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Δπραξηζηίεο… 
 

Οθείισ θαη’ αξρήλ λα εθθξάζσ ηελ εηιηθξηλή κνπ επγλσκνζχλε πξνο ηνλ Καζεγεηή θ. 

Κ.Υ. Γηαλλάθνγινπ γηα ηελ ππνζηήξημε θαη ηελ ππνκνλή, ηδηαίηεξα θαηά ηελ εθπφλεζε 

ηνπ παξφληνο, θαη ηελ εκπηζηνζχλε θαη πξνζσπηθή κέξηκλα πξνο ην πξφζσπφ κνπ ηα 

ηειεπηαία ηξία ρξφληα. Η ζπλνιηθή εκπεηξία ησλ ζπνπδψλ κνπ ζα ήηαλ ηειείσο 

δηαθνξεηηθή αλ απνπζίαδε ν ίδηνο θαη ε δνπιεηά ηνπ. Δθ ηεο νκάδαο ηνπ Δξγαζηεξίνπ 

Θεξκηθψλ ΢ηξνβηινκεραλψλ, ληψζσ ππφρξενο πξνο ηε δηδάθηνξα Βαξβάξα Αζνχηε θαη 

ηελ ππνςήθηα δηδάθηνξα Δπγελία Κνληνιένληνο γηα ην ρξφλν πνπ κνπ δηέζεζαλ, 

παξέρνληάο κνπ ζπλερή ηερληθή ππνζηήξημε θαη θαζνδήγεζε. Σηο επραξηζηψ γηα ηελ 

θαινζχλε θαη ηελ πξνζπκία λα βνεζήζνπλ, πέξα απφ θάζε ηππηθή ππνρξέσζε, φπσο θαη 

φινπο ηνπο άιινπο θίινπο απφ ηελ εξεπλεηηθή νκάδα. 

 

Καζφηη ε νινθιήξσζε ηεο δηπισκαηηθήο κνπ εξγαζίαο ζπκπίπηεη κε ηελ νινθιήξσζε 

ησλ ζπνπδψλ κνπ ζην ηκήκα Μεραλνιφγσλ Μεραληθψλ ηνπ Δζληθνχ Μεηζνβίνπ 

Πνιπηερλείνπ, ζα ήζεια λα επραξηζηήζσ θαη φζνπο, θίινπο θαη ζπλαδέιθνπο, κε ηνλ έλα 

ή ηνλ άιιν ηξφπν, βνήζεζαλ ζηελ πεξάησζε ησλ ππνρξεψζεψλ κνπ σο ζπνπδαζηή. 

 

Σέινο, επραξηζηψ ηνπο δηθνχο κνπ αλζξψπνπο γηα ηελ αγάπε θαη ηε ζηήξημή ηνπο. 

Ιδηαίηεξα δε, ηνπο γνλείο κνπ, Υξηζηφθνξν θαη Παλαγηψηα γηα ηηο φπνηεο πξνζσπηθέο 

ζπζίεο κνπ εμαζθάιηζαλ ην πξνλφκην λα πξαγκαηνπνηήζσ απηέο ηηο ζπνπδέο.  
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Μνλάδα Παξάιιειεο Τπνινγηζηηθήο Ρεπζηνδπλακηθήο & 
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Αναβαθμιςμζνη Παραλλαγή τησ Τεχνικήσ Σμήνουσ 

Σωματιδίων ςτη Βελτιςτοποίηςη 

 

΢ηφρν ηεο παξνχζεο εξγαζίαο απνηέιεζε ε αλάπηπμε ελφο ελαιιαθηηθνχ αιγνξίζκνπ 

΢ηνραζηηθήο Βειηηζηνπνίεζεο βαζηδνκέλνπ ζηελ εδξαησκέλε κέζνδν ΢κήλνπο 

΢σκαηηδίσλ (Particle Swarm Optimization – PSO). Η πξνυπάξρνπζα θεληξηθή ηδέα 

πιαηζηψλεηαη απφ δνθηκαζκέλεο ζην ρψξν ηεο βειηηζηνπνίεζεο ιχζεηο θαη απφ νξηζκέλεο 

πξνζζήθεο ηνπ γξάθνληνο, κε ζηφρν ην ηειηθφ απνηέιεζκα λα απνηειέζεη κία 

ιεηηνπξγηθή θαη αληαγσληζηηθή ελαιιαθηηθή ιχζε, εηδηθά φζνλ αθνξά πξνβιήκαηα 

βειηηζηνπνίεζεο σο πξνο πεξηζζφηεξα ηνπ ελφο θξηηεξίσλ. Παξνπζηάδεηαη δηεμνδηθά ε 

πξφνδνο ηνπ αιγνξίζκνπ κε θάζε πξνζζήθε, ελψ εθηίζεληαη παξάιιεια θαη δηάθνξα 

αληηπξνζσπεπηηθά ηεο αηρκήο ηνπ δφξαηνο ηεο ΢ηνραζηηθήο Βειηηζηνπνίεζεο 

παξαδείγκαηα, γηα ιφγνπο ζχγθξηζεο αιιά θαη πιεξφηεηαο. Ιδηαίηεξε κλεία γίλεηαη ζηνπο 

δεκνθηιείο Δμειηθηηθνχο Αιγνξίζκνπο (ΔΑ), ην αληίπαιν δένο, νπζηαζηηθά, ηεο ηερληθήο 

΢κήλνπο ΢σκαηηδίσλ, επί ησλ νπνίσλ ην Δξγαζηήξην Θεξκηθψλ ΢ηξνβηινκεραλψλ 

(ΔΘ΢) έρεη λα επηδείμεη ζπνπδαία δξαζηεξηφηεηα θαη ηερλνγλσζία θαη ν γξάθσλ κία 

ζρεηηθή εκπεηξία. Δπηρεηξείηαη κία απεπζείαο αληηπαξαβνιή, ηφζν θηινζνθίαο φζν θαη 

πξαθηηθήο, ησλ δχν ηδεψλ, ελψ είλαη ζαθήο θαζ' φιε ηελ έθηαζε απηνχ ηνπ εθπνλήκαηνο 

ε πξφζεζε αληηζηνίρηζεο, ηκεκαηηθά, ηεο κίαο κε ηελ άιιε, ψζηε λα ηνληζηεί ν εληαίνο 

ραξαθηήξαο ηνπ ρψξνπ ηεο ΢ηνραζηηθήο Βειηηζηνπνίεζεο θαη λα ηαπηνπνηεζνχλ ηα 

πάγηα ραξαθηεξηζηηθά ησλ κεζφδσλ απηψλ. 



 

Ο νινθιεξσκέλνο αιγφξηζκνο δνθηκάδεηαη, θαηφπηλ, ζε επηιεγκέλεο εθαξκνγέο, 

αθαδεκατθνχ θαη βηνκεραληθνχ ελδηαθέξνληνο, φιεο δχν ζηφρσλ: Οη πεξηπηψζεηο ησλ 

καζεκαηηθψλ ζπλαξηήζεσλ ZDT-1 θαη ZDT-3 είλαη αληηπξνζσπεπηηθά δείγκαηα 

πξνβιεκάησλ πνπ έρνπλ αλαπηπρζεί απφ αθαδεκατθφ θνξέα εηδηθά σο κέζν δνθηκήο θαη 

ζχγθξηζεο ηέηνησλ κεζφδσλ θαη απνηεινχλ ζηελ νπζία κνληεινπνίεζε ησλ δπζρεξεηψλ 

πνπ αλακέλεηαη λα ζπλαληήζεη έλαο αιγφξηζκνο βειηηζηνπνίεζεο ζε βηνκεραληθέο 

εθαξκνγέο. Σέινο, δνθηκάδεηαη θαη έλαληη ηεο, ππφ πεξηνξηζκνχο, αεξνδπλακηθήο 

βειηηζηνπνίεζεο πηεξπγίνπ αεξνζπκπηεζηή. Σα απνηειέζκαηα πνπ εθηίζεληαη 

πξνζθέξνληαη γηα ζχγθξηζε ηεο παξνχζαο πξφηαζεο κε έλαλ ελδεηθηηθφ ΔΑ, 

επηβεβαηψλνπλ ηα φζα είλαη γλσζηά γηα ηηο δηαθνξέο ζηε ζπκπεξηθνξά ησλ δχν 

ηερληθψλ, ελψ πηζηνπνηνχλ ηελ αληαγσληζηηθφηεηα ηνπ παξνπζηαδφκελνπ ινγηζκηθνχ. 
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1. Πξόινγνο 

 
(Σν θπξίσο ζψκα ηεο δηπισκαηηθήο απηήο εξγαζίαο είλαη γξακκέλν ζηελ Αγγιηθή 

γιψζζα. Σν θείκελν πνπ αθνινπζεί απνηειεί κηα ηδηαηηέξσο εθηελή πεξίιεςε απηήο, 

φπνπ γίλεηαη κάιηζηα επίθιεζε ζρεκάησλ θαη καζεκαηηθψλ ηχπσλ απ΄ ην μελφγισζζν 

ηκήκα, κε απνηέιεζκα λα δίλεη κηα αξθεηά πιήξε εηθφλα ηνπ πεξηερνκέλνπ ηεο 

δηπισκαηηθήο εξγαζίαο. Η δνκή ηνπ ειιεληθνχ θεηκέλνπ αθνινπζεί απζηεξά ηε δνκή ζε 

θεθάιαηα ηνπ ιεπηνκεξνχο μελφγισζζνπ θεηκέλνπ.) 

 

Η παξνχζα δηπισκαηηθή εξγαζία ζηνρεχεη ζηελ δεκηνπξγία θαη δνθηκή κίαο 

αλαβαζκηζκέλεο παξαιιαγήο ηεο ηερληθήο βειηηζηνπνίεζεο πνπ βαζίδεηαη ζηε κέζνδν 

΢κήλνπο ΢σκαηηδίσλ (Β΢΢), (Particle Swarm Optimization - PSO) [1]. Ο πξνηεηλφκελνο 

αιγφξηζκνο (ΠΑ) δαλείδεηαη ηελ πξνυπάξρνπζα βαζηθή ηδέα ηεο Β΢΢, επί ηεο νπνίαο 

γίλνληαη ζηε ζπλέρεηα πξνζζήθεο θαη βειηηψζεηο, κε ζθνπφ ην ηειηθφ απνηέιεζκα λα 

απνηειεί έλα, θαηά ην δπλαηφλ ζην πιαίζην δηπισκαηηθήο εξγαζίαο, αληαγσληζηηθφ θαη 

πιήξεο εξγαιείν βειηηζηνπνίεζεο, γηα ρξήζε ζε θάζε είδνπο εθαξκνγέο. 

 

Σν ζεσξεηηθφ ππφβαζξν ηνπ παξφληνο εθηείλεηαη πέξα απφ ηα ζηελά φξηα ηεο ηερληθήο 

Β΢΢: παξνπζηάδεηαη εθηελψο ν επξχηεξνο ρψξνο ηεο ΢ηνραζηηθήο Βειηηζηνπνίεζεο 

(΢Β), ππνπεξηνρή ηνπ νπνίνπ απνηειεί, άιισζηε, ε ζπγθεθξηκέλε ηερληθή θαη νη 

δηάθνξεο παξαιιαγέο ηεο. Ιδηαηηέξσο εκκέλνπκε ζηνπο ιεγφκελνπο Δμειηθηηθνχο 

Αιγνξίζκνπο (Evolutionary Algorithms - ΔΑ) [45, 46], θαζφηη απνηεινχλ ηελ πην επξέσο 

εθαξκνζκέλε θαη δεκνθηιή κέζνδν ΢Β σο ζήκεξα θαη είλαη ελδεηθηηθνί ηεο θηινζνθίαο 

θαη ηεο πξαθηηθήο πνπ δηέπνπλ ηε ΢Β. Η έληνλε δξαζηεξηφηεηα ηνπ Δξγαζηεξίνπ 

Θεξκηθψλ ΢ηξνβηινκεραλψλ (ΔΘ΢) ζηε ρξήζε θαη θπξίσο ζηελ αλάπηπμε ινγηζκηθνχ 

βαζηζκέλνπ ζηνπο ΔΑ απεηέιεζε ην έλαπζκα γηα ηελ εθπφλεζε ηεο εξγαζηαο απηήο, 

ψζηε λα θαηαζηεί δπλαηή ε αληηπαξαβνιή ησλ δχν κεζφδσλ. Σν πιήζνο ζρεηηθψλ 

δεκνζηεχζεσλ πξνδίδεη ην ελδηαθέξνλ απφ αθαδεκατθνχο θαη βηνκεραληθνχο θχθινπο λα 

επελδχζνπλ ζηε Β΢΢, φπσο ήδε θάλνπλ κε ηνπο ΔΑ. Παξνπζηάδεη, ζπλεπψο, έληνλν 

ελδηαθέξνλ θαη ε παξάιιειε εμέηαζε ησλ δχν ηερληθψλ, γηα λα δηαπηζησζνχλ ηπρφλ 

νκνηφηεηεο ή δηαθνξέο ζηε δνκή θαη ηε ζπκπεξηθνξά θαη λα εληνπηζζνχλ ηα εηδνπνηά 

ζηνηρεία ηεο θαζεκηάο, ηα νπνία, κάιηζηα, φπσο ζα δεηρζεί, παξνπζηάδνπλ επζεία 

αληηζηνηρία κεηαμχ ηνπο. Απψηεξνο ζηφρνο απηήο ηεο ζεσξεηηθήο δηεξεχλεζεο είλαη, 

κειεηψληαο απηνχο ηνπο δχν ραξαθηεξηζηηθνχο εθπξνζψπνπο ηνπο, λα θαηαδείμνπκε ηνλ 

εληαίν ραξαθηήξα φισλ ησλ ΢ηνραζηηθψλ Μεζφδσλ. Δπηπιένλ, πξνθχπηνπλ 

ζπκπεξάζκαηα γηα ην πψο ε κία ή ε άιιε κπνξνχλ λα αλαβαζκηζηνχλ, αληαιιάζζνληαο 

ραξαθηεξηζηηθά. 

 

Ο αιγφξηζκνο πνπ αλαπηχρζεθε πξνζαλαηνιίδεηαη ζηε επίιπζε πξνβιεκάησλ Πνιπ-

Κξηηεξηαθήο Βειηηζηνπνίεζεο (ΠΚΒ), δειαδή πξνβιεκάησλ φπνπ επηδηψθεηαη ε 
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βειηηζηφηεηα ηνπ απνηειέζκαηνο σο πξνο άλσ ηνπ ελφο θξηηεξίσλ. Η ΠΚΒ είλαη έλα 

μερσξηζηφ θεθάιαην ηεο βειηηζηνπνίεζεο, κε ηηο δηθέο ηνπ ηδηαηηεξφηεηεο θαη πξαθηηθέο, 

γη απηφ θαη ηεο γίλεηαη ηδηαίηεξε κλεία ζε ζρεηηθή παξάγξαθν ηεο εξγαζίαο. Η επέθηαζε 

ελφο αιγνξίζκνπ βειηηζηνπνίεζεο ψζηε λα αληαπνθξηζεί ζε εθαξκνγέο ΠΚΒ δελ είλαη 

απιή ππφζεζε, αληίζεηα είλαη εμίζνπ απαηηεηηθή κε ηελ αλάπηπμε ηνπ ίδηνπ ηνπ 

αιγνξίζκνπ. Δλδεηθηηθφ είλαη, φηη ην πψο ζα αληηκεησπηζηνχλ ηα δεηήκαηα ρεηξηζκνχ ησλ 

ππνςεθίσλ ιχζεσλ ζε πεξηπηψζεηο ΠΚΒ απαζρφιεζε ίζσο πεξηζζφηεξν απ’ φ,ηη φια ηα 

ππφινηπα κέξε ηνπ ΠΑ.  

 

Η ηερληθή Β΢΢ αλήθεη ζηελ νηθνγέλεηα καζεκαηηθψλ κνληέισλ πνπ είλαη γλσζηή σο 

Ννεκνζχλε ΢κήλνπο (Ν΢) [28, 29], πνπ απαξηίδεηαη απφ πξαθηηθέο πνπ κηκνχληαη ηε 

ζπιινγηθή ζπκπεξηθνξά ελφο ζπλφινπ εκβίσλ φλησλ, πνπιηψλ, ςαξηψλ, εληφκσλ θιπ. 

Γίλεηαη κηα εθηελήο επηζθφπεζή ηεο Ν΢ θαη θαηφπηλ επηθεληξσλφκαζηε ζε απηή 

θαζεαπηή ηε Β΢΢: παξνπζηάδεηαη ην καζεκαηηθφ ηεο ππφβαζξν, φπσο απηφ 

δηακνξθψζεθε χζηεξα απφ αξθεηέο πξνζζήθεο θαη αιιαγέο ηελ ηειεπηαία δεθαεηία, κε 

έκθαζε ζηηο ξπζκηζηηθέο παξακέηξνπο πνπ ην δηέπνπλ. Αθνινχζσο, εμεηάδεηαη ε επηξξνή 

απηψλ ησλ παξακέηξσλ ζηε ζπκπεξηθνξά ηεο Β΢΢ θαηά ηελ αλαδήηεζε ησλ βέιηηζησλ 

ιχζεσλ. Υσξίο λα δηεμάγεηαη θάπνηα παξακεηξηθή κειέηε ή πείξακα, κε πιήζνο 

αλαθνξψλ ζηε ζρεηηθή βηβιηνγξαθία [11, 12] θαη επίθιεζε ηεο ππάξρνπζαο 

ηερλνγλσζίαο, ηεθκεξηψλνληαη νη επηινγέο πνπ έγηλαλ ζην πξνηεηλφκελν ινγηζκηθφ, φζνλ 

αθνξά ηελ ηηκή θαη δηαθχκαλζε ησλ ξπζκηζηηθψλ απηψλ παξακέηξσλ. 

 

΢ην 4
ν
 θεθάιαην, γηα πξψηε θνξά γίλεηαη αλαθνξά ζηα λέα ζηνηρεία πνπ είλαη παξφληα 

ζηνλ ΠΑ. Αλά ελφηεηα παξνπζηάδνληαη κία-κία νη θνκβηθφηεξεο ιεηηνπξγίεο ηνπ, κε 

ζχληνκε παξάζεζε ησλ επηθξαηέζηεξσλ ζην ρψξν αληίζηνηρσλ πξαθηηθψλ, αλά 

πεξίπησζε. ΢ε θάπνηεο πεξηπηψζεηο, εθηίζεληαη δηάθνξεο ελαιιαθηηθέο πνπ 

δνθηκάζηεθαλ θαη εμππεξεηνχλ ηνλ ίδην ζθνπφ θαη εμεγείηαη πσο επηδξνχλ ζην ηειηθφ 

απνηέιεζκα. Πξέπεη λα ηνληζηεί φηη ν ΠΑ δεκηνπξγήζεθε θαη πξνγξακκαηίζηεθε εθ ηνπ 

κεδελφο, κε εμαίξεζε θπζηθά ηνλ πξνυπάξρνληα ππξήλα ηεο Β΢΢. Αζθαιψο, ζε θάπνηα 

ζεκεία, ε αθνινπζνχκελε νδφο κνηάδεη κε πξνυπάξρνπζεο ζπλήζεηο πξαθηηθέο πνπ 

θαηνλνκάδνληαη, δηαθέξνληαο ζηα ζεκεία κφλν απφ απηέο. Γεληθά, φκσο, ν ΠΑ απνθιίλεη 

αξθεηά απφ ηελ πεπαηεκέλε. 

  

Σέινο, ν ΠΑ δνθηκάζηεθε ζε ηξία πξνβιήκαηα, ην θαζέλα κε ηηο ηδηαηηεξφηεηέο ηνπ. Σα 

δπν πξψηα απνηεινχλ καζεκαηηθά πξνβιήκαηα ειαρηζηνπνίεζεο δχν ζπλαξηήζεσλ 

ζηφρσλ θαη έρνπλ αλαπηπρζεί αθξηβψο γη απηφ ην ζθνπφ, λα αμηνινγνχλ αιγνξίζκνπο 

βειηηζηνπνίεζεο. Σν πξψην είλαη ζρεηηθά απιφ θαη ρξεζίκεπζε θπξίσο γηα λα 

πηζηνπνηήζεη ηελ θαιή ιεηηνπξγία ηνπ ΠΑ. Σν δεχηεξν είλαη απαηηεηηθφηεξν θαη πνιχ 

δηαδεδνκέλν ζηελ εηδηθή βηβιηνγξαθία. Ο ΠΑ δνθηκάζηεθε αθφκα ζε έλα πξαθηηθφηεξεο 

πθήο πξφβιεκα: ρξεζηκνπνηήζεθε γηα ηελ αλαδήηεζε ηνπ βέιηηζηνπ πεξηγξάκκαηνο 
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αεξνηνκήο ηνπ πηεξπγίνπ ζηάηνξα ελφο αμνληθνχ ζπκπηεζηή, ππφ απζηεξνχο 

πεξηνξηζκνχο θαη κε θξηηήξηα ηελ θαιή αεξνδπλακηθή απφδνζε ηνπ κεκνλσκέλνπ 

πηεξπγίνπ αιιά θαη ηελ θαιχηεξε δπλαηή ιεηηνπξγία ηνπ σο ζπληζηψζαο ηνπ ζπκπηεζηή.  

