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Abstract

To quantify geometrical characteristics of cities, we require input data of building
footprints. While these can be obtained from GIS city departments, generally data
sets of this kind are limited to large cities in the US and few cities in Europe. To over-
come this issue, we established a method that allows us to obtain building footprints
for any city in the world using open source maps (OpenStreetMap). Using buffer and
clustering algorithms we were able to improve city texture calculations to account for
diverse shapes of cities and their non-impervious parts. To understand the impact
that city texture has on surface temperature, we utilized daytime satellite images,
which only in recent years have managed to capture high resolution measurements
for an entire city. Lastly, using the Monte Carlo technique we generated statistical
accurate synthetic city models and used these to calculate wind loads and the drag
coefficient on the buildings.
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Chapter 1

Introduction

This chapter introduces the topic of urban growth and its role on environmental issues.
It discusses different approaches for modeling urban networks and ways of quantifying
them in order to understand their future impact on sustainability and resilience of
cities. The chapter concludes with the objectives of this research, followed by an

outline of this thesis.

1.1 Urban Population Growth

The rapid growth of urban population creates an intensified need for the development
of urban infrastructure,[43]. Patterns of urban growth have become more complicated
in the past couple of decades. Many cities have experienced fast outward expansions
from the central core, such as downtown New York and Athens but there are also
areas that have been expanding without any obvious pattern, for instance Los Angeles
and London|37].City growth is intrinsically related to population growth,[37]. Studies
conducted by the United Nations predict similar patterns of expansion in urban life
in the next decades,|35]. To make cities safe, resilient and sustainable, they have to
become smart, sustainable and inclusive from an economy perspective. If cities are to
deliver such sustainable growth, there is a need to establish a platform that will foster
cities to continue to thrive and grow, while improving resource usage and reducing

pollution and poverty, thereby creating cities of opportunities with universal access
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for services, energy, housing and transportation,|35][34].

The mark has been surpassed where globally more people live in urban than in
rural areas. Over 55% of the world’s population now resides in urban areas. In 1950,
30% of the world’s population was urban, and by 2050, 68% of the world’s population
is projected to be urban. Today, the most urbanized regions include Northern America
(82% urban), Latin America and the Caribbean (81%), Europe (74%) and Oceania
(68%). The level of urbanization in Asia is now approximating 50%. In contrast,
Africa remains mainly rural, with only 43 % of its population living in urban areas.

[35][35]

The urban population of the world has grown rapidly since 1950, having increased
from 751 million to 4.2 billion in 2018. Asia, despite being less urbanized than other
continents, is home to 54% of the world’s urban population, followed by Europe and
Africa (13% each). Growth in the urban population is driven by the overall popu-
lation increase and by the socio-economic lift of people moving at a higher rate to
urban areas. Combined, these two factors are projected to add 2.5 billion to the
world’s urban population by 2050, with almost 90% of this growth predicted to occur
in Asia and Africa [35][34]depicts a dramatic increase of the proportion of total pop-
ulation for all major areas. None of the illustrated areas will have urban population
less than 50%. Some cities have experienced population decline in recent years. Most
of these are located in low-fertility countries of Asia and Europe where overall pop-
ulation sizes are stagnant or declining. Economic contraction and natural disasters

have contributed to population losses in some cities as well,[35][34].

Urban growth is closely related to the three pillars of sustainable development:
economic growth, social progress while minimizing the environmental footprint. Well-
managed urbanization, informed by an understanding of population trends over the
long run, can help to maximize the benefits of agglomeration while minimizing envi-
ronmental degradation and other potential adverse impacts of a growing number of

city dwellers, [35][34].
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Figure 1-1: Urban and rural population of the world 1950-2050, United Nations

1.2 Environmental Issues

The microclimate in urban areas differs significantly from the climate in rural ar-
eas. Wind speeds are lower due to wind sheltering leading to less removal of heat
and pollutants from urban areas and air temperatures are higher due to urban heat
island effect,[11]. Natural surfaces such as vegetation have been replaced with non-
vegetated surfaces like asphalt and concrete, which have the ability to store heat,
which is later released back into the atmosphere. This change in land use is known to
increase the land surface temperature[43]. In order to meet the need for secure and
environmentally friendly cities, there is a need to focus on the response of cities to
external actions during operation and in extreme situations. These include, but are

not limited to Urban heat islands, hurricanes, flooding and air pollution.

1.2.1 UHI (urban heat island) -Surface UHI effect

Urban heat island (UHI) is a climate phenomenon that results in increased air temper-
ature in cities when compared to their rural surroundings. UHI is generally considered
to be an adverse effect with its externalities ranging from increased air pollution to
higher energy demand, and deteriorated human health and comfort. With future ur-
ban growth patterns, the impacts of UHI will magnify, a part of urbanization natural

surfaces such as vegetation are replaced with non-vegetated surfaces such as asphalt
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and concrete. Warmer air caused by UHI increases heat stress on urban residents,
potentially raising the threat of mortality. In addition, higher temperature increases
energy consumption and associated greenhouse gas emissions due to intensified use
of air conditioning. Accurate quantification of UHI can help to efficiently evaluate
the potential heat risks and guide city management and development for government
and city planners. Traditionally, the detection of UHI has been conducted consid-
ering measurements at urban and rural regions. Similarly, the study of surface UHI
(SUHI) uses remote sensing satellite images captured in urban and rural regions. The
estimation of UHI relies on the definition of urban and rural stations, and for SUHI
on image pixel resolution. In the last few years, global climate change already had
observable effects on the environment. From the normally mild summer climates of
Ireland, Scotland and Canada to the scorching Middle East to Southern California,
numerous locations in the Northern Hemisphere have witnessed their hottest weather

ever recorded over the first July week in 2018, as depicted by the figure below [45].

Simulation of maximum temperatures on July 3 from American (GFS) weather model at two meters
above the ground. (University of Maine Climate Reanalyzer)

Figure 1-2: All-time heat records have been set all over the world during the first
week of July 2018, Washington Post

20



1.2.2 Extreme Events-Resilience

Cities worldwide have experienced a significant increase in damages and losses due
to a variety of disasters in recent years. According to a recent United Nations Inter-
national Strategy for Disaster Reduction (UNISDR) report (2015), natural hazards,
such as hurricanes and floods, cause economic losses of up to US$300 billion each year.
There is an increasing amount of evidence that the exposure of urban assets worldwide
has increased faster than the decrease in vulnerability, which has generated new risks
for urban assets, and consequently a steady increase in hazard-related losses. Climate
change is one of the biggest global threats to human health of the 21st century[43].
Its perils to society will increasingly be connected to weather-driven hazards [37],
[16], [104], because extreme weather states are expected to disproportionately rise
compared with changes in climate averages [74]. Human beings are affected by ex-
treme weather events through a set of complex pathways, including direct effects,
such as death or immediate injuries, and delayed or indirect effects, such as illness,
mental health effects, and effects associated with the ecology of infectious diseases
and disruption of crucial infrastructure. A survey from Lancelet Planetary health
projections has shown a rapid rise in the death toll due to weather-related disasters
in Europe during this century under a scenario of climate and population change.
During the 30-year period of 1981-2010, around 3,000 people per year lost their lives
because of weather related disasters. If no adaptation measures are implemented,
this number could rise substantially in the upcoming decades. It is predicted to reach
32,500 deaths (uncertainty range 10,700-59,300) by the period 2011-40 (about a ten
times increase), 103,300 (48,300-179,300) by 2041-70 (about a 30 times increase), and
152,000 (80,500-239,800) by 2071-100 (about a 50 times increase). These trends are
shown in Figure i-x, inform of a plot of the number of deaths and the number of
people exposed to multiple weather-related hazards [38]. For instance floods on the
outskirts of Athens have killed 23 people, injured dozens, and the majority of build-
ings, highways, and infrastructure facilities, located below sea level were drowned by

floodwaters. This highlights the need to understand and study the factors that cause
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these catastrophic events. To achieve this goal, efficient information for buildings in
urban areas is required to model urban environments and to study urban vulnerabili-
ties. While rebuilding infrastructure to be more resilient will reduce the risk of future
damage, it is not feasible to rebuild entire cities. It is possible, however, to identify
the specific buildings in cities that are most vulnerable to failure as a result of inten-
sified wind loads and to make those buildings more resilient vis-A&-vis to hurricane

damage through e.g. hurricane-proof retrofitting techniques. [83]
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1.3 Modeling of Cities

Models are abstractions, simplifications of the 'real thing’. According to Morrison|3]
models play an autonomous role in science and design. In other words, models are not
theories, nor are they equivalent to the realities they seek to represent or manipulate.
Models thus act as instruments that enable scientists and engineers to explore the
world, to predict it and to plan for it prior to ’acting’ on the world in some irrevocable

way,[3].

1.3.1 Existing City Models

There have been different ways of modeling cities, either for city planning or to

conduct different static and dynamic analyses. These are:

1. Land use transportation models were the first mathematical models that
simulated how activities such as employment, population and the trips are con-
nected through the journey to work located at different areas or points repre-
sented as small zones within the city. However, these models are limited in their
predictive capabilities. That is, such models fail to generate compact, radial,

ribbon, sectorial and other morphologies that are icons of urban planning,|3].

2. Morphological models are cellular automata models that aim to capture
urban development, by simulating urban morphologies. Land development is
based on accessibility to land use types and activities at a distance from the site
in question subject to various physical constraints and land suitability encoded

as cellular development rules operated sequentially in time,|3].

Jobstyl et al. [16] introduced the usage of the radial distribution function, g(r),
for analyzing city texture. In the context of buildings, g(r) is the probability
of finding a building at distance r from the reference building relative to the
average. This method will be used to identify different city textures, as it will

be explained more thoroughly in the following chapters.
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3. 3-D city modelsare generated using rapid-capture techniques such as airborne
laser scanning, that permit the generation of 3-D representations of buildings
in block form and which can be improved with land parcel and street geometry
data. What makes the current generation of digital 3-D models important is
the notion that such models are databases that can store any kind of spatial
urban data with just their geographical reference. That is, these models do not
only represent the digital geometry of traditional models, but also represent
large-scale databases which can be viewed in 3-D. However, such 3-D models
of cities are still very limited, with usually just small samples available to the

public,[3].

1.4 CFD Analysis for Urban Design and Computa-

tional Cost

Between 1993-2012 more than 75% of catastrophic losses in the United States was
caused by windstorms (1). The Congressional Budget Office estimated the average
annual damage to be $28 billion dollars (0.16 % of GDP), with a potential rise of 55%
to $38 billion by 2075, which is attributed to coastal development(2).[50] This eco-
nomic impact of wind related events calls for reevaluation of engineering approaches.
2017 was one of the most devastating U.S. hurricane seasons ever recorded. State
Departments of Public Safety across the U.S. tens of thousands of destroyed homes
and hundreds of thousands more as damaged. Although, the total economic impact
continues to be measured, estimates from NOAA’s National Centers for Environmen-
tal Information place damage costs for weather and climate related disaster events
at over $300B, with hurricane-related costs accounting for more than $200B of that
total,[50]. To increase the resilience of cities, there is thus a need to identify the most
vulnerable buildings in cities, and to make those buildings more resistant to hurri-
cane damage. With this focus in mind, this research aims to examine how additional

long-range city texture parameters can be used to create urban models that enhance
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previously established computational fluid dynamics (CFD) methods. This method
solves and analyzes problems that involve flow of fluids. In the field of architecture,
urban design and urban planning, CFD is useful for analysis and understanding of

the loads on buildings during hurricanes and floods.

When dealing with real cities, the problem becomes more complex. First of all, a
simulation domain is required that is significant larger than the one usually considered
in micro-scale simulations. Moreover, the emissions, hurricanes, floods are parameters
that affect a larger area, or even the whole city. Finally, there are limitations in
micro-scale simulations regarding the geometry complexity and the associated mesh
grid density,[18|. Thus, a CFD simulation and analysis of the whole city introduces
an enormous computational cost and a highly consuming simulation time. For this
reason there is a need for reduced models, in a way that maintains the required

information for each approach.

Such models must be statistically representative of city textures. This requires
obtaining map data, composed of buildings and their geographical location. This

type of information is referred to as Geographic Information System (GIS) Data.

1.5 Research Objectives

This research extends a city texture approach of Sobstyl et.al [84] using GIS data.
This extended g(r) approach is validated for UHI associated with daytime temperature
using satellite data to extract the surface temperature of cities and their surroundings.
The novelty of the presented approach is the use of open-source data for determination
of the radial distribution function of cities. These data are then used to generate
synthetic cities by applying computational fluid dynamics. Finally the synthetic

cities are subject to different wind speeds.
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1.6 Thesis Outline

Following this introduction presents the four chapters compose this thesis. Chapter 2
presents the Open-Source Software for data collection, and the models use, which em-
ploys to extract city data. In chapter 3 the methodology for obtaining Land surface
temperature and computing the Surface Urban Heat Island (SUHI) using Satellite
Data and OpenSteetMap Boundaries is explained. Chapter 4 presents the MC ap-
proach to generate synthetic cities and the correlation between city structure and
urban physics phenomena are disassed. In chapter 5 the different approaches of Com-
putational Fluid Dynamics and its application to our synthetic models is presented.

The thesis finishes with conclusions and recommendations for future research.
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Chapter 2

Open-Source Software for data

collection

2.1 Introduction

This chapter addresses the first research objective which is obtaining building foot-
prints from OpenStreetMap, for the purpose of quantifying city texture. The method
of data acquisition and pre- and post-processing is explained. Open data are still suf-
fering from incompleteness at a global scale of building footprints. Thus to confirm
the accuracy of the methodology and quality of data, the radial distribution function

is validated thus obtained with the proposed method against results from city data.

2.2 OpenStreetMap

In order to calculate Radial distribution function g(r) for city texture there is a need
to obtain building data. This data specifies building footprints and geographical lo-
cations. With building footprints additional building parameters such as building
areas can be obtained. After editing and converting buildings to points, radial dis-
tribution function g(r) can be derived. However, there are difficulties to obtain data
for cities outside the U.S. Especially for Europe. Universities and local authorities

do not provide appropriate data. For German cities, while the data sets exist, they
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can be very costly. For instance, Stuttgart’s data would cost 30,000%, e for Athens
there is no available GIS data. This motivates using open source data from online
maps, like OpenStreetMap, which is an online mapping tool like Google Maps with
the main difference that it doesn’t require licensing for obtaining data. By using
OpenStreetMaps sufficient information can be obtained for many densely populated

cities across the globe.

2.2.1 OpenStreetMap Comments

The use of OpenStreetMap (OSM) is motivated by restrictions regarding the use or
availability of global GIS data. OSM is a collaborative project aiming at creating a
free editable map of the world,[70]. OSM provides sufficient information for many
highly populated cities across the world. OSM emphasizes local knowledge based
upon aerial imagery, GPS devices, and low-tech field maps to verify that OSM is
accurate and up to date. OpenStreetMap’s community includes enthusiast mappers,
GIS professionals, engineers running the OSM servers, humanitarians mapping of
disaster-affected areas, and many more,[93]. OSM data are constantly updated, with
updates made as frequent as on an hourly basis. Contributors are volunteers (over
1,000,000 contributors so far, and growing every day) - who know the area well,[94].
Moreover OpenStreetMap is an open source data, which means that anybody can

freely use it.

2.2.2 Downloading OSM Data

OpenstreetMap has open map data. It is possible to download map data from the
OSM dataset in a number of ways. The full dataset is available from the OSM
website download area.www.openstreetmap.org It is also possible to select smaller
areas to download. Data normally come in XML format or as OSM files. Extensible
Markup Language (XML) is a markup language that defines a set of rules for encoding
documents in a format that is both human- and machine-readable,[102].Files can be

downloaded either from the OSM website, or by using XAPI. API is the acronym for
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Application Programming Interface, which is a software intermediary that allows two

applications to talk to each other and XAPT is an extended version of API,[95].

2.3 Methodology

The workflow shown in Fig. 2-1 below, defines the methodology that has been devel-
oped to obtain OSM data. The approach is applied to extract 2D building footprints
from an online map. It is worth mentioning that for some cities it is also possible
to extract heights of buildings, but for most cities these data, as of now, are still
incomplete. The workflow method is grouped in three basic steps. The flowchart
shows the process of converting buildings into points by editing complex map data,
which subsequently is the input file for city texture calculations. This workflow has
been implemented in an automatic manner so that a user only needs to input GPS
coordinates of the city to obtain building footprints in a format required for city
texture calculations.

To extract and edit map data websites and GIS software packages have been
utilized. In addition to the OSM website, QGIS has been used as well, which is a
free and Open Source Geographic Information System. ArcGIS, which is another
GIS for analyzing and editing maps [96] and Wambacher-osm, a Boundaries Map
which provides a comfortable overview of the administrative boundaries in the OSM
dataset, have been used also. The latter also provides downloading capabilities for
city boundaries,|69]. For further processing Matlab Software and Python scripts have

been taken into account.

2.3.1 OSM Data Analysis

2.3.2 City Boundaries

For downloading larger areas greater than a bounding box of about 0.5 degree by 0.5
degree, XAPI, which for large cities appears to be the most efficient way, had to be

used.
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Figure 2-1: General Workflow of building download and processing

To download the data, GPS boundaries have to be defined. The boundaries are
needed in order to determine which part of the map should be downloaded. The
definition of boundaries of each city is also required in order to extract online data
in the corresponding region. This is achieved by defining longitude and latitude
boundaries for each city. In the case of larger cities, the region needs to be splitted
into rectangles. This is because the online downloading platform has a limit w.r.t.
the amount of data it is able to process. Once downloaded, buildings are converted

into an appropriate processing form.

Step 1: Download data with XAPI

Using the Ubuntu terminal and XAPI, the OSM file of a city is downloaded.

The coordinates form a rectangle. This rectangle has the maximum and minimum
coordinates of the boarder boundaries chosen before. This way of downloading data
makes the procedure more efficient and quick. This is very useful since large files of
a a city, cannot be downloaded from the website.

A region, with a lot of data,has to be specified. The command line used for this
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as follows:

wget -0 boston.osm "http:/overpass.openstreetmap.ru/

cgixapi_metax*[bbox=-71.19,42.22,-70.986,42.399]"

Step 2: Download data with XAPT in blocks

Due to limitations of online downloading platforms, in the case of very large cities (i.e.
Chicago or New York), the region has to be divided into rectangles. The algorithm
splits large areas into rectangles. The reconstruction of the city is achieved at the

end by appending the attribute matrices by all the neighborhoods /rectangles.

2.3.3 Step 3:Data Preprocessing
Conversion from osm to shape file

The next step is to convert an osm map file to a shape file. QGIS software, converts
the downloaded osm file into a shape file in which buildings are presented as polygons.

This requires an appropriate shape file format, easy to operate.

Shape File Format

The shapefile format is a popular geospatial vector data format for geographic infor-
mation system (GIS) software. It is developed and regulated by Esri as a (mostly)
open specification for data interoperability among Esri and other GIS software prod-
ucts. The shapefile format can spatially describe vector features: points, lines, and

polygons,[101].

2.3.4 Building Detection and Data Cleansing

First, the extraction of buildings is required, as the online data includes all the in-
formation found in a map, which in addition to buildings also includes roads, in-
tersections, sidewalks, various building tags (such as functional building attributes,

industrial or residential). This information is not required for this analysis, therefore
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it can be removed. The extraction is based on tags. Buildings have their own tags
and can be separated.

Building Tag

The building tag is used to mark a given object as a building. The most basic
tag use is building=yes, but the value may be used to classify the type of a building.
Tagging is a single building outline that can be created for each building complex
or block; which may relate to a single detached property, or to a row of individual

terraced houses or to some more complex arrangement of properties,|94].
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Buildings Within the City

The broader boundaries of a city get mapped onto the exact borders of

a city. The tool to achieve this, is provided by https://wambachers-osm. This
tool also allows to download the shapefile, which directly provides boundaries in a
single file. This procedure is also the difference from the one where the data are

directly downloaded from OSM, which provides

borders in pieces: In order to get the building within a city two shapefiles are

intersected /divided from OSM downloaded city together with its boundaries.

Figure 2-2: Boundaries of city of Boston obtained by OpenstreetMap.

