107'(0.0) | 1.341-1072(0.0) | 5.542-107* (0.0) | 1.341-1072(0.0) | 5.542-107" (0.0)
2 1.263-1072 (5.8) | 4.764 - 107" (14.0) | 1.260 - 1072 (6.0) | 4.745- 107" (14.4) | 1.259-1072(6.1) | 4.731- 10" (14.6)
3 1.211-1072(9.7) | 4.152-1071(25.1) | 1.233- 1072 (8.0) | 4.454 - 107" (19.6) | 1.251-1072(6.7) | 4.673- 10" (15.7)
4 1.175-1072 (12.4) | 3.671-1071(33.8) | 1.220- 1072 (9.0) | 4.315- 107" (22.2) | 1.241-1072(7.4) | 4.580- 10" (17.4)
5 | 1.150-1072 (14.22) | 3.285-107" (40.7) | 1.211-1072(9.7) | 4.224- 107" (23.8) | 1.233-1072(8.0) | 4.503 - 10~ (18.7)

Table 6.3: FES387 airfoil RDO with manufacturing imperfections: C’D(TObUSt) and

C’L(mbusw values, for &5 optimization cycles, k = +2 and three different objective

weights. The relative divergence (%o A) from the initial value is also included.

The corresponding final robust airfoils produced for the different values of wp are
displayed in Figure 6.6 and compared with the initial E387 airfoil.

It can be stated that, the goal of this RDO process is met, given that the implementation

of weighted objectives, can halt the ever decreasing values of the robust C7. Yet a
robust airfoil exhibiting both a lower robust drag and a greater lift than the initial
airfoil is not achieved. This is generally expected, given that these two objectives
are incompatible and, thus “conflicting”. Therefore, as observed in Figure [6.6] any
change in the airfoil’s camber generating a lower drag, simultaneously results to
a lower lift force excreted on the airfoil and vice-versa. Thus, the greatest robust
drag reduction is achieved for wp = 100 %, by 14.2 %, while the lowest robust lift
reduction is achieved for wp = 99.25 %, by 18.7 %.

Finally, the relative deviation of the aerodynamic coefficients (Cp, Cp), as computed
for the 11 KLT-generated imperfect airfoils, are presented in Figure[6.7] for the three
final robust airfoils, as well as for the initial E387 airfoil. As anticipated, the high wp
values lead to a relatively unaffected maximum C'; deviation, while the maximum
deviation of Cp increases, when the wp value decreases.
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Figure 6.5: FES387 airfoil RDO with manufacturing imperfections: C’D(TObMt) and

CL('robust)

weights.

yic

ylc

values, for &5 optimization cycles, k

0.08

0.06

0.04

0.02

-0.02

0.1
0.08
0.06
0.04
0.02

-0.02
-0.04

A) Not in scale

]

Wp=100% —— -
wp=99.35% —=—=—
Wp=99.25% ——
nominal

B) In scale

®fc

+2 and three different objective

Figure 6.6: E387 airfoil RDO with manufacturing imperfections: three robust airfoils
after 5 optimization cycles, each for a different value of wp = 100, 99.35, 99.25 % and
for k = +2. The robust airfoils are visually compared with the initial airfoil, displayed
in black, both not in scale (A) and in scale (B).
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Figure 6.7: E387 airfoil RDO with manufacturing imperfections: relative divergence
ACL, ACp for the three robust airfoil for the three drag weights, as well as for the

initial E387 airfoil.
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6.2 Robust Design: TU Berlin Compressor Sta-
tor

In this section, a CFD analysis of the Test Case 3: TU Berlin Turbolab Stator
cascade [13], is held. Generally a compressor cascade is a simplified 2D model of
real axial compressor stator blade. The boundary conditions, the computational
mesh as well as the solution for the primal problem, without uncertainties, are
presented.

Thereafter, the stator is subjected to multi-objective RDO with manufacturing
imperfection, for two Qol: the total pressure losses (Fp,) between the inlet and
outlet boundaries and the wvelocity or flow angle () of the outlet boundary (as
described in Subsection. The KLT software generating the shape uncertainties
is configured for M = 5 modes, while the Hanning window post-processing function
is enabled. The mean value and standard deviation of the KLT uncertain variables
(modes) are defined as follows

m=0m , o=7-10""m V [=1,2.,M (6.13)

6.2.1 Compressor Cascade Initial Conditions and Mesh

The flow around the stator is considered to be steady, incompressible and turbulent.
The blade’s chord is equal to 0.1876 meters. A representation of the blade’s
intersection, as well and some geometrical properties are displayed in Figure
taken form [13].

n K

0.0 mm 182.15mm

Figure 6.8: TU Berlin compressor stator intersection.

The flow initial conditions and properties are assumed to be constant and their
values are presented in Table [6.4]
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Inlet Velocity Uso 48 m/s
Inlet Velocity Angle a1 —42°
Kinematic Viscocity v 1.339-107° m?/s

Reynolds Number Re, 6.72 - 10°

Table 6.4: The constant initial condition of the TU Belrin compressor stator.

The cascade flow is solved on a hybrid, 2D and cell-centered mesh, consisting of 80039
quadrilateral and 189 triangular elements , generated through the OpenFOAM® meshers
blockMesh and snappyHexMesh. The mesh is visualized in Figures and

Figure 6.9: TU Berlin compressor cascade: computational mesh.
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Figure 6.10: TU Berlin compressor cascade: computational mesh, close up view of
the blade’s leading (left) and trailing edges (right).

The turbulence model used in this CFD case, is once more, the Spalart—Allmaras
model. The initial conditions for the turbulence model eqs. are: Spalart—Allmaras
kinematic viscocity 7 = 2.793 - 107* m?/s and turbulent kinematic viscosity v; =
2.678 - 1071 m?/s. OpenFOAM’s nutUSpalding WallFunction High-Re wall function
[18] is utilized as wall treatment, given that for all first cell centers off the solid wall,
the non-dimensional wall distance amounts to y* < 100. This claim is verified in

Figure where the y* distributions are plotted.
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Figure 6.11: Non-dimensional wall distance y*+, plotted for the pressure and the
suction side of the mesh around TU Berlin compressor stator blade.

6.2.2 CFD Analysis without Uncertainties

The primal equations is solved through use of the executable simpleFoam, discretized
with 2" order finite volume schemes. A converged solution is reached in 1469
iterations and the convergence chart of the mean flow variables is presented in Figure
0. 12
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Figure 6.12: TU Berlin stator cascade: convergence plot of the flow variables. The
convergence criterion is set at a residual equal to 1075, so as not to compromise the
solution’s accuracy.
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The total pressure losses (Fp,) and the outlet velocity angle (as), computed for no
uncertainties are displayed in Table |6.5] Furthermore, the static pressure p and the
turbulent kinematic viscosity v; contours, close to the blade, are visualized in Figure
Additionally, the velocity magnitude U close to the trailing and leading edges

are displayed in Figure

TU Berlin Compressor Stator Cascade
Fp, 0.109231 m®/s?
Qo —2.206°

Table 6.5: T'U Berlin compressor cascade: total pressure losses and the velocity angle

for the flow conditions described in Table (aq = —42°, Re. = 672,000).

p
2.3e+03  -1500 -1000 -500 o) 69e+02
| |

nut
1.1e09 0.001 0.0015 0.002 0.0025 3.2e-03
| |

Figure 6.13: TU Berlin compressor cascade: static pressure p (above) and turbulent
kinematic viscosity vy contours (below), for the flow conditions described in Table|6.4).
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Figure 6.14: TU Berlin compressor cascade: velocity magnitude U, close up view of
the blade’s leading (above) and trailing edges (below), with the streamlines also present.

6.2.3 Multi-Objective RDO: Weighted Objectives

For the purpose of multi-objective RDO with shape imperfections, the Qol (F') is
defined as a weighted sum of the pressure losses and the outlet velocity angle, as
formulated in (6.14)).

F=w,F), +w, 0 =w, F), — (1 —w,) oo (6.14)

where w, € [0, 1] the total pressure loss weight, while the outlet velocity angle weight
is set to w, = —(1 —w,) € [—1,0].

Generally, some the key purposes of stator blade is to achieve a high flow turning,
while keeping the total pressure losses as low as possible. These two functions are
quantified though the flow deviation angle, formulated as 6 = a; — as [39], as well
as the total pressure losses F),. The increase of the flow turn, is accomplished
through the maximization of the absolute value of 6. For this specific case, given
that oy = —42 ° and |0| = |1 —as| = @ +42 °, the maximization of || is equivalent
with the maximization of ay. Therefore, the outlet velocity angle weight is defined
as a negative value, so as to denote the desired maximization of it’s stochastic
distribution.

In a manner similar to the formulation used in Subsection the mean value
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and standard deviation of F', assume the form

HF = Wp flFp, — (1 - wp) Has (615)

Op = Wy Oy, — (1 —wp) 0a, (6.16)

Furthermore, the robustness metric is defined as

Fr=pp+ror=uw, Fpt(TObUSt) — (1 —wp) aQ(mbUSt) (6.17)
where the robust pressure losses (F,""*") and outlet velocity angle (a,"”"") are
formulated as

Fpt(TObUSt) = UFp, + K OFp, (618)
aQ(robust) = o, + K Oq, (619)