 

Σα πνιχ ηθαλνπνηεηηθά απνηειέζκαηα ησλ δνθηκψλ επηβεβαηψλνπλ ηελ 

αληαγσληζηηθφηεηα ηνπ ΠΑ θαη ηελ θαηαιιειφηεηά ηνπ σο βάζεο γηα πεηξακαηηζκνχο 

θαη πξνζζήθεο, κε ζθνπφ ηε βειηίσζε ησλ επηδφζεσλ θαη ηεο πιεξφηεηάο ηνπ. Σέηνηεο 

πξνηάζεηο γηα κειινληηθέο επεκβάζεηο γίλνληαη ζηελ θαηαιεθηηθή παξάγξαθν ηνπ 

θεηκέλνπ ηεο δηπισκαηηθήο εξγαζίαο. 

 

 

 

2. ΢ηνραζηηθή Βειηηζηνπνίεζε - Πνιπ-θξηηεξηαθή 

Βειηηζηνπνίεζε 
 

2.1. ΢ηνραζηηθέο Μέζνδνη 

 

Οη κέζνδνη βειηηζηνπνίεζεο δηαθξίλνληαη ζε ΢ηνραζηηθέο (΢Μ) θαη Αηηηνθξαηηθέο      

[40, 45]. Η Β΢΢, αιιά θαη ε νηθνγέλεηα ησλ Δμειηθηηθψλ Μεζφδσλ, ηηο νπνίεο ζα 

εμεηάζνπκε παξαθάησ, ζπγθαηαιέγνληαη ζηηο πξψηεο. Ο ραξαθηεξηζκφο «ζηνραζηηθέο» 

ηνπο απνδίδεηαη ιφγσ ηεο ηπραηφηεηαο πνπ δηέπεη πνιιέο απφ ηηο ιεηηνπξγίεο πνπ 

ζπλζέηνπλ κηα ηέηνηα κέζνδν: ε θηινζνθία ηνπο βαζίδεηαη θαηά έλα βαζκφ ζηελ 

«πεξηπιάλεζε» εληφο ηνπ Ν-δηάζηαηνπ ρψξνπ (φπνπ Ν ην πιήζνο ησλ κεηαβιεηψλ ηνπ 

πξνβιήκαηνο) ζε αλαδήηεζε ησλ ζεκείσλ φπνπ ην πξφβιεκα βξίζθεη ηθαλνπνηεηηθή, εη 

δπλαηφλ βέιηηζηε, ιχζε. Πξαθηηθά, ζπκπιεξψλνπλ απηή ηελ ηπραία αλαδήηεζε κε 

εηδηθνχο κεραληζκνχο πνπ εθκεηαιιεχνληαη ηελ κέρξη ζηηγκήο ζπγθεληξσκέλε εκπεηξία 

γηα ηα ραξαθηεξηζηηθά ηνπ ρψξνπ αλαδήηεζεο, πξνθεηκέλνπ λα επηζπεχζνπλ ηελ εχξεζε 

ησλ βειηίζησλ, θαηεπζχλνληαο θαηάιιεια ηελ φιε δηαδηθαζία θαη πεξηνξίδνληαο ηελ 

ηπραηφηεηα. Απηνί νη κεραληζκνί είλαη ζπλήζσο εκπλεπζκέλνη απφ ηε θχζε (εμέιημε ησλ 

εηδψλ - ΔΑ, ζπληνληζκφο αγέιεο/ζκήλνπο - Β΢΢). Μία ηππηθή -πιεζπζκηαθή- ΢Μ 

δηαρεηξίδεηαη ηαπηφρξνλα έλα πιεζπζκφ απφ ππνςήθηεο ιχζεηο πνπ ζα βξεζνχλ 

δηαδνρηθά ζε δηάθνξεο ζέζεηο ζην ρψξν, επηιεγκέλεο εληειψο ηπραία ζηελ αξρή θαη 

ππνδεηθλπφκελεο αξγφηεξα. 

 

Οη αηηηνθξαηηθέο κέζνδνη, απφ ηελ άιιε, πξνζεγγίδνπλ ηηο βέιηηζηεο ιχζεηο κε απνιχησο 

δνκεκέλν θαη ζηνρεπκέλν ηξφπν, αθνινπζψληαο ηελ θιίζε ηεο ζπλάξηεζεο πνπ 

εθθξάδεη ην ζηφρν-θξηηήξην ηεο βειηηζηνπνίεζεο. Όζν απηή ε θιίζε, ζηελ νπζία ε 

παξάγσγνο ηεο ζπλάξηεζεο-ζηφρνπ, ηείλεη ζην κεδέλ, ηφζν πην θνληά βξηζθφκαζηε ζε 

αθξφηαην ηεο ζπλάξηεζεο. Αλ απηφ ην αθξφηαην είλαη νιηθφ, ζπκπίπηεη κε ηε βέιηηζηε 
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ιχζε. Οη αηηηνθξαηηθέο κέζνδνη κπνξνχλ πνιχ γξήγνξα λα νδεγεζνχλ ζε βέιηηζηε ιχζε, 

εθφζνλ φκσο δελ «παγηδεπηνχλ» ζε ηνπηθφ αθξφηαην. Δπίζεο, ε εθαξκνγή ηνπο είλαη 

αδχλαηε αλ δε κπνξνχκε λα ππνινγίζνπκε ηελ παξάγσγν ηεο ζπλάξηεζεο ζηφρνπ 

παληνχ ή ζρεδφλ παληνχ ζην πεδίν ησλ ιχζεσλ πνπ ζα εμεηαζηεί. 

 

Μηα ΢Μ δελ έρεη θακία ηέηνηα εμάξηεζε απφ ηε δπλαηφηεηα εχξεζεο ηεο παξαγψγνπ, 

πνπ κπνξεί λα είλαη θαη εμαηξεηηθά δαπαλεξή, νχηε θηλδπλεχεη ηφζν απφ νξηζηηθή 

παγίδεπζε ζε ηνπηθφ αθξφηαην. ΢ηελ πξαγκαηηθφηεηα, δε ρξεηάδεηαη λα γλσξίδνπκε ην 

παξακηθξφ γηα ην πξφβιεκα, πέξαλ απφ ηηο κεηαβιεηέο ηνπ, πξνθεηκέλνπ λα ηελ 

εθαξκφζνπκε. Δίλαη ινηπφλ εχθνια πξνζαξκφζηκε ζε θάζε πξφβιεκα, έζησ θη αλ γεληθά 

θαζπζηεξεί πεξηζζφηεξν λα βξεη ηθαλνπνηεηηθή ιχζε. 

 

2.2. Δμειηθηηθνί Αιγόξηζκνη 

 

Η ηδέα ησλ ΔΑ κεηξά ήδε ηέζζεξηο δεθαεηίεο δσήο θαη είλαη εκπλεπζκέλε απφ ηε 

Γαξβηληζηηθή αληίιεςε ηεο Δμέιημεο ησλ εηδψλ θαη ηεο πάιεο απηψλ γηα επηβίσζε. Οη 

ππνςήθηεο ιχζεηο πνπ απαξηίδνπλ ηνλ πιεζπζκφ ελφο ΔΑ, αληηπξνζσπεχνληαη απφ 

γνληδηψκαηα, ελδερνκέλσο δπαδηθά θσδηθνπνηεκέλα, πνπ εθθξάδνπλ ηνλ ζπλδπαζκφ 

ηηκψλ κεηαβιεηψλ πνπ δίλεη ηελ θάζε ιχζε. Ο ΔΑ εθαξκφδεη ζηα γνληδηψκαηα απηά έλα 

ζχλνιν απφ ηειεζηέο, πνπ κε ηε ζεηξά ηνπο είλαη εκπλεπζκέλνη απφ ηηο δηάθνξεο 

δηαδηθαζίεο ζηηο νπνίεο ζπλίζηαηαη ε Δμέιημε: Γηαζηαχξσζε/Αλαπαξαγσγή, Φπζηθή 

Δπηινγή θαη Μεηάιιαμε. Δπεηδή φκσο δελ είλαη απνιχησο ζαθήο ν ηξφπνο πνπ ηα 

παξαπάλσ ζπλδπάδνληαη, θαη ελ ηέιεη δελ επαξθνχλ γηα λα κνληεινπνηήζνπλ κε απφιπηε 

αθξίβεηα ηε θπζηθή δηεξγαζία πνπ νδεγεί ζηε βειηίσζε ησλ ραξαθηεξηζηηθψλ ελφο 

είδνπο, ππεηζέξρεηαη θαη ε ηπραηφηεηα. 

 

Έλαο ΔΑ πξνζπαζεί λα βξεη ιχζε ζε έλα πξφβιεκα πξνζαξκφδνληαο ηελ αλαδήηεζή ηεο, 

κε ηελ ίδηα ινγηθή πνπ έλα έκβην είδνο πξνζαξκφδεη ηα ραξαθηεξηζηηθά ηνπ ζηηο 

απαηηήζεηο ηνπ πεξηβάιινληφο ηνπ, πξνθεηκέλνπ λα επηβηψζεη. Γελ θαηαθέξλνπλ φκσο 

φια ηα είδε λα επηβηψζνπλ, παξά κφλν απηά πνπ απνδεηθλχνληαη ικανόηεπα λα 

πξνζαξκνζηνχλ, έηζη θαη ν ΔΑ δελ επελδχεη ζε φια ηα γνληδηψκαηα πνπ απαξηίδνπλ ηνλ 

πιεζπζκφ, αιιά απνξξίπηεη θάπνηα θαη γελλά θαηλνχξηα, πξντφληα ηεο εμειηθηηθήο 

δηαδηθαζίαο. Απηή ε ελαιιαγή ιακβάλεη ρψξα θάζε γεληά-επαλάιεςε ηνπ αιγνξίζκνπ. 

΢ηφρνο είλαη λα επηβηψλνπλ πάληα ηα πξνζαξκνζηηθφηεξα είδε - νη θαιχηεξεο ιχζεηο - 

θαη κε ζπλερή δηαζηαχξσζε θαη κεηάιιαμε απηψλ λα επηηπγράλνπκε ηελ νινέλα 

θαιχηεξε πξνζαξκνγή - ιχζε. Παξεκπηπηφλησο, ε κεηάιιαμε είλαη ν θχξηνο εθθξαζηήο 

ηεο ζηνραζηηθφηεηαο ζηνλ ΔΑ: ζηελ απινχζηεξή ηεο κνξθή, ζπλίζηαηαη ζηελ απιή 

κεηαβνιή ηνπ 1 ζε 0 ή ηνχκπαιηλ, ελφο bit ηνπ γνληδηψκαηνο-ρξσκνζψκαηνο, κε φπνηα 

αθαζφξηζηε επίπησζε έρεη απηφ ζηηο ηδηφηεηεο ηνπ γνληδηψκαηνο. 
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Έλαο ηππηθφο ΔΑ αθνινπζεί ηελ εμήο ξνή, φπσο απεηθνλίδεηαη θαη ζην ζρήκα 2.1: αθνχ 

αξρηθνπνηεζνχλ ηπραία ι ην πιήζνο ππνςήθηεο ιχζεηο, εθαξκφδνληαη επαλαιεπηηθά ηα 

αθφινπζα βήκαηα, έσο φηνπ ηθαλνπνηεζεί θάπνην θξηηήξην ηεξκαηηζκνχ ηνπ αιγνξίζκνπ: 

 

 Αμηνινγνύληαη νη ι ιχζεηο απφ ην φπνην εμεηδηθεπκέλν ινγηζκηθφ ππνινγηζκνχ 

ησλ ζπλαξηήζεσλ-ζηφρσλ είλαη δηαζέζηκν, εμάγεηαη δειαδή γηα ηελ θαζεκηά ε 

αληίζηνηρε ηηκή ηεο ανηικειμενικήρ ζπλάξηεζεο. 

 

 Οη θαιχηεξεο εμ απηψλ εηζέξρνληαη ζηνπο Δπίιεθηνπο, φπνπ, αλά πάζα ζηηγκή, 

ζπγθαηαιέγνληαη νη e ην πιήζνο θαιχηεξεο, κέρξη ζηηγκήο, ιχζεηο. 

 

 Δπηιέγνληαη απφ ηνλ ηξέρνληα πιεζπζκφ νη κ ην πιήζνο γνλείο, απφ 

δηαζηαύξσζε ησλ νπνίσλ ζα πξνθχςεη ε επφκελε γελεά πιήζνπο ι, νη απόγνλνη 

(ελδέρεηαη κ=ι). Η δηαδηθαζία ηεο επηινγήο ιακβάλεη, θπζηθά, ππφςε ηελ 

πνηφηεηα ηεο θάζε ιχζεο, βάζεη ηηκήο αληηθεηκεληθήο ζπλάξηεζεο, αιιά δηέπεηαη 

θαη απφ θάπνηα ηπραηφηεηα. 

 

 Πξαγκαηνπνηείηαη ε δηαζηαύξσζε, κηα δηαδηθαζία πνπ παξάγεη λέεο ππνςήθηεο 

ιχζεηο ζπλζέηνληαο ηκήκαηα ηνπ γνληδηψκαηνο θαζελφο εθ ησλ γνλέσλ.  

 

 Η λέα γεληά ηειηθψο δηακνξθψλεηαη κε ηελ πξνζζήθε πξντφλησλ κεηάιιαμεο, 

αθνχ απηή εθαξκνζηεί ζε ηπραία επηιεγέληα κέιε ηνπ πιεζπζκνχ, θαη ειηηηζκνύ, 

ν νπνίνο επηβάιιεη απζαίξεηα ηελ επηβίσζε θαη παξνπζία ελφο ε πεξηζζνηέξσλ 

επηιέθησλ ζηε λέα γελεά, γηα λα εγγπεζεί ζηνηρεησδψο ηελ πνηφηεηα ηεο λέαο 

απηήο γελεάο. 

 
2.3. Πνιύ-Κξηηεξηαθή Βειηηζηνπνίεζε - Καηά Pareto Κπξηαξρία 

 
Όπσο ππνγξακκίζηεθε ζηνλ πξφινγν, ν ΠΑ, παξφηη είλαη ζε ζέζε λα ιχζεη πξνβιήκαηα 

ελφο ζηφρνπ, αλαπηχρζεθε κε γλψκνλα ηελ θαιή απφδνζε έλαληη πξνβιεκάησλ Πνιπ-

θξηηεξηαθήο Βειηηζηνπνίεζεο (ΠΚΒ). Η πξνζέγγηζε ησλ ηειεπηαίσλ είλαη πνιχ 

δηαθνξεηηθή απφ απηή ησλ πξνβιεκάησλ ελφο κνλαδηθνχ ζηφρνπ, γηα δχν θπξίνπο 

ιφγνπο: 

 

I. Έλα πξφβιεκα ΠΚΒ επηδέρεηαη γεληθά πεξηζζφηεξεο ηεο κηαο βέιηηζηεο ιχζεηο: 

Απνδεθηέο κπνξνχλ λα γίλνπλ απηέο πνπ έρνπλ ηελ απφιπηε απφδνζε σο πξνο 

έλα ζηφρν κφλν, αζρέησο ηεο επίδνζήο ηνπο σο πξνο ηνπο ππφινηπνπο. Τπάξρνπλ 

θαη ελδηάκεζεο ιχζεηο πνπ απνδίδνπλ έλα απνηέιεζκα πεξηζζφηεξν 

ηζνξξνπεκέλν σο πξνο ηνπο δηάθνξνπο ζηφρνπο, κε ηθαλνπνηεηηθή ζπλνιηθή 

πνηφηεηα, ρσξίο λα επηηπγράλνπλ ην απφιπην σο πξνο θάπνηνλ εμ απηψλ. ΢πάληα 
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κία θαη κνλαδηθή ιχζε ζα κπνξεί λα εμαζθαιίζεη ηε βέιηηζηε σο πξνο φια ηα 

θξηηήξηα απφδνζε, θαζψο απηά ηα θξηηήξηα είλαη, γεληθά, αληηθξνπφκελα. Αλ δελ 

είλαη, άιισζηε, ην πξφβιεκά καο κπνξεί λα αλαρζεί ζε ελφο ζηφρνπ θαη λα 

αληηκεησπηζηεί αλαιφγσο. 

 

II. Γελ είλαη δπλαηφ λα θαηαηάμνπκε κε απφιπην ηξφπν ην ζχλνιν ησλ δπλαηψλ 

ιχζεσλ σο πξνο ηελ πνηφηεηά ηνπο, κε βάζε πεξηζζφηεξα ηνπ ελφο θξηηεξίσλ. 

Απφ δχν ιχζεηο πνπ ππεξηζρχνπλ ε κία ηεο άιιεο σο πξνο έλαλ απφ δπν ζηφρνπο, 

πνηα είλαη ε θαιχηεξε? Παξ’ φια απηά, ζα ρξεηαζηεί λα επηιέμνπκε κεηαμχ δχν ε 

πεξηζζνηέξσλ ιχζεσλ πνιιέο θνξέο, επελδχνληαο ζε θάπνηεο θαη απνξξίπηνληαο 

άιιεο. 

 

Γίλεηαη ινηπφλ θαηαλνεηφ, φηη πξέπεη λα αλαπηπρζνχλ κεραληζκνί πνπ: α) ζα 

θαηαηάζζνπλ ηηο ιχζεηο κε ηε κεγαιχηεξε δπλαηή αξιοκπαηία (πνπ ζα απνθαίλνληαη γηα 

ην πνηα ιχζε ζα πξνηηκεζεί έλαληη κηαο άιιεο, εθ πξψηεο φςεσο ηζνδχλακεο), 

ιακβάλνληαο ππφςε θαη ηηο ηδηφηεηεο ηνπ πξνβιήκαηνο, θαη β) ζα σζνχλ ηνλ αιγφξηζκν 

λα αλαθαιχςεη ιχζεηο πνπ ζα θαιχπηνπλ έλα επξχ θαη πνηθηιφκνξθν θάζκα 

δηαθνξεηηθψλ ζπλδπαζκψλ απφδνζεο σο πξνο ηα δηάθνξα θξηηήξηα. 

 

Η πξψηε επηδίσμε βξίζθεη ελ κέξεη δηέμνδν ζηελ έλλνηα ηεο καηά Pareto κςπιαπσίαρ [23], 

ζχκθσλα κε ηελ νπνία κία ιχζε θξίλεηαη σο μη κςπιαπσούμενη, φηαλ θακία άιιε ιχζε 

δελ μεπεξλά ηελ επίδνζή ηεο σο πξνο ΟΛΟΤ΢ ηνπο ηεζεηκέλνπο ζηφρνπο ηαπηφρξνλα. 

Θεσξνχκε δε, φηη κία ιχζε κςπιαπσεί επί κίαο άιιεο φηαλ είλαη θαιχηεξε απηήο σο πξνο 

έλα ζηφρν ηνπιάρηζηνλ, ελψ δελ είλαη ρεηξφηεξε απηήο σο πξνο θάζε άιινλ μερσξηζηά  

(εμ. 2.1). Σν ζχλνιν ησλ κε θπξηαξρνχκελσλ ιχζεσλ πνπ κπνξνχλ λα δνζνχλ ζε έλα 

πξφβιεκα δηακνξθψλνπλ ην ιεγφκελν Μέηωπο Pareto θαη δελ ηίζεηαη ζέκα πεξαηηέξσ 

ζχγθξηζεο κεηαμχ ησλ. 

 

Η δεχηεξε επηδίσμε κπνξεί λα επηηεπρζεί δηα πνιιψλ νδψλ. Πνιιέο επεκβάζεηο κπνξνχλ 

λα γίλνπλ ζε έλαλ αιγφξηζκν βειηηζηνπνίεζεο πξνθεηκέλνπ λα ηνλ απνζαξξχλνπλ απφ ην 

λα επηθεληξσζεί ζε πεξηνξηζκέλν εχξνο ιχζεσλ. Σε κεγαιχηεξε ζπλεηζθνξά ζε απηφ ηελ 

έρνπλ νη ξνπηίλεο πνπ αλαιακβάλνπλ θαη ηελ θαηάηαμε ησλ ππνςεθίσλ ζχκθσλα κε ηελ 

αξρή ηεο θπξηαξρίαο, φπνπ κπνξεί λα ιεθζεί επηπιένλ ππφςε, δπζκελψο γηα ηελ 

εθάζηνηε ππνςήθηα ιχζε, ε χπαξμε δπζαλάινγα πνιιψλ πνιχ φκνησλ ιχζεσλ. 