Geometry Validation

It is not uncommon for buildings to initially be described as simple group outlines
and later be improved with more detailed outlines and to be split into individual
properties. This procedure leads often to imperfections, like overlapping, invalid or

duplicate polygons. These are commonly found in OSM data.
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Dissolve

The next step consists to dissolve buildings, or in other words merge buildings. This
tool aggregates features based on specified attributes. That is, it combines buildings
that share a wall. This is required because, for temperature or wind calculations,
two buildings that share a wall are essentially considered a single building. This step
was primarily applied based on the methodology of quantifying city texture, with the
objective to focus on the energy transfer between separated buildings or blocks,[84].
However, this step had to be omitted, since after dissolving buildings the reduction
of buildings in several cities was 50%-80%, which resulted in an insufficient number
of buildings to calculate g(r). For example, there were 20,395 buildings for Madrid
before dissolving, which turned to just 3,549 after applying the procedure. This
amounts to a reduction of 82.6 % buildings for Madrid. More values are shown in the

table below.

City from to | Percentage%
Paris 103366 | 16034 84.4
Rome 20451 | 10610 48.1
Milan 6375 1217 80.9
Prague 19075 | 6273 63.11
Rio de Janeiro | 17507 | 2662 84.79
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(a) Dissolved buildings (b) Non-dissolved buildings

Figure 2-3: Dissolve and Non- Dissolved buildings
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Eliminate Holes

This creates a new output feature class containing the features from the input poly-
gons with holes of a specified size of the polygon deleted. Since polygon holes are
considered parts of the polygon, they can be deleted or filled using this tool. If the
hole area is smaller than the specified size, the hole is eliminated and the space is
filled in the output. Any part that is inside the deleted hole is also eliminated in the
output.

S oa “SERZ

. ©f > & &g SN )
| | I Yot A\ g 2

(a) Buildings with holes (b) Buildings with no holes

Figure 2-4: Before and after the Eliminate Polygon Part Procedure

Projection Conversion

GIS projection is a mathematical transformation that take spherical coordinates (lat-
itude and longitude) and transform them to a XY (planar) coordinate system. This
enables to create a map that accurately shows distances, areas, or directions. With
this information, accurately work can be achieved by using the data to calculate
areas and distances and measure directions. As implemented in Geographic Infor-
mation Systems, projections are transformations from spherical coordinates to XY
coordinates systems and transformations from one XY coordinate system to another.
Projections are chosen based on the needs of the map or data analysis and on the area
of the world. Projections are useful for a limited set of purposes or scales. Finally,
projections are based on local needs and standards. The way to complete that, is
using the coordinates of a city and a table provided of ArcMap in order to select the

right projections. The name of the projection or a specific code which defines the
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projections of different areas of the world can be used to automize the method. An
obstacle is that the projection needs to be found in order to define code or name as

an input to the algorithm.

| File |—>| Data Frame Properties |—>C::_hﬂs:::>

| Data Managment Tool |—)-| Projections and Transformations |—b~| Projects |—>| Output Coordinate |—>

-- —)-l System |—)~| Projected Coordinate Systems |—h| State Plane |

Figure 2-5: ArcMap Steps for Projection Conversion

2.3.5 Building Data Extraction
Area of Buildings

An important step of calculating building needs is to project the coordinates to me-
ters. More specifically a field in the attribute table has to be added, which reports
all the necessary information for the file. After naming the field ’Area’ the type is

specified to double and the precision to 15 and scale 2.

Area of Boundaries

Following the same procedure for the boundaries of the city, the total area of the city
has to be calculated in order to compute the density. As explained in further steps

this is a criterion to decide whether the data are sufficient.

Conversion Building to Point

The final step of this workflow and actual objective of data extraction is to convert
buildings into points. This conversion requires some statistical analysis, performed
by the GIS software. The goal of this step is to have a representative point lying

inside the building, to represent it. First the geometric properties of buildings are
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aggregated into an attribute vector form for each point. That means that there is
a table where each row represents the attribute of each point and its corresponding
building. By these means a point representation of the buildings is achieved, without
losing any information of the geometry, such as its perimeter or area. In previous
work [84] buildings transformed into a set of single points using buildings’ 2-D center
of mass. That approach can lead to a point outside the building, when the shape is

irregular.

Figure 2-6: Buildings converted to points

Figure 2-7: Buildings converted to points zoomed
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2.4 Selection of Cities

A first approach of city selection is exploring the availability of data in OSM. After
completing this method density has to be calculated in order to verify the selection.

The accuracy offered by OSM is not always sufficient. For instance, many cities
have missing building footprints,not enough building information. A density criterion

for selection of GIS samples has been adopted for ensuring accurate results:

;N
p= T Ay, > 0.1 (2.1)
city i=1
City Density
Cape Town | 0.094487 City Density
Sao Paulo 0.436305 Paris 0.320
Mexico city | 0.277093 Prague 0.218
Rio de Janeiro | 0.323025 Rome 0.276
Bengaluru 0.224391 Sofia 0.139
Jerusalem 0.113991 Stuttgart 0.325
Moscow 0.324770 New York 0.562
Singapore 0.073302 Naples 0.101
St. Petersburg | 0.235562 Boston 0.085
Tel Aviv 0.160751 Jacksonville 0.0095
Tokyo 0.136703 Kansas city 0.036
Athens 0.385946 Miami 0.079
Berlin 0.187805 New Orleans 0.036
Bucharest 0.121718 St. Petersburg USA 0.037
Dublin 0.219291 San Francisco 0.128
London 0.135134 Vancouver 0.174
Madrid 0.364349 Montreal 0.128
Milan 0.422862

Table 2.1: Densities of Cities

The table depicts that cities like Boston, Miami,New Orleans don’t fulfill the den-
sity criterion. This occurs to cities, which include a large see area in their boundaries.
On the other hand Kansas and Jacksonville have very large boundaries. The first
counts 825 km?, where the second onesaAZ boundaries are 2.266 km?2. However, the
building footprint data are very dense in the city center that allows their usage for

further calculations.
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Figure 2-8: Boundaries of Boston covering an extensive area in the sea

2.5 Validation of open source data utilization

This section presents the accuracy of the usage of open source data for the employment
of city texture calculations using the radial distribution function, g(r). Specifically,
for this comparison the radial distribution function has been computed using data
from GIS departments and from OSM. The g(r) has been calculated in the same
way as in [84]. That means using a buffer around specific coordinates in the city. A
different approach for the g(r), which will be explained in chapter 3, will be used later

on.

2.5.1 Radial Distribution Function

The first step of validation is using the radial distribution function, a method which
will be explained thoroughly in chapter 3. In brief, in the context of buildings within
a city, g(r) is a 2-d spatial distribution of local density relative to the average density
of buildings. More specifically, it quantifies the probability of finding a neighboring
building at a given distance relative to the building of reference. For instance, for
Chicago, the probability of finding a building at a distance of 30 feet is almost 6 times
higher than at a distance of 300 feet. To validate open source data, g(r) analysis has

been performed for 4 cities.
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2.5.2 Comparison

The following validation is based on the comparison of OpenStreetMap data and GIS
departments data using the methodology of the publication,[84]. Main difference of
the validation and the approach presented previously is the sample of buildings. Not
the whole city has been analyzed, the computation in publication and in validation
is based on buildings within a 3-mile radius. The figures 2-9 - 2-12, depict radial

distribution functions for validated cities.

2.5.3 Validation of OSM using g(r) graph

Mean Absolute Error (MAE) and Root mean squared error (RMSE) are two of the
most common metrics used to measure accuracy for continuous variables. These two
error metrics are usually used for prediction tasks,[101]. For the diagrams below
four classic error metrics have been computed: the Mean Absolute Error, the Root

Mean Square Error, the difference of Means and the difference of Standard Deviations.

o New York
= OSM Data
—— City Data
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05¢
0
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Figure 2-9: Radial distribution function for New York using OSM and Data from GIS
Department

Mean Absolute Error (MAE):
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Figure 2-10: Radial distribution function for Chicago using OSM and Data from GIS
Department
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Figure 2-11: Radial distribution function for Boston using OSM and Data from GIS

MAE measures the average magnitude of the errors between two curves, without
considering their direction. It’s the average over the sample of the absolute differences

between the two observed values, where all individual differences have equal weight,[2].

N
1

MAE = — i — g 2.2
N 2l 22)
where N = number of observations,

g; = value of RDF taken from GIS departments,
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Figure 2-12: Radial distribution graph for Los Angeles using OSM and Data from
GIS Department

g; = value of RDF taken from OpenstreetMap
Root mean squared error (RMSE):

RMSE is a quadratic scoring rule that also measures the average magnitude of
the error. It’s the square root of the average of squared differences between the two

observed values,|[2].

RMSE = | — Z(gi —g))? (2.3)

where N = number of observations,

g; = value of RDF taken from GIS departments,

g. = value of RDF taken from OpenstreetMap

The values in the table show that a relatively minor percentage error is obtained

between OSM data and the building footpritns obtained from GIS departments.

Comments to the errors

As it can be observed from table 2.2 for all four cities, the various error metrics MAE,

RMSE, the difference Mean value and the difference in the standard deviation, have
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City MAE | Mean Diff | RMSE | Std diff
Boston, MA 0.0784 0.0011 0.1152 0.0033
Chicago, IL 0.0657 0.0024 0.1043 0.0157

Los Angeles, CA | 0.1202 0.0068 0.1902 0.0078
New York, NY | 0.0571 0.0098 0.0889 | 0.000168

Table 2.2: Error metrics

small magnitude in comparison with the actual values of the two examined curves,
since the values of the error have the same units as the curves. That indicates that a
high accuracy can be achieved using the OpenStreetmap data. Concluding the above
is also possible by visualizing the computed rdf values for both approaches, as shown

in fig. 2-4

2.5.4 Validation of OSM using g(r) parameters

In the context of cities, distances have been compared. To be exact, the first peak
of g(r) has been used in order to obtain five variables: (1) the characteristic local
cluster size, R, (2) the average distance between buildings, d, (3) average number of
local buildings, C,,, (4) the local angular order of buildings, ¢, and (5) the density of
the local cluster, p local. These values are basic characteristics that can be obtained
directly from g(r). The values of these parameters are shown in the tables 2.3 and 2.4.
However, a more through explanation of these variables will come in chapter 3. For
now, the comparison is between OSM and the data obtained from GIS departments,

which were used in the previous study.

City R(feet) | L(feet) | d(feet) o) Cn
Boston, MA 70.80 36.97 48.22 | 0.6347 | 2.7403
Chicago, IL 55.67 37.14 32.48 | 0.8357 | 2.2753

Los Angeles, CA | 69.65 43.99 48.55 | 0.7012 | 2.3471
New York, NY 66.86 40.87 42.97 | 0.8178 | 2.2891

Table 2.3: Data from GIS Departments
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City R(feet) | L(feet) | d(feet) o Cn
Boston, MA 67.94 43.00 50.31 | 0.3937 | 2.7895
Chicago, 1L 46.45 38.39 30.71 | 0.4991 | 2.0056

Los Angeles, CA | 72.56 42.68 51.22 | 0.4015 | 2.7412
New York, NY 68.24 37.29 40.72 | 0.4410 | 2.3754

Table 2.4: Data from OpenStreetMap

Comments to the parameter values

For the validation, the building data used was subject to the same procedure as in
the publication|84], but with some changes. Buildings to points were not converted
using the 2-D center of mass. That leads to a different location of point and also a
difference in values in the local angular order of buildings.

Areas of merged buildings have been analyzed as well and the findings were, that
in a logarithmic mode probability distribution function of buildings areas can be
adequately captured with a bi-modal which forms distinction between unoccupied
and occupied buildings, for instance garages and residential or commercial units,
respectively,|84]. Despite all accurate data, the cut of point between garages and no
garages was not clear, that means more or less buildings with different size was added
to the sample. That leads to the slight differences in the average building size, the
characteristic local cluster size, R, the average distance between buildings, d and the
average number of local buildings. However the differences in the parameters are only
slightly different and that can conclude to an eminent accuracy of OpenStreetMap

data.
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Figure 2-13: Radial distribution function and Number of neighboring buildings
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Figure 2-14: Radial distribution function and Number of neighboring buildings
2.6 Summary

In this chapter a new method of obtaining building data from OpenStreetMap has
been established. The methodology of extracting building footprints and the pre and
post processing of this approach is shown. The data is being validated by computing
the radial distribution function and it’s parameters and comparing these results to

results of the GIS departments.
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Chapter 3

Surface Urban Heat Island (SUHI)

and city texture

3.1 Introduction

In this chapter the focus relies on the first research objective by quantifying surface
urban heat island for 35 cities across the world. First the approach of separating
the rural and urban areas will be introduced in order to calculate the land surface
temperature for these two areas . As a final step, the correlation of city texture and
SUHI will be analyzed. Throughout the remaining part of this thesis, surface urban
heat island will be referred to as UHI.

3.2 Urban Heat Island UHI

UHI is a climate phenomenon that results in an increased air temperature in cities
when compared to their rural surroundings. More than 50% of human population
lives in the cities, urbanization has become an important contributor for global
warming,[20]. Accurate quantification of UHI can help to efficiently evaluate the
potential heat risk and to guide the city management and development for govern-
ment and city planners. The surface UHI relies on the definition of urban and rural

stations or pixels,[36]. UHI phenomenon may be evaluated by comparing the air
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temperature in urban and rural environments based on automatic and conventional
weather stations and also by land-surface temperature (LST), usually obtained with
thermal infrared (TIR) remote sensing data. On the one hand situ air temperature
data have the advantage of a high temporal resolution and historical time series, but
a low spatial resolution as well. On the other hand, remote sensing LST data have in
general a low temporal resolution, but a high spatial distribution and it is more easily
related to surface conditions. In fact, it is possible to retrieve biophysical land-surface
characteristics and to describe urban environment materials based on remote sensing
data. Consequently, remote sensing has the potential to improve understanding the
UHI phenomenon and its eifiAects, and several studies have been assessed UHT using
LST retrievals, [73]. A previous approach has established the correlation between air
UHI during nighttime and city texture. The goal of this thesis was to establish a
correlation between Surface UHI during daytime and city texture. UHI has a greater
impact in people’s lives, the majority of people are outside during these hours and
general life is more vivacious in cities during the day. SUHI is introduced here since
it gives continuous information about the temperatures, where UHI in a previous

research was based on temperature values of one station.

3.3 Satellite Data

3.3.1 LandSat Satellite

The LandSat satellite passes over the same place on earth every 16 days. Its orbit
goes from pole to pole and captures a new place. It’s been doing this for 40 years
but since December 2008, they rewrote their data policy to one in which all LandSat
data were available to anybody without restriction and at no cost. There have been
a various LandSat satellites but on February of 2013 LandSat 8 was launched with a
much higher resolution compared to any other satellite imagery. The resolution for
previous LandSat 7 was 500m, while for LandSat 8 the resolution is 100m,[1]. That

gives the opportunity to receive very accurate results and to calculate the land surface
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temperature. There are also other satellite data such as, MODIS which has been used
in many researches for quantifying the UHI phenomenon,|?|, however LandSat 8 has
the highest resolution.

Landsat 8 measures different ranges of frequencies along the electromagnetic spec-
trum of a color, although not necessarily a color visible to the human eye. Each range
is called a band, and Landsat 8 has 11 bands. Landsat numbers its red, green, and
blue sensors as 4, 3, and 2, so when we combine them we get a true-color image,|63].

Data are collected by the instruments onboard, using two primary imaging instru-
ments. Landsat 8 carries two push-broom instruments: The Operational Land Imager
(OLI) and the Thermal Infrared Sensor (TIRS), [1]. More specifically OLI acquires
images of the earth’s surface in nine different bands of visible and invisible (infrared)
radiance. Bands 4,5 which are used in this thesis have a 30 meter resolution. These
are used to calculate the Normalized Difference Vegetation Index, explained during
the methodology. The TIRS gathers images of the earth’s surface in two infrared
(thermal) bands , band 10 and 11. that are particularly useful providing accurate

surface temperatures of the planet’s land areas,[1].

3.4 Methodology for SUHI Calculation using satel-

lite imagery

3.4.1 Data Collection

First step of this approach is to collect the data. The city selection is based on the
cities in chapter 2. As mentioned above the Satellite has been launched since 2013,
thus the available data are limited. The collection of data depends on weather condi-
tions and quality restrictions. Satellite images for temperature over zero degrees were
chosen to eliminate the possibility of ice and snow on the images, since the method
calculating the Land Surface Temperature does not include these phenomena. The
US Geological Survey includes a quality assessment, which contains quality statistics

gathered from the image data and cloud mask information for the scene. A quality
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assessment band improves the integrity of science investigations by indicating which
pixels might be affected by instrument artifacts or be subject to cloud contamina-
tion. In the methodology chosen an important index is the Normalized Difference
Vegetation Index (NDVI) and it has been noticed that, while calculating it over pix-
els that contain clouds it shows anomalous values. If such pixels were included in a
phenology study, the results might not show the true characteristics of seasonal vege-
tation growth. Cloud-contaminated pixels will lower NDVI values and measures such
as the timing of ’green up’ or peak maturity would appear later than they actually
occurred, [3].

These anomalies of NDVT led to a more strict data selection, making the task of
collecting a clear not cloudy snapshot for north European countries, difficult. Some
of them were constricted to maximum two satellite images. For cities like Athens,
Rome, Boston the weather conditions during spring and summer made it possible to
download more than 15 satellite images. Another reason of data availability restriction
has been smog. This phenomenon was very extent in the city of Singapore, for which

only one acceptable image could be obtained.

3.4.2 Separation of Urban and rural area.

The first step was to define the boundaries of rural and urban area. A first attempt
was to scale the boundaries of the city. This seems to be a satisfactory approach for
cities with a circular shape, such as Berlin, Paris and London, but for cities like New
York and Athens this could not be applied. The explanation to that is based on the
fact, that these boundaries were mainly expanded in one direction and the rural area
wasn’t homogeneous in all direction.

That led to the solution of using a buffer, which radius is computed by increasing
the city boundaries up to 25 km. The buffer size or in other words the boundaries
between rural and urban area is an approximation, based on similar researches and
observation of the satellite data,[21]. This distance was the minimum to have sufficient
rural data. Using a bigger buffer increased the risk of overlapping with other urban

areas.
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This method has been implemented in an automatic manner, by combining Open-

StreetMap boundaries and satellite imagery.

e The boundaries of the city are dissolved, that means merged into one polygon,
projected and transformed into meters after that the area of the boundaries
can be calculated. Assuming that the area represents a circle the hypothetical

radius has been calculated.
e The polygon boundaries are represented as a point, which is the center of mass.

e The next step is to create a buffer. The center of the buffer is the point created

in previous steps and the radius= hypothetical radius + 25 km

e The last step is to create the two different boundaries, for rural and urban area.
This is done by taking the symmetrical difference between the buffer and the

city boundaries. The results are shown in the pictures below.

Figure 3-1: Buffer Boundaries of Athens

3.4.3 Land Surface Temperature Method

This methodology has also been applied in an automated manner using python and
ArcGIS, functions. The required inputs are the rural and urban boundaries from
the previous methodology and the downloaded satellite data. The workflow of this

methodology is shown in the figure below.
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Figure 3-2: General Workflow for LST computations

e To calculate mean temperatures for rural and urban areas, the satellite images

have been 'cropped’ by using the specified boundaries. This was applied on all

necessary bands for these calculations. The use of bands is shown in further

steps.

e To extract temperature values of the pixels we follow the method provided by
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USGS. .

Figure 3-3: Satellite image for Athens

(b) Satellite image Athens rural

(a) Satellite image Athens urban

STEP 1- Top of Atmospheric Spectral Radiance

OLI and TIRS at Sensor Spectral Radiance Images are processed in units of absolute
radiance. Afterwards these values can be converted to spectral radiance using the

radiance scaling factors provided in the metadata file [5]:
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The first step of the algorithm is the input of Band 10. After inputting band 10, in
the background, the tool uses formulas taken from the USGS web page for retrieving

the top of atmospheric (TOA) spectral radiance (L)) [12]

LA:ML*Qcal'f‘AL (31)
where: L) = Spectral radiance (m)

M}, = Radiance multiplicative scaling factor for the band from the metadata
A = Radiance additive scaling factor for the band from the metadata

(Qcar = is the thermal infrared sensor Band 10 data.

STEP 2-Conversion of Radiance to At-Sensor Temperature

After the digital numbers (DNs) are converted to reflection, the TIRS band data
are converted from spectral radiance to brightness temperature (BT) using the ther-
mal constants provided in the metadata file. The following equation is used in the

algorithm to convert reflectance to BT,[12].