Accordingly, the derivatives of the mean vale and standard deviation of F' w.r.t. the
design variables become

auF a:uF Pt auaz

I BT (1 —w,) % (6.20)
Oop 0o pp, 004,
W = Wp abp — (1 — ’U}p) b (621)
Finally, the robust SDs are defined as
OF R fm P do F 0 0 bust
— — —F (robust) 1— Y (robust) 6.22
Db, by b, P b, ™ (=) g0 (6:22)
where the derivatives of F,\""*" and a,"”"*" assume the form
0 o do
_Y o (robust) _ Fpy Fpy 9
ab, ™ b, " b, (6.23)
a (robust) aﬂaz + K 30a2 (624)

b, 2 ~ b, " ob,
RDO is preformed for k = +1 and six different weights: w, = 100, 95, 90, 75, 50, 0 %,
in order to produce a variety of robust stator airfoils, with a wide spectrum of
different £}, to ag prioritization. Once again the optimization runs for 5 cycles. For
the different values of w, and for each cycle the robust F),, and as, as well as their
relative difference (% A), are presented in Tables [6.6]and [6.7], respectively, while also
in Figures and [6.16]
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B /s (% A)
Cycle | w, =100% wy, =95 % w, =90 % w, =T75% w, =50 % w,=0%
1| 0.109838 (0.00) | 0.109838 (0.00) | 0.109838 (0.00) | 0.109838 (0.00) | 0.109838 (0.00) | 0.109838 (0.00)
2 | 0.108591 (1.14) | 0.108457 (1.26) | 0.108677 (1.06) | 0.109157 (0.62) | 0.109373 (0.42) | 0.109500 (0.31)
3 0.107736 (1.91) | 0.107527 (2.10) | 0.107819 (1.84) | 0.108612 (1.12) | 0.109025 (0.74) | 0.109270 (0.52)
4 0.107113 (2.48) | 0.106854 (2.72) | 0.107230 (2.37) | 0.108178 (1.51) | 0.108769 (0.97) | 0.109129 (0.65)
5 | 0.106672 (2.88) | 0.106403 (3.13) | 0.106780 (2.78) | 0.107888 (1.78) | 0.108609 (1.12) | 0.109085 (0.69)

Table 6.6: TU Berlin stator airfoil RDO with manufacturing imperfections:

Fpt(MbUSt) values for 5 optimization cycles, k = +1 and siz different weights.
a, """ [deg] (% A)
Cycle | w,=100% | w,=95% | wp,=90% | wp=75% | w,=50% | w,=0%

1| —1.29(0.0) | —1.29(0.0) | —1.29(0.0) | —1.29(0.0) | —1.29(0.0) | —1.29 (0.0)
2| —1.00 (22.0) | —0.71 (44.8) | —0.62 (51.8) | —0.63 (50.6) | —0.64 (50.1) | —0.65 (49.8)
3| —0.76 (40.8) | —0.20 (84.2) | —0.02 (98.7) | —0.02 (98.7) | —0.02 (98.6) | —0.02 (98.5)
4 | —0.54(58.0) | 0.25(119.5) | 0.55 (142.6) | 0.58 (144.9) | 0.59 (145.8) | 0.60 (146.3)
5 | —0.34(73.8) | 0.66 (151.4) | 1.06 (182.5) | 1.14 (188.6) | 1.17 (191.4) | 1.19 (192.9)

Table 6.7: TU Berlin stator airfoil RDO with manufacturing imperfections: aZ(MbuSt)

values for 5 optimization cycles, k = +1 and six different weights.
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Figure 6.15: TU Berlin stator airfoil RDO with manufacturing imperfections:
Fpt(TObUSt) and az(mbusﬂ values plotted for 5 optimization cycles, k = +1 and siz dif-

ferent weights.

It is clear that, in contrast to Section[6.1], the selected objectives can be “combined”,
through the use of the weighted robustness metric function (eq. (6.17))), producing
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Figure 6.16: TU Berlin stator airfoil RDO with manufacturing imperfections:
Fpt(TObUSt)— aQ(TObuSt) plot for six different weights. All final robust solutions, except
the one for w, = 100 %, are dominant upon all others, constituting the Pareto front

for this RDO case.

robust “hybrid” stators that display enhanced results in both objectives. Specifically,
for weights w, = 95, 90, 75, 50 %, the final geometries display simultaneously the
highly cambered trailing edge (which leads to the increase of as) as well as the
reduced thickness (which lowers the total pressure losses). This is further supported,
by the fact that the w, = 95 % final robust blade sports the lowest robust pressure
loss of all other robust blades, minimizing its value by 3.13 %, thus overcoming even
the AF,, = 2.88 % of the w, = 100 % robust blade. The hybrid performance of the
final robust blades can be observed in Figure [6.17, where the blade’s contours are
displayed for the different values of w,. The airfoils produced for weights 50 % <
w, < 95 %, display both a reduced thickness, which lowers the pressure losses, as
well as as greater camber near the trailing edge, which leads to a greater outlet
flow angle. Besides, as detected in Figure [6.16] the final solution for the weights
w, = 95, 90, 75, 50, 0 %, generate robust Fj,, and as that are dominant upon all
other solutions, hence representing the Pareto front of this RDO case, w.r.t. the
robust objectives.

Additionally, the mean value of F,, and «s are presented in Tables and [6.9}
respectively , while their standard deviation is displayed Tables and [6.11]
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Figure 6.17: TU Berlin stator airfoil RDO with manufacturing imperfections: the
initial (black) and six robust stator blades after 5 optimization cycles, each for a
different value of wy, and for k = +1, visualized both not in scale (A) and in scale (B).
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prme 1))
Cycle | w, =100% | wp, =95% | w, =90% | w, =75% | w, =50% | w, =0%
1 0.109338 0.109338 0.109338 0.109338 0.109338 | 0.109338
2 0.108207 0.108115 0.108336 0.108777 | 0.108977 | 0.109095
3 0.107422 0.107288 0.107585 0.108337 | 0.108721 | 0.108947
4 0.106862 0.106712 0.107091 0.107996 0.108552 | 0.108884
5 0.106447 0.106301 0.106721 0.107772 0.108458 | 0.108899

Table 6.8:

TU Berlin stator airfoil RDO with manufacturing imperfections: mean
value of Fy, for & optimization cycles, k = +1 and siz different weights.

tay |deg
Cycle | w, =100% | w, =95% | w, =90% | w, =75% | w, =50% | w,=0%
1 —2.21 —2.21 —-2.21 —2.21 —-2.21 —2.21
2 —1.93 —1.63 —1.54 —1.56 —1.57 —1.57
3 —1.69 —-1.13 —0.94 —-0.94 —0.94 —0.94
4 —1.46 —0.67 —-0.37 —0.34 —0.33 —0.32
5 —1.26 —0.26 0.14 0.22 0.26 0.28

Table 6.9:

TU Berlin stator airfoil RDO with manufacturing imperfections: mean
value of ao for 5 optimization cycles, k = +1 and six different weights.

Orp, [m°/5%]

Cycle

wy, = 100 %

w, =95 %

w, =90 %

w, =T75%

w, =50 %

wy, =0%

5.006 - 1074

5.006 - 10~

5.006 - 107 | 5.006 -

1074

5.006 - 1074

5.006 - 1074

3.842-107*

3.427-107*

3.421-107*

3.809 -

104

3.963 - 1074

4.048 - 1074

3.146 - 10~

2.399-10~*

2.347 1074

2.745 -

104

3.051-1074

3.235- 1074

2.510- 1074

1.422-1074

1.388-107* | 1.822-

104

2.176 - 1074

2.453 - 1074

T | WD

2.261-1074

1.026 - 1074

5.972-1075 | 1.168 -

1074

1.514-107*

1.857-1074

Table 6.10:
dard deviation of F),, for 5 optimization cycles, k = +1 and siz different weights.

TU Berlin stator airfoil RDO with manufacturing imperfections: stan-

72y [deg]

Cycle | w, =100% | wp, =95% | w, =90% | wp, =75% | wp, =50% | w, =0%
1 0.92122 0.92122 0.92122 0.92122 0.92122 0.92122
2 0.92517 0.92465 0.92425 0.92442 0.92435 0.92441
3 0.92499 0.92343 0.92277 0.92252 0.92267 0.92264
4 0.92429 0.92155 0.92029 0.91964 0.91931 0.91923
5 0.92387 0.92026 0.91776 0.91673 0.91627 0.91607

Table 6.11: TU Berlin stator airfoil RDO with manufacturing imperfections: stan-

dard deviation of as for &5 optimization cycles, k = +1 and six different weights.
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In Tables and [6.7], it is already established that the overall reduction of the
robust pressure losses are relatively small when compared to the reduction of the
robust outlet flow angle, given that for w, = 0 % it is increased by a tremendous
2.5° after five cycles. Accordingly, for the other weights similar, yet lower, relative
differences can be found. At first glance, this reveals that the outlet velocity angle
is greatly affected by geometry changes.

The contents of Tables 6.9 [6.10] and [6.11] are visualized, in total, in Figure
6.18] The data in Figure [6.18| provides even further insight in this matter. It can
be deduced that the great increase of a2(mbu‘9t) is mainly due to the increase of the
mean value of aq, by a maximum of 2.5°, approximately, for w, = 0%. Furthermore,
the reduction of o,,, if achieved, is seemingly small, with the maximum decrease
being approximately 0.005°, again, for w, = 0 %. This signifies that while the
maximization of the mean value of as yields a significant increase, the decrease in
its standard deviation is minute, even for w,,.

On the contrary, the reduction in the mean pressure losses generally small, following
the same pattern with the respective robust value. Its highest reduction is 2.78 %
achieved for w, = 95 %. Still, the standard deviation of the total pressure losses, is
greatly mitigated for every weight value, with the highest being 88.1% for w, = 90%.

Finally, in Figure the relative deviation of F),, and the absolute deviation of
ap are presented, for 32 KLT-generated imperfect renderings of the six final robust
blades as well as for the initial. In Figure [6.19] one can distinguish that the outlet
velocity as displays a apparently high deviation. The maximum value of this absolute
deviation is approximately Aay = £1.5°, which is seemingly unchanged for different
weight values. The maximum absolute deviation is 1.58° and corresponds to the
initial blade, while its value decreases with the decrease of w,, with the lowest
maximum absolute deviation being 1.53° (1.6 % reduction) for w, = 0 %. The
relatively high deviation is expected, given that o,, has, for the most part, the
same order of magnitude with its respective mean value, as observed form Tables
and [6.9. This, also, denotes that the outlet flow angle is greatly affected by
the manufacturing imperfection created though KLT. Moreover, the small reduction
of the relative deviation of a, is also anticipated, due to the, aforementioned, low
reduction of o,,. On the other hand, when it comes to the total pressure losses
F,,, a high decrease in its maximum relative deviation is expected, because of the
high reduction of opy,, previously, documented. The highest F},, maximum relative
deviation is equal to 1.07 % can be found for the initial TU Berlin blade, while the
lowest is equal to 0.32 % (70.4 % reduction) produced for w, = 90 %, as expected.
Otherwise, the overall influence of the KLT shape imperfections on the total pressure
losses is relatively small, which is also concluded by the fact that the standard
deviation of F}, is two orders of magnitude lower that its respective mean value, as

displayed in Tables and [6.8]
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Figure 6.18: TU Berlin stator airfoil RDO with manufacturing imperfections: mean
value and standard deviation of F,, and ao plotted for siz different weights.
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Chapter 7

Summary and Suggestions

7.1 Summary - Conclusion

In this diploma thesis, a KLT-implementing software is developed, in order to
generate imperfect renderings of 2D geometries. This software alongside with OpenFOAM’s
simpleFoam and adjointOptimisationFoam solvers are integrated into an in-house

code employing the niPCE method, so as to perform aerodynamic UQ and deterministic
RDO, respectively, on 2D bodies with shape imperfections.