 

Η ιεηηνπξγία αληηπξνζσπεπηηθψλ ηέηνησλ ξνπηηλψλ (SPEA 2) παξνπζηάδεηαη εθηελψο 

ζηελ παξάγξαθν 2.3. 
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3. Πεξί ηεο Μεζόδνπ ΢κήλνπο ΢σκαηηδίσλ 

 
3.1. Ννεκνζύλε ΢κήλνπο θαη Σερληθή ΢κήλνπο ΢σκαηηδίσλ 
 

Έλαο θαιφο νξηζκφο ηεο Ννεκνζχλεο ΢κήλνπο (Swarm Intelligence) είλαη:            

«ε ζπιινγηθή ζπκπεξηθνξά απηαξθψλ κελ, απνθεληξσκέλσλ δε, ηερλεηψλ ή 

θπζηθψλ ζπζηεκάησλ». Με απιά ιφγηα, Ν΢ είλαη απηή ε αθαζφξηζηε δχλακε πνπ 

λνεκαηνδνηεί ηε ζπκπεξηθνξά ελφο ζπλφινπ αηφκσλ θαηά ηελ επαθή ηνπο κε ην 

πεξηβάιινλ ηνπο αιιά θαη ηελ αιιειεπίδξαζή ηνπο: ελψ δελ ππάξρεη θάπνηα ζαθήο 

αξρή πνπ νξίδεη πσο ζα ζπκπεξηθεξζεί απηφ ην ζχλνιν, ε δξάζε ηνπο δηέπεηαη απφ 

ινγηθή θαη νκνηνγέλεηα. Έλα θαιφ παξάδεηγκα είλαη κία απνηθία κπξκεγθηψλ πνπ, 

ρσξίο ηηο ηδηαίηεξα εμεδεηεκέλεο δηεμφδνπο επηθνηλσλίαο κεηαμχ ησλ κειψλ ηεο, 

θαηαθέξλεη λα ζπληνληζηεί άςνγα θαη λα επηηχρεη ζπνπδαία πξάγκαηα. Οη κέζνδνη 

Ν΢ είλαη καζεκαηηθά εξγαιεία, κε ππφβαζξν εκπλεπζκέλν απφ ηέηνηα παξαδείγκαηα 

(ζκήλε ςαξηψλ, εληφκσλ, πνπιηψλ θιπ.), πνπ εθκεηαιιεχνληαη απηή ηε λνήκνλα 

δξάζε γηα λα επηιχζνπλ πξνβιήκαηα. 

 

Η ηερληθή ΢κήλνπο ΢σκαηηδίσλ [1], ηψξα, ε νπνία πξνέθπςε αξρηθά σο εξγαιείν 

κειέηεο θνηλσληθήο ζπκπεξηθνξάο θαη κεηεμειίρηεθε ζε κέζνδν βειηηζηνπνίεζεο, 

κηκείηαη ηε ζπκπεξηθνξά ελφο ζκήλνπο πνπιηψλ ελ πηήζεη θαηά ηελ αλαδήηεζε 

ηξνθήο. Απνθσδηθνπνηψληαο έλα ζχλνιν επηκέξνπο δξάζεσλ, φπσο π.ρ. ε απνθπγή 

ζχγθξνπζεο κεηαμχ ηνπο αιιά θαη ε πξνζπάζεηα λα κελ απνκαθξπλζνχλ απφ ην 

ζκήλνο θαη απνδίδνληάο ηηο ζηα άηνκα κηαο πιεζπζκηαθήο ζηνραζηηθήο κεζφδνπ 

θαηαιήγνπκε ζηε Β΢΢. Όπσο θαη ηα πνπιηά, ηα κέιε ηνπ πιεζπζκνχ κηαο ηέηνηαο 

κεζφδνπ αλαδεηνχλ ιχζε ζην πξφβιεκα βαζηδφκελα ηφζν ζηελ πξνζσπηθή ηνπο 

αληίιεςε ηνπ ρψξνπ αλαδήηεζεο, φζν θαη ζηε ζπιινγηθή πξφνδν ηνπ ζκήλνπο. Αλ 

ηπρφλ, δειαδή, θάπνην άηνκν δείρλεη λα ηα πεγαίλεη ηδηαίηεξα θαιά, έρνληαο 

αλαθαιχςεη θάπνηα πνιιά ππνζρφκελε ιχζε ή πεξηνρή ιχζεσλ, φιν ην ζκήλνο ζα 

ζπγθιίλεη πξνο ην κέξνο ηνπ, δηαηεξψληαο ηελ αηνκηθή ηνπ εγξήγνξζε. 

 

, 1 , , 1X  X V      (eq. 3.1)i k i k i k  

 

, 1 , , ,V W V ( ) ( )     (eq. 3.2)i k i k cogn cogn i i k soc soc i i kC R Pbest X C R Gbest X  

 

Η καζεκαηηθή δηαηχπσζε ησλ παξαπάλσ δίλεηαη απφ ηηο εμ. 3.1 θαη 3.2. Σν θάζε 

ζσκαηίδην i έρεη αλά πάζα ζηηγκή (επαλάιεςε k) κία ηαρχηεηα πηήζεο 
,Vi k

, πνπ 

θαζνξίδεη ηε ζέζε ηνπ ζην ρψξν 
,Xi k

. Δλδηαθέξνλ παξνπζηάδεη ην πψο νξίδεηαη ε 

ηαρχηεηα πηήζεο: ζην 2
ν
 κέινο ηεο 3.2 δηαθξίλνπκε ηξεηο παξάγνληεο, ηνπο φξνπο 
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Κεκηημένηρ Τασύηηηαρ ή Οπμήρ (inertia), Νοηηικήρ ή Γνωζηικήρ Επιπποήρ (cognitive 

influence) θαη Κνηλσληθήο Επιπποήρ (social influence) αληίζηνηρα. Δμεηάδνπκε ηνλ 

θαζέλα μερσξηζηά: 

 

Ο φξνο νξκήο απνδίδεη ηελ επίδξαζε ηεο φπνηαο θεθηεκέλεο ηαρχηεηαο έρεη ην 

ζσκαηίδην ζηε λέα ηνπ ηαρχηεηα πηήζεο, ψζηε λα απνθεπρζεί κηα πνιχ απφηνκε 

δηαθχκαλζε ηαρπηήησλ πηήζεο πνπ ζα εμέζεηε ηε δηαδηθαζία αλαδήηεζεο. Σν W ζε 

απηφ ηνλ φξν θαιείηαη Σςνηελεζηήρ Οπμήρ, θαζνξίδεη ηη πνζνζηφ ηεο παξειζνχζεο 

ηηκήο ηαρχηεηαο ζα δηαηεξεζεί σο νξκή θαη, σο εθ ηνχηνπ, είλαη ε πξψηε εθ ησλ 

ηξηψλ βαζηθψλ ξπζκηζηηθψλ παξακέηξσλ ηεο Β΢΢. 

 

Ο φξνο λνεηηθήο επηξξνήο απνδίδεη ηελ επίδξαζε ηεο ίδηαο εκπεηξίαο θαη αληίιεςεο 

ηνπ αηφκνπ ζηελ επφκελή ηνπ θίλεζε. Δθθξάδεηαη σο κία ηάζε ηνπ ζσκαηηδίνπ λα 

θηλεζεί πξνο φπνπ έρεη θαηαθέξεη κέρξη ηψξα λα ζεκεηψζεη ηελ θαιχηεξε 

πξνζσπηθή επίδνζε (Personal best - Pbesti) επεηδή εθεί ζεσξεί φηη ζα βξεη αθφκα 

θαιχηεξε ιχζε ζην πξφβιεκα. Ο παξάγνληαο Ccogn θαιείηαη Ννεηηθφο ΢πληειεζηήο 

Δπηηάρπλζεο θαη είλαη ν δεχηεξνο ζε ζεηξά βαζηθφο ξπζκηζηηθφο παξάγνληαο. Ο δε Rcogn 

παίξλεη ηπραία ηηκέο κεηαμχ 0 θαη 1 θαη εθπξνζσπεί ην ζηνραζηηθφ ζηνηρείν ζην 

λνεηηθφ φξν. 

 

Ο ηξίηνο φξνο, απηφο ηεο θνηλσληθήο επηξξνήο, απνδίδεη ηνλ ηξφπν κε ηνλ νπνίν ε 

γεληθφηεξε θαηάζηαζε θαη πξφνδνο ζχζζσκνπ ηνπ ζκήλνπο βαξχλεη ζηελ επφκελε 

θίλεζε ηνπ ζσκαηηδίνπ. Δθθξάδεηαη σο κία ηάζε ηνπ ζσκαηηδίνπ λα θηλεζεί πξνο ηε 

ζέζε ηεο θαιχηεξεο κέρξη ζηηγκήο ιχζεο πνπ έρεη εληνπίζεη ζπλνιηθά ν αιγφξηζκνο  

(Global best - Gbesti). Ο παξάγνληαο Csoc θαιείηαη Κνηλσληθφο ΢πληειεζηήο 

Δπηηάρπλζεο θαη είλαη ν ηξίηνο βαζηθφο ξπζκηζηηθφο παξάγνληαο. Γηα ηνλ Rsoc ηζρχεη φ,ηη 

θαη γηα ηνλ Rcogn. 

 

Σν ζρεηηθφ κέγεζνο ησλ δχν ζπληειεζηψλ επηηάρπλζεο θαζνξίδεη ην θαηά πφζν ην 

ζσκαηίδην «ζπκκνξθψλεηαη» κε ηηο επηηαγέο ηεο ζπιινγηθήο ζπκπεξηθνξάο θαη 

θαηά πφζν αθνινπζεί ην δηθφ ηνπ «έλζηηθην». Όπσο ζα ζπδεηεζεί θαη παξαθάησ, 

έρεη παξαηεξεζεί φηη ε έληνλα λνεηηθή ζπκπεξηθνξά επλνεί ηελ - θάπσο ρνλδξνεηδή 

αιιά γξήγνξε - εμεξεχλεζε ηνπ ρψξνπ αλαδήηεζεο πνπ είλαη πεξηζζφηεξν 

επηζπκεηή θαηά ηα πξψηα ζηάδηα ηεο βειηηζηνπνηεηηθήο πξνζπάζεηαο. Η 

ζπκπεξηθνξά βάζεη θνηλσληθήο επηξξνήο, αληίζεηα, επλνεί ηελ πην εθιεπηπζκέλε 

θαη ζηνρεπκέλε αλαδήηεζε ζηελ πεξηνρή ησλ βειηίζησλ ιχζεσλ, αθνχ ν 

αιγφξηζκνο έρεη εληνπίζεη ηηο ππνπεξηνρέο απηέο, πξνο ην πέξαο ηεο εθηέιεζήο ηνπ. 

Αμίδεη λα αλαθεξζεί φηη έρνπλ γίλεη πεηξακαηηζκνί κε φια ηα πηζαλά ελαιιαθηηθά 

ζρήκαηα ηεο Β΢΢ πνπ πεξηιακβάλνπλ κφλν δχν εθ ησλ φξσλ νξκήο, λνεηηθήο θαη 

θνηλσληθήο επηξξνήο, πνπ επηβεβαηψλνπλ ηελ αλσηεξφηεηα ηνπ πιήξνπο ζρήκαηνο.  
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Δπηζεκαίλεηαη φηη ν ιφγνο πνπ θαη ν παξάγνληαο Gbesti έρεη δείθηε i είλαη φηη, ζε 

πξνβιήκαηα ΠΚΒ, δελ αληηιακβάλνληαη απαξαίηεηα φια ηα άηνκα ηελ ίδηα ιχζε σο 

θαζνιηθά θαιχηεξε. Άξα ην Gbest είλαη γεληθά ίδηνλ ηνπ θάζε αηφκνπ, φπσο αθξηβψο 

θαη ην Pbest. 

  

Σν ζρήκα 3.1 απεηθνλίδεη ηε ξνή ελφο ζηνηρεηψδε ηέηνηνπ αιγνξίζκνπ Β΢΢, θαη’ 

αληηζηνηρία κε απηήλ ελφο ζηνηρεηψδε ΔΑ (ζρ. 2.1). 

 

3.2. Ρύζκηζε ησλ Κπξίσλ Παξακέηξσλ ηεο Β΢΢ 

 

Η ηηκή πνπ ζα ιάβνπλ νη ηξεηο απηέο ξπζκηζηηθέο παξάκεηξνη, δειαδή νη δχν 

ζπληειεζηέο επηηάρπλζεο θαη ν ζπληειεζηήο νξκήο, θαη ε κεηαβνιή, ελδερνκέλσο, απηήο 

ηεο ηηκήο θαηά ηε ξνή ηεο δηαδηθαζίαο αλαδήηεζεο επηιέγνληαη κε γλψκνλα ηηο εμήο δπν 

επηζπκεηέο θαηαζηάζεηο: 

 

I. Οη ηαρχηεηεο πηήζεο λα κελ πάξνπλ ηδηαίηεξα πςειέο ηηκέο θαη, ην θπξηφηεξν, λα 

κελ ππάξρνπλ ππεξαθνληηζκνί θαη απφηνκεο δηαθπκάλζεηο ζηηο ηηκέο απηέο. 

Δηδάιισο, ηίπνηα δελ εκπνδίδεη έλα άηνκν λα βγεη θαη εθηφο νξίσλ ηνπ ρψξνπ 

αλαδήηεζεο ή, αθφκα θαη αλ θάπνηνο θαηάιιεινο κεραληζκφο ην θξαηάεη θνληά ή 

εληφο ησλ νξίσλ απηψλ, λα κελ έρεη ηελ επηζπκεηή ζπκπεξηθνξά. Παξάιιεια, 

δελ επηζπκνχκε θαη λα γίλνπλ νη ηαρχηεηεο πνιχ κηθξέο. 

  

II. Ο αιγφξηζκνο λα επηδεηθλχεη ηθαλνπνηεηηθή εμεξεπλεηηθή ηθαλφηεηα ζηα πξψηα 

ζηάδηα ηεο αλαδήηεζεο, λα επλνείηαη δειαδή ε λνεηηθή ζπκπεξηθνξά θαη νη 

ηαρχηεηεο λα είλαη αξθνχλησο πςειέο ψζηε ζρεηηθά κεγάιεο απνζηάζεηο εληφο 

ηνπ ρψξνπ αλαδήηεζεο λα θαιχπηνληαη γξήγνξα. Παξάιιεια φκσο, λα κελ 

πάζρεη ζηα χζηεξα ζηάδηα, φηαλ ην ζκήλνο έρεη πηζαλφηαηα ζπγθιίλεη θνληά ζηηο 

βέιηηζηεο ιχζεηο θαη γηα λα ηηο εληνπίζεη, πξέπεη λα εθιεπηπλζεί ζηνλ 

απαηηνχκελν βαζκφ ε ζπκπεξηθνξά ηνπ: λα νδεγεζνχλ ζσζηά θαη κε αξθεηά 

κηθξέο ηαρχηεηεο ηα ζσκαηίδηα πξνο ηηο επηδησθφκελεο ιχζεηο. Απηή ε θάζε ηεο 

ζηνρεπκέλεο θαη εμνλπρηζηηθά κηθξνζθνπηθήο πξνζέγγηζεο ησλ βειηίζησλ κε 

εκμεηάλλεςζη ηεο ήδε ζπγθεληξσκέλεο πιεξνθνξίαο (πην δφθηκνο είλαη ν φξνο 

exploitation - εθκεηάιιεπζε) ζεσξείηαη αρίιιεηνο πηέξλα ηεο ζεκειηψδνπο Β΢΢. 

 

Έρνπλ πξνηαζεί πνιιέο δηνξζσηηθέο επεκβάζεηο ζην καζεκαηηθφ ππφβαζξν ηεο Β΢΢ 

πξνθεηκέλνπ λα επηηεπρζνχλ ηα παξαπάλσ, κεηαμχ ησλ νπνίσλ ε επηβνιή δπλακηθά 

κεηαβαιιφκελνπ άλσ πεξηνξηζηηθνχ φξνπ ζηελ ηαρχηεηα πηήζεο. Μία ηέηνηα πξνζζήθε 

ήηαλ θαη ν ίδηνο ν ζπληειεζηήο νξκήο W, ν νπνίνο απνπζίαδε απφ ηελ πξψηε ρξνληθά 

πξφηαζε ηεο Β΢΢. Έρεη επίζεο δηεμαρζεί πιήζνο παξακεηξηθψλ κειεηψλ (πεξηζζφηεξεο 
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ιεπηνκέξεηεο ζην θπξίσο ζψκα ηεο εξγαζίαο).  

 

Μία άιιε πξφηαζε, πνπ πηνζεηείηαη θαη ζηνλ ΠΑ, είλαη απηή ησλ γξακκηθψο 

κεηαβαιιφκελσλ ξπζκηζηηθψλ παξακέηξσλ Csoc ,Ccogn θαη W θαη’ αλαινγία ηνπ 

πνζνζηνχ ησλ ζπλνιηθψλ επαλαιήςεσλ ηνπ αιγνξίζκνπ πνπ έρνπλ νινθιεξσζεί        

(εμ. 3.4, 3.5, 3.6). Παξαηεξείζηε φηη ηα W θαη Ccogn κεηψλνληαη κε ηελ πάξνδν ησλ 

επαλαιήςεσλ, ελψ ην Csoc απμάλεηαη. Έηζη, ν αιγφξηζκνο ηείλεη λα επλνεί φιν θαη 

πεξηζζφηεξν ηελ αλαδήηεζε ππφ ζπιινγηθή επηξξνή, ελψ πεξηνξίδνληαη ζηαδηαθά θαη νη 

ηαρχηεηεο πηήζεο, κε ηε κείσζε ηνπ ζπληειεζηή νξκήο. Σα άλσ θαη θάησ φξηα απηήο ηεο 

κεηαβνιήο επηβάιινληαη θαηάιιεια ψζηε ην άζξνηζκα ησλ ζπληειεζηψλ επηηάρπλζεο 

θαη ν ζπληειεζηήο νξκήο λα κελ επηηξέπνπλ ππεξβνιηθή ηαρχηεηα. Σν παξφλ ζρήκα, 

φπσο είλαη πξνθαλέο, πξνζαλαηνιίδεηαη ζην λα εληζρχζεη ηελ εκμεηάλλεςζη ρσξίο λα 

ζπκβηβάζεη ηελ πνιχ θαιή εμεξεπλεηηθή ηθαλφηεηα ηεο Β΢΢. 

 

3.3. Αληηπαξαβνιή Β΢΢ θαη ΔΑ 

 

Δμεηάδνληαο ην ζεσξεηηθφ ππφβαζξν ησλ δχν ηδεψλ, παξαηεξνχκε ακέζσο ηηο εμήο 

νκνηφηεηεο: θαη νη δχν είλαη ζηνραζηηθέο κέζνδνη θαη κάιηζηα πιεζπζκηαθνχ ηχπνπ, 

ρεηξαγσγνχλ δειαδή έλα πεπεξαζκέλν πιήζνο ππνςεθίσλ ιχζεσλ πνπ θηλείηαη κε 

ηξφπν θαηά κεγάιν πνζνζηφ ηπραίν εληφο ηνπ πεδίνπ νξηζκνχ ηνπ πξνβιήκαηνο 

αλαδεηψληαο ιχζε(-εηο) ηνπ. Με θαηάιιειε εθαξκνγή ελφο ζπλφινπ ηελεζηών επί 

ησλ αηφκσλ ηνπ πιεζπζκνχ απνζπνχλ ελδείμεηο γηα ηελ ελδερφκελε ζέζε ησλ 

δεηνχκελσλ βειηίζησλ, εληζρχνληαο ηελ απνδνηηθφηεηα απηήο ηεο δηαδηθαζίαο. 

Γηαηεξνχλ, βεβαίσο, ηα πιενλεθηήκαηα ησλ ζηνραζηηθψλ κεζφδσλ, ηελ επθνιία 

ρεηξηζκνχ, ηελ αλεμαξηεζία θαη επειημία ηνπο. 

 

΢ηελ πξάμε, κνηάδνπλ ζην φηη δηαρεηξίδνληαη θαη δεπηεξεχνληεο πιεζπζκνχο, φπσο 

νη επίλεκηοι ζηνπο ΔΑ θαη ην αξρείν ησλ Pbest ζηε Β΢΢, νη νπνίνη ππνζηεξίδνπλ ηε 

ιεηηνπξγία ησλ ηειεζηψλ ρεηξαγψγεζεο ηνπ πιεζπζκνχ. Ο δε βαζηθφο ηνπο 

πιεζπζκφο είλαη ζηαζεξνχ κεγέζνπο, αιιά ελψ ζηε Β΢΢ δηαηεξείηαη απηνχζηνο 

κέρξη ηέινπο θαη απιά επαλαηνπνζεηείηαη ζην ρψξν, ζηνπο ΔΑ αλαλεψλεηαη 

ζπλερψο, θαζψο λέεο ιχζεηο γελλψληαη ζηε ζέζε απηψλ πνπ απνξξίθζεθαλ ειέσ 

θαθήο επίδνζεο. ΢πλεπψο ε Β΢΢ ραξαθηεξίδεηαη απφ κηα δέζκεπζε λα βειηηψλεη 

επηκειψο φιν ηνλ πιεζπζκφ ηεο, ελψ νη ΔΑ θξνληίδνπλ απιά λα δηαηεξνχλ έλαλ 

αξηζκφ αηφκσλ αλά γεληά ζε πςειφ επίπεδν. 

