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Abstract

This diploma thesis programs a software tool for post-processing Topology Opti-
mization (TopO) results in Fluid Mechanics, facilitating the transition from the
real-valued fluid or solid indicators, known as porosity fields in the design domain
of TopO, to explicit surface mesh representations of the corresponding shape.

TopO is a powerful tool used to determine the optimal material distribution for a
performance objective, within a given design domain and under specific constraints.
To do that, an artificial porosity field is introduced in the flow equations, restrict-
ing fluid flow in solidified areas of the domain. Despite its many advantages, this
technique is prone to inaccuracies due to the lack of an exact interface between the
solid and fluid regions, where boundary conditions must be imposed. This thesis
addresses the critical step of converting the above mentioned porosity fields into sur-
face meshes in the form of STL files, enabling the manufacturing of designs or their
evaluation through Computational Fluid Dynamics (CFD) analysis on body-fitted
grids. Link with an ensuing Shape Optimization (ShpO) is also possible to further
refine a design.

By adopting the Marching Cubes algorithm, an established framework originally
developed for medical data visualization, a methodological innovation is introduced
by extending its concept for the case of unstructured/hybrid grids with a variety of
elements. This gives rise to generalized Marching Algorithms that are able to handle
both structured and unstructured grids. The implementation is performed in C++
and is compatible with the CFD—-based Optimization software (OpenFOAM©and
in-house) of the Parallel CFD & Optimization Unit of NTUA (PCopt/NTUA).
The programmed tools are demonstrated through a series of use—case scenarios and
real-world industrial applications.
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Exorh Mryavohoywy Mnyavixdy

Touéag Pevotov

Movdda ITapdAAnAne YroloyiocTixrc PeuocTtoduvauixng
& Beltiotonoinong

Avantuin Aoyiwouixod MetdBaong and Tonoloyia oe
YxNua pecw Alyoplduwy Ilgoéhaong
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Hepiingn

H Simhwpotinn epyacia mapouctdlel Ty avdntuln Aoylopxol yio Ty eneiepyasio
TV anotekeoudtonv Bedtiotonoinong Tormoloyiog (BeTo) oe VEUATOL PEUG TOUTYOVL-
xr’]g/ OEPOBUVOLXTC, UE OXOTO TNV AVATIEAC TACT) TOU TOLYOUATOS UETAE) GTECEOD Xou
EEUCTOU OF HOPYT ETLPAVELNXOL TAEYUATOG.

H BeTo elvon pédodog mou yenoylomoleiton yiow Tov Tpocdloplogd g BEATIOTNG Xo-
TOVOUNC UAIXOU YL CUYXEXPWEVO GTOYO, EVIOS EVOC OYEDINCTIXO) Ywplou xat LT
ouyxexpévoug meploptopols. T'a Tov oxomd autdy, elodyeton eva TEYVNTO TEdiO TTO-
ewdoUC GTIC EELOWOELS POTC, EUTOOILOVTOC TN POT) OE TEQLOYEC TOU GTEPEOTOLOUVTOL.
opd Tor TAcovexTiaTa Tng, 1 weVodog auth| elvar emppenyic ot avaxplPeleg Aoyw EA-
Aeudng evog xodopIoUEVOL TOLYWUATOS UETAEY TOU GTEREOY XAl TOU PEUGTOY, 6Tou Vo
emBAndolv ot oplaxéc ouviixes. H epyaoio avtiyetonilel to xploywo Brua e uetdfo-
one amd Ta TEdla TOPMOBOUE OE ETLPAVELUXE TAEYUATO TWV UTO ECETAUOT) YEWUETPUOY OF
woppn apyciwyv STL, emtpénovtag TNV XaTaoxeur) Toug 1 TNV o&lohdyNoY| Toug UECw
v motéTNTag avdiuong Troloyiotinrc Peuotoduvouinrc (TP) oe owpatddeta
mAéypata. Ebvan enlong duvaty| n nepoutépn Peitiowon tne yewuetplog uéow Behtioto-
Toinomng Ly uatoq.

Twodetwvtag Tov akyderduo Marching Cubes, uio Stadedopévn pédodo mou avantdy -
XE QEYIXEL YIo TNV TELOLEO TATY| UTELXOVICT] TOUOYQUPLWY, ELCEYETOL 1) ENEXTACY| TN OTNV
TEPIMTWOTN UN-OOUNUEVLY TAEYHATWY e oToLyEld BLlapopn TUTwY. 'evvivTag xot’ autod
ToV TEOTO YeVixeuuévoug Alyopituoug Hpoéhaong wavoic va dioyetpllovton dounuéva
OAAG xou Un-Oopnuéva,/uBetdixd tAéypata. H ulomoinon yiveta oe yhwooo C++ xou
elvow mAéov ouufath pe o Aoylouxd Behtiotonoinong yéow TP (OpenFOAM© O
oxeio) ¢ Movddac Hapdhhnine Troloyotinic Peuotoduvauinrc & Beltiotonoln-
onc EMII (MIITP&B/EMII). To Aoyiouxd mou mpoypaupotic Thxe motonoteiton ot
ot oeLpd OEVUPIeY BOXUUAC XKoL TROYUOTIXMY BLOUTNYAVIXGDY EQPUQUOYOV.
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Acronyms

CFD Computational Fluid Dynamics
NTUA National Technical University of Athens
PCOpt Parallel CFD & Optimization unit
GMB Gradient Based Method
SD Sensitivity Derivatives
TopO Topology Optimization
ShpO Shape Optimization
SPTopO Standard Porosity—based Topology Optimization
IBM Immersed Boundary Method
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TtoST Topology—to—Shape Transition
MC Marching Cubes
STL STereoLithography
CPU Central Processing Unit
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w.r.t. with respect to
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Chapter 1

Introduction

The increasing performance of modern computer systems alongside the advance-
ments in computational methods has given rise to innovative ways of designing and
simulating in a significant range of industrial applications. The widespread avail-
ability of simulation tools has taken over the preliminary design stages of many
mechanical systems that incorporate complex structures, revolutionizing the way
engineers approach the development of products and systems. In particular, Com-
putational Fluid Dynamics (CFD), a branch of Fluid Mechanics to numerically
analyze fluid flows, allows for the detailed simulation of fluid behavior in various
conditions and environments, enabling designers to predict performance and iden-
tify potential issues before physical prototypes are ever built. The integration of
CFD with optimization methods, such as Shape Optimization (ShpO) and Topol-
ogy Optimization (TopO), seeks the optimal design targeting specific performance
criteria. Contemporary approaches employ the synergistic use of TopO and ShpO,
whereby a solution initially found by TopO is further refined by ShpO. The Parallel
CFD & Optimization Unit (PCOpt) at the National Technical University of Athens
(NTUA) is at the forefront of research in these domains, developing and applying
adjoint-based TopO and ShpO methods in aerodynamic and hydrodynamic studies
published in a number of papers [I}, 2, 13| 4, 5] and PhD theses [6}, [7, [8 @] [10].
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1.1 Background in CFD—-based Optimization

1.1.1 Optimization and the Adjoint Method

Optimization refers to the process of finding the best solution to a problem, given
specific constraints, from all feasible solutions. The integration of CF'D analysis with
optimization, gives rise to CFD-based optimization methods. In an optimization
problem, a selection of the parameters that can be modified is performed, thus
creating a set of variables referred to as design or optimization variables, that alter
the flow solution and yield a quantifiable measure of performance or efficiency known
as the objective function. The goal of the optimization method is to compute the
values of the design variables that minimize or maximize the objective function in
hand. In every optimization cycle the passage from one set of variables to another
is subject to computations. CFD-based optimization methods can be classified into
two main categories, according to the way the optimal set of design variables is
computed: stochastic [I1] and deterministic [12].

Stochastic optimization methods involve random sampling of the design space, en-
hanced with heuristics to select and assess a set of design variables [13]. Evolution-
ary Algorithms (EA) represent a significant subset of stochastic population-based
optimization methods. By drawing inspiration from biological evolution, these al-
gorithms employ mechanisms such as selection, crossover (recombination), and mu-
tation to evolve a set of candidate solutions towards an optimal or near-optimal
solution over successive generations.

The deterministic optimization algorithms improve a solution by computing the
gradient of the objective function in question with respect to (w.r.t) the design
variables, also known as the sensitivity derivatives (SD). An update to the design
variables is thereafter computed based on the direction dictated by the sensitivity
derivatives. Subsequently, the flow field, the objective function value and the new
SD field are computed based on the updated design. This process is repeated until
either the objective function has converged to its minimum value or the user—defined
maximum number of optimization cycles is reached [14].

The adjoint method [I5] [16] of computing the sensitivity derivatives is a method that
has a cost practically independent from the number of the design variables N. As
a result, this method is a perfect choice for large industrial optimization problems.
In order to achieve this independence, an augmented objective function is defined,
by adding the volume integrals of the residuals of the flow equation (also referred
to as the primal or state equations), multiplied by the adjoint (or co-state or dual)
variable fields, to F'. Considering that the residuals of the primal equations must
be zero, F' = F,,,. After differentiating the augmented objective function and re-
arranging the resulting terms, the system of adjoint equations and adjoint boundary
conditions is formulated, the numerical solution of which leads to a N-independent
computation of the SDs.
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1.1.2 Shape and Topology Optimization in Fluid Mechanics

Shape Optimization (ShpO) and Topology Optimization (TopO) in fluid mechanics
are two established frameworks [17, 18, [19] that belong to CFD-based optimization
methods. ShpO involves the use of a number of control variables, that parameter-
ize the shape under consideration, to refine the performance of the design. These
could be, for instance, the coefficients of the Bézier—Bernstein polynomials or the
control point coordinates of volumetric B-splines polynomials parameterizing the
shape under consideration. In large scale ShpO problems, the control variables can
be significant in number, and subsequently the SDs w.r.t. the control variables. This
makes the adjoint method a particularly good choice for computing the necessary
derivatives.

TopO, initially developed for structural mechanics [20], focuses on optimizing ma-
terial distribution within a given space to achieve specific performance goals. It has
been adapted to fluid mechanics, where a real-valued porosity dependent term is
introduced in the flow equations (Brinkman penalization method). This method
is the predominant method in fluids referred to as Standard Porosity-based TopO
(SPTopO). The porosity terms in each node (for vertex—centered) or cell (for cell-
centered solvers) act as the design variables of the optimization problem. Since the
number of the design variables coincides with the number of the grid nodes or cells,
the adjoint method is the perfect choice for computing sensitivities of the objective
function w.r.t. the porosity values.

Although TopO and ShpO are two disciplines that have traditionally been viewed as
distinct and separate approaches, it is conceivable that they can find better solutions
in tandem with ShpO enchancing and refining a solution initially produced by TopO.

1.1.3 Motivation - Thesis Scope

Despite its many advantages, SPTopO is prone to inaccuracies due to the imprecise
depiction of the Fluid—Solid Interface (FSI). The boundary conditions regarding the
FSI are not directly enforced, but are instead weakly treated through the porosity
term. Quite often when TopQO’s solutions are re—evaluated with a flow solver running
on a body—fitted grid to the computed FSI, they do not perform as expected [21].
This is why, the extraction of the body shape from the optimized porosity field
becomes necessary. The latter constitutes the topic that is addressed in the current
thesis, proposing a tool to extract the FSI geometry from the porosity field solution
of TopO, using Marching Algorithms. The extracted geometry can be post-processed
to generate body—fitted grids for the successive implementation of ShpO or used as
a manufacturable solution without considering a continuation to ShpO.
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1.2 Methodology Overview

1.2.1 Marching Cubes Algorithm

To accomplish the above we adopt the Marching Cubes (MC) algorithm [22], an
established formulation in the Computer Graphics area, initially proposed for the
visualization of medical data. The algorithm is used to generate surface meshes of
triangular elements from scalar fields of data on the nodes of a structured (containing
cubes) grid. The workflow includes the processing of each cube in the grid, based
on the values of its nodes. A threshold value, known as the isovalue is introduced
by the user, and each node of the cube is flagged (above the threshold value) or
unflagged (below the threshold) value. The state of each node is encoded into an 8-
bit index, leading to 256 possible configurations. However, by employing symmetries
the number of unique configurations is significantly reduced. These configurations
encode the arrangement of triangles for the created surface and the position of the
new vertices of the triangles on the edges of the grid’s cube. These configurations
are precompiled and saved in look—up tables prior to the algorithm’s execution,
avoiding calculations during the processing of each individual element of the grid.
The output file takes the form of a CAD-compatible file of the surface mesh, such
as the STereo Lithography (STL) file.

1.2.2 Generalized Marching Algorithms

In the case of grids used in CFD analysis, they can be either structured or unstruc-
tured /hybrid grids. The former refers to the case of grids containing only hexahedral
elements whereas the latter regards grids that contain hexahedra as well as other
elements such as prisms, pyramids and tetrahedra. In order to be able to extract
the FSI from TopO’s solutions on hybrid grid, an expansion of the MC algorithm’s
concept for other element types is necessary. In the current thesis, the formulation
of appropriate algorithms for other element types is introduced, giving rise to gener-
alized Marching Algorithms for Hexahedra, Prisms, Pyramids and Tetrahedra. Also
the boundary reconstruction is treated with a Marching Quadrilaterals scheme.

1.2.3 Thesis Contributions

This thesis presents a study and implementation of the proposed methodology, lead-
ing to several key contributions.

MC Algorithm Implementation and Formulation of ‘generalized March-
ing Algorithms’. The adaptation of the MC triangulation look—up tables from
the literature [23] is performed and the algorithm is implemented in C++. The
appropriate Data Structure for the case of structured cubic grids is formulated for
registering of all the edges of the grid and the storage of the generated vertices of
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the triangles. Then the triangulation look—up tables (see Appendix [Al) for the other
element types and the boundary adaptation of the Data Structure and revised algo-
rithm implementation for the case of unstructured & hybrid grids is performed. The
algorithm is then rendered compatible with the CFD—-based Optimization software
(OpenFOAM®@and in-house) of the Parallel CFD & Optimization Unit of NTUA
(PCopt/NTUA).

The in-house GPU-accelerated CFD solver, PUMA [24] 25], numerically solves the
Navier-Stokes equations for compressible and incompressible fluids. The flow and
their adjoint equations are discretized on unstructured/hybrid meshes, using the
vertex—centered finite volume method. The solution of a TopO run is readily avail-
able for the TtoST process using the method proposed in this thesis, that requires
information on the nodes of the grid.

Volume weighted cell-center to vertex interpolation for compatibility
with OpenFOAM®. The OpenFOAM® (Open Field Operation and Manipu-
lation) is an open—source CFD software initially released in 2004 by the OpenCFD
company. It offers a comprehensive set of tools and solvers for simulating and
analyzing fluid flows. It employs a cell-centered finite volume method for discretiz-
ing the governing equations of fluid flow, constituting a cell-centered code. The
PCOpt/NTUA, with expertise in the adjoint method, has developed adjoint opti-
mization tools inside the OpenFOAM® software. The solution of a TopO run has
to be interpolated to the grid’s vertices in order to employ the proposed method for
the TtoST. A volume weighted cell center to vertex interpolation scheme is incorpo-
rated in the algorithm to interpolate the field solutions, from OpenFOAM® stored
on the cell centers, to the nodes of the grid.

Validation and Assessment in a variety of scenarios. The programmed tools
are then assessed and demonstrated through a series of use—case scenarios and real—
world industrial applications. First the simple case of spheres is explored in three
different types of sample grids, a structured grid of hexahedral elements, an unstruc-
tured grid of tetrahedral elements and a hybrid grid containing hexahedra, prisms,
pyramids, and tetrahedra. It is demonstrated that the algorithms effectiveness in
capturing the geometry of the sphere relies on the resolution of the background
grid, and poor resolution of the grid results in poor reconstruction of the geometry.
However the radius of the generated surface never exceeds the nominal radius of the
original sphere. The addition of more separated spheres in the grid is explored to
investigate how the algorithm treats the interface between them. It is shown that if
the background grid has adequate resolution and the spheres are separated within
different cells of the grid, the algorithm is able to distinguish between them.

The application of the algorithm is then explored for models taken from the Stanford
3D Scanning Repository [26]. The geometries are introduced within sample grids,
with the use of the searchableSurface tool of OpenFOAM®. The topology field
is then processed with the TtoST tool proposed and the resulting geometries are
compared with the original ones.
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Tool application for the design of Heat Exchangers. Finally, the algorithm
is applied in the extraction of the FSI from TopO solutions regarding the design of
heat exchangers. Three cases are explored, a 2D heat exchanger, a bi-fluid 3D heat
exchanger of one inlet and one oulet and a bi—fluid 3D heat exchanger of 1 inlet and
8 outlets. In all cases the extraction of the FSI from the porosity field solution of
TopO is demonstrated along with the grid’s boundary integration.

