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Abstract

This diploma thesis presents the integration and validation of the PUMA CFD solver
developed by the Parallel CFD & Optimization Unit (PCOpt/NTUA) of the School of
Mechanical Engineering of the National Technical University of Athens into the industrial
workflow of Andritz Hydro, at the premises of which a major part of this thesis was
conducted.

The PUMA CFD solver can run on clusters of GPUs, thus achieving lower computational
costs. PUMA uses a vertex-centered finite volume method for solving the 3D Reynolds-
Averaged Navier-Stokes equations with the use of the Spalart-Allmaras turbulence model.
PUMA, also, employs the pseudocompressibility method to accelerate the convergence
rate.

Various interfacing tools are programmed that enable the organic integration of the PUMA
solver into the workflow. These tools include two grid converters, a pre-processor and a
post-processor.

The PUMA solver is, then, compared with a commercial CFD solver. The comparison
is based on various cases of hydraulic turbine configurations. With each new case the
complexity of the configuration rises, thus testing the capabilities of the PUMA solver.
The cases include the runner of a Francis turbine, the guide vanes and the runner of a
propeller turbine and the guide vanes, the runner and the draft tube of a Kaplan turbine.

Finally, the PUMA solver is used as an evaluation tool in the framework of the design-
optimization loop used by Andritz Hydro. The Evolutionary Algorithm optimization
method is chosen, employed by the tool Evolutionary Algorithm SYstem (EASY), devel-
oped by PCOpt/NTUA. The shape of the blade of a Kaplan runner iss optimized with
the goal of maximizing the turbine’s efficiency and avoiding the appearance of cavitation.
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Thesis in English






Chapter 1

Introduction

This diploma thesis is concerned with the integration and validation of the GPU-
enabled flow solver, developed by the PCOpt/NTUA, into the Andritz Hydro design-
optimization workflow for hydraulic turbines. The integration in the already existing
toolchain of the industrial analysis workflow, requires the programming of pre- and
post-processors, interfacing tools as well as extensive validation on problems-cases
provided by Andritz Hydro, at the premises of which (at Linz, Austria) a major
part of this work has been conducted.

The goal of this integration is to be as little intrusive as possible to the exist-
ing toolchain and achieve a unified toolchain that enables the user to interchange
smoothly between various CFD solvers (although this work focuses exclusively on the
flow solver programmed by PCOpt/NTUA). Furthermore, the approach to develop-
ing the various and necessary tools is always with the mind of a full automatization
of the process, due to the fact that any user of this tool is not required to have
specific knowledge or need to interact with the inner workings of the tool. Conse-
quently, the final product is fully automated and user friendly and does not require
any specific programming knowledge by the user.

The next step, after the integration in the unified toolchain, is to include this new
toolchain in the optimization loop used in the industrial workflow. Until now, for the
optimization, another software solving the Euler equations, for incompressible fluids,
was used due to its low cost which is desirable in industrial applications. But, with
the addition of the GPU-enabled flow solver, it was possible to accomplish compara-
ble solving time, while simultaneously, achieving much more accurate results during
the flow analysis, since the Reynolds-Averaged Navier-Stokes (RANS) equations,
combined with the Spalart-Allmaras (S-A) turbulence model, are now being solved.
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1.1 Hydraulic Turbines

Hydraulic turbines are rotary machines that convert kinetic energy and potential
energy of water into mechanical work, that can then be transformed into electric
power, thus providing an efficient and renewable source of energy. The hydraulic tur-
bine harnesses the power of the water passing through its blades, which is expressed
as

P = pgHQ (1.1)

where p is the water’s density, g is the gravitational acceleration (in %), H is the
hydraulic head of the hydraulic turbine (in m), that is defined as the drop in total
pressure p; from the inlet to the outlet of the turbine, and ) (in mTS) is the volumet-
ric discharge. As output, the hydraulic turbine provides mechanical work for the
generator, that is expressed as

Pout = Tw (12)

where T is the torque produced on the shaft (in Nm) and w is the angular velocity
of the machine (in 722).

S

As a result the efficiency of the hydraulic turbine is defined as

(1.3)

which describes how efficiently the machine converts the fluid’s energy into mechan-
ical work.

The basic components that comprise a hydraulic turbine are (a) the spiral casing
that directs the flow from the turbine’s inlet towards the runner, (b) the stay vanes
and (c) guide vanes (or wicket gates) that are stationary blades which help guide
the flow and provide an smooth entrance to the runner, (d) the runner which is the
set of rotating blades that convert the water’s energy into mechanical work and,
finally, (e) the draft tube that is responsible for guiding the flow to the outlet of the
machine.



Runner .
Spiral casing

Stator with
stay vanes and

wicket gates
Draft tube 9

Figure 1.1: Typical configuration of hydraulic turbine’s components [1)].

There are many types of hydraulic turbines depending on the hydraulic head (H)
and volumetric discharge (Q) that are required to handle. In figure typical
values for H and Q are presented for the various types of hydraulic turbines.

Turbine Application Chart
1000

=
=

Head {m})

Francis Turbines

—
=

1 10 Flow (mys) 100 1000

Figure 1.2: Chart with values of hydraulic head H and discharge @ for the various
types of hydraulic turbines [2].

The most widely used types of hydraulic turbines are the Francis and Kaplan tur-
bines, which will also serve as the main focus of this diploma thesis. On one hand,
the Francis turbines are radial turbines, meaning that the flow enters the turbine’s
runner radially and exits axially and can handle higher values of hydraulic head H.
On the other hand the Kaplan turbines are axial turbines, meaning that the flow
enters and exits the machine’s runner axially and generally operate on the lower-end
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of the hydraulic head spectrum of values. In figure [1.3] a typical configuration of a
Kaplan and a Francis hydraulic turbine is presented.

Figure 1.3: Typical designs of Kaplan (left) and Francis (right) turbine runners.
The specific models shown are designed by Andritz Hydro.

1.2 CFD-Based Analysis and Integration Process

For the past decades, the development in the field of CFD has been tremendous.
The use of CFD for predicting fluid flows has been a powerful tool for the industry,
in general. That is because it enables the faster analysis of the problem at hand, in
the present case the flow inside a hydraulic turbine, and a more cost-efficient way
of designing and optimizing the final product.

Of course, in order to tackle problems that are highly demanding in computational
cost in an economically viable and efficient way for the industry, such as the design
of a hydraulic turbine, the resources that are provided, namely the computational
power available, have to be used wisely. An effective way to achieve this is to
enter the field of parallel CFD computing, which means to use several processing
units (namely CPUs and GPUs) to perform tasks simultaneously. As a result, the
computational cost reduces extensively, thus making the use of CFD-based analysis
a viable option.

When obtaining a new CFD software, the main obstacle that arises is the proper and
smooth integration of said software inside the existing collaborative system of tools
and processes (tool-chain). This integration must take place keeping in mind that
the whole system should undergo the least possible modifications. This constraint
is the result of the fact that all the users are not required to and is not necessary to
know the inner workings of the software.

That being said, it is important to create and develop the necessary interfacing
tools, peripheral to the main software, that enable the seamless integration of the
software in the existing toolchain of the company.



In the present case, the main software is the GPU-enabled CFD solver developed by
PCOpt/NTUA and used by Andritz Hydro. This CFD solver implements the RANS
equations for incompressible fluid flows in their conservative form, coupled with the
Spalart-Allmaras turbulence model, using a vertex-centered Finite Volume Method
for discretizing them. The main advantage of this solver is the low computational
cost. This advantage is the result of the use of clusters of GPUs.

The use of GPUs for performing costly computations has significantly increased
over the past few years. This is because the GPUs are, in essence, shared memory
parallel co-processors and, precisely, this characteristic gives them the advantage of
performing very computationally demanding simulations very fast. Of course, the
trade-off for this advantage is the programming skills that are required in order to
develop a CFD solver that can run on GPUs efficiently.

Finally, the tools programmed in the present diploma thesis perform all the necessary
tasks, during the pre- and post-processing phases of the flow analysis, in a manner
that lets them run undetected, thus creating a fully automated system that complies
to the rules of the overall workflow of the industry (Andritz Hydro).

1.3 Design and Optimization of Hydraulic Tur-
bines

The turbine optimization is an integral part of the industrial workflow. The op-
timization in Andritz Hydro is carried out by using the method of Evolutionary
Algorithms, which is a stochastic population-based method. The optimization tool
used is the Evolutionary Algorithm SYstem or EASY, developed by PCOpt/NTUA.

The optimization process is very important in the industrial environment because
it enables the design and manufacture of much more efficient turbines. This, also,
results in a much more environmentally friendly turbine design that harnesses effi-
ciently the energy of water.

The task of designing a new hydraulic turbine encompasses some basic steps. First
of all, previous knowledge and experience from existing designs is used as a starting
point for the new project. Models of already designed and working turbines that op-
erate under similar conditions provide a good basis for designing and manufacturing
a new model, as opposed to starting the design from scratch.

Each component of the turbine is designed separately, in general. In some cases,
components that are already designed and optimized are directly used in the new
hydraulic turbine. The most important part of the turbine is the runner blades.
These go through the process of optimization in order to achieve a design that best
fits the conditions and requirements of the project.

Continuing, after all the necessary CFD simulations are completed, the first model
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of the new turbine is manufactured. This model is tested in the lab in order to
validate the predictions made from the simulations. If the results are not satisfying,
then the design process is repeated until the goal is achieved.

Finally, when the lab testing process is completed, the final hydraulic turbine is
manufactured and starts operating.

1.4 Thesis Outline

In this section, the general outline of this diploma thesis is presented.

e Chapter 2 A brief description of the GPU-enabled CFD solver that is used in
this diploma thesis. The governing equations, the various boundary conditions
and the pseudocompressibility method, employed by the PUMA solver, are
presented. Also, some information concerning the programming techniques

for GPUs are included.

e Chapter 3 The various interfacing tools that are programmed in this diploma
thesis for the integration of the GPU-enabled CFD solver are presented exten-
sively.

e Chapter 4 Test cases involving various hydraulic turbine configurations are
presented in this chapter. In order to validate the GPU solver, the results
are compared to a commercial software. Also an investigation on the pseudo-
compressibility parameter f is included.

e Chapter 5 The incorporation of the GPU solver in the optimization loop
using Evolutionary Algorithms is presented, along with an optimization test
case.



Chapter 2

The GPU-enabled CFD solver

For the flow analysis of the hydraulic turbines the GPU-enabled CFD solver is
used, developed by PCOpt/NTUA, also known as the PUMA (Parallel Unstructured
Multi-row Adjoint) solver. The PUMA solver has been the focus of already 3 PhD
theses ([3], [4], [5]), and was based on an already existing in-house CFD solver
running on CPUs. The PUMA solver solves numerically the Navier-Stokes equations
using the finite volume method with vertex centered volumes and storage, providing
second order accuracy, for incompressible fluid flows. The main advantage of this
solver is the fact that it runs on clusters of GPUs, reducing the computational cost
to a great extent.

2.1 Governing Equations

The PUMA solver employs a vertex centered finite volume method for numerically
integrating the 3D RANS equations for an incompressible fluid flow, expressed in
their conservative form. In the vertex-centered variant of the finite volume method,
a finite volume is defined around each grid node and the flow variables are stored on
the grid node, as opposed to the cell centered variation in which the finite volume
coincides with the cell. Figure [2.1| presents the finite volume formed around a node
in 2D grid consisting of triangular and quadrilateral elements. The finite volumes
are formed by connecting the mid-edges and element barycenters surrounding each
grid node.



Figure 2.1: Graphical representation of vertex centered finite volume.

The steady-state RANS equations in their conservative form for incompressible fluid
flows, written in a non-inertial (rotating) frame of reference and using the artificial
compressibility method [6], are expressed as

aU a inv a V1S
F_l m nk nk — 21
" or T om0 (2.1)

where 7 is the pseudo-time step, U,, = [’—; ul ug u{ﬂ stands for the vector of

flow variables, with % being the kinematic pressure (since p is assumed constant
in incompressible fluid flows) and u’(m = 1,2,3) the velocity components in the

absolute frame of reference. The inviscid " and viscous f'* fluxes and the source
terms .S, are defined as:

ufl 0 0
A, R A
inv _ Uy Uy, + p51k vis _ Tik S = €11EW U (2 2)
nk usuf + pdoy nk Tok " QR Uy
A, R A
us Uy + pdsy T3k E31LWI U,
where uff (m = 1,2, 3) are the cartesian velocity components expressed in the relative

reference frame and are linked to the absolute cartesian velocity components by the
formula vl = uff +ul | with uf = € pwi(rr, — ) being the rotating/non-inertial
frame velocity. The (k,m) component of the viscous and Reynolds stress tensor
(Trm) is defined as:

A A
ou;,  Ouy

Tom = (v + 1) (% + 8—%) (2.3)

where v and v; are, respectively, the kinematic viscosity and the kinematic eddy
viscosity.



The source term .5, corresponds to the Coriolis force, that arises from the formula-
tion of eqs in a non-inertial (rotating) frame of reference. Specifically, wy, are the
components of the rotational speed of the turbine and the symbol €, is the Levi
Civita symbol that is defined as

+1if |
Emlk = -1 alf ( 3
0 ,if m=1l or =k or k=m

Finally, the matrix 'l = as introduced by Turkel [7], is defined as:

nm?

00 0

IR = S
an: uf—l—gxu? 0 1 O (24)

W o0 1

where « is a predefined parameter, while 3 is equivalent to an artificial speed of
sound. The pseudo-compressibility method, introduced by Chorin [6], enables the
use of time-marching techniques for solving the PDEs. Practically, 'l acts as a
preconditioning matrix for the generalized artificial compressibility equations [2.1]
To ensure a fast convergence rate and robustness, the § parameter must be selected
carefully, so as to get a condition number as close to unity as possible, thus leading
to a stable system of PDEs.

2.2 The Spalart-Allmaras (S-A) Turbulence Model

For the modeling of turbulence, the GPU solver employs the S-A turbulence model.

In the S-A model [§], the kinematic eddy viscosity v; is given by:

vy = (2.5)

after solving an additional PDE for the turbulence variable &, which is the following;:

8D+8(u§ﬁ)_l{ ) {(uw) 817] o 817}

A O] 0wy Omp

833k
- Cbl(l - ft2> ~ﬂ + (C’wlfw - %ftl) <Z> =0 (26>
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where A is the distance of the internal nodes from the closest wall boundary. Eq.
is closed by the following relations and constants:

3 OuA HuA
— _X . X — Uy OUy
) fv1 T X5+ fvz =1 T+xfo, ? S = \/Eklmequ dx; O34’

1
5 D fs 1+¢6 \ 6
S:S—i_m?f_AQZ’ fw:g(g) ) g:T—l—CwQ(TG—T),

95 +cS,,

NI

X:

_ . U o ~ _ —ciy X2
r—mm(l(), §52A2)7 lut_pljfvl7 n = pv, ftz = C43€ taX )

o =71, ¢y =01355, ¢, =0.622, ¢y = G 4 2

o Y

Coy = 0.3, €0y =03, 0=2 k=041, ¢, =12, ¢, =05

2.3 Boundary Conditions for Hydraulic Turbines

In order to define properly the flow problem, equations must be accompanied
by a set of appropriate boundary conditions. These conditions vary, based on the
physical boundary they are being imposed on. Mainly, there are four kinds of
boundary conditions, one set for the solid walls, one set for the inlet, one for the
outlet of a hydraulic turbine and one set for periodic boundaries.

2.3.1 Wall Boundary Conditions

The wall boundary conditions can further be categorized in two categories based on
the type of flow, inviscid or viscous. For inviscid flows, the no-penetration condition
applies, where the normal component of the velocity relative to the wall is set equal
to the normal component of the wall velocity. This is expressed as

uptng, = u)) ny, (2.7)

where u}’, (k = 1,2,3) is the wall velocity. For viscous flows, the no-sip condition
applies, where the absolute velocity is set equal to the wall velocity, namely

up =u)  k=1,2,3 (2.8)
In addition, the turbulence variable v is set to zero, i.e. v = 0.
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2.3.2 Inlet Boundary Conditions

At the inlet boundary of a 3D domain, three quantities must be defined while one
is extrapolated from the flow domain. The two of the three quantities are the two
angles 6,0y that link the vectors of the cylindrical velocity components and the
velocity magnitude |ui!|. This link is expressed as

uft = |u| sin 6,
uf = |ugt| cos 6y sin 6, (2.9)

uy = |u| cos b cos Oy

The third quantity can either be the absolute velocity magnitude at the inlet |u;'|
or the total pressure p;. The quantity that is extrapolated from the flow domain
is the static pressure. In the case of specifying the total pressure at the inlet, the
velocity magnitude is then computed based on the formula

1
pe=p+ §u;“uf‘ (2.10)

As for the turbulence, the ratio %I N'is set at the boundary (in the absence of exact

data), with typical values of 10 + 20.

2.3.3 Outlet Boundary Conditions

Conversely, at the outlet boundary one flow quantity must be defined and three
are extrapolated from the flow domain. The imposed quantity usually is a fixed
value for the static pressure py, although there are other options available, such as
imposing a fixed value for the average static pressure p, over the whole outlet or,
alternatively, imposing the flow rate.

It is important to state that care must be taken when combining the types of bound-
ary conditions imposed at the inlet and outlet boundaries. For example, when the
velocity magnitude and the flow angles are imposed at the inlet, then the flow rate
cannot be imposed at the outlet.

2.3.4 Periodic Boundary Conditions

In the cases of hydraulic turbines examined in this thesis, there are mainly two sets of
periodic boundaries, one for the guide vanes and one for the runner blade. For each
set of periodic boundaries two sides are identified, the active and the non — active.
The active side is the one that when rotated in the positive pitch-wise direction (for

11



less than 180°) matches perfectly with the other one. This is best understood by
examining figure [2.2]

z Y

¢ -

Non-active Side Active Side

Figure 2.2: Graphical representation of the two periodic boundaries.