 

Έπεηηα, ππάξρνπλ ζαθείο αληηζηνηρίεο αλάκεζα ζηηο δηαδηθαζίεο ρεηξαγψγεζεο ησλ 

ππνςεθίσλ ηνπ ελφο θαη ηνπ άιινπ (πίλαθαο 3.1), παξφηη απηνί θαζαπηνί νη 

ηειεζηέο δελ είλαη ηφζν δηαθξηηνί ζηε Β΢΢ φζν είλαη ζηνπο ΔΑ. Η δηαζηαχξσζε 

ζπκίδεη έληνλα ηε δηαδηθαζία επαλαηνπνζέηεζεο ηνπ ζκήλνπο ζην ρψξν, φπνπ 
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ζηνηρεία απφ δηαθνξεηηθά άηνκα (ελίνηε θαη δεπηεξεπφλησλ πιεζπζκψλ) 

ζπλππάξρνπλ ζηε λέα ιχζε πνπ πξνθχπηεη. Ο νξηζκφο Pbest/Gbest ζπκίδεη ηνλ 

ειηηηζκφ, ππφ ηελ έλλνηα φηη θαη νη δχν εμππεξεηνχλ ηελ πνηφηεηα ηεο λέαο 

«θνπξληάο» ππνςεθίσλ ιχζεσλ επηβάιινληαο λα ιεθζεί ππφςε ε πξνεγνχκελε 

ζεηηθή δξαζηεξηφηεηα. Όπσο ζα δνχκε θαη παξαθάησ, ζε πεξηπηψζεηο ΠΚΒ, ε 

αλάδεημε κίαο ιχζεο ζε Global Best κνηάδεη πνιχ κε ηελ επιλογή θαζφηη, έζησ θη αλ 

ζηε Β΢΢ δε δηαθπβεχεηαη ε επηβίσζε ηνπ ζσκαηηδίνπ, αλ απηφ επηιεγεί, ν ξφινο ηνπ 

εληζρχεηαη ζεκαληηθά. Δίλαη ινηπφλ εμίζνπ κεγάιεο βαξχηεηαο ε επηινγή απηή λα 

γίλεηαη αμηνθξαηηθά. 

 

Άιιε ζεκαληηθή νκνηφηεηα είλαη ε χπαξμε δσηηθήο ζεκαζίαο ξπζκηζηηθψλ 

παξακέηξσλ, νη νπνίεο κάιηζηα πξνηηκάηαη λα κεηαβάιινληαη θαηάιιεια θαηά ηε 

ξνή ηνπ αιγνξίζκνπ, πξνθεηκέλνπ λα ππνβνεζήζνπλ ηε κεηάβαζε απφ έληνλε 

εμεξεπλεηηθή δξαζηεξηφηεηα ζηε θάζε ηεο εκμεηάλλεςζηρ. Δπί παξαδείγκαηη, 

νκνίσο κε ηα φζα είδακε γηα ηνπο ζπληειεζηέο επηηάρπλζεο, ζπλεζίδεηαη λα 

επηβάιιεηαη θαη ζηαδηαθή κείσζε ζηελ πηζαλφηεηα εθαξκνγήο κεηάιιαμεο.  

 

Η ζπδήηεζε πνπ ιακβάλεη ρψξα ζηελ παξάγξαθν 3.4 θαηαιήγεη ζε απφπεηξα ζχγθξηζεο 

ησλ ραξαθηεξηζηηθψλ ΔΑ θαη Β΢΢ φζνλ αθνξά ζηε ζπκπεξηθνξά ηνπο θαηά ηελ 

εθηέιεζε, ην ξπζκφ πξνφδνπ, ηε γεληθφηεξε επίδνζε θαη ην ηειηθφ απνηέιεζκα. Σα 

ζρήκαηα 3.3, 3.4, 3.5 απεηθνλίδνπλ ηα απνηειέζκαηα κίαο πεηξακαηηθήο πξνζπάζεηαο λα 

θαηαδεηρζνχλ απηά ηα ραξαθηεξηζηηθά. Υσξίο λα κπνξνχκε λα εμάγνπκε ζπκπεξάζκαηα 

γηα ηηο γεληθφηεξεο δπλαηφηεηεο ηεο θαζεκίαο κεζφδνπ, αθνχ ππάξρνπλ άπεηξεο 

παξαιιαγέο ηεο θαζεκηάο, πνηθίιεο πνιππινθφηεηαο θαη απνηειεζκαηηθφηεηαο,  

κπνξνχκε λα παξαηεξήζνπκε θάπνηα πάγηα θαηλφκελα: ε Β΢΢ δείρλεη λα ζπγθιίλεη πην 

γξήγνξα θαηά ηηο πξψηεο επαλαιήςεηο-γεληέο, επηδεηθλχνληαο εμαηξεηηθή εμεξεπλεηηθή 

ηθαλφηεηα. Καηφπηλ, θάλεη ηελ εκθάληζή ηεο ε ζεκειηψδεο πξνβιεκαηηθφηεηά ηεο ζηε 

θάζε ηεο εκμεηάλλεςζηρ θαη ε πξφνδνο αλαθφπηεηαη απφηνκα, ν ΔΑ θεξδίδεη έδαθνο θαη 

ελδερνκέλσο πξνζπεξλά, δίλνληαο ζπγθξίζηκν ε θαιχηεξν ηειηθφ απνηέιεζκα. 

 

Απφ ηα παξαπάλσ, ηα νπνία δηαπηζηεχνληαη θαη απφ ηα πεηξάκαηα ηεο παξνχζεο 

εξγαζίαο (θεθ. 5), κπνξνχκε λα ζπκπεξάλνπκε ρνλδξηθά φηη ν ΔΑ είλαη έλαο πνιχ πην 

ηζνξξνπεκέλνο κεραληζκφο αλαδήηεζεο, ρσξίο εκθαλή αδπλακία ζηε κία ή ηελ άιιε 

θάζε απηήο. Η Β΢΢, απφ ηελ άιιε, δείρλεη λα πιενλεθηεί ζηε θάζε ηεο εμεξεχλεζεο 

αιιά ράλεη ην φπνην πξνβάδηζκα ιφγσ θαθήο ζπκπεξηθνξάο ζηα ηειεπηαία ζηάδηα. Να 

ηνληζηεί, βεβαίσο, φηη ν αιγφξηζκνο Β΢΢ ηνπ αλσηέξσ ζπγθξηηηθνχ πεηξάκαηνο δελ 

ελζσκαηψλεη κεηαβιεηέο παξακέηξνπο, νη νπνίεο ζα βειηίσλαλ ζαθψο ηελ απφδνζή ηνπ, 

εηδηθά πξνο ην ηέινο. Γηαθαίλεηαη ζαθψο ε πξννπηηθή πβξηδηζκνχ ησλ δχν κεζφδσλ, κε 

ηνλ ΔΑ λα πξνζθέξεη ηελ ηζνξξνπεκέλε θαη ζηαζεξή ηνπ απφδνζε θαη ε Β΢΢ ηελ 

πεξηζηαζηαθή ηαρχηεηα ζχγθιηζήο ηεο. Η ίδηα ε Β΢΢ κπνξεί λα βειηησζεί ζεκαληηθά αλ 
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δαλεηζηεί ζηνηρεία απφ ηνπο ΔΑ ψζηε λα κπνξεί λα πξνζαξκφδεη θαιχηεξα ηα 

ραξαθηεξηζηηθά ηεο αλάινγα κε ηελ πξφνδν ηεο αλαδήηεζεο. 

 

 
 

4. Ο πξνηεηλόκελνο αιγόξηζκνο 
 

Σν 4
ν
 θεθάιαην παξαζέηεη κία-κία ηηο δηαθξηηέο ιεηηνπξγίεο ηνπ πξνηεηλφκελνπ 

αιγνξίζκνπ, φπσο απηά νξίδνληαη κε γλψκνλα ηελ δηάθξηζε ηνπ θψδηθα ζε 

ππνξνπηίλεο, ρσξίο απαξαίηεηα λα ηεξείηαη ε ζεηξά κε ηελ νπνία απηέο εθηεινχληαη. 

Όηαλ δε γίλεηαη αλάινγε επηζήκαλζε, επεμήγεζε ή παξαπνκπή, ζεσξείηαη φηη ν 

πεξηγξαθφκελνο κεραληζκφο είλαη πξσηφηππνο. ΢ην ηέινο ηνπ θεθαιαίνπ ππάξρεη ην 

πιήξεο δηάγξακκα ξνήο ηεο αθνινπζίαο ησλ δηάθνξσλ ππνξνπηηλψλ (4.24). 

 

4.1. Δπαλαηνπνζέηεζε ΢κήλνπο 

 

Ξεθηλάκε κε ηε δηαδηθαζία αλαλέσζεο ηεο ζέζεο ησλ ζσκαηηδίσλ ζην ρψξν 

αλαδήηεζεο, κέζσ ηνπ επαλαθαζνξηζκνχ ηεο ηαρχηεηαο πηήζεο ηνπο. Δθαξκφδνληαη 

δειαδή νη ζεκειηψδεηο εμηζψζεηο ηεο Β΢΢ (εμ. 4.1, 4.2), πνπ εμεηάζηεθαλ ζην 

θεθάιαην 3 (επαλαιακβάλνληαη γηα ιφγνπο πιεξφηεηαο). Δληφο ηεο ίδηαο 

ππνξνπηίλαο γίλεηαη θαη ε πξνζαξκνγή ησλ ζπληειεζηψλ επηηάρπλζεο θαη ηνπ 

ζπληειεζηή νξκήο, ζχκθσλα κε ην ζρήκα γξακκηθήο κεηαβνιήο πνπ ζπδεηήζεθε 

επίζεο ζην θεθάιαην 3 θαη δίλεηαη απφ ηηο εμηζψζεηο 4.4, 4.5 θαη 4.3 γηα θάζε 

κέγεζνο, αληίζηνηρα. 

 

4.2. Αξρηθνπνίεζε 

 

Πξνρσξνχκε ζηε δηαδηθαζία αξρηθνπνίεζεο ηνπ αιγνξίζκνπ: εδψ απνδίδεηαη ζην 

θάζε ζσκαηίδην ε πξψηε ζέζε πνπ ζα ιάβεη ζην ρψξν άκα ηε εθθηλήζεη ηεο 

αλαδήηεζεο. Μία γελλήηξηα ηπραίσλ αξηζκψλ επηιέγεη ηπραία ηηκέο εληφο ηνπ πεδίνπ 

νξηζκνχ ησλ κεηαβιεηψλ ζρεδηαζκνχ θαη θάπσο έηζη ζπκπιεξψλεηαη έλα πιήξεο 

δηάλπζκα ζρεδηαζκνχ γηα θάζε άηνκν. Η ηαρχηεηα πηήζεο δελ είλαη δπλαηφλ λα 

αξρηθνπνηεζεί ηπραία, αιιά πξνηηκάηαη λα κελ απνδνζεί κεδεληθή αξρηθή ηαρχηεηα, 

φπσο ζα ήηαλ κηα επηινγή: ηα ζσκαηίδηα μεθηλνχλ κε κηθξή ηαρχηεηα πηήζεο πξνο 

ην θέληξν ηνπ ρψξνπ αλαδήηεζεο, κε κέηξν αλάινγν ηεο απφζηαζήο ηνπο απφ 

απηφλ. Απνθεχγεηαη έηζη λα βξεζεί θάπνην ζσκαηίδην εθηφο ρψξνπ αλαδήηεζεο ήδε 

απφ ηελ πξψηε επαλάιεςε. 
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4.3. Υεηξηζκόο Δπίιεθησλ Λύζεσλ 

 

Αθνινπζεί ε πεξηγξαθή ησλ ιεηηνπξγηψλ πνπ έρνπλ λα θάλνπλ κε ηε γεληθφηεξε 

δηαρείξηζε ησλ αλά πάζα ζηηγκή κε θπξηαξρνχκελσλ ιχζεσλ. Πξνθαλψο, απηέο 

απεπζχλνληαη ζε πξνβιήκαηα ΠΚΒ. Θπκίδνπκε φηη ηα δχν θχξηα δεηήκαηα πνπ 

ρξήδνπλ πξνζνρήο είλαη ε θαηάξηηζε ηνπ κεηψπνπ ησλ κε θπξηαξρνχκελσλ ιχζεσλ 

θαη ε εμαζθάιηζε κηαο ζρεηηθήο εηεξνγέλεηαο κεηαμχ ησλ πεξηερνκέλσλ ηνπ, ψζηε 

λα θαηαιήμνπκε ζε έλα ζχλνιν ιχζεσλ πνπ ζα θαιχπηεη κηα πνηθηιία 

ζπκβηβαζηηθψλ ζπλδπαζκψλ κεηαμχ ησλ θξηηεξίσλ. Γίλεηαη κηα ζχληνκε παξάζεζε 

ησλ δεκνθηιέζηεξσλ ηερληθψλ (πέξαλ ηεο SPEA 2 πνπ έρεη ήδε ζπδεηεζεί), κεηαμχ 

ησλ νπνίσλ ε κέζνδνο NSGA II, πνιχ θνληά ζηελ νπνία βξίζθεηαη θαη ε πξαθηηθή 

πνπ πηνζεηήζεθε ζηνλ ΠΑ. 

 

Η θαηάξηηζε ηνπ κεηψπνπ ησλ κε θπξηαξρνχκελσλ ιχζεσλ (ή ησλ επηιέθησλ, ζε  

νξνινγία ΔΑ) γίλεηαη ζε δχν ζηάδηα. Πξψηα ζπγθξίλνληαη κεηαμχ ηνπο νη ιχζεηο 

πνπ αληηζηνηρνχλ ζηηο ηξέρνπζεο ζέζεηο ηνπ ζκήλνπο θαη επηιέγνληαη νη κε 

θπξηαξρνχκελεο αλάκεζά ηνπο (ζρ. 4.1). Καηφπηλ απηέο εηζρσξνχλ ζηνπο ήδε 

ππάξρνληεο επίιεθηνπο (ζρ. 4.2), ην ζχλνιν ησλ νπνίσλ δηακνξθψλεηαη ηειηθά αθνχ 

απνξξηθζνχλ φζεο ιχζεηο πξνέθπςαλ θπξηαξρνχκελεο (ζρ. 4.3, 4.4, 4.5). 

 

Η δηαδηθαζία πξνψζεζεο ηεο αλνκνηνκνξθίαο ζην ζχλνιν ησλ επηιέθησλ ιχζεσλ 

παίξλεη ηε κνξθή επηιεθηηθήο απφξξηςεο απηψλ πνπ «πεξηηηεχνπλ», ππφ ηελ έλλνηα 

φηη ππάξρνπλ θη άιιεο πνιχ φκνηεο ιχζεηο, δειαδή πνιχ θνληά ηνπο ζην ρψξν ησλ 

θξηηεξίσλ. Ωο φηνπ μεπεξαζηεί έλα πξνθαζνξηζκέλν, απφ ην ρξήζηε, άλσ φξην 

πιήζνπο ησλ επηιέθησλ δε γίλεηαη θακία παξέκβαζε ζηα πεξηερφκελά ηνπ. Δθφζνλ 

απηφ μεπεξαζηεί, απνξξίπηεηαη ην πιενλάδνλ πιήζνο ιχζεσλ, σο εμήο: απνδίδεηαη 

ζε θάζε κε θπξηαξρνχκελν δηάλπζκα ζρεδηαζκνχ κία ηηκή, ίζε κε ηελ                           

-αδηαζηαηνπνηεκέλε- απφζηαζε απφ ην πιεζηέζηεξφ ηνπ άιιν κε θπξηαξρνχκελν 

άηνκν. Η απφζηαζε απηή κεηξάηαη ζην ρψξν ησλ ζηφρσλ, φρη ησλ κεηαβιεηψλ 

ζρεδηαζκνχ. Ο ππνςήθηνο κε ηε κηθξφηεξε ηέηνηα ηηκή απνξξίπηεηαη (ζρ. 4.6), θαη ε 

δηεξγαζία επαλαιακβάλεηαη σο φηνπ νη επίιεθηνη λα είλαη ηνπ επηζπκεηνχ πιήζνπο         

(ζρ. 4.7, 4.8). 

 

4.4. Δλεκέξσζε Personal Best & Απόδνζε Global Best 

 

Όζνλ αθνξά ηελ αλαλέσζε ηνπ δηαλχζκαηνο Pbest, ππάξρνπλ δηάθνξεο επηινγέο. 

Όιεο, φπσο είλαη θπζηθφ, μεθηλνχλ απφ ζχγθξηζε ηεο λέαο ιχζεο-ζέζεο ζην ρψξν 

ηνπ ζσκαηηδίνπ κε ην ππάξρνλ Pbest. Κπξηαξρεί ε κία ιχζε επί ηεο άιιεο? Αλ λαη, 

ηφηε πξνθαλψο επηιέγεηαη ε θπξίαξρνο ιχζε. Αλ θακηά δελ θπξηαξρεί επί ηεο άιιεο, 

είλαη ζηε δηαθξηηηθή καο επρέξεηα λα επηιέμνπκε κεηαμχ αληηθαηάζηαζεο ή 
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δηαηήξεζεο ηνπ ηξέρνληνο Pbest. Ο ΠΑ, θαηαξρήλ, επηιέγεη λα αληηθαζηζηά ην 

Pbest.  

 

Μία άιιε δηεξγαζία, ρσξίο λφεκα ζε κνλνθξηηεξηαθά πξνβιήκαηα, αιιά θνκβηθή 

ζηελ ΠΚΒ κε Β΢΢, είλαη ε απφδνζε ζε θάζε ζσκαηίδην ελφο Gbest δηαλχζκαηνο, ην 

νπνίν πξνθαλψο ζα επηιεγεί απφ ηνπο επίιεθηνπο, αιιά πψο; Αλαπηχζζνληαη 

κέζνδνη πνπ δε ζα παξεκπνδίδνπλ, αιιά ζα ππνζηεξίδνπλ ηελ εηεξνγέλεηα ηνπ 

ζπλφινπ ησλ ηειηθψλ ιχζεσλ. Δμεηάδνληαη ζπγθεθξηκέλα νη εμήο ελαιιαθηηθέο, κε 

αχμνπζα απνηειεζκαηηθφηεηα, φπσο απνδεηθλχεη ε ζχγθξηζή ηνπο, ηα απνηειέζκαηα 

ηεο νπνίαο απεηθνλίδεη ην ζρ. 4.13: 

 

 Η κέζνδνο ηεο Ρνπιέηαο: Δπηιέγεηαη γηα θάζε ζσκαηίδην, σο Gbest απηνχ, 

έλαο νπνηνζδήπνηε εθ ησλ εθιεθηψλ, εληειψο ηπραία. Δδψ ε εηεξνγέλεηα 

εμππεξεηείηαη αιιά ε κέζνδνο δελ είλαη ηδηαίηεξα ζηνρεπκέλε, κε επίπησζε 

ζην ξπζκφ πξνφδνπ.  

  

 Η κέζνδνο ηεο Δγγύηεηαο: Τπνινγίδεηαη ε απφζηαζε, ζην ρψξν ησλ 

ζηφρσλ, ηνπ εμεηαδφκελνπ ζσκαηηδίνπ απφ θάζε κέινο ησλ επηιέθησλ. 

Δπηιέγεηαη ην πιεζηέζηεξν. Η ινγηθή ηεο εγγχηεηαο είλαη λα ζπλδεζεί ην 

άηνκν κε κηα θνληηλή ηνπ κε θπξηαξρνχκελε ιχζε, πνπ αλακέλεηαη λα έρεη 

θαη παξφκνηα ραξαθηεξηζηηθά, δειαδή λα δίλεη φκνηα ζρεηηθή βαξχηεηα ζηνλ 

έλα ή ηνλ άιιν ζηφρν. Όπσο φκσο εμεγνχλ ηα ζρ. 4.10, 4.11, ε εγγχηεηα δελ 

απνθιείεηαη λα ζπλδέζεη ην ζσκαηίδην κε κηα επίιεθηε ιχζε ε νπνία νχηε 

θαλ θπξηαξρεί επί απηνχ! Κάηη ηέηνην δελ είλαη επηζπκεηφ, θαζψο δε ζπλάδεη 

κε ην ξφιν ηνπ Gbest σο νδεγνχ πξνο βειηίσζε. 

 

 Η «ζπλδπαζηηθή» κέζνδνο: Δδψ εθαξκφδεηαη πάιη ξνπιέηα, αιιά κφλν 

κεηαμχ ησλ θπξηάξρσλ επί ηνπ εμεηαδφκελνπ ζσκαηηδίνπ εθιεθηψλ. Έηζη 

κπνξνχκε ηνπιάρηζην λα εγγπεζνχκε φηη ην πξνθχπηνλ Gbest ζα είλαη κηα 

ζπλνιηθά θαιχηεξε ιχζε απφ ην εμεηαδφκελν ζσκαηίδην ζηελ ηξέρνπζα ζέζε 

ηνπ, ή εμίζνπ θαιή, αλ ην ζσκαηίδην βξίζθεηαη ζε κε θπξηαξρνχκελε ζέζε-

ιχζε. Υξεζηκνπνηείηαη ζηελ ηξέρνπζα έθδνζε ηνπ ΠΑ. 

 

Η παξάγξαθνο 4.4 νινθιεξψλεηαη κε πξνηάζεηο γηα πεξαηηέξσ βειηίσζε ηεο 

δηαδηθαζίαο απφδνζεο Global Best. 