1.3 Thesis Outline

Following the Introduction, the structure of this thesis is organized as follows:

Chapter [2| provides an introduction to ShpO and TopO in fluid mechanics,
along with the challenges in current methods and the need for a TtoST Tool

Chapter [3|explores the fundamental theory of the MC algorithm and expands
its concept giving rise to the ‘generalized Marching Algorithms’

Chapter |4 details the methodology followed and its implementation in C++-.

Chapter |5 presents the case results from 2D and 3D application of the im-
plemented tool.

Chapter [6] concludes the thesis with key findings and future research direc-
tions.

Appendix [A] the full pre-compiled look up tables for the triangulation of
elements (as incorporated into the programmed software) are listed.



Chapter 2

Shape and Topology Optimization

in Fluid Mechanics

As mentioned in the introduction, optimization refers to the process of finding the
best solution to a problem from all feasible solutions. The integration of CFD
analysis with optimization, gives rise to CFD-based optimization methods. Most
optimization problems in the field of fluid mechanics can be classified as either
shape or topology optimization, with their respective disciplines Shape Optimiza-
tion (ShpO) and Topology Optimization (TopO). ShpO involves the use of a number
of control variables, that parameterize the shape under consideration, to refine the
performance of the design. On the other hand, TopO, is a method that can produce
designs independent of an initial shape, exploring a wider range of design possi-
bilities, often leading to more efficient and innovative solutions that might not be
intuitively apparent. Although TopO and ShpO have traditionally been viewed as
distinct and separate approaches since their origins, it is possible that their most ef-
fective solutions could emerge through a collaborative process, where ShpO enhances
and refines a solution initially identified by TopO.

2.1 Introduction to Shape Optimization

According to the control theory adapted for the needs of CFD-based optimization
[27], the shape to be optimized is controlled by a number of variables, referred to
as design or optimization variables. These could be, for instance, the coefficients of
the Bézier—-Bernstein polynomials or the control point coordinates of volumetric B-
splines polynomials which parameterize the shape under consideration. The quality
of the shape to be optimized is evaluated by computing a usually integral quantity,

7
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known as the objective function. The objective function can be defined either on
the boundaries, such as the total pressure losses which at the inlet and outlet of
the geometry, or in a volume inside the geometry, such as the noise induced in that
region. Goal of the optimization is to compute the values of the design variables
that minimize or maximize the objective function. The iterative process is usually
deterministic, computing the gradient of the objective function in question w.r.t
the design variables, also known as the sensitivity derivatives. A shape update
is performed based on the direction dictated by the sensitivity derivatives. CFD—
based shape optimization is used on a regular basis to design aerodynamic structures
[T7, 18, 28], 29].

2.2 Introduction to Topology Optimization

TopO is an established computational method used to determine the optimal ma-
terial distribution within a given design space, under specific conditions and con-
straints, to achieve a predetermined performance objective. First introduced in
structural mechanics by Bendsge & Kikuchi [20] over thirty-five years ago, TopO
has since been extended to various scientific fields, including Fluid Mechanics.

2.2.1 Topology Optimization in Structural Mechanics

As a structural optimisation method, it distinguishes itself from the more classical
discipline shape optimisation, by the fact that there does not need to be an initial
structure defined a priori [19]. In structural mechanics, instead of adjusting the
shape of the structure’s boundary to achieve better performance, TopO identifies the
material density field at the design domain, with values ranging from zero (presence
of void/absence of material) to one (solid). The procedure, thus, determines where
material should be added to increase structural stiffness under certain load. In
Fig. the concept of TopO in structural mechanics is illustrated for the design of
a cantilevered beam.

P

Figure 2.1: The concept of TopO in structural optimization: Left: Computational
domain and the applied loads and boundaries for the design of a cantilever beam.
Right: Solution from TopO. White areas correspond to void (zero material density)
whereas dark areas correspond to the designed structure (high material density). From
[30).
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2.2.2 Topology Optimization in Fluid Mechanics

In fluid mechanics the same idea was successfully expanded for Stokes [31], [32] and
laminar [33], turbulent [34], steady and unsteady flows [35, 21]. TopO’s predominant
method in fluids is achieved by introducing a porosity dependent term, also referred
as blockage term (Brinkman penalization method), to the flow equations. Hereafter
this method will be referred to as the Standard Porosity-based TopO (SPTopO). Solid
areas are identified by low porosity or high impermeability, effectively restricting
fluid flow through enforced zero velocity conditions. On the other hand, in areas were
porosity values are high, the flow encounters no resistance. These areas correspond
to the flow passage. TopO seeks the optimal porosity values at each node (for
vertex centered codes) or cell (cell-centered codes) in order to minimize the objective
function in hand. Hence, the number of design variables coincides with the number
of grid nodes or cells [7].

This technique has been extensively used in fluid mechanics due to its flexibility
and ability to produce innovative and efficient designs that may not be intuitive or
achievable through traditional design methods. The ability to design unconventional
shapes and to dramatically alter solution topology during optimization, makes it
ideal for designing fluid paths, when there is no knowledge of the connectivity of the
inlets and outlets. In Fig. the concept of TopO in fluid mechanics is illustrated
for the design of an HVAC duct. Also, since the computational domain is static,
the computational cost is reduced and the cells’ quality is maintained, while still
allowing big changes in the design via the porosity field []].

Figure 2.2: The concept of topology optimization in fluid mechanics: Left: Compu-
tational domain for the design of an HVAC duct. Fluid flow from the inlet (green)
to the outlet (red) subjected to performance objectives (e.g. minimun pressure losses).
Right: Solution from topology optimization. Yellow area corresponds to the Fluid-Solid
Interface. From [8].
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Fluid-Solid Interface Depiction

In Fig. 2.3 the three general options for representing the design in TopO are presented
for the case of a simple nozzle.

(a) (b) (c)

Figure 2.3: Fluid nozzle illustrating the basic differences among design representa-
tions in topology optimisation: (b) Standard Porosity—based representation (b) level set
cut-cells representation (c) explicit boundary representation (body fitted mesh). Re-
produced from [19].

The first representation [(a) in Fig. [2.3] is that of the standard porosity—based TopO
where the flow is penalised in the solid (black) domain. This method has the ability
to change topology and change the design dramatically during optimization. The
cost of introducing the design is relatively low, as only an the extra porosity term
needs to be integrated, with no special interface treatment being necessary. Despite
its many advantages, one of the primary limitations of the Standard Porosity— based
TopO in Fluid Mechanics is its imprecise depiction of the Fluid-Solid Interface (FSI).
The solid wall boundary conditions in the porosity field are not directly enforced but
are instead weakly represented through blockage terms in the flow equations. This
approach fails to fully capture the influence of solid walls on the flow field and can
permit some degree of flow leakage through the solidified parts of the domain. Also,
the velocity and pressure fields are present in the entire domain, both fluid and solid
regions, which may cause spurious flows and leaking pressure fields, if not penalized
sufficiently. In the context of turbulent flows, in which wall functions require accu-
rate wall distances, the lack of a clearly defined FSI introduces inaccuracies [§]. As a
result, this can introduce inaccuracies to the optimization process, sometimes yield-
ing sub-optimal solutions. Quite often, when the TopO solutions are re-evaluated
using flow solvers running on a grid fitted to the computed FSI, they do not perform
as expected [2I]. This is why a transition from the optimized porosity field to shape
representation is sought. In Fig. the inaccuracy of TopO is demonstrated by
the increase in the objective function when the TtoST is evaluated on a body-fitted
grids and ShpO begins.
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Figure 2.4: (Left) Comparison of an example’s case TtoST boundary as input to
ShpO and the optimized ShpO boundary. (Right) The objective and constraint (Fluid
Volume Ratio) functions’ progression between TopO and ShpO. Overshoot of the ob-
jective function when ShpO begins due to inaccuracies in the TopO. From [3]

The second representation [(b) in Fig. [2.3] is that of an Immersed Boundary Method
(IBM) [9,136] where a fixed grid encompasses both the the fluid and the solid regions.
A surface-capturing method, the Cut—Cells [10] is integrated using a special scheme
and the interface boundary conditions or the coupling between different physics
can be introduced. Due to the nature of the method, the design sensitivities are
located only at the interface. This means that design changes can only propagate
from the interface and no new holes appear automatically. Another disadvantage of
IBMs stems from their difficulty to control grid resolution at the vicinity of body
surfaces. Since the grid lines are not aligned with the body boundary, creating the
high—aspect ratio poses a challenge. As such, IBMs require more dense Cartesian
grids to resolve the boundary layer. This problem becomes more pronounced as the
Reynolds number increases since the boundary layer thickness reduces in size [9].

The third representation [(c) in Fig. [2.3] is an explicit surface-boundary representa-
tion of the geometry based on a body-fitted grid adopting to the nominal geometry
shown in red. The explicit boundary method represents the physics well, has the
ability to impose boundary conditions directly and permits the control of grid den-
sity in areas of interest such as near solid walls. However if the design is changed, the
boundary nodes must be moved and the grid must be updated or the domain must
be entirely re-meshed. That is why such a representation is suggested as a last step
of the TopO run. An algorithms to perform the transition from the topology solution
to the surface mesh boundary representation is necessary, in order to extract the
FSI. With the extraction of the FSI, it is possible to proceed to manufacturing of the
design or to link the problem to ShpO to further refine the solution. The combined
use of TopO and ShpO is used in the literature, to mitigate the inaccuracies of the
Standard Porosity—based TopO [3, [4] 5].
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2.3 Thesis Methodological Approach

The extraction of the optimal body shape from the optimized porosity field becomes
necessary. The latter constitutes the topic that is addressed in the current thesis,
proposing a tool to extract the FSI geometry from the porosity field solution of
TopO, using Marching Algorithms. The extracted geometry can be post-processed
to generate body—fitted grids for the successive implementation of ShpO or used as
a manufacturable solution without considering a continuation to ShpQO.

To accomplish the above we adopt the Marching Cubes algorithm [22], an established
formulation in the Computer Graphics area, initially proposed for the visualization
of medical data. In the case of CFD grids we are routinely dealing with both
structured and unstructured grids. The former refers to the case of grids containing
only hexahedral elements whereas the later regards grids that involve hexahedra as
well as prisms, pyramids and tetrahedra. In the current thesis, implementations of
the Marching Algorithms for both types of grids are presented.



Chapter 3

Marching Algorithms

As discussed in Chapter , in the field of CFD and TopO, Fluid-Solid Interface (FSI)
definition is a challenging topic. The transition from the topology solution, that is
the field of real-valued solid /fluid indicators, a.k.a. porosity fields, to shape represen-
tation is important, in order to overcome limitations of the standard porosity—based
TopO. By extracting the FSI and generating body—fitted grids, we can accurately
impose boundary conditions and distances from the solid walls, and hence obtain
high-fidelity values of objective functions. With the shape representation, a succes-
sive implementation of ShpO is possible, or the design can be sent for manufacturing
if ShpO is not desirable.

Marching Algorithms are commonly used in the scientific visualization and con-
touring of complex geometries in various fields [37]. Starting from the fundamental
theory of the so—called Marching Cubes algorithm [22] and extending it to other ge-
ometric elements (hexahedra, prisms, pyramids, tetrahedra, quadrilaterals) we give
rise to Generalized Marching Algorithms that can handle 2D and 3D hybrid grids. In
this diploma thesis the implementation of these algorithms is programmed in C++,
and their successive employment for the Topology-to-Shape Transition (TtoST) in
TopO is explored in a number of applications.

13
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3.1 Review of the Marching Cubes algorithm

In 1987, Lorenson and Cline introduced the Marching Cubes (MC) algorithm [22],
which has since become a well-established method for surface extraction, particu-
larly in the field of medical imaging. This algorithm is used in 3D structured (cubic)
grids with scalar fields applied on the nodes, constituting a vertex—centered code.
Such a field, describing a spherical field growing outwards, can be seen in Fig. [3.1]
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Figure 3.1: A spherical field growing outwards applied on a structured cubic grid.
(a) Scalar values on the nodes (b) the structured cubic grid, (c) sample isosurfaces.

From this 3D array of data, the MC algorithm creates a polygonal representation of
constant—value surfaces, called isosurfaces. An isosurface can be defined as follows.
Given a scalar field F(P), with F a scalar function on R3, the surface that satisfies
F(P) = a, where a is a constant, is called the isosurface defined by a. The value a
is called the isovalue. In practice, isosurface extraction usually involves generation
of an approximate, piece—wise linear isosurface (usually composed of a collection
of triangles) on a sampled scalar field. The isosurface could consist of a single
component or of multiple, disjoint ones, as seen in Fig. c). By treating the data
in a cube-by—cube manner, the algorithm determines how the desired isosurface
intersects a cube and then moves, ‘marches’, to the next cube. The topology of
the isosurface within the cube is determined, by computing which of the vertices of
the cube are ‘inside’ the surface and which are ‘outside’, yielding a configuration of
triangles for each cube.

3.1.1 MC Algorithm overview

The MC algorithm processes the data set sequentially, one cube at a time. During
this processing, each node of the grid that constitutes the current cube’s vertex
v; that has a value equal to or above the isovalue « is flagged; all other vertices
with values below a remain unflagged. Consequently, an 8-bit index for each cube
is generated, encoding the status of its vertices as either flagged (boolean 1) or
unflagged (boolean 0). Since each of the eight vertices of a cube can be either
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flagged or unflagged, there are 2% = 256 possible scenarios for a cube. The cube in
the grid, its vertex numbering and its index are shown in Fig. |3.2]

VA Yy
L

X

CubeindeX:’V7‘V6‘V5‘V4‘V3‘V2‘V1‘VO‘

Figure 3.2: A cube in the grid, the numbering of its vertices, and its index represen-
tation.

The isosurface intersects only the cube edges that have a flagged vertex in one end
and an unflagged vertex in the other end. FEach cube marking scenario encodes
a cube—isosurface intersection pattern or configuration, that correspond to a spe-
cific set of triangles that represent part of the surface within that cube. However,
if complementary, rotational and reflective—mirror symmetries are considered the
number of the intersection pattern topologies can greatly be reduced. These types
of symmetries are illustrated in Fig. |3.3]

In particular, cubes C' and C' exhibit complementary symmetry when each corre-
sponding vertex across the cubes has an inverse marking status. For example, if a
vertex is marked in cube C, then the corresponding vertex in cube C is unmarked,
and vice versa. For the MC algorithm, complementary symmetric cubes yield iden-
tical patterns of intersections between the cube and the isosurface, although the
surface normals are opposite.

Additionally, cubes C' and C” are considered rotationally symmetric if cube C' can be
rotated through a series of transformations R, so that the vertex markings at each
transformed vertex in the new orientation are identical to the vetrex markings at the
same position in C’. Rotationally symmetric cubes have equivalent cube—isosurface
intersection patterns and the triangulation patterns vary only rotationally by the
aligning transformation R.

Lastly, cubes () and Q* are reflection or mirror symmetric if their vertex markings
are symmetric about some face of Q. [38, [39]. These relationships are illustrated
in Fig. , where cubes C' and C' demonstrate complementary symmetry, C' and C”
rotational symmetry and @ and Q* reflection/mirror symmetry.
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Complementary (C - C’) symmetry Rotational (C - C') symmetry

o——_t 9 g P —up
I|l b | I| i |
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C C

Reflective-Mirror (Q - Q*) symmetry

Figure 3.3: Three Types of symmetries (Complementary, Rotational, Reflective—
Mirror) in the case scenarios.

The number of cube—isosurface intersection patterns or configurations, under various
symmetries, is outlined in Table [3.1] following the methodology outlined by Roberts
and Hill. [40].

Table 3.1: Number of intersection patterns (configurations) considering different
symmetries

Symmetry exploited # topologies
None 256
Complementation 128
Rotation 23
Rotation + reflection 22
Rotation + complementation 15
Rotation + complementation + reflection 14

The original MC considers rotational and complimentary symmetry, which results
in the reduction from 256 to 15 unique cube-isosurface intersection cases. These
intersection topologies are built offline prior to the application of the algorithm. In
Fig.[3.4] the original MC look-up table is presented as introduced in [22]. Note that
mirror symmetry is not considered: configurations 11 and 14 are treated indepen-
dently.

