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Abstract

This diploma thesis involves solving CFD-related, shape, and topology optimization (ShpO
and TopO) problems with constraints. A gradient-based approach is utilized that includes
the continuous adjoint method which computes the gradients of the objective and constraint
functions with respect to (w.r.t) the design variables. For that purpose, the implied opti-
mization tool has been the primal-adjoint solver of OpenFOAM®) library, with an improved
SQP approach for the design variable update. The improvement lies in the modification made
for better handling problems with constraints, which cannot be satisfied at the initial opti-
mization cycles or become unsatisfied as the optimization routine progresses. In some cases,
these constraints have been shown to lead the optimization algorithm in low-quality or/and
pure solutions, resulting in impractical generated geometries. The modifications proposed
are related to a parameter that can drastically influence the convergence speed and the final

solutions acquired by the existing OpenFOAM SQP algorithm.

To test the proposed SQP algorithm, a number of 2D and 3D benchmarks is evaluated.
Specifically, three aerodynamic TopO problems are solved: (i) a 2D, laminar, single-inlet
dual-outlet case, (ii) a 2D, turbulent, single-inlet dual-outlet case, (iii) a 3D, turbulent, single-
inlet dual-outlet case, which corresponds to an air-duct design problem for automotive HVAC

applications, and (iv) a similar 3D, turbulent, single-inlet triple-outlet case.

Three acrodynamic ShpO problems are investigated: (i) a laminar NACA0012 airfoil case, (ii)



a similar turbulent case with different control box settings, and (iii) a 2D, turbulent stator

blade optimization.

Finally, three 2D, mono-fluid, conjugate heat transfer topology optimization problems are
examined. In all cases, aluminum heat sinks are generated using a turbulent, 2D, 1-inlet-1-
outlet setup. A heat exchange-related and a fluid-related terms are scaled and added to create

the objective function of these problems, with varying weight coefficients across different cases.

The goal of this diploma thesis is to test the proposed SQP setup and explore its optimal
tuning, for solving laminar or turbulent, 2D or 3D, topology and shape optimization problems,

in aerodynamic or conjugate heat transfer applications.
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Hepirndn

Auth n Simhopotixd epyooia avogépeton otny Bedtiotonoinon oyfuatoc xou tororoyiuc (ShpO
xou TopO) oe mpoBiiuata unohoyotnic peuotoduvauxic (CED) unéd mepropiopoic. Xenot-
womotetton pia pédodog Pootopévn otic xhioeg (gradient-based method), n onoio tepthouBdvel
™ ouveyh ouluyn pédodo (continuous adjoint method) yix Tov uTOAOYIOUS TV TOEAYDY WV
euonoUNolag TNG AVTIXEEVIXAG CUVOTNOTS XAl TOV TEQLOPIOUMY WS TEOG TG HETUBANTES oy EdLo-
uo0. I'at Tov oxomd autod, 0 xWOWAS BEATIoTOTONOTE ToL YeNnotuonoteltar efvon o primal-adjoint
emthOtne e Pirodixnce OpenFOAM®), oe cuvduaoud e pa Bettouévn tpocéyyion SQP yio
TNV EVIUEPWOT) TWV PETABANTOV oyediaopol. H Bedtinon €yxeital o Tponomoloelg Tou mTpe-
TOLY XOAUTEQO YEIPLOUO TROBANUATLY UE TEPLOPIGUOUE, OL 0ToloL E(TE BEV IXAVOTIOLOUVTOL GTOUC
opywole xOxAoug TS BehtioTonolnong elte mapofidlovton xatd Ty e€€MEN Tne Bradwaciog. e
OPIOPEVESG TIEQLTTWOELS, aUTOL Ol TEPLOPLIoUOl 001YoUV Tov alybpriuo BedtioTomoinong oe Aoelg
QVETOEXNC TOLOTNTAC 1) OE TEYVOAOYIX, UN TEaxTXEC YEWUETPIEC. Ol TPOTEWVOUEVEC TPOTOTOL-
oelc oyeTilovTon UE plal TORAUETRO TOL EMNEEALEL BEACTIXG TNV TayUTNTO GUYXALOTS Xol TLC TEMXES

AOoEC TOL TEOXVUTTOLY amd Tov UTdpyovta akyderduo SQP tou OpenFOAM.

[o T Boxiur Tou akyoptiuouv SQP, alloroyolvton apxetéc 2D xau 3D mepintioeic avopopds.
Yuyxexpyéva, emhbovton tela agpoduvouxd tpoBAruata Behtiotonoinone tonoloylag: (i) éva
ddLdotato, oTpwTd, TEOBANUL e pia cicodo xou dvo e€68oug, (ii) évar BibdoTato, TUPBWOES,
TeOBANua e pio eloodo xou Bvo eZbdouc, (iii) éva tprodldototo, TUPPWOES TEOBANUA U Wio

eloodo xou BVo e€bdoug, Tou aopd Tov oyedlooud acpaywyol Y HVAC epapuoyéc otny au-
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ToxwvnToflounyavia, xodoe xau (iv) éva napdpolo Tptodldototo, TUPBOdES TEdBANUa ue Uio clcodo

xaL TEELS e€600UC.

Emméov, Siepeuvivtan tpla tpoBifuota acpoduvopxric fehtiotonoinong oyfuatoc: (i) neitiotonoinon
woc agpotouric NACA0012, oe otpwth por (ii) éva avtiotowyo tupBndes mpdBhnuo Ue Blopope-
Txég puiploelc Twv onuelwy eréyyou, xou (iii) n BeAtiotonoinon tou oyuatog evog didtdo TaTng,

otadepol nrepuyiou oTpofrhounyovic.

Téhoc, e€etdlovran Tpia, SLoLdo Torta TpoPBAfuata BektioTonoinone Tontohoylauc oLUleVYUEVNEC HETOPORAC
VYepuotntoc (Conjugate Heat Transfer), evic peuotol. Me dhec Tig mepntddoels, mopdyovTal
owtdo tateg PUxTpeg ahouuviou Ue pla elcodo xon uior €£000. NTIC AVTIXEWEVIXES CUVIQTACELS
QUTOY TWV TEOPANUATLY cLVBUALOVTAL, UE DLIPORETIXOUE GUVTEAEGTEC BapltnTag, 600 6poL Tou

oyetiCovton Ye Tr UETAUPORd VEQUOTNTASC XAl UE T POT) TOU PEUGTOU.

Y1oyoc authc Tne dimAwuotixrc epyaotag etvon 1 Soxr| Tou tpotevouevou SQP ahyopliuou xou
1 Olepelivnon e BéRtioTne pUUoTc Tou, Yl Ty enthuor tpofAnudtwy Beitictomoinong oy
HOTOG X0 ToToAOYING, OF POEC OTEPWTES 1) TUPBWOELS, BLOOLIO TATES 1| TELOOLIG TUTES, UE EQUOUOYES

OTNV aeEOBLVALXT Xt T1 GLULELYREVY UETAPORE VeQUOTNTAS.



Chapter 1
Introduction

Computational Fluid Dynamics (CFD) methods have become an indispensable tool to solve
and analyze complex fluid dynamics problems in various engineering fields, such as in aero-
nautics [1], automotive engineering [2, 3], thermal and hydraulic turbomachinery [4], weather
forecasting, to mention a few of them. The exponential growth of computational power and
the increasing availability of modern High-Performance Computing (HPC) systems during the
last decades, combined with the development of more efficient methods for predicting fluid
flow behavior, has allowed CFD to largely replace expensive and time-consuming experiments
in the design-optimization process of aero/hydrodynamic components. Despite notable ad-
vancements in CFD methods, challenges persist in accurately simulating turbulent flows with
reasonable computational cost, due to the wide range of spatial and temporal scales of vortical

structures.

1.1 CFD Topology Optimization

Topology Optimization (TopO) [5, 6] involves the pursuit of obtaining a better qualified de-
sign for a specific application by altering the material composition within its design space,
while also satisfying the governing equations and design constraints. Introduced and almost
matured in solid mechanics [7], TopO has been extended to various scientific fields due to the
flexibility it offers, as it is not bounded by an a priori defined shape or topology. In fluid
mechanics in specific, TopO has successfully been applied in Stokes [8], laminar [9, 10], and
turbulent [11, 12], steady, and unsteady [13, 14, 15] flows. TopO’s predominant methodol-
ogy in fluid mechanics is via the porosity-based approach (a.k.a. the Brinkman penalization
method), in which a porous material is introduced and controlled, giving rise to the design
variables of the case. Solid regions are characterized by low porosity or high impermeability,

impeding fluid flow by enforcing a zero velocity. The ability to radically change the topology of



the solution during the optimization cycles and the fairly simple implementation are the main
advantages of the porosity-based TopO. Its main weakness is related to accuracy issues, as it
cannot account for the accurate effect of solid walls on the computed flow field. Also, stair-
case effects, instead of curved boundaries, may result, whereas narrow solid regions cannot
accurately be simulated, as pressure diffuses through the solid regions [16, 17]. This is why,
optimized solutions computed by standard porosity-based TopO require re-evaluation using
flow solvers running on body-fitted meshes. The extraction of the optimal body shape from
the optimized porosity field becomes necessary and this is not a straightforward task which,
among other, may impair the quality of the optimized solution since the re-evaluation usually
computes a (slightly) different performance value. For this reason, after parameterizing the
so-extracted boundaries, a shape optimization (ShpO) using this parameterization may follow

to further refine the optimized solution [18].

These shortcomings of the porosity-based approach, the increasing complexity of TopO appli-
cations as well as the need to compute sharp fluid-solid interfaces [17, 19, 20], have rejuvenated
surface-capturing approaches, in which solid boundaries are reconstructed during the opti-
mization process rather than upon its completion, usually via level-set computations on fixed
background meshes [16, 21, 22]. Capturing the solid surface anew within each optimization
cycle allows for the imposition of accurate boundary conditions. In level-set TopO methods,
the zero-level iso-surfaces are displaced by the computed sensitivity derivatives; these support
topological changes such as boundary-merging, boundary-splitting, and boundary disappear-
ance [23]. However, for the generation of new solid boundaries, i.e. the appearance of new

fluid-solid interfaces inside the fluid domain, extra treatment is required [24].

Another approach to eliminate the porosity-based TopO approach is the cut-cell TopO
method [25], which computes the intersections of the Fluid-Solid Interface (FSI) with the cells
of the background CFD grid in each optimization cycle. This leads in cut-cell TopO method
which is still based on the impermeability field pf porosity-based TopO. However, in contrast
to porosity-based TopO, this is used exclusively to compute the FSI. The solution of the flow
equations is, thus, performed on the cut-cell grid, allowing the imposition of exact boundary
conditions on the FSI. ShpO is no more needed, and accurate performance values as well as a

clear FSI become available.



1.2 CFD Shape Optimization

In ShpO [26], shapes (wings, vehicles, blades, etc) to be optimized according to userdefined
objectives and constraints, are controlled using a shape parameterization technique. The
selection of such a technique is crucial since it determines the design space to be explored,
highly affecting the whole optimization process and the quality of the optimized designs. In
general, they can be classified into two main categories: Computer-Aided Design (CAD)-free
and CAD-based.

CAD-free parameterization techniques include node-based and free-form deformation ap-
proaches. The former directly control the coordinates of the nodes on the body surface,
giving the richest possible design space. However, the independent displacement of each sur-
face node may lead to high-frequency, noisy optimized shapes that might cause numerical
instability in the subsequent optimization cycles or be unacceptable during manufacturing.
To ensure smooth design updates, filtering functions are typically used. In free-form deforma-
tion, the shape to be optimized is enclosed by a lattice of control points, the coordinates of
which constitute the design variables. Basis functions (such as radial basis functions, harmonic
coordinates, Non-Uniform Rational B-Splines (NURBS) or volumetric B-splines) interpolate
the displacement of each control point to the surface nodes of the CFD grid. Some of those
techniques can simultaneously control both the boundary and (part of) the associated CFD

grid.

The main drawback of CAD-free parameterization techniques is their inherent difficulty in im-
porting the optimized geometry back into the CAD environment, as part of the iterative design
process between different engineering departments or for final manufacturing. Returning to
CAD is not trivial and often impairs the quality of designed shapes. Conversely, CAD-based
parameterization techniques use as design variables either the native CAD model parameters
or the control points of NURBS patches. Consequently, the optimized shapes already exist in
a CAD format, such as the STEP format. Techniques using the native CAD model parameters
as design variables may offer the best compromise between complexity and manufacturabil-

ity but, in general, are difficult to be incorporated in a fully automated optimization workflow.

This thesis exclusively relies on CAD-free parameterization techniques. In particular, the
design variables are the Cartesian coordinates of the control points of volumetric B-splines
lattices, morphing the shape to be optimized and the part of the CFD grid encapsulated
into the lattices. At each optimization cycle, this part of the grid is deformed following the

displacement of the control points, eliminating the need to regenerate the grid.



1.3 Optimization Algorithms

Having defined the design variables of the optimization problem, a method must be selected
to search for the optimal solution. Based on this criterion, CFD-based optimization methods
can be categorized into stochastic (or gradient-free) and deterministic (or gradient-based).
The most widely used representative of stochastic methods are the Evolutionary Algorithms
(EAs) [27], which mimic the Darwinian evolution of species. EAs apply natural evolution op-
erations, like crossover, mutation and elitism to evolve a set of candidate solutions (i.e. sets of
design variables) from one generation to the next, searching for the best performing candidate
solution. Provided that the optimization runs for a sufficient number of generations, EAs can
locate the global optimum for a given set of design variables and their user-defined bounds.
An additional advantage of EAs is that they do not require access to the source code of the
software used to evaluate the objective function(s) and constraint(s), which means that an EA
platform can be used in any optimization problem, using the corresponding evaluation soft-
ware (flow solver, in a CFD application) as a “black box”. Moreover, EAs can compute Pareto
fronts of non-dominated solutions in multi-objective optimization problems, with a single run.
However, the main disadvantage of EAs is that a large number of candidate solutions must
be evaluated before reaching the optimal one(s), especially as the number of design variables
increases. Practically, the number of the flow evaluations scales with the number of design
variables. Various techniques have been proposed to decrease the computational cost and the
turn-around time of EAs. Among other, these include the use of parallel EAs [28, 29|, asyn-
chronous EAs, suitable for heterogeneous multiprocessor platforms, and metamodel-assisted
EAs [30, 31] which use a surrogate evaluation model to reduce the required number of compu-
tationally expensive CFD evaluations. Stochastic methods are beyond the scope of this thesis

and are not discussed further.