The result of the perfect match between the two sides is a list of all the corresponding
nodes that belong to each periodic boundary.

In order to form the finite volume around each boundary node of the active periodic
side, the neighbouring nodes of both the node on the active side and its correspond-
ing node on the non — active side are used. Of course, the neighbouring nodes that
belong to the non — active side are rotated appropriately to create the finite volume.
After the formation of the finite volume the solution is updated in each boundary
node of the active periodic side, and then directly copied to the matching boundary
node of the non — active side.

2.4 Wall Functions

For the treatment of the boundary layer the PUMA solver provides the option of
using wall functions. Specifically, the use of the formula for describing the velocity’s
behaviour inside the boundary layer proposed by Spalding [9], is employed. The
formula is expressed as

‘4+2 '4—&-3 '44—4 '4—&-5

2! 3| A1 5!
(2.11)

where y and ut are the characteristic dimensionless expressions for distance and
velocity, respectively, in the boundary layer and are defined, in relation to the friction
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velocity u,, as

Yurp
y" =
U
u
ut = —
Uur

(2.12)

(2.13)

Practically, formula manages to describe both the viscous sublayer and the
log — law region of the boundary layer with a single, unified formula. As stated by

D. B. Spalding this is achieved by establishing a formula which:

e passes through the point: y* = 0,u™ = 0.

e is tangential, at this point, to: u™ = y*.

e is asymptotic at large values of y* to u™ = 2.5lny™ + 5.5.

e fits the experimental data, produced from a flat-plate flow experiment, at

intermediate values of y™.

2.5 Rotor-Stator Interaction (RSI)

The relative motion between successive components of a hydraulic turbine (i.e. guide

vanes, runner, draft tube etc.) is handled using the mixing plane method.

This method is based on a pitch-wise averaging at the interface of the two com-
ponents that are in relative motion. The interaction is carried out by exchanging
circumferentially averaged flow quantities (such as total pressure, flow angles and
static pressure). The averaging takes place over the radial zones that are formed at

the two sides of the interface, as seen in figure |2.3]
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Figure 2.3: Graphical representation of the radial zones that are formed at a single
boundary of the interface.
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2.6 Programming on GPUs

As discussed earlier, the PUMA solver had its starting point from an in-house CFD
solver that runs on clusters of CPUs ([10], [I1], [I2]. The transition to a GPU-
enabled solver presented some difficulties, due to the architecture and logic behind
the GPUs themselves. GPUs are, in effect, shared memory parallel co-processors
and this characteristic alone prohibits the programmer from using classic scatter-
add techniques, that are widely used in CPU-based CFD solvers. As a result, the
original CPU code had to be restructured and modified scatter-add techniques had
to be employed (for further reading, refer to [4]).

The GPU solver uses the delta-formulation for solving eqs. and in their
discretized form. In fact, the unknown variable is the update (AU,) in the flow
variables from one pseudo-time iteration (k) to the next (k + 1) as presented here.

OR,
oU,,

AU, = —R, (2.14)
Ukt = UF + AU,

where gg; is the Jacobian matrix and is referred to as the left hand side (Lh.s.),

while R, is the residuals and is referred to as the right hand side (r.h.s.).

To further enhance the PUMA solver’s efficiency, the Mixed Precision Arithmetics
(MPA) is used [13]. It employs a combination of single and double precision arith-
metics for the computations and data storage. Specifically, the residuals R, are
computed and stored as double precision numbers, due to the need for high ac-
curacy. On the contrary, the Lh.s. coefficients (g%;) are computed with Double
Precision Arithmetics (DPA) but are stored in Single Precision Arithmetics (SPA).
The MPA technique, compared to the DPA technique, provides the same accuracy
in the results, while reducing the memory requirements and the number of total
memory accesses. There is only a slight difference in the convergence rate between
the two techniques.
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Chapter 3

Interfaces for the Integration of
PUMA

In the process of implementing the GPU-enabled CFD solver, what becomes ap-
parent, is the need for the development of various peripheral tools that will enable
the smooth integration of the in-house solver inside the overall toolchain. These
tools mainly include the two grid converters, the modification of the post-processing
routines and the overall management script, that coordinates the whole process.

3.1 Grid Converters

First of all, the tools that had to be developed are the two grid converters to convert
the 3D grids, generated by the meshing tool, developed and used in Andritz Hydro,
from one format (CGNS) to another (LTT), and vice versa.

The first tool, converts the .cgns binary file, containing the desired geometry, to the
LTT format needed by the PUMA solver. On the other hand, the second converter
takes the output file from the solver, which is a Tecplot (.plt) file, containing the
flow solution stored on the grid nodes, and transforms it back to a .cgns binary
file that can be used for the post processing. This new file contains now both the
geometry and the flow solution of the hydraulic turbine.

But first, in order to be able to develop said tools one must first understand in
depth the three formats that are mentioned. In the following sections, the three
formats (CGNS, LTT, Tecplot) are comprehensively described, so that the reader
can understand the basic terminology pertaining to each format.
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3.1.1 The CGNS Format

A CFD General Notation System (CGNS) file is an entity that is organized, inside
the file itself, into a set of "nodes” in a structure resembling a tree. The base "node”
is referred to as the "root node”, containing general information for the file itself
(i.e. the file size, the encoding used etc.). Each new "node” that is branched out of
the "root node” is defined by a name and contains data [14].

Generally, there are two distinct methods of organizing CFD information in a hier-
archy, topologically based and data — type based. Inside a CGNS file, a topolog-
ically based hierarchy is implemented. In this method, the information pertaining
to each zone of the grid is grouped together, whereas in a data-type based hierarchy
all the information pertaining to each flow-field variable is grouped together. This is
best explained in figure For example, the boundary patches of the grid play the
role of the zones, with each one containing the flow solution and the grid element
connectivity. Another zone is the volume grid of the main flow domain that contains
all the grid coordinates and the flow data of the internal grid nodes [15].

CGNS database
Reference atate | Zone 1 Zone 2 e Zone N
% T T
Grid coordinates Multizone interface Flow aolution ‘ Boundary conditions
commnectivity N
AN
x | ¥ ‘ 2 p | pus ‘ oo | pur| | peg

Figure 3.1: Graphical representation of the CGNS tree-like hierarchy.

3.1.2 The LTT Format
The computational grid is described in a set of three files; all of which consist the
LTT format. These files are:

e The .nod file, containing the x, y, z coordinates of all the nodes.

e The .hyb file, containing the element connectivity of the grid.

e The .patch file, containing the information on the boundary patches of the
mesh.
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The .nod file

The first file is the .nod file containing the x, y and z coordinates of the grid nodes.
In the first line of the file the total number of nodes is written, while in the next
three lines the x, y and z coordinates of each node are written, respectively.

nbNodes

nodeX' nodeX? nodeX? ...
nodeY' nodeY? nodeY? ...

nodeZ' mnodeZ? mnodeZ? ...

Figure 3.2: Representation of the .nod file structure where nodeX®, nodeY"® and
nodeZ" are the x, y and z coordinates, respectively, of the i — th node.

The .hyb file

The second file is the .hyb file containing the element connectivity of the grid. In
further analysis, in the first line of the file the total numbers of tetrahydra (nbTet),
pyramids (nbPyr), prisms (nbPri) and hexahedra (nbHex) is written. In the fol-
lowing lines, the nodal IDs of each element are written as shown in figure [3.3] where
iHex! iHex? iHex? iHex] iHex iHex$ iHex] iHext, for example, are
the nodal IDs of the nodes of the first hexahedron. The nodal IDs of each element
type are written in a separate line

nbTet nbPyr nbPri nbHex

iTett iTet? iTet? iTet] ...

iPyr{ iPyr? iPyr} iPyr{ iPyrd ...

iPril  iPri3 iPri iPri} iPrid iPriS ...

iHexl iHex? iHex? iHex] iHex? iHex$ iHex! iHex$ ...

Figure 3.3: Representation of the .hyb file structure.
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The .patch file

The third and last file completing the three-file structure of the LTT format is
the .patch file. This file contains all the necessary information concerning the grid
boundaries (i.e. the patches). In the first line of the file, the total number of patches
is written. In the following lines, sections with information per boundary patch are
written. Each section contains, the name of the patch, the patch information and,
finally, the list of nodal IDs that belong to each patch. Everything, except the patch
name, is enclosed in curly brackets, as shown in figure

nbPatches
patchName_1

{

BCType boundaryConditionType | geometricType
Connectionld 1

Nodes nbNodes
list_of patch_node_ids

}

patchN ame_2

{

BCType boundaryConditionType | geometricType
Connectionld 1

Nodes nbNodes
list_of _patch_node_ids

Figure 3.4: Representation of the .patch file structure.

The keywords boundaryConditionType and geometricType can have multiple val-
ues, that are presented extensively in the table |3.1}
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Table 3.1: Valid values for the keywords boundaryConditionType and the corre-
sponding values for keyword geometriclype.

boundaryConditionType geometricType
InviscidStationaryW all Blade | Hub | Shroud
ViscousStationaryWall Blade | Hub | Shroud
InviscidRotatingW all Blade | Hub | Shroud
ViscousRotatingW all Blade | Hub | Shroud
MatchingConnection PeriodicSideX | PeriodicSideY
Inlet —
Outlet —
InletRST —
OutletRST —

Finally, in a case which involves a Rotor-Stator Interaction (RSI), the keyword
Connectionld defines the corresponding ”outlet” patch of the upstream component
and "inlet” patch of the downstream component of the RSI interface.

3.1.3 The Tecplot Format

The PUMA solver provides the option of printing the resulting flow field in (a) LTT
format ( a single .res file in which the computed presssure and velocity fields are
written in separate lines), (b) VT'U format (.vtk file) and/or (c) Tecplot format (.plt
file). In the current diploma thesis the Tecplot output file is converted into CGNS
format. The following paragraph describes the Tecplot format. For the Tecplot
format option, a single output file (.plt file) is written. Every .plt file starts with
a header containing general information about the grid and the variables that are
presented inside the file, such as the total number of nodes and elements or the
name and type of the variables included in the file. In figure [3.5, an example of a
header is presented.

title = filename
variables = var_1,var_2,var_3
zonet = zone_name
Nodes = nbNodes
Elements = nbElements
ZoneType = {FeBrick, FePoint}
DataPacking = {Block, Brick}
DT = (Uar,l,DataType, var_2_DataType,var_3_DataType ... )
Results

Figure 3.5: Example of the .plt file header.
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After the header, the values of each variable are written. There are two ways of
writing the flow field data. The first is the point — wise format, where there are
as many columns as the variables to be written and each row of data corresponds
to a single node. The second way is the block — wise format, where all the nodal
values of each variable are written in a single block, with each block stacked below
the previous one. Both are described in figures and [3.7]

var_1_Node',var_2_Node',var_3_Node"
var_1_Node?,var_2_Node?, var_3_N ode?
var_1_Node®,var_2_Node?, var_3_Node?

Figure 3.6: Ezample of the point-wise format, where var_i_Node’ is the value of the
i-th variable of the j-th node.

var_1_Node',var_1_Node?, var_1_Node?
var_2_Node',var_2_Node?, var _2_Node?
var_3_Node',var_3_Node?, var_3_Node?

Figure 3.7: Example of the block-wise format, where var_i_Node’ is the value of the
i-th variable of the j-th node.

In the last section of the .plt file, the element connectivity is written, namely the 8
nodal IDs that define each hexahedral element.

3.1.4 The cgnsToLtt Converter

The first conversion tool programmed in this thesis is the cgnsToLitt, which converts
the input .cgns file, containing the geometry, to the desired three-file structure of
the LTT format. This is achieved through the use of the Cgns Mid-Level Library,
which provides access to the binary .cgns file for reading all the necessary data, such
as the grid size and coordinates, the element type and connectivity and information
related to the boundary patches.

The tool is programmed to be user-friendly and the only input arguments that are
needed is the name of the .cgns file, that is to be converted, and the name that the
user desires to have on the output files.

In further detail, the first step is to read the cartesian coordinates of the mesh nodes
from the .cgns file and create the .nod file. The next file to be written is the .hyb file
that contains the element connectivity of the grid. In order to achieve this, the type
(hexahedral, tetrahedral etc.) and element connectivity is read and, then, the .hyb
file is written. Finally, the .patch file is written, which contains the necessary data
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on the boundary patches, not only the nodes comprising these patches, but also the
way that the boundary conditions will be imposed on each and every one of them.

This final process is a combination of two steps. First of all, the nodes compris-
ing each boundary patch is listed with a generic header above containing trivial
information for the patch. Then, this header is appropriately modified for each
boundary patch of the grid, so as to inform the PUMA solver of the way that
boundary conditions need to be imposed. The information contained in the header
are comprehensively presented in the section defining the LTT format.

3.1.5 The pltToCgns converter

The second converter that is programmed, is used to enable the compatibility be-
tween the solver and the rest of the post-processing. This necessity arose from the
fact that the PUMA solver produces a .plt text file containing the flow solution and
the geometry of the whole computational domain but the post-processing needed
again a .cgns binary file.

As a result, the programmed converter transforms the .plt output text file into
a single .cgns binary file that contains not only the flow solution on the internal
nodes but also the overall geometry and the boundary surfaces separately, after first
converting from the block — wise to the point — wise format.

The tool requires little input from the user, namely the number of computational
domains (especially in the RSI cases) and the names of the input .plt file and the
output .cgns file. Moreover, the tool requires no specific knowledge of programming
by the user and keeps its inner workings hidden, so as to simplify its usage.

Conversion from block-wise to point-wise format

Conversion from .plt to .cgns

Inclusion of boundary patches in the .cgns file

Figure 3.8: Graphical representation of the process of the pltToCgns converter.
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3.2 Pre-processor for the PUMA Solver

The pre-processor is a code written in Fortran, that performs the necessary mathe-
matical operations to prepare the final stages of the run of the PUMA solver. This
step was required because the PUMA solver is a general purpose CFD solver that
was not designed specifically for the analysis of turbomachinery. As a matter of
fact, the user desires to give input values that have physical meaning for each case,
such as the volumetric discharge @y, and hydraulic head H,. on the design point,
but the solver requires more generalized input values, such as the fixed values of the
velocity magnitude and the total pressure. Consequently, some additional mathe-
matical operations need to be performed to turn the turbomachinery-specific values
(discharge, head) into more general values (velocity, pressure).

The set of general operations that were necessary are presented here, while some
additional operations that are case dependent are explained later.

e The conversion of the rotational speed from rpm to %:
2mn
W= — 3.1
60 (3.1)
where:
— w is the rotational speed in %1.

— n is the rotational speed in rpm.

e The computation of the inlet absolute velocity magnitude based on the volu-
metric discharge @) of a single passage of the turbine:

Vin = AmSL.HlW) (3.2)
where:
— A;, is the area of a single-passage inlet patch (in m?).
— « is the inflow angle in degrees (°).
e The computation of the static pressure at the outlet ps oy
Ps.out = Patm + P9(Zref — Zout — Zs) — APs out (3.3)

where:
— Datm 18 the atmospheric pressure (in Pa).
— Zes 1s the reference level (in m).

— Zout 18 the level of the outlet of the turbine (in m).
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— Z, is the suction head (in m), and is calculated by equation

_ V2
Zs _ _UHnet . Patm DPuap o dt,out (34>
rY 29
where Vi oyt = DQQA is the estimated velocity magnitude at the draft

7" ref fa,at
4 5
tube outlet, while f4 4 is the ratio between the area of the runner outlet
of a single-passage and the are of the draft tube outlet. Also ¢ is the

cavitation coefficient.

— Aps out 1s the estimated pressure drop in the draf tube computed by the
formula Ap; g = %pndt(l — )(M)Q, where 74 is the draft tube’s

Aoutnbl

_L

faa
efficiency.

This code was programmed with the aim of tackling the different boundary condi-

tions that need to be imposed depending on each case and keeping in mind that

these boundary conditions need to be imposed in the same manner as they were
being imposed before the introduction of the PUMA solver in the general toolchain.

In effect, in this step what is being done is the ”translation” of the hydraulic turbine-
specific boundary conditions to a set of more generalised boundary conditions.

3.2.1 The Imposed Discharge Condition

The first boundary condition, is the imposed discharge at the runner inlet. This
boundary condition, generally, is used in a runner-alone case.

Moreover, when imposing this boundary condition, the inlet flow angle (« coincides
with angle #; mentioned in egs. is computed from the following equation

wRQ

o = arctan(m)

(3.5)

Although the assumption that the flow exits the runner purely in the axial direction
may seem a little unwarranted, the comparative results between the PUMA solver
and the commercial solver are almost the same. Hence, equation is proved to be
a valid method for computing the inflow angle «.

3.2.2 The Imposed Head Condition

The other boundary condition that is used in guide vane - runner cases or guide
vane - runner - draft tube cases is the imposed head boundary condition.
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This boundary condition is translated into imposing the total pressure at the inlet
and the static pressure at the outlet. The steps that are needed to compute the
necessary values are described below.

First of all, the static pressure at the outlet is evaluated based on equation [3.3]

Then, based on the average velocity magnitude at the outlet patch V,.;, the dynamic
pressure is computed payn our = % pm2, thus the total pressure at the outlet becomes
available. Finally, the total pressure at the inlet is computed by adding the hydraulic
head of the turbine. The complete formula is presented in equation [7.5

Dtot,in = ngnet + Ps,out + Pdyn,out (36)

A feature that needed to be included in the PUMA solver is the ability to update
the average velocity magnitude at the outlet within each iteration.