The isosurface—edge intersection locations can be estimated using an interpolation
technique. Standard MC employs linear interpolation to estimate the intersection
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Figure 3.4: The original 15 triangulation configurations of the Marching Cubes al-
gorithm (similar to [22]). Nodes in white are outside the isosurface, whereas in black
inside the isosurface. Generated triangles in grey with their respective normals de-

picted as a green arrow. A maximum of 4 triangles can be generated from the original
MC' algorithm.

point for each intersected edge. The same interpolation scheme is incorporated in
this thesis, and is expressed as follows: If a unit-length edge e has end points V; and
V5 each with their own scalar value f; and fs, respectively, then given an isovalue

a, the position vector of the intersection 75 = (7is,, Tisy,ﬁsz) has coordinates of the
form:

Fis = Tv1 + p(Tv2 — Tv1) (3.1)
where f
a— ]

— 3.2

Sl — (3:2)
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The last step in MC regards the generation of triangular facets that represent an
approximation to the isosurface. The vertices of the triangles are the isosurface—edge
intersection points and, hence, the collection of the triangular facets across all the
cubes forms the triangular surface mesh (or meshes) that defines the isosurface.

3.1.2 Handling Ambiguities

After the introduction of the MC algorithm, extended literature has been published
regarding various inaccuracies of the topologies produced by the algorithm [41] [42],
43, [44], [45], [46]. The latter are due to the multiple ways some of the scenarios can be
facetized. Accordingly, these topologies are referred to as ambiguous. Ambiguities
are classified as face ambiguities and internal ambiguities and relative resolution
schemes are proposed.

Ambiguous face

Any face of the cube where there are both two diagonally opposite marked grid
points and two diagonally opposite unmarked nodes is an ambiguous face. In this
case all four edges of the ambiguous face are intersected by the isosurface. For the
ambiguous face, the information is insufficient to decide how to connect the vertices
on the edges. The face ambiguity is represented in 2D in figure 3.5, An ambiguous
face shared by two adjacent cubes will result in inconsistent facetizations as depicted
in figure which is referred in literature as the ‘hole problem’, initially highlighted
in [41].

Figure 3.5: An ambiguous face. l ‘
Nodes inside the isosurface in black. = —
Two different ways the isosurface (gray
lines) can intersect the face.

Figure 3.6: A hole ‘grey’ generated by
the traditional MC' algorithm.

Many resolution schemes have been proposed for constructing topologically correct
isosurfaces when encountering ambiguous faces. Some approaches propose criteria
for the disambiguation of the cases, based on an analysis of the variation of the scalar
variable across the ambiguous face [42, [43]. Since face ambiguity primarily arises
from the exploitation of complementary symmetry, a straight forward approach is
to only use rotational symmetry [44]. A simple and effective solution extends the
original 15 MC cases by adding additional complementary cases. These cases are
designed to be compatible with neighboring cases and prevent the creation of holes
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on the isosurface [45]. The 8 complementary cases required, namely Oc, le¢, 2¢, 3c,
4c, He, 6¢, Tc are reproduced in Fig. |3.9. Three examples of the ‘hole’ problem and
their resolution with the extended triangulation are shown in Fig. 3.7

24

Original

y
R
il

Extended

Figure 3.7: Three examples (from left to right) of the ‘hole problem’ and the res-
olution with the extended triangulation cases. Nodes in black considered inside the
isosurface, generated triangles in grey. From [39)].

Internal ambiguity

Even in the absence of ambiguous faces, a cube can still exhibit internal ambiguity.
This type of ambiguity doesn’t lead to topological errors; however, it can result in an
inaccurate representation of the isosurface. Internal ambiguity may occur in cases
that two diagonally opposed vertices of the cube are inside the isosurface (Cases 4,
6, 7, 10, 12, and 13 of the original MC algorithm [22]). Given the absence of infor-
mation regarding the isosurface’s behavior within the cube, one might hypothesize
that the vertices are connected within the cell. Some approaches use ‘linking’ facets
to create ‘tubes’ or ‘tunnels’ that bridge different segments of the isosurface. Fig-
ure depicts the standard facetization for Case 4 and an alternative facetization
approach that avoids disjoint facets [46]. In this thesis, internal ambiguity within
the MC algorithm is not addressed. This is due to its infrequent occurrence and
the high resolution of the samples being processed, which mitigates the potential for
such ambiguity. Furthermore, the computational processing time required to handle
internal ambiguity is deemed excessive.
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Figure 3.8: Case 4 internal ambiguity: (a) disjoint faces, (b) joint faces. From [{3].

Figure 3.9: Complementary cases of the original 0, 1, 2, 3, 4, 5, 6, 7 configurations
to directly resolve ambiguities.
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3.2 Adaptation for Hybrid Grids

In the context of CFD analysis and TopO, one often deals with hybrid grids that
combine various element types. While the MC algorithm primarily focuses on cubic
grids, its principles can be adapted for different cell shapes [37,[47]. In the context of
this thesis, the adaptation of the algorithm to also handle hybrid grids, which contain
hexahedra, prisms-wedges, pyramids, tetrahedra, and quadrilaterals is presented.
Both types of grids are visually depicted in Fig. [3.10

(a) (b)

Figure 3.10: Two types of computational grids. (a) A 3D structured grid with
only hexahedral elements. (b) A 3D unstructured grid containing hexahedra, prisms,
pyramids & tetrahedra.

3.2.1 Marching Elements - Formulation of cases

Hexahedra

Hexahedral grids consist of six—faced, eight—node cells essentially deformed, but
topologically consistent, cubes. The algorithm’s adaptation for hexahedra grids
adheres to the MC algorithm’s core outline. Each vertex of the hexahedron is
assigned a binary value, 1 for inside, 0 for outside the isosurface, hence the 8-bit
hexahedron index is determined. For hexahedron edges that have one vertex inside
and one vertex outside the surface, the exact intersection points of the surface with
these edges are calculated by means of linear interpolation. The intersection points
are then used to create the triangles that represent the section of the isosurface
inside the hexahedron. The 23 extended triangulation configurations for the cubes
are utilized for the hexahedra, presented in Fig. [3.11
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12 13 1

Figure 3.11: The Marching Hexahedra 23 triangulation configurations. Generated
triangles in grey with their respective normals depicted as a green arrow. A maximum
of 5 triangles can be generated from the extended MH algorithm.
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Prisms

A similar formulation is assumed in the case of five-faced, six-node prisms, or
often referred as wedges. A 6-bit prism index is used to access the 25 = 64 cases,
reduced to 15 when rotational symmetries are incorporated. The Marching Prisms
15 triangulation configurations are depicted in Fig. [3.12

Figure 3.12: The Marching Prisms 15 triangulation configurations
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Pyramids

Pyramids are often used in grids as transitional elements between hexahedra and
tetrahedra. Each pyramid is made up of 5 vertices, therefore in Marching Pyramids a
5-bit index is incorporated, encoding the 2° = 32 cases which are reduced to 12 when
rotational symmetries are accounted for. The Marching Pyramids 12 triangulation
configurations are demonstrated in Fig. [3.13
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Figure 3.13: The Marching Pyramids 12 triangulation configurations

Tetrahedra

Tetrahedra are the simplest 3D polyhedra, with four nodes and four faces. For a
tetrahedral cell, 2* = 16 cases exist, of which only 5 configurations are unique due to
rotational symmetries. Figure [3.14] reproduces the 5 unique tetrahedron-isosurface
configurations.
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Figure 3.14: The Marching Tetrahedra 5 triangulation configurations

Quadrilaterals

In CFD analysis, wall boundary conditions are used to simulate the interaction be-
tween the fluid and solid boundaries within the computational domain. They are
crucial for accurately predicting the flow behavior and properties near the walls. In
order to include the defined boundary, a Marching Quadrilaterals scheme is pro-
posed. Since there are four vertices in quadrilaterals there exist 2* = 16 possible
marking scenarios for the vertices. Attention is given so that the configurations are
compatible with existing configurations of the boundary cells of the grid, since the
boundary is composed of the boundary faces of those cells. Note that in this formu-
lation of quadrilateral cases the vertices also take part in the triangulation alongside
the edge—isosurface intersections. Considering rotations, 6 unique configurations
exist depicted in Fig. |3.15
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Figure 3.15: The Marching Quadrilaterals 6 triangulation configurations. Boundary
nodes inside the isosurface in black, outside the isosurface in white. Generated trian-
gles in grey with their normals (green arrow).
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3.2.2 Thesis Impact

The above methodology has been rigorously studied and implemented in the current
thesis, thus resulting in specific contributions summarized below:

e Adaptation of the Marching Cubes triangulation look—up tables from the lit-
erature [23] in the C++ implementation. Formulation of the appropriate Data
Structure and implementation of the algorithm for the case of cubic structured
grids.

e Formulation of triangulation look—up tables [A] for the other element types
and the boundary. Adaptation of the Data Structure and revised algorithm
implementation for the case of hybrid grids.

e Algorithm integration in two relevant environments, namely laboratory in—
house environment & within the open-source CFD toolbox of OpenFOAM®.

e Assessment of implemented algorithm in a variety of use case scenarios.



Chapter 4

Algorithmic Implementation

In the current chapter we present in detail the implementation of the Topology—
to—Shape Transition using Marching Algorithms. At first a general overview of the
algorithm is given, and its components are analyzed in detail. Also the mathematical
schemes and the Data Structure incorporated in this thesis are outlined. Attention
is payed in the capability for parallelization and a running example is introduced as
a vehicle to demonstrate and explain the algorithm’s operation.

4.1 Algorithm overview

The first stage of the algorithm is the input of the computational mesh. The mesh
geometry can be loaded either from the in-house format or from the OpenFOAM®©
environment. Following that the porosity S field is loaded as a cell-centered field or
as a vertex—centered field. In cases where the 3 field is cell-centered, an additional
step is required to make the data compatible with Marching Algorithms, that re-
quire the scalar field at the vertices as discussed in Chapter |3 A volume-weighted
interpolation scheme is employed to estimate the field at the vertices. The Data
Structure is also generated and unique edgelDs are attributed to the edges of the
mesh. Each element of the mesh is then processed with the appropriate Marching
Algorithm, according to its type. The final step of the process is the generation of
the output file that contains the collection of the triangles that form the FSI surface
mesh representation. The entire process is summarized in a block diagram presented

in Fig.

27
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Start

Read Mesh Geometry & Connectivity

Read (8 Field

l

Is B vertex—
centered?

Volume-weighted interpolation

Create Data Structure-Edge Numbering

Process Elements —l

Element
Hexaljedron Bourndary
Marching Marching
Hexahedra Quad/s
Marching Marching Marching
Prisms Pyramids Tetrahedra

Generate Triangles—File output

‘ End ’

Figure 4.1: Flow chart of the proposed algorithm for the Topology-to-Shape transi-
tion. Processes in orange, decisions in green, Marching Algorithms in blue.
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Each process of the Block Diagramm of Fig. is described in detail.

4.2 Mesh Geometry and Connectivity Input

The developed algorithm is designed read and handle two input file formats, (1) the
in-house input file format of the PCOpt/NTUA or (2) the OpenFOAM® file format
from the working directory of the case.

4.2.1 The in—house input file format of PCOpt/NTUA

The in—house input file format is describes the computational grid in a set of two
files, which are:

e the .nod file, containing the z, y, 2z coordinates of all the nodes.
e the .hyb file, containing the element connectivity of the grid.

The .nod file is the first file describing the computational grid holding the x, y, 2z
coordinates of all the nodes. In the first line of the file the total number of nodes
is written, while in the next three lines the x, y and z coordinates of each node are
written as shown in Fig

nbNodes

nodeX"' nodeX? nodeX?® ...nodeX™
nodeY " nodeY? nodeY? ...nodeY™

nodeZ' nodeZ? nodeZ? ...nodeZ™

DWW N -

Figure 4.2: Representation of the .nod file structure where nodeX®, nodeY’ and
nodeZ* are the x, y and z coordinates, respectively, of the i'" node.

The .hyb file is the second file describing the computational grid, containing the
element connectivity. In the first line of the file the total numbers of tetrahedra
(nbTet), pyramids (nbPyr), prisms (nbPri) and hexahedra (nbHex) is written. In
the following lines, the nodal IDs of each element are written as shown in Fig [4.3]
where iTet! iTet? iTet® iTet*, for example, are the nodal IDs of the nodes of the
i'" tetrahedron. The nodal IDs of each element type are written in a separate line.
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nbTet nbPyr nbPri nbHex

Lt Tet! thTet? ithTet? ithTett . ..

Lt Pyrt it Pyr? ith Pyr3 ¢t Pyrt ith PyrS

At Prgt it Prg? §th Pri3 ith Prit it Pri® it Prib

it Hext ithHeax? ith Hea® ith Hex* ith Hex® it Hex® it Hex" it Hex® . ..

a > W N -

Figure 4.3: Representation of the .hyb file structure.

4.2.2 The OpenFOAM® mesh description format
A mesh description in OpenFOAM® consists of the following:

e List of points: Point index is determined from its position in the list

e List of faces: A face is an ordered list of points, the order defines the face
normal.

e List of owner-neighbour addressing (defines owner cell of face and its neigh-
bour pointed by its normal)

e List of boundary patches, grouping external faces

The OpenFOAM® mesh is stored in the constant /polyMesh sub-directory of a case.
This polyMesh directory contains files that provide all the information above in
order to define the mesh. The schematic representation of the mesh description is
presented in Fig. . The algorithm can be integrated within an OpenFOAM® case
environment to derive a mesh description and proceed with the FSI extraction.

caseDirectory
Goisan
t polyMesh
— points
faces
L system — neighbour
\—EI — boundary

Figure 4.4: An OpenFOAM®@ case mesh description.
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4.3 Volume weighted cell center to vertex inter-

polation

To interpolate a field from the cell centers to the vertices of the computational grid,
a volume weighted interpolation scheme is used. The values at the vertices are
calculated by the contributions from adjacent cells based on the volume.

Volume calculation

The volume of a cell in a three-dimensional space can be calculated using the Di-
vergence Theorem, also known as the Flux Theorem. The theorem relates the flux
of a vector field through a closed surface to the divergence of the field within the
volume enclosed by the surface. The divergence theorem is given by:

/v.ﬁdvz/ﬁ-ﬁds (4.1)
\%4 S

where F is a vector field and S is the closed surface enclosing the volume V and 7
is the unit vector perpendicular to S at each point, pointing outwards of the cell.

When the surface S is composed of
triangular elements, the calculation can

be simplified. B
For a triangular face with vertices at "
A, rp, and r¢, the centroid r¢ is at: P
. _ratrg+re Y
rg = —"—(—""—" (42) T
3
and the area vector dS' is:
| Figure 4.5: Tetrahedron
dS = =(rf — 74) x (e — 17) (4.3) composed Qf triangulqr faces
2 demonstrating the divergence

theorem for volume calculation.

Using the vector field F = 7 (position vector) and its constant divergence in three
dimensions:

o 0 0 ory Ory, Or,
ver (83:’834’82) (ra 7y 72) o Dy s T 3 44

the volume V' can be calculated via the individual contributions 5 - 77 dS of all the
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triangles of the surface, yielding:

o Lo 1 R
/‘/V-rdV:/S'r’-ndS% V=3 > rg-ids (4.5)

triangles

Interpolation Scheme

The interpolated value of § at a node N, denoted as [y, is calculated using a
weighted average of the values (3; at the centers of the neighboring cells with volumes

Vi >
Bi- Vi
BN _ cells (4 6)
Ecells ‘/l

4.4 Data Structure

A great advantage of the element—by—element processing of the proposed algorithm
is that each edge—isosurface intersection location 75 (Eq. needs to be computed
only once. The intersection point can be reused during later processing of neigh-
bouring elements that share the edge. This observation dictates the need for a Data
Structure to map all the edges of the computational grid and hold information for
those that are intersected. Consequently, following the initial loading of the com-
putational grid, the subsequent step involves establishing this data structure, which
facilitates the comprehensive mapping of all grid edges.

4.4.1 Edge numbering

A local node and edge numbering is considered for each element type. In Fig. 4.0 the
local numbering for Hexahedra, Prisms, Pyramids, Tetrahedra, and Quadrilaterals
is established, whereas an algorithm that implements the edge numbering is outlined
in Algorithm [l The local numbering of an element’s edges would be attributed
to the edge map for the first element being processed. Each successive element
being processed would consider at first the local numbering plus the current edgelD,
kept track through a counter. If the edge is shared with processed elements and
already numbered it would retain its original numbering. The edges of the elements
are represented by the pairs of the nodelDs that they connect, ensuring that the
smaller nodelD is always first. The pair of nodelDs is used as a key in a hash table
to access the edgeMap that contains the edgelDs. The above procedure ensures that
each edge is assigned a unique edgelD.
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Hezahedron Prism Pyramid
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Figure 4.6: Nodes and edges local numbering for each element type.