TIRS Top of Atmosphere Brightness Temperature (TIRS) data can also be con-
verted from spectral radiance (as described above) to brightness temperature, which
is the effective temperature viewed by the satellite under an assumption of unity
emissivity. The conversion formula is as follows:

Ky

BT = —p——— (3.2)
ln(% +1)

where: BT = TOA Brightness Temperature, in Kelvin.

Watts )

L, = Spectral radiance (mz*sr*um

K, = Thermal conversion constant for the band from the metadata

K, = Thermal conversion constant for the band from the metadata) [5]
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STEP 3- NDVI Method

Remote sensing phenology studies use data gathered by satellite sensors that measure
wavelengths of light absorbed and reflected by green plants. Certain pigment in
plant leaves strongly absorb wavelengths of visible (red) light. The leaves themselves
strongly reflect wavelengths of near-infrared light, which is invisible to human eyes.
As a plant canopy changes from early spring growth to late-season maturity and
senescence, these reflectance properties also change,[11]. By transforming raw satellite
data into NDVTI values, researchers can create images and other products that give a
rough measure of vegetation type, amount, and condition on land surfaces around the
world,[11] Although there are several vegetation indices, one of the most widely used
is the Normalized Difference Vegetation Index (NDVI). NDVI values range from +1.0
to -1.0. Areas of barren rock, sand, or snow usually show very low NDVT values (for
example, 0.1 or less). Sparse vegetation such as shrubs and grasslands or senescing
crops may result in moderate NDVI values (approximately 0.2 to 0.5). High NDVI
values (approximately 0.6 to 0.9) correspond to dense vegetation such as that found
in temperate and tropical forests or crops at their peak growth stage,[11].

Landsat visible and near-infrared bands are used for calculating the Normal Dif-
ference Vegetation Index (NDVI). The calculation of the NDVI is important because,
afterward, the proportion of the vegetation is calculated, and is highly related with
the NDVI, and emissivity.

NIR - R

:where NIR represents the near-infrared band (Band 5) and R represents the red
band (Band 4)[12].

STEP 4- Emissivity Correction using NDVI Method

The land surface emissivity (LSE) must be known in order to estimate LST, since
the LSE is a proportionality factor that scales blackbody radiance (Planck’s law) to

predict emitted radiance, and it is the efficiency of transmitting thermal energy across
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the surface into the atmosphere,[14]. The determination of the ground emissivity is

calculated conditionally as suggested in [15]:

EAZEU)\*PD—FES)\*(l—Pv)—FC)\ (34)

€sA NDVI < NDVI,
ex=9enP, +en(l1—P,)+C NDVI < NDVI<NDVI,
e+ C NDVI > NDVI,

Where €,, and €, are the vegetation and soil emissivities, respectively. The
condition can be represented with the following formula. When the NDVT is less than
0, it is classified as water, and the emissivity value of 0.991 is assigned. For NDVI
values between 0 and 0.2, it is considered that the land is covered with soil, and
the emissivity value of 0.996 is assigned. Values between 0.2 and 0.5 are considered
mixtures of soil and vegetation cover and (6) is applied to retrieve the emissivity. In
the last case, when the NDVI value is greater than 0.5, it is considered to be covered

with vegetation, and the value of 0.973 is assigned,|12].

STEP 5- Land Surface Temperature

Using the corrected emissivity values the land surface temperature has been calcu-
lated.
BT

1+ (% x In(ey)

LST =

(3.5)

where the LST is in Celsius (oC), BT is at-sensor BT (oC), A = 10.895 is the

wavelength of emitted radiance, is the emissivity €, and

p=hx—=1438%102m =K (3.6)
o

where o is the Boltzmann constant (1.38%10%3.J/K), h is Planck’s constant (6.626x
1034 x ), and c is the velocity of light (2.998 x 10%m/s) [18].
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STEP 6- Mean Temperature values for rural and urban areas

An additional use of NDVI has been established to separate the green and urban
areas. To calculate the mean temperature of urban and rural areas an additional
constraint is added into the algorithm. For rural areas buildings or non-vegetation
data are converted into no data values and respectively the same procedure is used
for urban areas, where parks and green areas are eliminated. The importance of that
step is based on the lower temperatures of green areas and higher temperatures of
buildings and street. For example by adding central Park into the urban temperature
would decrease the mean temperature of the city. UHI is calculated as the difference

of these mean values.

3.5 Results

3.5.1 Land Surface Temperature and NDVI maps

The results of this procedure are first of all satellite images with the temperature
values in their pixels. Two cities of the 35 cities are presented in the figures below.
As the figure for Athens depicts, even with a 25 km radius outside the city boundaries
many areas there are still a few areas with high temperature values. Areas like Elefsina
where many industries are located, such as the Greek oil companies, have also high
temperature values. The white values on the images are pixels with no data. It can be
noticed, that there are bigger areas on the map with no data in Athens. As described
in the previous step for rural areas all non-vegetation areas or in other words all the
pixels in rural areas which are buildings or steets are eliminated. This can also be
verified by observing the NDVI figure of Athens. This actually shows which areas are
green in the rural area and which areas are covered with buildings. Paris on the other
hand has a much clearer distinction between rural and urban area. The white values
which are no-data, on the rural area of Paris are around the city where buildings
are located. In the urban area the no data areas are parks and green areas. The

distinction between the areas can be observed as already mentioned on the NDVI
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figure of Paris.
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Figure 3-5: Land surface Temperature Athens
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Figure 3-8: NDVT for Paris

3.5.2 UHI observations

An interesting outcome of this analysis is the correlation of temperature and the UHI.
As shown in the graphs below, there is a linear correlation between rural and urban

temperature. That means that as the rural temperature increases the temperature
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difference between urban and rural temperature increases. This might not have a
huge effect on low temperatures, but for 30 degrees in rural area for cities such as
Rome or Prague, that concludes a rural temperature of 35 degrees. Worth mentioning
and reminding, this difference is UHI. This outcome highlights the UHI phenomenon.
The graphs for all 35 cities are shown below. The tables illustrate the values of mean
temperature for Athens and Paris and the standard deviation for which the images

were calculated. The data for the other 32 cities are available in appendix A.
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Date MeanTsR | MeanTsC | stD TsR | stD TsC | UHI
2014/01/11 13.37 12.47 1.51 0.66 s -0.90
2014/03/16 16.77 17.95 2.01 1.16 1.17
2014/04/01 20.97 21.45 2.45 1.26 0.47
2014/07/06 32.86 34.71 3.06 1.25 1.85
2014/07/22 31.10 32.27 2.31 1.04 1.16
2014/08/23 34.14 34.74 2.23 1.12 0.59
2015/01/14 10.03 8.78 1.70 0.71 -1.24
2015/05/06 27.54 29.45 3.54 0.83 1.91
2015/07/09 34.04 35.38 2.96 1.08 1.33
2015/07/25 33.39 33.75 2.82 1.09 0.35
2015/10/13 21.92 23.67 2.16 1.02 1.75
2015/11/30 12.01 12.48 2.09 0.72 0.47
2016/02/02 17.03 16.20 1.69 0.85 -0.82
2016/03/05 16.04 17.11 2.54 1.18 1.06
2016/03/21 17.47 18.93 2.06 1.08 1.45
2016/04/06 24.88 26.80 2.50 1.39 1.91
2016/04/22 24.81 27.08 3.50 1.50 2.26
2016/07/11 31.42 33.13 2.90 1.05 1.70
2016/07/27 30.44 32.83 2.73 1.20 2.39
2016/08/12 31.21 33.01 2.47 1.13 1.80
2016/09/29 24.37 25.55 2.89 1.29 1.17
2016/12/18 7.52 7.22 2.36 0.78 -0.29
2017/01/03 10.79 9.22 2.10 0.76 -1.56
2017/03/24 21.27 23.38 2.66 1.43 2.11
2017/04/25 23.55 23.93 3.10 1.28 0.38
2017/07/14 30.82 32.63 2.44 0.83 1.81
2017/07/30 32.27 34.25 2.90 1.17 1.98
2017/09/16 31.22 32.03 2.83 1.19 0.81
2017/12/05 11.47 12.00 2.33 1.08 0.52
2018/01/06 12.05 11.16 1.46 0.69 -0.89

Table 3.1: UHI values for Athens, where MeanTsR is the mean temperature of the
rural area, MeanTsC the mean temperature of the urban area, std is the standard
deviation for urban and rural temperatures
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FileName | MeanTsR | MeanTsC | stD TsR | stD TsC | UHI
2014/02/12 4.88 5.83 1.26 0.64 0.95
2014/03/16 15.33 16.84 1.31 1.14 1.51
2014/05/19 24.07 28.58 3.20 1.65 4.51
2014/09/08 20.80 24.13 3.04 1.11 3.33
2014/11/11 8.91 9.216 1.06 0.568 0.30
2015/04/20 20.57 24.19 3.87 1.45 3.62
2015/06/07 17.71 24.85 4.77 1.87 7.14
2015/09/27 16.97 18.47 1.34 0.95 1.49
2016,/06/09 21.76 27.25 3.40 1.54 5.48
2016/10/15 12.01 12.84 1.03 0.99 0.82
2016/10/31 11.53 11.59 1.05 0.84 0.05
2017/01/19 0.33 0.36 0.36 0.32 0.03
2017/04/09 23.62 26.15 2.08 1.62 2.53
2017/05/27 26.66 31.35 3.11 1.62 41.68
2018/02/23 2.28 3.50 1.01 0.86 1.21

Table 3.2: UHI values for Paris, where MeanTsR is the mean temperature of the
rural area, MeanTsC the mean temperature of the urban area, std is the standard
deviation for urban and rural temperatures

3.6 Summary

Using satellite data is the most common approach for obtaining Land Surface Tem-
peratures and subsequently land surface UHIL. The way that UHI is always calculated
is by taking the difference between urban and rural areas. Resulting, this means that
rural areas in the daytime are significantly cooler than urban areas. An outcome is as
well that UHI increases with temperature. It can be taken as given, that this slightly

different way of thinking about UHI, hasn’t been taken into consideration yet.
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Figure 3-9: Correlation Rural and Urban Temperature
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Figure 3-10: Correlation Rural and Urban Temperature
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Chapter 4

Radial distribution function

4.1 Introduction

This chapter begins with instituting the parallel between molecular physics and urban
designs, an analogy which allows us to utilize tools typically seen being used only in
the field of statistical physics. It will be started with a global approach to quantifying
cities, by using the radial distribution function, g(r). This chapter closes up by

explaining the usage of g(r) in modeling of cities and its correlation with UHI effect.

4.2 Definition of Radial distribution function, g(r)
in cities

The radial distribution function g(r) describes how the local density at a distance
from the reference particle varies from the global average. Traditionally, it has been
used to investigate the atomic-scale structure of condensed matter. In the context of
buildings, g(r) is the probability of finding a building at distance r from the reference
building relative to the average. The density in the statistical physics is the average
density of particles, which are similar in size. This poses some limitations when this
method is utilized for cities, where buildings across the whole urban network may have

significant variation of sizes. As a results, an average building size L is obtained and
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is assumed to be a representative particle size. Peaks in g(r) appear when the local
density of buildings deviates from the average density of a system. These peaks can
be studied to extract information about sizes of building clusters using a function’s
minima. The distance at which g(r) reaches its first minimum is defined as the local
cluster size R. Such a defined cluster size is critical in deriving city texture parameters,
namely, the number of local neighbors, average distance between them, local density,
and angular distortion between buildings that is captured with the local 2-D Mermin
order parameter. More specifically, utilizing g(r) to quantify city texture, it comes
out that cities have distinct textures that resemble structures of crystals, liquids, or
gases,|84].

Correlation of urban and particle physics:

In order to extract statistical characteristics the structure of cities will be cor-
related to the structure of particles. These have been coalesced with an analogy
between buildings and particles. The fundamental information derived from RDF is
the probability of finding a neighboring particle or building at a given distance from
the reference point. As soon as local density deviates from the average density of a
system, peaks in the distribution eventuate; in statistical particle physics terms, this
is explained as the probability of finding an atom at distance r from the reference
atom relative to randomly distributed system of atoms that at large distances con-
verges to unity. Those terms utilized at the city scale allow as to define the average
building density as:

Using this analogy allows to construe data given by the radial distribution function
in order to understand the structure of the city. The necessary metrics to model the
city is the building density, the average building size, the coordination number and
the local density, which will be explained more thoroughly below. Average building
density is defined as the ratio of the Number of buildings divided by the overall area
of the city,[84].

=
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where N is the total number of buildings and A is overall area of the city. This

density measure is the fundamental density used in g(r) calculations defined as:

1 al n;(r 4 dr) — n;(r)

N — Peity 2T X dr

g(r) = (4.2)

where n;(r) denotes the number of buildings within the radial distance r from
building i. Moreover, dr is the distance increment, which for RDF calculations has

been chosen to be 5% of the average building size, L. That is:

dr = 0.05L [4.6] = exp(Nlog(A;)) [4.7] where N is the total number of buildings
and A; is the area of building 7.

N

L= exp(y Y Viog(A) (4.3

i=1

For buildings (and cities) the first minimum of g(r) is representative of the charac-
teristic size, R, of the local cluster, where the density of buildings within the cluster
deviates strongly from the average of the system,[84] .Rmax can be calculated only
for the sample of cities whose structure is following a pattern of crystals or liquids.
For cities with structure of gases, it generally is not possible to calculate the first

minimum as the function does not reach a minimum.

The first peak of g(r) has one more property; it quantifies the distance at which
g(r) reaches its maximum. In the context of cities this is the characteristic distance,
d between the building of reference and its first shell of local neighbors Cn. Since for
g(r) analysis we consider buildings as particles with no size, d is the distance between
buildings’ centers of mass, which is not the shortest distance between walls of two
buildings,[84]. We find that there is a strong correlation between R and d that is

captured by the mean relation d = 0.72*R.

The Coordination Number Cn, is the number of nearest neighbors situated around
the central atom in a molecule or crystal at an average distance between them, d,[84].
In the context of g(r), Cn is defined as the area under the first peak of the function.

Applied to the two dimensional city texture, it can be generalized to:
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C, = Qpiplocal/ rg(r)dr (4.4)
0

where rmax is the distance where g(r) reaches its first minimum. In order to be
able to calculate Cn the local density of buildings, local density has to be known

procal: The local density of buildings, which is defined as:
- 1 N
procal = - Z; 1 (4.5)

where [V; is the number of buildings within local area Ar defined by circle with

radius, rmax from g(r).

4.3 Issues with Radial Distribution Function

This method of modeling cities has been established in previous work, where the areas
of calculating the radial distribution function and its parameters were restricted to a
3-miles buffer. In this approach we quantify g(r) for the entire city. A first approach
was using the same method as described in the common paper,[84]. However, this
approach could not be used, which led to three changes that have been applied to
correct and adjust the method to a larger scale such as the entire city.

As already mentioned in the methodology of converting osm data into points,
buildings are not getting merged (methods known as dissolving) since the number of
buildings has been reduced significantly for many cities in Europe. Thus, merging
buildings that share a wall would not be able to provide statistically sufficient size
samples for g(r) calculations.

Another reason why this approach could not be used is that g(r) would not con-
verge to 1, which by definition should converge for an infinite system when local
density transitions to the global average. To solve that, a different approach was
based on the assumption that it does not converge to 1 is caused by the boundary
effect. This happens because buildings close to the boundaries do not have enough

neighboring buildings to define the local g(r). Buildings near the city boundary have
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fewer neighbors than buildings inside the city. At long distance local density becomes
average density and thus g(r) should converge to 1. Focusing on the boundary effect
and the main effect which came from the city boundaries was not the solution but the
results improved slightly. The approach of removing the boundaries effect for city of
Jerusalem is shown in the next figure. The criterion to reduce the boundaries effect is
based on the rcut distance, which is the 15 meters radius buffer for which every point
is calculating the g(r). The polygon-boundaries created, is reduced by this distance

rcut. The points in the ring are just used as neighboring buildings.

G 7
:-_s_; ‘_*"v'r—‘“ i)

Figure 4-1: Removal of the boundaries effect for city of Jerusalem

However, reducing boundaries did not sufficiently improve g(r), which would con-
tinue to converge to a value slightly different than 1. The possible reason for multiple
areas inside the city, where there are not as many buildings as in other parts of the
city, would be counted in the density calculations. As a result, the global g(r) func-
tion, the average of all local g(r), at a longer range is lower than 1. This distort of
g(r) is eliminated by clustering buildings in the city. There are multiple clustering
algorithms available. The one selected is a common K-means clustering algorithm,
which assigns buildings to a cluster with the nearest to a given building average cen-
troid value. The number of clusters, K, are input user values, which in the context

of cities, have the ability to significantly alter areas as it is shown in the figures for
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increasing number of clusters. This approach does not differ in accuracy compared
to the previous published approaches as the small buffers, which has been used to
quantify the radial distribution function is translated here into neighborhoods, the

created clusters.

b b
AAAcluster = a(xlb_l—ﬁloo% (46)
art | +¢

where az? + ¢ is a cluster area fitting function for cluster i

it Adguster < 1% = Aguster = ax? + ¢

2 Clusters 5 Clusters 10 Clusters 25 Clusters
== ‘v

Figure 4-2: K-means clustering for city of Jerusalem

Clusters can be thought of as being neighborhoods. But at least 25 clusters
are needed to eliminate the empty areas in the central part of the cities. It is no
argument that clustering can help to obtain the right value for city density. To get
the appropriate values the number of cluster has to be defined. It turns out that
the city area, defined as the total area of all clusters follows a power decay for the

increasing number of clusters, which is shown with blue line in figure 4-3.

4.3.1 Categorizing the cities by texture

As mentioned above the g(r) function can give information about the structure of the
city after calculating the revised radial distribution function by getting the results
shown in the graphs below. Cities that have structures similar to crystals are listed in
the first table, observing the figures of these cities, g(r) patterns have numerous peaks

multiple and narrow peaks, characteristics for liquids are widely spread, smooth and
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Figure 4-3: K-means clustering for city of Jerusalem

limited several peaks. For gases, cities in the table, have a single and not so easily
evident peak, which means that they lack any type of structural order,[84]. The graphs

of g(r) are shown in figures .

Using the radial distribution function of gases, it is not possible to find the local
cluster since there is no first minimum, which is a challenge since there are 15 cities
which have such distribution. This first local cluster has been used to correlate the
city texture to UHI in previous publications,[84]. However there has been found a
strong linear correlation between the distance between buildings and the cluster size
as shown in the next graph. This allows obtaining additional city texture parameters,
mainly Cn and order parameter. While, there is no theory in statistical physics that
would correlate Cn with ¢, for the 35 cities it can be confirmed that there is a strong

relationship between the inverse of ¢ and Cn.