 

4.5. Άιιεο Λεηηνπξγίεο 

 

Ο ρεηξηζκφο πεξηνξηζκψλ πνπ ηίζεληαη ηπρφλ απφ ην πξφβιεκα γίλεηαη απφ 

θαηάιιειν ηειεζηή πνπ ζπγθξίλεη ηηο ηηκέο ησλ πεξηνξηζηηθψλ ζπλαξηήζεσλ, γηα 
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θάζε ππνςήθηα ιχζε, κε ηα φξηα πνπ έρνπλ ηεζεί. Όινη νη πεξηνξηζκνί 

αληηκεησπίδνληαη σο άλσ θιεηζηέο αληζψζεηο (εμ. 4.6), φπσο απνδεηθλχεηαη απφ ηηο 

εμ. 4.7, 4.8, 4.9 φηη κπνξεί λα γξαθεί θάζε είδνπο πεξηνξηζκφο. Ο ηειεζηήο 

πεξηνξηζκψλ δε ιακβάλεη απζηεξά ππφςε ηνπ ην θαζνξηζκέλν άλσ φξην αιιά δίλεη 

θαη έλα επηπιένλ πεξηζψξην, πέξαλ απηνχ. Αλ κηα ηηκή ζπλάξηεζεο πεξηνξηζκνχ 

βξίζθεηαη κεηαμχ ησλ νξίσλ, ηφηε ε αληίζηνηρε ιχζε δελ απνξξίπηεηαη κελ, αιιά 

πθίζηαηαη δπζκελή πξνζαξκνγή ησλ ηηκψλ ζπλαξηήζεσλ ζηφρσλ ηεο (εμ. 4.10), 

ζχκθσλα κε ην εθζεηηθφ ζρήκα ηεο εμ. 4.11. 

 

Σν ζεκαληηθφηεξν εληειψο λέν ζηνηρείν ηνπ ΠΑ είλαη ν Τελεζηήρ Ανάδεςζηρ (shuffle 

operator). Ολνκάδεηαη έηζη δηφηη επεκβαίλεη βίαηα ζηε ξνή ηεο βειηηζηνπνίεζεο, 

επαλαξρηθνπνηεί («αλαθαηεχεη») ην ζκήλνο ελψ ππνδεηθλχεη θαη λέεο, 

ζπγθεθξηκέλεο θαηεπζχλζεηο αλαδήηεζεο γηα ηηο ελαπνκέλνπζεο επαλαιήςεηο ηνπ 

αιγνξίζκνπ. Σν ηδεαηφ ζεκείν εθαξκνγήο ηεο ανάδεςζηρ είλαη θαηά ηα ηειεπηαία 

ζηάδηα ηεο βειηηζηνπνίεζεο, φηαλ ε πηήζε ηνπ ζκήλνπο έρεη ζρεηηθά αλαθνπεί θαη 

ηα ζσκαηίδηα έρνπλ θαηαθαζίζεη ιίγν πνιχ ζηηο ηειηθέο ηνπ ζέζεηο. Η θαιή πξψηκε 

ζπκπεξηθνξά ηεο Β΢΢ καο επηηξέπεη ηελ πνιπηέιεηα λα μνδέςνπκε κεξηθέο 

αμηνινγήζεηο κε ην λα επαλαξρηθνπνηήζνπκε ην ζκήλνο, ρσξίο βέβαηα λα 

δηαγξάςνπκε ηελ θαηαγεγξακκέλε πξφνδν (ην αξρείν ησλ εθιεθηψλ δηαηεξείηαη), 

θίλεζε πνπ κπνξεί λα απνθέξεη ζπνπδαία νθέιε, θπξίσο σο πξνο ηελ εηεξνγέλεηα 

θαη ηζνξξνπία ηνπ ηειηθνχ κεηψπνπ, φπσο δείρλνπλ ηα ζρ. 4.14 θαη 4.22. Αλάδεπζε 

εθηειείηαη κία θνξά ζε θαζνξηζκέλν απφ ην ρξήζηε ζεκείν θαη, πξναηξεηηθά, κία 

δεχηεξε, εθφζνλ πιεξνχληαη ζπγθεθξηκέλα θξηηήξηα ζρεηηθά κε ηελ θαηάζηαζε ηνπ 

κεηψπνπ ησλ κε θπξηαξρνπκέλσλ ιχζεσλ. Οη δχν απηέο πξέπεη λα απέρνπλ κεηαμχ 

ηνπο αξθεηά, γηα λα έρνπλ απνηέιεζκα.  

 

Ο κεραληζκφο θαζνξηζκνχ δσλψλ πςειήο πξνηεξαηφηεηαο ιεηηνπξγεί σο εμήο: 

εληνπίδνληαη εθείλνη νη επίιεθηνη - πξνθαζνξηζκέλνπ πιήζνπο - πνπ είλαη 

πεξηζζφηεξν απνκνλσκέλνη ζην κέησπν (ζρ. 4.15) θαη ρξίδνληαη «ζεκεία 

βαξχηεηαο». Παξάιιεια κε ηελ επαλαξρηθνπνίεζε, ην αξρείν ησλ Pbest 

επαλαθαζνξίδεηαη θαη πιένλ, ζε θάζε ζσκαηίδην απνδίδεηαη σο Pbest ππνρξεσηηθά 

έλα εθ ησλ ζεκείσλ απηψλ (ζρ. 4.17). ΢ηε ζπλέρεηα αθήλεηαη ν αιγφξηζκνο λα 

θπιήζεη θαλνληθά, κε ηελ παξέκβαζε απηή λα έρεη σο απνηέιεζκα ε αλαδήηεζε λα 

εληαζεί ζηηο πξνεγνπκέλσο «παξακειεκέλεο» απηέο πεξηνρέο (ζρ. 4.17 - 4.20). Σν 

πιήζνο ησλ ζεκείσλ βαξχηεηαο είλαη θαιφ λα νξηζηεί ζε ρακειή ηηκή (2:5), ψζηε 

λα εμαζθαιηζηεί ν επηζπκεηφο, πςειήο θαηεπζπληηθφηεηαο ραξαθηήξαο ηνπ 

κεραληζκνχ. 

 

 

 



 

16 

 

4.6. Δίζνδνο - Πξνεπηιεγκέλεο Ρπζκίζεηο 

 

΢ην ζρήκα 4.23, ηέινο, απεηθνλίδεηαη ην αξρείν εηζφδνπ ηνπ ΠΑ, φπνπ δηαθξίλνληαη 

κάιηζηα νη πξνηεηλφκελεο ξπζκίζεηο. Δπηζεκαίλνληαη νη ιεηηνπξγίεο πνπ είλαη ζηε 

δηάζεζε ηνπ ρξήζηε κέζσ ηνπ αξρείνπ, φπσο ε δήισζε κεηαβιεηψλ ζρεδηαζκνχ θαη 

επηβνιή πεξηνξηζκψλ, ν νξηζκφο ησλ ξπζκηζηηθψλ παξακέηξσλ θαη ηνπ πιεζπζκνχ 

ηνπ ζκήλνπο θιπ. 

 

 

 

5. Πεηξάκαηα θαη Πηζηνπνίεζε  
 

5.1. Παξνπζίαζε δνθηκαζηηθώλ πξνβιεκάησλ 

 

Σα πξνβιήκαηα πνπ επειέγεζαλ γηα λα δνθηκαζηεί πεηξακαηηθά ν πξνηεηλφκελνο 

αιγφξηζκνο (ΠΑ) είλαη φια ειαρηζηνπνίεζεο δχν ζπλαξηήζεσλ-ζηφρσλ. Αθελφο, 

δειαδή, απνηεινχλ πεξηπηψζεηο πνιπ-θξηηεξηαθήο βειηηζηνπνίεζεο (ΠΚΒ), ζηελ 

αληηκεηψπηζε ησλ νπνίσλ θπξίσο πξνζαλαηνιίδεηαη ν ΠΑ, αθεηέξνπ νη δχν κφλν ζηφρνη 

δηεπθνιχλνπλ ηελ επίδεημε ησλ απνηειεζκάησλ, αθνχ ν ρψξνο ησλ ιχζεσλ είλαη δη-

δηάζηαηνο. Σα δχν εμ απηψλ ησλ ηξηψλ πξνβιεκάησλ πξνέξρνληαη απφ κηα νηθνγέλεηα 

καζεκαηηθψλ ζπλαξηήζεσλ (ε γεληθή κνξθή ησλ νπνίσλ δίλεηαη απφ ηελ εμ. 5.1) πνπ 

πξννξίδνληαη γηα ηέηνηεο δνθηκέο ινγηζκηθνχ βειηηζηνπνίεζεο, ελζσκαηψλνληαο ε 

θαζεκία δηαθνξεηηθέο πξνθιήζεηο γηα ηνλ αιγφξηζκν. Η ηξίηε εθαξκνγή, πεξηζζφηεξν 

πξαθηηθνχ ελδηαθέξνληνο, αθνξά ζηε βειηηζηνπνίεζε, ππφ πεξηνξηζκνχο, ηνπ 

πεξηγξάκκαηνο ηεο αεξνηνκήο ελφο πηεξπγίνπ ζηάηνξα απφ ζπκπηεζηή ειεγρφκελεο 

δηάρπζεο. 

 

Η αθξηβήο καζεκαηηθή δηαηχπσζε ηεο πξψηεο πεξίπησζεο, κε ηελ θσδηθή επσλπκία 

ZDT-1, δίλεηαη απφ ηελ εμ. 5.2. Δίκαζηε, επηπιένλ, ζε ζέζε λα ππνινγίζνπκε ηελ 

αλαιπηηθή ιχζε ηνπ πξνβιήκαηνο, λα εμαγάγνπκε, δειαδή, ηελ αλαιπηηθή έθθξαζε ηνπ 

κεηψπνπ Pareto ησλ κε θπξηαξρνχκελσλ ιχζεψλ ηνπ (εμ. 5.3). Σν κέησπν απηφ, πνπ 

παξνπζηάδεη ζπλέρεηα ζην ρψξν ησλ ιχζεσλ θαη θπξηή κνξθή, απεηθνλίδεηαη ζην ζρήκα 

5.1. 

 

΢ηε δεχηεξε καζεκαηηθή ζπλάξηεζε (ZDT-3), ηεο νπνίαο ε αθξηβήο δηαηχπσζε δίλεηαη 

απφ ηελ εμ. 5.4, ππεηζέξρεηαη θαηάιιεια έλαο ηξηγσλνκεηξηθφο φξνο πνπ ηεο δίλεη 

αζπλέρεηα ζην ρψξν ησλ ιχζεσλ. ΢πγθεθξηκέλα, ην αλαιπηηθά ππνινγηζκέλν (εμ. 5.5) 

κέησπν ησλ κε θπξηαξρνχκελσλ ιχζεσλ απηήο απνηειείηαη απφ 5 θπξηά, κε 

παξαθείκελα ηκήκαηα. Η απμεκέλε δπζθνιία ηνπ ζπγθεθξηκέλνπ πξνβιήκαηνο ζε ζρέζε 
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κε ην πξνεγνχκελν ζπλίζηαηαη ζηνλ εληνπηζκφ ιχζεσλ απφ φια ηα επηκέξνπο ηκήκαηα 

ηνπ κεηψπνπ, πνπ απεηθνλίδεηαη ζην ζρήκα 5.2. Η ZDT-3 είλαη, σο εθ ηνχηνπ, έλα πνιχ 

θαιφ κέηξν ηεο επίδνζεο ελφο αιγνξίζκνπ θαηά ηε θάζε ηεο εκμεηάλλεςζηρ. 

 

Η ηξίηε εθαξκνγή, βγαικέλε απφ ην ρψξν ησλ ΢ηξνβηινκεραλψλ, ζπλίζηαηαη ζηελ 

εχξεζε ηνπ βέιηηζηνπ πεξηγξάκκαηνο αεξνηνκήο πηεξπγίνπ απφ ηελ αθηίλα πνδφο ηνπ 

ζηάηνξα αμνληθνχ ζπκπηεζηή. Βέιηηζηνπ, κε θξηηήξηα ηελ θαιή αεξνδπλακηθή απφδνζε 

ηνπ κεκνλσκέλνπ πηεξπγίνπ (ειαρηζηνπνίεζε ηνπ ζπληειεζηή απσιεηψλ νιηθήο πίεζεο 

ηεο ξνήο γχξσ ηνπ) αιιά θαη ηε ζπλεηζθνξά ηνπ ζηελ επηζπκεηή ιεηηνπξγία ηνπ 

ζπκπηεζηή σο ζπλφινπ, δειαδή ηε ζηξνθή ηεο ξνήο θαη ζπλαθφινπζε αχμεζε ηεο 

ζηαηηθήο ηεο πίεζεο. Ο καζεκαηηθφο νξηζκφο ησλ θξηηεξίσλ γίλεηαη ζηηο εμ. 5.6 θαη 5.7. 

 

Μεηαβιεηέο ζρεδηαζκνχ ηνπ πξνβιήκαηνο είλαη νη ζπληεηαγκέλεο ησλ 14 ειεχζεξσλ (εθ 

ησλ 18 ζπλνιηθά) ζεκείσλ ειέγρνπ ησλ θακππιψλ Bezier κε ηε βνήζεηα ησλ νπνίσλ 

ζρεκαηίδεηαη ην πεξίγξακκα ησλ αεξνηνκψλ. Σα ζεκεία απηά κνηξάδνληαη κεηαμχ ησλ 

πιεπξψλ ππεξπίεζεο θαη ππνπίεζεο, πνπ απνδίδνληαη απφ μερσξηζηή θακπχιε ε θαζεκηά 

(ζρ. 5.3).  

 

Γηα λα κπνξνχκε λα εγγπεζνχκε ηελ θαηαζθεπαζηκφηεηα θαη επαξθή κεραληθή αληνρή 

ηνπ πηεξπγίνπ πνπ ζα πξνθχςεη απφ ηε δηαδηθαζία, επηβάιινπκε πεξηνξηζκφ ζην 

ειάρηζην πάρνο πνπ κπνξεί λα έρεη έλα νπνηνδήπνηε ηέηνην πηεξχγην ζε δηάθνξεο ζέζεηο 

θαηά κήθνο ηνπ. Σα ειάρηζηα απηά πάρε, πνπ εθθξάδνληαη σο πνζνζηφ ηνπ κήθνπο ηεο 

ρνξδήο ηνπ, δίλνληαη ζηελ εμ. 5.8. Σέηνηνπο πεξηνξηζκνχο ζην πάρνο, ζέηεη θαη ην ίδην ην 

ινγηζκηθφ αμηνιφγεζεο, πνπ κάιηζηα εμεηάδεη ηελ ηθαλνπνίεζή ηνπο ακέζσο κφιηο 

δηακνξθσζεί ε γεσκεηξία, πξηλ ε ππνςήθηα ιχζε πξνσζεζεί ζηνλ επηιχηε ηεο ξνήο. Οη 

πεξηνξηζκνί απηνί είλαη ιηγφηεξν απζηεξνί απφ ηνπο παξαπάλσ θαη ην ζθεπηηθφ ηνπο 

είλαη λα απνξξίςνπλ ηηο εληειψο απαξάδεθηεο γεσκεηξίεο πξηλ απηέο δεζκεχζνπλ ηνπο 

ζεκαληηθνχο ππνινγηζηηθνχο πφξνπο πνπ απαηηεί ε επίιπζε ηεο ξνήο γχξσ ηνπο. 

 

Έλαο επηπιένλ πεξηνξηζκφο πνπ ηίζεηαη είλαη ε ζηξνθή ηεο ξνήο πνπ επηηπγράλνπλ ηα 

πηεξχγηα λα είλαη ηνπιάρηζηνλ 20 , γηα λα κελ επηηξαπεί ππεξβνιηθφο ζπκβηβαζκφο ηεο 

ηθαλφηεηαο ηνπ πηεξπγίνπ λα ιεηηνπξγεί σο ζπληζηψζα ζπκπηεζηή, ζηελ πξνζπάζεηα γηα 

θαιή αεξνδπλακηθή απφδνζε (εμ. 5.9). 

 

Ο επηιχηεο ξνήο πνπ ρξεζηκνπνηήζεθε, ηνπ M. Drela, πξαγκαηνπνηεί κηα ηθαλνπνηεηηθή 

πξφβιεςε ησλ ραξαθηεξηζηηθψλ ηεο δηδηάζηαηεο ξνήο γχξσ απφ ην πηεξχγην, επηιχνληαο 

ην νξηαθφ ζηξψκα κε ρξήζε νινθιεξσκαηηθήο κεζφδνπ θαη, αξηζκεηηθά, ηηο εμηζψζεηο 

Euler γηα ην εμσηεξηθφ πεδίν ξνήο. 
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5.2. Απνηειέζκαηα 

 

Παξάιιεια κε ηνλ ΠΑ δνθηκάζηεθε θαη έλαο αξθεηά πιήξεο θαη δνθηκαζκέλνο ΔΑ ηεο 

ππνθαηεγνξίαο ησλ Δμειηθηηθψλ ΢ηξαηεγηθψλ, πνπ έρεη αλαπηπρζεί απφ ην ΔΘ΢, φρη 

ηφζν γηα ιφγνπο απεπζείαο ζχγθξηζεο, φζν γηα λα εμαρζνχλ πνηνηηθά ζπκπεξάζκαηα γηα 

ηε ζπκπεξηθνξά ησλ δχν κεζφδσλ θαη, δίπια ζην δεδνκέλεο απνηειεζκαηηθφηεηαο 

ινγηζκηθφ ΔΑ, λα δηαπηζηεπηεί θαη ε αληαγσληζηηθφηεηα ηνπ παξφληνο εθπνλήκαηνο. 

 

Σα απνηειέζκαηα παξνπζηάδνληαη κε ηε κνξθή ησλ κεηψπσλ κε θπξηαξρνχκελσλ 

ιχζεσλ ζηα νπνία θαηέιεμε ε εθηέιεζε θάζε αιγνξίζκνπ, γηα δεδνκέλν άλσ φξην 

πιήζνπο αμηνινγεζέλησλ ππνςεθίσλ. Πξαγκαηνπνηήζεθαλ 5 δηαθνξεηηθέο εθηειέζεηο κε 

δηαθνξεηηθή γελέηεηξα ηπραίσλ αξηζκψλ γηα θαζεκία, ψζηε λα εμαιεηθζεί ε επηξξνή ηεο 

ηπραηφηεηαο ζην ελδεηθηηθφ απνηέιεζκα. Δπηπιένλ δηακνξθψζεθε θαη παξνπζηάδεηαη, γηα 

θάζε πείξακα μερσξηζηά θαη θαζεκία εθ ησλ δχν κεζφδσλ, ην αληίζηνηρν δηάγξακκα 

Δείκηη Υπεπόγκος. Ο δείθηεο ππεξφγθνπ είλαη κηα κεηξηθή ζπλάξηεζε πνπ παξέρεη κία 

πνηνηηθή εηθφλα ηεο πξνφδνπ ηεο αλαδήηεζεο, θαηαγξάθνληαο ην πνζνζηφ ελφο 

πξνθαζνξηζκέλνπ ηκήκαηνο ηνπ ρψξνπ ησλ ιχζεσλ επί ηνπ νπνίνπ «θπξηαξρεί» αλά 

πάζα ζηηγκή ην ζχλνιν ησλ κε θπξηαξρνχκελσλ ιχζεσλ πνπ έρεη βξεη ν 

βειηηζηνπνηεηήο. Σν ηειηθφ δηάγξακκα πνπ επηδεηθλχεηαη είλαη πξντφλ εμαγσγήο ηνπ 

κέζνπ φξνπ ησλ δηαγξακκάησλ θαζεκηάο εθ ησλ 5 εθηειέζεσλ αλά πεξίπησζε. 

 

΢ηα ζρήκαηα 5.5 θαη 5.6 θαίλεηαη ε επίδνζε ηνπ θάζε βειηηζηνπνηεηή ζην πξφβιεκα 

ZDT-1, εθπεθξαζκέλε κέζσ ηνπ δηαγξάκκαηνο δείθηε ππεξφγθνπ θαη ηα ζεκεία ηνπ 

κεηψπνπ Pareto, φπνπ δηαθξίλεηαη θαη ε αλαιπηηθή ιχζε γηα θαιχηεξε επνπηεία. Σα δχν 

ινγηζκηθά εθηειέζηεθαλ κε ηηο πξνεπηιεγκέλεο ξπζκίζεηο ηνπο θαη κε ίδηα 

ραξαθηεξηζηηθά πιεζπζκνχ, ελψ επεηξάπεζαλ 5000 αμηνινγήζεηο ζην θαζέλα. Οκνίσο 

θαη γηα ηε δνθηκή έλαληη ηεο ZDT-3, φπνπ επεηξάπεζαλ 10000 αμηνινγήζεηο ην πνιχ. 