Algorithm 1 Data Structure Processing for Edges

1: procedure EDGENUMBERING (elements, edgeMap)

2 counter <0

3 for all elements do

4 for every edge in element.edges do

5: nodePair < {min(edge.nodelD), max(edge.nodelD)}
6 if nodePair not in edgeMap then

7 edgeMap[nodePair] < edgeld

8 edgeld < counter

9: counter <— counter + 1

10: end if

11: end for
12: end for

13: end procedure

4.4.2 Running Example

Without loss of generality, a running example that refers to a simple object con-
sisting of 4 element types (an hexahedron, a prism, a pyramid and a tetrahedron)
is introduced to demonstrate the edge numbering produced by the Data Structure.
In Fig. [4.7) the process of assigning unique edgelDs to all the edges of the running
example’s grid is presented.
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Element Nodes

0: (0,1,2,3,4,56,7) edgeMap
P(2,8,3,6,9,7) Edge ID  Node ID Pair
5,6,7,1

9,7, 1 ) 0 (0, 1)

1 (1, 2)

2 (2, 3)

3 (0, 3)

4 (4, 5)

) (5, 6)

6 (6, 7)

7 (4, 7)

8 (0, 4)

9 (1, 5)

10 (2, 6)

11 (3, 7)

12 (2, 8)

(a) Element numbering in blue and Node 13 (3, 8)
numbering in black for running example 14 (6, 9)
15 (7,9)

16 (8,9)

17 (4, 10)

18 (5, 10)

19 (6, 10)

20 (7, 10)

21 (9, 10)

(¢) EdgeMap created by the Data
structure where unique edgelDs are
assigned to the edges of the running
example. Fach edge is identified by
(b) Edge numbe'm;ng mn purple for the the pair Of nodelDs it connects with
edgeMap created by the Data Structure the minimum nodelD first.

for running example

Figure 4.7: Running example containing 4 elements, an hexahedron in blue, a prism
mn , a pyramid in and a tetrahedron in . Each element is characterized
by its nodes in the specific order. To create the Data Structure the algorithm parses
each element and assigns unique edgelDs to newly encountered edges. The element
and node numbering presented in (a) and the edge numbering in (b). The created
edgeMap that contains the information of the edges is presented in (c).
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4.5 Element processing — Generation of Triangles

After the computational grid is loaded from the input files and the Data Structure
has been created, an initialization of three arrays takes place. These arrays facilitate
the comprehensive tracking of which edges have been processed, hence a new vertex
or Iso-Node has been calculated on them, and the organized storage of those Iso—
Nodes for later retrieval. In more detail the algorithm initializes:

e An array of booleans, edgesBool, to track processed edges.

e An array, edgesCounter, which stores IDs of vertices calculated by means of
linear interpolation between the pair of nodes of an edge.

e A array, Isonodes, holds the coordinates of these vertices.

This approach ensures that no duplicate nodes are produced and allows for the
parallel processing of elements, accessing and storing information for the current
state in a unified environment for the whole grid. For each element being processed
a binary Index is calculated based on which nodes are flagged or unflagged with the
logic explained in Section [3.1.1] The procedure for the calculation of an element’s
Index is outlined in Algorithm

Algorithm 2 Determine Element’s Index

1: procedure ELEMENTINDEX (elements)

2 for every clement in elements do

3 ElementIndex < 0

4 for every node in element.nodes do

5: if node.value < isosurface value then

6 ElementIndex < Elementldnex | (1 < node.position) > Set bit
7 end if

8 end for

9: end for

10: end procedure

The operation ElementIndex < ElementIdnex | (1 < node.position) at line
6 of the algorithm, sets the bit at ‘node.position‘ in ‘ElementIndex‘. This is achieved
by left—shifting 1 by ‘node.position‘ bits, resulting in a binary number where only
the bit at ‘node.position‘ is set to 1. This number is then combined with the current
‘ElementIndex‘ using the bitwise OR operator. Given the calculated index the
algorithm consults pre-compiled look—up tables, listed in Appendix [A] that dictate
in which edges a vertex should be interpolated and how to triangulate the created
vertices to obtain the configuration. With the running example introduced earlier
in Fig. 4.7 the conduct of the algorithm will be explored. If we assume that node
7 of the grid is inside the isosurface, thus it is flagged, then every element will have
a flagged node, as depicted in black in Fig. 1.8
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Figure 4.8: Running example with
the assumption of node 7 inside the

isosurface/flagged.

(a) Calculation of element’s index, re-

For simplicity in the example the elements
will be processed sequentially, one element at
a time. In reality many elements can be pro-
cessed in parallel on different CPUs, all ac-
cessing and modifying the same Data Struc-
ture. The processing of the elements is de-
picted in Fig. [£.9] The processing of the ele-
ment involves the (a) calculation of its index
and the retrieval of the configuration, (b) the
update of the edgeMap, (c) the interpolation
of new nodes on the edges, (d) the generation
of the appropriate triangles.

(b) EdgeMap components update

trieval of configuration and transition to

global edges. edgeMap
Nodes Edge ID Bool Counter
Local | 7|6 |5 21110 :
Global | 7|6 | 5 21110 6 g1 9
Index | 1010 0(0]0 7 g1 0

(¢) Generation of new Nodes with (d) Triangle formation with ordered

interpolation scheme

connection of Nodes

Figure 4.9: Processing of the elements of the running example. Hexahedron being
processed first. Sequence of events in the algorithm (a)-(b)—(c)-(d).
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Local Nodes |54 (3]|2]110

Global Nodes | 79 |6 |3 |82 /’ éJIOCballeddges 1;1_2_5131
Index 11ololololo obal edges -6-

edgeMap
Edge ID Bool Counter

7 1 0
11 1 1

Local Nodes | 4 |32 ]|1
Global Nodes | 10 | 7|6 | 5
Index 01110

o

Local edges | 2-7-3
Global edges | 6-20-7

(a]
O =~

edgeMap
Edge ID Bool Counter

D
[\)

7 1 0
11 1 1
15 1 3

20 g —1 4

Figure 4.9: Processing of the next two elements: (Top) Prism, (Bottom) Pyramid.
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Local Nodes | 5

Global Nodes | 7|96 | 3|38 /’ éiloialleddges 1;)_;)26
Index 11ololololo obal edges -20-

edgeMap
Edge ID Bool Counter

W
w
[\
—
=)

(\]

7 1 0
o1
513
01 4

Figure 4.9: Processing of the last element, the tetrahedron. No new nodes need to
be generated and the algorithm wutilizes the ones already calculated and stored at the
edgeMap.

4.6 File output

The output file generated by the algorithm contains the collection of triangles com-
prising the surface mesh of the FSI. The output file can take the form of the in-house
file format or the form of an STL (STereoLithography) file compatible with a broad
range of software and hardware used in Computer Aided Design (CAD) and Man-
ufacturing (CAM). The STL also consists the most popular surface input format of
(commercial) mesh generators. Thus, the surface can be provided directly to a mesh
generator for re-meshing. It can also be exported to a VTK (Visualization Toolkit)
file format for visualization in ParaView.



Chapter 5

Applications

In this chapter, the proposed algorithm is demonstrated in a number of sample com-
putational grids and scenarios, ranging from simple geometric shapes to industrial
applications. These applications illustrate the algorithm’s versatility and effective-
ness in different contexts. Starting with basic geometric forms, the algorithm is
applied to extract spheres from scalar fields in cubic, tetrahedral, and hybrid grids.
More intricate applications are then explored by re—extracting models from the Stan-
ford 3D Scanning Repository imported within computational meshes. This tests the
algorithm’s precision and its capability to handle detailed geometrical data. The
chapter concludes with industrial applications, focusing on the extraction of TopO
designs of heat exchangers.

5.1 Spheres

The first application of the proposed algorithm is performed on a scalar field de-
creasing outwards proportional to the distance (radius) from the center, to extract
the shape of a sphere. This is performed in 3 types of grids,

e a cubic structured grid of 60x60x60 nodes
e a tetrahedral grid of 174 nodes containing 507 elements

e a hybrid grid of 1340 nodes containing 3740 elements (225 hexahedra, 540
prisms, 45 pyramids, 2930 tetrahedra.)

Following that, more spheres are added to the computational domain to investigate
the interference of the surfaces.

39
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5.1.1 Sphere on cubic grid

Herewith, the use case that regards a computational grid of 60 x 60 x 60 nodes
containing hexahedral elements with a field § applied to it, is treated. Figure [5.1
illustrates the extraction of the sphere’s surface.

(a) Computational domain of cubic .
elements (60x60x60 nodes) (b) Spherical 3 field

“ ¥
(c) Section of the field with isosur- () Surface‘mesh of isosurface § =
face B = 0.45 0.45 comprised of 12432 nodes and

24860 triangular elements

Figure 5.1: Application of the algorithm on a cubic computational grid (60x60x60)
with a field 5 applied to it. (a) The cubic computational grid and (b) its B field,
(c) Section of the computational grid with the extraction of the 0.45 isosurface, (d)
Surface mesh of triangular elements (STL file output) of the 0.45 isosurface comprised
of 12432 nodes and 24860 triangular elements.
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Figure [5.2] provides a slice view of the computational domain with a comparison of
the TtoST radius with the nominal. It is evident that the application of the method
in the high resolution background grid yields a near perfect representation of the
sphere with little deviation of its radius from the nominal (Table [5.1)). Isolines of
the nominal radius along with the resulting TtoST sphere are plotted in Fig.

— Nominal
— TtoST

:
O0ss  OF 04 08 08 10ae0
-— e

Figure 5.2: Slice view of the nominal sphere radius and the extracted surface mesh
from TtoST.

Table 5.1: Dewviation of the TtoST ra-
dius from the nominal value

Deviation TtoST - Nominal

Min —8.05454 x 107°
Max —1.44176 x 107°
Mean —2.72957 x 107°
o 2.17697 x 107°

Figure 5.3: Isolines of the nominal
radius along with the extracted surface
mesh from TtoST.
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5.1.2 Sphere on tetrahedral grid

Herewith, the use case that regards a computational grid of tetrahedral elements,
comprising of 174 nodes and 507 elements, with a field 5 applied to it, is treated.
Figure [5.4) illustrates the extraction of the sphere’s surface.

Pt
Oledd 02 04 06 08 Towe00

(a) Computational domain of 507

tetrahedral elements (b) Spherical B field

T
OhestD 02 o4 o 08 Towe00
— | ch—

(c¢) Section of the field with isosur-

face 8= 0.6 (b) Isosurface 0.6 depicting a Sphere

Figure 5.4: Application of the algorithm on a tetrahedral computational grid com-
prising of 174 nodes and 507 elements with a field  applied to it. (a) The hybrid
computational grid and (b) its B field, (c) Section of the computational grid with the
extraction of the 0.6 isosurface, (d) Surface mesh of triangular elements (STL file out-
put) of the 0.6 isosurface comprised of 210 nodes and 416 triangular elements. Low
resolution of the initial domain results in low quality of the resulting sphere.
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Figure [5.5| provides a slice view of the computational domain with a comparison of
the TtoST radius with the nominal. The application of the method in this poor
resolution background grid yields a low quality representation of the sphere with
some deviation of its radius from the nominal (Table [5.2). Isolines of the nominal
radius along with the resulting TtoST sphere are plotted in Fig.

— Nominal

ST

FieidData
00=+00 02 od 08 0F  10=e00
| L

o

Figure 5.5: Slice view of the nominal sphere radius and the extracted surface mesh
from TtoST.

Table 5.2: Deviation of the TtoST ra-
dius from the nominal value

Deviation TtoST - Nominal

Min —2.9259 x 1072
Max —6.8738 x 107*
Mean —9.3212 x 1073
o 6.6561 x 107*

Figure 5.6: Isolines of the nominal
radius along with the extracted surface
mesh from TtoST.
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5.1.3 Sphere on hybrid grid

Herewith, the use case that regards a hybrid computational grid comprising of 1340
nodes and 3740 elements (225 hexahedra, 540 prisms, 45 pyramids, 2930 tetrahedra)
with a field 8 applied to it, is treated. Figure illustrates the extraction of the

sphere’s surface.

(a) Computational domain of 3740
elements

(c¢) Section of the field with isosur- (d) Isosurface 0.52 depicting a
face B =0.52 Sphere

Figure 5.7: Application of the algorithm on a hybrid computational grid compris-
ing of 1340 nodes and 3740 elements (225 hexahedra, 540 prisms, 45 pyramids, 2930
tetrahedra) with o field B applied to it. (a) The hybrid computational grid and (b) its
B field, (c¢) Section of the computational grid with the extraction of the 0.52 isosur-
face, (d) Surface mesh of triangular elements (STL file output) of the 0.52 isosurface
comprised of 848 nodes and 1692 triangular elements.
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Figure [5.8| provides a slice view of the computational domain with a comparison of
the TtoST radius with the nominal. The application of the method in this medium
resolution background grid yields a good quality representation of the sphere with
slight deviation of its radius from the nominal (Table [5.2). Isolines of the nominal
radius along with the resulting TtoST sphere are plotted in Fig.

— Nominal
TtoST

-

FisddDarta
00=+00 02 04 as 048  1Des00
I i

Figure 5.8: Slice view of the nominal sphere radius and the extracted surface mesh
from TtoST.

Table 5.3: Dewviation of the TtoST ra-
dius from the nominal value

Deviation TtoST - Nominal

Min —8.2492 x 1073
Max —4.7228 x 1077
Mean —1.3942 x 1073
o 1.3625 x 1073

Figure 5.9: Isolines of the nominal
radius along with the extracted surface
mesh from TtoST.
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5.1.4 Two spheres on cubic grid

The same cubic computational grid (60x60x60 nodes) used in Section 1s incor-
porated. A [ field is introduced similar to the one used before, although this time
for two distinct sources, depicting two spheres. Figure [5.10] presents the application
of the algorithm for the extraction of two spheres.

i i
F F

o 2002 os 10e+00 o 2002 os 10e+00

-_— -_—

Figure 5.10: Application of the algorithm for the extraction of two spheres. (Left)
Section of the [ field, (Middle) Section with isosurface = 0.725, (Right) Surface
mesh of isosurface B = 0.725.

The scope is to demonstrate how the algorithm handles surfaces based on their
relative positions within the grid’s cells. If the surfaces of the spheres are separated
in different cells, the algorithm can differentiate between the two surfaces, generating
two distinct isosurfaces. If the surfaces of the spheres are separated within the same
grid cell, the algorithm fails to distinguish them, since a grid cell’s interior is not
further subdivided. As a result, it generates a single connected isosurface across
both spheres, interpreting them as a single entity, illustrated in Fig. [5.11}

Figure 5.11: (Left) Separation of the spheres when the isosurface intersects different
cells of the grid. (Right) Merging of the spheres when isosurface intersects twice the
same cells. Spheres equally spaced apart only their position in the grid is changed.
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5.1.5 Four unequal spheres on hybrid grid

The same hybrid computational grid used in Section [5.1.3|is incorporated. A  field
is introduced, although this time depicting four spheres. Figure [5.12] presents the
application of the algorithm for the extraction of four spheres. In this example the
low resolution of the background grid along with the relative size of the spheres and
the size of the elements of the grid, results in merging of the surfaces of the spheres.

Felciots Felciots
00400 0F 04 04 02 10600 0000 0F 04 04 0F |Dedd

' — !
(a) Computational domain with [ (b) Section of the B field with isosur-
field of four spheres face B = 0.8 depicting four spheres

(¢) View 1 of four spheres extracted (b) View 2 of four spheres extracted
from isosurface 5 = 0.8 from isosurface § = 0.8

Figure 5.12: Application of the algorithm on a hybrid computational grid with a four
spheres field 8 applied to it. (a) The hybrid computational grid with its 8 field, (b)
Section of the computational grid with the extraction of the 0.8 isosurface, (c¢,d) Two
views of the surface mesh of triangular elements (STL file output) of the 0.8 isosurface
depicting four spheres comprised of 401 nodes and 794 triangular elements. Due to
the low resolution of the grid, the 4 spheres are interfering within common elements
of the grid, leading to their merging from the algorithm.
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5.2 Stanford 3D Scanning Repository’s Models

Two models from the Stanford 3D Scanning Repository [26] are imported into a
computational domain with a cell-centered porosity field, 5. The field is initially set
to 8 = 0 throughout the domain. Then employing the searchableSurface tool, a fea-
ture of OpenFOAM®©that allows the embedding of surfaces into the computational
mesh, the cells within the mesh that are inside the geometry’s surface are marked,
adjusting their value to § = 1. The proposed algorithm is used to re—extract the
the surface.