Gradient-based methods [32] improve a given shape based on information related to the deriva-
tives of the objective and constraint function(s) J with respect to (w.r.t.) the design variables,
a.k.a. Sensitivity Derivatives (SDs). SDs dictate the search directions in the design space that
the optimization should follow to minimize or maximize J. In general, gradient-based meth-
ods require fewer flow evaluations than EAs to reach an optimized shape, although they are
more prone to becoming trapped into local minima. The efficiency of gradient-based methods
strongly depends on the method used to compute SDs. The most straightforward method
for computing SDs is through Finite Differences (FDs). Each design variable is perturbed by
an infinitesimally small value, €, and the objective function is re-evaluated on the perturbed

design. For second-order accurate scheme, central FDs read
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Despite its simple implementation, the computational cost of FDs scales linearly with the

(1.1)

number N of design variables, requiring 2N solutions of the flow Partial Differential Equa-
tions (PDEs), making it infeasible for practical optimization problems with many design vari-
ables. Additionally, the accuracy of 6.J/db, highly depends on ¢, the value of which is difficult
to determine a priori. Large values increase truncation errors, while small values introduce
round-off errors. To minimize the latter, the flow equations must be sufficiently converged,

which might not always be possible in industrial applications.

Direct differentiation [33] is another method for computing SDs. To compute the derivatives
of the flow variables w.r.t. to b, appearing in the expression of SDs, the flow equations are
differentiated w.r.t. b, leading to N linear systems that must be solved, thus yielding a cost
that scales with N. Practically, direct differentiation is as costly as FDs, with the extra bur-
den of developing the equations and programming the corresponding software, but without
the ambiguities associated with the value of €. Nevertheless, direct differentiation is used in

algorithms computing high-order SDs [34].

In contrast, the adjoint method computes SDs at a cost that is practically independent of
the number of design variables and, more or less, equal to that of the numerical solution of
the primal (i.e. flow, in a CFD application) problem. The adjoint method [35] defines the
augmented objective function (or Lagrangian) L as the sum of J and the field integrals of
the flow equations multiplied by the corresponding adjoint (or Lagrange multiplier) fields.
Essentially, L = J and §L/b, = 0J/6b,. The adjoint fields are introduced to provide the
necessary degrees of freedom to eliminate the derivatives of the flow variables w.r.t. to b,
from the SDs expression. This is achieved by satisfying the field adjoint equations and adjoint
boundary conditions. The remaining terms in 6L /db,, depend on both the primal and adjoint
fields and form the adjoint SDs.

Adjoint methods are categorized into continuous and discrete ones. In continuous adjoint,
the objective function and primal equations are first differentiated w.r.t. bn and the adjoint
equations are derived in the form of PDEs, i.e. in continuous form, which then require dis-
cretization for being numerically solved. Alternatively, working with both J and the primal
equations in discrete form, their differentiation gives rise to the discrete adjoint method [36],
in which the adjoint equations are directly derived in discrete form. This thesis relies on the

continuous adjoint method.
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Having computed SDs, the design variables values are updated. Gradient ¢.J/0b is orthog-
onal to the level sets (iso-surfaces) of J in the design space, pointing toward the direction
with the greatest rate of increase in J value. The steepest descent method, one of the oldest
methods for unconstrained optimization, relies on the observation that a continuous function
should increase/decrease, at least initially, if one takes a step along the direction of the posi-
tive /negative gradient. However, steepest descent is known for its slow convergence, especially
when approaching a stationary point. Alternative methods include Newton methods which
use the exact Hessian matrix V2J and quasi-Newton which rely on approximations to V2.J,
such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [37] and the SR1 [38]. The
Fletcher-Reeves conjugate gradients method [39] is another alternative which is more effective
than steepest descent. Despite being more robust than Newton or quasi-Newton methods,

conjugate gradients method do not attain the fast convergence rates of the latter.

Another class of optimization update methods is designed to handle constraints effectively
while improving convergence. Among the most widely used approaches are the Method of
Moving Asymptotes (MMA) and Sequential Quadratic Programming (SQP).

MMA [40] is a first-order optimization method specifically designed for topology and shape
optimization problems with constraints. It introduces individual moving asymptotes for each
design variable, dynamically adjusting the search space to improve numerical stability and
convergence [41]. The method formulates the subproblem as a convex, separable program-
ming problem, allowing for efficient solutions even when handling large numbers of design
variables [42]. MMA is particularly well suited for structural and CFD-based shape opti-
mization problems, where the design space is complex and traditional methods struggle with
constraint handling [43]. It has been widely adopted in engineering applications due to its

robustness and efficiency in dealing with highly nonlinear and ill-conditioned problems [44].

On the other hand, SQP [45] is an iterative method that approximates the original nonlinear
optimization problem by solving a sequence of quadratic programming (QP) subproblems.
Each subproblem is derived by locally approximating the objective function and constraints
using a quadratic Taylor series expansion and a linearization of the constraints, respectively
[46]. The resulting QP problem is then solved to obtain a search direction, which updates the
design variables while maintaining feasibility with respect to the constraints. SQP methods
have been extensively applied in CFD-based shape optimization due to their strong theoreti-

cal foundation and fast convergence properties [47]. However, they require the Hessian of the
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Lagrangian function, which can be computationally expensive to compute and thus techniques

such as BFGS approximations are often employed to alleviate this cost.

1.4 Thesis Structure

Chapter 2: A brief introduction in TopO and ShpO and the continuous adjoint for the cal-

culation of the sensitivity derivatives in CFD problems.

Chapter 3: The mathematical framework of the SQP algorithm for constrained optimization,

taking into account constraint infeasibility, using additional design variables.

Chapter 4: TopO case studies in 2D and 3D geometries. That includes:

1. A 2D, laminar, single-inlet dual-outlet case, where the objective is the minimization of
total pressure losses while enforcing a volume-occupied-by-fluid constraint, used in the

porosity-based TopO approach.

2. A 2D turbulent single-inlet, dual-outlet case, where the objectives remain the mini-
mization of total pressure losses and the enforcement of the volume-occupied-by-fluid

constraint, with an additional constraint ensuring equal mass partitioning at the outlets.

3. A 3D, turbulent, single-inlet dual-outlet case, which corresponds to an air-duct design
problem for automotive HVAC applications. The objective is to minimize a flow unifor-
mity index at the outlets while satisfying three constraints: the volume-occupied-by-fluid
constraint, the equal-outlet-mass-partition constraint, and a target total-pressure-loss

constraint.

4. A 3D, turbulent, single-inlet triple-outlet case, which corresponds to an air-duct design
problem for automotive HVAC applications. The objective is to minimize a flow unifor-
mity index at the outlets while satisfying three constraints: the volume-occupied-by-fluid
constraint, the equal-outlet-mass-partition constraint, and a target total-pressure-loss

constraint.

Chapter 5: ShpO case studies in 2D geometries. That includes:

13



1. A 2D, laminar optimization case of a NACA0012-airfoil. The objective is the minimiza-
tion of drag, while satisfying an airfoil-minimum-volume constraint and a lift-target

constraint.
2. A similar, turbulent NACAO0012-airfoil case with different control box settings.

3. A 2D, turbulent optimization case revolving the TU Berlin TurboLab Stator Blade.
The objective is the minimization of total pressure losses satisfying an airfoil-minimum-

volume constraint and an target exit-flow-angle constraint.

Chapter 6: Three 2D, mono-fluid, conjugate heat transfer topology optimization cases, in
which aluminum heat sinks are generated using a turbulent, 2D, single-inlet single-outlet
setup. The objective is the weighted sum of the mean domain temperature and the total pres-
sure losses, satisfying a volume-occupied-by-fluid constraint. In each case, the weights vary
to transfer objective influence from the mean-temperature term to the total-pressure-losses
term. At the end of the chapter, the best solutions of each benchmarks form part of a Pareto

front.

Chapter 7: Presentation of conclusions drawn from the research performed in the thesis,

along with suggestions for future work.

14



Chapter 2

Adjoint Solvers

2.1 Primal Problem

All optimization problems presented in this diploma thesis are governed by the steady, (lam-
inar or turbulent) flow equations for incompressible flows. These define the fluid primal
problem, which is modeled using either the Navier-Stokes or the Reynolds-Averaged Navier-
Stokes (RANS) equations for laminar and turbulent flow respectively. The latter consists of
the Reynolds-averaged continuity and momentum conservation equations, alongside the tur-
bulence model equations. In this thesis, the Spalart-Allmaras model is used, together with the
Eikonal equation computing distances (A) of the internal cells from the solid walls. In Con-
jugate Heat Transfer (CHT) cases presented in Chapter 6, the energy conservation equation
is solved after the RANS-Spalart-Allmaras-Eikonal set of equations, concluding the primal

problem solving step.

2.1.1 Primal Problem in ShpO

The primal equations used in ShpO [3], augmented with the Spalart-Allmaras equation, are

presented below:
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where u; are the velocity components, p the pressure divided by the density, 7;; the stress
duy

i >, v and v; the bulk and eddy viscosity coefficients

tensor given by: 7;; = (v + 1) (% +
J

respectively.

2.1.2 Primal Problem in TopO

In the porosity approach implemented in the OpenFOAM optimization library, adjointOp-
timization, the porosity scalar field « is introduced, ranging from 0 to 1 and interpolating
the solid and the fluid regions. The values equal to 0 represent the fluid region and values
equal to 1 the solid region. Source terms (also referred to as Brinkman penalization source
terms) augment the initial conservation equations, which either drive the solution towards val-
ues corresponding to solid walls, by deactivating the equations at the solid region(continuity
and momentum equations). In CHT problems, the energy equation source term also inter-
polates between the thermo-physical properties of the fluid and solidified domains [30, 31].
The Brinkman-augmented RANS-Spalart-Allmaras primal set of equations solved in TopO [6]

problems are presented:

Continuity: R, = gz 0, i=1,2(,3) (2.5)
Momentum: R, ; = u; S;L; + g—i — % + Brmaz!"(B)u; = 0 (2.6)
Turbulence: R; = ng—jj — % [(V + Z) g—;] = Cgﬂ <§—§]>2 (2.7)
— 9P(0) + D7) + BuaxI5(B)7 = 0 (2.8)

Fikonal: R — a% (%A) _ A% 1+ B a(B)A =0 (2.9)
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where [ is a function of a with the same physical interpretations and value range, SBa: a
scalar quantity used to ensure that the u; values are practically zero in the solidified domain.
Its value can be computed based on the Darcy number, quantifying the ratio between viscous

and porous forces,

. v
B 5maxL2

where L is a characteristic length of the case under consideration, such as the inlet hydraulic

Da (2.10)

diameter in duct problems. A typical value is Da = 107°. The parameter By, should be
set to a relatively large value, but not excessively so, as abnormally high values can cause
numerical instabilities. A typical choice is fax = 2500.

A number of I(f) functions have been proposed in the literature including those proposed by
Borrvall and Petersson [40] and the Solid Isotropic Material with Penalization (SIMP).

ISIMP(/B) = 51) (211)
Ip_p(B) = m (2.12)

where b is a parameter controlling the steepness of the interpolation function. Larger b values
correspond to sharper distinctions between the fluid and solid domains. However, larger b

values also lead to stiffer optimization problems. Typical choices for b range from 1 to 10.

Regularization and Projection

In a number of TopO problems, especially those related to CHT, checkerboard artifacts may
appear in the « field. To avoid these artifacts and mitigate the effects of local grid size to
the optimized solution, the so-called regularization of the porosity field can be performed. A
typical regularization technique involves a Helmholtz-type filter, i.e,

0%a

2 ~
— +a= 2.13
T 82:[:3 a=auo ( )

where & is the regularized porosity field and r can be seen as a smoothing radius, usually
computed as a function of the average grid cell size. Regularization, as any other smoothing
technique, unavoidably blurs the line between the fluid and solidified domains. To increase
the contrast of the & field, projection can follow the regularization step, calculating the (
field which appears in the source terms in the augmented conservation equations. Regulated

S field is calculated typically by equation (2.15).

17



tanh(0.5b) + tanh[b(a — 0.5)]

b= 2tanh(0.5b)

(2.14)

where b is another sharpening parameter.
If no regularization or projection is applied, then g = « in the primal equations. In Figure
2.1, the impact of the predescribed steps are shown for a 2D TopO case with one inlet (left)

and two outlets (down and right).

)2~
Pl
==t a=a
s

z . 2 Argument of Brinkman
Design variables q Regularized field ‘ BUme
penalization terms
Regulorization Projection/Sharpening

Figure 2.1: The left figure illustrates the initial porosity field, where transition regions contain
intermediate porosity values around 0.5, indicating a mixture of fluid and solid characteristics.
In the middle figure, the regularization step smooths these transition areas, ensuring a more
gradual variation of porosity. Finally, the right figure presents the result after the projection
step, where the porosity field is quite sharp defined with distinct 0 (solid) and 1 (fluid) regions,
effectively eliminating intermediate values and ensuring a clear material distribution.