To that effect, some changes were programmed in the PUMA solver, in order to
enable it to impose the boundary condition in the same way that it was already
being imposed, meaning that now the total pressure at the inlet can be updated
in each iteration based on the mass flow averaged velocity magnitude at the outlet
‘/out-

3.3 The set-up-run-gpu Shell Script

The final tool that was programmed is the ”set-up-run-gpu” shell script. The basic
purpose of this script is to manage the smooth run of the various tools described
above (i.e. the cgnsToLtt, the pre-processor and the pltToCgns) and to perform
some additional tasks to combine and coordinate the different tools, such as some
additional manipulation of the .patch file and creating the desired input file for the
PUMA solver (i.e. solver.ini file).

The steps that are executed here are the following:

1. Reading the general input file, containing the data concerning each hydraulic
turbine case, such as discharge, head, number of blades, etc.

2. Converting the .cgns file to the LTT format described above.

3. Performing the necessary pre-processing, namely converting the discharge and
hydraulic head to velocity magnitude and total pressure at the inlet etc.

4. Converting the .plt output file back to a .cgns file containing now the flow
solution.

This script was programmed to support two options of execution. The first option
is "pre-”, and actually performs steps 1-3, while the second option is "post-" and
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performs step number 4, meaning the second conversion from a .plt file to a .cgns
file. All these are best represented in figure |3.9

set-up-run-gpu

" pre-” moc’ie/ wost—” mode

cgnsToLtt pltToCgns

Pre-processor

Create solver.ini

Figure 3.9: Graphical representation of the processes handled by the ”set-up-run-gpu”
shell script.

3.4 Post-processor Functions

The last step in enabling the smooth integration of the PUMA solver in the uni-
fied toolchain was to modify the necessary files (.sub) in the already existing post-
processing.

The main problem with these files was the input they were being given. In the exist-
ing post-processing files, a binary file was given as input, which contained additional
pieces of information, aside from the flow field data. These additional information
could not be included in the .cgns file that is produced after the final conversion.

As a result, some of the key functions being used, could not anymore, as they
relied on these additional information. The list of functions that did not support
the .cgns format include the mass flow related functions (e.g. mass flow averaging,
computation of the mass flow etc.) and the computation of the torque that is being
produced from the turbine.

To overcome these obstacles, it was necessary to create alternative functions that
perform the same computations. In other words, this new set of functions performs
the computations step-by-step that the previous set of functions did automatically.
To further explain the procedure, this is the equivalent set of functions that was
used instead of the hardcoded functions.
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3.4.1 Mass Flow Related Functions

The mass flow related functions (or subroutines) include the mass flow computation,
averaging and integrating. These three hardcoded functions, relied heavily on the
data already existing in the input file and could not support the .cgns file format.

Consequently, they had to be replaced with new functions that performed the actual
analytical calculations that are implied by the name of these functions. These
calculations are presented here:

e Mass flow computation:

i — / /A PV, dA (3.7)

where:

— V,, is the velocity vector normal to the surface where the mass flow is
computed.

V,, field, p

Mass-Flow Computation

m

Figure 3.10: Graphical representation of the mass-flow calculation function.

e Mass-flow averaging of a flow variable ®:

5 [[ pVa®dA



V,, field, @ field, p

Mass Flow Averaging

Mass Flow Averaged ®

Figure 3.11: Graphical representation of the mass flow averaging function.

e Mass-flow integrating a flow variable ®:

/ /A pV® dA (3.9)

V,, field, ® field, p

Mass-Flow Integration

Mass Flow Integrated ¢

Figure 3.12: Graphical representation of the mass-flow integration function.

3.4.2 Torque Computation Function

The same problem concerns the function that calculates the torque that is produced
from the turbine. Although, this function was a bit more complicated to replace,
as it required a few more computations to be performed in order to obtain the final
result. Generally, the torque produced from the hydraulic turbine is the combination

of two terms, as follows
Mtot = Mp,z + Mv,z (310>

The first term (M, .) is the result of the pressure force exerted on the blade surface,
while the second term (M, ,) is produced by the shear stresses on the blade surface.
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The pressure term (M, ) is computed as the surface integral of the pressure multi-
plied by the local radius of the blade, as follows

M, ., = // TPabs AA — // YPabs AA (3.11)
Apl,w Api,y

— Ay, is the surface area of the blade projected on the yz plane.

where:

— Ay, is the surface area of the blade projected on the xz plane.
— Daps 1s the absolute pressure.

Similarly, the shear stress term (M, ,) is computed again as a surface integral of the
shear forces on the blade multiplied by the radius.

Mv,z = // LT,y dA — // YTw,x dA (312)
Apl Apl

= T = (ot ) 2ot +my (55 4 52) + a5+ 32)).

where:

T = (05 50 20,8 2 )

7 field, p field, u,

Torque computation

T

Figure 3.13: Graphical representation of the torque computation function.

In figure the runner blade is shown including the frame of reference, as well as
the two projected areas Ay, and Ay,,.
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Figure 3.14: The runner blade (grey) and the hub (pink) of a hydraulic turbine’s
single passage. Also, the two projected areas Ay o (top) and Ay, (bottom,).
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Chapter 4

Case Studies and Comparison

After the development of the necessary tools for the proper integration of the PUMA
solver, the next step is to test and validate the solver. This was achieved by run-
ning different cases of turbine configurations and then comparing the results with a
commercial CFD software provided by Andritz Hydro.

The cases that are tested include the runner of a Francis turbine, the guide vanes
and runner of a propeller turbine and the combination of the guide vanes, runner and
draft tube of a Kaplan turbine. The respective turbine configurations are presented
in figure 4.1

To ensure fairness in comparing the results of the PUMA solver and the results of
the commercial CFD solver, it is important to clearly state that the post processing
is exactly the same in both solvers. Thus, the only differences that arise are due to
the solvers themselves. Also, it is noteworthy to state that both solvers employ a
vertex-centered finite volume method for numerically solving the RANS equations.
Conversely, there are some key differences between the two solvers. First, the method
for numerically solving the RANS equations is different. The PUMA solver uses
the pseudo-compressibility method, whereas the commercial solver uses a pressure-
based method. Second, the PUMA solver employs the S-A turbulence model, while
the commercial solver employs the k& — w SST turbulence model. Third, the wall
functions used for the boundary layer treatment are different in the two solvers.

The results that are presented for each case are values and graphs that best describe
the operation of the turbine. Mainly, the graphs that are presented are those of the
pressure coefficient C, profiles in three key positions (hub, mid-span, shroud) and
those of the dimensionless absolute cylindrical velocity profiles at the outlet of the
runner. The latter are important, because they define to a great extent the efficiency
of the draft tube that follows the runner.

The pressure coefficient C), is computed, during the post processing phase over the
whole runner blade. The pressure coefficient C), at each point on the blade surface
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Figure 4.1: The three turbine configurations that are tested. The Francis runner
(top-left), the propeller turbine guide vanes and runner (top-right) and the Kaplan
guide vanes and runner including the draft tube (bottom).

is defined as

b — pvap
O =L Lvp 4.1
P pgH e (4.1)

where p,q, is the evaporation pressure of water and H,,; is the hydraulic head given
as input.

Also, the three dimensionless velocity profiles that are presented are the profiles of

*

the peripheral ¢, radial ¢; and meridional ¢, absolute velocity components at the
outlet of the runner. They are expressed as

Cy

cu A 1T
29Hnet
C
L 4.2
CT Vv 29Hnet ( )

* Cm

B Vv 29Hnet

*
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where ¢, is the magnitude of the dimensional peripheral absolute velocity, ¢, is the
magnitude of the dimensional radial absolute velocity and ¢,, = \/c?+ ¢2 is the
magnitude of the dimensional meridional absolute velocity.

For these quantities to be computed, first, the outlet of the runner is divided into
radial zones as seen in fig. and, then, for each zone the average values of eqgs.

are computed.

Y

b,

Figure 4.2: The radial zones created for averaging the three velocity components over
the outlet patch.

Finally, for each case, some characteristic quantities are presented, that further
define the turbine’s operation. Those include the hydraulic head, the volumetric
discharge, the torque that is produced and the efficiency that can be achieved.

The hydraulic head (in m) is defined as the drop in the mass-averaged values of the
total pressure from the inlet to the outlet of the runner as computed from the solver,
while also the volumetric discharge Q (in m;) is computed directly from the PUMA
solver. The computation of H is expressed as

Hcalc _ pt,in - pt,out (43)
Pg
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In addition, the torque T (in Nm) is computed from equation for each of the
rotating parts of the turbine (the runner blade and the hub). Finally, efficiency 7 is
computed based on the formula

Tw

== 4.4
ngcalcQ ( )

n

4.1 Francis Runner

The first case is that of a Francis runner blade. This case concerns only the runner
of the turbine, which has 13 blades, and is a typical case for applying the discharge
boundary condition. Generally, in the Francis cases, it is typical to study only the
runner. The configuration is presented figure [4.3}

Figure 4.3: The Francis hydraulic turbine blade configuration.
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A single passage of the turbine is studied and its grid consists of 220416 nodes and
comprises hexahedral elements. The size of the grid is generally small, especially
compared to later cases that include multiple turbine components. As a result, the
wall-clock time is extremely small, almost 5 minutes on 4 GPUs (GeForce GTX 1080
Ti).

This case is run for the best-efficiency operating point on the Hill chart. This is
described in table [4.11

Table 4.1: CFD analysis of the Francis runner using PUMA. Operating point of the
turbine.

Variable ‘ Value
H (m) 34.59

3

Q (=) | 057

s

N (rpm) | 1021.04

For this case, a constant value for the absolute velocity magnitude accompanied
by the two flow angles are imposed at the inlet and a constant value for the static
pressure is imposed at the outlet. The specific values for all the necessary quantities
on the boundaries are presented in table

Table 4.2: CFD analysis of the Francis runner using PUMA. Imposed values of the
flow field variables. The 01 flow angle results from the computation 81 = 180 + «,
where o s computed by eq. because the turbine revolves in the counter-clockwise
direction.

Variable Value
Vin (%) 15.49
0; (deg) 197.895

0y (deg) 90.0
et (es) | 32.35
et 20.0
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In figure [£.4] the residual convergence rate is presented of each of the PDEs that
are being solved, which are the continuity equation, the three components of the
momentum equation and the Spalart-Allmaras equation.

4 ‘
Mass ——
Momentum X ——
2\ MomentumY —— ]
Momentum Z2 ——
of SA ——

log4o(Residual)
A

-10

-12 I I I I
0 1000 2000 3000 4000 5000

lterations

Figure 4.4: CFD analysis of the Francis runner using PUMA. Residual convergence
of the five equations (continuity, three components of the momentum and S-A model).

In figure [£.4] it is evident that the residual magnitude order decreases significantly
(from 6 to 10 orders depending on the PDE) and after 4000 iterations the residual
magnitude order seems to maintain a relatively stable value.

Furthermore, the convergence rate of certain integral quantities is presented in figure
4.5 namely the static and total pressure and the volumetric discharge at the inlet
and outlet of the flow domain. As it can be seen from figure [4.5 the values of these
quantities all seem to stabilize after the first 3000 iterations.

Based on the previous two figures (4.4} [4.5), it is safe to assume that the case is
converged before the 5000 iterations. This means that the computation could have
been stopped at an earlier point, thus reducing even more the computational cost.

The computed pressure coefficient C,, profiles are presented in figure .6} There are
three profiles, one at the hub, one at the mid-span and one at the shroud. From
figure it can be inferred that the deviation between the results of the two solvers
are negligible, providing a first step towards the validation of the PUMA solver.

In figure [4.7) the dimensionless profiles of the peripheral ¢, radial ¢! and meridional
c;, velocity components at the outlet of the runner are presented. As it can be seen
in figure [4.7] the profiles of the absolute cylindrical velocity components produced
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Figure 4.5: CFD analysis of the Francis runner using PUMA. Convergence of in-
tegral quantities, such as mass flow (top), total (middle) and static (bottom) pressure

at the inlet and outlet boundaries.

from the two solvers seem to be almost the same, indicating further the equivalence

of the two softwares.

In table some characteristic quantities are presented, describing the turbine
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Figure 4.6: CFD analysis of the Francis runner using PUMA. Pressure coefficient
(Cy) over the blade section at the hub (top), mid-span (middle) and shroud (bottom)
positions.

operation.

Based on table[4.3] the results from the comparison are satisfying. The only quantity
that presents a large deviation (2.4 %) is that of the efficiency 7.
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Figure 4.7: CFD analysis of Francis runner using PUMA. Dimensionless profiles of
the radial, peripheral and meridional velocity components at the outlet.

Table 4.3: CFD analysis of Francis runner using PUMA. Computed characteristic
quantities of the hydraulic turbine operation for the best-efficiency operating point.
As far as the efficiency n, the percentile deviation from the result produced by the
commercial solver is presented.

Quantity | PUMA | Commercial SW
H (m) 34.37 33.92

Q (™) | 0.573 0.571
on(%) +2.4 -

T (Nm) | 1792.21 1720.75

4.2 Propeller Guide Vane - Runner

The second case that is tested is that of a propeller turbine. Here we have a com-
bination of two components, the guide vanes (20 blades) and the runner (5 blades).
The configuration is presented in figure

The grid of the two passages (one passage for the guide vanes and one passage for
the runner) has 1061221 nodes, more specifically 606375 nodes for the guide vanes
and 454846 nodes for the runner, and consists, again, only of hexahedral elements.
A slightly finer grid is used than before, so the wall-clock time on 4 GPUs (GeForce
GTX 1080 Ti) is now almost 10 minutes.
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Figure 4.8: The propeller hydraulic turbine configuration.

The operating point for which case is described in the following table [4.4]

Table 4.4: CFD analysis of the propeller turbine guide vanes and runner using
PUMA. Operating point of the turbine.

Variable ‘ Value
H (m) 13.22

3

Q (™) 0.51
N (rpm) | 1651.87

The mixing plane method was used for the RSI connection between the guide vanes
and the runner. For the mixing plane method, 21 radial zones are formed on both
the outlet boundary of the guide vane passage and the inlet boundary of the run-
ner passage. In each zone of the upstream component (guide vane outlet) the flow
variables are averaged circumferentially and are passed on to the downstream com-
ponent (runner inlet). The radial zones created for the mixing plane method are
represented in figure (4.9

For this case, a constant value for the total pressure along with the two angles are
imposed at the inlet and a constant static pressure at the outlet. The specific values
for all the necessary quantities imposed on the boundaries are presented in table

2851
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Guide Vane Outlet

Runner Inlet

Figure 4.9: CFD analysis of the propeller turbine guide vanes and runner using
PUMA. The radial zones formed for the mixing plane method at the guide vane outlet
of single passage (left) and the runner inlet of a single passage (right). The flow
quantities are averaged over each zone of the guide vane outlet and each average value
is transferred to the runner inlet radial zone of the corresponding colour.

Table 4.5: CFD analysis of the propeller turbine guide vanes and runner using
PUMA. Imposed values of the flow field variables. The 01 flow angle results from
the computation 61 = 180 + «, where « is the known guide vane angle (45°), because
the turbine revolves in the counter-clockwise direction.

Variable Value
Pran () | 261.11
0, (deg) 225.0
0 (deg) 90.0
Doowt (_Fa 31 91 98

o kg/m3

min 20.0

v

First of all, the convergence rate of the residuals of the governing equations is pre-

sented below in figure for both components, the guide vanes and the runner
blade.

Furthermore, the convergence rate of the static and total pressure and the volumetric
discharge at the inlet and outlet of the turbine is presented in figure [£.11]

By examining both figures and [4.11], it is clear that the reduction of the residual
magnitude order is noticeable and specifically after 2500 iterations the residuals seem
to stabilize. The latter is particularly evident in the convergence rate figure of the
guide vane passage. Also, the integral quantities of figure |4.11] appear to be stable
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Figure 4.10: CFD analysis of the propeller turbine guide vanes and runner using
PUMA. Residual convergence of the five equations (continuity, three components of

momentum and S-A turbulence model) for the guide vanes (top) and the runner blade
(bottom).

after 3000 iterations.

The resulting pressure coefficient C), profiles are presented for the runner blade in
figure The three profiles, presented for the hub the mid-span of the blade and
the shroud, again appear to be almost identical.

In figure the dimensionless profiles of the peripheral ¢, radial ¢} and merid-
ional ¢, absolute velocity components at the outlet of the runner are presented.
The comparison between the profiles produced from the solvers, further proves the
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Figure 4.11: CFD analysis of the propeller turbine guide vanes and runner using
PUMA. Convergence of integral quantities, such as mass flow (top), total (middle)
and static (bottom) pressure over the inlet and outlet patches.

validity of the results of the PUMA solver, as the profiles match almost perfectly.

In table 4.6, some characteristic quantities, describing the turbine operation, are
presented:
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Figure 4.12: CFD analysis of the propeller turbine guide vanes and runner using
PUMA. Pressure coefficient (C,) over the blade section at the hub (top), mid-span
(middle) and shroud (bottom) positions.

In this case, the deviation between the results of the two solvers is smaller than the
Francis case, even in the computation of the efficiency 7. Such a good comparison
between the two software packages shows that the PUMA can safely be used instead
of the commercial software into the optimization loop.
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Figure 4.13: CFD analysis of the propeller turbine guide vanes and runner. Dimen-
stonless profiles at the outlet of the radial, peripheral and meridional velocity compo-
nents.

Table 4.6: CFD analysis of the propeller turbine guide vanes and runner using
PUMA. Overall results describing the hydraulic turbine function. As far as the ef-
ficiency n, the percentile deviation from the result produced by the commercial solver
s presented.