5.2.1 The ‘Stanford Bunny’

The “Stanford Bunny” is a well-known 3D
model, seen in Fig.[5.13] from the Stanford 3D
Scanning Repository. This model is suitable
to examine the algorithm’s ability to capture
the intricate details of the surface. The model
is imported in a computational grid contain-
ing 115 x 95 x 105 = 1.256.375 elements in the
(x,y,z) directions. The computational domain,
section of the f3 field and views of the resulting

output geometry are shown in Fig. [5.14] Figure 5.13: The ‘Stanford
Bunny’ (from [20]).

(a) (b) (c)

Figure 5.14: (a) Computational domain, (b) section of the cell-centered 3 field with
blue cells outside the surface (8 = 0) and red cells inside the surface (6 =1). (c)
Section of the B field with isosurface 5 = 0.5 extracted depicting the bunny model.
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(a) Front left (b) Front right (c) Back left

Figure 5.14: Views of the extracted isosurface = 0.5, depicting the bunny model.
(a) Front left, (b) Front right and (c) back left views.

Figure provides a comparative detail view of the original (a) and the extracted
(b) surface mesh associated with the bunny model. The original surface mesh, as it
is imported into the computational domain, is characterized by localized refinement,
which enriches the detail in more intricate regions of the model. The extracted mesh
is characterized by a consistent resolution throughout, dependent on the grid’s res-
olution. While this results in a less refined (pixelated) representation, particularly
in areas that would benefit from higher resolution, the extracted mesh is neverthe-
less deemed acceptable. It should be noted that some detail loss is inherent, not
only due to the mesh extraction process but also from the initial import into the
computational domain and the inherent resolution of that domain.

(a) Original surface mesh (b) Extracted surface mesh

Figure 5.15: Detail view of the (a) original surface mesh imported in the computa-
tional domain and (b) the extracted surface mesh from the field, readily available as
the output of our algorithm. The extracted surface mesh assumes a uniform resolution
and doesn’t have refined regions.



50 5. Applications

In Fig. |5.16 a slice view of the bunny model is presented for the comparison of the
original surface mesh and the TtoST resulting geometry.

— Original
— TtoST

Figure 5.16: (a) Slice view of the original surface mesh and (b) comparison of the
slice outlines from the original and the extracted surface mesh from TtoST.

5.2.2 Dragon

In the next example a dragon model, seen
in Fig. [5.17, from the Stanford 3D Scanning
repository is used. The model is imported in
a computational grid containing 296 x 140 x
202 = 8.370.880 elements in the (x,y,z) direc-
tions. The computational domain, section of
the ( field and views of the resulting output Figure 5.17: Dragon model
geometry are show in Fig. [5.18] (from [26))

(a) (b) (c)
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(d) (¢) (f)

Figure 5.18: (a) Computational domain, (b) Section of the § field, (¢) Section of
the B field with isosurface 5 = 0.5 depicting the dragon. (d) Back left, (b) Front right,
(c) front left views.

Similar to the bunny model (Section , Figure m provides a comparative de-
tail view of the tail, of the original (a) and the extracted (b) surface mesh associated
with the dragon model. The original surface mesh, as it is imported into the com-
putational domain, is characterized by localized refinement, adapting to the details
of the geometry. The extracted mesh is characterized by a consistent resolution
throughout, dependent on the grid’s resolution.

TN
BN
T

(a) Original surface mesh (b) Extracted surface mesh

Figure 5.19: Detail view of the tail of (a) the original surface mesh imported in the
computational domain and (b) the extracted surface mesh from the field, for the dragon
model. It is evident that the original surface mesh is fine tuned to the characteristics
of the surface. The extracted surface mesh, readily available as the output of our
algorithm, assumes a uniform resolution throughout the mesh and doesn’t have refined
regions, still retaining most of the details of the model.
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In Fig. |5.20 a slice view of the bunny model is presented for the comparison of the
original surface mesh and the TtoST resulting geometry.

—— Original
— TtoST

Figure 5.20: (a) Slice view of the original surface mesh and (b) comparison of the
slice outlines from the original and the extracted surface mesh from TtoST.

5.3 Industrial Applications — Heat Exchangers

The next applications regard the extraction of fluid paths produced from the TopO
design of heat exchangers. Three applications are presented, which are

e a 2D heat exchanger of 1 inlet and 1 outlet
e a Bi-fluid 3D heat exchanger of 1 inlet and 1 outlet
e a Bi-fluid 3D heat exchanger of 1 inlet and 8 outlets
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5.3.1 2D Heat Exchanger 1 Inlet 1 Outlet

In Fig. the TtoST process is illustrated for the case of a 2D heat exchanger of
1 inlet and 1 outlet. The heat exchanger is designed with a symmetry condition on
the top boundary.

(a) Computational domain

(c) Isosurface B = 0.5

M s

" TR

(d) Fluid-Solid Interface

Figure 5.21: TopO of a 2D Heat Exchanger of 1 Inlet and 1 outlet. (a) Computa-
tional domain, (b) the 5 field computed from porosity—based TopO, (c) the Isosurface
B = 0.5 under consideration and (d) the extracted FSI geometry using the proposed
algorithm.
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5.3.2 Bi-fluid 3D Heat Exchanger 1 Inlet 1 Outlet

Application of the algorithm in the case of a Bi-fluid 3D Heat Exchanger of 1 inlet
1 outlet for each fluid. In Fig. the TtoST process is illustrated and in Fig. [5.23
different views of the FSI depicting the ducts of the two fluids are presented.

. o
g
Z o

o L
(a) Computational domain

T [ i [

(b) Cold and Hot fluid ducts

(c) B field (d) Fluid-Solid Interface

Figure 5.22: TopO of a Bi—Fluid 3D Heat Exchanger of 1 inlet and 1 outlet for each
fluid. (a) Computational domain and (b) initial geometry of cold (blue) and hot (red)
fluid ducts. (c) The 8 field computed from porosity—-based TopO and (d) the extracted
FSI geometry using the proposed algorithm.
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-

(a) Top view (b) Bottom view

(c) Left view (d) Right view

Figure 5.23: Views of the extracted FSI of the ducts of the two fluids for the heat
exchanger. (a) Top, (b) bottom, (c) left, (d) right view.
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5.3.3 Bi-fluid 3D Heat Exchanger 1 Inlet 8 Outlets

This industrial application is derived from the work by Galanos et al. [5], where
a Bi-fluid 3D Heat Exchanger of 1 Inlet and 8 Outlets for each fluid, is designed
synergistically utilizing TopO and ShpO. The f field produced by TopO is provided
by the authors and used in this thesis to perform the TtoST generating the shape
representations of the two manifolds of the cold and hot fluids. Figure depicts
the initial sizing sizing of the design domain, the inlets for each fluid the outlets for
each fluid. In Fig. [5.25| sections views of the resulting porosity [ field are shown in
sample iso—y planes.

: 22mm 4
| H

1
| |
| H
| H
H H

(b) (c)

Figure 5.24: Initial sizing of (a) the design domain, the inlet for each fluid, hot (red)
and cold (blue), and (b) the 8 outlets for each fluid.

ax -"I JH

(a) Section wview (b) Section view (¢) Section view (d) Section wview
at y = 20mm at y = 16.5mm at y = 11mm at y = 5.5mm

Figure 5.25: Section views of the 8 field at different iso—y planes representing the
sought fluid paths.
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In Fig. the result from the TtoST process using the proposed algorithm is
presented. The two FSIs are extracted for the cold fluid manifold (5 = 0.25) and
for the hot fluid manifold (f = 0.75) from the porosity field. Figure depicts
combined views of the extracted manifolds.

(a) Isosurface = 0.25 (cold fluid) (b) Isosurface 8 = 0.75 (hot fluid)

(c) FSI of the cold fluid manifold (d) FSI of the hot fluid manifold

Figure 5.26: TtoST from the porosity field B for the two isosurfaces of the cold (blue,
B =10.25) and the hot (red, 5 = 0.75) fluid manifolds.
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Z 2
x ¥ L

(a) Isometric view (b) Side view
(c) Front view (d) Back view

Figure 5.27: Combined views of the generated FSI for the cold (blue) and the hot
(red) fluid manifolds. (a) Isometric, (b) Side, (¢) Front, (d) Back view.



Chapter 6

Summary - Conclusions

6.1 Overview

This diploma thesis programs a software tool for post-processing the outcome of
Topology Optimization (TopO) runs in fluid mechanics, focusing on the transition
from the resulting porosity fields to shape representations. This transition is impor-
tant in order to finalize the design under consideration for manufacturing purposes
or for overcoming inaccuracies of the standard porosity—based TopO, by enabling
the imposition of explicit boundary conditions on the sought FSI. The performance
of the design can then be evaluated with high—fidelity CFD solvers running on body-
fitted grids, and a linking with ShpO is possible to further refine the design. The
core of this work involved the detailed study of the Marching Cubes algorithm, an
established framework originally developed for the visualization of medical data.
A methodological innovation is introduced, expanding the idea of the algorithm to
handle both structured and unstructured/hybrid 2D and 3D grids. This adapta-
tion led to the development of ‘generalized Marching Algorithms’, enabling their
application in a variety of computational grids and real industrial applications.

The software is implemented in C++ and is now compatible with the CFD-based
Optimization (OpenFOAM®@and in-house) software of the Parallel CFD & Opti-
mization Unit of NTUA (PCopt/NTUA). The implementation involved the adap-
tation of the Marching Cubes triangulation look—up tables from the literature and
the construction of the appropriate Data Structure for the case of cubic structured
grids. Following that, the triangulation look—up tables for the other element types
(hexahedra, prisms, pyramids, tetrahedra) and the boundary are formulated, and
the adaptation of the Data Structure for the revised algorithm for unstructured and
hybrid grids is developed.
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60 6. Summary - Conclusions

The software is showcased in a number of applications ranging from simple geometric
forms, such as spheres, to complex industrial designs for the case of heat exchangers.
First the proposed tool was tested on cubic, tetrahedral, and hybrid sample grids
to extract the shape of spheres. This demonstrated the tool’s capacity to handle
different grid types and is was evident that the fidelity of the extracted shapes was
influenced by the grid’s resolution, with a notable difference in detail and accuracy
as the resolution of the background grid increases. Further tests involved extracting
multiple spheres to assess the algorithm’s capability to distinguish between close or
overlapping geometries. It was found that the algorithm could differentiate between
separate entities if they occupied distinct cells, but separate geometries within the
same cells were interpreted as a single entity. The tool’s precision and its ability to
manage detailed geometrical data were further tested by re-extracting models from
the Stanford 3D Scanning Repository imported within computational grids. The
‘Stanford Bunny’ and a dragon model were used to highlight the tool’s capability
to capture intricate details of the model. Finally, in the context of industrial appli-
cation, the tool showcased the ability to extract the sought FSI from the porosity
fields produced by TopO. The boundary was successfully incorporated in the result-
ing surface mesh.

6.2 Future Work

Based on the implementation of the proposed TtoST method for hybrid grids, the
following future work guidelines are proposed:

e Refinement of the algorithm to address internal ambiguities more effectively,
at a low cost for efficient processing of large—scale industrial applications.

e Automation of the transition process from TopO to ShpO within a unified
framework, streamlining the design process for complex systems. This would
include:

— Integration of the algorithm in the TopO workflow to extract the resulting
FSI as a final step of the TopO run

— Employment of a body-fitted grid generator on the resulting FSI to run
CFD analysis and obtain high—fidelity (ground truth) value of the objec-
tive function.

— Importing of the extracted FSI in the ShpO workflow for further refine-
ment.

e Streamlining the manufacturing of the results from TopO, by selective appro-
priate manufacturing technique.



Appendix A

Marching Algorithms
Triangulation Tables

In this section the precompiled look—up tables for the triangulation of elements are
listed. The calculated index (corresponding nodes 0 for outside, 1 for inside the
isosurface) for each element corresponds to the generation of triangles defined by
the interpolated nodes on the local edges of the element. The notation 7 (el-e2-e3)”
indicates a triangle generated with nodes interpolated on the local edges el, e2, and
e3 of an element. The order of the nodes on these edges is significant and is related
to ensuring the correct orientation of the triangle’s normal, a vector perpendicular
to the triangle’s surface and pointing outwards.
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62 A. Marching Algorithms Triangulation Tables

A.1 Hexahedra

Triangulation table for the hexahedra adapted from [23].

Local Nodes | 7|6 |54 (3210

Index,

Figure A.1: 8-bit Hexahedron index (left) and
local edge and node numbering (right).

Table A.1: Marching Hexahedra Triangulation Table

Hexahedron Index | Triangles Edge Connectivity
00000000 -
00000001 (0-3-8)
00000010 (0-9-1)
00000011 (1-3-8) (9-1-8)
00000100 (1-10-2)
00000101 (0-3-8) (1-10-2)
00000110 (9-10-2) (0-9-2)
00000111 (2-3-8) (2-8-10) (10-8-9)
00001000 (3-2-11)
00001001 (0-2-11) (8-0-11)
00001010 (1-0-9) (2-11-3)
00001011 (1-2-11) (1-11-9) (9-11-8)
00001100 (3-1-10) (11-3-10)
00001101 (0-1-10) (0-10-8) (8-10-11)
00001110 (3-0-9) (3-9-11) (11-9-10)
00001111 (9-10-8) (10-11-8)
00010000 (4-8-7)
00010001 (4-0-3) (7-4-3)
00010010 (0-9-1) (8-7-4)
00010011 (4-9-1) (4-1-7) (7-1-3)
00010100 (1-10-2) (8-7-4)
00010101 (3-7-4) (3-4-0) (1-10-2)
00010110 (9-10-2) (9-2-0) (8-7-4)
00010111 (2-9-10) (2-7-9) (2-3-7) (7-4-9)
00011000 (8-7-4) (3-2-11)
00011001 (11-7-4) (11-4-2) (2-4-0)
00011010 (9-1-0) (8-7-4) (2-11-3)

Continued on next page
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Table A.1 — continued from previous page

Hexahedron Index

Triangles Edge Connectivity

00011011
00011100
00011101
00011110
00011111
00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000
01000001
01000010
01000011

A-T1-7) (9-11-4) (9-2-11) (9-1-2)
3-1-10) (3-10-11) (7-4-8)
1-10-11) (1-11-4) (1-4-0) (7-4-11)
4-8-7) (9-11-0) (9-10-11) (11-3-0)
4-11-7) (4-9-11) (9-10-11)
9-4-5)
9-4-5) (0-3-8
0-4-5) (1-0-5
8-4-5) (8-5-3) (3-5-1)
1-10-2) (9-4-5)
3-8-0) (1-10-2) (4-5-9)
5-10-2) (5-2-4) (4-2-0)
(3-5-2)
2-
(
0
2

)
)
)
5
2
1
2) (3-4-5) (3-8-4)

(

(

(

(

(

(

(

(

(

( 4-

( 0-

( 2-

(2-5-10) (3-5-

(9-4-5) (2-11-3)

(0-2-11) (0-11-8) (4-5-9)

(0-4-5) (0-5-1) (2-11-3)

(2-5-1) (2-8-5) (2-11-8) (4-5-8)
(10-11-3) (10-3-1) (9-4-5)
(4-5-9) (0-1-8) (8-1-10) (8-10-11)
(5-0-4) (5-11-0) (5-10-11) (11-3-0)
(5-8-4) (5-10-8) (10-11-8)
(9-8-7) (5-9-7)
(9-0-3) (9-3-5) (5-3-7)
(0-8-7) (0-7-1) (1-7-5)

(1-3-5) (3-7

(9-8-7) (9-7-

(10-2-1) (9-0-5) (5-0-3) (5-3-7)
(8-2-0) (8-5-2) (8-7-5) (10-2-5)
( (2-3-5) (3-7-5)

( 7-9-8) (3-2-11)

( 9-

( (0-8

(

(

(

(

(

(

(

(

(

-5)
5) (10-2-1)
9-0-
5-2)
2-5-10) (2-3-
7-5-9) (7-9-8)
9-7-5) ( 7) (9-0-2) (2-11-7)
2-11-3) (0-8-1) (1-8-7) (1-7-5)
11-1-2) (11-7-1) (7-5-1)
0-8-5) (8-7-5) (10-3-1) (10-11-3)
5-0-7) (5-9-0) (7-0-11) (1-10-0) (11-0-10)
11-0-10) (11-3-0) (10-0-5) (8-7-0) (5-0-7)
11-5-10) (7-5-11)
10-5-6)
0-3-8) (5-6-10)
9-1-0) (5-6-10)
1-3-8) (1-8-9) (5-6-10)

Continued on next page
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Table A.1 — continued from previous page