2.1.3 Primal Problem in CHT TopO

With the addition of the Brinkman-augmented energy equation, the CHT TopO [11] primal

set of equations are:
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aui

Continnity: R, = 7 =0, i=12(3) (2.15)
Momentum: R,,; = ujg—z + gi ZZ + Bmaz " (B)u; = 0 (2.16)
Turbulence: Ry = ng—z - a% Ku + Z) g_ai] - 72 (aa;) (2.17)
—OP(D) + D) + B Lo (8)7 = 0 (2.18)

Eikonal: Ra = a% (§—2A> - A?;—g 14 B a(B)A =0 (2.19)
Encray: Ry = (1 6)p0pa(g;f> - aij (kl’“(ﬁ)gi) 0 (2.20)

where T' is the temperature field, p the constant fluid density, C, the specific heat transfer
coefficient under constant pressure and £ the thermal conductivity. In the energy equation,
the convection term is multiplied with (1 — /) to cancel out the inevitable small-scale leakage

of fluid into the solid domain, almost always observed in TopO.

2.2 Adjoint Problem

2.2.1 Adjoint Problem in ShpO

After forming the augmented objective function adding the residual terms of equations 2.1-2.5,
differentiating w.r.t the design variables, integrating by parts and setting the primal-fields-
derivatives terms equal to zero, the adjoint equations for the ShpO [6] are formed:
ou;
R —_—J _ 2.21
q Oz, (2.21)
87)] a(’UjUZ‘> ory @ % 0 (VaV Ovy,

Ru-: j - - Y e T 5 m mli :07 .:17273
T Yo 0w, 0z, om  “0m  om Cy€]k8$]€l> ' ®)

R, — _8(Uj1/a) B i [(y+z) 8%} L1 10v, Ov +2@i (Dai)
o

Ox; Ox; Ox; o Ox; 81‘] o Ox; Ox;
o Ovy Ou; ((Ov;  Ov, .
v+ == — —P+ D)y, = 2.22
TGt S o (azj * ax) T (=P + D) =0, (2.22)
0 0A
=-2— (A, = 2.2
RA 0:17] ( ax]) + v, Ch = 0, ( 3)

where u; are the adjoint velocity components, ¢ the adjoint pressure, 7, the adjoint to the

turbulence model variable, 75 = (v + 1) (g;l + au]) are the adjoint stresses.
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2.2.2 Adjoint Problem in TopO

Following the continuous adjoint methodology for equations 2.6-2.11, the TopO adjoint equa-

tions [11] are derived:

8u]

_ _ 2.24

Rq axj O’ ( )
O 0v; O(vju) 87'” dq . Ov 0 (U0 Oy,

R = oz; 0z; z; + ox; + ”“a_xi dz; \ Cy Emjk(?x] Cmli

—i—pcp{(l—ﬁ)Ta 0 (aT)— 0 {(1—B)TQ6TH+ﬁmX I,(B)u; =0, i=1,2,(3)

dx; \0x; ) O, dz;
(2.25)
(] L ()
T BiC + ‘ZZ Sﬁ; ( ng g?) (—P + D)+ Bue5(8)7 = 0, (2.26)
Ra, — _Q‘a% (A gi) 4 57aCn + B Ia(8)Aa = 0 (2.27)

2.2.3 Adjoint Problem in CHT TopO

Adding the energy-adjoint equation, the complete CHT TopO [11] adjoint problem is formu-
lated:

R, = ax] =0, (2.28)
_Ov; Ovu) 0T dq O 0 [(v,v Oy,
B =i ™ "o, 0z, 0w 0w 0w \ Cy g,
o [T\ O ar |
wre{ 0= g (5 ) = 5 |- g | |+ BB =0, i =1.2.03
(2.29)
0(v;7,) 0 v\ 0, 10v, ov e O (. OU
go= el 2 (g Y 22 % (pur
R Oz, Oz, [(V+ a) 01']-] 5 o 0r; Ox; * o Oz, (V &zsj)
4 i Cy 4 0 (0% OV L DVg B (B)7n — 0 (2.30)
a v 85 ax] ax] azz a max+v a — ) .
0 OA
RA = _28_1‘] (A ajj]> —+ VVaOA + /Bmax (6)Aa = O, (231)
9 9 o7,
R, = —piy e 0= 80T = 5 WG] =0 (2.32)

where Ty, is the adjoint temperature field.
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2.3 Primal-Adjoint Optimization Algorithm

The optimization algorithm using the SQP method for the update of the design variables,
utilized in the TopO and ShpO cases in this diploma thesis is shown below. More information

about the SQP sub-routine is provided in the next section.

Algorithm 1 Primal-Adjoint Optimization Algorithm
: design variables initialization
while convergence criteria are not met do
Primal step - solve the primal equations
Adjoint step - solve the adjoint equations and compute sensitivity derivatives
Update step - solve quadratic sub-problem and update the design variables
end while
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Chapter 3
Sequential Quadratic Programming

In this chapter, the main mathematical framework of the SQP algorithm is presented. This is
based on solving approximations to the initial constrained optimization problem, and updat-
ing the design variables till the selected convergence criteria are satisfied. The approximated
problem is constructed using the sensitivity derivatives of the objective and constraint func-

tions, evaluated using the continuous adjoint method mentioned in the previous chapter.

To handle infeasible initiation of the design variables, the constraints are relaxed using a
set of auxiliary design variables in a similar fashion, described in [40]. As the SQP algorithm
drives the solution towards the feasible domain these pseudo design variables dissipate, bearing
no influence on the final solution. These design variables are added in the initial objective
function, multiplied by a scalar, which plays an important role in the convergence of the
algorithm. Steering this factor’s value to achieve best performance of the SQP algorithm in
TopO and ShpO problems is the main concern of this diploma thesis. At the end of this
chapter, the results of a certain TopO case are presented, showcasing the influence of this

factor’s value in resulting geometries.

3.1 Relaxation of Constraints By Introducing Extra De-

sign Variables

The problems solved in this thesis include constraints related to demanding flow character-
istics, such as maximum value for the total pressure drop between inlet and, outlets and in
TopO cases, constraints inflicting direct bounds to the design variables. In this thesis, to
differentiate between them, the bound constraints on the design variables are referred to as

bounds, while other constraints are termed constraints, flow constraints, or geometry con-
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straints, depending on their physical interpretation. Additionally, all equality constraints are
converted into inequalities by squaring their original form. With this in mind, the typical

structure of a problem addressed in this thesis is:

min f(z)
s.t. gi(x) <0, i=1,...,m (inequality constraints) (3.1)
| <x; <u, i=1,...,n (bounds)

where: n is the size of the design variables and the bounds, m is the number of imposed

constraints g;.

To showcase the structure of SQP method, its framework will be presented for a simpler

problem (3.2) with a single inequality constraint:

= T (3.2)
s.t. g(z) <0
The Quadratic Problem (QP) is formulated using a quadratic expansion for the objective f
and a linear expansion for the constraint g, using sensitivity derivatives of f and g evaluated
at the current cycle k, with design variables z;. This results in the following optimization
problem (3.3):

_ 1
in f(pe) = fi+ Vipe+ 50 Hip (33)

st 9(pe) = e +Vgip. <0
where Hj, is the Hessian matrix of f, approximated using a method such as BFGS at zy,
and p, represents the step from x;. Terms gi, V fi, and Vg; correspond to the values of the
constraint function and the gradients of the objective and constraint functions, respectively,

all evaluated at xy.

In CFD optimization, the initialization of the design variables x in the QP may not satisfy
the problem’s constraints, causing the algorithm to fail from the start. Constraints that are
not satisfied are referred to as infeasible constraints. In this thesis, infeasibility always refers
to the quadratic problem, not the original problem, unless explicitly stated otherwise. Infea-
sibility appears often in TopO at the initial cycle due to the volume-related constraint. Its
linear approximation cannot be satisfied in the initial cycles due to the projection procedure’s
application on the porosity field. More specifically, projection implies a flattening effect on

the objective’s quadratic approximation except for the fluid-solid transition region. This ef-
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fect limits the ability of the porosity field to change across the entire fluid and solid domain,
except near the interface of the two phases. As a result, the design variables cannot change
significantly enough to satisfy the linear approximation to the volume constraint, leading to

infeasibility.

Other constraints can also be infeasible and, either, like the lift constraint in ShpO airfoil
case presented in the sections 5.1 and 5.2. In all cases, the goal remains to find a feasible
solution or, a solution that suppresses constraint violations, in cases where a constraint in the
initial optimization problem (not its linear approximation) can not be satisfied (i.e TU Berlin
TurboLab Stator Blade case in chapter 5.3).

To overcome these issues, the linearized constraint g is relaxed by introducing a non-negative
auxiliary variable y, which is incorporated into the function to be minimized, multiplied with

a weighting factor ¢, which leads to the following constrained minimization problem:

L cin f(pz) +cy
s.t. §(pz) —y <0 (3.4)
-y <0

In the new problem, there always exists a positive y value that satisfies the modified con-
straint, even if §(p,) is infeasible, meaning g(p,) > 0. Naturally, if the QP (3.3) becomes
feasible, the additional variable y will be set to zero, acquiring a nonzero value only when the
design variables do not satisfy §g. Consequently, the optimization algorithm shifts its focus
from solely minimizing the original objective function f to also reducing y, thereby adjusting

the design variables x to restore feasibility.

The weight factor ¢ controls the influence of constraints on the new function to be minimized.
Higher values of ¢ force the algorithm to steer the design variables more aggressively toward
the feasible domain, ensuring faster constraint satisfaction. However, this comes with the risk
of converging to regions with high f values. Conversely, lower values of ¢ allow the design
variables to explore better regions in terms of f but may delay constraint satisfaction. While
c is typically kept constant, in some cases, it may be beneficial to vary its value with each
iteration. Varying values of ¢, across optimization cycles can lead the SQP algorithm to

different final solutions, as demonstrated in the following chapters.
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3.2 Optimality Conditions for QP Sub-Problem

To acquire the KKT optimality conditions for the QP sub-problem (3.4), this is simplified by
introducing the positive slack variable g, in linearized, y-augmented constrained, turning it

into an equality constraint.

ppin f(pz) +cy

9s =0
y=>0
The two remaining, simpler inequality constraints are eliminated by being incorporated in the

logarithmic barrier terms, added in the objective, transforming problem (3.5) into equality-

constrained problem (3.6):

e i F(pe) + ey — - log(y) — € - log(g.) 56
s.t. G(pa, ¥, 9s) = §(pe) =y + 95 =0
where € a positive scalar, refered to as the barrier parameter.
It is noted that as g; and y approach zero (from positive values, i.e from feasible space), the
negative barrier terms goes to infinity. This obviously penalizes the objective and forces the
algorithm to keep g, positive. In each optimization cycle, a sequence of (3.6) sub-problems is

being solved for a decreasing set of barrier parameters e.

The Lagrangian of problem (3.6) is defined as:

L(pz,ys A, gs) = f(p2) + cy — elog(y) — elog(gs) — NG (e, Y, gs) (3.7)

where A is the non-negative Lagrange multiplier of equality constraint in problem (3.6).
The stationarity of the Lagrangian w.r.t p.,y, A, gs, provide the KKT conditions for sub-
problem (3.6), as follows:

Fro(pa: Y A 11, 95) = V. = AVG = Hypy + AVg; = 0

Fry(Pes Y A 1, 9s) = cy — Ay —e =0

Ex(Day Y A 1, 95) = G(02) =y + 9s = gk + Varpr + 95 —y =0
Fo(Pes ¥, A 11, 9s) = Ags +€=0

(3.8)
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Solution (p,y’, N, ¢g.) to problem (3.8) is:

Py =Pz + 0Pz
y' =y +dy (3.9)
N =X+ 0 '
g; =gs + 09s
where the corrections are computed by solving the linear system:
0 c+X y -1 oy _ Fr, (3.10)
vVgk -1 0 1 SA Py '
0 0 gs A 07s F,,

System (3.10) is being solved iteratively by progressive decreasing values of ¢, until a required

small value is achieved. After that, the new optimization cycle will start.

The solution diagram of the optimization problem in each step is presented in Algorithm 2:

Algorithm 2 SQP Algorithm
1: Solve the primal and adjoint problem and compute the sensitivity derivatives and the
Hessian matrix
Initialize €
while convergence criteria are not satisfied do
Solve KKT and compute the update direction for the design variables
Perform line search and update design variables
Decrease €
end while
Begin next optimization cycle

3.3 Extra Design Variables Multiplier’s Influence In SQP

Solution

Before continuing, it must be specified that a feasible initialization in TopO may provide
faster convergence, but in many cases the achieved solution may not be the best achieved.
Additionally, even with a feasible initialization, the design variables can also move into the
infeasible region afterwards. The fact that the quality of the initialization in many TopO

cases is not known beforehand, renders an infeasibility-handling-technique mandatory, when
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an SQP algorithm is used.

The multiplier of the extra design variables, ¢ (see objective in problem (3.5)), scales the
influence of constraint in-satisfaction on the augmented objective and plays a significant role
in the convergence of a constrained optimization problem. Pure ¢ tuning, may lead in slower
convergence or even impractical solutions in some 2D TopO cases, as in figure 3.1. This
figures presents the results of a TopO case, which cannot be solved with a standard SQP
algorithm, using a uniform fluid initialization, a = 0. The objective is the minimization of the
total pressure losses from the left inlet to the right and bottom outlets, satisfying a volume-

occupied-by-fluid constraint less than 46.2% of the computational domain.

For instance, setting ¢ = 100, as proposed in [41], forces the SQP algorithm to satisfy the
volume constraint aggressively, leading to the closure of the right outlet and the formation of
a sealed fluid chamber, rendering the solution impractical. This demonstrates that, although

the resulting solution was feasible, it was non the less unacceptable.

On the other hand, a weaker constraint term in the objective function—achieved by setting

¢ =1 or ¢ = b—guides the SQP algorithm towards acceptable results.

Figure 3.1: 2D TopO case in which three different runs have been conducted for factor’s values,
¢ =1 (green), ¢ = 5 (purple), ¢ = 100 (blue).