Quantity | PUMA | Commercial SW
H(m) | 13.20 13.18

Q (™) | 0513 0.517
on(%) +1.4 -

T (Nm) | 375.86 372.76

4.3 Kaplan Guide Vane - Runner - Draft Tube

The third case that is tested was that of a Kaplan turbine (guide vanes and runner)
coupled with a draft tube. Here, the turbine’s configuration combines three compo-
nents, the guide vanes (24 blades), the runner (5 blades) and the draft tube, making
this case the most computationally demanding. The configuration is presented in
figure [4.14] For each of the guide vane and runner components, a single passage of
the axisymmetric flow domain is used, while for the draft tube the complete flow
domain is used.

It is noteworthy to state that predicting the flow inside the draft tube is considered
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Figure 4.14: The Kaplan hydraulic turbine configuration, including the draft tube.
The whole configuration of the guide vanes, runner blades and draft tube (left) and a
close-up view of the guide vanes and runner (right).

a very demanding task and even the commercial solver cannot reproduce the results
yielded in the lab, which is certainly not the case for the other components of the
turbine.

An interesting difference between this new case and the previous one including an
RSI, is the interface that is formed between the runner and the draft tube. As it can
be seen in figure the outlet of the runner corresponds to a single passage of the
turbine, while the inlet of the draft tube corresponds to the complete draft tube.
Conversely, the interface between the guide vanes and the runner is formed from the
outlet of the guide vanes and the inlet of the runner, which both correspond to a
single passage of the turbine. Both RSI interfaces are tackled with the mixing plane
method, so there is no need to include the full 360°configuration of the guide vanes
and the runner.

The grid of this case has 3690349 nodes, more specifically 148320 nodes for the
single passage of the guide vanes, 356478 nodes for the single passage of the runner
and 3185349 for the complete draft tube, and consists, again, only of hexahedral
elements. The largest grid of the cases presented and generally the most demanding,
so now the wall-clock time on 4 GPUs (GeForce GTX 1080 Ti) is almost 54 minutes.

This case was run for the operating point that is described, based on the turbine’s
Hill chart, in table [£.7]

Table 4.7: CFD analysis of the Kaplan guide vanes, runner and draft tube using
PUMA. Operating point of the turbine.

Variable | Value
H (m) 6.43
Q (=) | 042

s

N (rpm) | 1160.67
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Figure 4.15: CFD analysis of Kaplan guide vanes, runner and draft tube using
PUMA. In the RSI connection between the runner and the draft tube the outlet bound-
ary of the runner (green) corresponds to a single passage of the turbine, while the inlet
boundary of the draft tube (red) corresponds to the complete component.

Table 4.8: CFD analysis of the Kaplan guide vanes, runner and draft tube using
PUMA. Imposed values of the flow field variables. The 61 flow angle results from the
computation 01 = 180 + «, where « is the known guide vane angle (30°), because the
turbine revolves in counter-clockwise direction.

Variable Value
Prin (%) 117.67
0, (deg) 210.0
6y (deg) 90.0
Brouwt (_Pa_y | 54 67

p kg/m3
wn 20.0

v

As with the previous case, constant values for the total pressure along with the two
flow angles are imposed at the inlet and a constant value for the static pressure at
the outlet. The specific values for all the imposed quantities along the boundaries
are presented in table

The convergence rate of the residuals is presented below, for all three components.
In each figure, the residual convergence rate is presented of each the PDEs that are
being solved.

Furthermore, the convergence of certain integral quantities is presented here, namely
the static and total pressure and the volumetric discharge at the inlet and outlet of
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Figure 4.16: CFD analysis of the Kaplan guide vanes, runner and draft tube using
PUMA. Residual convergence of the five equations (continuity, three components of

momentum and S-A model) for the guide vanes (top), the runner blade (middle) and
the draft tube (bottom).

the turbine:
Based on figures [4.16 and [4.17], it is clear that due to the complexity of the turbine
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Figure 4.17: CFD analysis of the Kaplan guide vanes, runner and draft tube using

PUMA. Convergence of integral quantities, such as mass flow (top), total (middle)
and static (bottom) pressure over the inlet and outlet patches.

configuration, the required iterations to achieve a satisfying reduction in the residual
magnitude order was raised to 10000 iterations (from the 5000 previously used).

The C,, profiles are presented in figure 4.18| There are three profiles, one at the hub,
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one at the midspan and one at the shroud of the runner’s blade.
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Figure 4.18: CFD analysis of the Kaplan guide vanes, runner and draft tube using
PUMA. Pressure coefficient (Cp) over the blade section at the hub (top), mid-span

(middle) and shroud (bottom) positions.
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The dimensionless profiles of the peripheral ¢}, radial ¢ and meridional ¢, velocity
components at the outlet of the runner are presented in figure [4.19|
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Figure 4.19: CFD analysis of the Kaplan guide vanes, runner and draft tube using
PUMA. Dimensionless profiles at the outlet of the radial, peripheral and meridional
velocity components.

To further examine the effect that the presence of the draft tube has on the resulting
flow field, in figure[4.21]the contours of the dimensionless absolute cylindrical velocity
components (ci, ¢t and ¢,) are presented. The contours are computed on three iso-z
surfaces, one close to the TE of the blade, one at the interface of the runner passage
and the draft tube and one intermediate position. The positions of the three surfaces
are shown in figure [4.20]

Based on the comparative contours presented in fig. it is apparent that as we
approach the outlet of the runner passage the deviation between the results of the
two solvers becomes more pronounced. As a result, the deviation presented in figure

is further justified.

Moreover, the percentile losses at the draft tube are computed based on equation

5pdt _ Ptotin — Ptot,out % 100 (45>
Ptot.in

where piotin and prorour are the area averaged values for the total pressure at the
inlet and outlet of the draft tube. The losses computed by the PUMA solver are
14.3 %, while the losses computed by the commercial solver are 1.5 %. The glaring
deviation between the two results further enhances the belief that the flow inside
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Figure 4.20: CFD analysis of Kaplan guide vanes, runner and draft tube using
PUMA. Positions of the three iso-z surfaces used for the contours.

the draft tube of the turbine is difficult to predict for any solver.

Lastly, in table some characteristic quantities, describing the turbine operation,
are presented:

By examining figures and and the deviation between the results pro-
duced from the two solvers is more pronounced than the previous two cases. This can
be, mainly, attributed to the presence of the draft tube that raises the complexity
of the configuration.
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Figure 4.21: CFD analysis of the Kaplan guide vanes, runner and draft tube using
PUMA. Contours of the dimensionless absolute cylindrical velocity components: cj,
(top), c& (middle) and c}, (bottom) computed by the PUMA solver (left) and the
commercial solver (right).

Table 4.9: CFD analysis of Kaplan guide vanes, runner and draft tube using PUMA.
Overall results describing the hydraulic turbine function. As far as the efficiency n,
the percentile deviation from the result produced by the commercial solver is presented.

Quantity | PUMA | Commercial SW
H(m) | 611 6.41

Q (™) | 0.379 0.398
n(%) -0.9 -

T (Nm) | 173.67 193.41

4.4 Conclusions from the Comparison

In this section, some conclusions based on the comparative results of the cases that
were tested between the PUMA and the commercial solver, are presented.
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The convergence rate of both the residuals of the governing equations and the inte-
gral quantities for the three cases indicate that convergence is achieved well before
the 5000 iterations. This fact enables the reduction of the computational cost by
lowering the maximum number of iterations needed for each case.

In addition, the deviation observed between the C),, and dimensionless velocity pro-
files produced by the two solvers (figures [4.6] [4.7] [4.12] [4.13] [4.18] [4.19) is considered
negligible. The only case that presents more pronounced deviation is that of the
second Kaplan turbine including the draft tube. Although this case is the most com-
putationally demanding, in terms of both grid size and turbine configuration, the
results produced from the PUMA solver are almost the same as the ones produced
by the commercial solver.

Concerning the characteristic quantities, it is fair to say that the computed values
of the hydraulic head and the volumetric discharge are almost identical, while the
computed values of the torque and the efficiency present a larger deviation. The
deviation in the efficiency is directly linked to the corresponding deviation in the
torque. As far the torque, the deviation can be attributed to the different way the
wall boundary is treated in the solvers or even the turbulence model that is used.

In conclusion, it is safe to assume that the validation of the PUMA solver is suc-
cessful, based on the comparative results presented.

4.5 Investigation of the Artificial Compressibility
Parameter

In this section, an investigation is carried out concerning the effect 5 has on the
convergence rate of the PDEs and the results produced.

As stated in chapter 2, the PUMA solver employs the method of artificial com-
pressibility to solve equations . In this method, proposed by Chorin [6] and
then expanded by Turkel [7], the RANS equations formulated for incompressible
fluid flows, are solved using a matrix I} used for preconditioning. This matrix is
defined as

L 000
» uf‘+§zu§100
Dom = |ugrauf 1 | (4.6)
2
“5‘;—3“5001

where ui and ulf are the cartesian components of the absolute and relative velocities,
respectively, and « is a predefined parameter. The § parameter that is used inside
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this matrix represents an artificial speed of sound. As a result, the effect of pseudo-
compressibility is introduced. The method of artificial compressibility is employed
in time-marching techniques for solving the RANS equations, because it enables a
faster convergence rate.

In order to control the convergence rate, but also the stability of the system of
PDEs that is formulated, the g parameter must be chosen as such that the condition
number is as close to unity as possible.

The technique, provided by PUMA, for controlling the value of 3 is by scaling an
initial value of § with a scaling factor called reference velocity (U,.s). The initial
value of (3 is 3.33 and is scaled by multiplying it with the value of reference velocity
(Uyef) chosen by the user.

In order to investigate the effect of the different values of g on the convergence rate,
the propeller turbine with the guide vanes and the runner is run for four different
values of Uy.; (10, 20, 30 and 40 2). The first value for U, is chosen to be close
to a characteristic value of the absolute velocity magnitude of the turbine. This

characteristic value is the result of the division Ai,, where () is the flow rate and

characteristic absolute velocity magnitude of 4.89 “*. Thus the first value for Usey
is chosen to be 10 “. The remaining three values for U,.s are chosen as multiples
of 10 and this results to the three values being 20, 30 and 40 . In figure [£.22] the
convergence rate of the residuals for both components for the four different values
of U,y is presented.

Ay, is the inlet area of a single passage of the turbine. The division Ai results in a

From figure it can be inferred that as the value of U,.s increases, the reduction
of the order of the residuals decreases and the convergence rate drops significantly.
It is noteworthy to state that the same case with a reference velocity U,.f of 5 =

S
could not converge at all.

Of course, the resulting flow fields for all the values of U,.; must be compared in
order to prove the independence of the results from the chosen value of U,.;. In
order to do so, in figure the resulting pressure fields are presented for the four
different values of U,.y.

Based on figure it seems to be a minor change in the resulting pressure fields,
although in theory there shouldn’t be any. Thus, the results produced are not
entirely independent from the selection of 5. Generally, it is good practice to set
the value of U, as close as possible to a value of a characteristic absolute velocity
magnitude, in order to achieve faster convergence rate.
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Figure 4.22: Parametric investigation of the propeller turbine guide vanes and run-
ner using PUMA. Convergence rate of the residuals for the guide vanes (left) and the
runner (right) for different values of Uyey (10, 20, 30, 40 ™).
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Chapter 5

Optimization of a Kaplan Runner
Blade

The last step of this diploma thesis was to integrate the newly created unified
toolchain in the optimization loop routinely used in Andritz Hydro. As of now,
in the optimization loop a CFD solver for the Euler equations predicting inviscid
flows for incompressible fluids was used.

This choice was made due to the low cost of solving the Euler equations, although
the results produced are slightly worse concerning their accuracy. The solving speed
of the flow is of crucial importance, since the optimization method that is used is the
Evolutionary Algorithms. For the Evolutionary Algorithms, there is the necessity of
evaluating a large set of candidate solutions, and for each solution the CFD solver
needs to be computationally inexpensive.

For the present diploma thesis, the optimization tool EASY (Evolutionary Algorithm
SYstem) was used for the optimization of a Kaplan runner blade. This tool, that

was developed in PCOpt/NTUA.

5.1 Evolutionary Algorithms

The method used for the optimization of the turbine was the Evolutioary Algorithms
(EAs). Evolutionary Algorithms are a stochastic population-based optimization
method, meaning that depend on probabilistic methods for determining the optimal
solution. One advantage of EAs is their ability to avoid local minima when searching
the design space, precisely due to their probabilistic nature. The biggest drawback
of EAs is the high wall-clock time.

An EA evaluates a population of candidate solutions. Specifically, a population of
candidate solutions or parents evolves into a population of A new candidate solutions
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or offspring. From this population of offspring a new population of p parents is
chosen in order to create the next generation g. The best candidate solutions of
each generation are called the elites, meaning that these solutions satisfy best the
objective function. Generally, there are three sets in each generation g that an EA
handles, the parents (59#), the offspring (59) and the elites (S9¢).

During the process of an EA, there are two processes that occur in order to produce
the next generation. These are the mutation and the crossover. After elites are
chosen in each generation, the two processes will take place in order to produce the
next generation (g + 1). Crossover is the procedure where the characteristics of the
parents of the previous generation are combined in order to produce an offspring that
presumably is even better than its parents, while mutation is the procedure where
the characteristics the new offspring are randomly changed in order to explore other
possible candidate solutions of the design space. With the combination of the two
procedures two goals are achieved. With the crossover it is ensured that the so
called good qualities of a candidate solution are passed on to the next generation
giving a direction towards the optimal solution, while the mutation ensures that all
the possibilities will be explored, avoiding any local minima.

In further analysis, the whole process that takes place in an EA is explained step
by step here:

1. Some basic parameters are are chosen, such as the population sizes for the par-
ents (u and the offspring (A) or the mutation probability. Also, the members
of the first generation (also called the zeroth generation) are chosen randomly
in order to initialize the EA.

2. The X members of the set S9* are evaluated. Basically, in this step the CFD
solver is called A times, making this part of the algorithm the one with the
highest computational cost.

3. The set of the elites S9¢ is updated with every member of S9* that qualifies to
be included, based on its value of the objective function, that the evaluation
process produced.

4. From the elites set S9¢ some members are randomly selected that replace
members of S9*. The members of S9* that are being replaced, usually, are
the ones that have a worse value for the objective function, thus ensuring that
the next generation will yield better performance.

5. The set of parents of the next generation S9T1* is chosen by combining mem-
bers of both the sets of the existing parents S9* and offspring S9*.

6. Crossover and mutation take place, combining and changing characteristics of
the parents of S971#, creating the \ offspring of the next generation S9+1.

7. The convergence criterion is applied, based on the total number of generations
or the change in the current optimal solution. If convergence is not achieved,
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steps 2 through 6 are repeated.

5.2 Design Variables and Blade Parameterization

In each optimization process, the design variables need to be defined first and fore-
most. These are the variables that are changed in each candidate solution of each
generation of the EA and these are the variables that control the shape of the hy-
draulic turbine’s runner blade. These variables come from the process known as
blade parameterization.

Blade parameterization is the process of describing the blade of the runner with a
set of variables or parameters. For the optimization case presented in this chapter
the method for parameterizing the blade is explained in short in this section, in
order to understand the design variables used in the optimization.

The blade parameterization includes two steps. The first step is the parameterization
of the 3D mean camber surface and the second step is the thickness distribution
around the mean camber surface [I], [16].

In order to parameterize the mean camber surface, first, its meridional projection
has to be defined. The meridional projection is the resulting surface from projecting
the 3D mean camber surface on the meridional plane, that is the plane that passes
through the turbine’s axis (i.e. the z-axis). This projected surface is constrained by
4 curves, namely the hub and shroud curves and the LE and TE curves. On this
surface, a set of 2D iso-span lines are generated between the hub and shroud curves,
as seen in figure The LE, TE and iso-span curves are parameterized with the
use of Bézier curves. The 3D shape of the 2D iso-span lines is defined by a set of
parameters, namely p, 0, 3, and pu. The new 3D lines that are generated comprise
the main skeleton of the mean camber surface of the blade.

The five parameters mentioned are further explained:

e pis defined along both the LE and TE as the normalized meridional projection
of the arc-length of the edge, and takes values between 0, at the shroud, and
1, at the hub.

e 0 is the wraparound angle and defines the angular positions of the LE and
TE. The 6 distributions along the LE and TE are defined by Bézier curves,

as seen in figure (right).

e [ is defined as the angle between the local tangent to the mean-camber sur-
face and the tangent to the z-centered circle through this point. Therefore,
the 8 distributions define the mean-camber surface metal angles across the
previously defined LE and TE. The f distributions along the LE and TE are
defined by Bézier curves, as seen in figure (left).
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Figure 5.1: Left: Meridional projection of the mean camber surface of the turbine
blade. Right: The 2D iso-span lines distributed between shroud and hub. Definition of
p for the LE and TFE [1).
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Figure 5.2: Left: 3(p) distribution. Right: 6(p) [1).

P

e i is defined through the conformal mapping @, as follows

S:(r,z) > pu, p :/%dl (5.1)

where [ denotes the arc-length of the meridional projection of the iso-span line.
This conformal mapping performs the angle-preserving transformation of the
iso-span lines from the cylindrical (r, z, 8) to the (u, ) coordinate system.
This process is presented in figure |5.3

e ( is defined for both the LE and TE and helps define the two internal control
points for all the iso-span lines. In other words, the ( parameter acts as control
system for the curvature of the mean camber surface.

The last step of the blade parameterization is the definition of the thickness distri-
bution around the mean camber surface. The thickness profiles are defined again
with the use of Bézier curves and are superimposed onto the mean camber surface.

64



TE
\//

P

Figure 5.3: Left: ((p) distributions for the LE and TE. Right: Iso-span line expressed
in the (u,0) coordinate system [1)].

The final 3D iso-span lines with the thickness profiles superimposed is seen in figure

5.4l

Figure 5.4: The 3D iso-span lines with the thickness profiles superimposed on them

1.