Hexahedron Index

Triangles Edge Connectivity

01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111
01100000
01100001
01100010
01100011
01100100
01100101
01100110
01100111
01101000
01101001
01101010
01101011
01101100

(1-5-6) (2-1-6)

(1-5-6) (1-6-2) (3-8-0)

(9-5-6) (9-6-0) (0-6-2)

(5-8-9) (5-2-8) (5-6-2) (3-8-2)
(2-11-3) (10-5-6)

(11-8-0) (11-0-2) (10-5-6)

(0-9-1) (2-11-3) (5-6-10)

(5-6-10) (1-2-9) (9-2-11) (9-11-8)
(6-11-3) (6-3-5) (5-3-1)

(0-11-8) (0-5-11) (0-1-5) (5-6-11)
(3-6-11) (0-6-3) (0-5-6) (0-9-5)
(6-9-5) (6-11-9) (11-8-9)

(5-6-10) (4-8-7)

(4-0-3) (4-3-7) (6-10-5)

(1-0-9) (5-6-10) (8-7-4)

(10-5-6) (1-7-9) (1-3-7) (7-4-9)
(6-2-1) (6-1-5) (4-8-7)
(1-5-2) (5-6-2) (3-4-0) (3-7-4)

(8-7-4) (9-5-0) (0-5-6) (0-6-2)
(7-9-3) (7-4-9) (3-9-2) (5-6-9) (2-9-6)
(3-2-11) (7-4-8) (10-5-6)

(5-6-10) (4-2-7) (4-0-2) (2-11-7)
(0-9-1) (4-8-7) (2-11-3) (5-6-10)
(9-1-2) (9-2-11) (9-11-4) (7-4-11) (5-6-10)
(8-7-4) (3-5-11) (3-1-5) (5-6-11)
(5-11-1) (5-6-11) (1-11-0) (7-4-11) (0-11-4)
(0-9-5) (0-5-6) (0-6-3) (11-3-6) (8-7-4)
(6-9-5) (6-11-9) (4-9-7) (7-9-11)
(10-9-4) (6-10-4)

(4-6-10) (4-10-9) (0-3-8)

(10-1-0) (10-0-6) (6-0-4)

(8-1-3) (8-6-1) (8-4-6) (6-10-1)
(1-9-4) (1-4-2) (2-4-6)

(3-8-0) (1-9-2) (2-9-4) (2-4-6)
(0-4-2) (4-6-2)

(8-2-3) (8-4-2) (4-6-2)

(10-9-4) (10-4-6) (11-3-2)

(0-2-8) (2-11-8) (4-10-9) (4-6-10)
(3-2-11) (0-6-1) (0-4-6) (6-10-1)
(6-1-4) (6-10-1) (4-1-8) (2-11-1) (8-1-11)
(9-4-6) (9-6-3) (9-3-1) (11-3-6)

1-9-4
3-8-0

Continued on next page
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Table A.1 — continued from previous page

Hexahedron Index

Triangles Edge Connectivity

01101101
01101110
01101111
01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010
01111011
01111100
01111101
01111110
01111111
10000000
10000001
10000010
10000011
10000100
10000101
10000110
10000111
10001000
10001001
10001010
10001011
10001100
10001101
10001110
10001111
10010000
10010001
10010010
10010011
10010100
10010101

(8-1-11) (8-0-1) (11-1-6) (9-4-1) (6-1-4)
(3-6-11) (3-0-6) (0-4-6)

(6-8-4) (11-8-6)
(7-6-10) (7-10-8) (8-10-9)

(0-3-7) (0-7-10) (0-10-9) (6-10-7)
(10-7-6) (1-7-10) (1-8-7) (1-0-8)
(10-7-6) (10-1-7) (1-3-7)

(1-6-2) (1-8-6) (1-9-8) (8-7-6)

(2-9-6) (2-1-9) (6-9-7) (0-3-9) (7-9-3)
(7-0-8) (7-6-0) (6-2-0)
(7-2-3) (6-2-7)
(2-11-3) (10-8-6) (10-9-8) (8-7-6)
(2-7-0) (2-11-7) (0-7-9) (6-10-7) (9-7-10)
(1-0-8) (1-8-7) (1-7-10) (6-10-7) (2-11-3)
(11-1-2) (11-7-1) (10-1-6) (6-1-7)
(8-6-9) (8-7-6) (9-6-1) (11-3-6) (1-6-3)
(0-1-9) (11-7-6)
(7-0-8) (7-6-0) (3-0-11) (11-0-6)
(7-6-11)
(7-11-6)
(3-8-0) (11-6-7)
(0-9-1) (11-6-7)

(8-9-1) (8-1-3) (11-6-7)
(10-2-1) (6-7-11)

(1-10-2) (3-8-0) (6-7-11)

(2-0-9) (2-9-10) (6-7-11)

(6-7-11) (2-3-10) (10-3-8) (10-8-9)
(7-3-2)
(7-8-0)
(
(
(
(
(
(7
(
(
(
(
(
(

6-7-2)
7-0-6) (6-0-2)
2-6-7) (2-7-3) (0-9-1)
1-2-6) (1-6-8) (1-8-9) (8-6-7)
10-6-7) (10-7-1) (1-7-3)
10-6-7) (1-10-7) (1-7-8) (1-8-0)
0-7-3) (0-10-7) (0-9-10) (6-7-10)
-10-6) (7-8-10) (8-9-10)
6-4-8) (11-6-8)

N N N N

3-11-6) (3-6-0) (0-6-4)

8-11-6) (8-6-4) (9-1-0)

0-6-4) (9-3-6) (9-1-3) (11-6-3)
6-4-8) (6-8-11) (2-1-10)

1-10-2) (3-11-0) (0-11-6) (0-6-4)
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Hexahedron Index

Triangles Edge Connectivity

10010110
10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111
10110000
10110001
10110010
10110011
10110100
10110101
10110110
10110111
10111000
10111001
10111010
10111011
10111100
10111101
10111110

(4-8-11) (4-11-6) (0-9-2) (2-9-10)

(10-3-9) (10-2-3) (9-3-4) (11-6-3) (4-3-6)
(8-3-2) (8-2-4) (4-2-6)

(0-2-4) (4-2-6)

(1-0-9) (2-4-3) (2-6-4) (4-8-3)

(1-4-9) (1-2-4) (2-6-4)

(8-3-1) (8-1-6) (8-6-4) (6-1-10)

(10-0-1) (10-6-0) (6-4-0)

(4-3-6) (4-8-3) (6-3-10) (0-9-3) (10-3-9)
(10-4-9) (6-4-10)

(4-5-9) (7-11-6)

(0-3-8) (4-5-9) (11-6-7)

(5-1-0) (5-0-4) (7-11-6)

(11-6-7) (8-4-3) (3-4-5) (3-5-1)

(9-4-5) (10-2-1) (7-11-6)

(6-7-11) (1-10-2) (0-3-8) (4-5-9)

(7-11-6) (5-10-4) (4-10-2) (4-2-0)

(3-8-4) (3-4-5) (3-5-2) (10-2-5) (11-6-7)
(7-3-2) (7-2-6) (5-9-4)

(9-4-5) (0-6-8) (0-2-6) (6-7-8)

(3-2-6) (3-6-7) (1-0-5) (5-0-4)

(6-8-2) (6-7-8) (2-8-1) (4-5-8) (1-8-5)
(9-4-5) (10-6-1) (1-6-7) (1-7-3)

(1-10-6) (1-6-7) (1-7-0) (8-0-7) (9-4-5)
(4-10-0) (4-5-10) (0-10-3) (6-7-10) (3-10-7)
(7-10-6) (7-8-10) (5-10-4) (4-10-8)

(6-5-9) (6-9-11) (11-9-8)

(3-11-6) (0-3-6) (0-6- 5) (0-5-9)

( 0-11-5) (0-5-1) (5-11-6)

( 6-5-3) (5-1-3)

( 9-11-5) (9-8-11) (11-6-5)

( 0-11-6) (0-6-9) (5-9-6) (1-10-2)

(
(
(
(
(
(
(
(
(

(
0-8-11) (
(
(
( ( (
(11-6-5) (8-5-0) (10-2-5) (0-5-2)
( 2-
5-
9
1

)
)
6-3-11)
1-10-2)
0-3-11)
11-5-8)
6-3-11)
5-9-8)
9-6-5

6-5-3) (2-3-10) (10-3-5)
(5-8-2) (5-2-

) (9-0-6) (0-2-
1-8-5) (1-0-8) (5-8-
1-6-5) (2-6-1)

) (

1

)

1
6) (3-2-8)

6)

6) (3-2-8) (6-8-2)
1-6-3) (1-10-6) (3-6-8) (5-9-6) (8-6-9)
10-0-1) (10-6-0) (9-0-5) (5-0-6)

0-8-3) (5-10-6)
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Table A.1 — continued from previous page

Hexahedron Index

Triangles Edge Connectivity

10111111
11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111
11010000
11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111
11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111

(10-6-5)

(11-10-5) (7-11-5)

(11-10-5) (11-5-7) (8-0-3)

(5-7-11) (5-11-10) (1-0-9)

(10-5-7) (10-7-11) (9-1-8) (8-1-3)
(11-2-1) (11-1-7) (7-1-5)
(0-3-8) (1-7-2) (1-5-7) (7-11-2)

(9-5-7) (9-7-2) (9-2-0) (2-7-11)

(7-2-5) (7-11-2) (5-2-9) (3-8-2) (9-2-8)
(2-10-5) (2-5-3) (3-5-7)

(8-0-2) (8-2-5) (8-5-7) (10-5-2)

(9-1-0) (5-3-10) (5-7-3) (3-2-10)
(9-2-8) (9-1-2) (8-2-7) (10-5-2) (7-2-5)
(1-5-3) (3-5-7)

(0-7-8) (0-1-7) (1-5-7)

(9-3-0) (9-5-3) (5-7-3)

(9-7-8) (5-7-9)

(5-4-8) (5-8-10) (10-8-11)

(5-4-0) (5-0-11) (5-11-10) (11-0-3)
(0-9-1) (8-10-4) (8-11-10) (10-5-4)
(10-4-11) (10-5-4) (11-4-3) (9-1-4) (3-4-1)
(2-1-5) (2-5-8) (2-8-11) (4-8-5)

(0-11-4) (0-3-11) (4-11-5) (2-1-11) (5-11-1)
(0-5-2) (0-9-5) (2-5-11) (4-8-5) (11-5-8)
(9-5-4) (2-3-11
(2-10-5) (3-2-5) (3-5-4) (3-4-8)

(5-2-10 0-2

(

(

(

(

(

(

(

(

(

(

(

(

(

(

) 3

) (4-0-
3-2-10) (

) 1

)
) )
(5-4-2) )
(3-10-5) (3-5-8) (4-8-5) (0-9-1)
5-2-10) (5-4-2) (1-2-9) (9-2-4)
8-5-4) (8-3-5) (3-1-5)
0-5-4) (1-5-0)
8-5-4) (8-3-5
9-5-4)
4-7-11) (4-11-9) (9-11-10)
0-3-8) (4-7-9) (9-7-11) (9-11-10)
1-11-10) (1-4-11) (1-0-4) (7-11-4)
3-4-1) (

) (9-5-0) (0-5-3)

3-8-4) (1-4-10) (7-11-4) (10-4-11)
A-7-11) (9-4-11) (9-11-2) (9-2-1)

9-4-7) (9-7-11) (9-11-1) (2-1-11) (0-3-8)
11-4-7) (11-2-4) (2-0-4)

11-4-7) (11-2-4) (8-4-3) (3-4-2)

Continued on next page
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Table A.1 — continued from previous page

Hexahedron Index | Triangles Edge Connectivity

11101000 (2-10-9) (2-9-7) (2-7-3) (7-9-4)
11101001 (9-7-10) (9-4-7) (10-7-2) (8-0-7) (2-7-0)
11101010 (3-10-7) (3-2-10) (7-10-4) (1-0-10) (4-10-0)
11101011 (1-2-10) (8-4-7)

11101100 (4-1-9) (4-7-1) (7-3-1)
11101101 (4-1-9) (4-7-1) (0-1-8) (8-1-7)
11101110 (4-3-0) (7-3-4)

11101111 (4-7-8)

11110000 (9-8-10) (10-8-11)

11110001 (3-9-0) (3-11-9) (11-10-9)
11110010 (0-10-1) (0-8-10) (8-11-10)
11110011 (3-10-1) (11-10-3)

11110100 (1-11-2) (1-9-11) (9-8-11)
11110101 (3-9-0) (3-11-9) (1-9-2) (2-9-11)
11110110 (0-11-2) (8-11-0)

11110111 (3-11-2)

11111000 (2-8-3) (2-10-8) (10-9-8)
11111001 (9-2-10) (0-2-9)

11111010 (2-8-3) (2-10-8) (0-8-1) (1-8-10)
11111011 (1-2-10)

11111100 (1-8-3) (9-8-1)

11111101 (0-1-9)

11111110 (0-8-3)

11111111




A.2. Prisms

A.2 Prisms

Local Nodes | 5|4 | 3

Indexs

Figure A.2: 6-bit Prism index (left) and local
edge and node numbering (right).
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Table A.2: Marching Prisms Triangulation Table

Prism Index

Triangles Edge Connectivity

000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100

0-2-6
0-7-1
2-6-7) (1-2-7)
1-8-2

0-1-8) (0-8-6)
0-7-2) (2-7-8)
6-7-8
3-6-5
0-2-3
0-6-1
1-2-5
3-8-5
0-1-3
0-6-2

(0-2-6)
(0-7-1)
(2-6-7)
(1-8-2)
(0-1-8)
(0-7-2)
(6-7-8)
(3-6-5)
( ) (2-5-3
( ) (1-6-5
(1-2-5)
(3-8-5)
(0-1-3)
(0-6-2)
(3-7-8)
(3-4-7)
(0-2-7)
(0-3-1)
(1-2-4)
(1-7-2)
(0-1-7)
(3-4-8)
(3-8-6)
(4-6-5)
(0-2-7)
(0-6-1)
(1-2-4)
(1-7-2)

(2-5-3)

(1-6-5) (1-5-7) (5-3-7)
(1-5-7) (5-3-7)

(1-8-3) (1-6-2) (3-6-1)
(1-8-3) (3-8-5)

(3-7-8) (3-8-5)

(3-8-5)
3-4-7
0-2-7
0-3-1
1-2-4
1-7-2
0-1-7
3-4-8
3-8-6
4-6-5
0-2-7
0-6-1
1-2-4
1-7-2

2-4-7) (2-6-3) (2-3-4)
1-3-4
2-6-4
2-7-3
6-3-8

)

)

) (6-3-4

)

)
0-3-2)

)

)

)

)

)

(6-3-4)
(2-3-8) (3-4-8)
(3-4-8)

(2-3-8)

3-4-8

4-7-6

2-4-7) (2-5-4)

1-6-5) (1-5-4)

2-5-4

2-7-6) (4-8-5)

=~

Continued on next page
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A. Marching Algorithms Triangulation Tables

Table A.2 — continued from previous page

Prism Index | Triangles Edge Connectivity
011101 (0-1-7) (4-8-5)
011110 (0-6-2) (4-8-5)
011111 (4-8-5)

100000 (4-5-8)

100001 (0-4-6) (6-4-5) (0-2-8) (0-8-4)
100010 (1-0-8) (0-5-8) (0-7-5) (4-5-7)
100011 (1-2-6) (1-6-7) (4-5-8)
100100 (1-4-2) (2-4-5)

100101 (0-1-6) (1-5-6) (1-4-5)
100110 (0-7-2) (2-7-4) (2-4-5)
100111 (4-5-6) (4-6-7)
101000 (3-8-4) (3-6-8)

101001 (0-2-3) (2-8-3) (3-8-4)
101010 (0-7-1) (3-6-8) (3-8-4)
101011 (1-2-8) (3-7-4)
101100 (1-4-3) (1-3-6) (2-1-6)
101101 (0-1-3) (1-4-3)
101110 (0-6-2) (3-7-4)

101111 (3-7-4)

110000 (3-5-8) (3-8-7)

110001 (0-2-6) (3-5-8) (3-8-7)
110010 (0-3-1) (1-3-8) (3-5-8)
110011 (1-2-8) (3-5-6)
110100 (1-7-2) (2-7-3) (2-3-5)
110101 (3-5-6) (0-1-7)
110110 (0-3-2) (2-3-5)

110111 (3-5-6)

111000 (6-8-7)

111001 (0-2-7) (2-8-7)
111010 | (0-8-1) (0-6-8)

111011 (1-2-8)

111100 (1-7-2) (2-7-6)