Παξά ηελ απζηεξφηεηα, γηα ηηο απαηηήζεηο ηνπ πξνβιήκαηνο, ηνπ νξίνπ απηνχ, θαη νη 

δχν αιγφξηζκνη ηα πήγαλ πεξίθεκα ζηνλ εληνπηζκφ ιχζεσλ θαη απφ ηα 5 δηαθξηηά 

ηκήκαηα ηνπ κεηψπνπ. Ο δε ΠΑ ζπλέπεζε ζρεδφλ εμ νινθιήξνπ κε ηελ αλαιπηηθή ιχζε            

(ζρ. 5.7, 5.8). 
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΢ρ. 5.5, 5.6. Κακπχιεο ππεξφγθνπ ζπλαξηήζεη πξαγκαηνπνηεζεηζψλ αμηνινγήζεσλ θαη ηειηθά κέησπα 

κε θπξηαξρνπκέλσλ ιχζεσλ ΠΑ θαη ΔΑ χζηεξα απφ 5000 αμηνινγήζεηο (πξφβιεκα ZDT-1). 

 

 

 
΢ρ. 5.7, 5.8. Κακπχιεο ππεξφγθνπ ζπλαξηήζεη πξαγκαηνπνηεζεηζψλ αμηνινγήζεσλ θαη ηειηθά κέησπα 

κε θπξηαξρνπκέλσλ ιχζεσλ ΠΑ θαη ΔΑ χζηεξα απφ 10000 αμηνινγήζεηο (πξφβιεκα ZDT-3). 

 

 

Όζνλ αθνξά, ηέινο, ηελ πξαθηηθή εθαξκνγή βειηηζηνπνίεζεο ηεο αεξνηνκήο ηνπ 

πηεξπγίνπ, επεηξάπεζαλ κφλν 1500 αμηνινγήζεηο, δεδνκέλνπ ηνπ ππνινγίζηκνπ, απηή ηε 

θνξά, ππνινγηζηηθνχ θφζηνπο απηψλ, εληφο ησλ νπνίσλ, πάλησο, νη δχν αιγφξηζκνη 

δείρλνπλ λα ζπλέθιηλαλ. Σνλίδεηαη ε πξνθαλήο εμάξηεζε ησλ απνηειεζκάησλ απφ ηα 

πξνεπηιεγέληα φξηα κεηαβιεηψλ ζρεδηαζκνχ. Σα ζρ. 5.9 θαη 5.10 απεηθνλίδνπλ ην 

δηάγξακκα δείθηε ππεξφγθνπ θαη ηηο ηειηθέο ιχζεηο πνπ απέδσζαλ νη πξνζπάζεηεο ησλ 

δχν ινγηζκηθψλ. Απφ ην ηειεπηαίν, γηα ηελ πεξίπησζε ηνπ ΠΑ, επηιέγνληαη δχν αθξαίεο 

ιχζεηο θαη ζηα ζρ. 5.11 αλαπαξάγεηαη, ρσξίο λα ηεξεζεί θιίκαθα, ε γεσκεηξία ηνπο, 

φπνπ θαίλεηαη ν δηαθνξεηηθφο πξνζαλαηνιηζκφο (ειάρηζηεο απψιεηεο ην έλα, κέγηζηε 

ζπκπίεζε ξνήο ην άιιν) δχν, θαηά ηα άιια «βέιηηζησλ» ελαιιαθηηθψλ επηινγψλ. 
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΢ρ. 5.9, 5.10. Κακπχιεο ππεξφγθνπ ζπλαξηήζεη πξαγκαηνπνηεζεηζψλ αμηνινγήζεσλ θαη ηειηθά κέησπα 

κε θπξηαξρνπκέλσλ ιχζεσλ ΠΑ θαη ΔΑ χζηεξα απφ 1500 αμηνινγήζεηο (πξφβιεκα ζρεδηαζκνχ 

αεξνηνκήο). Οη δχν αθξαίεο θπθισκέλεο ιχζεηο αληηζηνηρνχλ ζηηο παξαθάησ αεξνηνκέο (ζρ. 5.11). 

 

 

 
΢ρ. 5.11. Γχν ελδεηθηηθέο ηειηθέο ιχζεηο (δελ έρεη ηεξεζεί θιίκαθα). 

 

 

Σα παξαπάλσ πεηξάκαηα θαηέδεημαλ ηελ αληαγσληζηηθφηεηα ηνπ πξνηεηλφκελνπ 

ινγηζκηθνχ, αθνχ απηφ ζηάζεθε επάμηα δίπια ζηνλ ΔΑ, μεπεξλψληαο ηνλ ζηα ζεκεία. Σν 

επράξηζην είλαη, φηη ελψ ε παξαιιαγή απηή ηεο Β΢΢ επέδεημε θαη πάιη ηελ πνιχ γξήγνξε 

εμεξεπλεηηθή ζπκπεξηθνξά πνπ ραξαθηεξίδεη ηε κέζνδν, δελ θάλεθε λα πξνβιεκαηίδεηαη 

θαζφινπ ζηα ηειεπηαία ζηάδηα ηεο αλαδήηεζεο, δείγκα φηη νη ζρεηηθέο παξεκβάζεηο 

απέδσζαλ θαξπνχο. 

 

 
 

6.  ΢πκπεξάζκαηα - Πξνηάζεηο γηα κειινληηθή εξγαζία 

 
Σα ηθαλνπνηεηηθά δείγκαηα ησλ δπλαηνηήησλ ηνπ ΠΑ πνπ ιάβακε θαηά ηηο δνθηκέο ηνλ 

θαζηζηνχλ κηα ζηέξεα βάζε γηα πεηξακαηηζκνχο θαη ππνδεηθλχνπλ θαιέο πξννπηηθέο γηα 

πεξαηηέξσ αλάπηπμή ηνπ. Ήδε απφ ην θεθάιαην 4 έρνπλ γίλεη θάπνηεο λχμεηο γηα ηηο 

πξψηεο δηαθαηλφκελεο βειηηψζεηο. Τπάξρνπλ αξθεηέο πξνζζήθεο πνπ κπνξνχλ λα ηνλ 

αλαβαζκίζνπλ ζεκαληηθά, ηφζν απφ άπνςε επίδνζεο φζν θαη πιεξφηεηαο θαη επειημίαο, 

θάπνηεο εθ ησλ νπνίσλ κπνξνχλ λα γίλνπλ άκεζα θαη θάπνηεο, πην θηιφδνμεο θαη 

κεγαιχηεξεο θιίκαθαο, πνπ ίζσο λα κπνξνχλ λα ζπκπεξηιεθζνχλ ζηνπο ζηφρνπο 

κειινληηθήο δηπισκαηηθήο εξγαζίαο: 
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 Πεξαηηέξσ βειηίσζε ηνπ κεραληζκνύ απόδνζεο Gbest. Όπσο έρεη 

επαλεηιεκκέλα ηνληζηεί, ε δηαδηθαζία απηή είλαη θνκβηθήο ζεκαζίαο. Κάζε 

βειηίσζή ηεο έρεη άκεζε ζεηηθή επίπησζε ζηελ ηαρχηεηα πξνφδνπ ηνπ 

αιγνξίζκνπ. Οη δπζθνιίεο θαη πξνθιήζεηο πνπ παξνπζηάδεη ε επηινγή Gbest είλαη 

θνηλέο κε ην γεληθφηεξν πξφβιεκα ηεο ΠΚΒ, απηφ ηεο επηινγήο βάζεη πνιιαπιψλ 

θξηηεξίσλ. Ωο εθ ηνχηνπ, κπνξνχκε λα ζηξαθνχκε πξνο ην γεληθφηεξν ρψξν ηεο 

ΠΚΒ γηα λα αληιήζνπκε ηδέεο γηα απνηειεζκαηηθή αλαβάζκηζή ηεο. ΢ηελ 

παξάγξαθν 4.4 αλαθέξακε ηα νθέιε πνπ ζα έρεη πηζαλή εκπινθή κηαο κεηξηθήο 

ζπλάξηεζεο πνπ ζα ιακβάλεη ππφςε ηε κνξθή ηνπ κεηψπνπ Pareto. ΢θνπφο είλαη 

λα επηιέγνπκε Gbest γηα θάζε ζσκαηίδην, βάζεη εμαζθάιηζεο φρη κφλν ησλ 

θαιχηεξσλ πξννπηηθψλ βειηίσζεο ηεο ζπγθεθξηκέλεο ιχζεο αιιά θαη ηεο 

θαιχηεξεο δπλαηήο εηεξνγέλεηαο ηνπ κεηψπνπ ησλ κε θπξηαξρνχκελσλ ιχζεσλ. 

 

 Αζύγρξνλε αλαδήηεζε - ΢πκβαηόηεηα κε πνιύ-επεμεξγαζηηθά πεξηβάιινληα. 

Καζφηη ε πιεηνλφηεηα ησλ ππνινγηζηηθψλ πξνβιεκάησλ ζήκεξα αληηκεησπίδεηαη 

ππφ θαζεζηψο παξάιιειεο επεμεξγαζίαο, είλαη απαξαίηεην λα γίλνπλ φιεο νη 

δπλαηέο πξνζαξκνγέο ψζηε ν ΠΑ λα κπνξεί λα ιεηηνπξγήζεη κε ηε κέγηζηε 

απνδνηηθφηεηα ζε έλα ηέηνην πεξηβάιινλ. Κάηη ηέηνην πξνυπνζέηεη λα κε 

ρξεηαζηεί επ’ νπδελί λα κείλεη θάπνηνο εθ ησλ δηαζέζηκσλ επεμεξγαζηψλ 

αδξαλήο. Πξέπεη ινηπφλ λα απεκπιέμνπκε ηελ αμηνιφγεζε ησλ ζσκαηηδίσλ απφ 

ηελ έλλνηα ηεο «επαλάιεςεο» ηνπ αιγνξίζκνπ. ΢ηελ παξνχζα κνξθή ηνπ ΠΑ, 

έλαο θχθινο ιεηηνπξγίαο ηνπ νινθιεξψλεηαη φηαλ νινθιεξσζεί ε αμηνιφγεζε 

φισλ ησλ ζέζεσλ ζηηο νπνίεο βξίζθεηαη ζσκαηίδην. Αθνινχζσο, φιν ην ζκήλνο 

επαλαηνπνζεηείηαη ζην ρψξν θαη πξνρσξά πξνο επαλαμηνιφγεζε. Γηα λα 

απνθχγνπκε ην θαηλφκελν λα «πεξηκέλεη» ην ζχζηεκα ηελ θαζπζηεξεκέλε 

νινθιήξσζε ηεο αμηνιφγεζεο ελφο ππνςεθίνπ γηα λα νινθιεξσζεί ν θχθινο, ζα 

επαλαπξνγξακκαηηζηεί ν ΠΑ ψζηε έλαο θχθινο ηνπ λα ζπκπίπηεη κε ηελ εμέηαζε 

ελφο θαη κφλν ππνςεθίνπ: κε ηελ «επηζηξνθή» ελφο ππνςεθίνπ απφ αμηνιφγεζε, 

ην ζσκαηίδην ζα επαλαηνπνζεηείηαη ακέζσο, ελψ νη εμηζψζεηο 3.1 θαη 3.2 ζα 

ιακβάλνπλ ππφςε ηε κέρξη ζηηγκήο ππαξθηή πιεξνθνξία, αζρέησο ηνπ ηη θάλνπλ 

νη ππνςήθηνη πνπ αμηνινγνχληαη εθείλε ηε ζηηγκή. 

  

 Πξνζαξκνγή ηνπ ηειεζηή ανάδεςζηρ. ΢ηελ παξάγξαθν 4.5 εμεγήζεθε ν ξφινο 

ηνπ ηειεζηή αλάδεπζεο θαη δείρζεθε φηη κπνξεί λα νδεγήζεη ζε ζεκαληηθή 

βειηίσζε ηνπ ηειηθνχ απνηειέζκαηνο. Παξ’ φια απηά, παξακέλεη έλαο 

ππεξβνιηθά παξεκβαηηθφο κεραληζκφο, ελψ, ζηελ παξνχζα κνξθή ηνπ, απαηηεί λα 

έρεη πξνρσξήζεη αξθεηά ε αλαδήηεζε πξνηνχ απηφο εκπιαθεί, εηδάιισο δελ έρεη 

ηελ επηζπκεηή ζπκπεξηθνξά. Αμίδεη λα εμεηάζνπκε κηα ελαιιαθηηθή πξνζέγγηζε, 

φπνπ ν ηειεζηήο ανάδεςζηρ ζα απαζρνιεί κφλν έλα πνζνζηφ ηνπ ζκήλνπο. Απηφ 
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ζα πεξηνξίζεη ην ξίζθν εκπινθήο ηνπ, κε απνηέιεζκα λα κπνξνχκε λα ηνλ 

ρξεζηκνπνηήζνπκε λσξίηεξα. ΢θνπφο είλαη λα κεηακνξθσζεί ν ηειεζηήο ζε 

βαζηθή ζπληζηψζα ηνπ αιγνξίζκνπ, ζπκκεηέρνληαο πην αξκνληθά ζηε δηαδηθαζία 

βειηηζηνπνίεζεο θαη θαζ’ φιε ηελ έθηαζε απηήο. 

 

 Γηεξεύλεζε ησλ ξπζκηζηηθώλ παξακέηξσλ. Ο ζπληειεζηήο νξκήο θαη νη δχν 

ζπληειεζηέο επηηάρπλζεο ρξήδνπλ πξνζνρήο. Δμεγήζακε ήδε γηαηί δηαθνξεηηθέο 

ηηκέο απηψλ ηαηξηάδνπλ θαιχηεξα ζε δηάθνξεο θάζεηο ηεο δηαδηθαζίαο 

βειηηζηνπνίεζεο θαη πηνζεηήζεθε έλα ζρήκα γξακκηθήο πξνζαξκνγήο απηψλ 

ζπλαξηήζεη ησλ αμηνινγήζεσλ πνπ έρνπλ νινθιεξσζεί. Σν ζρήκα απηφ είλαη κελ 

απνηειεζκαηηθφ, εηδηθά θαηά ην ηειηθφ ζηάδην ηεο αλαδήηεζεο, αιιά δε 

ζπγθξίλεηαη κε ηελ εμαηξεηηθή πξνζαξκνζηηθφηεηα πνπ παξνπζηάδνπλ ζε 

αλάινγεο πεξηπηψζεηο νη ΔΑ (ζηξαηεγηθέο κεηάιιαμεο θιπ.). Πξέπεη λα 

αλαπηπρζνχλ πην εμεδεηεκέλα κέζα αλίρλεπζεο ησλ αλαγθψλ ηνπ πξνβιήκαηνο 

ζε θάζε θάζε θαη δπλακηθήο πξνζαξκνγήο ησλ παξακέηξσλ ζε απηέο. Πέξαλ 

απηνχ, πξέπεη λα δηεμαρζεί θαη κηα πιήξεο παξακεηξηθή δηεξεχλεζε γηα απηά ηα 

ηξία κεγέζε, θαζψο θαη γηα ηηο δηάθνξεο ξπζκίζεηο ηνπ ηειεζηή ανάδεςζηρ. 

 

 Δθαξκνγή θάπνηαο κεζόδνπ μη ακπιβούρ ππο-αξιολόγηζηρ. Τπάξρνπλ 

καζεκαηηθά κνληέια πνπ δίλνπλ ηε δπλαηφηεηα λα επηηχρνπκε κηα θαιή 

πξνζέγγηζε ηεο ηηκήο ηεο αληηθεηκεληθήο ζπλάξηεζεο κίαο ππνςήθηαο ιχζεο 

εθκεηαιιεπφκελνη ηελ πιεξνθνξία πνπ είλαη δηαζέζηκε γηα ηνλ πεξηβάιινληα ηε 

ιχζε απηή ρψξν αλαδήηεζεο, δειαδή ηηο πξνεγνπκέλσο εμεηαζζείζεο ιχζεηο πνπ 

γεηηνλεχνπλ κε απηήλ [41]. Μία ηέηνηα κέζνδνο κπνξεί λα ππνθαηαζηήζεη 

πεξηζηαζηαθά ην δηαζέζηκν ινγηζκηθφ αθξηβνχο αμηνιφγεζεο, κε πξνθαλέο 

φθεινο, αθνχ απηή ε δηαδηθαζία παξεκβνιήο (ή φκνηα) έρεη πνιχ κηθξφηεξν 

ππνινγηζηηθφ θφζηνο ζηελ πιεηνςεθία ησλ πξαθηηθψλ εθαξκνγψλ. Μία ηέηνηα 

κέζνδνο ζα κπνξνχζε λα ρξεζηκεχζεη γηα λα καο δψζεη -ρσξίο ηδηαίηεξε 

επηβάξπλζε- κηα πξψηε έλδεημε ηνπ πσο ζα εμειηρζεί έλα ζσκαηίδην εθφζνλ ηνπ 

απνδνζεί θάζε έλα εθ ησλ ππνςεθίσλ Gbest, θαζηζηψληαο απηή ηε δχζθνιε 

απφθαζε «εθ ηνπ αζθαινχο». Έλα ελδεηθηηθφ ηέηνην καζεκαηηθφ εξγαιείν είλαη 

ην ιεγφκελν Kriging, εθ ηνπ G. Krige πνπ ην πξφηεηλε. Σν Kriging 

δηαθνξνπνηείηαη απφ άιια ηέηνηα εξγαιεία ιφγσ ηεο ηδηφηεηάο ηνπ λα παξέρεη, 

εθηφο ηεο εθηίκεζεο ηεο ζπλάξηεζεο θφζηνπο, ην θαλνληθά θαηαλεκεκέλν πηζαλφ 

ζθάικα απηήο. Η εκπινθή ηνπ Kriging ζε πξνβιήκαηα ΠΚΒ παξνπζηάδεη 

πξνθιήζεηο φκνηεο κε απηέο πνπ αληηκεησπίζακε κε ηελ πνιχ-θξηηεξηαθή 

επέθηαζε ηεο Β΢΢, ν δε γξάθσλ έρεη κία ζρεηηθή εκπεηξία ζηελ εθαξκνγή ηνπ ζε 

ζπλδπαζκφ κε ΔΑ. 
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The main objective of this work has been the development and subsequent validation of a 

complete optimization tool based on the concept of the Particle Swarm. Particle Swarm 

Optimization (PSO), as which, the entirety of optimization-oriented applications of the 

Particle Swarm is referred to, is a subcategory of the great family of Swarm Intelligence 

techniques. As such, it introduces processes inspired from the collective activity of a 

swarm of insects, flock of birds and school of fish or similar to assess the search for 

optimal solutions to a variety of problems. The proposed algorithm (PA) borrows the 

original core idea of PSO, and applies a series of additions and adjustments, some of 

which original, some inspired from trends in the ongoing advances in the field of 

optimization.  

 

Swarm intelligence itself is a subcategory of the Stochastic Methods, which essentially 

encapsulate all optimization techniques that rely, to some extent, on randomized search 

within all specified variable ranges to locate the optima. This thesis extends its 

perspective beyond Swarm Intelligence and approaches Stochastic Optimization 

holistically, attempting to outline the common features among its various aspects and 

extract clues as to how each one can be enhanced. Particular attention is given to the most 

popular and widely applied Stochastic Methods branch, that of Evolutionary Computation 

and Evolutionary Algorithms (EA‘s). After EA‘s and PSO have been introduced and 

discussed in depth in chapter 2 and 3, a long discussion is conducted to highlight the 

similarities or equivalences between the two, as far as both their philosophical and 

mathematical background and their practical application is concerned.  

 

The purpose of this is not only to determine the adjacencies between the various 

components and defining features of these two paradigms, but also to gain insight into 

possible improvements, either by borrowing principles from each other or by hybridizing. 

At this point, suffice to say that the prominent product of this analysis is that PSO has a 

relatively faster rate of progress through the earlier stages of a run, while EA‘s in general 

shine at a later stage, the phase of exploitation, namely the phase when search space has 

almost been exhausted and the optimizer focuses on refining the located solutions by 

searching in their immediate vicinity, thus slightly improving the end result. This rough 

observation greatly impacts this entire work and its efforts in improving the generic PSO 

optimizer are focused on moderating this fundamental disadvantage. 

 

In PSO, the members of the swarm, or particles, are driven by two main forces: the 

particle‘s individual perception of search space, as it is shaped by its own progress thus 

far (cognitive influence), and its interaction with the rest of the swarm, its awareness of 

the progress of the swarm as a whole (social influence). The relative effect of these two 

driving forces is dependent upon a series of tuning parameters. Their choice of value is 
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therefore crucial, especially so since it is understood that cognitively and socially 

influenced behaviors relate to performance in different stages of the optimization process. 

In section 3.4, these governing parameters are discussed: Their impact is analyzed, 

relevant experiments and literature are surveyed and the various existing trends are 

reviewed. The choice of parameters for the PA is elaborately justified, especially from the 

perspective of addressing the lacking exploitation capabilities. A scheme that dynamically 

alters these parameters is adopted, inspired by similar beneficial practices in EA‘s. 

 

Chapter 4 provides an overview of the entire PA: each section examines a major aspect 

and its internal processes in depth. A short survey of popular equivalents comes with the 

introduction of each feature. Unless explicitly stated otherwise, the various processes and 

features are original. Similarities to existing techniques are present in some cases, while 

others deviate from common practice. Occasionally, a few alternative approaches to a 

certain issue will be presented, and their distinctive characteristics will be discussed. The 

optimizer was generally developed and programmed from scratch. The most notable 

novelties are the highly directional and strategic social influence structure and the shuffle 

operator, a scheme designed to intervene late in the algorithm‘s progress by appropriately 

re-positioning the swarm and determining certain directions in which to intensify search, 

thus maximizing its efficiency. Other main points, like the constraint operator, 

responsible for administering candidate solutions in breach of any constraints imposed by 

the problem, and the initialization phase are also worth mention. 