The niPCE theory, implemented into the according niPCE in-house software, is
formulated in order to perform single and multi-dimensional UQ w.r.t. the user-defined
Qol, for problems with stochastic input variables following normal distributions.
Therefore, for the computation of the mean value and standard deviation of the
selected Qol, GQ numerical integration with Hermite orthogonal polynomial is
employed. Both Full and Smolyak Sparse grids of Gauss Nodes needed for the
integration can be selected, the later proving especially useful for mitigating the
method’s computational cost of problems with a large number of uncertain variables
(M > 4). Additionally, the niPCE code is, also, adjusted to conduct gradient-based
RDO, by performing UQ to the SDs (computed though the adjoint solver), in order
to produce the derivatives of the aforementioned statistical moments w.r.t. the design
variables a.k.a. the robust SDs. Thus, the computation the robustness metric and
its derivatives, a.k.a. the robust SD (in accordance with the DFSS approach), can
be achieved.

The continuous adjoint method, developed by PCOpt/NTUA and employed in this
thesis, is used to compute the SDs needed for the computation of the robust SDs.
The Enhanced-SI formulation is used, which yields an accurate prediction of the
SDs for a relatively lower computational cost, when compared with the alternative
FI approach.
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The KLT software is designed to generate stochastic perturbations on any 2D surface
of any length and geometry, thus providing the ability to render imperfect recreations
of a wide variety of shapes, such as airfoils or turbumachinery blades. The user
can define the number M, as well as the mean value and standard deviation of
the KLT uncertain variables, thus regulating the oscillation and the range of the
KLT-generated stochastic perturbations, respectively. Moreover, after an application
on a flat surface, it is observed the greater the number of M, the more oscillating are
the yielded perturbations. From the application of the KLT software, on the NACA
0012 airfoil it is deduced that a middle ground solution for the number of uncertain
variables, exhibiting both enough KLT imperfection complexity and a sustainable
computational cost is M = 5.

Once the aforementioned integration is complete, the coupled software is, firstly,
utilized to perform UQ on a NACA 0012 airfoil with manufacturing imperfections,
regarding its aerodynamic coefficients (C,, Cp). Five KLT shape uncertain variables
(M = 5) and Smolyak Sparse grid GHQ integration are used, while a parametric
analysis is held w.r.t. the chaos order k used, while all results are compared with
corresponding results produced through the MC method for 5000 samples. From this
analysis, it is concluded that the precision of niPCE-computed UQ for geometries
with stochastic imperfections, is acceptable (mean relative error lower than 3 %) for
lower chaos order values (k < 3), while the higher orders yield an unacceptable
computational cost, even for Sparse niPCE integration grids. Secondly, UQ is
executed on the E387 airfoil with manufacturing uncertainties, for the computation
of the robust SDs, through the MC and niPCE methods, the later by utilizing both
Full as well as Sparse grid integration. Both niPCE results for the robust SD are
seemingly accurate, justifying the adoption of the Smolyak grid integration for the
following RDO, given that it yields a reduced cost and practically the same accuracy
when compared with the Full grid results.

Furthermore, in order to accomplish deterministic shape RDO, certain mesh displacement
strategy must be employed and for that a the Volumentic B-Spline mesh paramaterization
subroutine of PCOpt/NTUA’s code adjointOptimisationFoam, is isolated and integrated
into the niPCE-KLT-Adjoint coupled software. This way, after each optimization
cycle, the pararemeterized mesh region is displaced according to the previously
computed robust SDs and according to the Steepest Descent design variable renewal
method.

The KLT-niPCE-Adjoint coupled software is then executed on the E387 airfoil
and the TU Berlin compressor stator cascade, so as to perform RDO with shape
uncertainties. The E387 airfoil, is subjected, initially, to single-objective robust
drag minimization, i.e. the minimization of its drag stochastic performance. This
RDO analysis is held for different values of the DFSS parameter x. A conclusions
drawn from this analysis, is that, after 5 RDO cycles, the mean value and standard
deviation of the exerted drag can be reduced by 14 % and 35 %, respectively. Also,

124



it is deduced that the results for the three values of x are virtually indistinguishable,
due to the fact that the derivatives of the standard deviation of the drag coefficient
are negligible, when compared to its respective mean value. In addition, the airfoil is
subjected to multi-objective RDO, namely through the minimization of a weighted
objective function containing both the drag and lift coefficients. The analysis is held
for three different sets of weights, each signifying a different lift to drag prioritization.
The RDO process is successful in producing more balanced robust airfoils, with
optimized results in both robust drag and lift objectives. Overall, though, it is
perceived that the minimization of the stochastic variation of an airfoil’s force
coefficient is achievable, even though the KLT-modeled manufacturing uncertainties
have a minor influence on the forces exerted on a airfoil, given that their respective
maximum relative deviation is lower that 3 %.

Finally, multi-objective RDO with manufacturing uncertainties is held on the TU
Berlin compressor stator cascade, w.r.t. to the total pressure losses and the outlet
velocity angle. The two quantities are again arranged into a weighted objective
function, opting to minimize the mean value of the pressure losses, maximizing the
mean value of the outlet flow angle, while minimizing the standard deviation of
both objectives. The RDO analysis is performed for six different weight values and
the two objectives are proven to be compatible, yielding “hybrid” results sporting
both the reduced thickness and highly cambered trailing edge of their respective
single-objective final robust geometries. Ultimately, from this analysis, it is concluded
that the outlet flow angle is greatly affected by the shape changes and therefore
produces a relatively high standard deviation, with volatile responses to the KLT-
generated uncertainties, which cannot be significantly reduced by the proposed RDO
method. Therefore, while the maximization of its mean value is achievable by a
maximum of approximately 2.5° the greatest reduction of its standard deviation
achieved is 0.005°. On the other hand, the total pressure losses exhibit a minor
sensitivity to the shape uncertainties, similarly to the force coefficients, but their
standard deviation can be significantly reduced by approximately 90 %, while their
respective mean value is decreased by a maximum of approximately 3 %.

Overall, the proposed method yields the expected results concerning the execution of
aerodynamic UQ and RDO of 2D geometries with shape uncertainties. The method
has been verified on two isolated airfoils and a compressor stator cascade, for three
distinct objective functions. Its computational cost is significant and it scales with
the number of RDO cycles needed, but it is still lower than the expected cost (lower
number of cycles and less evaluations per cycle) of other such methods, which employ
stochastic RDO, i.e. Evolutionary Algorithms.
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7.2 Suggestions for Future Research

The following proposition are made to fuel ideas for the further development of the
this work, in the future:

1.

In this work, only geometrical uncertain variables following normal stochastic
distributions are taken into account and, thus, only their corresponding Hermite
family of orthogonal polynomials are used for the numerical GQ integration of
the niPCE coefficients. The generalized Polynomial Chaos theory, that can be
found in [9], is suggested in order to widen the spectrum of different stochastic
distributions that can be used as inputs.

. The KLT-niPCE-Adjoint algorithm could be used to perform aerodynamic

UQ and RDO with, both, flow and shape uncertainties. Such a computational
process could evaluate and optimize the aerodynamic stochastic performance
of geometries for any, user-defined, stochastic input.

The KLT shape imperfection model can further be expanded, in order to
encompass also 3D geometries. According to the KLT theory, the generation
of 3D stochastic perturbations, is feasible and this way the evaluation of
manufacturing imperfections can be performed on complex 3D geometries.

The only design variable method, implemented in this thesis, is the Steepest
Descent method. The reason behind this, is that this method provides a fairly
easy formulation, requiring only 1st order sensitivity derivatives (robust or
not) for the update of the design variables. Additionally this method can
only cope with optimization with unconstrained objectives. It is suggested
that the niPCE code, should be improved so as to to receive both 2nd order
sensitivity derivatives as well as objective constraints and compute robust 2nd
order derivatives and robust constraints, giving it thus the ability to work in
conjunction with other design variables update methods, such as the BFGS
or the Constraint Projection methods. Especially the BFGS method, with its
high efficiency, could work perfectly alongside the coupled niPCE-KLT-Adjoint
algorithm, for robust design, given that it often reaches an optimal solution a
lot faster than other methods, when it is already established that each RDO
cycle is quite costly.

Other UQ methods could be employed other than the niPCE, for the evaluation
of stochastic Qol as well as their derivatives w.r.t. the design variables. Without
changing the gradient-based method of optimization, in this case the continuous
adjoint method, it is proposed to adopt another stochastic, e.g. the intrusive
PCE method or the deterministic Method of Moments [19], [3], [4] could be
implemented for the formulation of the statistical moments of the aerodynamic
performance of a shape with KLT-produced geometrical uncertainties. Though
the iPCE method lacks the generality of the niPCE, it makes up in higher
accuracy and lower computational cost. Additionally, the Method of Moments
could be utilized for UQ or RDO with KLT shape uncertainties, given that
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this method would greatly reduce the computational cost, while it could be
successfully coupled with 2nd order Quasi-Newton design variables update
methods, such as the aforementioned BFGS, due the higher order derivatives
formulation yielded from this method. Finally other niPCE variants found in
[3] such as the niPCE-Regression or the niPCE-Regression-Adjoint could be
utilized alongside the KLT model, for reasons of cost mitigation, especially
given that elevated numbers M are employed.
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Ewcaywyy

Yy mapoloa BimAwUaTXy epyacior avanTOooeTAL AOYIOUIXO TEOGOUOIONG YEWUE-
TEWOY OTEAELDY XAVOVTAC YEHoN Tou UeTaoynuotionol Karhunen-Loeve Transform
(KLT). To hoywouxd KLT poll pe tov emhdtn ouveyols oculuyols uedodou tng
MIIYP&B/EMII, oe nepBdihov OpenFOAM® | evtdocovtor o€ TeoUTdpyov hoyi-
ouxd un-erepPaticot Avantiypatos IHolvwvuuixot Xdovs (niPCE), ye tic xotdhhn-
AEC TpOTOTOACELS Yiot TNV extéeon Tloootikomoinong Afefaidtntag xon auTloxpatixo0
YuBapot Yyediaopol oe SOLEC TUTES YEWUETPIEC UE HOTUOHEUUC TIXES ATENELES.