111101 (0-1-7)

111110 (0-6-2)

111111 -
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A.3 Pyramids

n4
Local Nodes [ 4|3 [2|1]0 X
Index, | i 6
. . o ‘ ed '&13
Figure A.3: 5-bit Pyramid index (left) and local Al N RO}
edge and node numbering (right). no N _ 2
(§ el

Table A.3: Marching Pyramids Triangulation Table

Pyramid Index | Triangles Edge Connectivity
00000 -
00001 (0-3-4)
00010 (0-5-1)
00011 (1-3-5) (3-4-5)
00100 (1-6-2)
00101 (0-4-1) (1-4-6) (2-4-3) (2-6-4)
00110 (0-5-2) (2-5-6)
00111 (3-4-2) (2-4-6) (4-5-6)
01000 (2-7-3)
01001 (0-2-4) (4-2-7)
01010 (0-5-3) (3-5-7) (1-2-5) (2-7-5)
01011 (1-2-5) (2-7-5) (4-5-7)
01100 (1-6-3) (3-6-7)
01101 (0-1-6) (0-6-4) (4-6-7)
01110 (0-5-3) (3-5-7) (5-6-7)
01111 (4-5-7) (5-6-7)
10000 (4-7-5) (5-7-6)
10001 (0-3-7) (0-7-5) (5-7-6)
10010 (0-4-1) (1-4-6) (4-7-6)
10011 (1-3-6) (3-7-6)
10100 (1-5-2) (2-5-7) (4-7-5)
10101 (0-1-5) (3-7-2)
10110 (0-4-2) (2-4-7)
10111 (2-3-7)
11000 (2-6-4) (3-2-4) (4-6-5)
11001 (0-2-5) (2-6-5)
11010 (0-4-3) (1-2-6)
11011 (1-2-6)
11100 (1-5-4) (1-4-3)
Continued on next page
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A. Marching Algorithms Triangulation Tables

Table A.3 — continued from previous page

Pyramid Index

Triangles Edge Connectivity

11101
11110
11111

(0-1-5)
(0-4-3)
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A.4 Tetrahedra

n3
Local Nodes [ 3 |2 |10
Indexs ed
e3 4
Figure A.4: 4-bit Tetrahedron index (left) and e2 09
local edge and node numbering (right). n0 ; 4
|

Table A.4: Marching Tetrahedra Triangulation Table

Tetrahedron Index | Triangles Edge Connectivity

0000 -

0001 (0-2-3)

0010 (0-4-1)

0011 (1-2-4) (2-3-4)
0100 (1-5-2)

0101 (0-1-3) (1-5-3)
0110 (0-4-2) (2-4-5)
0111 (3-4-5)

1000 (3-5-4)

1001 (0-2-4) (2-5-4)
1010 (0-3-5) (0-5-1)
1011 (1-2-5)

1100 (1-4-2) (2-4-3)
1101 (0-1-4)

1110 (0-3-2)

1111 -
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A. Marching Algorithms Triangulation Tables

A.5 Quadrilaterals

In the case of Quadrilateral for the reconstruction of the boundary of a domain if is
part of the FSI, the original nodes of the boundary are also incorporated. For that
reason a triangle is denoted as 7 (el-nl-e2)” corresponds to a triangle generated by
connected the generated nodes on edges el and e2 and the original node nl of the

element.

Local Nodes | 3 | 2

Index,

Figure A.5: /-bit Quadrilateral indez (left) and
local edge and node numbering (right).

Table A.5: Marching Quadrilaterals Triangulation Table

Quadrilateral Index

Triangles Edge Connectivity

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

(n0-e0-€3)

(e0-nl-el)

(n0-el-e3) (n0-nl-e3)

(el-n2-e2)

(e3-n0-¢0) (e3-e0-€2) (e2-e0-el) (e2-el-n2)
(e0-n1-n2) (e0-2-€2)

(e3-n0-nl) (e2-e3-nl) (nl-n2-e2)
(e2-n3-e3)

(€2-n3-n0) (e2-n0-e0)

(e2-n3-e3) (e2-e3-e0) (e2-e0-el) (el-e0-nl)
(€2-n3-n0) (e2-n0-el) (el-n0-nl)
(n3-e3-el) (n2-n3-el)

(n3-n0-e0) (el-n3-e0) (n2-n3-el)
(n2-n3-e3) (n2-e3-e0) (n2-e0-nl)
(n0-n1-n3,) (n1-n2-n3)
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Ewooaywyn

H €ZéM&n twv uTohOYIGTMY XL 1) TEO0O0S TMV UTOAOYICTIXWY UEVOBWY €YOUV oA-
AGEEL ONUAVTIXG TNV TEOXATAUEXTXY) UEAETY oTn Blounyavixr oyeddor. H evpeio dio-
Yeowodtnto epyoleinv Troloyotinic Peuotoduvouixrc (TP) EMUTPETOLVY GTOUG M-
yovxoUg v teofBAédouy TNy anédoor xal vo eviomicouy miavd TeoBAfUaTa TEWY omd
TNV XATUOKEUT] PUOLXGY TEWTOTUTWY. O cuvduaoude e TP pe puedddoug Perticto-
nolnone 6nwe 1 Behtotonoinon Mopgrc (BeMo) xaw n BeAtiotonoinon Tonohoyiog
(BeTo) yenotonotodviar Uy vE yLor TNV EVREST) PEATIOTOV YEWUETPLOV GE PEUG TOBU-
VOLXES / AEPOOLUVAULXEG UEAETEC.

H Simhwpoti epyacia magouctdlel tny avdntuln Aoylouwxol Metdfaong ané Tormo-
Aoyla oe Xynpa (Topology-to-Shape Transition [TtoST]) yw tnv enelepyacia twy
aroteheoudtov BeTo og Vépata peucTounyavixhc, UE OXOTO TNV AVATUEAC TACT, TOU
Toyouatoc Yetadd otepeol xou peuotol (Fluid-Solid Interface [F'SI]) uné ) popen
emgavelano) tAsypoatog. o 1o oxond autd, uodeteitan o arydprduoc Marching Cu-
bes (MC) [22], Broitepor didonuog otor ypapixd vokoylotwwy. H enéxtoon g 6éag
TOL AAYOpPIIUOU OF dAAAL YEWUETEIXA OYHUT OTwS eEdedpa, Tplouata, TUEaUidES, Te-
TpdEdP X0 TETRPETAEUPA BIVEL T1) BUVITOTNTA EQUPUOYHC TOU OE Un-dounuéva,/uBetdixd
mAéypoata. H Sour tne epyaocioc nepthaufBdver tny Booixr dewpla tng BeMo xou Be-
To, ) Yewpio Tou aryopiduou MC xou TNy eméxtact tTne WU 6 G YEWUETOIXA
oyfuata, Ty vAoroinom tng uevodoroyiog o C++, xar Ta amoTEAEOUATA OO OLOL-
GO TUTEG %Ol TEIOLIO TAUTEG EPUPUOYES, XAUTUAYOVTUC OF CUUTEQRAOUATA Xl TPOTACELS
YLor LEAOVTLIXY €pEuval.

BeAtiotonoinon Moggrc xow Toroloylag

To teplocdTepa TEOBAUNTA BEATIOTOTOMOTC 0TO TEBIO TNE PEUG TOUNYUVIXY|C UTOROVY
va xatnyopomomndoiy eite wg BeMo eite wg BeTo. H BeMo mepuiapfdver tn yerion
UETABANTOV OYEDAOUO0, TOU TORUUETEOTOO0Y TNV UTo e€ETAOT) YEWUETPlA Yia TN BeA-
Tiwon e anédoong g, eved 1 BeTo mopdyel yewuetpleg aveldotnta and éva apyind
OYNHUAL, EEEPEUVAOVTAC Lol EUPUTERT) Y XU SUVITOTHTOV OYEDBIAGUOU.

Yy BeTo, éva teyyntd medlo mopmdoug elodyeton oTIC EELOMOELS PO, XAl AELTOUE-
vel wg PeToBANTY oy edlopol 6Toug xOUfBoug 1 oTa XEVTRA TwV XUPEADY TOU UTOAO-
yioTxol yowplou. Xtdyog tng BeTo eivon o unoloyioude tou BértioTou mediou Tou
ToPMOOUE Tou ehaytoTonolel TN cuvdpTtnon otéyo. O apriude Twv YetaSAnTOY oye-
otopol tou meofArfuatoc ebvar (cog ue Tov apriud TV xOUB®Y ¥ TOV XEAWY TOU
uToAOYLOTIX00 Y welou (ouvenme o) psyc&)\og). ‘Etot, n yefon tne ouluyolc ue-
YO00L YLl TOV UTOAOYLOUO TWV oAy YWy euatcunciog arnotehel Tnv TéAcwa emhoYT),
ool TO UTOAOYIOTIXG x60TOC NG, eivon aveldptnto Tou aptduold Twv UETUBANTOY
oyedoopol. H BeTo €yel anoteréoel Pacind Véua yio apxetéc ONUocIEVoELS TNG EQEU-
vTeic opddac tne Hopdiining Trohoyiotixrc Pevotoduvouxrc & Beltiotonolnong
tou EMII (MIITPB/EMII),[2, 3], 4], 5], 0t onotec anoteholv xou Baotxr mnyh authc Tng
OtmhwpaTxhc gpyaciog.
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Qo1600, éva peovéxtnua e BeTo eivar o un xadopionde tou Toryduatog PeTadd
01EPEOL o PEUGTOU, 6Tou Yo emPBANU0UY oL optaxéc cUVITXES, WAAS O EUUECOC YELOL-
ouo¢ Tou amd To TEdio Topodouc. To mapamdve elodyel avaxpifelec ota anoTEAEoATA
xou TOAESG qopég dTav 1 emihuon yiveton e avdiuon TP oe cwpatddeto mhéypota
0TI TEOXUTTOUOES YEWUETPlES, OV elvan Tar avauevoueva. H e€aywmyr tne yewpetplog
am6 10 Pektiotonoimnuévo mopwdeg tng BeTo elvor amapaltntn, Yoo Tnv evdeyduevn
XOTAOXEVY) NG, TNV PeTdPoon o vhning mototntog TP e emPBefAnuévec oplaxéc
ouvirixec oTo Tolywua, axdua xon TNV entoxdhoudn BeMo yia meputépw Bedtioon. H
OLTAWUOTIXT €QYAOIa ETIXEVTRMVETAL OTNY eCUYWYT TNG BIETLPAVELAS OTEREO)—PEVGTOD
amo To TopwdES Tou poxUntel amd TV BeTo, uto tn wopyy| empavetaxold Théyuatog,
uéow Aryopituwy Ipoéhaong, dmwe Vo napouctactel 6T cUVEYELL.

Alyoerduol Ilgoghaong

(@) B (7)

Ixhue 1 Yoapiké nedio emexteduevo mpos ta éw o€ kuPiké mAéyua. (a) Tiués
mediou otous kéuPouvs Tou TAéyuatos, (B) to dounuévo kuPikd tAéyua, (y) detyuata 1wo-

empaveiy.

O aAyoéprdpoc Marching Cubes

O ahydprduoc Marching Cubes (MC) eworiyder to 1987 [22], xou epapudleton oe tpl-
OLdo Tt BoUNUEVAL xUBIXG TAEYUATO UE TEUYUUTIXES TYES TEdiou oToug xopfoug Tou
mAéypatoc. O yprotne xodopllel pior Tiun xaTem@ALol, TOU AVUPERETAL WS 100TIUI, KOl
0 oAY6pLipog e€dyel TNV TEWOLIOTAT EMLPAVELN TTOU TNG AVTIOTOLYEL, XUAOVUEVT] 100€-
medrea. "Eva dounuévo xuPind mhéyuato ye Tyeg tedlov otoug xdufBoug xan delyporta
1woempdveldy goivovton oto Xy. [} O adybprduoc enelepydleton xdde xuéhn-x0Bo
ToU TAEYUATOC Xou Xordopilel plar BLoORPOOT TELYWV®Y TOU OVATIELOTE TOV TROTO UE
ToV oTolo 1) I6oETPAvELY DLi€pyeTan and auTtov. Katd tnyv enelepyaota, 1 Twur Tou xdie
x0UBoLU-%0pLYPY Tou exdoToTE XUPBoU GUYXEIVETOL UE TNV LooTr, xou xdde xouPog
Yopoxtneileton we ‘€omTERINOCodp0S” 1) ‘eEWTEPIXOG-AcUxOS’ TNg tooempdvetag. H
XATACTOOT TV XOUPOY xan xat enéx oot e xUPEANExUBou xwdixonoleiton o€ évag
deixtn (8-bit) o onolog avticolyeiton oe amotnxevuévee AoTteg potiBwv--Slalopphoewy
Tprywvwy (BAéne Hopdptnua . Me 11 ypfo1 CUUUETELOY 0 aELIUOS TV LOVIBIXGDY
LoTiBrv— BloapopPnOoewy Uetveton onuavtixd. O apywog ahydpriuoc MC xdvel yerion
TG TEPLO TROPXNS XL TNG CUUTANPWUATIXNAG CUMUETELC XATUAYWVTAG OF 15 povadixd
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uwotiBa Suoppdoewy, ta onola tapatibevtor oo Uy. [ H ¥éon tou onueiou toprc
Tis TNC LOOETUPAVELNS UE LOOTIUY v PE TIC axPéc TS xuhéinc—x0fBou Tou mAEyuaTog
urohoyilovtan pe Yoo tapeufolf olugwva ue tn oyéon [1}

o )

Tis = Tv1 + p(fva — Tv1) i
27— J1

OmoL Ty, fi xan Tya, fo 1 V€om xou 1 Tyr mEdiou TwV xopLPKOY 1 xou 2 avtioTorya.

o — e =7 =
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ExAue 20 Or 15 diuoppdoes tov apyikod akyopiduov Marching Cubes (dpow e
[22]). KéuPor pe dompo xpdpa Bpiokovtar €ktds, evd kopufor e palpo Ppiokovtal €vtog
™S woemgdvelas vno e&étaon. Ilapaydupeva tpiywva pe ykpt kar ta kdleta o€ avd
owviouata gatvortal ws mpdowa PéAn. Ewg kar 4 tpiywva umopodv va mapayfolv ya
kdOe keli (kUBo) Tou apyikol alyopiduov.

Enilvon augionuioy
Meté tnv epgdvion tou alyopiduou MC, extetapévn Bifhoypapio [41) 42] (43 [44], 145,

46] éyel exdolel oyetind pe ta dapopeTind potiBa TOL XATOLES BLOUOPPDTELS UTOPOVY
VoL £Y0LY, OVAPEPOUEVA WG applomuies. Ou auglonuleg umopolv va yweloToly oF o-
PLoMULE €0pag xou oc €owTePIkES auponuies. € mpog Tig au@lonuieg oTic €dpeg TwV
©0BWV AUTEG TEOXVUTTOLY GTIC TEPLTTWOELS OTIOU U0 Blary VLot xouPot Tng €dpag Peloxo-
VIO €GO OTNV LOOETLPAVELY, Xal Ol dhhot BUo exTog. Amodelydnxe 6Tl oL auglonuieg
€0pac ogeilovtar oty yeron e ouumAnpwuatixic ovppetpioc [44]. T tv dueon
ENLAUOT] TOV AUPLOTULOY EDROC ELGAYOVTAL Ol CUUTANEWUATIXESG OLUUOPPOCELS TWV TE-
OLTTWOEMY TOU euavilouv augiomuio, BNUoLEY®YTIS ToV dleupuuévo akyodoriuo MC,
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ot omoleg gatvovton 610 Xy. 3 Ot ecwtepes aupionules apopoly TNy dyvola TNng
CUUTERLPORAC TNS LOOETILPAVELS EVTOC TNS xUEANC—Xx0PBou. Ol ecwTepInéc auplonules
0EV AMOTEAOLY aVTIXEUEVO PEAETNG TNG OIMAWUATIXC EQYaoiag.

Oc
Qllr—ij"'_ FIRE T
II ‘ L ||I
| e
4c be bc 7c

EyxApe 3: DuumAnpouaticés oiapoppnoes twy apxikoy tepintdoewy 0, 1, 2, 3, 4, 5,
6, 7 ya tny evleia eridvon twv aupronuicy.