In 3D TopO and ShpO cases, inappropriate choice of its value can also lead in the SQP algo-
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rithm divergence.

Accounting for the influence of factor ¢ values, the main focus of this diploma thesis is to seek
the most appropriate factoring of the constraint term in the augmented objective used in the
proposed SQP framework, for 2D, 3D, TopO and ShpO problems. In this attempt, constant
and varying values of ¢ have been tested, with the latest showing (in many cases) improved

results as demonstrated in the following chapters.
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Chapter 4

Overcoming SQP Issues -

Demonstrations in TopO

To determine the influence of the weighted, extra design variables in the augmented function
in TopO, a number of 2D and 3D benchmarks is evaluated. Each case is being solved with
the same setup, for different settings of weight ¢. Constant and varying values are examined,
to detect the best-suited setup.

The objectives to be minimized and constraints used in the following cases are the inlet-to-
outlets total pressure losses, the outlet uniformity index, the flow rate partition across all

outlets and the fluid occupied volume:

Fluid Occupied Volume

L (fQ(l—B)dQ_W )L
- fQ dQ tar Tear

This quantifies the difference between the fluid volume and a target value 7,,, normalized by
the latter.

Total Pressure Losses

1
J = —/ (p + —Uz> (e dS
51,80 2

where S; and Sp are the inlet and outlet patches, respectively.

Flow Rate Partition



mrp = —/ VN dS
St

This quantifies the distribution of the inlet flow rate m; to specific outlets Sp; with target

percentages t;.

Uniformity Index
B 1 fS(Ui - ’U_l)2 dS

I =y Tas
_ fSUidS
vV, =

JgdS

This index (to be minimized) quantified the variance of velocity v; over an inlet or outlet
patch S.

In the first section of this chapter the impact of the scaling factor ¢ on the convergence
behavior and solution quality in 2D and 3D topology optimization problems is examined.
In the second section, the change of ¢ across the optimization cycles is explored, aiming at

improved convergence.

4.1 TopO Applications Using Constant Factor’s Values

4.1.1 Case 1l -2D

Case 1 consists of a laminar problem with 1 inlet and 2 outlets, with an inlet-height Reynolds
number equal to, Re = 200. The objective function to be minimied is the total pressure
losses between the inlet and the outlets, normalized by the initial value. The porosity field
is initialized to 0 in every cell, i.e the entire volume is initially occupied by fluid. The only
constraint is the fluid volume constraint lessthan 46.2% of the computational domain. The
mesh, and consequently the design variable vector, consists of 13,000 cells. The boundary

conditions used for the primal problem is presented in table (4.1).

Region U P
Inlet (1,0) zero gradient

Outlets zero gradient 0
Domain Boundary (0,0) zero gradient

Table 4.1: Boundary Conditions of the primal problem in 2D laminar case 1, with 1 inlet and
2 outlets.

In Figure (4.1), the duct geometry for four cycles, including the final one, is shown for three
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different runs of the case with ¢ = 1, 5, and 100. The resulting velocity fields are presented in
Figure (4.2). The objective and constraint values for 100 optimization cycles are presented in
Figure (4.3).

As expected, the rate of constraint reduction is proportional to the value of ¢, which can be
observed in Figure (4.3). This is further reflected on the positioning of the solid lines in Fig-
ure (4.2). Specifically, the 'purple’ line, corresponding to ¢ = 100, moves significantly faster
than the other two, to enclose the constraint’s maximum fluid volume percentage of 46.2%.
The rate at which feasibility is achieved is so rapid that the path to the right outlet becomes
solidified, and this remains the case for the rest of the optimization cycle. The cycles of ¢ = 1,

5 reach a solution with a total reduction of 26% of the objective.

4.1.2 Case 2 - 2D

Case 2 contains the same settings as Case 1 with the addition of a mass flow partition con-
straint with mass fragments 50% and 50% for the two outlets. The duct geometries for four
cycles including the final one are presented in Figure (4.4). The resulting velocity fields are
presented in Figure (4.5). The objective and constraint values for 100 optimization cycles are

presented in Figure (4.6).

In contrast to Case 1, all runs in this case converge to the same solution, as shown both numer-
ically in Figure (4.6) and geometrically in Figure (4.3). The total reduction in the objective
is 8%, significantly smaller than in Case 1, due to the addition of the mass-flow-partition
constraint. Similarly to Case 1, the run with ¢ = 100 reaches the constraints more quickly,
but this results in oscillations in the mass flow partition constraint. ¢ = 5 run, fail to converge
within 100 cycles in the same solution and oscillations are observed as well. Setting ¢ = 1,
lead the SQP algorithm into faster convergence without oscillations in the mass-flow-partition

constraint values.

In both 2D TopO cases, setting ¢ = 1 shows best convergence qualities, in comparison to the

other two used values.

4.1.3 Case 3 - 3D

In case 3, a 3D laminar problem is being solved with 1 inlet and 2 outlets, with an inlet-

height Reynolds number, Re = 800. The objective function used is the flow uniformity index
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referring to the two exits, normalized by its initial value. The porosity field is initialized to
0 in every cell. There are 3 constraints in this problem: a total pressure losses target of
0.778, fluid volume less than 10% and exit mass fractions 50-50. The computational mesh,
and consequently the design variable vector, consists of 221,644 elements. The boundary

conditions used for the primal problem is presented in table (4.2).

Region U P
Inlet —107 zero gradient
Outlets zero gradient 0
Domain Boundary (0,0,0) zero gradient
Symmetry Wall 0/0n =0 0/011 =0

Table 4.2: Boundary Conditions of the primal fields in 3D symmetrical, laminar case 3, with
1 inlet and 2 outlets. 77 stands for the normal unit vector to the corresponding surface.

The duct geometries for three runs including the final one are presented in Figures (4.7) -
(4.9). The objective and constraint values for 70 cycles are presented in Figure (4.11). All
three cycles reach feasible solutions with the same objective reduction of 58%. As expected,
constraint violation is being reduced proportionally with the value of ¢, as depicted in volume
and mass-flow-partition constraint plots of Figure (4.12), but using different ¢ in this cases
does not affect the convergence substantially. The flow fields of the resulting ducts are shown
in Figure (4.10).

In contrast to the previous 2D cases with the default value of ¢ = 100, the cycle converges

faster.

4.1.4 Case 4 - 3D

In case 4 a 3D problem is also targeted, 1 inlet and 3 outlets. The flow is turbulent, with
an inlet-height Reynolds number, Re = 50,000. The function to be minimized is the flow
uniformity index referring to the three exits, normalized by its initial value and the constraints
are a total-pressure-losses target of 20, fluid volume less than 15% and exit-mass-flow fractions
33-33-33. The porosity field is initialized to 0.5 in every cell. The computational mesh, and
consequently the design variable vector, consists of 109,960 elements.

For the inlet velocity, a constant value is used, calculated for a constant volumetric flow rate
of 0.05 m?/s. At the outlets, a mixed boundary condition is applied, setting a zero gradient
for outflow and a value of 0 for inflow. A wall function is employed to calculate v at the wall
boundary cells. The boundary conditions for the primal fields are presented in Table (4.3).
In contrast to the previous test cases, only ¢ = 100 produces a solution, as forc =2 and ¢ =5

the adjoint problem corresponding to the objective fail to converge sufficiently in cycle 2. For
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Region U P 1%

Inlet * (Dirichlet) zero gradient i)e.g)001 (Dirich-
Outlets * mixed 0 (Dirichlet) zero gradient
Domain Bound- | (0,0,0) (Dirich- | zero  gradient |

ary let) (Neumann)

Table 4.3: Boundary Conditions of the primal problem in 3D case 3. 7 stands for the normal
unit vector of the corresponding surfaces.

¢ = 100, a sudden change is observed in duct geometry at cycle 32, which worsens the final
solution.

The duct geometries for ¢ = 100 at three cycles, including the 50th and final-one, are pre-
sented in Figures (4.12). The objective and constraint values for 50 cycles are presented in
Figure (4.15). An 11% reduction in the objective is achieved in the first 32 cycles. The flow
field of the solution geometry is presented in Figure (4.13).

The value of ¢ = 100 appears to yield better results in 3D cases like Case 3 and Case 4

compared to the 2D cases.

4.2 TopO Applications Using Varying Factor’s Values

To explore whether a varying value of ¢ could potentially improve the results in Topology

Optimization (TopO), the following additional runs were conducted.

For the 2D cases, where it is shown that smaller values of ¢ (e.g., ¢ = 1) produce better results,
the value of ¢ is varied piecewise linearly according to the columns in Table (4.4). In Sets 1,
2 and 3c has an initial value of ¢ = 1 or ¢ = 0.1 and is gradually being increased, while in
Set 4, it is being decreased to zero. In all sets, ¢ is initially held at a tested optimal value for
the first half or third of the optimization loop, after which it is being changed intensely either

increasing or decreasing, to determine which strategy yields better results.

Cycle | 1 | 2
1 1]701] 1
30 51 1 105
60 51 2 102
80 20 5 |01
100 |50 | 50 | O
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(a) t =20 (b) t =40

) t =100

Figure 4.1: Evolving geometry of the duct in Case 1 for cycles 20, 40, 70, 100. The initial
all-fluid domain is shown in black, the 'c = 1’ geometry in green the ’c = 5’ geometry in purple
and the 'c = 100’ geometry in blue.

) ¢ =100

Figure 4.2: Case 1 resulting velocity magnitude fields for ¢ = 1, 5, 100.

For the 3D cases the value of ¢ is being increased and decreased linearly and quadratically
with a total variance of 100 and an initial value equal to the default, ¢ = 100, which has

already been shown to produce better results.
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Objective - Total Pressure Losses
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Figure 4.3: Objective - total pressure losses and constraint - TopO geometry for case 1 and ¢
=1, 5, 100.

4.2.1 Casel-2D

For the 2D laminar case 1 with 1 inlet and 2 outlets, the results are presented in Figure (4.15).
Similar objective and constraint convergence is being observed and in all runs same objective
reduction is being reached. However initializing ¢ = 0.1 and reducing its value accross the

optimization loop, produces smoother objective reduction.

4.2.2 Case 2 -2D

In case 3, as it is shown in Figure 4.16, increasing ¢ according to column 1 and 2 of Table 4.4,
drives the SQP algorithm to the same solution as in ¢ = 1 run. Decreasing it however leads,
without oscillations, to a new improved feasible solution with an objective value, J = 89.2 %

in contrast to 92.7%. The resulting geometry with its corresponding flow field is presented in

35



(a) t =15 (b) t =20
(c) t =40

Figure 4.4: Evolving geometry of the duct in Case 2 for time-steps 15, 20, 40, 100. The initial
all-fluid domain is shown in black, the 'c = 1’ geometry in green the ’c = 5’ geometry in purple
and the 'c = 100’ geometry in blue.

(d) t = 100

Figure (4.17).

In both 2D TopO cases, initializing ¢ = 1 and reducing it across the optimization loop produces
smoother convergence and deactivates gradually the +cy term in the augmented objective

(problem 3.4), allowing for greater objective reduction if possible.

4.2.3 Case 3 - 3D

The results of case 3 runs, using linearly and quadratically increased or decreased ¢ are pre-
sented in Figure (4.18). No improvement of the final solution or in the convergence path
is observed. A sudden change in design variables is depicted in the final cycle of run using
quadratic decreasing ¢, caused by a partially converged adjoint problem corresponding to the

objective.
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(¢) ¢ =100

Figure 4.5: Case 2 resulting velocity magnitude fields for ¢ = 1, 5, 100.

Objective - Total Pressure Losses

§

DO0000000
(OO0 OO OOV
NWEUIO~0OH

|

o

10 20 30 40 50 60 70 80 g0 100

Constraint - Fluid Volume Target 46.2%

X | T
0.8 -
0.6
0.4 -
0.2 -

1
Ok,
|

1
c
Cc

=

c=10

02 ! ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100

Constraint - Exit Mass Flow Partition 50-50

(@ ey
|

T
C
&

[ =Y

c=10

Do | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Figure 4.6: Objective - total pressure losses and constraints - TopO geometry and mass flow
partition for case 2 and ¢ = 1, 5, 100.

4.2.4 Case 4 - 3D

For the 3D turbulent Case 3, with one inlet and three outlets, varying ¢ across the optimiza-

tion loop produces the results are presented in Figure (4.19). A sudden jump in the design
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) ¢ =100

Figure 4.7: Cycle 15 duct geometries in Case 3 for ¢ = 2, 5, 100.

) ¢ =100

Figure 4.8: Cycle 30 duct geometries in Case 3 for ¢ = 2, 5, 100.

variable occurs again at cycle 32 for linearly decreasing ¢, and at cycle 45 for the quadratically
increasing c. Different feasible solutions were obtained for each run, with the best results
achieved using linearly and quadratically decreasing values of ¢. The third decreasing-value
run, however, did not reach cycle 50 due to convergence issues at cycle 46 in the mass flow

rate adjoint fields. The resulting geometries and corresponding flow fields are shown in Figure
(4.20).

Overall in TopO, decreasing values of c¢ is a safer option, in contrast to keeping it constant,
as it can steer the optimization algorithm towards better solutions. Moreover, in 2D cases

initialization ¢ = 1 shows the best results, whereas in 3D cases ¢ = 100 is preferable.
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(a) c =2 (byc=5 (¢) ¢ =100

Figure 4.9: Cycle 70 duct geometries in Case 3 for ¢ = 2, 5, 100.

(b)c=5 (c) ¢ =100

Figure 4.10: Streamlines of the generated geometries in case 3 for ¢ = 2, 5, 100.
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Figure 4.12: Geometry of the ducts in Case 4 for ¢ = 100.
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— 0.0e+00

Figure 4.13: Streamlines of duct in Case 4 for ¢ = 100.
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Figure 4.14: Objective - uniformity at the outlets and constraints TopO volume, outlet mass
flow partition, total pressure losses for case 4 and ¢ = 2, 5, 100.
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Figure 4.16: Objective-total pressure losses and constraint-TopO geometry and mass partition
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(a) Reducing ¢ according to Table 3.