 

Emphasis was placed on multi-objective optimization (MOO) problems, namely 

problems where the optimality of a solution is judged on multiple criteria. As was 

explained, the multi-objective regime is completely different to the single-objective one 

and poses additional challenges, some of which are specific to PSO and pertain to the 

elevated roles of cognitive and social influence. The reader is introduced to the details of 

MOO and the current trends in dealing with such problems (the Pareto concept, non-

dominated solution sorting methods etc.) in chapter 2. In section 4.3 I specifically 

elaborate on the approaches adopted in the PA to facilitate a successful transition to 

MOO: A solution selection/sorting procedure determining the best solutions so far, 

wherein to invest. A solution spacing routine is designed and incorporated to guarantee 

the sought diversity among the various optimal solutions. 

 

The PA is tested against three problems: each of two objectives, with its individual 

peculiarities. The first two are benchmark mathematical function cases, especially 

developed by optimization researchers for exactly this purpose: ZDT-1 and ZDT-3. The 

latter, with its challenging non-contiguous set of optima is a very popular experimental 

tool. One last test, of a more practical orientation, utilizes the PA for the optimization of a 
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cascade compressor‘s stator airfoil, with regard to individual aerodynamic efficiency and 

good static pressure rise qualities. This case features strict constraints and a higher 

computational cost per examined candidate solution, thus, a more demanding problem. 

The PA is subjected to these tests alongside EA-based optimization software of 

established competitiveness, serving as a point of reference. The demonstrated results 

showcase the earlier speculated differences in behavior between EA‘s and PSO, and how 

the added features have somewhat bridged this gap. They also grant the PA validation as a 

fully functional and competent optimizer and a decent foundation for further 

experimentation. 

 

In chapter 6, a few suggestions for future work are laid out; various adjustments to the 

existing features, possible on a short-term basis, as well as more ambitious enhancements 

that may be achieved as part of a larger project. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

2. On Evolutionary 

Computation 
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2.1. Stochastic Methods in Optimization 

 

This major branch of Numerical Optimization techniques, under which fal ls 

Particle Swarm Optimization, has been growing rapidly in popularity over the last 

decade or two, with a few becoming ―industry standard‖ approaches for solving 

challenging optimization problems [45]. This is thanks to their ease of 

implementation, user-friendliness, non-strictly-mathematical background and high 

adaptivity to any problem. 

 

Perhaps the best way to define Stochastic Methods is in direct contrast to their 

‗rival‘ family of optimization paradigms, the Deterministic Methods. Deterministic 

methods are entirely dependent upon knowledge - exact or approximate - of the 

gradient of the objective function of the problem throughout search space; there is 

no strict demand for the gradient function to be continuous or perfectly smooth (or 

for the objective function itself), but its value must be generally calculable in the 

region of any candidate solution, for the optimization algorithm to benefit from the 

evaluation of said candidate. The algorithm handles this information appropriately 

to determine the direction in which lie the minima or maxima of the target function, 

or, in other words, points in space where the objective gradient verges on zero, to at 

least one of which, convergence is guaranteed, and at a high rate. It should be 

noted, without loss of generality, that Deterministic Methods are not able to 

provide any indication of whether the discovered optimum is a global optimum 

(which is the desired outcome) or a local one. Unless some additional mechanism is 

engaged to keep the algorithm from getting trapped in such a local optimum, the 

optimizer will be terminated when it achieves (relative) a near-zero gradient. 

Therefore, deterministic methods carry the indisputable advantage of a very fast 

convergence (usually with respect to the number of solutions which will have to be 

individually examined, or evaluated, for the optimizer to reach an optimum 

solution), at the peril of ultimately settling for a false optimum. Additionally, in 

most practical problems the gradient value is difficult (extremely complicated 

mathematical representation of the examined phenomenon) or even impossible 

(non-linear, convex, non-contiguous systems) to extract, and therefore, 

incorporation of such a method is prohibited. One should not overlook the added 

obstacle of industrial confidentiality, which may not allow the revelation of 

sufficient information as to the specifics of the problem. 

 

Conversely, stochastic methods [40] have no requirement that any details are 

known on the nature of the problem (although a general understanding of the case 

at hand is always beneficial). All that is needed is a list of the associated variables 
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and the range within which to search. All stochastic methods are principally search 

methods or heuristics. In their majority, they are also population-based: they 

depend on a finite population of „agents‟ initially unleashed into variable space in 

random fashion. Subsequently, an iterative process is spawned, which determines 

new eligible agent destinations. This process also encapsulates randomness to one 

extent or another, but is profoundly deterministic in nature. It essentially 

manipulates all data gathered by the agents in their venture, inspecting their current 

whereabouts, as well as their history, from both an individualistic and a holistic 

perspective. It intelligently combines the information from various sources to form 

a visualization of the problem space which provides clues as to the possible 

location of the optima, or at least indications of the more promising subregions, in 

which to intensify search. The qualities that govern this process along with the 

overall behavior of agents are the distinguishing element of each heuristic. It has 

become a trend for these qualities to be inspired by natural or other everyday-life 

processes, which is the case for both PSO, and the prominent Evolutionary 

Algorithms presented in the very next segment. 

 

In summary, stochastic methods are advantageous in their universality, as they can 

almost instantly, with few, if any, alterations deal with any optimization problem, 

regardless of the technical discipline it falls under, the dimensions of search space, 

the availability of the various objective function gradients and other particular 

specifications. A single competitive stochastic optimizer can find numerous and 

very diverse applications, in finance, research & design and other areas. The price 

paid for the lack of specificity is the relatively low convergence rate and high total 

computational expense needed to reach a satisfactory result.  

 

Deterministic methods boast a considerable convergence rate margin over most 

stochastic paradigms, presuppose, however, that the problem lends itself to 

derivation of its objectives. Ultimate success is not guaranteed, even when a careful 

study precedes the optimization process, for careful selection of an appropriate start 

point. Research is constantly focused on developing intelligent counter-measures 

against entrapment in local optima. The competitiveness of a procedure centered 

round a deterministic method is rather associated with the means of calculating the 

gradient than with the method itself. When a particular optimization process is 

bound to be repeated on numerous occasions to deal with the same or a very similar 

object, depending on the size of the project and the resources it occupies, the 

development of a specialized optimizer, tailored to the peculiarities of this 

particular case, may be justified. The resulting algorithm, however, will have 

limited utility beyond this particular application. 
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2.2. Evolutionary Algorithms 
 

In this segment, we are introduced to the most popular and widely incorporated 

stochastic method subdivision to date, the Evolutionary Algorithms (EA‘s). An 

overview of the EA‘s basics is deemed mandatory, because, even though this work 

studies PSO, this is done in juxtaposition with the EA. The reader can take 

advantage of this article to familiarize with principles of Evolutionary Computation 

in general, and with specific terminology that will be used, often arbitrarily, over 

the entire length of this work. 

 

Evolutionary Algorithms are not a new concept at all; in fact they date back to the 

60‘s and are originally attributed to John H. Holland [46], who not only proposed 

the paradigm, in its Genetic Algorithm (GA) variation, but also pointed out its great 

potential as a heuristic optimization scheme. Other prominent sub-classes of EA‘s 

are Evolutionary Strategies (ES) and Evolutionary Programming. It is nowadays 

common practice for different aspects of the range of Evolutionary methods to 

hybridize or borrow features from each other, to the point that the separating 

boundary is hazy and they cannot strictly be classified. 

 

EA‘s, including the genetic variation, saw considerable advances over the past two 

decades, rising in popularity. As a population-based technique, an EA acts on 

populations of strings –more commonly binary- that represent chromosomes from 

living organisms. The distinguishing manipulation procedure outlined in the 

previous segment here resembles the Evolution of Species, as it is portrayed by 

Charles C. Darwin [47]. Evolution is perceived as the process via which a species 

adapts to its natural environment, to meet its demands and, ultimately, survive. All 

known elements of the evolutionary process are present in an EA, albeit simpl ified: 

Survival of the Fittest, Natural Selection, mating and reproduction, competition 

over available resources and, last but not least, Mutation.  

 

In nature, the fittest is going to survive. Not only will he better manage to secure 

the necessary resources, food, shelter etc. but he will also defend himself properly, 

avoid death/elimination and attract mates for breeding, consequently securing the 

perpetuation of his genes. The more successful he is at doing the above, the more 

offspring he will eventually produce, the more his genes will be present in future 

individuals. Should both mates be of the same high quality, which is highly 

probable, then chances are they will produce exceptional offspring that might even 

outperform them and then, go on to breed to produce and further improve the 

species. Weak and under-average members of a population, on the other hand, will 
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have difficulty surviving, as they are bound to be eaten or killed in their search of 

food and shelter, stroke by disease etc. Even if they avoid elimination, their genes 

are destined for long-term elimination as they will boast limited attractiveness and 

their chances of mating, much less with a mate of certain prospects, are low. The 

flourishing of fitter individuals and eventual extinction of underperforming ones 

gradually improves the overall quality of the population. The specimen has evolved 

thanks to the survival of those members of the population who demonstrated higher 

adaptivity and potential. 

 

As with nature, the governing theme in EA‘s is Survival of the Fittest. The quality 

of a solution to the problem represented by a gene/chromosome/individual is 

commonly referred to as Fitness of this individual or the corresponding variable 

vector. Each additional iteration of the algorithm coincides with a new generation 

for the specimen. The genes present in a future generation are for the genetic 

operators (Selection, Crossover/Recombination, Mutation) to determine. The 

specifics of the mating/breeding process are equally important: Who will mate with 

whom and exactly how will each parent impact the offspring? How often will one 

reproduce? In one way or another, the algorithm is made to enforce the position of 

promising individuals-solutions in the struggle for survival by granting them 

increased mating chances, selecting them over those of lower standards, who are 

replaced by the brood of the survivors. The purpose of the algorithm is to 

constantly improve the overall fitness of the population, in hope that, by enhancing 

the entire population we are approaching the optimum in whatever our population‘s 

quality is measured with; the Objective(s). 

 

As the internal nuts and bolts of evolution are not known to us in their entirety, 

stochasticity must be present as a substitute for every unknown or unpredictable 

factor that impacts the form of the genetic progression. The random element is first 

encountered in the initialization of the population, which is scattered over search 

space, as dictated by a random number generator, an integral part of the EA. 

Another area where randomness is key is in mutation; part of the chromosome is 

tweaked, in an attempt to enrich the population with solutions of added diversity. 

The process of mutation is traditionally chaotic (although certain variations are 

very strategic and targeted) but is necessary to stir the population, to avoid 

jamming into a particular area of search space. Aside from those two cases, 

stochasticity is, as we will witness, implicated in every single aspect of the EA, in 

one way or another. 
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A common practice is for the candidate solution to be represented as an array of 

bits (0s and 1s). Arrays of other types and structures can be utilized similarly. The 

main property that makes these genetic representations convenient is that their parts 

are easily aligned to each other due to their fixed length, which facilitates simple 

crossover operations and greatly accommodates mutation, as it can be performed 

simply by flipping bits (details in following following paragraphs). Variable length 

representations may also be used. Tree-like representations are also experimented 

with, but are more commonly exclusively associated with Evolutionary 

Programming. These binary strings are handled in accordance to the schemata 

theorem (we shall not speculate further, as it is not the purpose of this work). 

 

Let us now briefly go over the flow of a basic EA:  

 

The algorithm handles three subpopulations, stored in separate archives that are 

potentially renewed every generation g:  

i. Parents, let μ be the size of the respective archive.  

ii. Offspring/children, of size λ. 

iii. Elites, of size e, where the best solutions thus far are stored. 

 

Directly following the random initialization of λ chromosomes (g=0), the iterative 

generation process is entered. Candidates are evaluated by the specific evaluation 

software that must be available externally. Evaluation is the calculation of fitness 

of every candidate solution, in effect the exact calculation of the objective function 

value adjacent to its variable vector. The elite archive is updated accordingly. The 

selection operator Tμ is engaged to pick out those μ individuals that will assume 

parenthood status at the reproduction phase. The offspring that comprise the next 

generation (g+1) are shaped out of a mix of chromosomes resulting either from the 

application of the mutation operator Tm upon members of the current population, or 

Elitism (Te), or regular offspring produced by the crossover/recombination 

operators Tr. A new generation ensues, starting with evaluation of the new λ 

chromosomes, unless a termination criterion is satisfied. A termination criterion in 

EA‘s can either be the exhaustion of an upper limit of allowed evaluations, or the 

surpassing of a desired target value, or the algorithm reaching a state where it has 

registered any progress over a given number of consecutive generations or other. In 

fig. 2.1, a flow chart of a standard EA illustrates the above. Below, the three main 

operators, along with a fourth – elitism – are shortly reviewed: 
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 Selection is usually implemented in one of the following ways: 

 Proportional selection, where each candidate has a chance to be 

selected, directly proportional to his normalized fitness (his fitness 

value divided by the sum of all candidates‘ fitness values) or 

inversely proportional to it, depending on whether the problem is of 

maximizational or minimizational orientation, respectively.  

 Linear ranking, where the population is sorted by descending fitness, 

and μ (or fewer) are selected from atop the list. 

 Tournament selection, where linear ranking is essentially applied to a 

number k of stochastically preselected candidates. 

It should be noted, it is not uncommon for any of the above mechanisms to 

deliberately pick out a few of the not-so-promising individuals, even those 

with bottom rankings, to reflect the earlier mentioned natural 

unpredictability; perhaps these seemingly unimpressive individuals bear 

impressive potential… 

 

 Crossover also comes in numerous variations, the most popular being 1-

point crossover, where the chromosome is divided in two, and the resulting 

child inherits one part from each parent (in the simplified case of 2 parents 

producing one child). It should be emphasized crossover is addressed very 

differently should solutions not be binarily represented. 

 

 Mutation is responsible for introducing and preserving added solution 

diversity, by unpredictably modifying members of the existing population. 

Among other contributions, it serves as an additional counter-measure 

against entrapment in local optima. A basic approach is flipping one (or 

more) random bits of a chromosome (turning 0 to 1 and vice versa). 

Crucially, the probability of a mutation occurrence changes dynamically 

during an EA run, mostly depending on the state the optimizer is in, its 

recent rate of progress etc. 

 

 Elitism, finally, is the act of de facto introducing elite members of the 

population into the parent archive, without putting them through selection. 

Elitism can be seen as a reassurance that every next generation will at least 

not be a step backwards from its preceding, since top solutions have 

participated in the generation of the new population. 
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Fig.2.1 Flow chart of a generic EA. 
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2.3. Multi-Objective Optimization – Pareto optimality 

 

Optimization problems with multiple criteria of optimality (K>1) are given special 

mention in this segment. It is imperative for the reader to comprehend the major 

differences in the way such problems are dealt with, compared to single-objective 

cases, as the later proposed optimizer specializes in Multi-objective Optimization 

(MOO) and its performance will exclusively be demonstrated and tested against 

such problems. 

 

The main concern regarding problems with K>1 objectives is the classification of 

solutions. It is not possible to rank two objects based on two or more criteria, 

except if either is better or worse by all said criteria. This issue extends to 

Optimization: How are we to decide, for example, which solution will join the elite 

archive, or participate in reproduction as a parent, in an EA? Additionally, it is 

understood that an optimization method‘s purpose and measure of performance 

should not only be its ability to deliver a single satisfactory solution, but numerous 

solutions of sufficient diversity, offering us choice among multiple solutions which 

will either be of balanced quality according to all criteria or favor some over other 

in a distinct blend. Research efforts are, and have been, centered on accomplishing 

these two things:  

 

 Develop solution-sorting techniques that will achieve the greatest possible 

meritocracy in selecting the candidates that will not only be preserved, but 

also depended upon to guide the search further. For lack of an absolute 

means of comparison of individuals in a K-dimensional objective domain, 

the reliability and efficiency of these techniques can only be evaluated by 

the quality of the final outcome of the algorithm. 

  

 Encourage the optimizer to propagate solutions from as wide an area of 

objective space as possible, thus achieving a set of fit variable value 

combinations that are spread out, as universally as possible, across the 

perceived multi-dimensional surface of overall optimality. 

 

In resolution of the first concern raised, we introduce the concept of Pareto 

Dominance. According to Vilfredo Pareto‘s principle [23], a solution dominates 

another if it clearly outperforms it with regard to at least one criterion, while being 

at least equal to it, if not better, according to each and every other cri terion.  
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Formally put, a variable vector 1 Nx  dominates a variable vector 2 Nx , 

1 2x x  (for a minimization-oriented problem, which, unless stated otherwise, will be the 

case for the entire length of this segment) if and only if: 

 
(1) (2) (1) (2), 1,..., 1,..., :     (eq. 2.1)k k k kF F k K k K F F  

 

where ( )i

kF  is the fitness of the i
th

 candidate according to the k
th 

objective, N  being N-

dimensional feasible search space. 

 

Conversely, the solution is labeled as non-dominated should there not be at least 

one other solution that beats it to every objective set by the problem. In a set of 

candidates, there will always be a minimum of one which is non-dominated, but it 

is not a given that there will be any completely dominated (dominated by all) 

individuals. The set of non-dominated solutions, namely those that can better 

anyone else (including each other) by at least one criterion, form what is referred to 

as the Pareto Front. In MOO, being included in the Pareto front is the closest an 

individual can come to earning ‗Best‘ status. As should be evident by now, no 

comparative consideration is viable between two habitants of the Pareto front, as, if 

examined in pairs, either will have the upper hand by at least one objective rating:  

 

 
 

Fig 2.2 An illustration of the objective domain in a 2-objective minimization problem. Black 

points comprise the current front of non-dominated solutions.  
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By far the two most established solution sorting schemes in practice are NSGA 

(Non-dominated sorting algorithm), especially in its advanced version NSGA II, by 

Deb et al. [2, 3], and SPEA (Strength-Pareto Evolutionary Algorithm). The 

approach adopted in this work (see chap. 4), though original, is quite similar to 

NSGA, which will thus be reviewed at a later stage. We will now take a brief look 

at SPEA, to exemplify the function of such techniques:  

 

SPEA 2 [35] establishes a hierarchy among candidate solutions by sorting them in 

descending order of Φi -as it would otherwise (single-objective problem) sort them 

according to their fitness value-, which is calculated separately for each solution, a 

follows: 

 

1. Each candidate is assigned a value S i, equal to the number of individuals it 

dominates (fig 2.3). 

2. Each candidate is then assigned an additional parameter R i, the sum of S of 

all other solutions that it is dominated by (fig 2.4).  

3. A third factor is calculated, D i, which reflects the density of the surrounding 

the candidate region of objective space. D i is roughly proportional to the 

average of distances of all other solutions from the examined one.  

4. Lastly, Φi is calculated by adding R i and Di. 

 

 
Fig 2.3 The calculation of S i in SPEA 2, in a 2-objective minimization problem. 
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Fig 2.4 The calculation of R i in SPEA 2, in a 2-objective minimization problem. 

 

Factors Si and Ri clearly represent the dominance theme in SPEA. Notice how all 

non-dominated solutions will have an R value of 0. Density factor D i, on the other 

hand, is purposed to favor isolated candidates over solutions that fall too close to 

one another, to help achieve the desired disparity of ultimate solutions that was 

highlighted earlier in this segment. All similar techniques, NSGA included, 

incorporate some sort of mechanism that boosts the sorting status potential of such 

‗rarer blends‘ of objective function values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

3. On Particle Swarm 
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3.1. Swarm Intelligence and the Particle Swarm Paradigm 

 

Particle swarm optimization (from here onward referred to as PSO) is a distinct 

member of the rather large family of Swarm Intelligence methods for optimization. 

The particle swarm paradigm is originally attributed to James Kennedy and Russell 

Eberhart, who captured the concept while approaching stochasticity in social 

behavior from a rather philosophical point of view [28]. Hence, the resulting 

algorithm was initially developed as a social behavior study and simulation tool. A 

simplified version was observed to be able to serve as an optimization heuristic and 

it was proposed as such in 1995 in its namesake work: ―Kennedy, J. and Eberhart, 

R.: Particle Swarm Optimization” [1]. 

 

In 1989, Gerardo Beni and Jing Wang first defined Swarm Intelligence as “the 

collective behavior of decentralized, self-organized systems, natural or artificial”. 

Swarm intelligence systems are typically made up of a population of simple agents 

interacting locally with one another and with their environment. As there is no 

centralized control structure dictating how individual agents should behave, certain 

interactions between said agents lead to the emergence of 'intelligent' global 

behavior, whereof these agents may be - and usually are - completely unaware. 

Depending upon the nature of the agents themselves and on that of their 

interactions, which are, in large part, stochastic (meaning they feature randomness), 

the different concepts, whether of philosophical or technical interest, are labeled 

under 'bird flocking' intelligence, 'ant colony' intelligence, 'fish schooling' 

intelligence etc.  