Enéxtaoy oc un—dounuéva nAEypata

IToA) cuyvd oe pehéteg TP 1o umoloyiotixd ywelo amotedelton xou amd oAlo €(dn
xUPEADY TERaY TwV X0PwV. LNy TepinTwon auTy| WAGUE yio évol un-dounuévo/uPetdixd
TAéypa To onolo umopel vo mepthopfBdver e€dedpa, mplopata, Tupouldee & TeTEdEDRA.
Y1 oimhwpated pyaota, 1 wed tou aryopiduou MC enexteiveton otnv nepintwon
TV AWV YEOUETEIXWY GTOLYEWY, ONUIOVEYOVTAS TOUG aVTIOTOLY0UG YEVIXEUUEVOUG
Ahyopituouc Hpoéhaone. ¢ mpog ta €dedpa, Tar potifa Torywvortoinong elvor xowvd pe
auTd Tou Bievpupévou aiyopiduou MC yio Toug x0Bouc, xo Topouctdlovial GUVOALXS

oto Xy. El

o i o ® gt T e o ® * e o i ° @ - .
?a To [\ ?a :I $o :I :I
a: | o @ | * 7 | Te 02 | 2] * o @ )
o ® o ®

0 Oc 1 1lc 2 2c
S = B e = o e % e
N ?a P 7. P I =
| e | . e S A e

3 3c 4 4c 5 ile

Yynpo 4: Yuvéyea otnr enduevn oerida
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Iy 4: O 23 dpoppaoes twv Eéaédpwr. Ta tptywva mov mpokimtovy gaivovta
He Ykpt xpoua kar ta kdleta o€ avtd Savvouata pe mpdowo Pélos. Ews kar 5 tpiywra
umopoly va mpoxUiouy amd tov diepupévo akyopiiio ya ta e€dedpa.

o ta mplopota To wotifo tprywvonoinong gatvovton oto Xy. [l e ewg xan 4 tplywva
VoL TeoXOTTOLY Yo xdde xuérn-rploua.

Xy 5: O1 15 dwpoppdoeas ya ta mpiouata. Ta tpiywra mou mpokUntowy gaivovta
e yKkpt xpoua kar ta kdleta o€ avtd owavvopata pe tpdowo BELoS.

Avtiotouya, yio Tig Tupaideg paivovton 6To L. |§|7 ue ewe xot 4 Tplywvo va TpoxinTouy
v x8de xupéhn-nupouida. T ta tetpdedpa oto By [1, pe e xon 2 tpiywva va
meoxUTToLY. T'ar To TETPATAEUEXG OPLO TOU UTOAOYIGTIXOU Ywelou 6To Ly. |8, uE €w¢
xou 4 mpoxdnTovTa Telywva.
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Exhpa 8: O1 6 diapoppaoes ya ta Terpdnievpa. Oprakol kéufor Tov vToAoY10TIkoD
Xwplov mou Ppiokovtar péoa ané tny 1wWoempdvela e HaUPO XPOMUA, €KTOS AQUTAS UE
Aeukd xpaua. Ipoxintovta tplywra pe yrpl pe ta kdleta o€ avtd duvdopaata (tpdowo

Béros).
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YAoroinorn alyopiduou

Y1 ouvéyeta topouctdleton 1 vhonolnon Tng meotewouevne uedodou. Ilpwto Priua
Tou aAyopliuou amotehel N eloaywYn Tou uTtohoyloTixod ywelou. H yewuetplo xat 1
CLVEXTIXOTNTA TV xOUPwy Tou ywelou utopel va goptwiel elte and tnv owxelo pop-
1) apyeiou €w06dou ite ané to TEPBdIhoY Tou hoyiopxob OpenFOAM®. Erépevo
Briua etvon 1 avdyvewon tou medlo mopwdoug g Abong BeTo. Ytnv mepintwon mou
10 TEdio TopMOOUC elivon oTal xEVTEA TV XUPEAWY exTEAElTOn G TOUIOUEVT TOREUBOAN
otoug xoufoug ue Bdon Toug 6yxoug Twv xuerny. Kotomy, dnuovpyeltar 1 amopo-
{tnTn Sour| BedoEVLY Lot TNV Hovadixh aplduncn OAwV TwV oxU®Y TOU UTOAOYIC TX00
ywelou. Kdle otoyelo Tou mAéypatog enclepydleton, 0Tr CUVEYELN, UE TOV XATIAANAO
Alyobpriuo Tlpoéhaorng, avdroya ue Tov TOTo Tou. To tehxd Briua Tng Swdixaoctog elvor
1 Topay Wy Tou apyciou e£600U TOU TEQIEYEL TN CUANOYT TV TELYWMVGY TOU GYNHo-
TiCouy TNV AVaTaEEo TACT] TOU ETLPAVELNXOU TAEYUUTOS TNG Looempdvelas. H Sradixacta
ouvoileTon ot €va BLdyPapa POTIE OIS PAVETOL OTO 1Y, NG Ay YAXNG Exdoomg.

ITheovéxtnua tou alyoplduou eivon 6Tt xdde onueio Tourg AXUACLCOETLPAVELNS T
(oxécn yeewleton vor UTOAOYLOTEL ubvo pla @opd. To onuelo tourc umopel va
enavaryprotonotniel xatd Ty enelepyaoia TwY ENOUEVKY OTolyElwY Tou yolpdlovTo
™V B o). H mopatripnon auty| urayopedel Ty avdyxn yia o Aoury Aedopévar
TOL YUETOYQPAUPEL OAEC TIC UXPES TOU UTOAOYLOTIXOU TAEYUATOSC KO XPUTH TANPOPORIES
yio exetveg mou Téuvovtat. )¢ ex T0UTOU, UETE TNV apyixY| POETMGCT) TOU UTOAOYLOTIXO00
TAéyuoTog, dnuovpyeiton 1 Aoury Acdouévwy. H Snuovpyia tng dourc dedopévev
Pacileton oty Tomxr apldunon Twv axpdy Twy otoyeinwy dnwg gaiveta oto Xy. [0

Eé&dedpo Ipiua Ivpauioa
6 e’ B 4 1'14
nl .________— s N
Tn *fR"-._ e% y \\e 4 ; / T?\
10 e(/ \e6 an3 . \ ed/ ’ | Neb
&e':,* €0 N\ p. 63_.--4 \2
2 20N § %5 0% [eb S
e \'0/ €8 el fl)/"’e’i
n2 nl
n3
o
/1 \e5 ] n2
e§/ é4 \\\ 63 I.'Iel
@;—6—2_\1__/@ n2 — f'l
n0 I| /él n0 __e_o—____“‘Onl
el nlg

Tetpdedpo TetpdmAevpo

YyApe 9: Tomkn apiOuon kOuPwy kar akudy Yia ta yewpetpikd oToryela.
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H Tomux opldunon twv oxumy evég otoryeiou amodidetor oTov Ydetn oxu®y yia To
TenTo oTotyelo mou vgiotaton emelepyaoia. o xdde enduevo crotyelo AopfBdveton
umon apyd 1 Tomxr aEldunoT UV TO TEEYOV AVOYVWELE TG UXUNS, TO OTol0 TapEo-
xohouvleitan uéow evog yetenth. Edv uio axur| €xer Non aprdundet, téte Yo dratnerioet
™y apywh g apldunon.  Ou axuée twv oToyelwv avayvopllovion and o (edyn
TV AVOY VORI TIXGY XOUBeY ToL GUVOEOUY, PEOVTILOVTAC TEVTA O UXEOTEQOC VoL Elvol
mewtoc. To (ebyog TV avaryveplo TGy xOUPnV yenoyloToleltar »¢ XAeWwl o évay
THVOXOL XAUTOXEQUATIOHOU YL VO TOOGTIEAAOEL TOV YHETT UXHUDY TOU TEQLEYEL TAL 0VOLY Ve~
el Ty ooy, H mapoamdve dwduacio daopoiilel 6Tt oe xdie axur| amodideton éva
HOVOOIXO OVOLYVWELO TIXO.

Metd tn dnuoveylo tng Soufic BEdOUEVWY, TEUYUXTOTOLELTAL 1) 0y IXOTOINoT TELOY
TWVEXWY PE OXOTO TNV ToEaxohoVINCT) TV oXU®Y GTIC OToleg dnutovpyeiton xoufoc—
XOPLGT (tou ETULPAVELONXOD TAEYUATOS TNG Loosmcpo'(vaocg) XS AL TNV 0PYUVWUEVT
amoUAXEUTT] TOV VEOY XOUBWY-X0pLP®Y Tou €youy TapeufAnlel o auTég, Yo UETO-
YeEVEGTERT avaXTNOT). AVOAUTIXOTERA, O ohYOELIUOC apyLxoTOLEL:

o 'Evav mivaxa oindelac (boolean), edgesBool, yio tnv napoxorolinon twy eneep-
YOUOUEVODY AUV,

e 'BEvav mivoxa, edgesCounter, o onolog amoUnxelel o ovaryVOPLOTIXG TV VEGOV
%xOUBWV-x0puP®Y Tou utohoyilovtal Ue yeouuixr) TopedBoly) peTald TV xOuPev
UG oG,

e ‘Evav mivoxa, Isonodes, o onolog amo¥nxelel TIC CUVTETAYUEVES UTMY TWV VEGV
HOUPOV-XORUPOV.

To apyelo €£6dou oL ToEdYETL TEQIEYEL TN GUALOYY TWV TELYWVOY TOU ATOTEAOVY

To emQaveELaxd TAEYUA TNg looempdvelas. To apyeto e€6d0u unopet va AdfBet T Lopgn

evoe apyeiou STL (STereoLithography), to mo ONUoPLAEG dpyeio ElGHBOL Yo TOUg

(epumopixolc) mheyUatomoTéS, ondTe Unopel Vo ewodyetar ancuielug oe évoy TAEYU-

toronth. Eniong, unopel va e€dyetan oe popen apyeiov VIK (Visualization Toolkit)

yioo onTonoinom oto hoylouixd ParaView.

Eqappoyes

To hoylouxd emahniedeton o€ plar oelpd cevoplwy BoxUnC ot BelyUoTa SOUNUEVKDY %ol
UBEWIMWY TAeLYPATWY. Apyxd o alyopriuog doxipdleton 6To OEVAPLO e€aywYNS TNG
Yewpetplag wog ogaipag oe évo Sounuévo muxvd TAéyua (Xy. , xaL o€ Evar UBELOLXO
TAYUa AydTEpo Tuxvo Théypo (Ey. X EAEYYETOL 1) ATOXMOT) TS TEOXVOTTOVCOG
oxtivag and Ty ovouoo iy, Katémy epapuéleton otny nepintwon medlouv 800 emxo-
AUTITOUEVWY GQotp®Y (Blag axtivag Pe pxey| améoTaoy HETa) Toug. MTny TEp(mTwon
oUTY| EAEYYETAL 1) CUUTEPLPORE TOL dAyopilou avdhoya pe TNV oyeTxr YEon dlaywet-
ouoU TV o@uemy. ‘Otay auth| yivetor og dlapopeTid xeAd 0 ahybpLiuog Tapdyet 800
EEYWPIOTEC OVIOTNTES EVG OTAY YIVETOL EVTIOC XOWVMY XEALDOY 0 0AYOELILOC TIC EVIVEL,
omee olvetat 6To Xy, .
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— Nominal ITivaxog 1: Andkhion tns aktivas and
— TtoST . ;
ny ovouacTikng

Andxhorn  TtoST - Nominal

Min —8.05454 x 107°
Max —1.44176 x 107°
Mean —2.72957 x 107°
f o 2.17697 x 107°

Yxhue 10: Egappoyry tng pnebddov oe dounuérvo kupié méyua (ndvw apiotepd) e
eva medio mopdidous B otous kéuPovs (tdvw péon), o€ poperi opaipas tov Paiver pewduervo
000 aropakpUvetar and to kévtpo. H mpoximrovoa ogaipa ané tny TtoST (ndvew b6e&id)
Kai n andkAion tng aktivas tns and tny ovopaotikry (kdtw apiotepd & Ilivaxag .

. — Nominal TTivaxag 2: Andkhion g axtivas ard
A — TtoST - e ’

THY OVOUAoTIKN

Andxhon  TtoST - Nominal

Min —8.2492 x 1073
Max —4.7228 x 1077
Mean —1.3942 x 1073
o 1.3625 x 1073

YxAue 11: Egappoyri tns pedédov oe vfpidicd mAéyua (ndvw apiotepd) pe eva mebio
nopddous B otous kdpuPous (ndvw péon), o€ popen opaipas mov Paiver puewlpevo 0oo
armopakpUvetal ané to kévtpo. H mpoxvntovoa ogaipa ané tny TtoST (ndvew d6eiid) ka1 n
anékAion Tng aktivag TS ané Tty ovopaotikrj (kdtw apotepd & Iivakag E)
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em 9s e Y omm 9 e
o et - el

YxAuo 12: Egapuoyry tng pedédov o€ dounuérvo kufiké mAéyua (apotepd) pe me-
0l0 UOPPNS €MKAAVTTOUEVWY O@alpay e Tiun ueloluevn npos ta é€w. Ilpoxvtrovoes
ogaipes (néon). Omav n Oéon duaywpiopol twv opaipdy elvar o€ dagopetikd kehd o
akyopidpos mapdyer 6Uo EeXwpIoTéS ovTOTNTES €V OTAY €lval evTo§ Kowwy KAy o al-
yépiduos s evdver (debid).

Y1 ouvéyela 1 pédodog yenotomotelton yio TNy e€aywyy| TEIOWHC TATOU HOVTEAOU XOU-
veho¥ [26]. H yewpetpla ewodyeton oe éva unohoyotxd ywplo xou Snutoupyeiton to
medio mopwooug. H epapuoyr| tng uedodou anodidel To oVTELD PE UEYIAT AETTOUEREL
X0l CUYXEIVETAL UE TO aPYLX0, OTWS QUlVETAL OTO M.

. — Original
/ \\\ P TtOST
\

|' /
\ /
\) /

/ )
L

N

o TR

Ixhue 13: Egappoyn tns pedddov ya tny ekaywyn povtélov kovvehod (tdvw apiote-
pd). Ilopddes vnodoyiotikol ywpiov (tdvew péon) kar mpokVntor povtédo (mdvw debid).
Yoykpon Aentopépeas apyikol povtélou (kdtw apiotepd) pe to mpokuUntov (6ekia Tou
mponyoUierou) kadds kar Toung avtdy o€ petwmaio enitedo (kdtw de&ia).

Axbun, n uédodoc epopudletar otny e€aywY | Tou Totywuatog otepeol-peuctol (FSI)
amod Topndn mou €youy Teoxldel and BeTo yia tov oyediaoud evalhaxtov Yepudtn-
TAC. XTO LY. TopotideTon 1) TEPINTOOT BIBIACTUTOU EVOAAEXTN 800 PEVCTHOVY LIS
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€10600L o pag €€660v. 2to L. [15] avtioTowya, napatideton n nepintwon tpiodidoTo-
TOU EVOAAGXTY BU0 PEVC TV ULOC EL0OBOU Xou ULog €EOB0U. XE AUTES TIC TEPLTTWOELS

TOEUTNEELTOL 0L 1) CUPPETOYT TOU 0plou TOU UTOAOYLOTIXOU YweloL GTO TEOXUTTOV
ETULPAVELIXO TAEYUOL.

Yxnuo 14: BeTo diidotatov evaAddrtn Oepudtntag yiag €w06dov kar pag e€6douv.
Yrodoywotiké ywplo ka1 medlo mopiddous (apiotepd), mpoxvntov tolywua FSI and tny

epappoyn tng pedodou.

Yy 15: BeTo tpididotatov evaAddktn Jeppdtntags 6Vo pevotdv pag €10660v ka
piag €€66ov yia kdde pevotd. Troloyiotiké ywpio (aprotepd), tedio nopddovs (éon) kal
mpoxUntwy tolywua FSI ané tny epappoyn tng pedsdou.

Téhog n pédodog epopudletar Yo v e€orywyr| Tou ToLyWuaTog aTepol—peuctol (FSI)
an6d mopwdeg BeTo yia T0 oyedlapd eVoAAdxTn 5V0 PEUCTOV ULIG EL0OBOU XL OXTC
e£O0WV YL XdE PELOTH, TOU PaiveTal GTO 1. , OTWC TPOERYETOL UTO ONUOCLEUHEV
epeuvTy| epyaoto tou N. Tahovol xau cuvepyatay [A].

— -
-
ba] 3
-
s
-« ¥ -« ¥ -« ¥

ExAuna 16: BeTo tpididotatov evaAddktn Jeppdtntags 6Vo pevotdv pag €10660v ka
okte) €€66wr ya kdle pevotd. Tmoloyiotiké xwpio (apotepd), npokUntwy tolywua FSI
ToAAamAnS Yuxpol (uéon pmke) kar Oepuot (uéon kdkkvo) pevatol and tny epapuoyn
g puedédov. OAGKkANpos o evalddktns (dekid).
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