Using the methodology above the radial distribution function results as shown in

the figures below and the parameters are calculated.
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Cities Structure | R(m) | d(m) | L(m) | rho | C_n | phi
Athens L 16.15 | 10.33 | 12.91 | 0.52 | 2.48 | 0.43
Bengaluru L 11.81 | 10.33 | 9.84 | 0.29 | 2.68 | 0.41
Berlin G 9.18 6.66 | 12.12 | 0.31 | 12.65 | 0.31
Boston L 21.85 | 15.45 | 10.66 | 0.30 | 3.20 | 0.37
Bucharest G 45.52 | 31.29 | 14.22 | 0.39 | 9.00 | 0.18
Cape Town G 19.16 | 15.32 | 19.15 | 0.27 | 2.68 | 0.43
Chicago C 1353 | 9.46 | 9.01 | 0.5 | 3.60 | 0.32
Dublin L 10.33 | 6.88 9.08 | 0.43 | 2.82 | 042
Jacksonville L 25.96 | 15.71 | 13.66 | 0.26 | 2.46 | 0.45
Jerusalem G 35.78 | 25.97 | 16.75 | 0.22 | 3.78 | 0.32
Kansas City L 14.67 | 11.01 | 12.22 | 0.25 | 2.31 | 0.46
London L 9.064 | 5.53 | 10.07 | 0.30 | 2.52 | 0.45
Madrid G 20.49 | 14.87 | 16.53 | 0.63 | 3.12 | 0.38
Mexico_city G 14.33 | 10.40 | 10.40 | 0.64 | 3.98 | 0.34
Miami C 2246 | 16.04 | 16.04 | 0.21 | 2.19 | 0.47
Milan G 40.14 | 32.30 | 19.58 | 0.52 | 5.24 | 0.24
Montreal C 10.64 | 7.70 | 7.33 | 0.65 | 2.75 | 0.41
Moscow G 41.41 | 30.06 | 18.22 | 0.68 | 5.69 | 0.27
Naples L 27.46 | 21.05 | 18.30 | 0.20 | 2.98 | 0.43
New Orleans L 1177 | 10.00 | 11.77 | 0.19 | 2.07 | 0.49
New York C 1028 | 6.07 | 9.34 | 0.5 | 2.53 | 0.44
Paris G 18.88 | 13.71 | 11.42 | 0.57 | 3.82 | 0.34
Prague L 4.82 3.61 | 12.04 | 0.32 | 5.06 | 0.39
Rio de Janeiro G 8.82 6.40 | 854 |0.78 | 3.05 | 0.37
Rome G 34.62 | 25.13 | 14.87 | 0.49 | 7.88 | 0.25
San Francisco C 14.14 | 824 | 11.78 | 0.35 | 2.09 | 0.49
Sao Paulo G 7.22 5.24 9.53 |0.49 | 2.21 | 047
Singapore L 89750 | 6.28 | 17.94 | 0.53 | 2.19 | 0.48
Sofia G 20.47 | 14.86 | 12.38 | 0.39 | 4.31 | 0.33

St. Petersburg G 56.69 | 41.15 | 20.57 | 0.44 | 5.55 | 0.24
St. Petersburg USA L 26.27 | 15.21 | 13.82 | 0.23 | 2.04 | 0.49
Stuttgart L 23.13 | 14.96 | 13.60 | 0.55 | 3.78 | 0.34
Tel Aviv L 49.29 | 37.18 | 17.29 | 0.33 | 7.85 | 0.18
Tokyo G 12.80 | 9.29 9.29 10.29| 343 |0.34
Vancouver C 12.01 | 10.44 | 10.44 | 0.30 | 2.07 | 0.49

Table 4.1: Geometric Data for cities
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Figure 4-4: Radial distribution function for the calculated cities
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Figure 4-5: Radial distribution function for the calculated cities
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Figure 4-6: Correlation between the number of neighboring buildings Cn and the
order parameter ¢
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Figure 4-7: Correlation between Cluster Size and Distance between Buildings.

4.4 Correlation of city texture and UHI

Using the method to compute temperature and UHI presented in the previous chapter

gives the opportunity to investigate if there is any correlation between surface UHI

1)



and city texture. It has been found that there is a high correlation between nighttime
UHI and city texture by using measurement of meteorological station, however using
satellite data to compute temperature gives continuous measurements for the entire
city and urban area. The only restriction of this method is that there are only
temperatures for a specific time, which is shown in the table below for each city.
The fact of capturing images at different hours is problematic since the angle of the
sun differs and the temperature data can’t be easily compared. A further step could
include a prediction model for this approach to estimate temperature on the same
time. On the graph below the probability density function for the three structure
categories, gas, liquid and crystal can be seen. The UHI is calculated by the data
from the Satellite Data, which is done by taking the difference between the mean
urban and rural temperatures. As the graph depicts, the distribution for gases varies
the most, while it can be noticed that for crystal cities UHI is significantly confined
within a smaller range. Using the definition of Shannon entropy, higher entropy
means flatter histogram, which indicates sampled values to be less predictable, where

for lower entropy, sample values are more predictable.

City time
1 Berlin 9:55
2 Jerusalem 8:10
3 Madrid 10:54
4 Mexico 16:58
5 Moscow 8:28
6 Paris 10:50
7 | Rio de Janeiro | 12:50
8 Rome 9:45
9 Sao Paulo 13:00
10 Sofia 9:10
11 | St Petersburg | 9:10
12 Tokyo 01:15

Table 4.2: GGases structured cities and the satellite capture time
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City time
1 Athens 9:04
2 Bengaluru 5:10
3 Boston 15:26
4 Dublin 11:20
5 Jacksonville 16:00
6 Kansas city 17:00
7 London 10:50
8 Naples 15:55
9 New Orleans 16:30
10 Prague 9:55
11 Singapore 3:15
12 | St. Petersburg USAaAe | 16:00
13 Stuttgart.mat 10:10
14 Tel Aviv 8:10

Table 4.3: Liquid structured cities and the satellite capture time

City time
Chicago 16:51
Miami 15:30
Montreal 15:37
New York 16:30
San Francisco | 18:45
Vancouver 19:05

S| Y | W N

Table 4.4: Crystal structured cities and the satellite capture time

4.4.1 UHI results

At which distances g(r) reaches the first minimum, as it is the characteristic local
cluster side, have to be compared. In previous calculations this characteristic cluster
size was attributed to various values of urban heat islands across multiple American
cities. It had to be checked if LST is highest for crystalline cities by correlating value
aAZdaAZ from g(r) with average LST. As shown in the figures below, no correlation
could be found between the average UHI and the average building distance. Instead
of comparing the cluster size and the UHI as in previous work done by Sobstyl et al.,
the average building size has been used, since it can be found for all structured and
unstructured cities. The cluster size can be calculated only for structured cities.

Possible explanations, why there is no correlation for daytime UHI and city texture
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Figure 4-8: PDF-UHI for 35 cities categorized by their structure

is the differences in material in the cities the shapes of buildings and and also the
time and date,[40]. Images for a specific time of the day for each city are available,
but even by categorizing them by geographical location there is no ability to obtain
any meaningful correlation. All the data for this correlation have temperature values
between 22 and 27 degrees. These are taken in different times during the day. When
the temperature is 27 degrees in the morning in Athens at noon it might be 35. The
angle of the sun constitutes a major role in the temperature and in that way also the

shadows.

As mentioned in the introduction during daytime the city is ’alive’ and many more
factors cause the UHI such as, the movement of the cars, the emission, the waste heat
of air conditioning can. Further investigation on specifying the rural area could also
provide more accurate results. Moreover, the mean values and the standard deviation

of the created model are shown in the table below.

78



Structure | mean UHI(Celsius) | standard deviation
Gas 3.12 2.27
Liquid 2.99 1.58
Crystal 3.29 1.95

Table 4.5: Mean values and standard deviation calculated for the modeled UHI, by
using the computed slope and rural temperature=25.5°C

The outcome that UHI changes by the change of temperature, has led to a second
approach of comparing only UHI values that are in a closer interval for rural cities.
mean(UHI) = Mean(LSTR) — Mean(LSTC') where 22 < LSTR < 27

However neither could verify a correlation between UHI and city texture.
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Figure 4-9: Correlation of UHI and city texture calculations

Using the method for predicting the temperature of cities, in [84], based on a
prediction model which integrates the two characteristic sizes of the city, average
building size and distance between buildings d. It can be assumed, that buildings of
size L. and mean height h=9.5m are separated by the distance d. A phenomenological
factor v = 1 for flat areas is taken. Using the equation below, the temperature

difference can be predicted, the predicted UHI. However, as the model below depicts

there is no correlation between the model UHI and the predicted one. The same
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Structure | mean UHI(Celsius) | standard deviation
Gas 4.67 1.57
Liquid 4.85 1.62
Crystal 4.93 1.27

Table 4.6: Mean values and standard deviation calculated for the predicted UHI for
rural temperature=25.5°C

parameters are being used to find if the values of modeled and predicted UHI are
lying on the identity line. However the is no correlation found between these values,
the prediction model is not working for the UHI, using satellite data. The probability
density distribution of the three categories is shown in the graph below. Moreover,
the mean values and the standard deviation of the predicted model are shown in the
table below. Crystal cities have the highest predicted UHI that means that more
structured cities seem to intensify this phenomenon while gas cities have the lowest.

This outcome verifies the approach as described by Jobstyl,[84].

UH Lyegicted = To[Y(1 + fracALhL + d*' /4) — 1] (4.7)
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Figure 4-10: Probability density function of the predicted UHI for the different struc-
tures.

4.5 Summary

In this chapter a model where buildings resemble particles has been demonstrated,
thus allowing to adopt tools from statistical physics to quantify city texture to only a
few unique design parameters. A possible correlation between the UHI and the city

texture has been examined and compared to the results of previous findings.
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Chapter 5

Fluid Dynamic Simulation for

Synthetic cities

5.1 Introduction

In this chapter the third research objective is the utilization of the radial distribution
function g(r) for city modeling. In a further step, these models are being used to
create synthetic cities and transform them into buildings and apply CFD simulations
to quantify loads on the buildings. A brief introduction of the computational fluid
dynamic methods is presented and why these are implemented to the solution. The
methodology of the CFD analysis and the pre/post process will be explained step by
step. As a final step, a validation of the method is required to confirm it’s accuracy

since there are many statistical factors that conclude to a good fluid solution.

5.2 City Modeling- Synthetic Cities

The target of this approach is to create representative samples of the cities to calcu-
late wind loads. The fundamental method to create these samples- synthetic cities
is based on Monte Carlo simulations, which are computational algorithms that rely
on repeated random sampling to obtain numerical results. Their essential idea is

using randomness to solve problems that might be deterministic in principle. Monte
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Carlo methods are often used in generating draws from a probability distribution,
such as the radial distribution function. In physics-related problems, Monte Carlo
methods are useful for simulating systems with many coupled degrees of freedom,
such as fluids, disordered materials, strongly coupled solids, and cellular structures).
In principle, Monte Carlo methods can be used to solve any problem having a proba-
bilistic interpretation,[98]. The present approach aims to create random city samples
which respect the basic fundamentals of the city explained by the radial distribution
function. The important fact is that the grand canonical Monte Carlo approach is
successful in recreating statistical characterizes of disordered cities like Paris with
103367 buildings with a small model of about 900 buildings. Such created models
will be used as inputs for computational fluid dynamics simulations to quantify wind

failure risk metrics for cities from across the world.

5.2.1 Methodology

The focus of this investigation is creating disordered models of cities using the radial
distribution function. This method has been applied in induced stiffness degradation
of highly disordered porous materials and has been transferred into the city scale based
on the assumption that buildings are porous. By disordered it is meant that the spatial
distribution of the buildings is random and a priori does not follow a deterministic
pattern. The goal is to identify, via discrete simulations, a relevant radial distribution
function. This chapter focuses on the creation of synthetic cities. Understanding how
the building-space configuration of a city can be set in order to have a representing
sample. Two basic approaches to create the synthetic cities can be applied. A previous
approach to model synthetic cities was based on a restricted randomized approach,
where it could be started with a perfectly ordered grid configuration of buildings. The
randomly shift of particles inside those grid cells until the g(r) of the model would
match to that g(r) of the city. Random moves within a unit cell. Pores/buildings
of the ordered systems are moved to random positions at a distance 0<d<1/2-R
contained within their original unit cell. The number of buildings is kept fixed and

the density decreases as the size of the building increases. The approach is based on a

84



two dimensional building distribution. Starting with a perfectly ordered system and

disorder it, by confining buildings in their unit cell.

Lr=Ly=L=+VNIL (5.1)

The density of g(r) is tuned by computing the number of buildings and the size
of the plate. In the periodic porosity arrangement of porous material systems the

porosity is tuned by varying the size R of the pores and their number N.

P = 73 (5.2)

5.2.2 Creation of Synthetic cities

This approach works well for cities with multiple peaks in g(r), although for highly
disordered cities that merely have a single peak, it results in high error values. To
address the issue, it will be shifted to a fully random approach where there is no
restriction, where a particle or a building should be placed for as long as it is within the
box boundaries to respect the given-defined input density criterion. The distribution
of particles is random and at first the initial configuration of g(r) is not similar to
an actual city. To change that, the Monte Carlo (MC) approach is being used. The
insertion in this approach is the number N of pores and fixed pore radius. In these
MC-based generations, the density- porosity is defined by the number of buildings,
eventually corrected for the level of overlapping buildings. The defined conversion
criterion in this MC is whether or not the model resembles a city, to achieve the
calculation of its radial distribution function. The flowchart of this approach is shown

below.
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Figure 5-1: Creation of Synthetic cities workflow

More specifically, the input for creating the synthetic cities are g(r), density of
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g(r) that accounts as the number of buildings divided by the area of the city and the
number of buildings for our synthetic city. A first estimation for the buildings number
was 100 however for calculating g(r) there must be a large number of points/buildings.
The approximation is generally poor if only a few buildings are randomly placed in
the whole square,[98]. On average, the approximation improves as more points are
placed although the computational cost restriction has led to a number of buildings
of 256. These buildings are being used to define a domain of possible inputs. For the
number of buildings in the rectangle, the plan is to calculate their drag coefficient
in the CFD simulation. Adding the r cut-off distance gives a larger region in which
the number of buildings has to be quantified. Using the area of the previous inside
region and by knowing the density criterion and the extended area, the number of
buildings is computed. That results to two different theoretical squares. The inner
one for calculating the g(r) ,as explained in the revised g(r) definition , and the outer
which is being used to avoid the boundaries effect, the use of these buildings by
computing the g(r),but without computing it for these buildings. After that, the use
of the Monte Carlo Simulation will generate inputs randomly over the domain, that
means a random selection of a building and performing a deterministic computation
on the inputs, replace it with a randomly position building only if g(r) of the new
configuration matches more closely the g(r) of the city. After 50,000 iterations the
results will be aggregated, by achieving a distribution that resembles well the actual
g(r) for the city. While the small error still exists, it can be further reduced with
more iterations. The errors are shown in the table 5-1. There are small errors for all
the cities, the same error metrics have been used as in the validation of OSM data. It
has been focused on less iterations but the error of g(r) was significant. The results
for the five cities are shown below. The g(r) for the modeled cities and the original
are shown in the figures. It can be depicted, that there is a small error between
these functions; however this could be reduced more by increasing the iterations of

buildings assignments. The values of cn and ¢ are shown in the table below.

The model of Athens and the original buildings on the city are shown in the
graphs below. In the first figure it can be distinguished between the two boxes. The
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Figure 5-2: Computation approach of the Total number of buildings in the interior
area and the total area

City reut | density N of building Ntotal
from map data | for synthetic city
Athens 193 0.0023 66164 1225
Miami 240 | 0.000453 24724 676
Paris 171 0.0017 103367 900
Vancouver | 156 0.0018 133817 841

Table 5.1: Numerical data for created synthetic cities, different rcut and gr density
concludes to different total number of buildings in the synthetic cities
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(a) Initial configuration Athens (b) Final configuration Athens

Figure 5-3: Synthetic city of Athens

inner box presents all the data, for which g(r) has been calculated, and the wind
simulations, where the outer box presents all the buildings which are located at the
rcut distance. As already mentioned, these points are being used to calculate the g(r)
only as neighboring buildings. On the Figure 5-3 the city of Athens is illustrated.
Even though these two images do not look similar as shown from the g(r) Figure
5-4, the model resembles the city of Athens with small g(r) errors. The number of

neighboring buildings and the distances between them are similar.
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Figure 5-5: Original distribution of buildings with average building size 11m

Comments to the errors-Validation

It can be observed that among the four cities, the various error metrics MAE, RMSE,
the difference Mean value and the difference in the standard deviation, have small
magnitude in comparison to the actual values of the two examined curves, since the
error values have the same units as the curves. That indicates that a high accuracy
using 250000 iterations can be achieved. Conclude the above the computed rdf values
for both approaches are visible. Moreover the values of cn and ¢ of the synthetic
cities are shown below. The correlation graph between ¢ and cn includes the values

calculated from the synthetic cities. However more iterations could have provided less
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City MAE | Mean Diff | RMSE | Std Diff
Athens | 0.0200 0.0078 0.0518 | 0.0092
Miami 0.0327 0.0074 0.0856 | 0.0266
Paris 0.0270 0.0057 0.0636 0.0037
Vancouver | 0.0438 0.0034 0.1356 0.0843
city | Athens | Miami | Paris | Vancouver
cn 2.73 2.43 3.48 2.32
phi 0.41 0.44 0.35 0.45

error a balance between computational cost and accuracy concluded to this number.
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Figure 5-6: Correlation of ¢ and cn for original cities and synthetic

5.3 Theory

Understanding the relationship between turbulent flow characteristics and surface

geometry is very important for mitigating urban atmospheric problems such as hurri-
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cane disasters and the heat island effect. The mean flow and turbulent statistics have
been extensively studied by laboratory experiments, field campaigns, and numerical
simulations. Urban geometry, even with simple obstacle arrays, has spatial hetero-
geneity, which makes it difficult to obtain a precise representative picture of the flow
characteristics. Chen [18] made comprehensive laboratory experiments for flow over
cube arrays and carefully investigated the spatial averaged turbulent flow statistics
and the spatial variation. This study investigates urban canopy layers (UCLs) under
neutral atmospheric condition with the same building area density and frontal area
density but various urban forms. Turbulent air-flows are first predicted by CFD sim-
ulations with standard k£ — e model evaluated by wind tunnel data. In a typical urban
area where buildings are built in a cluster with random spacing, the distribution of
the wind pressure on a building is influenced by interference effects from neighboring
buildings, which could ultimately affect the wind flow across the building. Large-
eddy simulations (LESs) were conducted for five cities of staggered random arrays
with various packing densities \,. Large-eddy simulations have been performed for
fully developed turbulent flow, however in this study we are interested in the correla-
tion between the distribution of buildings, which resemble a city, as provided by the

g(r) and the drag coefficient,[18].

In this study the confrontation with a turbulent flow in our modeled city is
necessary. Turbulence is flow characterized by eddies, and apparent randomness.
The presence of eddies or recirculation alone does not necessarily indicate turbulent
flowaATthese phenomena may be present in laminar flow as well. Mathematically,
turbulent flow is represented via a Reynolds decomposition, in which the flow is bro-
ken down into the sum of an average component and a perturbation component. Tt
is believed that turbulent flows can be described well through the use of the Navier
Stokes equations. Direct numerical simulation (DNS), based on the NavieraASStokes
equations, makes it possible to simulate turbulent flows at moderate Reynolds num-
bers. Restrictions depend on the power of the computer used and the efficiency of the
solution algorithm. The results of DNS have been found to agree well with experimen-

tal data for some flows.Most flows of interest have Reynolds numbers much too high
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for DNS to be a viable option, given the state of computational power for the next
few decades, [97|. Different approaches for calculating the Navier Stokes equations
have been established to solve real-life flow problems; the optimal model selection
is problem dependent. A basic segregation of the flow is if itaAZs either steady or
unsteady. A flow that is not a function of time is called steady flow. Steady-state
flow refers to the condition where the fluid properties at a point in the system do not
change over time. Time dependent flow is known as unsteady, also called transient.
Whether a particular flow is steady or unsteady can depend on the chosen frame of
reference. In a frame of reference that is stationary with respect to a background flow,
the flow is unsteady. Turbulent flows are unsteady by definition. A turbulent flow
can, however, be statistically stationary. This means that all statistical properties are
constant in time. Often, the mean field is the object of interest, and this is constant
too in a statistically stationary flow. Steady flows are often more tractable than oth-
erwise similar unsteady flows. The governing equations of a steady problem have one
dimension fewer (time) than the governing equations of the same problem without
taking advantage of the steadiness of the flow field, [97]. The two main methods to
solve our flow are unsteady modeling with scale-resolving simulations (SRS), such as
Large Eddy Simulations and Steady State Turbulence Modeling, such as Reynolds
Averaged Navier Stokes Simulations (RANS) e.g k — e.

5.4 Characteristics of Turbulent Flows

The flow is unsteady, irregular and has an aperiodic motion in which transported
quantities such as mass, momentum, scalar species, fluctuate in time and space.
These fluctuations are responsible for enhanced mixing of transported quantities In-
stantaneous fluctuations are random, unpredictable and irregular both in space and
time. Statistical averaging of fluctuations results in accountable, turbulence related
transport mechanisms. Turbulence flow contains a wide range of eddy sizes (scales),
where large eddies 'carry’ small eddies and the behavior of large eddies is different

in each flow because they are sensitive to upstream history on the other hand the
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behavior of small eddies is more universal in nature, [97].

5.5 Reynolds Number

Whether a flow is laminar or turbulent depends of the relative importance of fluid
friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the
Reynolds number. Given the characteristic velocity scale, U, and length scale, L, for
a system, the Reynolds number is Re = UL /v, where v is the kinematic viscosity of

the fluid, [68]. Turbulent flow occur at large Reynolds numbers.