Figure 4.17: Case 2 resulting velocity magnitude fields for reducing value of ¢ according to
Table 3 and constant value ¢ = 1.
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Figure 4.18: Objective (flow uniformity at the outlets) and constraints (TopO volume, outlet
mass flow partition, and total pressure losses) for Case 3, with ¢ held constant at 100, and
varied linearly and quadratically (increasing and decreasing).
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Figure 4.19: Objective (flow uniformity at the outlets) and constraints (TopO volume, outlet
mass flow partition, and total pressure losses) for Case 4, with ¢ held constant at 100, and
varied linearly and quadratically (increasing and decreasing).
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(a) Linearly reduced c. (b) Linearly increased c.

(¢) Quadratically reduced c. (d) Quadratically increased c.

(e) ¢ =100

Figure 4.20: Case 4 resulting geometries and stream lines for reducing and increasing value of
¢ (linearly and quadratically) and constant value ¢ = 100.
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Chapter 5

Overcoming SQP Issues -

Demonstrations in ShpO

Infeasibility in the SQP sub-problems , can also be observed in Shape Optimization problems.
This is typically the case, for applications with initial geometries significantly violating the
imposed constraints. In this chapter, three 2D aerodynamic benchmarks are being examined.
The fist two involve drag minimization of a NACA(0012 airfoil with different B splines control
boxes, used for mesh control. In the third, total pressure losses of a turbomachine’s stator
blade are minimized. In all cases, the same settings for ¢ are applied, both constant and

varying, as in the TopO cases of the previous chapter.

The objectives to be minimized and constraints used in the following cases are: the aerody-
namic forces, i.e lift and drag, in the first and second case, the inlet-to-outlet total pressure
losses in the third case and the partial volume between suction and pressure sides in all three

cases. The exact mathematical expressions are presented:

Force
B fSW 1% (—Tijnj + pnz) T dS

J
3P AU,

where 7;; are the components of the stress tensor, p is the pressure divided by the constant
density p and n the unit normal vector. Vector r defines the direction in which the force
vector should be projected (e.g. parallel to the farfield velocity to minimize drag). Repeated
indices imply summation. In addition, Sy are the wall patches on which force is defined, A

is the frontal area and Uy, the farfield velocity magnitude.
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Total Pressure Losses

1
J=- / (p + —v,z) vin; dS
S1,0 2

where u; are the components of the velocity field, S; and Sp are the inlet and outlet patches,

respectively.

Partial Volume
o V - ‘/init
B ‘/init

1
V= ——/ :cknde
3 Jsy

where V is the volume enclosed by the patches defining Sy and Vj,; is the volume of the

J

initial geometry, defined in the same way.

5.1 NACA0012 With Control Box A

The following case, involves a symmetric NACAQ012 airfoil with span of 1 m. The 2D air flow
is entering the domain with an attack angle equal to +2deg, and is assumed incompressible
and laminar. The Reynolds number, based on the airfoil’s span, is 400,000. The optimisation
problem aims to minimize the drag force implied on the airfoil, keeping a volume decrease
lower than 15% of its initial value and increase lift by 20%. A C-type mesh is being used
of 37,800 cells and the distance from the airfoil to the farfield boundary set is equal to 15
times the airfoil’s span. The mesh is presented in Figures 5.1.a and 5.1.b and the boundary

conditions for velocity and pressure in Table 5.1:

Region U P
Farfield | (5.99, 0.21) (Dirichlet) | zero gradient (Neumann)
Airfoil | zero gradient (Neumann) 0 (Dirichlet)

Table 5.1: Boundary Conditions of the primal fields in 2D laminar case 1.

The B-splines parameterized, domain is being controlled by the Control Points (CPs) pre-
sented in Figure 5.2. The control box of this case has been chosen in a way to exclude the
leading and the trailing edge of the airfoil. The design variable set consist of the (z,y) position
coordinates of the four inner CP columns. The two far left and far right, CP columns are kept

fixed to mitigate thickness decreasing at the edges.
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Figure 5.1: Mesh of NACA0012 cases.

Five runs have been conducted with similar setting as in TopO benchmarks in chapter 4:
setting ¢ equal to 1, equal to 100 and varying its value according to columns of Table 5.2.
Corresponding to Table 4.3 for the TopO cases, the 1st column implies a gradual increase on
factor ¢ with a start value of 1 and end value of 100, the 2nd column implies a gradual increase
with a start value of 0.1 and end value of 50 and the 3rd column implies a gradual decrease

with a start value of 1 and end value of 0.

Cycle | 1 | 2
1 1]101] 1
5 5] 1 ]05
12 51 2 102
16 20 5 |01
20 50 | 50 | O

Table 5.2: Varying values of ¢ for all three ShpO cases.

Without the addition of the extra design variables, the QP sub-problem has been shown to fail
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Figure 5.2: B-splines control box of the airfoil case 1.

to converge, at the 1st optimization cycle. Different ¢ settings doesn’t change the objective’s
decrease rate significantly, depicted in Figure 5.3. All runs converge to a drag decrease of
1% and a volume decrease of 9%. The starting and final geometries, velocity magnitude and

pressure fields are presented in Figure 5.4.

5.2 NACAO0012 With Control Box B

The 2nd case of NACAO0012 airfoil is turbulent, and shares the same settings, except for a
similar CP box including leading and trailing edges with fixed. The CP is shown in Figure 5.5.
The Spalart-Allmaras model is being used for turbulence handling, together with a High-Re

approach for the calculation of 7 at the wall cells.

Similar results are produced as laminar case 1. The optimization problem cannot be solved
without the addition of the extra design variables. Different ¢ settings lead to similar opti-
mization trajectories and end-geometries with total drag and volume reductions of 2 — 2.5%
and 14%, shown in Figure (4.6). ¢ = 1, drives the SQP algorithm towards a slightly better
solution, yet the relative difference of 0.25% is considered negligible, taking into account the
semi-convergence of all runs, indicated by the non zero slope of the objective’s and constraint’s.
The initial and final geometries, velocity magnitude and pressure fields are presented in Figure

(5.7) and (5.8). The pressure contours are illustrated in Figure (5.9).

The setup used in the 2nd airfoil case, leads to a smoother geometry with uniform volume

reduction across the airfoil’s body. This major difference between the two cases is caused by
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including the whole airfoil’s body into the control box. Different ¢ setup has not shown to

improve objective reduction or constraint satisfaction rate in the 2D external aerodynamic
cases of NACA0012 airfoil.

5.3 TU Berlin TurboLab Stator Blade

The last ShpO case involves the minimization of total pressure losses of a 2D section of the TU
Berlin TurboLab Stator. The velocity is entering the domain with an attack angle of —42 deg
from axial and magnitude of 48m/s and exiting with an angle of —2 deg at 0 pressure.

The air flow is considered incompressible and turbulent and a high-Re approach is being uti-
lized with the usage of a wall function for the calculation of 7 at the wall cells. The kinematic
viscosity air is ¥ = 1.339¢ — 05. The mesh made of 63,332 cells is presented in Figure 5.12.
The B-splines control box is depicted in Figure 5.11. The left two and right two columns of
CP’s are being kep at fixed position to prevent airfoil edge’s thickness decrease. The bottom

and up boundary sets are coupled with cyclic boundary conditions.

The boundary conditions corresponding to the primal problem are presented in Table 5.3.
The objective of this case is the minimization of inlet-to-outlet total pressure losses and two
constraints are included, a max volume reduction allowance of 20% and the exit flow angle’s
minimum value of 15deg. The angle constraint produces the infeasibility targeted in the cur-
rent case. For the same c settings the objective and constraints values across 20 optimization

cycles are presented in Figure (5.14).

Region U P 1%

Inlet | (35.67, -32.11) | zero gradient 30e-5
Outlet | zero gradient 0 zero gradient
Airfoil 0 zero gradient -

Table 5.3: Boundary Conditions of the primal fields in case 3.

In all cases the angle constraint remains unsatisfied. All ¢ settings, apart from the dynami-
cally decreasing values of the 3rd column of Table (5.2), lead to exit flow angles over 13 deg
and most of them in increased objective values up to 20%. This is showcased also by the non
uniformly distributed camber, depicted in the corresponding optimised geometries presented
in Figures (5.15), for increasing or constant value, ¢ = 100 and ¢ varying according to 1st
and 2nd columns of Table (5.2). On the other hand, ¢ values lower or equal than 1, lead to

pressure drops equal to its initial value and the resulting flow twist is similar to the rest of
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the runs. The pressure and velocity magnitude fields of the initial blade and the optimised

ones for ¢ =1 and ¢ = T'able3 are presented in Figures (5.16).

To conclude, in contrast to the first two ShpO cases, steering the value of ¢, drives the SQP
algorithm towards different optimised geometries. Setting initially ¢ = 1 and increasing its
value (Table 1, Table 2 results) enforces gradually exit-flow-angle infeasible term +cy in the
augmented objective (problem 3.4), yet leading in high objective values. Decreasing ¢ on the
other hand produces a solution with low objective value, related to the other results, but it
undermines the angle constraint satisfaction. The best ¢ setting is keeping it at constant value

of 1, leading into a gemetry with low constraint violation and objective value.
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(a) Initial pressure field. (b) Final pressure field.

(c) Initial velocity magnitude field. (d) Final velocity magnitude field.

Figure 5.4: Velocity and pressure fields for case’s 1 start and end airfoil geometries.

Figure 5.5: B-splines control box of the airfoil case 2.
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Figure 5.7: Initial and final geometry for NACAO0012 airfoil turbulent case. The thicker airfoil-
line corresponds to SQP solution.

(a) Initial pressure field. (b) Final pressure field.

(c) Initial velocity magnitude field. (d) Final velocity magnitude field.

Figure 5.8: Velocity and pressure fields for case’s 2 start and end airfoil geometries.
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Figure 5.9: Pressure contours for initial and final geometry for turbulent case of NACA0012
airfoil. A set of ten contour lines are visible, for each geometry, corresponding to uniform
distributed ’ﬁ values from -8 to 20 Pa/kg/m3. Thicker lines relate to final optimised airfoil’s
results.

Figure 5.10: TU Berlin TurboLab Stator model.
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Figure 5.11: Stator blade section.

(b)

Figure 5.12: Mesh of Berlin TurbolLab stator’s section .

Figure 5.13: B-splines control box for Berlin TurboLab stator’s case.
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(e) ¢ = Table 3

Figure 5.15: Optimised TU Berlin TurboLab Stator Blades (brighter lines) compared to the
original (lower opacity).
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(a) pressure, initial (b) velocity magnitude, initial

(c) pressure, ¢ = 1 (d) velocity, ¢ = 1

(e) pressure, ¢ = 100 (f) velocity, ¢ = 100

Figure 5.16: Pressure and velocity magnitude fields for initial and optimised blades for con-
stant values of factor c.
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(a) pressure, ¢ = Table 1 (b) velocity, ¢ = Table 1

(c) pressure, ¢ = Table 2 (d) velocity, ¢ = Table 2

(e) pressure, ¢ = Table 3 (f) velocity, ¢ = Table 3

Figure 5.17: Pressure and velocity magnitude fields optimised blades for varying values of c.

64



Chapter 6

Overcoming SQP Issues -
Demonstrations in CHT TopO

In this chapter, three mono-fluid Conjugate Heat Transfer (CHT) TopO cases are examined.
The resulting geometries are aluminum heat sinks designed for cooling applications, using
cool air at 273 K (0°C) as the working fluid to abduct heat from the hot aluminum boundary,
maintained at 373 K (100°C). In all cases the same mesh, boundary conditions and constraint,

setup is being used with the only difference located in the objective function.

Specifically the case consists of a 2D, symmetric, one (1) inlet, one (1) outlet geometry,
presented in Figure (6.1.a). The active domain is colored in blue and its corresponding volume
constraint is being set as a maximum air-occupied volume fraction of 70%. The mesh is made

of 13,750 rectangular cells and is presented in Figure (6.1.b).

Bctive porosity

= s
inle domain

out let!

(a) (b)

Figure 6.1: Working 2D domain and respective mesh of CHT cases in chapter 5. The air flow
is entering from the inlet located at the left and exiting the symmetrical domain from the
right outlet. The cell set with variable porosity field values is depicted in blue.

The flow is turbulent, modeled using the Spalart-Allmaras model and the Reynolds number
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corresponding to the inlet height is, Re = 20,000. The boundary conditions for the velocity,

pressure, temperature and  fields are shown in Table 6.1:

Region U P T v
Inlet (6, 0) zero gradient 273 1071
Outlet zero gradient 0 zero gradient | zero gradient
Domain Boundary (0,0) zero gradient 373 zero gradient

Table 6.1: Boundary Conditions of the primal problem in 2D turbulent cases of chapter 6.

The objective function in the following three cases is a weighted sum of the mean domain
temperature, used as a characteristic value related to the cooling performance of the generated
heat sink at each optimization cycle, and the inlet-to-outlet total pressure losses. In every case
the dominant term is the mean temperature, while the pressure losses term imposes energy
efficiency characteristics to the overall objective function. The objective is mathematically

expressed as:

J = unT + weAp,

where,

wig € [0,1], wy+wy=1

1
Apy = — / (p + -U;i) vin; dS
S1,0 2

= 1
T=—[Td
5 ros

In each case the weight sum is equal to 1 and the values used for each run is presented in
Table 6.2:

case | wi(T) | wa(Apy)
1 0.95 0.05
2 0.90 0.10
3 0.80 0.20

Table 6.2: Objective components weight values for the three cases of chapter 5. w; corresponds
to the mean domain temperature, while ws corresponds to the total inlet-to-outlet pressure
losses.