From the five parameters described above (i.e. p, 0, 8, ¢ and u), the g distributions
for the metal angle, which are described with a set of 30 control points (15 control
points for the LE Bézier curve and 15 control points for the TE Bézier curve), are
chosen. This set of 30 values act as the design variables for the optimization. The
choice, generally, varies from case to case and is left to the designer’s discretion.
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5.3 Objective Functions

For the optimization loop of a Kaplan turbine runner there are two objective func-
tions that, generally, are applied, thus performing multi-objective optimization
(MOO). The two objective functions are the maximization of the turbine’s effi-
ciency and the maximization of the minimum static pressure to avoid the onset of
cavitation.

5.3.1 Efficiency

The first and most obvious objective function is the one concerning the maximization
of the hydraulic turbine’s efficiency, as computed by eq. This objective function
is expressed as

Fy = min(-n) (5:2)

Of course, this objective function is the most important of the two, because the
hydraulic turbine’s efficiency defines its performance and is directly connected with
the economic viability of its construction.

Equation [5.2] is expressed in this form because the EASY software handles only
minimizations of objective functions.

5.3.2 Cavitation

The second objective function concerns the cavitation that may occur on the runner’s
surface. Cavitation is a phenomenon that occurs when the static pressure ps drops
below a certain value (peqy), at which point the liquid fluid (i.e. water) evaporates
creating little bubbles on the blade’s surface. Those bubbles, then, implode and
create an intense shock wave that damages the metal surface of the blade. in figure
[.5] this phenomenon is presented graphically.

t

B! 74
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Figure 5.5: Graphical representation of the process of cavitation [17].
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Cavitation results in huge reductions of the turbine’s efficiency, due to change in the
blade’s shape, as seen in figure [5.6,

Figure 5.6: The metal surface of a turbine’s runner after extensive damage from
cavitation [18].

In order to prevent this, the goal is to maximize the value of the minimum pressure
of the blade’s surface. This is also expressed as

Fy = min(—ps,min) (5.3)

5.4 Constraints

For the optimization case a constraint concerning the outlet velocity profiles for the
dimensionless peripheral ¢ and meridional ¢}, velocity components is imposed. The
constraint in expressed as the deviation of the resulting velocity profiles from a set
of target velocity profiles. These target profiles are defined at the inlet of the draft
tube and ensure that the draft tube produces minimum losses.

Mathematically, this constraint is expessed as

C,, <0.04
C, <0.04 (5.4)
(5.5)
where
Cm = / (C:l - C;kn,tar)z dr
Aout
Cum [ (€= ) dr (5.6)
Aout
(5.7)



The constraint is expressed in this form because EASY handles constraints of the
type "less or equal to” (<).

5.5 Optimization Results

The optimization case presented is that of a Kaplan hydraulic turbine, including the
guide vanes and the runner blade. For the optimization, the design variables that
are chosen are the f§ angle distributions at the LE and TE. For the  distributions
30 control points are used in total, 15 for the LE and 15 for the TE. The minimum
and maximum values for each design variable are presented in table 5.1

Table 5.1: Optimization of a Kaplan runner using FASY and PUMA. Minimum and
mazimum values for each of the 30 design variables, where 3; is the i-th control point
of the B distribution. The minimum and mazimum values of each variable result from
a percentile offset of + 5 % applied on the [3; values of the initial geometry.

Variable | Min. Value | Max. Value | Variable | Min. Value | Max. Value
b1 65.6812 72.595 Bie 45.2388 50.0008
5o 51.8671 57.3267 Bz 40.5096 44.7738
53 41.1341 45.4641 Bis 30.7535 33.9907
By 28.6676 31.6852 Big 22.0966 24.4226
Bs 23.5894 26.0726 Bao 22.5649 24.9401
B 55.3698 61.1982 Ba1 42.6302 47.1176
o7 46.7945 51.7203 Baa 35.7783 39.5445
B 35.1295 38.8273 Bas3 28.7235 31.7471
B 27.0282 29.8732 B4 21.8111 24.1071
Bro 22.9273 25.3407 Bas 22.335 24.686
B 45.8818 50.7114 Bas 35.0848 38.778
Bia 40.3341 44.5797 Bor 30.366 33.5624
P13 33.17 36.6616 Bag 24.4629 27.0379
Bra 23.9992 26.5254 Bag 19.1359 21.1503
Bis 22.3561 24.7093 Bso 21.5761 23.8473

Moreover, some additional parameters for the EASY set-up are presented in table
5.2l

The EA was run for 21 generations and in figure [5.7] the Pareto front for the two-
objective optimization case is presented.

From figure three optimal solutions are chosen for comparing to the initial so-
lution, so as to best describe the results of a multi-objective optimization. The two
extreme solutions were chosen and one at the middle, in order to comprehend how
each solution depends on its values of the objective functions. Of course, from all
of the computed optimal solutions the designer is called to choose which one will be
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Table 5.2: Optimization of a Kaplan runner using FASY and PUMA. Basic set-up
parameters for the EASY software and their corresponding values.

Parameter Symbol | Value
Parent Population Size L 15
Offspring Population Size A 30
Elite Population Size e 20
Crossover Probability — 0.9
Maximum Number of Evaluations - 12000
Variable Coding - Real
-1000 : : ‘
Pareto Front
Initial Solution ~ @ e
-2000 | Optimal Solution A + 1
Optimal Solution B >K
Optimal Solution C X
-3000 |- .
T
a
g -4000 |- .
©
m
o -5000 .
< +
o
o -6000 |- .
o}
2
£ 7000 - .
£
=}
£ -8000 | .
=
s
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Percentile Change in Efficiency [%]

Figure 5.7: Optimization of a Kaplan runner using EASY and PUMA. The Pareto
front of the two-objective optimization. FEach square point represents an optimal solu-
tion with its corresponding values for the two objective functions (Fy and Fs). Also,
in the upper-right corner is the initial solution (filled green circle).

further developed or even manufactured. It is useful to remind that, as the objective
functions are defined counter-intuitively, the values on the axes of the Pareto front
become more desirable as they decrease.

In figure the pressure coefficient C), is presented for the three optimal solutions
that are chosen compared to initial solution. It is apparent that there is a shift up-
wards for the three optimal solutions relative to the initial solution’s C), distribution,
meaning that the Kaplan runner was optimized with respect to that objective.

In table the percentile increase in the efficiency of each optimal solution com-
pared to the initial solution is presented.
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Table 5.3: Optimization of a Kaplan runner using EASY and PUMA. Percentile
increase in efficiency for each optimal solution compared to the initial.

Optimal Solution ID | Percentile change in Efficiency (%)

Optimal Solution A +1.58
Optimal Solution B +0.34
Optimal Solution C +0.01

Here, it is clear that, depending on the optimal solution that is chosen, one can
enjoy minor (+0.2%) to major (+1.6%) increases in efficiency.

Finally, in figure the resulting velocity profiles of the dimensionless peripheral
(¢t) and meridional (cf,) velocity components are presented, compared to the target
velocity profiles of the constraint, while in table the value of the constraint as it
is calculated from eq. is presented for each one of the optimal solutions.

Table 5.4: Optimization of a Kaplan runner using FASY and PUMA. The resulting
constraint’s value as it is calculated from eq. for each optimal solution.

Optimal Solution ID | Value of the ¢}, constraint | Value of the ¢} constraint

Optimal Solution A 0.01134 0.01688
Optimal Solution B 0.00881 0.00287
Optimal Solution C 0.00852 0.00365

As it is clear from the results presented the optimization case that is tested pro-
duces acceptable results, while simultaneously respecting the constraints that are
imposed.
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Figure 5.8: Optimization of a Kaplan runner using EASY and PUMA. The C,

distribution for the three optimal solutions and the initial geometry on three separate
positions, the hub (top), the mid-span (middle) and the shroud (bottom) of the blade.
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Figure 5.9: Optimization of a Kaplan runner using FASY and PUMA. The result-
ing dimensionless velocity profiles of the peripheral (c) and meridional (c},) velocity
components at the runner outlet compared to their respective target profiles imposed
from the constraint. All the results are presented for the three optimal solutions.
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Chapter 6

Overview and Conclusions -
Future Work Ideas

6.1 Overview and Conclusions

The work presented in this diploma thesis concerned the validation and integration
of the PUMA CFD solver, developed by PCOpt/NTUA, into the industrial workflow
used by Andritz Hydro for analysis and optimization.

After organically incorporating the PUMA solver in the industrial workflow of An-
dritz Hydro and testing the validity of the results produced by PUMA, the following
conclusions can be drawn:

e The smooth integration of the PUMA solver into the industrial workflow, using
the various interfacing tools that were programmed, is successful. The result
of the work is a unified toolchain that is user-friendly and is being used in
present time by the designers in Andritz Hydro.

e The comparison of the PUMA solver with a commercial solver is also deemed
a success, as the deviation between the results of the two solvers was negligi-
ble. This encourages many more designers, working in Andritz Hyrdo, to try
running their simulations using the PUMA solver.

e Achieving small wall-clock time for the various cases. Specifically, the value
of the wall-clock time required for every 1000 grid nodes ranges from 0.01 to

0.02 —""—_on four GPUs (GeForce GTX 1080 Ti).

1000 nodes

e The use of the PUMA solver as an evaluation tool for EASY seems to be a
viable option, as the results of the optimization are satisfying and the com-
putational cost is relatively low. This opens up the possibility of using the
optimization to an even greater extent than it was previously being used.
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6.2 Proposals for Future Work

As far as ideas for future work are concerned, the following are proposed:

e Further development of the grid converter tools to include the ability to handle
grids with different type of elements, apart from hexahedral.

e The integration of the grid converter tools inside the PUMA solver.

e Further testing of the PUMA solver by examining even more complex turbine
configurations, such as the inclusion of a spiral casing, in order to explore the
capabilities of PUMA.

e The simulation and testing of truly unsteady incompressible fluid flows inside
the hydraulic turbines.
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Part 11

Thesis in Greek
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Heplingm
H dumhopotind epyaoia napovotdlel v évtaln xou motonoinon tou emAdtn pofic PUMA, nou ava-
Oy Onxe and ™ Movéda Iopdhinine YTroloyiotinic Pevotoduvopxrc & Bedtiotonoinone (MIITP&B)
e Xyohnfic Mnyavorhdywv Mryoavixay tou Edvixod Metodfiou Hokuteyveiou, oo Brounyovixd ep-
yohelo avdhuong xou Beltiotonoinong atpoflounyovey e Andritz Hydro, émou xou Sie&dydnxe
MEYAAO U€pog TNS BLMAwUATIXNG epyaoiag.

O emhltne PUMA tpéyel oe cuotolyieg ané GPUs xou yenowonoiel v xevipoxouPixy uédodo twyv
TENERACUEVLV GYxwY Yo TN enthuon twv elothoewy Navier-Stokes oe cuvduaoud ye to woviého
TOpPNe twv Spalart-Allmaras. Eniong, eqapudleton n uédodog tng teXvnThAc CUUTIECTOTNTAG UE TNV
onola e€aoporiletar taylteEn oUYXALON.

Ipoypaupatiotnxay didpopa epyaheio ue oxomd v opyavixt| eévtaén tov PUMA emhitn oo Blopn-
Yovix6 epyahelo avdivone xa fehtiotonomone e Andritz Hydro. Autd ta epyahela nepthapBdvouy
duo Uetotpomelc TAEYUAT®Y, évay Teoenelepyao T xou €V UETETEEERYUO TH.

Yt ovvéyela, o emAitne PUMA cuyxpivetar pe évay epnopind emAlTn yiot va Yivel 1 otonoino
tou. H olyxpion Baoileton oe Ttpeic nepintioeic udpootpolilwy, ye xdie nepintwon va napouotdle
BlapopeTixy) ToAuTAOXOTNTA. Ol TEELC TEPLTTWOEL TEPLAOBAVOLY ToV dpoufa evog otpoBilou Francis,
Tat 08Ny 4 mTEPLYLOL o TOV dpouéa evoe oTpoPiiou TiNou mpoméha xat, TEAOC, TO cUVBLACUS OBNYWY
ntepLYloy, dpouta xou aywyol e€680u evoc atpofilou Kaplan.

Téhoc, o PUMA emhOtng ypnotponoteitan wg epyohelo a&lohdynong uéoa oo Bedyo Beitiotonoinong
¢ Andritz Hydro. H yédodoc Bertiotonoinone twv EEehixtxdyv Ahyopiduwy yenotponoteiton, 6mme
epopudletar amd to epyarelo EASY, to omolo avantdydnxe and tn MIIYP&B/EMIIL. To oyfuc tou
ntepuylou evog dpopéa Kaplan Beltictonolelton ye otdyo 1t peylotomnoinoy tou Baduol anddoorng

TOU LBEOGTEORIAOU oL TNV ATOPUYT EUPAVIONG CTINAALWONC.
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Kegpdhouwo 7

Extevnc Ilepiindn ota EAANvVIXd

7.1 Ewoaywyn

H Simhwpotind epyacio acyoleiton e Ty €vtaln xat Ty motonoinon tou GPU emdtn
cofic PUMA, mou avontOydnxe and tn MIITP&B/EMII, oto Pognyovixd epyaheio
avdhuong xa Bedtiotonoinong otpoflihounyoavey tne Andritz Hydro. H évtaén oto
TeoUndpyov cUoTnue and epyaleta Tng Plounyaviog, amaitel ToV TEOYEUUUATIONS TRO-
enelepyaoTh xa HETENECERYAOTY), EpYakeiwy uoforinone tne évtadng, xadog enlong
X0 EXTEVT TLOTOTOINGCT TWYV ATOTEAEGUATLY AV OE TEPLTTWOELC-TPOPAAUTA, Tal OTO-
fo mapéyovtan and tnv Andritz Hydro, 6mou yeydho pépog tng Simhmuatinic epyaotog
ehaPe yopa. TEhog, 1 xouvolpta evomonuévn oelpd and epyahela yenowonoteiton yio
Vv Pektiotomoinom evog dpopéa Kaplan.

7.2 O Emdtng Poric PUMA

[oe v avdhuon Tng porg péoa otoug LdpooTeofiloug yenowonoteitaw o GPU emi-
Aot PUMA, mou avantOydnxe anéd ) MIITP&B/EMIL. To Boaowéd npotépnuo ow-
TOU TOU ETMAUTY eval 1) BUVATOTNTA TOU VoL TEEYEL OE CUGTOLY(EC AT HYPTEC YRAUPLXWV
(GPUs), pewdbvovtog to unohoytotnd xéatoc onuavtixd []. O emhdtne PUMA em-
At oprdunTxd Tig Tedtdo Toteg uéoeg ypovxd xatd Reynolds e€iowoeig Navier-Stokes
YENOWOTOLOVTUS TN UEVODO TWV XEVIPOXOUPBIXOY TETMEQUOUEVWV OYXMY, TUREYOVTOG
delTeEENC TAENS axpifela, Yo poéc acuuniestou pecutol. Emnpdoieta, o emAdtng PU-
MA yenowonotel to povtého t0eBne twv Spalart-Allmaras (S-A) [8] xou egopuéleton
uEV0d0C TNE TEYVNTAC CUMTLECTOTNTOS YLl TNV EMTAYLYOT Tou pUIHOV TNg cUYXAloNG
[6], [7].



7.3 Epyaiela YTroBorUnong tng 'Eviagng tou
EmAdtn PUMA

To epyaheion Tou ypeldleTon Vo TEOYRUUUATIOTOOV Yo TNV opolt| évtoln tou PUMA
070 PBlopnyovixd epyaielo avdiuong xa Pehtiotonolnone otpoflihounyavedy g An-
dritz Hydro mepuapfdvouv toug duo uetatpomeic Tou TOTOU TV TAEYUATOV, Evay
TEOETELEQYAUOTY|, XAMOLEC TPOTOTOLAGELS OTOV UETEMECEQYUGTH) XL TO GUVTOVIGTIXO
epyaheio mou evopuovi(el TNV EXTEAECT) OAGY TWY UTOAOITWY EQYOAEIWY.

7.3.1 Mezatponeic [ThAeyudtwy

Apyind, to epyahelar TOU YEEWOTNXE VoL TEOYEAUUUOTIOTOUY €lvol Ol BLO UETATEOTEIC
TAEYHATWY TOU UETATEETOLY TA TEWOLAC TUTO TAEYUOTA, TOU ONULOVEYOUVTOL And TOV
TAEYUOTOTOINTY, oL avamtUYUnxe xar yenotwornoteiton and tnyv Andritz Hydro, amd
0 éva oo (CGNS) otov ddho (LTT), xou avtiotpogo. Agevdc, 10 mpidto pyo-
Aelo UeTaTEEEL TO apyElo .cgns, Tou TEPEYEL TNV EMILUNTY YEWUETEA, GTO TEOTUTO
LTT 7o omolo amouteitan and tov emidtn PUMA. Agetépou, o deltepog yetatponéog
AowBdver to apyeio e€6dou and tov emhity PUMA, 10 onolo eivon éva apyeio timou
Tecplot (.plt), To omolo tepiéyet TNV TEoxUTTOUGH POY| amoVNHELUEVT GTOUS XOUBouC
TOU TAEYHATOC, Xou TO PETUTEENEL o éva opyelo .cgns To omolo unopel va yenouo-
mounVel yio petenedepyaoio. Autd To xawvolplo apyelo .cgns, TeplEyel TAedY 1660 TO
TAEYHO 6GO %ok TNV TEOXUTTOUG POT) UEGO GTOV LBROG TEOLBLAO.