5.6 Smallest Scales of Turbulence

These methods are being used to eliminate the need to resolve small eddies and solve
the turbulence flow. The implication of scales appears to be a major problem in
solving our cfd problems. A mesh would have to be fine enough to resolve smallest
eddies and large enough to capture mean flow features. In order to solve the problem
the following two approaches have been used - each one of them to derive different

results.

5.7 The k£ — ¢ method

The K-epsilon model is one of the most common turbulence models, although it just
doesn’t perform well in cases of large adverse pressure gradients [52]. It is a two
equation model that means it includes two extra transport equations to represent the
turbulent properties of the flow. This allows a two equation model to account for
history effects like convection and diffusion of turbulent energy. The first transported
variable is turbulent kinetic energy, k. The second transported variable in this case
is the turbulent dissipation,e. It is the variable that determines the scale of the
turbulence, whereas the first variable k, determines the energy in the turbulence.

The original impetus for the k£ — ¢ model was to improve the mixing-length model,
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as well as to find an alternative to algebraically prescribing turbulent length scales
in moderate to high complexity flows. Accuracy has been shown experimentally to
be reduced for flows containing large adverse pressure gradients however this method
is applied in our methodology to create the input velocity, which will be explained
more thoroughly in the Methodology section. The parameters as described below are

being used in our simulation.

5.8 RNG k-epsilon method

The Re-Normalisation Group (RNG) k — € model has a similar form to k — epsilon
but includes refinements. First the RNG model has an additional term in its ep-
silon equation that significantly improves the accuracy for rapidly strained flows. To
enhance accuracy, the effect of swirl on turbulence is included in the RNG model.
The turbulence kinetic energy, k and its rate of dissipation,e, are obtained from the

following transport equations:
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o = VART (5:9)

where GG, represents the generation of turbulence kinetic energy due to mean velocity
gradients, T ,; represents the contribution of the fluctuating dilatation in the com-
pressible turbulence to the overall dissipation rate and the quantities o and a, are
the inverse effective Prandtl numbers for k and epsilon, respectively. S and S, are

user defined source terms and M, is the turbulent Mach number.

C,. = 0.0845, C1. = 1.42, C2. = 1.68, inlet velocity for k-epsilon: u = 55 and
the time step= 0.1

5.9 Large Eddie Simulation (LES) Method

Large eddy simulation (LES) is a popular technique for simulating turbulent flows,[80],[76],[66],
[48].An implication of Kolmogorov’s (1941) theory of self-similarity is that the large
eddies of the flow are dependent on the geometry while the smaller scales more univer-
sal. This feature allows one to explicitly solve for the large eddies in a calculation and
implicitly account for the small eddies by using a subgrid-scale model (SGS model).
Mathematically, one may think of separating the velocity field into a resolved and
sub-grid part. The resolved part of the field represent the "large" eddies, while the
subgrid part of the velocity represent the "small scales" whose effect on the resolved
field is included through the subgrid-scale model, [28]. The governing equations em-
ployed for LES are obtained by filtering the time-dependent Navier-Stokes equations
in either Fourier (wave-number) space or configuration (physical) space. The filtering
process effectively filters out the eddies whose scales are smaller than the filter width
or grid spacing used in the computations. The resulting equations thus govern the
dynamics of large eddies, [25]. A filtered variable (denoted by an overbar) is defined
by
30) = [ oa)G )
D
9
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, where D is the fluid domain and G is the filter function that determines the scale of
the resolved eddies. More specifically in Ansys the finite volume discretization itselfs

implicitly provides the filtering operation.

B(x) = /V o(a')da’

, where V is the volume of a computational cell and the filter function G(z, z) implied

here is then

< e
Gz, 2) ="
0

' otherwise

The filtering process of each method provides us a variation on the Naviers Stokes

simulation.

dp | d(pus)

=0 (5.10)

The filtering process of each method provides us a variation on the Naviers Stokes

simulation.
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(5.11)

It has been assumed that the filtering operation and the differentiation operation
commute, which is not generally the case. It is thought that the errors associated with
this assumption are usually small, though filters that commute with differentiation

87'2']'

Ox;

have been developed. The extra term arises from the non linear advection terms,

due to the fact that uj% # U, gf? and o;; is the stress tensor due to molecular
J J

viscosity defined by o;; = [p(9% + g?

J 7

)] = 3ugedi; and 7i; = puu; — pu;
Similar equations can be derived for the subgrid- scale field. The subgrid-scale
stresses resulting from the filtering operation are unknown and require modeling.

These equations are shown in the Appendix.

LES method has the potential for improved accuracy when the resolution of the
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largest eddies are important or when unsteady data is needed. The disadvantages here
are mainly that it is computationally expensive, a higher grid resolution is required
and also an unsteady simulation with small time steps generates long run times and
large volumes of data. As explained in the methodology used, there is a very simple

geometry and that gives the opportunity to afford an LES simulation.

5.10 Methodology

Five different sets of urban configuration, one for each city are defined by considering
rectangular buildings with a plan area. The distribution of the buildings is based
on the created models as described in the previous section. The building models are
used and the points converted into buildings. A density(p = 0.25) for the city is
specified and the buildings are created. The building size is selected by respecting
the density and the number of buildings. After creating the initial configuration as
shown below, a further condition is added. Buildings with a distance less than one
meter are being merged. This step has been considered to be necessary because a
one meter gap does not really represent a street in an actual city but mainly since
the created mesh would not create enough nodes to calculate sufficient results in such
a small canopy. The created city is shown in the figure below. During the Ansys
simulation one more filtering method for the buildings is applied as described below.
The variable of height selected is : 10 m.

An important factor to mention is the application of a CFD for the entire city.
Based on a flow adjustment region, which is necessary to analyze correctly the drag
force, there is an interest in getting the results for the interior region as shown in the
figure below. The same buildings for which g(r) has been calculated. The flowchart
of this approach is shown in the next figure. On this approach it has been used the
same height and density for all the cities, however the distance between buildings and
their distribution is changing.

It has been found that the flow reaches equilibrium more rapidly when a more

turbulent approaching flow is used. Analytical studies introduced the canopy-drag
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(a) Initial step of building configuration for(b) Final step of building configuration for the
the city of Athens city of Athens

Figure 5-7: Non-Dissolved and Dissolved buildings

length scale (Lc) as a fundamental dynamical length scale of urban canopies, [23| used
Lc to estimate the distance for flow adjustment as a flow enters an urban canopy, [55].
The first buildings are being used for a flow adjustment region and the last ones as
a flow exit region. The approaching wind is first strongly displaced and blocked
by the first building, thus the drag force induced by the first building is extremely
large. The drag force of the second building is small because it is strongly sheltered
by the first building. Then after the flow adjustment process, the drag force reaches
a flow balance in the fully-developed region,[19].

Urban boundary layer

Urban canopy layer

—»,”I/"I/’I I III II I I I/II

Flow adjustment region Z, Interior region Flow exit region

Figure 5-8: Regions of our city model
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Figure 5-9: Flow chart

5.10.1 Computational grid /mesh

Grid refinement can be a critical component of achieving a grid-independent solution,
which is a universally accepted CFD best practice. During the pre-processing stage,
there is a need to know a suitable size for the first layer of grid cells. The initial size has
a reference the building and the quality target is selected to be 0.95. The additional
criterion is set to have no more than 7 million nodes due to high computational cost
and time constraint. The mesh quality plays a significant role in the accuracy and

stability of the numerical computation. Regardless of the type of mesh used in a

99



domain, checking the quality of the mesh is essential. The more complex geometry
is, causes complications to the mesh generation. The presented city models contain
many buildings, that means many geometric obstacles which have different size and
geometry and more over their distribution is the fluid region is randomly set. This
is being done as explained in previous steps to find a model that represents the
geometrical- spatial distribution of the buildings in the city as defined by the radial
distribution function. The first mesh occurred to have lots of errors approximately
500 which were reduced to 10 ped model. To achieve this mesh repairing the default
virtual topology of ansys was used, which removes edges and merges geometry. More
specifically when two buildings are very close to each other having a 10 cm distance,
they are merged. To repair the mesh also a non-automatically process needed to
be applied due to high complexity of the geometry, to adjust different size effects.
This has been a trial and error method since there is no correct answer on how to
create a correct mesh. Basic requirements are the Mesh Element Distribution since
poor resolution in critical regions can dramatically affect results. The Cell Quality
which shows the geometry of the cells. The effect of resolution, smoothness, and cell
shape on the accuracy and stability of the solution process is dependent on the flow
field being simulated. Since the locations of strong flow gradients generally cannot be
determined a priori, you should strive to achieve a high-quality mesh over the entire

flow domain,|26].

10H

36H

Figure 5-10: Fluent region
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Figure 5-11: Mesh for the synthetic city

5.10.2 Validation

The two models for solving a CFD simulation have been presented in the previous
section; however the application of these models and the case configuration will be
presented as part of the methodology,|54].

Both models are being validated by comparing them with more simplified geome-
tries. The validation is based on the wind tunnel experiment by Brown [17] and the
results were sufficient for both & — € approach and the LES. The quality and accu-
racy of the grid selections have been the same as for the CFD simulation of our city

models.

5.10.3 Case Configuration
RANS simulation

The following approach is based on the study of Adjustment of Turbulent Boundary-
Layer Flow to Idealized Urban Surfaces: A Large-Eddy Simulation Study. [Brown
2017/05]

In this study the study of RANS has been performed, a standard k-e model to

create representative turbulent inlet flow and include a periodic boundary condition
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Figure 5-12: Flow chart for Validation

in the lateral direction. A precursor simulation technique was adopted, and involved
running a prior simulation of the turbulent boundary-layer flow. The input velocity
of this simulation was set to 55 m/s which resembles a hurricane wind velocity of
category 3.The instantaneous velocity fields obtained from this simulation are saved

and later used as inflows to the simulations of flow past cube arrays.

The boundary conditions for this k-epsilon simulation as described by|[18].

A stress free wall for top boundary condition was considered. At the block sur-
faces, the surface shear stress was computed using a method similar to that for the
bottom surface. This required the calculation of the instantaneous (filtered) surface
she Moreover, smoothing of the velocity field inside the blocks before the velocity
derivative calculations, was used to diminish the Gibbs phenomenon that occurs near
sharp boundaries. The problem has been calculated with the default values of Ansys

since the validation confirmed small errors by using this approach.
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LES Simulation

The final computational step is to perform a Large eddy simulation (LES) as defined
by the Ansys software. This model is better in predicting turbulence but require
much longer computational time than the Reynolds-Averaged Navier Stokes (RANS)
approaches [21]. The turbulence velocity results of the previous k-epsilon simulation
and is the main input variable for the LES simulation. The desired output of this sim-
ulation is the drag force in order to calculate the drag coefficient on the buildings, that
concludes to use a pressure based solver with a transient time,[23],[77|. The velocity
field is obtained from the momentum and continuity equations. In the pressure-based
approach, the pressure field is extracted by solving a pressure or pressure correction
equation which is obtained by manipulating continuity and momentum equations.
The pressure equation is derived from the continuity and the momentum equations in
such a way that the velocity field, corrected by the pressure, satisfies the continuity.
Since the governing equations are nonlinear and coupled to one another, the solution
process involves iterations wherein the entire set of governing equations is solved re-
peatedly until the solution converges. In the proposed solution the max iterations
per time step is adjusted to minimum value that allows convergence (about 30-35).

The number of time steps is about 150-200, to achieve convergence.
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5.11 Discussion for CFD computaions of cities

The first output of the CFD simulation is the velocity of the four different cities.
The velocity on the ground for z=0 is also zero, respecting the no slip boundary
condition. As the height increases, the velocity increases as well since the influence
of the obstacles reduces. The graphs below show us the velocity in the h/2 = 5m
of the buildings and h = 10m on the top of the buildings. In both cases the ve-
locity increases the most, when the canopy is small. That phenomenon is based on
the conversation of mass and the Bernoulli equation. When the surface A decreases,
which happens in small canopies the velocity increases. Taking into account also the
Bernoulli equation while the velocity increases the the pressure must decrease. The
difference in pressure DP = P, — P, of the inside and outside area of the buildings
constitutes the drag force of the building. However, on this present approach by hav-
ing multiple obstacles/buildings the flow of the previous canopies effect the velocity
and pressure,[12],[75]. This is why this simplified approach can be used just for a very
roughly understanding of the single canopy effect. The different structures of the city
conclude to a different velocity magnitude, which also effects the drag forces on the

buildings.

The aim of this approach is to establish a statistically valid formula that would
quantify the correlation between urban morphology and drag coefficient. The drag
coefficient is a number that is being used to model all of the complex dependencies
of shape and flow conditions on solid drag. This equation is simply a rearrangement
of the drag equation where we solve for the drag coefficient in terms of the other
variables. The drag coefficient Cd is equal to the pressure difference divided by the
quantity: density rho times half the velocity V squared times the reference area A.
The ansys software gives us the opportunity to calculate the pressure values on each
building. By taking the average drag coefficient of each city the values diverse. As
shown also in the graphs below, the crystal cities such as Vancouver and Miami
intensify the drag coefficient, while gases reduces it. A typical drag coefficient value

for a single cube in fluids with Reynolds 10* is 1.05. The distribution of buildings
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Figure 5-13: Velocity magnitude over the 4 computed cities

and the type of flow affects this metric.

/ dPdA =D (5.12)
A

One more calculated value is the dynamic pressure ¢, this value includes a more
accurate way of calculating the drag coefficient. We are using the velocity and pressure

values close to the buildings,[29].

2D
1 2

The quantity one half the density times the velocity squared is called the dynamic
pressure . The drag coefficient then expresses the ratio of the drag force to the force

produced by the dynamic pressure times the area,|[30].
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Figure 5-14: PDF drag coefficient for the computed cities
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5.12 Utilizing the calculations with CFD software
PUMA

A comparison model of two buildings has been implemented to extend the method-
ology by using an open source CFD solver. The aim of this approach is to establish
highly accurate results by using non commercial solvers. To this end, a comparison
between the Ansys solutions and the CFD code, [87],[13], [88], of the of Parallel CFD
& Opitimization Unit of NTUA is made.

5.12.1 Parallel Unstructured Multirow and Adjoint code, PUMA

Some details for the PUMA computations are given below. The GPU code PUMA
(Parallel Unstructured Multirow and Adjoint) by the PCOpt/NTUA has been imple-
mented to compute the pressure and velocity fields around the buildings.The mesh
created for both computations has 78587 nodes and 420584 hedra. The mesh as
described is depicted in the Figure 5-16.

Figure 5-15: Surface mesh around two adjoint buildings used for both simulations

A steady computation is performed using the Spalart-Allmaras turbulence model
with wall functions. A no-slip condition is imposed on the velocity field at all the solid
boundaries of the buildings and wall functions are used for the turbulence variables at
the wall. The incoming velocity is set to 55m/s which resembles a hurricane category
3. The case configuration of Ansys is done by the same way.

Flow prediction based on the PUMA code gave very quick results by using a
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16 GB GPU memory NVIDIA Tesla P100 (Pascal).The overall duration of the code
was 7 minutes. The same computation using Ansys software and a 3.1 GHz Core i7
(I7-7920HQ) lasts more than 1 hour. By using PUMA, the solver is approximately
50 times faster than the equivalent CPU solver,[87|. The primal invicid fluxes are
computed using the Roe’s approximate Riemann solver adapted to incompressible
flows. The discretized equations are solved in each pseudo-time step using a point-

implicit Jacobi iterative scheme,[88].

5.12.2 Spalart-Allmaras model

For both simulations PUMA and Ansys the same turbulent model has been imple-
mented. The Spalart-Allmaras model,|25] is a relatively simple one-equation model
that solves a modeled transport equation for the kinematic eddy (turbulent) viscos-
ity. This embodies a relatively new class of one-equation models in which it is not
necessary to calculate a length scale related to the local shear layer thickness. The
Spalart-Allmaras model was designed specifically for aerospace applications involv-
ing wall-bounded flows and has been shown to give good results for boundary layers
subjected to adverse pressure gradients. It is also gaining popularity in the turboma-
chinery applications. In its original form, the Spalart-Allmaras model is effectively a
low-Reynolds-number model, requiring the viscosity-affected region of the boundary
layer to be properly resolved.

The Spalart-Allmaras [25]uses a single transport equation to model the kinematic
eddy viscosity by introducing the viscosity variable, known as the Spalart-Allmaras

variable, v;

Vy = fl;fvl (516)
X3
fo =< m e (5.17)
v
X =- 1
. (5.18)
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In order yo obtain the Spalart-Allmaras variable v; a single PDE is iteratively

solved, which is the following.

) — Cua(1- J) 37— Cus = Bl P+ - () G+ Crag 3T
J ’ ( J
(5.19)

where 0 = 2/3,Cy; = 0.1355, Cypy = 0.622,k = 0.41,C,; = 3.239,C,; = 7.1 are

the turbulence model constants.

5.12.3 Comparison of the Results

The drag coefficient values provided by both solvers, are close enough, as depicted on

the table below.

PUMA | ANSYS
cd | 0.1219 0.1348

The drag coefficient of the second building has been compared, based on the
methodology of the previous approach.The loads on the first building are not repre-
sentative. On the figure 5-17 a comparison between the results of the two methods
can be made.

PUMA
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(a) Pressure distribution, ANSYS (b) Pressure distribution, PUMA

Figure 5-16: Comparison of the results using ANSYS and PUMA

The accurate results for both codes, suggest that the simulations could be imple-
mented by using the PUMA code for the entire city. This could help to reduce the

computational time since the code gives the same results in a significant faster time.
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A constraint for the size of the mesh in the computations of the entire city was due
to high computational time/cost, a solution, using PUMA, could help to get more

accurate results.
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5.13 Summary

In this chapter a model to create synthetic cities has been demonstrated. A Monte
Carlo Simulation has been implemented in order to generate these synthetic cities.
On this synthetic cities a cfd simulation has been applied for the investigation of the

correlation between city patterns and the drag coefficient.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion and Future Work

It is important to recognize that herein obtained values, which we used to derive
urban design guidelines, are averages obtained from GIS information for thousands
of buildings with their shapes generalized to a simple square model. In real life, ur-
ban designs are highly complex procedures that focus on various pragmatic aspects
of sustainability, resilience and living comfort[84|. To quantify geometrical charac-
teristics of cities, we require input data of building footprints. While these can be
obtained from GIS city departments, generally data sets of this kind are limited to
large cities in the US and few cities in Europe. To overcome this issue, we established
a method that allows us to obtain building footprints for any city in the world using
online maps. Using buffer and clustering algorithms we were able to improve city
texture computations to account for diverse shapes of cities and their non-impervious
parts. To understand the impact that city texture has on surface temperature, we
utilized daytime satellite images, which only in recent years have managed to cap-
ture high resolution measurements for an entire city. Lastly, using Grand Canonical
Monte Carlo technique we increased statistical accuracy of our synthetic city models
used in calculations of wind loads. A strong correlation between ¢ and cn has been
established that allows us to create synthetic cities only by respecting the radial dis-

tribution function. All the presented parameters R,cn,¢,p,,7cut except the area of
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the city and buildings can be captured by g(r). For this analysis the restriction of
not taking the area into account was not significant since the cfd calculations where
based on same densities for all the cities. However this limitation should be prevailed
in order to quantify synthetic cities in a better manner.For the cfd analysis further
calculations and more cities should verify the conclusion that crystal cities intensify
the drag coefficient. To establish a more accurate value for the drag coefficient of
the city, a simulation with a rotating wind should be applied. An additional goal of
this work was to add the height distribution of the buildings in the synthetic cities,
however the lack on data in OpenStreetMap (OSM) hindered this goal though OSM
data are constantly updated and the height of the buildings will be available for the
most populous cities soon. The limitation of computer power as much as the lack
of time forced us to a limit in cells of computations but on the same time with a
large number of buildings. An investigation of the sensitivity of buildings number
could establish the best correlation of computational time- mesh accuracy and the
calculated drag. Moreover for UHI calculations a further investigation on the separa-
tion of rural and urban areas should be established. Additional to our approach an
automatic procedure for evaluation of satellite images and download should be added
as already described in chapter 3. For most of the cities five images were obtained
with more data better and more accurate results could be derived. At last one very
challenging computation that has not been established yet is to find the correlation

between land surface temperature and air temperature.
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Appendix A

Tables

Date Mean TsR | MeanTsC | stD_ TsR | std TsC UHI
2014/04/10 18.971780 19.916831 1.793097 1.921174 | 0.945051
2014/07/31 25.414646 28.185454 2.633450 1.978522 | 2.770808
2014/09/17 22.372360 24.574625 2.608490 2.107935 | 2.202265
2014/10/03 20.512500 22.419661 2.108422 1.676526 | 1.907161
2015/01/23 1.304146 1.887326 0.767336 1.099920 | 0.583180
2014/03/16 7.333279 8.440672 1.829621 1.790671 | 1.107393
2014/04/01 15.399548 16.552726 1.796916 2.068309 | 1.153178
2014/05/19 23.611600 25.743500 3.044739 3.730618 | 2.131899
2014/07/06 30.300887 33.298153 2.845616 2.130490 | 2.997266
2014/08/07 26.538692 28.957320 2.510110 1.942997 | 2.418628
2014/12/13 3.502161 3.262574 0.829077 1.216524 | -0.239587
2015/05/22 25.415871 27.727838 2.997743 2.474662 | 2.311967
2015/06/07 18.650106 22.747070 2.967946 2.470277 | 4.096964
2015/07/25 29.612320 31.283246 3.262153 4.373717 | 1.670926

Table A.1: UHI values for New York, where MeanTsR is the mean temperature of
the rural area, MeanTsC the mean temperature of the urban area, std is the standard
deviation for urban and rural temperatures
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Kepdiawo 1

Ewoayoyn

1.1 Ewayoy

g 0VTO TO KEPAANL0, YIVETOL OVOPOPE GTNV OOTIKN aVATTLEN KOl TO POAO GLTNG OE
neptParrovtikd (ntipata. Emmiéov, meprypdpoviot ot S14popeg Tpoceyyicelg yio T Ho-
VIEAOTOINGN ACTIKMV OIKTLMV KOl TPOTOL Y1 TNV TOc0TIKoToinot| tovc. H povrtelonoinon
KO TOGOTIKOTOINGN £1val 10104TEPA CNUAVTIKES TPOKEEVOL VoL Kortavon el 0 HeEAAOVTIKOG

AVTIKTLUTOG 6TN PLOGIUOTNTO Kot TNV AVOEKTIKOTNTO TOV TOAE®V.