The results for 50 optimisation cycles, using constant ¢ values, of ¢ = 1,5,100 and identical

to the aerodynamic TopO cases, varying values are presented in the following sections.
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6.1 Objective’s components weights: 95% - 5%

The convergence of objective’s and constraint’s values across the 50 cycles are presented in
Figure 6.2. The generated heat sinks for all ¢ settings are included in Figures 6.3 and 6.4.
Decreasing ¢ values, lead to lower objective’s value, in comparison to the other runs, but fail
to satisfy the volume constraint, as it is observed in figures 6.2 and 6.4, 'Table 3’ results.
All other runs are successful and one of them lead to best results, with respect to objective’s
both components and that’s the "Table 2’ run of increasing ¢ values. The resulting total
pressure losses percentage with respect to the initial value has a value of 89% and the mean

temperature a value of 43 C'.
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Figure 6.2: Results of the CHT case 1 of chapter 5, using in the objective, weight values 0.95

20 25 30 35 40 45 50

and 0.05 for the mean temperature and total pressure losses respectively.
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(e) porosity, ¢ = 100 (f) temperature, ¢ = 100

Figure 6.3: Porosity and temperature fields of generated heat sinks for constant ¢ values.
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(e) porosity, ¢ = table 3 (f) temperature, ¢ = table 3

Figure 6.4: Porosity and temperature fields of generated heat sinks for varying ¢ values.
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6.2 Objective’s components weights: 90% - 10%

In Figure 6.5 the optimization loop results are depicted. The optimized heat sinks for constant
and varying ¢ values are included in Figures 6.6 and 6.7. In figures 6.6 and 6.7 is shown
similarly to case 1, that decreasing ¢ values leads to in-satisfaction of the volume constraint,
yet low objective values. All other runs are successful and two of them lead to best results,
with respect to objective’s components. 'c = 5’ run leads to the lowest total pressure losses,
value of 82% and a mean temperature value of 58 C, while ’c = Table 2’ run leads to the

lowest mean temperature of 48 C and total pressure losses of 86 %.

Objective - Total Pressure Losses
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0.4 4 T T T T T T T T T
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Figure 6.5: Results of the CHT case 1 of chapter 5, using in the objective, weight values 0.90
and 0.10 for the mean temperature and total pressure losses respectively.
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(a) porosity, ¢ = 1 (b) temperature, ¢ = 1

(d) temperature, ¢ = 5

(e) porosity, ¢ = 100 (f) temperature, ¢ = 100

Figure 6.6: Porosity and temperature fields of generated heat sinks for constant ¢ values.
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(e) porosity, ¢ = table 3 (f) temperature, ¢ = table 3

Figure 6.7: Porosity and temperature fields of generated heat sinks for varying ¢ values.
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¢ = Table 1 | ¢ = Table 2 | ¢ = Table 3
Ap[%)] 70 76 80
T [C] 58 40 30

Table 6.3: Objective components weight values for the three cases of chapter 6. w; corresponds
to the mean domain temperature, while w, corresponds to the total inlet-to-outlet pressure
losses.

6.3 Objective’s components weights: 80% - 20%

For mean-temperature and total-pressure-losses weights of 80% and 20% respectivelly, the
convergence of objective’s and constraint’s values are presented in Figure 6.8 and the generated
heat sinks are included in Figures 6.9 and 6.10. Using the current weights for the objective’s
components, 3 runs produced geometries with improved aerodynamic and thermal qualities,
with characteristic values composing the pareto front of the dominating solutions of all 3 case
runs. In table 6.3 the values of objective’s components for ¢ = 100’, ’c = Table 2’ and ¢ =
Table 3’ runs are presented and in Figure 6.11 the Pareto front is shown. Increasing the weight
of total pressure losses drives the algorithm towards local minima with improved qualities.
This suggests that by focusing more on the aerodynamic efficiency of the heat sink, the d.v set
is steered into a region with multiple flow canals, which, in turn, results in improved thermal

dissipation qualities as well.
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Objective - Total Pressure Losses
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Figure 6.8: Results of the CHT case 3 of chapter 5, using in the objective, weight values 0.80
and 0.20 for the mean temperature and total pressure losses respectively.

74



(a) porosity, ¢ = 1 (b) temperature, ¢ = 1

(d) temperature, ¢ = 5

(e) porosity, ¢ = 100 (f) temperature, ¢ = 100

Figure 6.9: Porosity and temperature fields of generated heat sinks for constant ¢ values.
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(e) porosity, ¢ = table 3 (f) temperature, ¢ = table 3

Figure 6.10: Porosity and temperature fields of generated heat sinks for varying ¢ values.
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Figure 6.11: The Pareto front for the dominating solutions of the CHT cases from Chapter
5 is shown. The red-colored solutions represent the dominating outcomes generated using
the third version of the objective function, with weights of 0.80 and 0.20 assigned to mean
temperature and total pressure losses, respectively. The purple-colored points highlight the
top three best solutions from the first and second sets of runs.
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Chapter 7
Summary - Conclusion

This thesis explored the challenges and methodologies for handling infeasibilities in Com-
putational Fluid Dynamics (CFD) optimization problems, focusing on topology optimization
(TopO) and shape optimization (ShpO) within the Sequential Quadratic Programming (SQP)
framework. The study highlighted the role of the additional design variables multiplier’s value

in addressing infeasibility and influencing the convergence behavior of optimization processes.

The analysis demonstrated that its value significantly affects the optimization trajectory, par-
ticularly in 2D TopO problems, where a default multiplier value of ¢ = 100, based on the
original MMA paper, led to impractical geometries or oscillatory convergence. Decreasing the
multiplier dynamically across iterations was shown to produce smoother optimization paths
in some test cases and improved solutions. In contrast, 3D TopO problems exhibited greater
robustness to the multiplier’s value, with the default setting achieving feasible solutions more
consistently. Decreasing the factor’s values was shown in one of the two cases to produce

better solutions.
In ShpO problems, the influence of the multiplier was less pronounced compared to TopO
problems, yet still played a role in convergence speed and objective’s value in the Stator’s

Blade case in which the infeasibility located in the targeted exit flow angle constraint.

For conjugate heat transfer (CHT) TopO problems, no safe consensus can be extracted, as

both constant and varying factor’s values lead to the best results in the three test cases.
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Ewcaywyi

Hpwtapyndg 6TdY0g auThC TNG OMAOUATIXAS Epyaciag, elvon 1 AVTIIETOTIOT TEOBANUATWY ove-
PIXTOTNTOG TWV TEPLOPIOUWY 0T BEATIOTOTONOT) Lop®THC Xou ToTohoY og, adlomoldvTog i Yédodo
Awdooyxob Tetpaywvixol Ipoypoppatiopot ( Sequential Quadratic Programming SQP)
emonuévn Ue emniéov PeTaPANTég oyediaopo. Ot TEAEUTAES YaAAPOVOLY TOUS TEPLOPLOHOUS
xo TEOGTIIEVTOL OTNY AVTIXEWEVIXY| GUVEETNOT, ETBUEUVOVTAC TNV OTAV VoS TEPLOPIOUOS OEV
avoroleltan. XNy emaENUEVY) cuUVEETNOY, TO GYETIXO BApog HETAED dpYIXC AVTIXEWEVIXAC
oLVEETNONG XL ETITAEOY GpwY, EAEYYETAL oo Wio TapdueTEo Tou Tailel xooploTind POAO TNV

mopelor oUYXAOTE Xou 0TV TEAXY) AVon Tou Tapdyel o ahybprduog BedtioTomoinong.

H SQP eqopudletar yenowonoidviag 1o Aoylouxd Peitiotonoinong tou OpenFOAM oe 6id-
popa TeofBAruato pop@ric xou Tomoloyiag, oc 2A xou 3A yewueTpleg. Ye OAEC TIC EQUPUOYES
00XUACOVTOL DLPOPETIXES APYIXOTIOLACELS TNG UeVddou, woTe va e€ayolv cuumEpdoUaTo YL
Vv enidpaon mou €yel To oYETWO Bdpog TwV BUO GEWV TNG AVTIXEWEVIXAC CUVAETNONG, OTNY

et hoor).

ANyobprdpog SQP

‘Olor tor TEOPBAAUOTH TOU ToEoUGLELoVTaL O OITAWUATIXY EPYOCio EUTERLEYOLY TEPLOPLOHOUS
avicdtnTog. ‘Ohot ol teptopiopol LodTNTag €Y0UV Blaop@wiel XATIAANAA WOTE Vol TEPLY PPOVTOL
ue yenon avicothtwy. H pédodoc SQP nou yenowonoufinxe mopouctdleton otny omhy epap-
HOYY| OTOU UOVO EVaG TEPLOPLOUOS g OECUEVEL TIC UETUPBANTES GYEBLACUOD T, TNG UVTIXEWEVIXAC

ouwvdptnong f. To medPAnua €yel Ty axdhovln popen:

rein /2) (7.1)
st. g(x) <0
Agol hudel to evdi xou To culuYEg TEOPATUA OTOV TLELVO xUxho uTohoyilovTon oL TWES TNg
OVTIXEWEVIXTC OUVEETNONG, fr, TOV TapaydYwV auTthc, V fi, xau Tou meploplouol, Vg, xou
Ular TROGEYYIoT TOL EGolavol untewmou, Hy, yenowonoiwvtog uo pédodo omwe n BFGS. Yy
OLVEYELN XATAOXEVALETOL TO TETEUYWVIXO TEOBANUL TTou TeooeYYilel To apyixd oTNV TEPLOYY

YOPW amd TNV TLEWVT VEoT, Ty, TV UETABANTOY oyedlaouol. To npoceyyio tnd npdBAnua yedpe-

Tou ¢ eCHC:
min f(p.)
P ERT (7.2)
s.t. g(ps) <0
6Tou
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f(p) = fu+ ViEp. + %prkpx, 1 TETPAYWOVIXT] TROCEYYION TNG AVTIXEWEVIXTG CUVHRTNONG
xou

G(pz) = gr + Vi pe n ypoppieh Tpocéyylon Tou TEpLoplopol avtioTotyd.

Y Bedtiotonoinon CEFD, 6mou oL avTIXEWEVIXEC CUVOIPTACELS XL Ol CUVORTHOELS TWV TEPLOP-
LOUOVY OEV EVOL YVOOTEC AVAAUTIXG, 1) dEYIXOTOINCT) TWV UETUBANTOY OYEDIAOUOL T GTO TETPAY-
wvix6 tpofBinuo (QP) evéyetar vor uny cavomolel Toug TERLOPIOLOUS TOU TEOBARUATOS, OBy Y-
Tag €tol Tov akyopripo SQP oe anotuyla and v apyr|. Ileplopiouol mou dev ixavomolobvTo
ovoudlovtar un egpixtol neploptopol (infeasible constraints). Ye outh ) Simhwpotixd epyooio, o
bpoc un egpuetotnta (infeasibility) avoagépeton ntdvtote oto teTpayVIXG TEOBANUL xat byl GTO

oy O TEOBANUA, EXTOC av dNAWVETHL ENTd TO avTideTo.

H pn eguectdtnra epgovileton ouyvd otn Pedtiotonoinon torohoyiog (TopO) atov apyixd xixho
g Sadxactog, Aoyw Tou meploplonol mou cyeTileton ue Tov 6yxo. I vo EemepaoToly auTd
Tor {NTARATO, O YEUUUIXOTOLNUEVOS TEQLOPLOUOS § YOAJQWVETOL UEGK TNG ELCOYWYNASC WIOG UM
opvNTAC, BoninTiAc HETUBANTAC ¥, 1) OTOL0 EVOWUATWOVETOL GTNY TEOCEYYLOTIXT| AVTLXELIEVIXN
CLVAETNO f ue évayv ouvteheots| BapltnToag ¢, oynuatiloviac To UTOYUhIPWUEVO TEOBANUA
(7.3):

méggE%fO%)+cy

s.t. g(px) -y S 0 (73)
-y <0

Y10 tpononownuévo mpofinua (7.3), undpyel mévto por et T Tou ¥ mou txavomolel Tov
EVIOYUUEVO TIERLOPLOUO, 0XOMOL X0t oV TO §(py) Efvon un euetod, dnhady| 6tav §(ps) > 0. Puowxd,
edv to mpoPBAnua (7.3) yivel epixtd, 1 tpdaletn YeToBANTH ¥ Vot uNdEVIoTEL, AMOXTAOVTAC WU U1
OEVIXY| TWH HOVO OTOY Ol UETABANTES OYEDLAGHOU BEV LXAVOTIOLOUY TOV TEQLOPLOUO §. DUVETKS, O
alyopriuog BeAtiotonoinong yetatoniCel TNy €0 Tlaor) TOU Amd TNV AMOXAELC TIXT| EAYLOTOTONGT
NG aEYIXAC AVTIXEEVIXNC cuvdpTnone f 1 f ot pelwon e peToPAnTrc ¥, TeocupuolovTog
€T0L TIC UETABANTES OYEBIAOUOY T (OOTE VoL ATOXATAC TUEL 1) LXAVOTIOINGT) TWV TEQLOPIOUMY.