O TYroc CGNS

Lopgova pe tov tomo apyetou CGNS, ol mAnpogopleg uéoa oto apycio opyavmvovto
oe éva oivolo “xOUPwV’, oL omolot lEpapyolvTon oY NUATI{ovVTag Ui SEVOROELDY| dou.
Luyxexpyéva, xdve “xopfoc’ agopd ot wo {ovn tou TAEYpaTog (Ty. Tty glcodo 1
v €€000 Tou aTEOPiAou ¥AT.) xat TEPEYEL OhEC TIC TANPOYOpies (m.y. UETOBANTES
poNc, oTtotyeiot Tou TAEYHUTOC XAT.) Tou aopolv T Lodvn auty [14], [15]. Eymuotixd
oUTA 1) Bour| TaEOUCIALETUL GTO Oyl .
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Yyxnue 7.1: ITpagikn avarapdotaon tng 6evopo€idols OOUNS ToU apyelov .cgns.

O TOroc LTT

O TOnog LTT mepthauBdvel éva cbvoho amd tela apyela. Autd o apyeion etvou:

e To apyceio .nod, To omolo mepLEyel T0 GLVONXG dEWUG (OUPLY XU TIC X, ¥, Z
CUVTETUYUEVES OAWY TwV xOUPwy. Tapdderyua evog apyeiou .nod nopouctdleton

070 oy

e To opyeilo .hyb, to onolo nepieyel 10 cuVOAXO aEWIUG TAEYUATIXWY OTOLYElWY
x&e eidouc (tetpdedpa, mupauides, mplopato xou e€dedpa) xan Tov avovta aptd-
Lo Twv x0uPuv mou anaptiCouv xdle ctoyelo. Iapdderypa evog apyetou .hyb

Tapouctdletor 0To oyfua .

e To opyclo .patch, To omolo mepiéyel TANpogopleg Yo To GpLal TOU TAEYHATOC,
omwe ebvar To dvoua xou 0 TUTOG Tou 0plou oL TO GUYOAD TV XOUBwV Tou
avixouv oe autd To 6plo. lapdderyua evoc apyeiou .patch napovoidleton oTo

oy [7.4]

nbNodes

nodeX' mnodeX? mnodeX? ...
nodeY' mnodeY? nodeY? ...

nodeZ' nodeZ? nodeZ? ...

SyApa 7.2: Iapdderyua tng douns tou apyeiov .nod érov nodeX', nodeY*, nodeZ'
elvar o1 T, Yy KA1 z OVVTETAYUEVES, avtiotolya, Tov i-0tol kopfou kar nbNodes eivar o
owoAikdS ap1uds koupwy.



nblet nbPyr nbPri nbHex

iTet} iTet? iTet} iTet] ...

iPyri iPyr? iPyr} iPyr{ iPyr? ...

iPril  iPri3 iPris iPrij iPri} iPri$ ...

iHex} iHex? iHex? iHex] iHex? iHex$ iHex] iHext ...

Sy 7.3: Hapdderypa s Ooung  wou  apyeiov  .hyb  dmou
nbTet, nbPyr, nbPri, nbHex ecivar o apifuds vetpaédpwr, mupapidwv, mpi-
oudror kar e€aédpwv avtiotoya kar iTet], iPyr], iPril, iHex! efvai o avéwv
ap1uds tov j-00to0 kéuPov Tou i-00T00 OToeiov Kkdle €lbous (tetpdedpo, mupauida,
mpioua ka1 ekaédpo avtiotoa).

nbPatches

patchName_1

{
BCType boundaryConditionType | geometricType
Connectionld 1

Nodes nbNodes
list_of _patch_node_ids

}

patch N ame_2

{
BCType boundaryConditionType | geometricType
Connectionld 1

Nodes nbNodes
list_of patch_node_ids

YyAue 7.4: Iapdderyua tng douns tov apyeiov .patch émov nbPatches efvar o ouvvo-
A1k6s ap1duos opiwy mouv vndpyovy kai patchName_i eivai to évoua tov i-00ToU opilov.

O Aé€eic-ahedid boundaryConditionType xon geometricl'ype umopotv va AdfBouv
OLdpope THES, oL omoleg TapEyouy TAneoopia Yiol To €B0¢ Tou oplou Xt TNE opLo-
xfic ouVIrNe mou emBdiieton. Ot BLdpopeS EMITPETOUEVES TYES TopouctdlovTal GTov

nivoeo [Tk



IMivaxag 7.1: Emtpendueves njués ya ts Aéeg-keidid boundaryConditionType kar
geometriclype.

boundaryConditionType geometricType
InviscidStationaryW all Blade | Hub | Shroud
ViscousStationaryWall Blade | Hub | Shroud
InviscidRotatingW all Blade | Hub | Shroud
ViscousRotatingW all Blade | Hub | Shroud
MatchingConnection PeriodicSideX | PeriodicSideY
Inlet —
Outlet —
InletRST —
OutletRST —

Téhoc, oe mepintwon mou nepthapfdver Ty addnhenidpaon pbdtopa-otdrtopa (RSI), 7
MeEN-xhewdt Connectionld mpoodiopilel Ty avtioTtolyn €Eodo’ Tou upstream ototyeiou
xou "eloodo’ tou downstream otovyeiou tng RSI diemgpdvetoc.

O TUrocg Tecplot

Kdée apyelo .plt Eexwvder pe po emxepahida’ 1 onolo Tepléyet Yevixéc Thnpopopies yia
TO TAEYHO X0 TIC UETUBANTES POTC, OTWE 0 GUVOAXOS aEtIUOS (OUPWY xou GTOLYEWY,
TO OVOUA X0t 0 TUTOC TOV UETABANTOV TOU EUTERLEYOVTAUL GTO 0pYElD. 2XTO oYU ,
TOEOUCLACETOL €VOL TORADELY UL UG TETOLOG “ETXEPUALDOC

title = filename
variables = var_1,var_2,var_3
zone t = zone_name
Nodes = nbNodes
Elements = nbElements
ZoneType = {FeBrick, FePoint}
DataPacking = {Block, Brick}
DT = (var,l,DataType, var_2_DataType,var_3_DataType ... )
Results

EyApe 7.5: Hapddewoyua “emrepalidag’ evos apyeiov .plt.

Metd v “emxeqohida’ axorovdeoly ol TWES TV Poix®Y PEYEIMY YRoUUEVY OF UL
amd TIC Buo uevddoug Ypupnc, TNy point — wise xou Ty block — wise. Yty point —
wise pédodo, oe xdde ypouur Tou apyelou YEdPovToL Ol TWES OAWY TWV UETABANTOVY
ToL aPoEoLY Eva xOuPo, eve otny block — wise uédodo ypdgovton oL Tyeg NG xdie

5



veToBANnTrc Yoo Ghoug toug xouPoug ot Eeywetotd tpApota (blocks). Tlaupadetyuora
TV Buo PedddwY atvovton ot oyfuate [7.6] xou [7.7] avtioToryo.

var_1_Node',var_2_Node',var_3_Node"
var_1_Node?,var_2_Node?, var__3_N ode>
var_1_Node?,var_2_Node?, var _3_Node?

SyAue 7.6: Iapdderyua tng pedédov ypagris point — wise, érov var_i_Nodel efvai n
TN TS 1-0THS UETAPANTNAS TOU j-00TOU KOUPOU.

var_1_Node',var_1_Node?, var_1_Node?
var_2_Node',var_2_Node?, var _2_Node?
var_3_Node',var_3_Node?, var_3_Node3

SyApa 7.7: Hapdderypa tng pedédov ypagnis block — wise, émov var_i_Nodel etvar n
TN TS 1-0THS UETAPANTNAS TOU j-00TOU KOUPOU.

O Meratponéag cgnsToLtt

To mpwTo epyahelo YETUTEOTNG TAEYUNTWY TOU TEOYEoUUTIO TNXE oTar TAadoLo TNG Ot-
Thwpatxic epyactac, etvar To cgnsToLtt mou petatpenet To apyelo eloddoL .cgns oty
doun} TwV TV apyElwy Tou cuvtioToly Tov TUo LTT. H petatpony| emruyydveton
u€ow e yenone tne PBaodxng Cgns Mid-Level Library, n onio napéyet npdofBaon
OTIC TANPOYOPIEC TOU LUTdPYOUY GTO apYElo .cgns.

o cuyxexpléva, 1 oelpd TwWV EPYAOLBY ToU EXTEAOUVTOL Efvan 1) e€Hc: (o) oLdPaleTon
1 Aota Ty x6uBwvy xou yedgeton o apyeio .nod, () dtofdleton n Alota Twv oTotyelwy
Tou MAéypotog xon dnuoupyeltar to opyeto hyb xou (y) Sofdlovton or anapoitnteg
TANEOPOE(ES YLl Tl GpLL TOU TAEYUATOS XAl YRAPETAL TO apyelo .patch

O Meratponéag pltToCgns

O devtepog petatponéag mou mpoypauuatiotnxe ebvar o pltToCgns, o omolog yenotuo-
moleltan oo Ty oupPBatétnta avdueoa otov emAlTy PUMA %o tov petenelepyaot,
016t 0 PUMA mopdryer éva apyeio .plt xou o petenelepyactic yeetdletan €va apyeio
.cgns. H petotpons auty| yivetonw o duo Pruato: (o) petatpéneton 1 block — wise
Yeopn) Tou apyeiou .plt oe point — wise xou (B) yivetow n yetatpont| Tou opyeiou .plt
oe .cgns. H ouvoluxy| dadixacia topouctdleton Ypupixd oTo oy fud



Meratpony| and block — wise oe point — wise ypop)

Meratpont| ané .plt oe .cgns

Evowpdtwon v oplwv tou mhéyuatog oo apyeio .cgns

Yyxnuo 7.8: Ipagikn) avarapdotaon Tns pons €pyaciy Tov eKTEAOUYTAl 0TO UETATPO-
réa pltToCgns.

7.3.2 O Ilpoeneiepyaoctnic yia Tov EmiAbtn PUMA

O mpoenelepyac g TOU TROYPUUUATIOTIXE, €YEL OX0TO TpoEToWasio Tou TEediuaTog
tou emAUT PUMA. Extehel wio ocipd and umoloylouols mou UETATEETOLY TIC [E-
TofAnTéc Tou LBpooTEOBilou, OTwe eivon To LBpaAS Uhoc H xar m mopoyh @ ot
ueToBAnTéc mou ypeewdlovton Yo Tov emALTny PUMA, 6newe elvon 1) ohixr| Teom pror xou
10 PETPO TNg TaylTNTog V. Luyxexpleva ol utohoylouol Tou exteholvTan etvou:

o H petatpony| tng ywvioxig ToyTNToS and rpm oe %l:

2mn

= (7.1)

w =

oToUL w ebval 1) Ywwvlaxr Ty TNToL 68 %l xan nebvon 1) yevio| Toy OTnTa o rpm.

e O unohoyloudg Tou PYEtpou TN TayUTNTaC oTNy elcodo Vi, tou otpofiiou ue
Bdon tnv mapoy | () Tou TEQVAEL OO VoL XaVAAL TOU dpouéa:

Q

Vin=——"—"=
A;p, sin(a)

(7.2)

omou Ay, elvon 1 empAveLs TS €16660L EVOC Xovaklol (oe m?) xou o efvou 1 Yevia
elo6bouL g porc oe polpeg (°).

e O unoloylopodg tng oot Teong otny €060 Tou GTEOBINOU Pj oyt

ps7out = patm + pg(zref — Rout — Zs) - Aps,out (73)

OOV Patm Ebvol 1) atpocgouptxn Tieon (oe Pa), 2zef clvor t0 eninedo avopopds
(o€ M), Zow Elvo 10 eminedo tne €€680uL oL aTEOPihoL (oE M), Z, elvor T0 GPog
avopeéenone (o m) xot Aps gy EVOL 1 EXTUOUEVN TTHOOT THEONC 0TOV YWY
e€bdou.



Enlong, avdhoyo tov 1010 TNng optoxic cuviiixng mou emBIAAETUL GTNY ElGodo UToAO-
yiCovtoL:

o H yovia eio6bou tng pofic (av emBdiheton 1 ToUTNTOL OTNY ELGGB0):

wRQ

- 4
Ainanet) <7 )

a = arctan(

6mou Hy,er ebvan o Udpowixd Vo (oe m) mou xoheiton vor dlayetpto Tel 0 oTpoPL-
Aoc.

e O unoloylopde e oAxrc mtieonc otV €l0080 Prorin (0v emPBAAAeTL 1 OAXN
nieon oty €{6060):
DPtot,in = ngnet + DPs,out + DPdyn,out (75)

OTOV Payn,out EVAL 1) BUVOXT Tileon TNV €€000 TOU GTEOPRIAOL o uTohoYileTon

’ —2 ’ ’ ’ ’
0 €EACE Pdyn,out = %p%ut ; ME Voue Vo ebvor To pétpo tng péong oy 0TnTog oty
€Zob0o Tou oTPoBilou.

7.3.3 To gpyaieio set-up-run-gpu

To epyaheio set-up-run-gpu npoypoupatio TNXE Yo var €yl cuvTovioTixd pdho. Opyo-
VOVEL X0 EVUPUOVICEL TNV EXTEAECT) OAWY TWV UTOAOITWY EPYUAElY, (DOTE Vol EMITUY-
YaveTow 1 ebpuiun xou ouair| Aertovpyia TN CUVOAXHC aAucidog EpYahelwY.

7.3.4 MetenelepyYAoTIXES UTOPOLTIVES

Emdupovtag tny yeron tou npolndpyoviog HETENEEEpYAUOTY, OPIOUEVES OO TIC YN0
HOTOLOUPEVES UTOPOUTIVES TRETEL Var TpoTtomonolv yia Vo umopoly vo UToo Trpléouy
T0 MpoxUTTOV apycelo and tov emhltn PUMA.

Ov untopoutiveg Tou Tponooinxay TepL opBdvouy:

e Tov unoloylopd g Topoyne Ualac:

i — / /A PV dA (7.6)

onou V, ebvan 1o didvuoua g oy dtnTag mou ebvan xdleto oty empdvelo 6Tou
umohoyileton 1 mopoy | udlog.

e Trohoyiopdc Tou UEGou Opou xatd pdla e uetoPAntrc @:

— _fprVn(I)dA

(I)ma,ss - W (77)



o Oloxhfpwon xoatd wala tne yetaBinthc :
/ / PV dA (7.8)
A

Mtot = Mp,z + Mv,z (79)

e Troloyloudg Tng poTHhC

émov M, = ffAbl,z TPaps A — ffAbl,y YPabs AA elvor 0 dpoc e pomhc Tou Tpo-
x0mTeL oo TNy Tieon mou aoxeltan oty empdveta xan M, ., = ffAbl TTyy dA —
ffAbl YT,z dA €lvor 0 6pOC TNG POTYC TOU TEOXUTTEL OO TIC DLUTUNTIXEC TAOELS
TOL VUM TOCOOVTUL OTNV ETLPAVELXL.

Luyxexpéva ot dlotuntixég tdoelc urtohoyiloviar we e€ng:
= Tue = (14 1) 20252 4+ 1y (52 + 52) + 12 (58 + 52)).

= g = () a5+ 22) 4 2, 2 (B 0.

z

7.4 Buopnyavixég Egapuoyég xau XOyxpLon

[a v motomoinon tou emhitn PUMA peketdvton Tpeic Teptntdoels udpoo tpofiley,
HANUAXOUPEVNE TOAUTAOXOTNTAS OGS TEOG TNV OldTady), xan yivetar 1 o0yXpion Twy o-
rotekeoudtov Tou PUMA e 1o anotehéopato mou TEoxUTTouV ond €vay EUTopLXO
emAOtn TPA, mou napéyeton and tnv Andritz Hydro.

O BtatdEelc Twy TpUdv LBEOa TEORIAY Tou tapouctdlovtot eivar ot e€Xc: (o) o Bpopéag
evog udpooTpofilou Francis, (ﬁ) Tor 001y TTEPVYLAL XoU O BROUENS EVOS UBPOC TEORIAOU
T0mou mpoméha xou () Tor 0dnyd mTeEpYLY, 0 Bpopéas xou 0 aywYos EZ6B0L EVHE LBEO-
otpoBilou Kaplan. Ot tpeic otpdéfhol mapouaidlovia oto oyrua[7.9)

[oe Ty alknhenidpoon otalepol xon TEQLOTEEPOUEVOL TUNUATOS TOU LBEOC TEORIAOU
yenowonoteiton 1 pédodoc MixingPlane. TETolEC TEQITTMOES GUYAVTWOVIAUL GTNY
Slempdvela Twv odnywy ttepuYinv-dpouéa (oyrfua xou dpopéa-oywyold e€660u
(oot [7.11)).

LNV oUY%ELoN TV ATOTEAECUATWY, XURtS, TopouctdlovToL:

o O xatavouéc tou cuviekeoty| ticong C), ot Teelg axTvinég Vé€oelg Tou ttepuyiov,
™ ptlo (hub) 1o péoo (mid-span) xat to dxpo (shroud). O cuvteleothc nieonc
C), vnoloyiletar and tov ToTNO:

_ P _pvap

C P et
P ngnet

(7.10)

OTOV Pyap Ebval 1) TEST) GTNY OTOlK TO VEPS PETUTEETETAL OE UTUO.



SxAuer 7.9: O1 tpes vdpootpdBiror mov pedetiniav. O Spopéas Francis (mdvo-
apotepd), ta odnyd treplya kai o dpopéas tou vépoaTpoPilov TV mpoméda (mdvew-
de&id) ka1 Ta 0dnyd mreplyia, o dpouéag kai o aywyds e€édov tov Kaplan (kdtw).

o O xaTavopés TV aBldoTUTOY XUAMVOEIXDY OmOALTWY TayUTATWY (Teptpepetax
ch, axtvix| ¢ o ueonuPewi ¢, ), mou utooyilovta pe Bdorn toug Timoug:

- (7.11)

o To vrnoroyloueva peyédrn mou meptypdpouv TNV Acttoupyio Tou LUBEOGTEORIAOU
(o) LBpaWXS Uhoc Hege = Ben=Plout “(B) nopoyh @, (Y) v ponh T xou tov

pg
Bardud anddoone tou otpofihou n = pggwl 0

Ytouc mtivaxec apouctdlovtal Tot onpeia Aettoupyiag yior Toug TeeELS LdEo-
oteofiihoug Tou UEAETGVTL.