1.2  AvEnon tov Aotikov ITAnBvopov

H tayeio avémroén tov actikov mAnbucpov, n onoio avarapictatol oto Zynuo 1-1,
ONUIOLPYEL IOl EVTOTIKT OVAYKT) Y10 TV OVATTUEN TOV OGTIKOV VTodoudv,[43]. TIoAlEC

TOAELG EYoVV PLdOEL EVTOVEG EMEKTAGELS TOGO £0APIKESG OGO Kot TANOVGLLOKES.

1.3 Ilgprporrovtikd Zntipoto

O10eppoxpactokég cLVONKEG OTIC ACTIKEG TEPLOYES OLUPEPOVY G LLOVTIKE 0TTO TIG AypO-
TiKég meployéc. H PAdotnon €xet avtikataotabel amd AoQAATO Kot UTETOV, TOV ATOPPOPOVY
™ BeppromTa,  onoio anedevBepmvetar T otV atdsEUp. AVt 1) oAloyn gival yvo-

010 0Tt aw&hvel T Beppokpacio TG EmPAvELNG TNG YNNG, OTWS QaiveTal oto Zynua 1-2,[43].
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Symua 1-1: Aotikdg ko vaifprog TAnBvopog tov kocuov 1950-2050, Hvouéva 'EOvn

[Tpoxelévou va aVTIHETOTIGTEL 1] OVAYKT) Y10 ACQAAELS Kol IMKEG TPOC TO TEPIPAAAOV TTO-
Aelg, glvar amapaitntn 1 €otioen ota TpoPAnpata mov epeovifovtol oe aVTEG, OTMG etvat
n aotikn Oepuovnoeida (Urban Heat Island UHI),ot tvpdveg, ot mAnppdpeg Kot 1 atoc@ot-

pn pvmavon.

Simulation of maximum temperatures on July 3 from American (GFS) weather model at two meters
above the ground. (University of Maine Climate Reanalyzer)

ymua 1-2: Pekdp kataypoaeng Tipdv 0eppokpasciog e 0AOKANPO TOV KOGLO KATA TNV d1dp-
Kelo TG TpMOTNG efdopddac tov loviiov 2018, Washington Post



1.4 Ynapyovra Movtéra I1olewv

To povTELD TOTEAOVY 10 OITAOTTOINUEVT] OTTEIKOVIOT] TNG TPAYUATIKOTNTOS. ZOUPDVOL
pe tov Morrison [3] ta LovTéda KOTEYOLV VAV AVTOVOLO POAO GTNV ETIGTNUN KOL TOV C)E-
dtaopd. Me dAha Adyta, Ta povtéda dev pTopovv va AapBdvovtat ovte o¢ Bewpia Gvte MG
1G0JVVOLO TPAYUATIKE GUGTILOTO. ZVVETMS, AEITOVPYOLV MG epyoieio Ta omoia emTpé-
TOVV GTOVG EMIGTNLOVES KOl GTOVS UNYOVIKOVG VO EEEPEVVIIGOVY TOV KOGLO, VO TOV TTPO-
BAEWOLV Kol va 5YEOLAGOVV TIG OPACELS TOLG TPV EVEPYNGOLV LE AUETAKANTO TpOTO. Eyovv
VtapEet S1Popot TPOTOL LovTeLoToinong TOAE®V gite Y10, Tr ToAgodopia gite yio T diela-
YOV SLUPOPETIKDOV GTUTIKMOV Kol SUVAUIKAOV avaAidcewv. Ta vrdpyovta poviéda ToOAemv

sivat:

* Emyopia petagopikd povtéra (land use transportation models) T omoio amoteAovv
TO TPAOTO LOONUATIKE LOVTELQ OVOTOPAGTACTG L0G TOANG TTOL TPOGOUOIMGOV LETO-

KIVAGELS avOpOT®MV, GUGYETIGUEVES LLE EPYACLOKEG OPOSTNPLOTNTEG LEGO GTNV TTOAN).

* Mopporoywkd povtera (morphological models) ta omoia daveilovtot povtéda avao-
TopAcTOoNS OO TN GTATIGTIKN PULGIKY), ONAadN anelkovilovy ta Ktiplo g droua.

‘Eva 1£1010 povtélo amoTteAel Kl 1] GLVOPTNGT AKTIVIKNG KOTOVOUNG.

* Tpioduaotata povrédo moOANG (3-D city models) ta onoia pmopovv va arobnkedcovy
OTOLOONTOTE E100C YWPIKMOV AGTIKOV OEG0UEVOV Lall LE TN YE@YPOPIKT TOVG OLVOL-
Qopa mhve 1o Yapt. TéToeg avamapacTdoelg TOAewV gival akOun mOA) mePLo-
PLOUEVES, e amoTEAEoUA aVTN 1 LEBOSOG AmEIKOVIONG VA €ivol 68 TPMOUO GTAOL0

QKOO



Kepdiaro 2

Y VAAOYN CVOLKTMOV OEO00UEVOYV

2.1 Ewoayoym

Ye avtd 10 KePAAoo mapovotdletal To Tp®MTO {TNUO TN SUTAMUATIKNG EPYUCING.
A@opd Vv andKINoT YEOUETPIK®V dedopévov kTipiov and to OpenstreetMap. H evacyo-
Anon pe avoyytd dedopéva (open source data) Ntav éva Aoyiko emaxdAovbo g EAheymg
TANPOPOPLOV KTIPIOV TOAE®V OO TOTMIKEG OPYEG KO TAVETIG TN Y10l TOAAEG EVPOTATKES
TOAELG Ko Kupiwg Yo v AOfva. H mapoyn kot enelepyacio avtdv TV TANPOPOPLOV 7oL
pExeL TN duVaTOTNTO TOGOTIKOTOIN oG TV ToAewV. H pebodoroyio tng @iltpoapiopevng An-
yng, Tov pre- and post- processing TV 0E00UEVOV aPOPA TNV TANPOTNTO, TNV TOLOTNTA KoL
v eneepyosio TV 000UEVOV VOTEPA OO TN ANYN TOV YNPLOIKDV YOUPTOV. XTOYOG OTO-
Tehel O VTOAOYIGHOG TNG CLVAPTNONG OKTVIKNG Kotavoung (radial distribution function),
g(r) yio va meptypapet n dopun g mOANg (city texture). To dedopéva yapT®V TOL ATALTOV-
VIO TPETEL VAL TEPLEYOVV TANPOPOPIES TOL ALPOPOVV T1| SIOACTATY YEOUETPIO TOV KTIpiwV,
TNV Tom0HEGI0 TOVG TAV® GTOV YAPTN, KOOMDS Kol YOPUKTNPLOTIKA OTTMC 1) TEPIUETPOG KOL 1
emeaveld Tovg. Ta dedopéva Tov KTipimv petatpémovtal o€ onpeio mov datnpodv Tig TAN-
popopieg BEonc Kol EMPAVELNG Y10 TOV VTOAOYIGHO TNG GLVAPTNONG OKTIVIKNG KOTOVOUNG,
g(r). H povtehomoinon tov moOAemv pe fAcN TN CLVAPTNON OKTIVIKNG KOTAVOUNG TOPOV-
oldletol mo avaAvTiKA og emdpuevo Kepdiato. [ tnv emainfgvon g eyKupoOTNTOG TOV
dedOUEVAOV GTOVG VTOAOYIGHOVGS, OVOTTOGGETOL L0 GUYKPLTIKY LEAETN HETAED dedOUEVOV

TOLEWV KOl TOV OVOIKT®V 0€00UEVOV. Ta avolkTd dedopéva Lropovv E0KOAN VoL aUPIGPN-



OOVV Yo TV TANPOTNTA KOt TV aKpiBELn TV TANPOQOPLOV T®V KTIPIWV TOV TaPEYOLV

LG KO TTPOEPYOVTAL OO YPNOTES.

2.2 MeOodoroyia

SHUPOVO LE TO TOPOKAT® SLAypapLLe. pofg, Zynua 2-1, To dEd0UEVA TOV YOPTOV LETO-
TPEMOVTOL GTNV KATAAANAN HLOPPY] Y10 TOVG VITOAOYIGHOVS TNG LOVTEAOTOINGNG TNG TOANG.

H tehuc popon tov dedopévev etvan og onpeia dnwg tapovctalovionr 6to Zynua 2-2.

OSM Data Ingestion and | | Buildings Detection and |

¥

Preprocessing | | Data Cleansing

b Vi

Min/Max Downloading 0SM Data E Tag Filtering H Pro;‘]_ecli_:llon H Geometry Validation
Boundaries Data from conversionto | | conversion
Definition XAPI server shape file :

Dissolve buildings
sharing a wall

N . | _|T1'asf0rmati0n of Buildings
Buildings Data Extraction | into Points

Zymua 2-1: Awdypoppo pong

2.3 Emaifq0evon TV avoIlKTAOV d£00uEVOV

e outnv Vv evotnTa Bo tapovciactel n akpifela g xpnomng dedopévav and to OpenstreetMap
(OSM) ywo tov vroAoyiopd TG SOUNG TOAEMV YPNCUYLOTOLDVTOG T GUVAPTNGT OKTIVIKNG
KATOVOUNG, g(T). ZUYKEKPIUEVA, Y10 QLT TN GVYKPLOT VTOAOYIGTNKE 1) GUVAPTNOT OKTIVI-

KNG KOTOVOUNG XPNOULOTOLOVTOG TO OEGOUEVA ATTO TO GUGTNILA YEOYPUPIKDV TAT|POPOPLDYV

(Geographic Information Systems, GIS) méAe®v Kot movemoTUi®V Kot To dE00UEVE 0T



Zympo 2-2: Kripua mov £govv petatpanei o€ onueio

0 OSM, 6mwg paiveton oto Zynpoa 2-3. To g(r) vmoroyiotnke pe Tov 1010 TPOTO OTWS GTNV
epyocia [85]. Avto onuaivel 6t ypnopomoteiton £va buffer yio cuykekpuéveg cuvietay-
HEVEG oTNV TOAY. ApYOTEPA YPNCIUOTOLEITOL LIt SLOPOPETIKY TPOGEYyLon Yo to g(r), M

omoia Ba e&nynBbel oto kepaiaio 3.

Boston
——OSM Data

1.2 ——City Data ||
CO'8 r
Bf’0.6 I

04r

0.2}

Al | |
0 50 100 150

Distance(meter)

ymua 2-3: Zovaptnon aKTVIKNG Kotavouns v v Bootovn ypnowonowwviag OSM ko
dedopéva amd to GIS Tunpa



Kepaioro 3

Aotk Ogppovnoioo

3.1 Ewayoy

Aotk Oeppovnoioa (Urban Heat Island, UHI) etvan éva kAipatikd eotvopevo to amo-
Aéopato Tov omoiov epeaviCovv avénuévn Beppokpacio péca oTic TOAELS dTav GuYKpivo-
VTOL [E TIG YEITOVIKEG U aoTikég meployéc. Tleprosotepo and 50% tov mAnBuouov (et o
TOAELG LLE AMOTEAEGLA 1] G TIKOTOINGT VO ATOTEAEL CNUAVTIKO TOPAYOVTO TG LITEPOEPLOV-
ong Tov mAavtn, [19]. AkpBeig vroroyiopoi tov UHI pmopotv va fondrcovv oty a&lo-
Adynon g ThovoOTNTOS LYNA®V BEPLOKPAGLOY KOl VO, 0OTYIGOLV TIG OPYES TV TOLEDV
KOl KPOTAOV GE CMOTY EVEPYEWNKN Olayeipton katl oxedtacud. To @avopevo TG 0GTIKNG
Oeppikng vnoidog ( Urban Heat Island, UHI) opileton pe dedopéva Bepuoxpaciog gite omd
LETEMPOAOYIKOVG GTAOUOVG GE OGTIKES KO AYPOTIKES TEPLOYES €lte pe pixels péow Beppr-
KOV EIKOVOV. ZVYKEKPYEVO UTTopel va Tpoceyylotel cuykpivovtag tnv Beppokpacio aépa
0€ OOTIKEG TEPLOYES KOl 6T TEPiY®PO PACEL dEGOUEVOV OO UETEMPOAOYIKOVS GTAOUOVC.
"Evag dAAog tpdmog vroroyiopov apopd to UHI vrodoyiopévo yuo Beppokpacio €dapovg
(land surface temperature,LST), kot otnpiletoar og dedopéva amd dopvedpove. H ypnon
TV 00PLPOP®V EIVOL O TTLO KOS TPOTOG Y10, TOV VIOAOYIGHO TNG Bepprokpaciog 06povg
kot ko’ eméktaot kot Tov UHI pécw Beppoxpaciog e6dpovg. O TpOTOg VITOAOYIGHOD TOV
eowvopévov UHI eivar ovsrootikd 1 dtopopd pHetald Tov Ty 0eprokpasidv tawv 600 Te-
pLoy®v, aotikng Kot aypotikns. H Beppokpacia otig actikég meproyég eppavifetor va et

ONUOVTIKA VYNAOTEPT TIUN G OYEOT UE T TEPTYPA Kot TapatnpnOnKe omd Tovg LIToAo-



ywopots 6t to UHI avédveton pe v avénon tng Beppokpacios. Avti 1 TpocEyyion Tov

UHI dgv &xel mapatnpnOel oe GAreg ONUOCIEDGELS GYETIKA LLE TO POUVOLEVO.

3.2 Aopvgopikd Agdopéva,

O dopvpodpog LandSat mepvdel and v ida 0éon otn yn kabe 16 nuépeg. H tpoytd
TOV TNYaivel amd 10 BOPEI0 GTO VOTIO TOAO KO KOTOYPAPEL VA TAKTA YPOVIKA Sl0GT-
pato pa véa 0éom. Avto copPaivel €d® kot 40 ypovia, adid arnd to Asképppio Tov 2008 n
TOMTIKN 0edopUEVOVY GAAaEE pe amotéhespa OAa Ta dedopéva LandSat va sivon dabéopa
0€ OTOLOVONTOTE YWPIg TEPLOPIGUOVG Kot KOGTOC. YpEav didpopot dopvpdpot LandSat,
aALG o DePpovdpro tov 2013 to LandSat8 amoyeimdnke pe eEomhopd, o onoiog eiye moAD
KAAOTEPTN OVAALGT GE GUYKPLOT| LUE OTOLONTOTE GAAL OPYOVOL SOPVLPOPIKNG ATEIKOVIONG.
H avdivon tov mponyoduevo dopvpopov, LandSat7, ntav 500 pérpa eved yio to LandSat8
N avéivon eivar 100 pétpa ,[1]. Avtd 10 Yeyovodg divel v gukaipio AMyme akpipéctepmv
OTOTEAECGUATMV Y10 TOV VTOAOYIGUO TG EMPOVEINKNS Beppokpaciog e yne. Ymhpyoovv
emiong Kot dALEg TNYEG dOPLPOPIKAOV dedoUEVDV, dnwg T0 MODIS mov ypnoipomomdnke
o€ TOAAEG £PEVVEC Y10 TNV TOGOTIKOTOINGM Tov avopévov UHIL motdco to LandSat8 et
v vynAoTepn avélvon. To LandSat8 petpd 11 drapopetikd e0pn GuYVOTHTOV KATH PHKOG
TOL NAEKTPOUOYVITIKOD GAGHOTOC, KAOE eOpos-mteployn ovopdletar band. Eyel to kdkKvo,
TO TPAGIVO Kot To umAe bands, Ta 4, 3, 2 KOl 0 GLVOVOCUOG OVTOV TPOCPEPEL L EIKOVOL
anBwvov ypoudtwv, [64]. Ta dedopéva cuAléyovtar amd dVo KOpla Opyava ni Tov SopL-
@opov. Xvuykekpiuéva, to LandSat8 @épet ta e&ng dpyova pétpnong: to Operational Land
Imager (OLI) kot to Thermal Infrared Sensor (TIRS), [1]. Ewdwotepa 1o OLI cuAdéyet euco-
VEG TNG EMPAVELNG TNG YNG O€ evvéa dtopopeTikd band opatng kat un opatig (VITEPLOPTG)
axtivoPfoAiag. Ta band 4, 5 mov ypnoonolovvtal 6€ avT TN PEAETN €yovv aviaivon 30
HETPOV. AVTA YPNCIUOTOIOVVTOL Y10, TOV VTOAOYIGUO TOV KAVOVIKOTOMUEVOL dgiktn PAd-
omong (Normalized Difference Vegetation Index, NDVI) mov mapovcidletol moapoakatm
ot pebodoroyia. To TIRS cvykevipdvel elKOVES TNG EMPAVELNG TNG YNG 6€ 00O LVITEPLOPa

(Beppucd) bands, to band 10 xou 11.