O ouvteheo g BaplTNTag ¢ EAEYYEL TNV ETUBRUOT| TWV TEQLOPLOUWY GTNY AVTIXEYWEVIXT| GUVAETNOT).
Meyohitepeg Tyéc Tou ¢ audvouy TNy emipeon) TNE TEOCVETNG HETUBANTAS Yp, OTNY ETOUUENUEVN
AVTIXEWEVIXT] cUVdETNoT Xt wJoly Tov ahyopriuo vo xatevdivel mo emetind Tig peTofA-
NTéc oyYedloPo) TEOG TNV TEPLOYY| XOVOTIOINONE TwV TEPLOPIOU®Y, eCacpaiilovtag Toylteen
avorolnon Twv TEpLopop®Y.  §20T600, auTo EVEYEL TOV X(VOUVO GUYXALONC OE TEPLOYEC UE

oYETXA UPNAEC TWES TNS AVTIXEEVIXAC oLVEpTNone. Avtileta, UixpoTEQES TWWES TOU € EMITRE-
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TOLV OTIC UETOPBANTES OYEBLOUOY Var €EEQEUVIOOLY XAADTEQES TEQLOYES WS TEOS TNV TYY| TNG
OVTIXEWEVIXTC OUVEETNONG, AAAS UTopel Vo xodUGTERHOOLY TNV IXAVOTIONOY) TV TEQLOPLOUMY.
Av xou to ¢ dratneeltan cuvRdeg oTalepd, ot 0PLOPEVES TEQITTHOOELC UTopel vau efvar wQERLUO Vol
uetaPdiheton o xde emavdhndn. Ot YeToBoarAOPEVES THIES TOU € XoTd TN OLIEXEL TWV XOXAWY
BehtioTonolnong unopolv va odnyroouv Tov aryopripo SQP oe SlagopeTtinég telnéc Aoel,

OTWE %o TUPOVCLALETOL GTA ETOUEVOL XEPAAOULAL.

[ty amdxtnon twv avayxaioy cuvinudy Bértiotne hoone KKT yio to unonpdéBinua (7.3),
mpootiieTon 1) YeTnr| UETABANTY YUAdEWONS gs OTOV TEPLOPIOUO, UETUTEENOVTAC TOV OE TEQLOE-
louo wotntag. Ot dVo evamouelvavteg, anioloTepol Teploplopol aviodtnTag, ¥ > 0 o gs > 0,
eCOAEPOVTOL EVOWUATWVOVTAS TOUG GTOUS Aoyopiluixols 6poug, ol omolol mpootidevTion oTnv

OVTIXELWUEVIXY) GUVAPTNOT, UETOTEENOVTOS €Tot To TpdPBANUa (7.3) oTo tehxd:

poen R F (i) + ey — elog(y) — log(g) (7.4)

st. G0z, Y, 9s) = G(p2) —y+9: =0

omou 7o € ebvan évag YeTindg Baduwtog apriuog, YVwoTog we TUPAUETEOS PEIYUOU (barrier pa-

rameter).

Hopatneolue 6Tt xadids ot gs xou y mAnotdlouy to undév (amd Yetixée Tyée, dnhadr| and Tov
EQPIXTO XoSpo), Ol 0EYNTIXOL OPOL TOU PEAYUOU TEVOLY GTO ATELRo. AUTS TEOPAVHS ETHBAQUVEL TNV
OVTIXEWEVIXT] cLVEETNOT Xou e€avaryxdCel Tov alybpriuo va dlotneel To g, Yetind. O alydprduog
eowtepol onueiou (IP) emhle, oe xdie xixho Bektiotonoinong, ua axohouvdio uTomEoBAT-

udtwyv tne eliowong (7.4) yio évor B1oboyixd YEOVUEVO GUVORO TURUUETEWY PRUYHOU €.

H ouvdptnon Lagrange tou mpoPBAiuatoc (7.4) opileton we:

L(pz,ys A, gs) = f(pa) + cy — elog(y) — €log(gs) — AG(pe, Y, gs) (7.5)

omou 1o A elvan 0 pn oevnTixdg mohhamhaolactrc Lagrange tou meploplopol o6TNTUC OTO

TeOBANua (7.3).

O ouviixeg KKT Tou uronpofAfjuatog (7.4), datunovovton we e&ic:
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FL:x(p:E:ya )‘mu?gs) = Vf— )\Vg] = Hkpk —+ )\ng =0
FL,y(pr"Jyv )\aluugs) =Ccy — )\y —e=0

. (7.6)
EX(P2y Y5 A 115 95) = §(p) =Y+ 9s = g + Vagrpr + 95 —y =0
g (Pes 4, A 1, s) = Ags +€ =0
H \oon tou cuothuotog (7.6), dnhadh to Sidvuoua (pl,y', N, ¢L), diveton amd:
Pl = Do + 0P2
/ — + 5
Y =y+dy 77
N =X+
g; = gs + 09
omou ol dlopdwoelg utoroyilovton péow TN eTtAUCTC TOU YRUUUIXOU CUGTHUATOC!
H;, 0 Vgi 0 oy Fr .
0 A —1 ) F
LA o (78)
Vgl -1 0 1 || Fy
0 0 Js A 07s F,,

To cbotnuo (7.8) emhleton Sladoyxd Yior TEOOBELTIXG UELOVUEVES TIES TNG €, WS OTOL EMLTEVY-

Vel wor amantoluevn wixet| T, Metd and autd, Eexwvd o enduevog x0xhog Bedtiotonoinong.

To didrypauua enthuong tou meofifuatog BeAtioTonolnong o xdie Prua mopoucidleton GTOV
Ahyobprduo 3:

Algorithm 3 Alyéprduoc SQP

1:

Enfhuon twv tou primal xoa tou adjoint mpoBAfuaTog xon UTOAOYLOUOS TOV TOQUYWYOY
evaodnolag xou Tou EGGLAVOL UNTEMOU
Apywonoinorn tou €
while dev wavonololvton Tar xpLtripta oUyxAong do
Enthuon KKT xaw unoloyioudg xatebuvorng evuéewons UEToBANTOY oyedlaouol
Aviyveuon xatd ypoupr| xat eVNUEEmon UETABANTOY OYEBICUOD
Meiwon Tou €
end while
Apy enouevou xixhou Beitiotonoinong

O molamhaclao ThS TV EMTAL0Y UETOUBANTGOY o)edlacuoy, ¢ (BA. avTIXEWEVIXH CLVEETNOY GTO

TeOBANua (7.3)), ehéyyet TNy emiBpaom NG W IXAVOTOINONG TWY TEPLOPLOUMOY GTY) DIEVPUUEVT
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OVTIXEWEVIXT] CUVAPTNOT) Xal OlodpauaTi(el oNuavTixd EOA0 OTr GUYXALOT EVOC TEOBAAUNTOS

BehtioTonoNONC UE TEPLOPLOUOUS.

Aopfdvovtog autd unodn, o xVELog 6TOYOC AUTAS TNG OIMAWUATIXAC Epyaciog etvar 1) avalTnon
TNE XATIAANAOTERTC ETULAOYTC TOU 6POU TEQLOPLOUOY GTNV EUTAOUTICUEVY) OV TIXEWEVIXT) CUVAETNOT)
ToU TEoBAAuaToC (7.3) Tou yenowonoteitar atov ohyberiuo SQP, yia tpoBifuata 2D, 3D, TopO
xat ShpO. Y7o mhadolo authg Tng TpooTdetag, doxudo Ty o TadEpES ot UETABUAAOUEVES TYIES
TOU ¢, Ue TI¢ TeheuTaieg vor epgavilouy (o TOMES TEPINTHOOELS) BEATIOUEVH ATOTEAECUATA, OTS

Yo TapouCLac TEL GTNY ETOUEVT EVOTNTOL.

Egoppoyn SQP xow Avtipetodymion Avepuxtotntag o 2D TopO npdBAnua

To axdrovdo TopO mpdAnua, agopd éva oTpwtd TEOBANUa Ue 1 elcodo xo 2 e€bdoug, dmou
o aprdudc Reynolds, Bacioyévoc oto Uoc tng eioddov, eivar Re = 200. H avtixeipeviny
OLVEETNOT TOU Y ENOWOTOLEITAL EIVAL OL GUVOMXES ATWAELES OMXAG THEOTG UETAUEY TNE ELOOOOU Xou
TWV €CO0MV, XAVOVIXOTONUEVES WS TEog TNV apytx| Ty, To medio Peudonuxvdtntog (density
or poroscity field) apyixonoteitoan oe 0 oe xde xell, mou onuaiver 6T OAOXANEOC 0 GYXOC XuTa-
AoPBdveton apywd amd peuctd. O udVOSg TEPLOPIOUOS EVOL O TEPLOPIOUOE TOU XATUANUSAVOUEVOU
OYX0U and EEUCTO, UE OTOYO TO 46.2% tou vnoloyioTixol nediou. O oplaxéc cuvirixec mou

YenowomotolvTon Yt Tor TewmTapyed media napouctdlovton otov Hivaxa (7.1).

ITeproym Taybtnta U Ilicom p
Elcodoc (1,0) (Dirichlet) undevx) xhion (Neumann)
"EZoboL undevixy| xAion (Neumann) 0 (Dirichlet)
Optoxd totyoduata teptoyic (0,0) (Dirichlet) undevixr) xhion (Neumann)

Table 7.1: Oploéc ouvirixeg Tou Tpwtedovtog tpolAfuatoc yia Ty 2D otpwth tepintwon 1,
ue 1 eloodo xou 2 e€b6douc.

Y10 Myfua 7.1, tapouctdleton 1) yewUeTpln TOU aywyol Yo TEGoERLS emavahipelg, cuUTERLAU-
Boavopévng tng TEMXAG, Yol TRELS DLUPORETIXES EXTEAETELS TOU TpoPBAAUaTOS pe ¢ = 1, 5 xon 100.
O TWéc TS aVTIXEWEVIXTI CUVAPTNONG X0t TOU TERLopioloy, yia 100 emavairideig Tou xdxhou

Behtiotonolnorng, mapouctdlovTal oto Xyfua 7.2

‘Onwe avapevotay, o puiuodg Uelwong Tou TepLloplouo eivor avdAoyog Tng TG ToU ¢, YEYOVOS
mou umopel va mapatnendel oto XyAua 7.3. Autd gaivetan mepontépw oTn VEom TWV GTEPENDVY
OPLAXWY YRUUUWY 6TO Ly o 7.2. Luyxexpuéva, 1 'uwf’ yeauur, mou avtiotolyel oto ¢ = 100,

XVELTOL oMUV TINd ToyUTEPA amtd TIG SAAES 000, WOTE VoL TEPLXAELTEL TO PEYLOTO TOGOGTSH GYXOU
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eeVoTOU Tou TEpLopLopol, dnhadt 46.2%. O pudude pe Tov omolo emTuyydveTal 1 EPIXTOHTNTA
elvar 1660 YPHYORPOS TOU TO HOVOTTL o T1 0edid €€000 GTEpEoTOIElTOL, TUPAUUEVOVTAS ETOL
yioe To unoroimo tou xOxhou Beltiotomoinong. Autd Oelyvel 6Tl 1) TpoETMAEYUEVT T ¢ = 100
0ev elvan xaTEAANAT yiot auT6 To TEOPBANUA. AvtideTa, ot xUxhol ue ¢ = 1 xou 5 xATAAyouY OE

wat AOOT| UE CUVOMXT| UELWOT) TNG AVTIXEWEVIXTC CUVAPTNONG XUTA 26%.

(a) t = 20 (b) t = 40

(d) t = 100

Yyfua 7.1: H e&ehoocdpevn yewuetplo Tou aywnyol otny tou 2D TopO mpofifuatoc otoug
x0xhoug 20, 40, 70, 100. H apyixr| teptoyn mou xatodauBaveton TAHewe omd peuotd aneixovileto
UE Labpo ypua, 1 YEWPETElo Yo ¢ = 1 pe Tpdowvo, 1 yewueTtplo yio ¢ = 5 ue Yo xou 1) yeouetpla

yioo ¢ = 100 pe pmhe.
(b)c=5

(c) ¢ =100

Yo 7.2: Tledla Tayuthtwy yia Tig TeAég Yewuetpleg oto 2D TopO mpdfinue ¢ = 1, 5, 100.
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Ohjective - Total Pressure Losses

1 I | T | |
| ¢ C=5
0.95 || C= 1 e
I C = 100 s
oo / -

0.85

0.8

BiZE

0.7 | | \ \ | | | | |
0 10 20 30 40 50 60 70 80 90 100

Constraint - Fluid Volume Target 46.2%

T
c
0.8 C

C

0.6
0.4

-0.2 \ \ w \ \ \ \ L |
0 10 20 30 40 50 60 70 80 90 100

Lyor 7.3: LOYHALCT) AVTIXEWEVIXTC CUVIOTNOTS - OAMXEC TTOOELS TUECTG YO TEQLOPLOUOY GYXOU
otn 2D TopO mpdfinua yia ¢ = 1,5, 100.

Egoppoyn SQP xow Avtipetodymion Avepuxtotntag oc 3D TopO npdBAnua

To enduyevo TEOBANUA 0popd TOV OYEDUOUS EVOC XAUOTIO TIXOU AERAYWYOU AUTOXLVATOUTOU UE
1 eloodo xou 3 €€6Bou xar TUEBWON eot| omou o aprdudc Reynolds, Bactopévoc oto Oog tng
ewo6dov, eivoan Re = 50,000. H avtixewevixr] ouvdptnorn tou yenoionoleltar efvar o deixtng
opolouoRPiag PO OTIC TEELS €COD0UE, XUVOVIXOTOUNUEVOS WG Tpog TNV apytx Tou Twih. To

nedto (eudomuxvotntag apyonoteiton o 0.5 o xdie xeAL.

Trdpyouv 3 meploplopol 6e auTd TO TEOBANUA:
- €Vog 0TOY0C GUVOMXODY amwAelwY Tiieong (cog ue 20 Pa,
- évog eploptode byxou peuctol oto 15%, xou

- xorTavopég palxay poov 6Tl e€6doug ioeg pe 33-33-33%.