Yt oyfporta[7.12] [7.13] [7.14], nopoucidletor o pududc obyxhiong tov névte MAE mou
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Guide Vane Outlet

Viay

Runner Inlet

Yyxnue 7.10: TPA avddvon twr odnywv Ttepuyinwy kai tou 6popéa vopooTpofilov
tinov mpoméda xpnoiporoidvtag tov PUMA. Or axtivikés {oveg mov onuiovpyolvtal oTis
0o TA€upég tng drempdreias pneta&l 0dnywy TTepUYiwy kar 6pouéa Yia Tov UTOAOVIOUO
Ty péowy Tipdy katd udla twy poikdy peyelor.

Y

L.

YyAue 7.11: TPA avdlvon twv 0dnywy ntepuyiwy, tov Opopéa kal tou aywyol €£660u
Tov vdpootpoPito Kaplan xpnoiporowdvtas tov PUMA. O dvo mAeupés tng diempdreag
dpopiéas (mpdowo)-aywyds e€édov (kékkvo). Ia tov dpopéa xpnoiponoieizar éva kavdi
ya Ty avdAvon, €vd o aywyds €600V XpnoILoTolETal OAGKANPOS.

ITivaxog 7.2: TPA avdlvon tov Spopéa Francis xpnoyuornowdrtas tov PUMA. Xnueio
Aerovpylag tov otpofilov.

Mévyedoc | T
H (m) | 34.59
X () | 0.57
N (omyu) | 1021.04

emibovton (€. ouvéyetag, Tpewc €. opuhc xar M e&. S-A) yia Tic Teels SotdEels xon oo
oy fdaTo |7.15|, |7.16|, |7.1 7| 1 €EEMEN TV OROXANPOUITIXGY UEYEVMY TNG ToROoY A, TNS

oAg xan TG oTaTinNg Teomg oTny Elcod0 xou TNV €€000 TOL EXAGTOTE UBPOGTEOBIAOL.
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ITivaxoag 7.3: TPA avdilvon twv odnydy ntepuyiwr kar tov dpouéa vdpootpofilov
Tunov mpoméda ypnouorowdvtas tov PUMA. Ynueio Aertovpyiags tov otpofidov.

Mévyedoc ‘ T
H (m) 13.22
X (2 | 051
N (pnu) | 1651.87

ITivaxag 7.4: TPA avdidvon twv odnydy mtepuyiwr, tou Gpopéa kal Tov aywyol

ekédou tou vdpootpopilov Kaplan xpnoonowdvtas tov PUMA. YXnueio Aeicovpyiag tov
otpofilov.

Mévyedoc ‘ T
H (m) 6.43
3

X (=) | 0.42
N (pnu) | 1160.67

Mass ——
Momentum X ——
MomentumY ——
Momentum Z ——
oM SA ——

logo(Residual)

-12

0 1000 2000 3000 4000 5000
Iterations

Yy 7.12: TPA avdAvon tov dpopiéa Francis xpnoiponoiwrtag tov PUMA. XUykii-

on twv mérte efiodoewy (ourvéyeas, opuns Kata T, OpMNS Kata Y, OpHNS Kata z Kal
HovTédo Tippng S-A).

Yo oy fuato 7.18], [7.19] [7.20], Topovotdloval oL xoTovoués Tou C) OTIC TRELS AXTIVIXES
Véoelc Tou mTepLYio, eV oTo oyfua [7.21] [7.22] [7.23, mapovoidlovton ol xatavouég
TV TEWOY OTOAUTWY XUALVOEIXGY ToyLTHTOY 6Ty €£000 Tou Bpopéa Tou xdie udpo-

otpofiiou.

Téhoc, oTouc Tvoxec 7.6} [7.7], mopoucidlovion ot Tiée twv unohoylouevemy (e-
yevwv mou meptypdpouy TN Asttoupyio Tou exdoTote oTEOBiOL.

Ebvar yprowo vo avagepldet 6tL, ev yével, 1 npdPBAedn tne poric Yéoo oTov aywyod e-
Eodou ebvan éva eyyeionuo To omolo elvor amoutnTd yior xdde emALTN pofic. Axdua
X0 TOL OMOTEAEOUATA TOU EUTIOPLXOL ETUAUTY BEV EVOL IXAVOTOLNTIXG CUYXQEIVOUEVOL UE
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Mass
Momentum X ——

0 Momentum Y ——

Momentum Z —— 0

_— Mass
Momentum X
Momentum Y
Momentum Z

logyg(Residual)
&
log(Residual)
EN

0 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000

Iterations Iterations

YynAue 7.13: TPA avddvon twr odnydv ttepuyivwy kai touv 6popéa vopooTpofilov
Tonov mpoméda ypnouonowsvtas tov PUMA. Xiykhion twy névte eqiodoewy (ouvéyeas,

0PUIS KaTa T, 0OpUNiS KaTa Y, OppniS kata z kal povtédo tipBns S-A) ya ta 0dnyd nteplya
(aprotepd) ka1 To dpouéa (bekid).

Mass
Momentum X ——
0 Momentum Y ——— 2
Momentum Z ——
SA

Mass

Momentum X ——

Momentum Y ——

Momentum Z ——
SA

logyg(Residual)
log(Residual)

6 L L L L L L L L L 10 L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations Iterations

Mass
Momentum X ——
Momentum Y ——
Momentum Z ——

A

A
M"WVWVW\

logyo(Residual)
IS

I

My ‘I“M'I"NII‘HI"""HM

10 . . . . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations

Yy 7.14: TPA avdlvon twy 0dnydy ttepuyiwy, tou dpopéa kar Tov aywyol e£6dou
Tou vopootpoPilouv Kaplan xpnoiponoidvtas tov PUMA. YUykAion twy névte efiodoewy
(ouvéyewas, opuris kata x, opuris kata y, opunis kata z kar povtédo tipPns S-A) ya ta
odnyd treptya (ndvw-apiotepd) to dpouéa (tdvw-6eiid) kar tov aywyd e€édov (kdtw).

TIC avTIoTOLYEC YETPNOELS TTIOU TparyoToToloUvToL 6To epyacthplo. [ var pehetnie,
TEPAUTEQW, 1) EMDPAUCT TN TapoLGiag Tou aywyol e£680u droupyolvTHL oL tloobieic
HOUTUAEG TV TELOVY OOLEC TUTWY ATOAUTOY XUAVORIXMY TUYUTHTLY T8V OE TEELS ETi-
péveleg oTordepol z, Lol XOVTA OTNV oXY| EXQPUYHC TOU TTEPUYIOU TOU BROUEX, Lo 0T
OLETLPAVELD TOU BEOPEN XaL TOU aywYoL e€600U xou Wi o€ Wi evoldueot Véon. Ot tpelc
ETLPAVELES TOEOUCLALOVTAL GTO Oy AU eV 0L 160UPEl XUUTOAES TOV TOYUTHTOV

napouatdlovton oto oyfua [7.25

‘Oneg gabveton and T0 oy AU Ol AMOXAIGELS 0T ATOTEAECUOTA TWY OLO ETLAUTOV

13



-0.0435 0.048 390 50 270 35
Iniet inlet —— Inlet
Outlet —«— Outlet —«— Outlet —s—

265
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255

250

0.044 0.046

Inlet Volumetric Discharge [m®/s]
Inlet Total Prss;ure [Palkg/m?]
Outlet Total Pressure [Pakg/m’]
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0.0445 0.044 360 45 240 30
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YyApe 7.15: TPA avddvon tov 6popéa Francis ypnoiponowsvtag tov PUMA. E&éh-
&n v odokAnpwpatikdy peyeddy tns napoxns (apiotepd), tng okng (péon) kar Tng
otatiknig (6e&id) micons oty eloodo kai Ty é€odo Tou dpopiéa.

0.024 0.103 265 135 255 95
Infot —— Tnlot —— Tlet ——
Outlet —=— Outlet —=— Outlet —=—
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K E E £ € £
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- s e = & 2
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-0.025 0.101 260 130 245 90
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Iterations Iterations Iterations

ExAuna 7.16: TPA avdidvon twy odnydy ntepuylwy kai tou Opopéa vopootpofilov
Tinov mpoméda ypnoiuonowsvtas tov PUMA. E&MéEn twr olokAnpouatikey peyeddy
™S mapoxris (apiotepd), tns oikng (uéon) kai tng otatikrs (6e&id) nicons oty €iocodo
TV 00NyhY TTeEpUyiwy ka1 Tny €50d0 Tou dpouca.

Inlet —— | Inlet ——
Outlet Outlet

=

0 50
3000 6000 9000 3000 6000 9000 3000 6000 9000
Iterations Iterations Iterations

Inlet
Outlet

-0.015 03

Inlet Volumetric Discharge [m%/s]
Outlet Volumetric Discharge [m°s]
Inlet Total Pressure [Pakg/m’]
Outlet Total Pressure [Parkg/m?]
Inlet Static Pressure [Pa/kg/m’]
3
Outlet Static Pressure [Pakg/m®]

Yy 7.17: TPA avdlvon twy 0dnydy ttepuyiwy, tou dpopéa kar tov aywyol e£édou
Tou vdpoatpofirov Kaplan xpnoiponoiwrtag tov PUMA. EEEMEN twy odokAnpwpatikdy
peyeldv wns mapoxns (apotepd), tng ohikng (uéon) kar tng oratikiis (6ekid) micong
otny €loodo kai tny éodo Tou Opopéa.

peyedivovtow 660 TANCLALOUUE GTNV SIETLPAVEL DPOUE-0rywYOU €600V, UTOONAWVO-
VTOG TNV ENidpaoT) oL €YEL 0 aywYog EE650UL.

7.4.1 Xvunepdopata and TN 2OYXELOT
O puiude olyxone twv MAE nou emAbovton xon 1 e€EMEN TWV ONOXANEWUATIXGDY

LeYEDOY uTodNAWYOLY OTL 1 cUYXAoT €yel emtevy Vel apxetd metv and T 5000 e-
novadpec. ‘Etol, to unoloylond x6cTo¢ unopel vor Yewwdel oxdun meplocdTEpO.
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0.7

Pressure Coefficient Cp

Commercial SW ------
PUMA

Pressure Coefficient Cp

Pressure Coefficient Cp

Commercial SW
PUMA

Chord

Chord

Yy 7.18: TPA avdlvon tou opopéa Francis xpnoiponowwrvtas tov PUMA. Kata-
voués tov owvteleotr) nieons Cp, otn pila (tdvw-apiotepd), to péoo (tdvw-6e&id) kar to

4 7 g
dkpo (kdtw) Tou Trepuyiov.

15

Pressure Coefficient Cp

' PUMA
Commercial SW ------

Pressure Coefficient Cp

Pressure Coefficient Cp

8 ' PUMA
; Commercial SW

Chord

PUMA —— ]
Commercial SW ------ i

Exhra 7.19: TPA avdidvon twy odnydy ntepuylwy kail tou Opopéa vopootpofilov
tinov mpoméda xpnoiporoiwvtas tov PUMA. Katavoués tov ovvtedeotn nieons C), otn
pila (ndvw-apiotepd), to péoo (tdvw-6ebid) ka1 to dkpo (kdtw) Tou Trepuyiov.

E&aipeon amotelel 1 mepintwon tou vdpooteoflilou Kaplan ye tov aywyd €£66ov,
omou yeewdlovton mepinou 8000 emavakrels.
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1.7 T T 3.4 T T
PUMA —— a2 | PUMA ]
16 Commercial SW ------ b Commercial SW -----

Pressure Coefficient Cp
Pressure Coefficient Cp

Pressure Coefficient Cp

Yy 7.20: TPA avdlvon twy 0dnydy ttepuyiwy, tou dpopéa kar Tov aywyol e£6dou
Tou vopoatpopilov Kaplan ypnouorowdvtas tov PUMA. Katavouég tov ouvtedeotn) mie-
ons Cp, ot pila (ndvw-aprotepd), To péoo (ndvw-6eiid) kai to dipo (kdtw) Tou Trepuyiov.

04 ¢y Commercial SW -- - - - -
0.35 | UMA ——
: ¢, Commercial SW ------
¢, PUMA ——
0.3 ¢, Commercial SW - ----- 1
¢, PUMA ——

Non-Dimensional Velocity

0 0.2 0.4 0.6 0.8 1
Normalized Blade Span

Yyxnue 7.21: TPA avdilvon tov dpouéa Francis xpnoorowdvtas tov PUMA. Kata-
VOLES Ty a01doTatwy atéAuTwy KUAWOPIKWY TaxuTTwy atny é£000 ToU Opojiéa.

Me Béon to oyfuara[7.18] [7.21] [7.19] [7.22] [7.20], [7.23] o1 amoxhicewc mou mopatnpolvto

HETAZ) TOV XATAVOUDY TOU TEOXVTTOLY amd Toug duo emAVTES eivon apeintéeg. To (Bo
oy Ve xan yiot TN 60YXELOT) TWV GUVONXGY UeYeEUnVY Tou apatidevton otoug mivoxeg
, Ol . Exel 6mou mopatnpeiton 1 ueyahitepn andxhion eivon oTig TWES TG
POTAG xou %ot EMEXTACT) Xt OTIC TWES Tou Baduol anddoong. ‘Ocov agopd Tic TYég
¢ umohoyllouevng pomnig, oL amoxhioelg umopoly va arnodoYolyv 6T BLUPORES TKV
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€y, Commerecial SW ------

091 ¢, PUMA —
¢, Commercial SW ------

08 1 ¢, PUMA —

0.7 | ¢, Commercial SW ------ |
' ¢, PUMA ——

06 [ B

Dimensionless Velocity

0.2 I I I I I I
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Normalized Blade Span

YyApe 7.22: TPA avdidvon twy odnydv ttepuyinv kai tou Spopéa vopootpofilov
Tunov mpoméda ypnouorowsvtas tov PUMA. Katavoués twy adidotatwy antéAvtwy Ku-
Awopikay tayvtnTwy otny é£00o Tou Opojiéa.

¢y Commercial SW ------

0.9 Cmn PUMA —— |+
¢, Commercial SW ------
0.8 ¢, PUMA 1
07 b ¢, Commercial SW ----- |
: ¢, PUMA

Dimensionless Velocity

0.2 I I I I I I

0 01 02 03 04 05 06 07 08 09 1
Normalized Blade Span

Yy 7.23: TPA avdlvon twy 0dnydy ttepuyiwy, tou dpopéa kar Tov aywyol e£édou
Tou vdpoatpofitov Kaplan xpnoiponowdvtas tov PUMA. Katavoués twv adidotatwy
anréAvTwY KLAWOpIKWY TaxyuvtnTwy otny é£000 Tou OpojLéa.

0VO0 EMAUTOVY (BlaPOEETIXG LOVTEND TOPPNG X BLOPOPETIXESC CUVARTACELS Tolyou).

7.4.2 Tlapapetewxry Mekétn tng Yevdoouuniectotntag 3

YNy evoTNTa qUTH, TporydaTomoelTon Wit UEAETH TNg eNiBpaong TNE PEUBOCUUTIECTOTY-
T0¢ 670 PUIG GOYXAONC TNS ETEALOTC Yo OTOL ATOTEAECUATA TNE AVEALCTS TNG PONC.
H {evdocupmectoTnra exppdleton Yéow tng mapopéteou 3, 1 omolo avamaploTd o
TeY VT ToOTNTaL Tou Nyou. O TeOTOg EAéYYOoU TNG TopauéTeou 3, TOU TUpEyETo
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IMTivaxag 7.5: TPA avdlvon tov opouéa Francis ypnouonowsvtas tov PUMA. Yu-
vohikd peyéin mov meprypdpovr tn Aertovpyia tov otpofidov. Ia tov Palué anédoong
1, mapovoidletal 1 ekatooTiaia amokAOn) amé TO AvTIOTOIYO AMOTEAEO|A TOU €UTOPIKOU

emAUT).

Metaf3hnts | HTMA | oupepclah Y62
T () 34.37 33.02
X (72 0.573 0.571
on(%) +2.4 -
T (Nu) | 179221 |  1720.75

ITivaxag 7.6: YPA avdidvon twv o0nydv Ttepuyiowy kal touv 0pouéa vdpootpofilov
tinov mpoméda xpnoponowdvtas tov PUMA. Yvvohikd pueyédn mov meprypdpovy tn Aer-
Toupyla tov otpofidov. Ia tov Padué arédoons n, tapovordletar ) ekatootiaia atokAion

amé To avTIoTOI0 ATOTEAETUA TOU €UTOPIKOU €MAUTN.

MetofSAnty| | IITMA | oupepclon 36
H () 13.20 13.18
X (22) 0.513 0.517
n(%) +1.4 -
T (Nu) 375.86 372.76

IMivaxoag 7.7: TPA avilvon twv odnydyv mtepuylwy, tou Opopéa kai Tou aywyol
ekooou touv vopootpoPilov Kaplan ypnoyuorowdvtas tov PUMA. Yvvohikd peyédn mou
reptypdgovy tn Acitovpyia touv otpofitov. I'a tov fadud amddoons m, mapovoidletar n
exatooniaia anékAion amé TO avTIOTOIYO ATOTEAETUA TOU €UTOPLKOU €MAUTN.

Mezaf3hnt| | IITMA | Supepclan Y62
H (1) 6.11 6.41
X (72 0.379 0.398
(%) 0.9 ;
T (Nu) | 173.67 193.41

oo tov emAdtny PUMA, eivor péow tng g pog toydtntog avagopds Ures 1 omola
ToAamhactdleTon Ue TV opy e Ty Tou B (3.33).