3.3 Awyopiopnos AcTiIK®OV Kot AypoTik®@v Ileproydv.

[Tpdto Prua amoterel 0 kaBopiopdg TV 0piV TG AYPOTIKNG KOL TNG OOTIKNG TEPLO-
NS Mia TpdT Tpoomadela Tav va, Yivel KAMPAK®oT Tov Oplwv TG TOANG. Avtd gaiveton
Vo €vOl [ol IKOVOTTOMTIKY TPOGEYYIoN Y10 TOAELS PE KUKAIKO oyfua, 0Tmg To Bepoiivo,
to [lapict kot 10 Aovdivo, addd o TOAelg Ommwg | Néa Yopkn ko  AOnva dev pmopel va
epoppootel. H e€nynon vy’ avtd Pacileton 6to yeyovag 4Tl To. OploL TOV GLYKEKPIUEVDV
nOAe®V eKTElVOVTOL KLPIWOS TPOG LLia KotevBuven Kot 1) aypoTikn Teployn dev ivor opotlo-
YEVIG TPOG OAES TIG KatevBivoelg. Avtd odnyel ot ypnon evog buffer, Tov omoiov N axtiva
vroAoyileTan avEavovtag T dpla TG TOANG o€ 25 yiouetpa. To péyebog tov buffer 1| pe
Ao A0V TOL OptoL LETOED ayPOTIKNG KOl AOTIKNG TEPLOYNS EIVOL Lo TPOGEYYIoT), GTPLY-
LLEVT OE TTOPOLLOLES EPEVVEG Y10 TV TOPATIPNGT) TOV S0PLPOPIK®Y dedopEVav, [21]. Avtn
amdGTACT NTOV 1 EAAYLETN SVVOTH Y10 TNV VTOPEN ETAPKAV 0YPOTIKAOV OEdOUEVDV. AVTY|
N néBodog epapudeTNKE e aVTOHNTO TPOTO, cLuvoLAlovtag Ta Opla Tov OpenStreetMap
Kot TIG S0pueopikég ewoves. Ta Opto TG TOANG GLYY®VEVOVTOL GE £Va TOADY®VO, TPO-
Bariiovtatl amd 10 TOMKO Gg KOPTESIOVO GUGTNIO GUVIETOYUEVOV KOl LETATPETOVTOL GE
HETPO VD GTNV GLVEYELD VTOAOYILETOL 1) TEPLOYT TMV OPlOV KL 1| EMPAVELD TNG TOANC.
YroBétovtag 0Tl 1 TEPLOYN AVTITPOSMTEVEL EVAV KOKAO VITOAOYILETON 1] LTOOETIKY aKTivVOL.
YroAoyiletat to kK€vipo palag TV cuVOp®V NG TOANG TO 01010 opileTal G TO KEVIPO TOL
KokAov. To endpevo Prna eivar va dnpovpyndei Eva buffer. To kévtpo Tov buffer eivan o
onueio mov onpovpynonke e Tponyovueva Ppata Kot n aktiva = vrodetikn axtiva + 25
yAl. To televtaio Prpa etvar va dnpovpynBovv ta 600 SPOPETIKA GPLa YioL TNV OyPOTIKN
KOL TNV 0GTIKY TEPLOYN. AVTO YIVETOL [E TN ANYT TNG CUUUETPIKNG dtopopds peta&h Tov

buffer kot TV opimv ™ TOANG.

3.4 MeOooolroyio

Avt) n pebodoroyia Exel emiong ePAPUOGTEL e AVTOUOTOTOMUEVO TPOTO YPTGLULO-
molwvtag Python kot ArcGIS, cvvaptoelg . Ta armoutodpeva input eivar To aypoTikd Kot

aoTIKG cVVopo. otd To dedopéva cuvopwv Tov OpenstreetMap kot Ta AneOEVTa dopvPopikd
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dedopéva. H pon epyaciog ko n pebBodoroyia tapovsialetot 6to mopakdtom Zynua 3-1. o
TOV VITOAOYIGUO TV HECOV BEPUOKPAGIOV Y1l TIG AYPOTIKES KO TIG ACTIKEG TEPLOYES, Yive-
TOL TEPTKOTY TV SOPVPOPIKMY EIKOVAOV, OTMG PAIVETOL 6TO ZyNua 3-2, ¥PNCULOTOLDVTOG
ta KaBopiopéva opta. Avtd epapudletar oe OAa to. amapaitnTa bands yio Tovg vworoyt-
opovg. H ypron tov bands napovoidletat o mepartépm Prpata. o va eEayBodv ot Tipég
Beppoxpaciag tov pixel akorovOeital n péBodog mov mapéyetar and v I'ewioywn Yan-

pecia tov HITA (United States Geographical Survey, USGS).

* Bnua 1 Atpocearpikn @acpatiki AktivoBoiio - Top of Atmospheric Spectral Radiance.
To perpnticd 6pyovo OLI kot TIRS tov LandSat8 mapéyovv dedopéva eicdvav 6€ po-
Vaodeg amdALTNG akTVOBOAI0G. AVTEG O1 TIHEG LITOPOVV GTI GLUVEYELD VOL LLETATPATOVV
0€ PUOUATIKN AKTVOBOAIN YPNGUYLOTOUDVTOG TOVG GLUVTEAECTEG KAMpOKOS aKTivoPo-
Moag mov mapéyovtol oto apyeio petadedopévev, [5]. To tpdto Prpa Tov aiyopid-
pov gtvan 1 eicodog g {dvng (band) 10. Apov gioayBei n {ovn 10 ypnopororod-
vtot Tomot Tov Aappdvovtot amd v wotocerida USGS yia tnv avdxtnon g top of

atmospheric (TOA) gpacpatikig aktvooAiog (spectral radiance).

* Brjua 2 Metatponn tng aktivoPoAiag og Oeppokpacio osOntipa.
A@ob ot ynowokoi apBpoi (DN) petatpamodv oe avakiaon, ta dedopuéva {HVNG
TIRS petatpénovtor and ) @acpatikn aktvoPoria (spectral radiance) oe Beppio-
kpacio potewvotrag (brightness temperature, BT) ypnoylomoidvroag tic Oeppiés ota-
Bepég mov mapéyovror oto apyeio petadedopévav. Ta dedopéva TIRS g OBeppo-
Kkpaociag g potevotntag (Atmosphere Brightness Temperature, TIRS) pmopotv
eniong va petatpamodv and T eoacpotikn aktivoPfoiia (spectral radiance), dmwg
TEPLYPAPETAL TOPATAV®, 6T Beppokpacio potevotntag (Atmosphere Brightness

Temperature), 1 omoia etvon  Tpaypotikny Oeppoxpacio mov PAETEL 0 SopLPOPOG.

« BHMA 3 Mé¢6odoc NDVI.
O pehéteg, remote sensing phenology studies, ypnc1LOTO100V dEG0UEVE TTOV GLAAE-
YOVTOL OO 00PLPOPIKOVS aGHNTAPEG TOL PETPOVV UNKT KOUOTOG PMTOG TOV OIOpP-
POPOVTOL KO AVTOVAKADVTOL oo Tpdctva eUTA. OPIoUéves YPOOTIKES GTO VAL

TOV PLTAOV OTOPPOPOVV VIOV TO. UNKT KOUOTOS TOL 0patol (KOKKIVOL) patds. Ta
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Bands Images:
Boundaries Bandg4,Bands, Bandio

Region Division

into Rural/Urban
Band 10 Bands 4,5 Band 10 Bands 4,5
¥ ¥ ¥ ¥
Top of atmospheric Calculation of Top of atmospheric Calculation of
spectral radiance NDVI spectral radiance NDVI
¥ ¥
Caleulation of Caleulation of
proportion of proportion of
vegetation Pv vegetation Pv
¥ ¥ ¥ ¥
rad?zﬁ?s‘g S":;J—T;e?fsor Determination of 1 rad?zﬁ?s‘g S":;J—T;e?fsor Determination of 1
y ground emissitivity y ground emissitivity
temperature ¢ temperature ¢
¥ ¥
Caleulation of LST Caleulation of LST
for Rural for Urban
Yes No
¥ ¥
LST - Rural No Data

Symua 3-1: Atdypoppo pong yio Tov VTOAOYIGHO NG Bepprokpaciog 0dpoug

1010 ToL @OUALQL OVTAVOKAODY TOL LNKT] KOUATOG TOV £YYDE VTEPLOPOL PWTOG, TO OTO10
glvarl adpato oto avOpomvo pdrtt. [Tapdio mov vapyovv dtdpopot deikteg PAAGTN-
o1MG, £VaG Ao TOVG TTLO EVPEMG YPTCLLOTOIOVUEVOVG Elvat 0 deikTng fAdoTnONG KOvo-
vikorompévng dtapopdg (Normalized Difference Vegetation Index, NDVI). Ot tipég
NDVI kopaivovton amod -1.0 £wg +1.0. Tleproyég Ppayddeic, Epriov N ¥1oviov epga-

12



(0") Aopvgopikn amewcovion g aoti-(B7) Aopveopikn amewkdvion mg vai-
KNG ABMvog Oplag Abrvag

Zymua 3-2: Aopv@opikn aneikovion g Adnvoc.

vifouv cuvnBmg ToAD yaumiés Tywég NDVI (yio mapaderypa, 0.1 1 Atydtepo). H apo
BAdotnon, dmwg Bdpvol kKot KaAMEPYELES, £xOVV MG amoTéAesa pETpleg TEC NDVI
(mepimov 0.2 €wg 0.5). Ot vynAég Tinég NDVI (mepimov 0.6 £wg 0.9) avtictoryovv
o€ UKV PAAGTNON OTMG OLTH TOL OTAVTATOL GTA EVKPOATO KoL TO, TPOTIKA ddon M
OTIG KOAAEPYELEG 6TO HEYIOTO GTASI0 avATTTVENG TOLG, [11]. LandSat opatéc (visible)
Kol vépuBpeg Loveg (near-infrared bands ) ypnoylomolovvTal Yoo TOV LVTOAOYICUO
tov deiktn NDVI. O vrohoyiopdg tov NDVI givat onpovtikdg enedn, 6tn cuveeLa,
vroAoyiletot T0 T0c06TO TG PAAGTNONG KOl GLVIEETAL GE PEYAAO PBabpd pe TV Oep-
poxpacio.
NIR—-R

NDVI] = ———— 3.1
v NIR+ R 3D

omov 1o NIR avtimpoownedel ) {ovn yyvg vepvBpov ({dvn 5) kot to R avtimpo-

oconevel TV kokkvn (ovn (band 4), [12].

Mia tpdcbetn gprion Tov NDVI éxet kabiepwbel yio Tov S0y 0pIo o TV TPAGIVOV-01YPOTIKOV
KO TOV 0OTIKOV Teploy®v. o tov vmoAoyiopd g péong Beppokpaciog Tmv aoTIKOV Kot
AYPOTIK®V TEPLOYDV TPOGHETOVUE EVOV EMTAEOV TEPLOPIGLO GTOV aAyOp1Opo. ['a Tig arypo-
TIKEG TEPLOYEG UETATPEMOLUE KTipla 1] dedopéva un-PAdotnong o€ Tipég nodata kot ovti-
OTOLY0 KAVOLUE TO 1010 Y10 Ao TIKEG TEPLOYES, ECOAEIPOVE TTAPKA Kol YDPOLG Tpacivov. H
onuacio avtov Tov Pripatog PacileTor oTig YaUNAOTEPES BeproKpACiES TOV YOP®V TPOL-
oivov Kot ot VYNAOTEPES Bepprokpacieg Tov KTpiwv Kot Tov dpopov. o mapdostypa,

TPOGHETOVTOG KEVIPIKO TAPKO GTNV aoTIKN Beprokpacio, peumvetor n péomn Beppoxpacio
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¢ moANG. To UHI vroroyileton g 1 d10popd otV TV HECOV TYLDV.

3.5 Amoterhéopata

To amoteAéopato oS TG SadIKaGTg Eivot TPAOTA 0d OAN SOPLPOPIKES EIKOVEG LE
TIc TWéEC Beppokpaciag ota pixel Tovg. Avo and Tig 35 TOAES TAPOLGIALOVTOL GTO TAPOL-
Kato otoyeio. Onwg eaiveror oto Zynua 3-3 yuo v ABMva, akdpa Kot Le ¥pNon oKTi-
vag 25 yriopétpov EEm amd to Opla TG TOANG TOAAEC TEpPLoyEg eEakolovbolv va £yovv
vynAég Tég Beppokpacioc. Ieproyég dmmwg n Elevoiva pe Brounyavieg, 6mwg n eAANVIK)
neTpeAiKT etatpeia, Egovv vyYNAEG TiéS Beppokpaciag. Ot Aevkég TIHEG OTIS EIKOVES Etvort
ewovooTtotyeia- pixel ympic dedopéva. Ilapatnpovpe 6t otnv AGMva vTapy oLV TOAAOTL Y®-
pol 61O YapTN Y®Pig dedopéva. Avtd pmopel va emaAnBevtel Kot Le TV TAPATHPNON TOL
NDVI g Adnvag, oto Zynua 3-4, 1o 0moio Oeiyvel TOEG TEPLOYES KAADTTOVTOL OO KTiplal
Kol TOEG elval TpAcIveC.

‘Eva evolapépov amotédeoua autng g avdAvong eivar 1 cuoyETion g Oeppokpaciog
™G vtaifpov-tpdoivav teproydv Kot tov UHIL. Onmg paivetal ota mapakdtom ypoerpoto
VILAPYEL L0 YPOUUIKY] cLGYETION HeTa&y g Beprokpaciog e vraifpov Kot TG TOANG.
Av16 onpaivetl 6t kabmg avédvetar ) Beppokpacio otny Hradpo, n dapopd Beprokpaciog
HETAED TNG AOTIKNG KOl TNG oypoTIKNG Bepprokpaciog avEavetat. Avtd pumopet va punv €xet
TEPAOTIEG EMITMOOELG Y10, TIC YOUNAES Oepokpaciec, aAAd yio vynAéc Bepuokpacies g
16&Nc 30°C oV aypoTiKn TEPLoYN KATaANyouV o€ o Beppokpacio evtog g mOANG o€

35°C yia moAelc. Avtd 10 amotédecpa tovilel To eovopevo UHI.
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o E!ﬁiii’?#‘;;ﬂ
ymua 3-3: Ogpuoxpacio eddpovg otnv AOMva

Yymua 3-4: H petpien NDVI yia v moAn g Abnvog
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Kepaiaro 4

2UVAPTN G UKTIVIKIG KATAVORG

Av16 10 KEPAAOO EEKIVA LLE TNV EIGOY®YN EVOC TOPAAANAIoHOD peTalh TG oTOTIoTL-
KNG QLGIKNG KO TOV AOTIKOV HOVTEA®V. AvTi 1 ovohoyio ETTpEREL T ¥p1on epYoreimV
NG OTATIOTIKNG PUGIKNG Y10 TNV LOVTEAOTOINGT TV TOAE®V. APYIKA YiveTaL Lol YEVIKN
TPOGEYYION YL TNV TOCOTIKOTTOINGN T®V TOAE®V, 1] OTOI0L TPAYUATOTOIEITOL LE TN YPNON
NG oLVAPTNONG OKTIVIKNG Kortavoung (radial distribution function), g(r). Avtd 10 Ke@AAao
OAOKANpOVETAL EENYOVTOG TN ¥PNON TOL g(T), TN LOVTIEAOTOINGT TOV TOAEWV HEGH OLTAG

KOl T1 GLGYETION TOL [e T0 eovopevo UHL

4.1 Opopdg NS GVVAPTNONS OKTIVIKNG KOTAVOUTGS, g (1)
OTIS TOAELS

H ovvaptmon axtivikng xatavoung g(r) meptypaeel Tov TpOTO LE TOV OTTO10 1) TOTIKY|
TUKVOTNTO TOWKIAAEL oo TV péom mokvotnta. [lapadociokd, &yt ypnoponomOei yio v
dlepedvion NG SOUNG TG ATOMKNG KAILOKOG TG CUUTVKVOUEVNS VANG. XT0 TAOIG10 TV
KTpiov, g(r) etvan n mbavoétta va Ppebel Eva Ktiplo oe amdcToon r omd 10 KTiplo ava-
@opdc. H mukvotta 61N oTaTIoTIKN QLGIKN €ivol 1] LEGT) TUKVOTNTO TOV COUATIOIWOV, T
omoia &yovv mapopoto pEyedoc. Avtd dnpovpyel opioUEVOLS TEPLOPIGHOVS OTAV YPTOLLO-
motettor avt M PEB0JOG Yo TOAELS, OTTOV Ta. KTiPLol 6€ OAOKANPO TO AoTIKO diKTLO £YOVV

onuavTikn dtaxvuaveon peyébovs. Qg amotédeospa, AapPavetar Eva péco péyebog ktipiov
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L. Ot kopveéc 610 g(r) eppoavifovrol dTav 1 TOTIKN TUKVOTNTO TOV KTIPIOV ATOKAIVEL 0o
TN HEGT TLUKVOTNTA TNG TOANG. AVTEG 01 KOPLPES HTOPoLV Vo pedetnBov Y va e&oyBovv
TANPOPOPIES GYETIKA e Ta peYEON kTiprakdv buffer ypnoponoldvog To EAAYLGTO TNG GL-
vaptong. H andctaon oty omoia 10 g (r) OBdvel 010 TpdTO EAdyioto opiletal wg To
tomikd péyebog buffer R. ‘Eva tétoto opiopévo péyebog buffer eivan kpicio yio v mo-
COTIKOTOIN O™ TOV TOPAUETPOV TNG TOANG, ONAAON TOV APl TOV TOTIKAOV YEITOVMV, TN
péon amdoTaoT) LETAED TOVE, TN TOTIKN TUKVOTITO KOl T1 YOPIKN Topapuetpo (coordination
parameter) mov ameikovileTot pe TNV Tomikn topduetpo 2D Mermin Parameter. Zuykexpt-
HEVOL, YPNOLUOTOIOVTAG TO g(T) Yo TNV TOGOTIKOTOINGT TG SOUNS TNG TOANG, SOMIGTM-
vetal 0Tt o1 TOAELG £X0VV SLOKPITEG dOUEG TOV HOLALOVY PE OOUES KPLOTAAA®Y, LYPOV N

aepiov,[85].

4.2 Xvoy£Tion 0opS TOAEMV KOl COUUTIOLOKNG QUGIKG:

[Tpoxeévov va eayBovv 6TATIOTIKA YOpaKTNPLOTIKE GLGYETICETAL 1) SOUT| TV TOAE®V
LE TN dOUN TOV COUOTISIMV 1) 0TTo10 TPOYHOTOTOLEITAL [LE o ovoloyio petald KTiplov Kot
copatiov. H Bacikn tAnpogopio mov mpoépyetat amd to g(r) etvar n mbavotnta edpecNg
YEITOVIKOD GOUATIOION 1] KTIplov o€ dedopéV amdoTacn omd To onpeio avagopds. MoOAGN
TOTIKT] TUKVOTNTO OTOKAIVEL A TN LEGT TLKVOTNTO TOV GUGTHHOTOG, TPOKVTTOLV Ol KO-
PLEEG GTNV KOTOVOUN. ZE GTATIOTIKOVG OPOLS COUATIOIOV avTtd e€nyeitan og N mbavotnta
g0peONG ATOUOV GE OmOGTACT I Ad TO ATOUO OvaPOPES. Avtol 01 GpOoL TOV YPNGUYLOTOLOV-
VIOl 6TV KATHOKO TG TOANG EMTPETOVY TOV OPICUO TNG HEGT S TLVKVOTNTOG KTipiov. Xpn-
CLOTOIMVTOG TNV OVOA0YI0 TOANG-COUATIOIMVY, OedOUEVH TTOV O1d0VTOL AT TN CLVAPTN O
OKTIVIKNG KOTAVOUNG 00NnyohV oIV KoTavonon g doun g moAng. Ot amopoitnteg pe-
TPNOELG Y10 TO LOVTEAO TNG TTOANG EIvaL 1] TVKVOTNTA TOV KTIpiwV, TO Héco pEyebog Ktipiov,
0 ap1Bpog Cn ko 1 TomKY TLKVOTNTA, T 0Toial Bo e€NynBovv Aemtopepéotepa TAPAKAT®.
H péon mokvomnta ktipiov opiletal og n avoroyio Tov aptBpod tov KTipiov mov dtoipeiton

LLE TN GLVOAIKY| £KTOIOT) TNG TTOANG, [85].

=

4.1)
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o6mov N givan to TA0og tov KTipimv Kot A 1 éktaong e moAng. H mukvotnto avtn

elvan BepeMdong yio Tovg LIOAOYLLOVS Tov g(T).

1 al n;(r +dr) —n;(r)

N — Peity 27T X dr

g(r) = (4.2)

omov n;(r) detyvel Tov apBud TV KTpiov eviOg ™G OKTVIKAG andoTacng 7 omd To
eKAoTOTE KTip1o ¢. EmmAéov, to dr amotedel TV akTivikny adénon, 1 oroio £yl emAeyel ¢
70 5% tov péoov peyéboug tov ktipiov (L), dniadn dr = 0.05L [4.6] = exp(Nlog(A;))

[4.7] 6mov N 10 TAN00¢ TV KTipimVv kat A;  empavelo Tov KTpiov 7.

N

L= exp(5e S v/Iog(A) (43)

i=1

[No ktipro (kon TOAELS) TO TPMOTO ELAYLOTO TNG &(T) Elval AVIUTPOCHOTEVTIKO TOV YOO~
Kmnplotikob peyéboug R, g tomikng cvotdoag (cluster), dmov n mukvotnTa TOV KTIpiov
néoa oto cluster amokAivel aioOnTd and T0 péo T ToL cvotpatog [85]. To Rmax umo-
pet vo, vtoAoylotel LOVo Yo delypo TOAE®V e KPLGTOAAIKT 1 vYPY| doun. o moAelg pe
aéplo oo, vV YEVEL OeV givail dOLVATO VoL VTOAOYIOTEL TO EAAY10TO, KABMG 1 GLVVEPTHOT OEV
EYEL KATOLO EAAYLOTO.