To uTOAOYICTXO TAEYUN, XUl GUVETWS TO OLAVUOUN PETUPBANTGY GYEDBLCHOU, anoTeEAE(Ton oo

109.960 otouyeio. T v toydtnTar oty elcodo, yenowwomoteiton por otadepr Tiur, UTOAOYIO-
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uevn wote va avtiotoyel o otadepn topoyr| 6yxou 0.05 m3/3. Y11 e€6doug, e@oapuoleTon Ul
XY cuvoptaxt) cuvixT, Ue undevixr| xAlon yio expory xan T 0 yia elopoy|. Xenodomoteiton
Lol GUVEOTNOT) TOLYMHUATOS YLl TOV UTOAOYLOUO TNE U OTA XEALY TOU YELTVLECOUY [UE TOL TOLY (HUATAL.

Ou oproxég cuviixec yio ta TpwtebovTa Tedio tapouatdlovton otov Ilivaxa (7.2).

ITegroy ToyOtnta U ITicon p 1%

Eicodoc * (Dirichlet) undevixd| xhion ?6‘3)001 (Dirich-
"EZodot aavivas) 0 (Dirichlet) undevixn xhion
Optaxd  torye>- | (0,0,0)  (Dirich- | pndevixs)  xhion |

HOITOL TEPLOY NG let) (Neumann)

Table 7.2: Oploxéc ouvinixeg Tou Tpwtebovtog TEofBifuatog yio TNV 3D cuuueTewr, TUEBWON
TepinTwon 4, ye 1 eloodo xa 3 e€6doug. To 7T aviinpoowmnelel To ovadLoto SLavuouaTiXG Tedlo
x(&detng debuvong otny aviioTolyn mpdveLd.

[atig Téc ¢ = 2 xou ¢ = 5, ot oLLUYElS EELOMOELS ATOTUYYEVOUY Vol GUYXAVOUY PETE TN BedTERN
enavéhndn. O xOxhog pe ¢ = 100 mopdyer Ao, av xou Aoyw Tne TeoBAnuotixic cUyxAoNng
Tou oLluYoUC TEBIOL ToUTNTAC Yol TNV OVTIXEWEVIXY) GUVAETNOT) OUOLOUORPLIC, ToEOUCIALEToL
Eapvin) ahharyh) 0T YEWUETEIA TOU arywyol ot 321 enavaAndr, YEYOVOS TOU EMOEVMVEL TNV

el Aoor).
Extehéotnray eniong teedipota ye UETABANTEC TWES TOU € X0 CUYXEXPUIEVAL
o yoouuxr ab&non Tou ¢, Y Toug xUxhoug BedtioTonolnong, ¢ = 100 + ¢
o yoouuxy uelowon Tou ¢, Ye Toug xUxhoug BertioTonolnong, ¢ = 100 — 2t
o TeTpayLXT adEnom Tou ¢, Pe Toug xUxAoug BeATioTornoinong, ¢ = 100 + 0.04t2
® TETPAYWOVIXT UelwoT Tou ¢, Ue Toug xOxAoug Behtiotonoinorng, ¢ = 100 — 0.04¢?

Hopoatneeiton wor Copvixt) petoBolt| Eavd oty emavdAndn 32 yiol TNV YRUUUXE HELOVUEVT TYY
TOU ¢ xou oTNV emaveAndm 45 yio v TeTpaywViXd aulavopevn T Tou c. Ilpoéxuday -
APOPETINEC EPIXTEC AUCELS Yiol X&UE EXTENEDT), UE TA XAV TEQO AMOTEAEGUOTA VAL ETLTUY Y EVOVTOL
YETOULOTIOLOVTOG YROUULXG X0 TETEUY WVIXY UELOVUEVES THIES Tou ¢. §doTo00, 1) TelTr eXTENEDT UE
UELloVUEVES TWEC BeV EgTace oty enavdhndn 50, Aoyw mpolAnudteny chyxhong otny enaveindn
46 oo culuyn Tedlo puiuol yalxnic poric. Ot Topelec GUYXAIONE TNS AVTIXEWEVIXTC CUVAOTNOTNG
X0l TOV TEPLOPIOPGY Tapouctdlovtar 6To Lyfua 7.4. Ot tpoxdnTtouces YewueTpleg xou tar avtio-

Touya medio porig amewovilovton oto Lyhua 7.5.
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Constraint - Total Pressure Losses Target 20.0 Constraint -Fluid Volume Target 15%

30 T T T T T T T T T 0.1 T T T T T T T T T
€ =100 m— € =100 m—
251 c=Squareincrease e - 0.08 |- (= Square inCcrease =te _|
|| c=Square decrease | ¢~ Square decrease
20 ¢ = Ramp increase 0.06 | | ¢ = Rampincrease -
= 151 ¢ =Ramp decrease _ - c =\ Ramp decrea
S S 004F -
L) 10 + — L)
0.02 —
5 - —
or - 0r -
5 1 1 1 1 1 1 1 1 1 -0.02 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50 0 5 1015202530 35 404550
Optimisation cycle Optimisation cycle
Constraint - Exit Mass Flow Partition 33-33-33 Objective - Uniformity
1 T T T T T T T T T 1.4 T T T T T T T T T
€ =100 m— ~ € =100 m—
0.8 F C=Squareincrease =t _| 13 r = Square increase metes= -
¢ = Square decrease ( 1= Square decrease
0.6 - ¢ =Rampincrease - 120 ¢= = Ramp increase
o ¢ = Ramp decrease < 1.1} 0 FRampdecrea
5 04 4 035 r‘ s
] = 1 \ o
0.2 |- B
0.9 -
0 - = 08 [
0.2 | 1 | 1 | 1 | 1 | 0.7 | 1 | 1 | 1 | 1 |
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Optimisation cycle Optimisation cycle

Yyfuor 7.4: H avtixeuevin ouvdptnon (oyowyopq)ioc eofic oTic €€600UC) XL Ol TEPLOPLOUOL
(6yxoc TopO, xotavour| mapoyfic 6Yxou oTic €€680U¢ XxaL GUVOAXES anWAElES Tieang) Yot To 3D
TopO npdfinua, ue ¢ otadepd oto 100, xododg xon Pe TWES ¢ ToU PETUBIANOVTOL YOUUUIXE %ol
TETEAYWVIXA (AUEUVOUEVES KOl UELOVUEVEC).

Egoppoyn SQP xow Avtipetodymion Avepuxtotntag o 2D ShpO npofinua

To axdéhovdo ShpO medfBAnua agopd TN UEWCT TOV CUVOMXOY ATWAELWY TEoNE Wiag dLdtdo-
tatng tourc tou TU Berlin TurboLab nteplyou. H taydtnta ewoépyeton oto nedlo pe ywvio
npocfolic —42 deg xau péyedoc 48m/s xou e&épyeton pe ywvia —2 deg xon undevixr nieon.

H po7| tou agpa Yewpeiton acupmieotn xou tupBwong, xou emAacyetar High-Re Yewpnorn ue yerion
CLVEETNOTC TOLYOL YAl TOV UTOAOYLOUOS TNG IV GTA GUVORLAXE XEALS Tou 6TEEE0D Totywuatog. To
xavnuatixd 1Ewdeg Tou afpa elvor ¥ = 1.339e — 05. To mAéyua amoteleltan and 63.332 xehid xou
T0 %ouTi eEAéyyou Twv B-splines napoucidletar oto Lyfua 7.7. Ou 800 apiotepéc xou dVo dedlég
othhec Twv CPs mopouévouy otaldepéc wote v anotpamel 1 Uelwor Tou Téyouc Tou dxpou Tou

mtepuyiou. Ot xdtw xou mdve oplaxés cuvinxeg elvon pe XUXAXES GUVITXES.
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(a) Linearly reduced c. (b) Linearly increased c. (¢) Quadratically reduced c.

(d) Quadratically increased c. (e) ¢ =100

Yo 7.5: Ot TpoxOTTOUCES YEWUETPIES X0t Ol YROUUES PONG YL TIC TIEQLTTAOELS UE PELOUUEVES
xou oEAVOUEVES TWEC TOU ¢ (YPUUUIXE X0t TETEAYWVIXE) xordde xat yioe Ty otodepr tur ¢ = 100.

Ou oplaxéc ouviixeg mapouctdlovton otov Ilivaxa 7.3. O otdyog authc g mepinTtwong etvar 7
ENOLYLOTOTIOINGT TV GUVONXOY ATWAEWDY OAxAS Tieong amd tnyv eloodo otnyv €€000 xa Tepth-
ouBdvovtar 8U0 Teploptopol: PEYoTn EMTEETOUEVT Pelwon dyxou 20% xou eEAdytotn Tur yoviag
e€odou porc 15deg. T tic otadepée Twwéc ¢ = 1. ¢ = 100 xon Tig YeTafAnTéc olupmva Ue
TIC 0TAHAEG Tou Tivoxa 7.4, oL TWES TN AVTIXEWEVIXNG CUVAPTNONG XAl TOV TEPLOPIOUGY ot 20

x0xhoug Behtiotonoinong mapovoldlovion oo Lyro 7.4.

ITeproy™ U p v
Eicodoc | (35.67, -32.11) | undevixr xhion 30e-5
'‘EZoboc | undevixn xiion 0 undevixy xAion
ITépuya 0 unoevixr| xhion -

Table 7.3: Oploxéc cuvifixeg Tou Tewtebovtog TeolAruatoc oto ShpO TEdBAnua.

Yie OAEC TIC TEPITTAOELS, O TEPLOPLOUOS YWVIG YLt TG BEATIC TOTOINUEVES YEWUETPIEG TTUPUUEVEL
avixavorointog. ‘Ohec ol puluicelc Tou ¢, EXTOC amd TIC SUVOLLXE UELOVPEVES TYWES TNS 3NE OTHANG
Tou Hivoxa 7.4, 0dnyolv oe ywvieg poric e€66ou Tdvw and 13 deg xau oL TEQIOGOTERES AmO AUTES
oe auénuévec Twéc Tou otdyou wéyet 20%. Autd embderxvietar eniong amd TNV AvVOPOLOUOEHN
aepoToun, Tou aneixoviletal 0TIC avTioTolyeg BEATIOTOTONUEVES YEWUETPlEC TOL TtapouatdlovTo
oto Lyfuota 7.9, yio auovopeveg 1| otodepéc Tiée, ¢ = 100 xou ¢ mou YeTaBdAheTon GUUPELVAL

ue Vv 1n xou 2n otiAn tou Iivoxa 7.4. Amo tnv dhhn Thevpd, TWES TOU ¢ UXPOTERES 1) (OEg
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Yyfuo 7.6: Koutl eréyyou B-splines yio tnv mepintwon tou Xtpofihonteptylou TU Berlin
TurboLab.

Cycle | 1 | 2
1 1]101] 1
30 51 1 ]05
60 51 2 102
80 200 5 |01
100 [ 50| 50 | O

Table 7.4: Metofahhéueves THég Tou c.

omo 1, odnyoly o TTOOES OAxNg Teong (oeg pe TNV apy e Tyr xan 1) avtioToryn oteédn porig
elvon mopoyota pe tar unohotna teedipata. To medla mleone xou taydTnTog TN aEy g TTépuYIC

%ol TV BEATIG TOTOMNUEVWY Topouctdlovton ota Lyrato 7.10 xou 7.11.

Y UUTERPACUAT

To dlaopeTind oyetind Bdpog TG APy XNAG AVTIXEWEVIXAC CUVIRTNONG XUl TWV ETUTAEWY OPOV
Tou oyeTloVToL UE TNV AVIXAVOTIONGT) TWV TEQLOPIOUMY, €0eIEE OTL EMNEEdlel O TOMAES TEpLT-

ot v mopeta oOyxhiong xan o TopO xou o ShpO mpofBiruarTo.

Aovioaopévn, ex Twv LoTERKY, T Tou ¢ uropel va 0dnyhoet éva 2D TopO npdéfinua oe Ao,
ue qeaypévn €€odo. Melolueveg TWég Tou ¢ €deilay OTL Tapdyouv xaAUTERES TWES TNG av-

TIXEWEVIXN G oLVEETNOTS, OTwe gatvetar 6to 3D TopO xou 6to 2D ShpO mpdBinuo.

H yerion emmiéov YetafAnt®y oyedloouol avTipetwrilel emniéov TpoAfuata e Teploplopols
TOL OV UToPoUV Vo txavorondoly, Omwe QuiveTal GTA ATOTEAECHATA TOU TEOBAAUATOC TOU
TTEQUYIOU. LUYXEXQIEVA, O TEPLOPLOUOS TNE Ywviag e£680uL TN poric Bev égtace Tic 15 yolpeg

o€ xavéva Teé€Lo, Tap Oha autd &Ry inoay AVCEIC OYETIXG XOVTA OTNY TWH| ouUTY.
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Objective - losses
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Yyfuo 7.7: AnoTteléouato 6TOY0U XL TEPLOPLOUMY Yol OLapopeTiXEG puiuioelg Tou Tapdyovta ¢
otnv nepintwon tou otadepol ntepuyiov TU Berlin TurboLab.

(d) ¢ = Table2 (e) ¢ =Table3

Yyfuo 7.8: Behuotonoinpéva nteptyto TU Berlin TurboLab (houmpdtepes ypoppés) ouyxpltind
ue TV apy x| (oUOEOTEPES YPOUUES).
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(a) mieon, apyxn (b) wéyedoc TayvTnroc, apy

(d) oo, c=1 (e) wleom, ¢ =100 (f) ToydnTaL, ¢ = 100

Yo 7.9: Tedio nieong xon peyédoug Tory OTNTOG Yol TIG AEytXES Xou BEATIOTOTIONUEVES TTEQUYEC
yior oTodeRES THIES TOU TORAYOVTA C.

(a) nleomn, ¢ = Tablel (b) Taybtnra, ¢ = Tablel (c) nieom, ¢ = Table2

(d) tayOtnra, ¢ = Table2 (e) mieon, ¢ = T'able3d (f) toybnta, ¢ = Tabled

Yyfua 7.10: IIedio mieong xou peyédoug toydTnTag Yo Ti¢ PeATIOTOTONUEVEG TTEPUYES Yid
ueToBolAOUEVES TIES TOL C.
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