H moapopetpudr UeEAETN TEay JUTOTOELTAL Yol TOV UBPOC TEOBLAO TOTOU TPOTEAN TOU GUV-
oudlel T yerion odNYwY TTEPLYIWY o dpopéa. Ol TEooeERIC THIES TOU ETAEYOVTOL Yid
™y Ty UTnTer avapopdic (Urey) ebvan 10, 20, 30 xon 40 ™. H mpdhtn Ty emhéyetan €Tol
®OoTE Vo efvor xovTor 6TV T Tou Pétpou tne Toydtntoc etoédou (Vi, = 4.89%) Ol
Ol UTIOAOLTIES Elval TOANGTAAGLAL QUTYC.

310 oyfua(7.26 tapouctdletar 0 puiUdS GlyXMoNG TwV TEVTE EEIOMOEWY Yiol To 001y d
TTEQUYLA X0l TO Bpopéd Yia TIC TEGOEPLS OLopopeTeS TWES NG Upep. Elvan avepd 6111
oUYXAOT ETLTAY OVETOUL ONUOVTIXG OTNY TEQITTWOT) OTIOU 1) Toy LTNTA AVUPOEdS Elval 660
TO BLUVATOY XOVTOTEPA OTNY TWY| TOU PETEOU TNE ToyUTNTUS ELGOOOU (Vin = 4.89%).
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Yy 7.24: TPA avdlvon twy 0dnydy ttepuyiwy, tou dpopéa kar Tov aywyol e£édou
Tou vdpoatpofitov Kaplan xpnoiponoiwrtag tov PUMA. ©éoes twy tpidv empavedy
otalepov .

Ynuovtind etvon vor avapeplel ey Toy bt avapopds Uer = Z o emAdTNG

OTEEXALVE.

Enione, 670 oyhnua tapovotdlovtar T tedia T Teone mhve oty ETLpAvVELD
TOU TTEPLYIOU YL TI¢ TECOEPLC OLUPORETINEG TWES TNG Upes-

And To oyfua umopet va e€ayVel To ouumépacua 6Tt THEOVCLALOVTOL UXEEC oA~
Aoryeg ota TpoxuTTovTa TEdlo Tieomg, xdTL Tou oNUalveEL OTL T ATOTEAESUATA OEV ebval
TOVTEADS Ave€dpTNTA OO TNV TWT TS TOROUETEOL 3. MUVETKOC, 1) TWH TNG TEETEL vl
EMAEYETAL TPOCEXTIXAL.

7.5 BeAtiwotonoinon lltepuylouv Apgouca Y opo-
oteofihouv Kaplan

To eviaio epyaheio avdhuong mou €yel dnutovpynlel yenouylomoleiton 6T GUVEYELL YL
™ Pehtiotonoinom evog nrepuyiou dpouca LdpooTeoPilou Kaplan. H uédodog ei-
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8.000e-01 8.000e-01
6.000e-01 6.000e-01
keu
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keu
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-3.360e-01
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1.000e+00 1.000+00
[m s*1) - [m s*-1]
-9.0206-01

-1.185€+00

-1.468e+00 -1.468e+00

-1.751e+00 . —— -1.751€+00
-2.034€400 = -2.034e+00
2.317e+00 2317400
-2.6006+00 -2.6006+00
[ms1] ﬁ [mst1]
ker
oMID
20006400

1.650e+00
1.300e+00
9.500e-01
6.000e-01
2.500e-01
-1.000e-01
-4.500e-01
-8.000e-01
-1.150e+00

-1.500+00
[ms™1]

Yy 7.25: TPA avdlvon twy 0dnydy ttepuyiwy, tou dpopéa kar tov aywyol e£édou
Tov vdpootpofilov Kaplan xpnooroivtas tov PUMA. Iooliels kaumides twv tpidy
adidotatwy anélvtwy KVAwdpikdy tayvtitwy: c,, (tdvw), cf (néon) avd ¢, (kdtw)
vrodoyildueves and tov emAvtny PUMA (apotepd) kar tov epnopixd emAvTn (deéid).

T Tonolnong Tov yenowwonoteiton etvor auth Twv EZehixtixdv Alyopiduwy (EA), wo
otoyao T uédodog, 6mwg epupudleton and To gpyaieio Behtictonoinone Evolutio-
nary Algorithm SYstem (EASY), to onoio avantOytnxe and vy MIITP&B/EMII.

7.5.1 MertofAnTéc Xyediacuov

Ynuovtxde yioe T Swdwooio tng Bertiotonoinong pe EA eivon o xadopiopog twv
UETABANT®Y oyedlaouol xon Tou e0poug TWKY Touc. AuTtég elvan ol peToBANTéS Tou
uetafdihovton o xde unodhgia Ao xdde yewide tou EA xou ehéyyouv o oyrua
Tou TTeEUYiou TOU Bpoufa. TNV TEOXEWEVY TEQINTWOT), oL METUBANTEC oY EDLIoUOD
emAéyovton va etvar ot 30 Tiée Twv onueinv EAEYYOU TV xoumuhwy Bézier mou
xodopllouv Tig xotavoués g ywviag petdhlou [ tou ttepuyiou (15 onueio eléyyou
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Xt UX0g NG oxuNg TeooTTwong ot 15 onueio ehéyyou xatd prxog g axunc
eEXQUYTC). XTov Tivaxal TopouctdlovTal To €UEOC THIWY Yiol TNV Xde UETUBANTY
oyedoopot [1, [16].

ITivaxog 7.8: BeAlnwotonoinon evés dpouéa Kaplan xpnoyonoisvtas tov EASY kai
tov PUMA. Eldyiotes ka1 péyiotes tipués yia kdOe petafAntr) oyodaopol omov B; elvar
TO 1-00T6 onjeio eAéyxou NS Katavouns tng ywviag petdAdov B. O eAdyiotes kai
HEVIOTESS TIHES KkdUe peTafANTNS TpokUnTovy ané e ekatootiaia petafodn Tng wdéng
v £ 5 % onig avtiotones TUéS TNG apXIKIS YeWHETPIAS.

Metofant | Ex. Ty | Mey. Twy | MetoBants | EA. Twy | Mey. Twr
b1 65.6812 72.595 Bis 45.2388 50.0008
Ba 51.8671 57.3267 Bz 40.5096 44.7738
B3 41.1341 45.4641 Pis 30.7535 33.9907
B4 28.6676 31.6852 Bro 22.0966 24.4226
Bs 23.5894 26.0726 Bao 22.5649 24.9401
Be 55.3698 61.1982 Ba1 42.6302 47.1176
B 46.7945 51.7203 B2 35.7783 39.5445
Ps 35.1295 38.8273 B3 28.7235 31.7471
Bo 27.0282 29.8732 B2a 21.8111 24.1071
Bio 22.9273 25.3407 Bs 22.335 24.686
B 45.8818 50.7114 B 35.0848 38.778
B2 40.3341 | 44.5797 Bz 30.366 33.5624
bis 33.17 36.6616 Bas 24.4629 27.0379
B4 23.9992 26.5254 B9 19.1359 21.1503
Bis 22.3561 24.7093 B30 21.5761 23.8473

Eniong, xdmoteg Paoixés napdueteot tou EASY moapoucidlovtar otov mivona [7.9)

ITivaxag 7.9: BeAuotonoinon evos opopéa Kaplan ypnoyuorowsvtas tov FASY kai
tov PUMA. Twés ya tig Baoikég napauétpouvs tov EASY.

[opduetpog Youporo T
Méyedoc mainduouol yovéwmy 1 15
Méyedoc mainduouol aroydvey A 30
Méyedog manduouot elite e 20
ITavoTnTa SlacTahLELoTg — 0.9
Méyiotog oprdude aflohoyrioewy - 12000
Kwdwonolnon yetaBintov - Hporyportiny

7.5.2 AvTixelpevixEg 2UVUETNOELS

o ) Bertiotomoinom Yetovian BUo AVTIXELIEVIXEG GUVORTY|CELC:
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e H ueylotonoinon tou Poduol andédoong mou expedleton ¢

Fy = min(—n) (7.12)

e H yeyiotonoinon tng ehdytotng eupovilOUEVNS OTATIXNC TEoNE, UE OXOTO TNV
ATOPUYT) EPPAVIONE TOU QOUVOUEVOL TN OTNAALWONG. AUTH 1) AVTIXELUEVIXY) GU-
VapTNOT EXPEACETAUL WS

Fy = min(—ps,min) (7.13)

7.5.3 llepropiouol

O meplopiopdg mou tidevtoun apopd OTIC AMOXAICES TWY XATAVOUGOY TWV ABLEC TATODVY
omOALTWY ToUTATWY (TEpLpEpELoXT| ¢ o YeonuPevh c,) otny €00 Tou Bpouéa and
xdmoteg avtioTolyeg EMVUUNTES XATAVOUES ToYUTATWY. AUTOC O TEPLOPLOUOS EEUC)I-
MCeL TIC EAAYLOTEC BUVATES AMWAELES GTOV AYwY6 E€600L X EXPEACETOL (S

Cn <0.04
W < 0.04 (7.14)
7.15)
OTOoU:
Co= [ (i e
Aout ’
C, = / (c; — Cz,mr)Q dr (7.16)
Aout
(7.17)

7.5.4 Arnoteléocpata tnc BeAtiotonoinong

Metd amd 21 yeviéc tou EA, 1o mpoxintov pétwno Pareto mapoucidletar oto oyrua
Y10 oyfua onuewvovtar ol duo oxpaiec Béltiotee hooeg (A xa C), xodog
emiong xou o evotdueon (B).

210 oyfua , mapovotdlovtar ol xatavouéc O, oe TeelC axTvixéc VEoEIC Yo TIg
Tpewg Béhtioteg Moewe (A, B, C) ot oyéon pe v avtloTolyn xotovour| TG aEy NS
vewpetpiog. Houpdhhnha, otov mivoxa [7.10, napoucidletar n exatootiaia adEnon tou
Boduol amddooTC 08 OYEoT UE TNV aEYLXT) YEWUETEOL.

Téhoc, oo oyfua [7.30, mopoucidlovton oL TEOXOTTOUGES XUTAVOUES TWYV ABLIC TATKDY
ATOAUTWY TOUYLTATOY OE OYECT UE TIC AVTIOTOLYEC ETMVUUNTES XATAVOUES TIoU ETYSEAAO-
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ITivaxag 7.10: BeAtniotonoinon evés dpopéa Kaplan xpnoonowdsvtas tov EASY kar
tov PUMA. Ekavootiaia avénon oto Padué amédoons yar kdle emireyUeioa Péltiotn
AUon o€ oUykpion (e Ty apyikn) YeweTpia.

Béhtiotn Mon | Exatootiado petafor| oto B.o. (%)

Béhtotn Aoon A +1.58
Béhtiotn Aoon B +0.34
Béhtotn Aon C +0.01

VTOL A6 TOV TEQLOPLOHO, EVE) GTOV VXA qotvovton xou ot THéS Tou utohoyilovTal

amo Tic €€. [7.16]

ITivaxag 7.11: BeAniotonoinon evés dpopéa Kaplan xpnoponowdvas tov EASY kar
tov PUMA. O1 npokUntovoes TiuéS Yia ToUS TePIoplools, onws vrnoloyilovtal and Tig

et[7:14 ya rdde emexeioa fédtion Adon.

Béitiotn Ao ‘ Twn Tou Teploplouol Yo To ¢, ‘ T Tou Teploplonoy Yo 1o ¢,

Béhtiotn Aon A 0.01134 0.01688
Béitiotn Aoon B 0.00881 0.00287
Beéhtotn Aoon C 0.00852 0.00365

7.6 20Ovodn xou Xvunepdopateo - [6€eg yia Meh-
AovTixr) AouvAeld

7.6.1 X0Ovodn xau Xvunepdouata

H évtagn xo 1 motonoinon tou emhitn poric PUMA oto Biounyoavixd epyoleio o-
véiuong xou Behtiotomoinong tne AndritzHydro dewpelton emtuyric. Muyxexpyéva,
ToL axOA0UY oL CUUTERAOUATA TTEOXVTOLY:

o H oporr| évtagn tou PUMA o7o Blounyoavixd epyaieio Arav emtuyrc. To ano-
Téheopa etvor war eviabor aAvoido epyaeiov 1 omolo elvar QU Teog To YEHoTN
xou yenowonoteitar and toug oledoctéc tne AndritzHydro.

e H olyxpion tou emhbty PUMA ue tov eunopind emaTn ebvan, eniong, emtuyic,
opoL oL AMOXAGELS HETAE) TeV BLO ETALTOV elvan aeAnTéec. 'Etol, nepioodtepot
oyedlaoTtég eviapivovTar va yenodnothnoouy tov emthitn PUMA yio va tpé€ouy
TIC TPOGOHUOLOOELS TOUC.

e H yerion tou PUMA ¢ epyaheio allordynong yio tov EASY gatvetan vo etvan pia
Buooyn emAoyn, agol Ta anoTeAécuota TS fehtioTononong elvar ixavoromnTixd
X0l TO UTOAOYLOTIXO XOOTOC Efval OYETIXS UXEO.
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7.6.2 Ilpotdoeic yia MeAhovtinry AovAsid

‘Ocov agopd LOEES xaL TEOTACELS Yior LEAAOVTIXY| BOUAELE, Tar oaxdhoudar TapatievTon:
o Ilepantépw avdmTuln TV YETATEOTEMY TOU TOTOU TOU TAEYUITOC.
o H évtaln tov yetatponény yéoou otov emavtny PUMA.

o Ilepoutépw Soxiur tou emAbTny PUMA, pehetdhvtag axdun mo nepimhoxeg Sudto-
Eelg LBPOCTEOPIAWY, UE oxoTd TNV BlepeAuvnoT Twv duvatothtwy Tou PUMA.

o llpocouolworn xar BoXY TEOYUXTIXG UN-HOVIUKDY POWY OCUUTIEGTOU PEUCTOU
u€oo oToUC LBPOGTEORIAOUC.
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Yy 7.26: Ilapapetpixr) peAétn twy odnywy ntepuylmwy kai tov Opopéa Tou vdpo-
otpoPilov timouv mpoméda xpnoiporoidvtag tov PUMA. Puluds olyikiions twy mévte
esiodboewr yia ta 0dnyd tteplyia (aprotepd) kar o dpopéa (6eiid) yia Tis Téooepis Tipég
s Upes (10, 20, 30, 40 7). o



pressure

pressure

400 400
371429 371429
342,857 342857
314.286 314.286
285714 285714
257143 257143
228 571 228 571
200 200
171429 171.429
142 857 142 857
114.286 114.286
857143 85.7143
57.1429 57.1429
285714 28 5714
0 0
pressure pressure
400 400
371429 371429
342,857 342.857
314 286 314286
285714 285714
257.143 257.143
228 571 228 571
200 200
171429 171429
142,857 142,857
114.286 114.286
85.7143 85.7143
571429 571429
285714 285714

0

0

Yy 7.27: Ilapapetpixn) peAétn twy 00nywy TTtepuylmwy kai tov Opopéa Tov vdpo-
otpoPilov timou mpoméda xpnoiporoidvtas tov PUMA. Ta mpoxintovta nedia nieons tov
ntepuylov tov Spopéa ya tis téooepis Tpés s Urep (Tdvw-apiotepd mpos kdtw-oebid,

10, 20, 30 avé 40 73 ).
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ExAuna 7.28: BeAniotonoinon evés dpopéa Kaplan ypnouonowsvtas tov EASY kai
tov PUMA. To uérwrno Pareto tng dikprtiprakns PeAtiotonoinons. KdOe tetpaywviko
onueio avarapiotd pua BEATIOTH) AUon) HE TIS avTIOTOES TIHES TwWY OUO AVTIKELUEVIKWY
ouvaptrioewr (F1 ka1 Fy). Erions, otny tdvw-6eiid ywria Ppioketal n apxikr) yewuetpia
(mpdowos kUKAOG).
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Optimal Solution A - - - -
Optimal Solution B - - - -
Optimal Solution C - - - - - |

Initial Solution

Pressure Coefficient Cp [-]
Pressure Coefficient Cp [

Optimal Solution A - - - -

[
initial Solution

Chord [

: Optimal Solution C - - - - - |
42 Initial Solution 7

Pressure Coefficient Cp [-]

Chord [

Yyxnue 7.29: Bedniotomoinon evés dpouéa Kaplan xpnouoroiwrtas tov EASY kar
tov PUMA. H kaztavoun) tov Cy, ya tig tpeis emiexOeioes BédTiotes Aboes kar Tny apxikn)
yewetpia o€ tpes aktikés Uéoes, tne pila (tdvaw-apiotepd), to péoo (ndvw-de&id) kar

0 dkpo (kdtw) Tou TTEPUYIOU.

1 : : ‘ ‘ ‘
kem Optimal Solution A ------
09 | kcm Optimal SolutionB - ----- |
kem Optimal Solution C ------
0.8 kem Constraint
- kcu Optimal Solution A ------
> 07 kcu Optimal Solution B ------ |
9 kcu Optimal Solution C ------
3 06 kcu Constraint —— i
>
4 05 ,
Q@
S 04 |
g ------------------ = u PR
o 03 st
£
Qo 02 |
01 e |
0 [ttt ,

0 01 02 03 04 05 06 O

Dimensionless Radius [-]

7

0.8

YyAue 7.30: BeAtniotonoinon evis dpouéa Kaplan xpnoyoroirtas tov EASY kar
tov PUMA. Or katavoués twy adidotatwy atilvtwy tayvtitwy (¢} kai ¢, ) otny é€odo
ToU Qpojéa g€ aUYKpIoN UE TIS avTIoToleS €MUUUNTES KaTaVouES.
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