H npot xopven tov g(r) mocotikomolel v amdotacn otnv onoia 10 g(r) OTAvVEL TO
HEY1GTO. XTO TANIC10 TV TOAEWMV VTN Elval 1) YopaKINPIoTIK) amdotoon d petald tov KTi-
pilov avaPOPAS Kot TOV TPAOTOL KEADPOLS TV TOTIKAV YeTdvmv Cn. Adym Tov 0Tt Yo TV
avéAvon Tov g(r) Bempovvtor ta KTipta og copatioln xopig péyedog, to d eivon ) andotaom
HETAED TV KEVIPAOV HAlaG TV KTiplov Kot Oyl 1 EAAyLoTn amdetaon HETaED TV TolywV
TV KTipiov, [85]. Bpédnke 6t1 vwhpyet pia woyvpn cvoyétion peta&d R kot d ) omoia ex-
epdletar amd v péon oxéon: d=0.72*R. O apBudg Coordination Cn givar o aptBpdc tov
KOVTIVOTEPMV YEITOVAV, TOV Bpickovtal yOpw amd T0 KEVTIPIKO ATONO avapopds, [85]. Xto
mlaicto Tov g(r), To Cn opileTon mg M TEPLOYN KAT® OO TNV TPAOTN KOPLPN TNG GLVAPTI-
ong. Katd v epappoyn avtol o d1dtdototn dopn TOANG, 0 aptBpog Propel va yevikenTel

©c:
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C, = Qpiplocal/ rg(r)dr (4.4)
0

OOV rmax 1 amdcTUCT Kot TV omoia 1 g(r) PTAvVEL 6To TPMTO EAAYLoTO. o TO VITO-
Aoyiopd tov Cn TPEMEL VOL VTTOAOYIGOVLE TNV TOTIKY TUKVOTNTA TV KTipiwv (local density),
local density pjoca:

H omoia opiletar mg e&nc:

1 <N,
ocal = — — 4.5
Plocal ni; A (4.5)

o6mov NN; givar o apBpog tov kTipinv o kdbe tomikn empaveta (local area) Ar 1 omoia givat

OpLoUEVN amd Evay KOKAO LE 0KTiva, rmax.

4.3 Xvoyétion TG O0M)S TNG TOANS KOl TOV QUIVOUEVOD
UHI.

Xpnowonowwvtag tn péBodo vroroyiopov Beppokpaciag yio to UHI, mwov mapovsid-
OTNKE GTO TPONYOVUEVO KEPAAOLO diveTan 1 duvaTOHTNTA VO, OlEpELYNOEL OV LITAPYEL KATOLOL
oLoYETION HeTalD TG AoTIKNG OEpIKNG VO1d0G EMPOVEING Kot TNG OOUNG TG TOANG. ‘Exet
dmotwbel OtLvdpyel VYN cvoyETion petald Tov eavopévov UHI pe v Beprokpacio
aépa Kot TN SOPKELD TNG VUYTOG Kot TN SOUN TNG TOANG. X& VTNV TNV HEAETN d0PLPO-
pPKa dedOUEVAL Y10, TOV DTOAOYIGUO TG Beprokpaciog edG@ovs divouv cuveyelG LETPNGELS
YL OAOKAN P TNV TOAN Kol TNV aoTKY mepLoyn. O ndvog meplopiopdg ovtne e pebddov
etvan 6T Egovpe pOVO BEPLOKPAGIES Y10l Lo GLYKEKPLUEVT YPOVIKT oTiyun. To yeyovdg g
MYNG EIKOVAOV GE OLOPOPETIKES MPES TNG NUEPAS fvar TpoPANUATIKO, KOODS 1 Yovia TOV
NAOV JapEPEL Kat To, dedopéva Bepuokpaciog dev umopodv ebkoAa vo cuyKptBovv. £T1o
TOPOKATO Ypaenua, Zynua 4-1, mapatifetor n cuvdptnon TukvoTNToS TOAVITNTAS Y10 TIG
TPELG KaTnYyopieg dopmV, T0 aéplo, To VYPO Kot Tov KpHotairo. To UHI vroloyiletor amd
T0. O0PLPOPIKE OEOOUEVA, TOL OO0 TPAYHATOTOOVVTAL AdpPavovTag T dtapopd peTald

TOV HECMV AOTIKOV Kol aypoTiK®V Beppokpaciav. Onwg mapatnpeitor 6to ypdonuo, n
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KOTOVOLT Y10l TOL 0€PLoL EYEL LEYAAT] ATOKALOT], EVO Y10 TIG KPLOTAAAvEG TOAELg To UHI €xet

OTNUOVTIKO UIKPOTEPO EVPOG.

0.25
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0.151

PDF

01r

0.051

TN OOUY| TOVG

Gases

PDF
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0151
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s o
UHI model

ymua 4-1: Xovaptnon mokvotntog mbovotntag UHI yia 35 morelg ta&ivopunpéveg pe Bon
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Kepaiaro 5

Pevotopunyovikin neriTn Yo cvvOETIKES

TOAELS

5.1 Ewoayoym

Y& ovto 0 KePAAato eetdletal o TPITOg EPELVNTIKOG GTOYOG, 0 0moiog emPAAAEL TN
YPNOT TNG GLVAPTNONG OKTIVIKNG KOTavoUnS g(T) Yo T poviehomoinon g TOANG. € Eva
TEPALTEP® PO, QVTA TO LOVTELD YPNCUYLOTOLOVVTOL Y10 T ONUIoVPYio GUVOETIKOV TOLEWV
KO TN HETOTPOTN TOVS GE KTipla yio TV €pappoyn cfd Tpocopoidcemy Yo TV ToGoTIKOo-

moinon eoptiov oTo KTipla.

5.2 IIpoocopoi®mon more®v-cvvOeTIKES TOLELS

O 010)0¢ VTG TNG TPOGEYYIONG EIVALT) ONLLOVPYIO OVTITPOGOTEVTIKMV OELYLATMOV TV
TOLEWV Y10 TOV LTOAOYICUO TV QopTimV avépov. H Bepelimdong pébodog yio ) dnuovp-
yio oVTOV TOV cvVOETIKOV TOAemV Paciletoan oe Tpocopowmoelg Monte Carlo, ol omoieg
etvar vroroyiotikoi alyoppot mov Pacilovtol oe emavalapfoavopeves Toyaieg detypoto-
Invieg yio v emitevén aplBuntikadv anotedecpdtov. Xto tpofAnpata mov oyetifovion
He T QuoiKkn, ot péBodor Monte Carlo givon yproyes yio TV TPOcOUOimoT GLGTNUATOV
pe moAAovc cvlevyuévoug Pabuote erevbepioc, OTMC peLOTA, U TAEIVOUNUEVO VAIKE Kot

Kuttapkég dopés. Kat’ apynv, ot pébodot Monte Carlo pmopovv va ypnoipomombovv y
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MV ENIAVOT 0TO10VINTOTE TPOPANLOTOS TTOV £XEL Lo TOAVOTIKY eppunveia, [97]. Ty ma-
pOVCH TPOGEYYIoT 6TOYOG £ivar 1 dnovpyia derypdToOV TVYOU®V TOAE®V T OTtoio B Tpé-
TEL VO AKOAOLOOVV TIC TAPAUETPOVS TEPLYPAPNS TNG TTOANG TTOV £ENYOVVTAL OITO TV GLVAP-
TNOT OKTIVIKNG KOTavouns. To onuavtikd yeyovog edm givar 0tim mpocéyyion Monte Carlo
EMTLYYAVEL TNV OVAOTLLOVPYIO GTATIOTIKG YOPAKTNPIOTIKOV TOAE®V, OTmg To Tlapiot pe
103,367 ktipto. aALG pe TV xpnomn evOg onUoVTIKA petopévon mAndoug Ktipiwv, tepimov
900. AvTd to LOVTEAD TTOAE®V YPTCLOTOIOVVTOL OC LOVTEAX Y10l TOV VITOAOYIGUO POPTI®V

Tave ota KTipor pog mOANG.

5.3 Me0Ooooroyia

H pébodoc mov axorovOnonke yio Ty onpiovpyic 1@V cuVOETIKOV TOLEWV TOPOVCIA-
Cetal 010 TOPAKAT® SLAYPOpp pong, Zynua 5-1. Zuykekpipéva, opilovtog GUYKEKPIUET
TUKVOTNTO TOANG Kol aptOpd KTipimv pmopei va Kabopiotel n empdveila g TOANG. XtV oL-
véyewo mpooTiBevTal KTiplo Tov amoTEAOVV YEITOVIKA KTipla Yo ToV aKp1P] VITOAOYIGHO TOV
g(r) mavrote £govrag v moukvotnta 0.25 wg kprmpto. To exdpevo Prua apopd tv Monte
Carlo mpocopoimon, emthéyovpe Toyaia Eva KTiplo kot tov aAralovpe Toyaio pio BEon. Av
10 g(r) Tpoceyyilel KaAvTepa TO g(T) TNG TPAYLOUTIKNG TOANG, APNVETAL GTNV BECT| TOL TOTTO-
BetrOnke kot avtd cvveyiletar yo 250,000 eravarnyels, OTOS TOPOVCIALETAL GTO ZyTLLOL
5-2. Zg 6A0. To Tapomdve Puata to kTiplo eEakoAovBovv va eivon onueio, 6mmg eaiveton
oT0 Zynua 5-3 v v mOAN ™G ABNvag, VO 1 LETATPOTT TOVG GE JAACTOTN KOl GTNV

CLVEYELD TPLEOLAGTOTN HOPPT YiveTOL LE BACT TO YOPOKTINPIOTIKO UNKOG KTIPiov.
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Zyquo 5-2: Zovaptnon oKTVIKAG O10VOUNG Yo T LOVIEAOTOWOT Kol TPOTOTLTY LOPON
™G TOANG
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(a") Apykn dapopemon g ABnvag (B") Tehn dwapopemon e Adnvag

Symua 5-3: ovletikn ToAn g AbBnvag
5.4 Ymohoyiwopoi @optimv AvEp®V 6TV TOAN

H agpodvvapuxn pelé oty noAn yopiletar o dvo tunpata. H apyun peré apopd
TOV VTOAOYIGHO TOYLTNTOV TNV ££000 TNG TOANG Yo TNV omoia oev amouteitot Wwaitepn
axpipela kovtd ota KTipto, 0mov epappoletal Evo povtédo TupPddovg pong,k — €, acvumi-
€0TOV, GUVEKTIKOV PELGTOV.

H 6g0tepn pelé apopd Tov VTOAOYIGHO TOV POPTIMV TAVE® GTO KTIPLOL KO OTOLTEL Lo
O AEMTOUEPY] OVOAVOT). X€ LTV TN HEAETT YiveTon | ypnon tov povtéiov, Large Eddy
Simulation (LES). H pébodog LES £ye1 ™ dvvatdotra yio BeAtiopévn akpifeto 0tav n
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avdAivon tov peyolutepwv otpofilmv elvar onpavtikn. Ta pelovektpota dd givat K-
piog 0Tt givor vwoloyioTikd axplBo, amatteiton VYNAOTEPT AVAALGT TAEYUATOS Kol ETIONG
pa aotdOeia Tposopoimong pe pkpd frpata xpovov dnutovpyel YNAO VITOAOYIGTIKO KO-
070G Kot LLeyaho 0yko dedopévov. Onmg eényeitat otn pebodoroyio, TPOKELTAL Y10, L0 TOAD
amAn yeopetpio n oroia divet T duvatdtnta e@approyng e tpocsopoimon LES. Ot peiéteg
Yo TO, LOVTEAD TV TOAE®V £Yvay PE TN XPNON AdES TOL Ansys amtd TO EPYACTNPLO GTO
MIT. Mo cuykpitikn peAétn HETaED TOV OMOTEAECUATMY TOV AOYIGUIKOD TOVL EPYOCTH-
piov kot TV anoteAecudToV ond 10 Ansys mapovcstaletal mopakdtw. Mio amlomotnuévn
apywd Tepintmon pe 00O KTipla £xel EPapPROGTEL, 0ALA B pmopovoe va emextadel Kot og

OAOKANPO TO povTéLo T TOANG pe S00 ktipua.

Urban boundary layer

Urban canopy layer

Flow adjustment region L, Interior region Flow exit region

ymua 5-4: Teproyég e povieAomompévng moAng

5.5 Xoykpion amoterespdtov Ansys kot CFD software PUMA

‘Eyetl epappootet £va povtélo ohykpiong ovo KTipimv yio v enéktact g pebodolro-
viog xpNOIHOTOIDOVTOS Evay avolkTd kddwka eniAvong CFD. Ztoyog avtig g Tpocdyyiong
elvar n emitevén eEapetikd axpiPdv ATOTEAEGUAT®V LE TN XPTNOT UM EUTOPIKOV ETAVTOV.
Ta amoteréopata tov Avocewv Ansys kot Tov kKoddwko CFD amd ™ povéoa [apaAining
Ynohoyiotikng Pevotounyavikng kor Bedtiotonoinong tov EMII, givor mapdpota, 6mmg

QOIVETAL GTOV TOPAKAT® TIVOKOL.

PUMA | ANSYS
cd | 0.1219 | 0.1348

Op1opéveg AETTOUEPELES Y10 TOVS VTTOAOYIGHOVG [E TO Aoyiopikd PUMA divovtot mapa-
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Synthetic-Modeled
City with G(r)

h
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same arsa

Assign Height:
3D Model

Y

Create Fluid region

Create Mesh

]
C

RANS
K-=
Method
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Turbulent Velocity

h 4

coefficient

ymua 5-5: Adypoppo pong g pebodoroyiog

Kkdtow: GPU kodwkag PUMA (Parallel Unstructured Multirow and Adjoint) tov PCOpt/EMIL.
To A éypo amoteleiton amd 78,587 kouPovug ko 420,584 hetra. 'Evo CFD (steady) oe pia
NVIDIA Tesla P100 (apyitektovikng Pascal) pe 16 GB GPU pviqun, pe vtoroyiotikd ypdvo
7 Aentd.H mpocopoiowon £yve pe to poviédo tHpPng Spalart-Allmaras pe wall functions.
Ot Tipég Tov moapovctdloviatl 6ToV TvVaKa TaPoVGdlovy HIKPY| O10popad GLYKPIVOVTOG
10 cd mov vroroyiotnke. O GLVIEAEGTIG OMIGOEAKOVGAG TOV SEVLTEPOL KTIPIOV £XEL GLYKPL-
O¢i, pe faon ™ pnebodoroyia Tng TpoNyoOUEVNS TPOGEYYIOTG, OEOOUEVOL OTL TO POPTIH GTO

TPADTO KTIPlo, OEV EIVOL AVTUTPOCOTEVTIK(.
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(a") Katavoun méocewv, ANSYS (B") Katavoun méoewv , PUMA

Zyua 5-7: Zoykpion anotelecpudtov pe v xpnon tov ANSYS kot PUMA

To axpip] cvumepdopata pe tig 600 pefddovg, KaboTtdHHVY Kot Tig Vo Waitepa a&lo-
motes. 'Evag onpoavtikdc meplopiopdg otny SNUovpyio mo mukvav TAEYUAT®mY 6TV Ho-
VTEAOTTOINGM OAOKANPNG TNG TOANG OOTEAEL TO VTOAOYIOTIKO KOGTOG. O1 VTOAOYIGHOL e
v xpnomn tov Kadtka PUMA éyovv epeavog pikpotepo xpdvo extédeonc. Mia tétota dta-
TioT®moN 0dNYEl 6TO GLUUTEPAGHO OTL Y10 TOV 1010 VITOAOYIOTIKS YpdVo Ba pmopovoape va

AdPovpe o vynAng akpifelog amoTeAEGLOTAL.

5.6 Amoteriopata

H npd €080 g pocopoinong CFD etvor n taydtnta TV T€666pmV S10p0PETIKOV
noreov. H taydmta oto £6apog yio 1o z = 0 elvar undév, pe oefacpid 6TV Oploky Guv-
Onkn un oAicOnone. Kabag 1o vyog av&avetal, n tayxdtta avEavetol Kabhg 1 enidpaon

TV eunodiov peidverol. To mapakdto ypaenuato, yfua 5.7, delyvouv v toydTnTo 6To
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oyog h/2 = bm twv ktipiov kath = 10m oty kopuen tov Ktipiov. Kat otig 800 nepurtd-
oelg N tavTTa awEdvetal TEPIGGATEPO GTA 6TEVA KEVA HeTalD TV kTipiwv. To pavopevo
avto Paciletor ot dtnpnon g paloag kal oty e€lowon Bernoulli. X cvykekpiuévn
TPOGEYYION £XOVTOGS TOAAUTAN EUTOOA-KTIPLL, 1 PO} YOP® OO T TPOTYOVUEVO KTipLa
emnpealel TNy TayvTNTO KoL TV mtieon, [12]. H amlomompévn Tpocéyyion umopel va xpnot-
pomomOei pdvo yuo P ToAd amAn Katavonomn tov amoteAécpuatos. Ot dSlopopeTikég SOUES
NG TOANG KATOANYOVV GE OPOPETIKO LEyeBog TayvTNTOC, TO Omoio ennpedlet avtioTorya

T1G duvapuelS omeBEAkovoag oTo KTipla.

a)

Athens, Greece

Paris, France

Athens, Greece

Paris, France

a)

c)

Velocity Magnitude (m/s)
0 10

Wind Direction Reference Height = 5m —Wind Direction _,, Reference Height = 10m

Density =0.25 Density = 0.25

(") Tayomra yw Oyog z = h/2 = bm (B") Tayvmto ya dyog 2 = h = 10m

Zyua 5-8: Métpo taydtnTag Yo Tig 4 VTOAOYIGHEVEG TOAELG

O o16)0¢ oG ™G HeEAETNG eivar va Bpebel o otatioTikd Eykupn cuoyEtion Tov Ha
TOGOTIKOTOLEL TN GLGYETION TG LOPPOAOYING TNG TOANG KOl TOV GLVTEAECTN OVTIGTACT|G.
O ovvteheotg avtiotaong eapTdton amd To GYNLL Kot TIG cLVONKES pong kot opiletat mg
70 KAAopa TG dlapopdg Tieons ota Tolympata Tev KTipiov tpog v dvvapikn mtieon. To
Aoylopikd Ansys pog divel tn duvatoOTNTO TOV VITOAOYICHOD OVTMOV TV TECEWV GE KAOE
kTipro. O pHé€cog OPOC TOV GLVTEAECTN AVTIOTOONG Yol KAOE TOAN Oivel O1POPETIKA OO~
teréopato. Onwg gaivetal ota Soypappato ot KpUOTOAAKES TOAELS OTmG To BavkovPep

Kot To Maidp £x0uv VYNAOTEPO GUVTIEAEGTN AVTIGTAONG, EVO Ta aépta (gases) LKpOTEPO.
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H 61dtaén tov ktipiov kot to €idog g pong emnppedlel vtV TNV T TOL GUVIEAECTN

avTioTOoNC.

/ dPdA = D (5.1)
A

H dvvapikn mieon (dynamic pressure q), xpnGILOTOLEITAL Y10 TOV TPOGIOPIGO TOL GLVTE-

Aeotn avtioTaong.

2D

= —— 5.2

Cd= (5.2)
1 2

q= §pV (5.3)
Dq

=== 4

Cd 1 (5.4)
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0.5

041} Avg. Cd =1.55
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0
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Drag Coefficient, C d Drag Coefficient, C d
(a") ABMva-Aopn vypov (B") Hopicr-Aopn aepiov
Paris
0.3 ‘ Vancouver
0.5 :
0.25
04" Avg. Cd =143
0.2
0.3+
w [T
a
0 0.15 g
0.2+
0.1
0.1+
0.05
0
0 0 2 4 6
0 1 2 3 4 Drag Coefficient, C,

Drag Coefficient, C d
(0") BavkovPep-Kpvotaiiikn doun

(v") Moaidp-Aopn vypod

yua 5-9: Zuvaptnon TokvotnTog ThavOTNTOG TOV GUVIEAESTN AVTIGTOOTG Y10 TIC 4 LVTTO-
AOYIGUEVEC TTOAELS
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