H Yewpio niPCE allonoteiton yiao Ty allohdynon tne oTo oo Tix\g AEQOOLVOXNC
CUUTEQLPORAC EVOC OWUATOS, UTOAOYILoVTag TN pEoT TWH XaL TNV TUTIXY| ATOXALOT
xénotog Hoosdtnroc Eviagépovtog (Qol) F(b,0), n omnola anotekel cuVETNON T6GO
TV PETOPANTOY oyedaouol (b, , n=1,2,...,N) 600 xot Twv oaféfurenv PETOUBANTOY
(m, m=1,2,...,M). Ernlonc o awtioxpotindc LtiBapoc Lyedaouog yio tn Bektioto-
noinon e Metpuhc Xufopdtnroc Fr (cuvdpetnon-otéyoc) onatel tnv €0pEan Twv
TRy WY WY TNS WS TEOS TIC PETUPBANTES oY EBLUGUO00, ONAAOT TWV G TIBULMOY TORY WY KV
evouoOnoiog  Fr/0b,, dadixacia tou, eniong, vhonoteitar uéow touv niPCE. H cuveyrc
ouluyric pédodog BehTio ToToNoNS YENOWOTOLELTL OTOV cuTioxpaTixd XTifapd Yyeowa-
oG YLoL TNV EVPEDT] TwV TopaydYwV evatainatag (SDs), dnhady| twv tapay®dywy g
OLVAPTNONG OTOYOL WS TEOS TIC UETABANTES OYEdLoHOV Tou YeeldlovTal Yo TOV U-
TOAOYIOUS TV Tapayywy euoncdnoiog tne uetpixric otaBoétntoc (robust SDs). Ot
ueTaBAnTég oyediacpol amoteholv Ta eAcllepa omnueio EAEYYOU TOU TOQUUETPOTOL-
HEVOL TAEYUOTOS pEcw Volumetric B-Splines. Tehog n pédodog mou uviodeteiton yia
TNV AVaVEOOT) Twv onuelwy eAéyyou eivon 1 uédodog tne Androuns Kalddou.

Movtelornoinon Kataoxevaoctixwy Ateheiody

O YEOUETPWES ATEAEIEC TTOL UTOREL VoL TEOXV(OLY GTNY ETLPAVELOL UMY AVIXOY O TOLYEWY
OV OAANAETOPOUY UE PEUC T, EITE XAUTA TNV XATAOKEUT) TOUG ElTe xaTd TN Aettoupyla
TOuC (TE.X. emuxadioeLc), povtelonotolvTal Yéow tou petacynuatiopol KLT. Ou oto-
YO TIXEC AUTEC BlaTopary€C TapdyOVToL PECK EVOC TETEQUGUEVOL dpLIUOU WOLOTIHGMY A,
Aol LOLOCLVURTNOEWY f, Ol oTtoleg cuoyetiCovial Yéow TNg oAoxhnenTxfc e&lowong
(7.1)) mou mephaBdver Tov extdetind Huyprra Xuvvdwxluavons

/D Cls1, 59) ful52)dss = A fu(s1) (7.1)

C(s1,82) = T (7.2)
Omov 1, S3 € D, | 10 UAX0C CUCYETIONG TV OLUTAUPUY WY XUl 0 1) TUTUXT ATOXALOT
Tou TupRvaL. LNV gpyocio auTy|, 0edouévou 6Tl Be divovton Ta EUTELPLXd BEdOUEVAL
ATEAELOV Yot 2A 0EQOBUVOUIXE COUATI, A.Y. UEUOVOUEVES UEQOTOUESC 1| UEQOTOUES
TTEPUYWOELY, Tpoteivovtan ot e&Xc mopadoyéc: D = [0, Simaz] OTOU Spqq 1) TEP{UETROS
TOL OOUATOS, 0 = 1 X | = Sp0e. Ol €81 TPOTES IBLOCUVIPTACELS Yo TOV EXVETIXG
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nuphva topatidevta oto Lyfua [7.1]
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ExAuna 7.1: Ilpdtes €6 1bwouyvotntes fn(s) ya tov exdetikdé mupriva (7.2)), yua
se=1[0,1,l=1kao=1.

AopBdvovtag umddn o Topamdve, oL IOTWES XaL oL LBLOGUVAPTNOELS TEOXVUTTOUY ATd
v enihuon g e&iowong (7.1]) xou étol oL oToyaoTixé Botapayéc uneptidevtal oY
oy} Yewpetpla (X (s)) xatd tnv xddetn diedduvon oe oyéon Ue TNV EMPAVELR, WS
e€hc:

X (5, = X(5) + Ctrann(5) ) VAncufu(s)il(s) (73)

610U § € [0, Spmap 1) EPUTTOYEVIXH GUVTETAYUEVY OTNY ETLPAVELN TOU OLBIEG TUTOU OOU-
T0G, €y, OL 6TOYAC TIXEG YeTaBANTES, M To TAHYOC TV CUVUPTATEWY BACNE Xl TWY GTO-
YOO TIXWY PETABANTOY, 71(S) To xddeto Sidvuoud xot Crann(s) pla cuvdptnon Hanning
window mou umopel va yenowonowniel, tpoarpetind, yia v andoleon tne KLT bio-
TP XOVTE GTNY oY) EXPUYNAS, DOTE VoL TUQUUEVEL LUTEEN.

Hapatneeiton 611 660 PeyardTepo elvor To TAoC TwV Wocuvapthoewy M t600 e-
YOUAUTERPES %01 TLO TTOAUTAOXES ELVOIL OL TIOPOY OUEVES BLATUPAYES, EVE TOCO PEYAADTEQO
elvan To umohoyioTd x6cTo¢ xotd Ty Ilocotixomoinon AReBadtnToc X to Ltifapd
Yyeduopd. Tehwnd emhéyeton M = 5, xadde amoteiel plo pyéon Abon petoll tne
TOANUTTAOXOTNTAG TWY ATEAELDY X0 TOU UTOAOYLO TIXOU XOOTOUG, EVE) TAUTOY OV LXOVO-
Totel 1o xprthpto (53) yior évor TAloC 0EEOTOUOY: %;1)\1 > 0.96.

Tehixd entd anoddoelc e acpotouric NACA 0012 ye yewuetpixéc atéheleg, Topou-
owdlovtal 6T0 My o yioo M = 5 xau v ) ouvdptnorn Hanning window evep-
yomoinuévn ato 15 % tne yopdrc, mapdyovtog EnTd dlapopeTnd Stoviouoto oaEBonwy
UETOBANTOY 21y, péow yewhtplag tTuyaioy aprdudy (RNG).
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0.1
0.05 -

yle
o

-0.05 |-

-0l kb

Imperfect 1
0.02 [ Imperfect 2
Imperfect 3

Imperfect 4
Imperfect 5
Imperfect 6
0,02 P\ Imperfect 7
Nominal

ylc
)

xfc
Iyhue 7.2: H apxikn aepotoury NACA 0012 (uatpo) kalds kar entd amodéoes tng

He atédeies (dAda ypduata), tapaydueves péow KLT, téoo o€ mpayuatikiy (ndvew) oo
ka1 o€ un mpaypatikyy kAinaka (kdtw).

Mn-enepfatind Avintuypa IToAvwvupixod Xdoug
Yougwva pe ™ Yewpta Tou TloAvwvupod Xdoug, plo Ilocétnta Evoagépovtog F' =

F(b, ¢) npooeyyiletar wg yeouuxde cuvOLAOUOS 0pTOXOVOVIXGY TONUBIEC TATWY TTo-
AVOULY 1P, ¢ e€Xc:

Neut
F(b,¢) = E aii(€) , New = ( L ) = <I€'—M') (7.4)
i=0 max . .

H péon tn xou n tumixd amdxdon tne F' npooeyyilovtar w¢ adpolopato twv cuvte-
AEGTOV @; TOU Ypauixol cuvduoouol tne eglowong ((7.4)

(7.5)

omou k 1 1é€n mohuwvuuxol ydoug xou M = dim(Z) o apriudc tov offéBany Yeto-
BANTOV.

TroloyiCovtoc Tic Tapamdve oTATIOTIXES poTéS, Umopel va utohoytotel 1 Metpuxn
YrPoapodtnToag Fr, EVE Yo TIC TOQOYMYOUS TNG METEIXAG ATOLTOUYTOL X0 O TOEAY YOl
TWV OTATIOTIXWY POTIWV:

8FR B 8/@ 80F
ob, b, " ob, (7.6)

Fr=pr+rop =
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omou k 1 nopduetpoc DESS, tng onolag to mpdoruo delyvel o xatd néco elvon anauct-
080& N 1 AoLOBOLT 1) TPOGEYYIGT] TOU GYEBLUGUOU, EVE 1) ATOAUTY TULY| TNG PUVEQWVEL T
BophTnTol TNE TUTIXAC AmOXAGNE ¢ TEOC TN HEoT Tr. Ol Toedy Yol TMV O TATIO TIXGY
comv mpoodlopllovtar mopaywyilovTog Tic eEIGHOOELS ¢ TEOG by,

N, t 8(12' Ncu
our _ Oag & Jop _ Dot Qi g 1 . Oa,;

Obw =~ Dby = Bby "~ [N n or 0 Ob

=1 "

(7.7)

[Mo xdde tomo xotavoung mou unopel va axoroudoly ol cToyacTixég HETUBANTES ¢,
AVTLOTOLYOUY GUYXEXPLIEVES OLXOYEVEIEC 0pUOYMVIWY TOAUWVOUGY. LTV TERInTOOoN
NG XAVOVIXHC XATAVOURC TNV oTolo axohoudoly OAeC oL oToYacTIXEC PETUPANTEC OF
authv Ty gpyaoia (¢ € N(w,0f)) aviiotoyoly ta mdovotind toludvuuo Hermite

(He;(cr)), pe medio opiopol D = [—00, +00] xar cuvdptnon nuxvétnroc mdovétntag
_i(a=m
(PDF) w(er) = e (")

7 7 4 7 7 4
Ta mohudido tata TdavoTixd OpﬂOXO(VOVLXO( TEO)\U(DVUQO( OPLZOVTO(I. WC TO YLVOUEVO TWV

7 Ié 7. - M 7. —
avtioTolywv povodidotatwy mohuwviuwy ¥;(¢) = [[,Z, He;, (4 ). H PDF ov

V5, ouolwe, opileton w¢ to Ywopevo twv PDF twv avtiotoywy povodidotatwy no-
Aovipwy: W(E) = Hf\il w(cy). 'Etor o ouvteheotéc niPCE a; opilovton we e&hc:

+oo +o0o -
6%‘:/ / E(b,cr, .oy ean)i(zr, oy 2m) W e, ooy enr) dey -+ - den (7.8)

oToL z; = cla;l’” , 1=1,2,.., M, eve o téc tne Ilocdtnroac Evdgépovtog F amon-
TOUV TNV eTAUOT TOL TEKOTEVOVTOG TEOBAAUATOS (npé@)\npa por’]g).

AvtioTorya, ol mopdywyol TV a; ¢ TEOS TS UETUPBANTES OYEBLAOUOY, TEOXUTTOLY
ond v mapoydYnon tne oyéone (7.8)

(9(11' .
ob,

+o0 T 5 . .
/ / %F(lxcla"'7CM),17Z)i(Zla"'7ZM)W(Cla"'7CM) dcl"'ch

(7.9)
6mou ot mapdywyol evaucinotag JF/0b, unohoyilovton pe tny enthuon tou culuyolc
TeoBAAUATOC.

O unohoytopde twv ohoxhnewudtwy ((7.8) xou (7.9) yivetar pe aprduntixs ohoxhrewon
Gauss Hermite. H oloxhipwon umopet va yivel eite yio mhfpeg mhéypa xouPBwv Gauss

elte yw apaid mAéypata Smolyak. Stnyv mpoTn TepinTwon ol TWES TwV xOuPwy elvor
loec pe Tic pllec Twv VZZ', eved 1o mAfdoc toug toovton ue (K + 1)M, Tou elvol TV TOHOT-
MO UE TO x60TOC TS UeVddou (UeTpoluevo Ue Hovdda to xdotoc plag atoAdynong),
ool ooVt UE ToV aptdud TV ACLOAOYHOEMY TOU AmAtTOUVTOL Yol TO UTOAOYLOHO
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TWY OTATIOTIXOY UEYEVMY ot TwV Topaydywy Touc. H exdetin addnon tou xéctoug
Yo peydhoug aprduoig offéBoumvy ueToBANToY, avTuetoriletal ue TN YeNon TAEYUATOY
ohoxhfpwone Smolyak, mou amontel oucUnTd wxpdTepous ool allohoYRoEWY Yl
M > 4, oc dpog g axpBetag v anoteheoudtwy. Xtov [livaxa TopatidevTon oL
Olapopéc 010 TAYog TV allOAOYHOEMY Yia To 8U0 TAEyuata xouBwy Gauss.

Inpes Iéypa / IAéypa Smolyak
M

k 1 | 2 [ 3 | a4 | 5 ] 6

0 1/1 1/1 1/1 1/1 1/1 1/1

1 2/3 4/5 8/7 16/9 32/11 64/13

2 3/5 9/13 27/25 81/41 243/61 729/85

3 4/9 16/20 | 64/69 | 256/137 | 1024/241 | 4096/389
4 5/17 95/65 | 125/177 | 625/401 | 3125/801 | 15625/1457
5 6/33 | 36/145 | 216/441 | 1296/1105 | 7776/2433 | 46656/4865

ITivaxag 7.1: Koppor Gauss, dpa kar tAndos a§iodoynoewy, yia tov vToAOYIOUS Twy
ovrtedeotwv niPCE, téoo ya mArjpn éoo kai yia Smolyak mAéyuata odorxAnpwons.

Katd v Ilocotwonoinon APefadtnrog 1 1o X1iBapd Lyedlaoud Und XATUOHEVAUC TI-
x€¢ atéheleg, ol xoufol Gauss Yyl T0 ex40TOTE TAEYUA OAOXANPWONG AMOTEAOUY TIC
TWES TV oafEBatwy HETUBANTGY ¢, Tou elodyovTal oTo hovtého KLT yuo v mapaywyn
yewueTeg atéhetag o 2A owpa. O otatioTinég pomég Twv aiéforwy UeToBANTOY
p, op ¥V 1=1,2,.... M xoadopiCovtar and tov yeRot.

O x&dxac niPCE nou eiye avomtuydel and tny MIITP&B/EMII, enextdinxe wote vo
uTopEl VoL UTOAOYIOEL TIC TAUPAYYOUS TGV GTUTIO TIX®Y UEYEVOY TNg F xou xot eméxto-
onN TV CTRAROY TUEAYOYWY evaolnciog Yo dedouévo K, Aaufdvovtag TWES Yo Ti
TopaYYoug evatcinoiog amd eEwTEPING EMAUTY. LTnV TEpINTWoT AUTH YENOYLOTOLE-
fton 0 ouveyfc ouluyhc emhitng Ty MIITP&B/EMII, oe nep3dihov OpenFOAM©.

ITocotixonoinon ABeBoadotntog und Kataoxsuaoixég Atéheleg

Awe&dryetan Ilocotixonoinorn ARefoundTnTog 1wV dEpOBUVIUIXGDY GUVTEAEC TMV (Cp,Cp)
uepovouévng acpotouric NACA 0012 pe xotaoxevactixég atéheies. H por) Yewpeiton
aoLUTES TN Xou Ypovixd woviun v Re. = 2,600,000 xar ywvia ntpdbontwong a = 2°
xou EMADETOL OE BOUNUEVO LTOAOYIGTIXG TAE YU 160 X 135 TETEUEDEIXWY XENLDY, EVE
yenowonoteitow to povtéro topfBne Spalart-Allmaras . O apuiudc twv KLT o7o-
YAO TGOV UEToBANTOY elvor M = 5 xou ot otoyaoTixég Toug ponég y = 0, o7 =
2:103mV1=1,2,..,5, evd tpoypatonoteitos TORUUETEXTY HEAETT (G TIPOC TNV TAEN
YGoug k xon oUyxpLon Twv anoteeoudtny pe ) uédodo Monte Carlo yia 5000 delypo-
to. H motonolnon tov anoteAeopdtowy yia Ti¢ 600 uedddoug meptypdpeton 6To Ly
. Y10 My fua mopatneeitor 6T, oTNY TEplnTwor auTH, adinon TNg TUng ydoug
oev ouvendyetan TNV avénon axelfBetac. O o axpiBeic Aoeic Topdyovton, xotd yéco
0p0, Yl k =1 xou k = 3, Ouwg autd ebvon ocuyxuploxd xou 0ev Umopel vor YevixeuTel.
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0.01129

0.01128 |

0.01127 |

0.216
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8 0215 |- 1
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.
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0.01123 4 L 0.213
1 2 3 4 1 2 3 4

0.015 T
0.0145 - F
0.014 .
0.0135 1

0.013

e

9.6x107

9.5x107 |-
9.4x107 |-
L, 9.3x107 b
g
5 9.2x107 |

niPCE —a— 7|
Mc(5000) —— |

Ocy

9.1x107 |-

0.0125 niPCE —&—
MC(5000) ——

9.0x10°F

8.9x103 - L 0.012 L !
1 2 3 a 1 2 3 4

Chaos Order k Chaos Order k

Yy 7.3: Aepotouny NACA 0012 e kataokevaotikég atélees: Iloootikomoinon A-
Bepaidtnras Cp, Cr, yia niPCE e tdén ydous k ané 1 éws 4 ka1 yia Monte Carlo(5000).

[No Ttic tpocopoudoelc mou axohovloly emhéyetar k = 1, OLOTL ToEdyeL €vol GYETIXG
oxEU37) UTOROYIOHO TV CTATIOTIXMY POTIMY YA TO YUUNAOTEQO UTOAOYLOTIXG %60TOG,
xoddg 1o x0plo YEANUa TG pyaciog dev etvan 1 uPnAT axp{Bela dAAS 1) Blepebynon xou
TLOTOTOINOT) TOU UOVTEAOU XUTUGHEVC TIXWY ATEAELDY Yiot TO LTIPopd Ly EdLoUO.

Y ouvéyew, mpaypatonoteiton Ioootixonoinon ABefaidtntoc w¢ mpog T Topa-
YOYOUC TwV GTATIOTIXGY oty 6twe opilovtar otn oyéon (7.7). H Iloodtnra Ev-
otapépovtog elvon o Cp %o 1) 0EEOTOUT| UE YEWUETEIXES UTEAELEC TOU UEAETATOL Elvol
n E387. Ot poixéc cuvinxec elvon Re, = 2,600,000 xou a = 2°, €vd TO UTONOYIGTIXO
TAEypa etvor dounuévo, ue 160 x 135 tetpaedpixd xehid. O mapdywyol unoloyilovto
oe mAgypa 3 X 2 eheliepwy onueiwy eréyyou, yia k = 1 xaw M = 5 1600 Yo TAYjen
TAEYHoTa 600 o yio TAéyuato Smolyak, eved ta anoteAéopata cuyxpivovial PE TNG
Monte Carlo, yw 1000 Setyyata. H motonolnon tov mapayoywy mapatidetar 6to

Xy 74}

>T0 Exﬁya@ ofvETOL TS 1) TROTEWOUEYN UEV0DdOS, UE TIg LtoUeToLueveg puluioels,
TEOAEYEL IXAVOTOLTIXG. TIG TUPAYDYOUS TV CTUTIOTIX®Y pontwv pag Hocdtntag Ev-
otupépovtoc. Ta anotehéopota yio apond TAEYUoTa ohoxAewone Smolyak efvon mpo-
xuxd e€ioou axplfr ue tor amoteAéouarto Yl TAYen TAEYHATH OAOXAARKONG, Yia TAEN
ydouc k = 1. 'Etol duconohoyelton 1 emAoyr ollonolnone mheyudtov Smolyak yio to
OYEDLAOUO UTLO XUTUOXEVUOIXES ATENELEC.

Yxediaonog oty nepintwon Kataoxsvaotixwy Ateleldy

Apyixd mporypotonole{ton LovoxpLTnetonos MTBupog LyedlaoUoc U 6TOYO TN BeATL-
OTOTONOY TNG OTOYACTIXNG CUUTERLPORAS TNG OTUGUEAXOUCUS UEUOVWUEVNS AEROTO-
unc E387 vy 5 xbxhoug Bedtiotomoinone. Awtnpolvta ot (Bieg poixéc cuvirxeg, To
{dto uTohoyioTind TAEyUa xou ot (Bleg puduicelc Yo To povtého KLT pe v nopandve
avéivor. Emiéyovton tpelc tiuég tng mopouetpou DESS: k = —2,0,+2. O ctotioti-
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Yy 7.4: Aepotouny E387 e kataokevaotikés atédeies: Iloootikomoinon afefai-

niPCE - Full Grid —e—

n-th design variable

niPCE - Smol. Grid —&

MC - 1000 samp. —+

niPCE - Full Grid —e—

n-th design variable

niPCE - Smol. Grid —&

MC - 1000 samp.

étnras Opcy, /Oby, kar docy, /Oby, yia niPCE(k = 1) ka1 yia Monte Carlo(1000).

xé¢ pomég Tou Cp mou mpoxuTTouy ot xdde xUxho mapatidevton
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0.00021

2 3 4
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He,
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T
2
Q
2

=

——

Optimisation Cycles

oto Ly

Yyxnue 7.5: Movoxpitnpiakds oxediaouos aepotouns E387 ue kataoxevaotikég a-
tékeieg: otaniotikés porés Cp, Cr, ya 5 kUkAovg BeAtiotonoinong kar k = —2,0, +2.

Enlong ov tedixéc otifapec yemuetpieg xadng xou 1 amdxhorn twv Cp, Cf and tny
avtioToryn UECT TWT| TOUG, UMOTUTOVOVIUL GTO Ly AU Yuvolxd amd To Lyruo
Byoabver To ocuunépacua OTL 1) TEOTEWVOUEVT UEV0d0C emTUYYAVEL PElwon Tc0 TNg
uéone thc tou Cp (xotd 13.5 %) oo xon tne tumixng andxAorc Tou (xotd 34.8 %).
To yeyovog autd mapatneeitar xou amd TN Yelwon TS UEYIOTNG OYETXAS ATOXALONG
tou Cp oto Uyfua [7.6 Emmiéov, and 1o Byruaro 2ol TEOXUTTEL OTL Tl 0
ToteAéopoTa 6ev ennpedlovton Wwitepa amd TN PeTHB0AY Tou K. AuTd Oev umopel va
YeEVIXEUTEL, AN autioloyeltar Bedopuévou 6Tt oL Topdywyol Tou Cp elvon TOUALYLGTOV
0V0 TéEelc YeYEDoug UixpOTERES UM TIC AVTIOTOLYES TTHPAY(YOUS TNS MEOTS THINS TOU,

6Twe oiveTon 670 Exr’wa

135



yic

vie
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Yy 7.6: Movokpitnplaxds oxediaouds aepotouns E387 je kataokevaotikés a-
Téde1eg: 1) apxIKT KAl 01 TEMIKES 0TIBapéS yewpetpies (apiotepd) kai 1) oxeTIKT) andkAion
v Cp, Cf, and v avtiotoyn péon nun (6ekid).

X1 ouvéyelo exTEAElTAL GTNY (Blol AEPOTOUT, BIXELITNELIXOS LTBoPOC LYeBUOUOS WS
meog T otaduopévn ouvdptnon-otéyo wpCp — (1 — wp)Cy, (mou amoutel évor ou-
Quyh emAlTn avtl yua 800, Yy xdde otdyo), amooxonwviac oTr BeAtioTonoinon
NG OTOYUCTIXNAG CUUTEQLPORAS TNG BVMONG X0t TNG OTUGVEAXKOLOAS, Yo O X0UXAOUG
Behtotonoinone. Ta Tic Bieg ouviixeg, emAéyovion K = +2 xau TeeElC TéS Po-

ptv: wp = 100, 99.35, 99.25 %. Yto Lyhuo nopouctdlovian ot oTiapol a-
gpoduvaxol cuvteheoTég Tou opilovion w¢ e&hc: CD(mb““)

CL(robust) = uc, 1K oo, -

= Ucp + K oop %

0.0136 T

0.6 .

T T

Wp=100% —e—
Wp=99.35% —
Wp=99.25% —=

T T
wp=100% —e—

wp=99.35% —&

wp=99.25% —*

0.0134

0.0132

0.013

0.5

0.0128

0.0126

0.0124
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Robust C|
=)
=
&

0.0122
0.4

0.012

0.0118 0.35

0.0116

0.0114 - - - 0.3 L s s
1 2 3 4 5 1 2 3 4 5

Optimisation Cycles

Optimisation Cycles

Yyxnue 7.7 Awkprenpiaxos oxedraouds aepotouns E387 pe kataokevaoticés atélees:
otifapoi ouvvteleotés Cp, Cr yia 5 klkdous PeAtioTonoinong Kai Tpeis ouvovaoiiovs

Papdov.

Ov tehixéc oTPopéc yewuetpiee xar 1 amoxion twv Cp, Cp and v aviioToyn
MEOT T UTOTUTOVOVTAL OTO Ly . Hapatneetton 6TL 1 yerion otaduouevng
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OLVEETNONG-OTOYOL BUVATAL VoL AVUXOPEL T1) BEAC TIXT| TTKCT) TOU C’L(Mbusﬂ, ard 40.7 %
v wp = 100 % oe 18.7 % vy wp = 99.25 %. BéBoua, ot 0o otbdyor eivan ovti-
xpovduevol, xolng omota PeTaforr) ota Bdpn mou tpoxahel pelwor tng omoiElxoucag
mpoxakel abEnon g dvwong xou avtictpoga. To yeyovog autd mopatnpeital 6TIC Hlo-
POPEC UETOEY TV GTBHEMY UEQCOTOUMY OTO Ly Hud . Y10 My fua TopoTeElTaL
avénon tne Yéytotng oyethc andxhione tov Cp ue v adinorn tne Turc Tou wp,
7 omolot OUKS TUPUUEVEL TIEVTOTE UIXEOTERT OO TNV avT{CTOLY N AmOXAICT) TNG oY\
xfg agpotopric. H ovolotind auetdBAntn péylotn oyetxt| andxhion tou Cf, elvou
OVOUEVOUEVT AOY® TNG EMAOYNG UEYSAWY TW®V Yiol To Bdpn wp, TOU QUVEQMVEL TNV
lEpdipynom NS oToVEAXOVCUS Xt T1) OYEDLION,.

A) Not in scale

T

Wp=100% —— |
Wp=99.35% ———
Wp=99.25% —— -|
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o 0.2 0.4 0.6 08 1

ewo «
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Yyxnue 7.8: Awkprenpiaxos oyedraouds aepotouns E387 pe kataokevaotikés atélees:
N apXIKY) Kal o1 TENIKES OTIBapéS yewuetples (apiotepd) kai 1 oXeTIKT) anékAion Twy
Cp, Cr, ané wy avtiotown péon nun (6ebid).

Téhog, dreddyeton dixprtneloxds oTBupd oyedaouds 2A otadepric nteplywong TU
Berlin yia 5 xOxhouc Bedtiotomoinone. Xxomog etvar 1 amdAuTn aEnom ywviog omoxAL-
one e poNc 0 = a1 — as xan 1) TAVTOYEOVY UEWOT) TWV AMWAELWY ohxh¢ Tieone F),.
Aedopévou 6T 1) Ywvio elo6dou eivon otadept| xou fon e a1 = —42° apxel va yeyioto-
nowndel n yovia e£660L as xou 1 cuvdpTtnon-otdyoc opileton wyF,, — (1 —wp)as. Ot po-
ixéc ouvinxeg ebvon Us, = 48m/s xau Re, = 672,000, eved 1 yopdn tng aepotounc ebvat
fon pe 0.1876 m. H poy| mou VYewpeiton uéviun xon acvunicotn emhdeton o 2A un 60o-
unuévo mAéyuo 80228 xehwy, ue mepLodind pta. Ol oTaTio Tixég pomég Twv 5 af3éBaiev
uetaBAntov tou povtérou KLT optlovton pyy = 0, 07 = 2+ 102mVI=12..5.
Enionc eméyovtar k = 42 xou €€ tpée Papodv w, = 100, 95, 90, 75, 50, 0 %. Xto

Yy 7.9 amotunadvovton 1 otupr ywvio andxhiong (az(mb““) = lloy + K Oqy) XOU OL
, , , , (robust) ,
oTPapég anmAeleg oAxng Tieong (Fp, = lpp, + K Opp,) Yo TOUC 5 x0xAoOUC.

Yo Ly o [7.9) nopotneeiton 6L oL 500 oTéyot elvan U avTixpouduevoL, xadde oL Tel-
*€¢ THEC TwV oTRUROY 0TOY WV Yo 6ho Ta Bdipn), extde amd To w, = 100 %, anoterolv
T0 Métwno Pareto towv xuplapywy Acewy. Etot, yetd and 5 x0xhoug, 1 ueyaAlTeRT
uelwon Twv oTBapny anwieldy ohxhc mieong epgaviCeton v w, = 95 % o etvon
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-1.5 T T T T T T T T

e w,=100%
/ Wp=95% ——
05 r N s : Wp=90% —%— ]
g S Wy=75% —=
P Wy=50%
1r s Wy=0%
¢ . . initial =
ParetoFlront

Robust a; [deg]

1. 5 1 1 1 1 1
0.106 0.1065 0.107 0.1075 0.108 0.1085 0.109 0.1095 0.11

Robust Fy, [m3/s?]

0.005 - - -
Wy=100% R
wp=95% ——
Wy=00% —-—-= .
wy=75% —=—— -
Wp=50%
wp=0%
nominal

-0.005
-0.01
-0.015
-0.02
-0.025
-0.03
-0.035
-0.04
-0.045

y[ml

—

0.16 0.18

Exuna 7.9: Awcprenpiaxds oyedaoucs 2A otalepns nreptywons TU Berlin e ka-
TAOKEVAOTIKES ATEAEIES: amwAeles oAikng mieons Fpt(mbu“) ka1 yowvia e£6dov oz2(mbu8t)

(tdrew) Kai o1 Tehikés oTIBapéS yewpetpies o€ npayuatikn kAiuaka (kdtw).

fon ue 3.1 %, evod 1 péytotn addnon e ouPoprc ywviog e€odou eivar 192.9 % yio
T0 [Bdpoc w, = 0 %. AvtioToya, 10 YEYOVOC OTL Ol GTOYOL ElVoL U1 VTIXPOUOUEVOL
PAVERMVETOL Xk oo TIC ‘UPBEIOIKES” TEAES O TIB0RES AEPOTOPES, TOLU GUVDOLALOLY T6GO
TO UEWWMEVO T 0¢ 6O XaL THY aUENCT TNG XUUTUAOTNTAS GTNV oxuY| EXPUYNG, VLol T
Béen w, = 95, 90, 75, 50; %.

Y10 Xyfua mopotidevton ot UTOAOYILOUEVES OTATIOTIXES POTEC XOU 1) CUCYETION
TV ATOXAOEWY TV as xan I, . To cuunépacua tou Uy uatog eivon OTL ETLTUYYAVETAL
Opao TIXN HElWON TNG BLUOTOPS %ot TNG TUTLXNG AOXALONG TV ATWAELDOY OMXTHG Te-
ong (péyiotn xotd 88.1 % yuo w, = 90 %), eved 1 pelwon e tumixrc andxhone tne
Ywviog €€680u elvar TOAD pixpoTeEn, dmou emituyydveton (UéyioTn pelwon 0.005° yio
wy, = 0%). Avtideta n ad&non tne péone tunc e ag civor Wiaitepo YEYEAT, pe T
HEYLO TN Vo elvon fom e mepinou 2.5°. To (Bl CUPTERAOUATA TEOXUTTOUY Yo OO TG
TWES TV anoxhioewy. H uxer TTwon Tng 04, QUVEQOVETOL X0k ATO TI) UNOOULVY| Ue-
fwon g avtioToyng Yéyotng andhutng andxhone. Avtideta 1 nTodon g €Yo Tng
oYeThg amdxMong g Iy, ebvan cwointd peydhutepn yio dAo o Bdpr), pE TN PEYIOTN
va tooUton pe 70.4 % yioe wy, = 90 %.
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0.1095
0.109
0.1085
0.108
0.1075
0.107
0.1065
0.106

HE,, [mfs]
Mg, [degl]

0.926
0.925
0.924
0.923
0.922 |
0.921
0.92
0.019
0.018
0.917
0.916

0y, [deg]

1 2 3 4 5
Optimisation Cycles Optimisation Cycles
Wp=100% Wp=00% —* Wp=75% —= W,=0%
Wp=095% —*— Wp=50%
2 T T T T T T T T
wp=100% ®
15 | . * * = W=95% @ |
Wp=90%
- wp=75%
1r . e "% Wp=50% * ]
L] . * s Wwp=0%
05| nominal =
7 -
2 o} ‘.‘- 1
- LTL S
< s} .
20 @ - -
1 “.u «® . - 1
15 e ce . [ ] T
_2 1 1 1 1 1 1 1 1
-0.6 -0.4 -0.2 ] 0.2 0.4 0.6 0.8 1 1.2
AF,, [%]

Yy 7.10:  Awprenpiaxds oxedaoucs 2A otalepns nreptywons TU Berlin e
KATAOKEVAOTIKES aTédeles: otationkés ponés wwv Fy,, ap (mdvw) ka1 ovoxénion wng
amAvTng anékAonS TNS Ay e T OXETIKT) anokAion twy F, (kdtw).

Yupnepdopata

H mpotewouevn pedodog outioxpatinol oT3pol OYEBLIOUOU UTO XUTACKEVUO TIXEG
atéheteg mou ouvoudlet Tig yetddoug KLT, niPCE xa ) ouluyt| uévodo. 'Eyel no-
COTIX UmOTEAECUATO TOU TOLOTXE ELVAL TOL OVAUEVOUEVA, OGOV apopd T BEATIOTOTO-
{non e oToY Ao TINAC AEPOBUVAULXNG CUUTERLPORAC EVOC 2A COUATOS UE YEWUETOIXES
atéreiec. H pédodoc motonowinxe 1600 yior HEUOVWUEVES OEPOTONES OGO Xou Yl
0EQOTOUES OTUVEPMY TTEPUYMOEWY, Yol TEELS OLPORETIXEG oLUVAPTHOEG-0ToYoug. H
LEV0BOC EYEL ONUAVTIXG UTOAOYLOTIXG XOOTOG TOU TOAATAUCLELETon ovd xUxAo BeA-
TiIoToTo{noNg, To onolo duwe elvor woUNTA UKEOTERO OE GYEoT Ue dAAEC TPOoTIAELES
TOL TEUYUAUTOTOO0Y GTOY A TG LTIBopd LyEOLUGUO.
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Appendix A

OpenFOAM CFD Validation

In this section of the Appendix, the validation of the CFD method used to numerically
solve the primal problem, as presented in Section takes place. Meaning, that
the the results produced by the CFD analysis, through OpenFOAM are compared
with corresponding experimental results found in literature.

In this thesis, three distinct primal problems are solved, both with and without
the inclusion of KLT-generated manufacturing imperfections (explored thoroughly
in Chapter , the later integrated within UQ and RDO loops (more information
in Section . These three CFD cases are mainly distinguished by their varying
initial shape, two of them being airfoils: the symmetric NACA 0012 (Subsection
as well as the E387 (Subsection and the third being the TU Berlin
compressor stator cascade (Subsection . Nevertheless, only the first two airfoil
cases are verified, given that they have been extensively subjected to wind tunnel
testing and their aerodynamic performance is well documented through the years.
The compressors cascade is a simplified 2D model of the TU Berlin axial compressor
stator blade. The 3D CFD simulation of the stator has been executed and verified
in [40]. The cascade has been extracted from these 3D simulations, so as to be used
as a simplified model for the purposes of this work. Up until now, no experimental
data for this specific cascade are found in literature.

Airfoil: NACA 0012

The NACA 0012 airfoil experimental data used to validate the accuracy of the
OpenFOAM fluid solver can be found in [41], and for now on is referred to as Land-
son et al. experiments, for short. The flow solver configurations, computational
mesh, turbulence model and boundary conditions are exactly the same with the
ones described in Subsection [5.2.1 only changing the far-field velocity to U, =
60 m/s, in order to achieve the flow conditions used in the wind tunnel experiments:
Mach = 0.15 and Re, = 6 - 106.
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For these flow conditions the OpenFOAM’s simple Foam incompressible flow solver

is used, to compute the flow field around the airfoil for three of the same far-field
velocity angles of attack (AoA) used by Landson et al.: AoA = [0.01,2.15,4.11] degrees.
The reason for which these AoA are selected is to validate the solver’s accuracy close
to the AoA= 2 deg used in the UQ analysis that takes place in Subsection [5.2.3]

The Cp and O}, coefficients as computed both through OpenFOAM and the Land-
son et al. experiments, for the aforementioned AoA, are displayed in Table

Landson et al. OpenFOAM
AoA [deg] Cy, Ch Cr, Ch
—0.01 —0.0122 | 0.00804 || —0.012716 | 0.007876
2.15 0.2236 0.00823 0.228503 | 0.008392
4.11 0.4397 0.00879 0.435971 | 0.009771

Table A.1: NACA 0012 airfoil: aerodynamic coefficients for Re. = 6,000,000. Com-
parison between the OpenFOAM-computed and Landson et al. experimental results.

The same comparison is also visualized through the Figure [A.I] where the polar
and C, — AoA diagrams for the NACA 0012 airfoil. Meanwhile the relative error
of the CFD results when compared to the corresponding experimental results are

displayed in Figure [A.2]

Overall, the results of the OpenFOAM’s solver configurations produce valid results,
especially in for AoA close to zero. As expected the C}, results are fairly precise,
given that the pressure field is more or less easily computed accurately for all AoA,
keeping in mind the dominant component of the lift force exerted on an airfoil is
caused by the pressure difference between its suction and pressure sides. This result
also backed by the CFD-computed pressure coefficient (C,) distribution on to the
airfoil’s surface is relatively accurate as well when compared with the corresponding
experimental distribution, as plotted in Figure

Nevertheless, even the more complex, due to the its viscous component, Cp, requiring
proper treatment (as featured in Subsection and denser meshing near the
airfoil surface, is computed with relative accuracy. According to Figure [A.2] the
lowest relative error is identified for AoA= 2.15 deg, justifying the 2 deg AoA
used in the C, Cp UQ analysis, executed in Subsection [5.2.1] for the same airfoil.
The slightly higher relative error appearing for AoA= 4.11 deg, indicates that a
denser mesh might be required, given that greater velocity gradients as well as some
unsteady phenomena may start to appear.
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Figure A.1: NACA 0012 airfoil: C;, — Cp polar diagram and C;, — AoA diagram
for Re. = 6,000,000. The Ladson et al. results are included for all AoA used in the
experiments.

12 T T T

Relative Error [%]

-0.01 2.15 4.11
Ao [deg]

Figure A.2: NACA 0012 airfoil: relative error of the OpenFOAM-generated aero-
dynamic coefficients w.r.t. the results of the Ladson et al. experiments for Re. =
6, 000, 000.
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Figure A.3: NACA 0012 airfoil: pressure coefficient distribution for AoA= 0 deg
and Re. = 6,000,000 from both the OpenFOAM analysis and the Ladson et al. exper-

iments.

Airfoil: E387

The experimental data of the aerodynamic performance of the E387 airfoil are
extracted from the [42]. Specifically the Spring 1997, J.Robertson data set are
used and are referred to as Robertson experimental results. The same simpleFoam
solver configuration and mesh are implemented as those mentioned in Subsection
. Only the far-field velocity is modified to U,, = 2 m/s, to attain the Reynolds

number Re. = 200,000 of the Robertson experiments.

The flow field around the airfoil is computed for five different AoA = [0, 1, 2, 3, 4] degs

and the results are given in Table [A.2] in comparison to the Robertson results.

The same comparison is also visualized through Figure [A.4] where the polar and
Cp — AoA diagrams for the E387 airfoil and through Figure where the relative
error of the CFD results, when compared to the corresponding experimental results,

are displayed.
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Robertson OpenFOAM

AoA [deg] Cr Cp Cr Ch

0.371 0.0110 0.372208 | 0.011169
0.477 0.0118 0.479919 | 0.011952
0.985 0.0128 0.587641 | 0.012983
0.703 0.0139 0.694792 | 0.014277
0.799 0.0148 0.801176 | 0.015822

| Wi iN |~ O

Table A.2: ES387 airfoil: aerodynamic coefficients for Re. = 200,000. Comparison
between the OpenFOAM-computed and Robertson experimental results.

0'85 ) 1 1 ) ) 1 L] G.BS 1 1 1 1
0.8 | : 0.8 | ] La
0.75 - -1 0.75 -1
0.7 [ ] -1 0.7 F L -1
0.65 |- e 0.65 | -
7 0.6 |- -1 3 0.6 = =
g g
a m®
0.55 |- -1 0.55 -
0.5 -1 0.5 F -1
L ] a®
0.45 |- -1 0.45 |- -1
0.4 | g 0.4} -
Robertson = Robertson ®
L OpenFOAM @ | OpenFOAM
0.35 1 L 1 1 L L 0.35 L L L L
0 05 1 15 2 25 3 35 4 0.011 0.012 0.013 0.014 0.015 0.016
Aoh [deg] Cp

Figure A.4: E387 airfoil: Cr, — Cp polar diagram and Cr, — AoA diagram for
Re. = 200,000 from both the OpenFOAM analysis and the Robertson experiments.

The conclusions drawn from the comparison of the results are very similar to those
described in Subsection [A] of the Appendix. The CFD accuracy is greater the
for AoA close to zero, while the lowest error for the drag coefficient is found for
AoA=1 deg. Generally, the C, CFD-generated prediction is more precise, while
for AoA=4 deg the Cp error is the highest, indicating the need for a denser mesh
near the airfoil. Overall, the OpenFOAM solver configuration is proven to produce
relatively valid results, justifying its integration in UQ and RDO loops, as in Subsection
and Section [6.1] respectively.
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Relative Error [%]
fal

0 1 2 3 4
Aok [deg]

Figure A.5: E387 airfoil: relative error of the OpenFOAM-generated aerodynamic
coefficients w.r.t. the results of the Robertson experiments for Re. = 200, 000.

Unfortunately, no C,, distributions can be found in [42], in order for such a comparison
to be held.
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Appendix B

Hermite Polynomials

The Hermite orthogonal polynomials are used for the niPCE method for uncertain
variables following normal distributions. Two different categories of Hermite polynomials
exist: the probabilists’ Hermite polynomials He,, used in statistics and the physicists’
Hermite polynomials H,, more often employed in different scientific domains related

to physics. The main difference between the two is based on the formulation

of their respective weight function. Yet both are defined into the same domain

D = [—00, +0].

The generalized formula for generating Hermite polynomials of degree n, is formulated
as

dn
I, (2) = (-1 () T (B.1)
dx
where w(z) the weight function.
Weight Functions
The probabilists’ polynomials weight function is defined as
22

whe(r) =€ 7 (B.2)
while the physicists’ polynomials weight function is defined as

wi(z) = e (B.3)

Polynomial Formula

By integrating the weight function from egs. (B.2)) and (B.3)) into the generalized
formula in eq. (B.1]), the formulas for each of the two categories, respectively, is
produced.
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A probabilists’ polynomial of n degree is generated by

2

L 22 dhe T d \"
He,(z) = (—1)"e T = <x - %()> -1 (B.4)
while physicists’ polynomials of n degree are generated by
dre="" d \"
(o) = aret S5 (20 20 (B:5)

The two definitions are not identical. This is backed by the fact that the first can
be produced through the latter (as well as the opposite), by making use of the
transform

He,(z) =27% Hy(—=) <= H,(z) =27 He,(zV?2) (B.6)

Sl

Recurring Formula

Similarly, from definitions in eqs. (B.4)) and (B.5|), respectively, the recurring formulas
for the polynomials is defined as

He,1(x) =x Hey(x) —n Hep () (B.7)

Hy1(x) =2z Hy(z) —2n H,—1(x) (B.8)

while their respective recurring derivatives w.r.t. to x € [—o0, +09]

_ dHe,(z)

Hel () el He, 1(x) (B.9)
H' (z) = d}%”’”) —on H, () (B.10)

In addition, in a Hermite polynomial of n degree, the coefficient A,, of the term to
the power of n is defined, though the use of the recurring formulas, as follows

Ay =1 | AD(g) =2 (B.11)

Orthogonality

Both of the two categories of Hermite polynomials are orthogonal w.r.t. their corresponding
weight function w(z), as follows

—+00

(Hey (), Hep(x)),, = Hen(x)Hem(x)e_édx = nlV2mom (B.12)

—00
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(Hyo (), Hp(2)), = m Hy(z)Hp(z)e ™ dz = 2"nly/76" (B.13)

—0o0

where 9, the Kronecker Delta.

From egs. (B.12)) and (B.13)) the w-norms, for the two categories, are formulated

(He2(2)),, = [[Hea|X, = 4 = nlV2r | (H2(2)), = ||Hall, = 4" = 2"nlV/7

(B.14)
Gauss Hermite Quadrature weights
The weights used in GQ integration are generally defined by the expression
ATL n
Wy = — ki (B.15)

A, ¢n+1 (wj) ¢;1 ('IJ)
where ¢,, a n degree polynomial belonging to a certain orthogonal family and z; the
roots of the aforementioned polynomial.
Meanwhile, the transform between the orthogonal polynomials ¢ of degrees n + 1

and n is defined as

o An—l—lAn—l Tn
¢n+1 (‘TJ) - A% Yn1

- Pp1() (B.16)

By including eq. (B.16)) in eq. (B.15)), the weights are formulated as

An ) Tn—1
Anr bnaly) ¢(xy)

When implementing the Gauss Hermite Quadrature, the weights are defined with
Hermite polynomials, coefficient and w-norms. Therefore, when probabilists’ Hermite

polynomials are used, according to egs. (B.4)), (B.9), (B.11]) and (B.14]), the weights
from eq. (B.17) become
(n—1)!v27 n!\/2m

= = B.18
T Hewr(ag) Hey(x))  n? He (1) (B.18)

(B.17)

CL)]':_

If physicists’ Hermite polynomials are utilized, eq. (B.17)) alongside with egs. (B.5)),

(B10). (B-1T) and (B.19) yields

(-7 2l JF
W, = =
7 Hna(x;) Hj(z;)  n? H2 (x;)

(B.19)

To conclude, during the application of GHQ for the numerical integration of the
niPCE coefficients, in this thesis, the symbol n designating the polynomial degree
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is replaced by k + 1 (given that n = k + 1), where k the niPCE chaos order.

Polynomial examples

According to the polynomials’ formula in eqs. (B.4)) and (B.5)), respectively, the ten
first Hermite polynomials are produced and displayed.

Probabilists” Hermite polynomial examples:

Heg(z) =1

Hey(z) ==

Hey(r) =2° — 1

Hez(r) = 2° — 3x

Hey(x) = * —62° +3

Hes(z) = 2° — 102° + 152

Heg(x) = 2% — 152" + 452 — 15

Hez(x) = 27 — 212° 4+ 1052° — 105z

Heg(z) = 2° — 282° + 2102" — 4202% + 105
Heg(x) = 2° — 3627 4 3782° — 12602 + 9452

Hy(x) =1

Hi(z) =2z

Hy(x) = 42® — 4

H3(z) = 82° — 122

Hy(x) = 162" — 482% 4 12

Hs(x) = 322° — 1602° + 120z

Hg(z) = 642° — 480z + 7202% — 120

Hy(x) = 12827 — 13442° + 33602 — 1680

Hg(z) = 2562° — 35842° + 134402* — 134402* + 1680
Hy(z) = 5122 — 921627 + 483842° — 80640x> + 30240z

GHQ roots and weights

The Gauss Hermite Quadrature integration (explored in Subesections and
3.4.5)), used in this thesis for the computation of the niPCE coefficients a;, requires
the roots and the weights of Hermite polynomials. In this thesis, only canonical
probabilists’ polynomials He (as formulated in (3.33)) are employed for the GHQ
integration. Yet, for showcasing reasons, the weights and roots of both default and
canonical probabilists’” Hermite polynomials are presented in Table
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He,(z) Han(x)
Roots x; ‘ Weights w; Roots x; ‘ Weights w;
0 2.506628275 0 1
1 1.25331414 1 0.5
-1 1.25331414 -1 0.5
1.732050808 0.417771379 1.732050808 0.1666666667
0 1.671085516 0 0.6666666667
—1.732050808 0.417771379 —1.732050808 0.1666666667
2.334414218 0.11499371 2.334414218 0.04587585477
0.7419637843 1.13832042 0.7419637843 0.4541241452
—0.7419637843 1.13832042 —0.7419637843 0.4541241452
—2.334414218 0.11499371 —2.334414218 0.04587585477
2.856970014 0.028218146 2.856970014 0.01125741133
1.35562618 0.55666179 1.35562618 0.222075922
0 1.336868413 0 0.5333333333
—1.35562618 0.55666179 —1.35562618 0.222075922
—2.856970014 0.028218146 —2.856970014 0.01125741133
3.324257434 0.0064064014 3.324257434 0.002555784402
1.889175878 0.22212673 1.889175878 0.08861574604
0.6167065902 1.02478100 0.6167065902 0.4088284696
—0.6167065902 1.02478100 —0.6167065902 0.4088284696
—1.889175878 0.22212673 —1.889175878 0.08861574604
—3.324257434 0.0064064014 —3.324257434 0.002555784402

Table B.1: GHQ Integration: Roots and weights of probabilists’ He,(xz) as well as
canonical probabilists’ polynomials Hey(x) for their degrees n spaning from 1 to 6.
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