 

“There is some degree of communication among the ants, just 

enough to keep them from wandering off completely at random. By 

this minimal communication they can remind each other that they 

are not alone but are cooperating with teammates. It takes a large 

number of ants, all reinforcing each other this way, to sustain any 

activity - such as trail building - for any length of time. Now my 

very hazy understanding of the operation of brains leads me to 

believe that something similar pertains to the firing of neurons….” 

(Douglas Hofstadter, 1979) 

 

From a purely technical standpoint, the term 'Swarm Intelligence' is used to 

describe algorithms and distributed problem solvers inspired by and modeled after 

this intelligent collective behavior. PSO in particular is inspired by the 

choreography of a bird flock or fish school in search of food. Its creators opted to 
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nickname the agents 'particles' due to their appearance as dots on screen in the early 

illustrations of the algorithm during execution. From conception to establishment 

as an efficient optimizer, PSO went through numerous phases via trial and error: 

After the initial social behavior model showed optimization potential, several new 

features, all in attempt to simulate a force that presumably drives a member of a 

bird flock or fish school, were incorporated and tested. Kennedy [28] quotes Craig 

Reynolds [29] as arguing that a very realistic simulation of a bird flock is achieved 

by assuming individual birds are driven by these 3 local forces:  

 

 collision avoidance, namely pulling away before they crash into one another  

 

 velocity matching, trying to maintain about the same speed as their flock 

neighbors 

 

 flock centering, trying to converge towards a perceived 'center' of the flock 

in motion 

 

It is also understood that, while a flock is flying randomly in search of edibles, 

every single member depends largely on observing other birds eating or seeing 

another member of the flock descending toward something it has found. Such 

socially inherited information weighs almost as heavily as seeing the food itself. 

Most of the flock may be unaware of the exact location of food, but readily 

responds to such social signals, indications that a member of the flock may have 

run into something interesting. The utility of this for optimization purposes is 

evident: Besides having a population of search agents randomly exploring problem 

space in search of a better solution to the problem, these search agents can 

continuously exchange clues as to their current status in approaching the target. 

This social awareness, coupled with the individual's ability to search with their own 

senses and maintain a memory of its own recent experience perfectly lends itself to 

the development of a population-based stochastic optimizer. As soon as this was 

realized, the social simulation tool was simplified and PSO was officially proposed.  
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3.2. Particle Swarm Optimization  

 
According to the earlier described analogy, a swarm (let S be its size) is essentially 

a set of particles released within search space and allowed to move about freely. By 

reaching any position in space, a particle takes up a unique set of decision variable 

values, therefore representing a potential or candidate solution to the problem at 

hand.  

 

Each individual particle is, at all times, described by its own position vector X and 

velocity vector V. It should be noted that, at the absence of time in its strictest 

sense, or, if you will, considering the time step to equal one time unit, both position 

and velocity are measured as distance. Velocity is numerically taken equal to the 

distance that will be traveled by the particle from its current position, to reach its 

next, as is illustrated by the formula of position update [1]:  

 

, 1 , , 1X  X V      (eq. 3.1)i k i k i k  

 

where position and velocity values are directly added. 

 

Particles are characterized by cognitive and social memory, meaning they can 

recognize the points in space where good solutions were located in the past either 

by themselves or by any other member of the swarm. The various interactions 

between particles, as well as the fashion in which this memory is taken advantage 

thereof, dictate the velocity that a given particle travels with at any given moment. 

This process of updating velocity is described by the following formula:  

 

Updated Velocity = Carried Momentum + Cognitive Influence + 

Social Influence  

 

Or, in its numeric form [1]: 

 

, 1 , , ,V W V ( ) ( )     (eq. 3.2)i k i k cogn cogn i i k soc soc i i kC R Pbest X C R Gbest X  

 

where 
,Xi k

is the position vector of the i
th

 swarm member during the k
th

 iteration of 

the algorithm and 
,Vi k

is the velocity vector of the i
th

 swarm member during the k
th

 

iteration. At this early stage, an iteration of the algorithm can be perceived as a 
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cycle between two consecutive speed and position updates of a given particle. On 

the right hand side of eq. 3.2, the first term represents the momentum that the 

particle in motion is already carrying, and is known as inertia or momentum, 

whereas W is known as inertia weight or the momentum coefficient. 

 

The second term matches cognitive influence and expresses the way in which the 

particle's past experience impacts its course of 'flight', independently of the rest of 

the swarm's whereabouts. It is also encountered in relevant literature  as 'local drive' 

or 'local accelerator'. A few slightly different approaches have appeared over the 

years as to how this cognitive influence will be numerically represented. This 

'Personal Best' alternative, or 'Pbest' for short, which is by far the most prominent, 

suggests that the particle is drawn towards the location of its best so far achieved 

solution (Pbesti), or fitness rating, or simply fitness, as which, solution relative 

quality is commonly referred to in Evolutionary Computation. 

 

,( )cogn cogn i i kC R Pbest X  

 

The other two factors that complete the cognition term are Ccogn and Rcogn, 

cognitive acceleration coefficient or local acceleration coefficient or cognitive 

learning rate and random cognition coefficient, respectively. Rcogn takes random 

values, uniformly distributed between zero and one,  (0,1). As such, it provides 

the necessary stochasticity in the process of iterative relocation of the particles. 

Ccogn can take up various values, either constant or variant throughout the 

algorithm's execution. The higher its value, the more the cognition term factors in 

the particle's behavior over other stimula from the swarm or the environment. A 

higher Ccogn is also observed to promote exploration of search space, as it 

encourages the particle to deviate from the swarm and rely on its own perception of 

the environment. Such behavior is traditionally sought at the earlier stages of the 

optimization session. 

 

The third term from the right hand side of eq. 3.2 matches social influence and 

expresses the way in which the general behavior of the swarm as a whole and its 

overall progress impacts the course of every individual member. Other, less 

frequent labels are 'global drive' or 'global accelerator'. As for cognitive influence, 

there are various practices in computational applications of the PSO concept. 

Again, the most prominent is utilized in this work, and that is the 'Global Best' 

scheme, or 'Gbest', which suggests that, similarly to Pbest, the particle is drawn 

towards the best solution among all that the whole swarm, namely any one particle 

in it, has achieved so far. Dynamic Neighborhood PSO [7]  also deserves to be 



 

3-6 

 

mentioned. In this technique, the examined particle is influenced by its close 

neighbors, as opposed to the whole swarm. A 'Local Best' solution, picked among 

the most fit of those immediately surrounding the particle is considered, in place of 

the Global Best. An interesting concept, with considerable utility especially for 

Multi-Objective problems, it has not yet been very widely endorsed.  

 

,( )soc soc i i kC R Gbest X  

 

The social term is completed by Csoc and Rsoc, social acceleration coefficient or 

global acceleration coefficient or social learning rate and random social 

coefficient, respectively. The same as for Rcogn applies for Rsoc. Csoc can also be set 

to a constant value or vary and, along with Ccogn and W, is crucial to the algorithm's 

convergence characteristics and efficiency. The choice of these parameters must be 

carefully made, if possible exclusively for every problem. Certain trends have 

naturally been established and recommended value sets proposed - a more in-depth 

review will follow. Suffice to say, the higher the C soc value, the more the social 

term weighs in on the particle's behavior. Contrary to C cogn, a higher Csoc is 

observed to promote exploitation, focusing the swarm's efforts on refining the most 

promising already found solutions. Obviously, as we approach the later stages of 

the optimization session, the optimizer's performance benefits tremendously from 

such behavior. 

 

In [32] Kennedy introduces four models of PSO, defined by omitting or restricting 

components of the velocity formula. The complete formula above defines the 'Full 

Model'. Dropping the social component results in the 'Cognition-Only Model', 

whereas dropping the cognition component defines the 'Social-Only Model'. A 

fourth model, the 'Selfless', is essentially the Social-Only Model, operating 

similarly to Dynamic Neighborhood PSO, with a slight twist: It does not consider 

the individual particle's Pbest vector at all but instead considers a 'Best' solut ion 

chosen exclusively among its neighboring fellow particles. Therefore, the particle's 

very own experience has no impact whatsoever on the swarm's course of flight, 

hence why the variation was tagged 'Selfless'. In [17], Carlisle and Dozier 

experimentally compare these models, even against dynamic environment problems 

(problems where the sought optimum is motive throughout the process) and 

confirm the superiority of the Full Model. 
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Fig.3.1 Flow chart of a generic PSO optimizer. 
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3.3. PSO Parametric Tuning 
 

In this segment, we discuss the parameters that govern Particle Swarm Optimizers. 

These are none other than the 3 major parameters in the original PSO formulae: 

Ccogn (cognitive acceleration coefficient), Csoc (social acceleration coefficient) and 

inertia weight W, from eq. 3.2. 

 

 Inertia Weight 

 

Inertia weight W is examined prior to the acceleration coefficients, as it indirectly 

impacts their choice. It should be noted, at this point, that inertia weight was absent 

from the initial proposal of PSO [1], but was added [11] soon afterwards, as it was 

witnessed that PSO suffered from severe instability: Flight velocities occasionally 

took values too high for the population to be contained within the boundaries of 

allowed search space. Additionally, the high velocities meant that PSO, despite 

boasting considerable speed of convergence during the earlier iterations, 

encountered difficulties in properly benefiting from the spotted solutions by 

thoroughly searching the space around them, for refined results. This process, often 

referred to as exploitation, is equally vital to the general performance of a search 

scheme as is swift and universal exploration at the start. In spite of the considerable 

advances since its invention, exploitation is still considered PSO's Achilles heel, 

especially in comparison to EA's, which feature excellent exploitation capabilities 

[9]. 

 

As mentioned, W was hastily implemented as a means of keeping velocity below a 

given threshold and particles from overshooting space boundaries. Up to that point, 

this role was filled by an imposed maximum value for velocity or relocation step 

size. A novel touch was to equalize this velocity threshold to the maximum variable 

range, thus ensuring that variables, in the worst possible case that they would 

exceed those variable boundaries, would not do so by much. This 'Vmax' is 

attributed to the original authors of PSO [12, 13] and found use even after W came 

into play. A more sophisticated approach was proposed by Clerc [30, 31]: The 

'Velocity Constriction Factor' scheme employed a coefficient Κ<1, a function of 

Csoc, Ccogn, A simplified version, for demonstrative purposes only, is shown below: 
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, 1 , , ,

2

V V ( ) ( )    (eq. 3.3)

2
K=             , 4

2 4

i k i k cogn cogn i i k soc soc i i k

cogn soc

K C R Pbest X C R Gbest X

C C  

 

 
Fig. 3.2 The decrease of the Constriction factor K with the sum Φ of the acceleration coefficients, 

meant to contain the ultimate velocity value should the acceleration coefficients rise too high.  

 

Notice how it is decreed that it should be θ>4. Many PS optimizers still abide by 

this guideline [6] that the sum of the two acceleration coefficients should be about 

4.0 or more. After its implementation, W was observed to additionally serve as a 

tuning parameter to balance between global and local exploration. Since a 

maximum velocity constraint (whether imposed immediately or via the constriction 

factor) affects global exploration ability indirectly while inertia weight affects it 

directly, it is obviously preferable to dictate search characteristics through inertia 

weight only. Focus was placed on experimentally pinpointing a suitable value that 

would facilitate the desired swiftness in the earlier stages but would not 

compromise the necessary fine search towards the optimizer‘s termination. It was 

found [13] that PSO with an inertia weight in the range [0.9:1.2] had the desired 

balanced behavior, which was highlighted by the fact that it achieved the best 

solution for a given number of evaluations. These experiments also rendered the 

maximum velocity imposition obsolete and this practice was abandoned.  

 

The next major advance was adopting a linearly variant (decreasing) inert ia weight 

to match the much-discussed velocity requirements of each phase (high at the start, 

steadily lowering as we approach the global optima).  As reported in [24], this 

'adaptive' inertia weight was inspired by the variant scheme successfully 
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implemented in the Simulated Annealing technique, another popular evolutionary 

optimizer, for its, reminiscent of inertia, temperature parameter. Eberhart and Shi 

[12] conducted an in-depth parametric analysis and concluded that a linearly 

decreasing (with iterations/generations) W in the range [0.9:0.4] is a reliable, 

versatile choice. Other, more extreme applications see W nullified before or upon 

fulfillment of the maximum iterations criterion. Others maintain a variant approach 

for part for the session's duration while keeping inertia constant over the remaining 

iterations [17]. 

 

max
0 1 1

max

( )
variant inertia weight ,  ( )      (eq. 3.4)iter iter

iter

N N
W W W W

N
 

 

 Acceleration Coefficients 

 

The cognitive acceleration coefficient Ccogn and social acceleration coefficient Csoc 

serve as tuning parameters to determine the balance between one particle's drive 

towards its Pbest and towards the Global Best, or, if you will, between learning 

cognitively and socially. In earlier bibliography, including the initial PSO proposal 

by Eberhart [1, 5, 8], it is recommended that both coefficients are set at 2.0. In 

practice, depending on the case at hand, this may vary and one may take on a 

greater value than the other, in which case, to avoid uncontrollably high velocity 

values, it is also recommended [26 , 30] that Ccogn + Csoc ≈ 4.0. This is based on 

the results of the Velocity constriction factor validation experiments (see velocity 

constriction formulae eq. 3.3). In [12, 13], it is argued that even lower values, 

around 1.4, must be used to ensure competitive efficiency without jeopardizing 

convergence. 

 

Soon, in the same spirit as with inertia weight, concerns were raised on the poor 

late performance of PSO and its shortcoming in conducting finer grain search as we 

approach the end of a run. Inspired by the linearly decreasing mutation and 

crossover probability factors in popular EA's [9,17], a similar variant scheme as for 

W, was proposed by Eberhart and Shi [13] and first applied by Ratnaweera and 

Halgamuge [27] and Tripathi et al. [21]. The latter extensively investigate the effect 

of a range of W and Csoc/Ccogn values on the performance of the algorithm and 

concur that a decreasing inertia weight and Ccogn along with an increasing Csoc, all 

within an appropriate range, [0.9:0.4], [2.5:0.5] and [0.5:2.5] respectively, yield 

better results. 
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max
cogn ,0 ,1 ,1

max

( )
Cognitive accel. coef., C ( )   (eq. 3.5)iter iter

cogn cogn cogn

iter

N N
C C C

N
 

 

max
soc ,0 ,1 ,1

max

( )
Social accel. coef., C ( )    (eq. 3.6)iter iter

soc soc soc

iter

N N
C C C

N
 

 

The increasing Csoc, decreasing Ccogn theme is in similar sense to the 

exploration/exploitation scheme described earlier. It is understood that cognitive 

influence is linked to the earlier stages of search, where we aim for coverage o f the 

greatest possible part of feasible space and social influence to the latter stages, 

where we want to make the most out of the experience already gained in order to 

capture the illusive optima. May I add, near the end of the run, where a great 

percentage of particles have come to a halt and progress, if any, is very slow, the 

cognitive term has limited utility, as most particles are effectively their own Pbests 

i.e. current fitness is also the best achieved thus far. This fact nullifies cognitive 

acceleration and magnifies the importance of the social term in keeping the 

optimizer going. 

 

It should be emphasized, at this point, that throughout the relevant literature, most 

proposals, if not all, adopt equal value for both acceleration coefficients, and in 

doing so, favor none of the two acceleration terms over the other. The trend is to 

keep PSO perfectly balanced between global and local search. However, there is no 

evidence that both terms contribute equally to the overall performance of the 

algorithm, and I would like to raise the point that Csoc=Ccogn may not facilitate PSO 

achieving the ultimate in search efficiency. On the contrary, in light of the 

experimental work of Dozier et al. in [17], where he validates the superiority of the 

Social-only model over all other restricted variations of PSO, one is led to consider 

that the Social term may indeed have a higher contribution to the quality of the 

final solution, and should therefore be favored. Additionally, as almost any 

significant innovation of this work is in the direction of advancing the 

sophistication of the Gbest selection process and the overall functionality of the 

Social learning procedure, I have opted to endorse C soc and would recommend a 

Csoc>Ccogn scheme. Should a variant scheme be adopted, as is also the case with 

this proposal, the above recommendation does not apply for the entire ranges, i.e. it 

only has to be: {average Csoc}>{average Ccogn}. 
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 Population Size 

 

Contrary to EA's, where extensive analyses and surveys have been published with 

regard to parent-offspring ratios and other population-related data, no particular 

guidelines are set in relevant literature as to the impact of the size S of the swarm 

on the performance of a particle swarm optimizer. This is left to be decided 

according to our best knowledge of the examined problem, which indicates an 

appropriate compromise between a large population and a capable number of 

iterations (for a given maximum allowed evaluations).  

 

 

3.4. PSO versus Evolutionary Algorithms 

 
Despite the slightly competitive implications in the title, this segment is not 

intended to draw a comparison between the two paradigms, at least not one that 

will deliver a conclusion of the ‗better/worse‘ kind. It is understood that both 

heuristics are highly representative members of the family of Population-based 

Stochastic Methods in Optimization, and as such, feature commonalities that may 

not be discernible at first, but are present. Studying these similarities helps better 

comprehend the philosophy of population-based stochastic optimizers and may 

inspire the observation of other natural phenomena, besides the evolution of 

species (EA‘s) and social interaction of sentient beings (PSO), that may also lend 

themselves to the conception and development of new approaches to evolutionary 

thinking and optimization. It is indeed fascinating how identifying similar 

intermediate processes (referred to as operators in strict evolutionary computation 

terminology) in both, emphasizes the unified fashion in which every mechanism in 

nature assesses the search for the better, the stronger, the closer, the faster, the 

optimal. 

 

There are also distinctions between the two - distinctions in philosophy that extend 

into practical application, as well. By studying the structure and the mathematical 

background of either, we gain insight into what is later validated by experiments: 

competitive results from both, but very different means of getting there, 

fundamental differences in convergence behavior and interesting dissimilarities in 

sheer performance at various stages of an optimization session. Reviewing these 

distinctions can send us in the right direction when it comes to future development. 

Each paradigm‘s shortcomings and strengths are highlighted, pointing out the 

necessary additions or the features that one can borrow from the other to improve 

its overall utility, to complement its advantages and counter its disadvantages. We 
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are particularly interested, fittingly, in all the ways in which PSO can benefit from 

the major developments in the area of Evolutionary Computation. 

 

A comparative review of philosophy and practice 

 

We begin by closely examining some philosophical aspects of both methods, 

highlighting those that distinguish them: 

 

First and foremost, both methods are stochastic. That means they are governed by 

randomness, and in great part rely on it to extract clues as to the location of optima, 

or even to discover the optima themselves. Crucially, this information may not be 

obtainable via any other, more orthodox, deterministic means. Their role is to 

improve upon basic random search, as exhaustive exploration of all ranges of 

problem space is not possible or computationally viable. They incorporate 

intelligent criteria, which indicate the areas in which this search must be focused, 

for the identification of optimal solutions to be accelerated.  

  

What is more, they do not require the knowledge of the gradient of the objective 

function, or any knowledge on the specifics of the problem at hand, whatsoever. 

This is of vital importance when such information is impossible or very hard and 

costly to extract. This also means they feature remarkable adaptability to any 

optimization problem, and that they address every such problem in the same way, 

regardless of its specifications. This adaptability is reminiscent of the way in which 

all things progress self-reliantly in the natural environment, as far as both their 

long-term characteristics and short-term activity are concerned. 

 

Both are population-based, depending heavily upon a finite number of search 

agents let loose into search space. Even more fundamental is the form of 

interaction of these agents, which is essentially the identity of each method and the 

core of its functionality. Without any loss of generality, all such methods are based 

on intelligently comparing and combining the achievements of various agents, to 

collectively achieve a sum greater than its parts. This is done by applying various 

operators that manipulate the population and its gained experience. On close 

inspection of the two paradigms, we notice that: 

 

 Both schemes traditionally adopt secondary populations. EA‘s carry the elite 

archive, and access its content whenever they see fit and PSO features 

particle experience or memory, with its Pbest (personal best solution thus 

far). 
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 Both, unless otherwise specified, have a population of standard size. 

Particles, however, are retained throughout the ‗hunt‘ process and all effort 

is centered on delivering them all to a rewarding spot in search space. 

Genetic candidates may not survive for more than a few generations each, as 

the algorithm reallocates its available search resources from those 

individuals performing poorly to new individuals generated from those 

performing relatively well… 

 

 …hence the essence of intense competition in EA‘s: The ‗survival of the 

fittest‘ concept means that one individual‘s life means another‘s death. PSO 

has a more coordinative character, an essence of teamwork and fellowship, 

as particles are bound to support and guide each other, for the process to 

culminate. On the other hand, in PSO, parent information is partly (Pbest) 

contained within each particle, while it is freely shared in evolutionary 

optimization. 

 

One point worth of mention is the ‗generation‘ element in EA‘s. PSO also works 

iteratively and most existing configurations copy the generation trend, but is not as 

constricted by this obligation to simultaneously update its population. 

‗Asynchronous‘ variations have been developed for EA‘s, to rid them of this 

setback, but PSO is naturally asynchronous. The absence of selection, with 

elimination in mind, allows for particles to be updated independently of the 

progress of the rest of the swarm, relying only on what data is available upon 

completion of their evaluation and fitness assignment. Therefore, it lends itself to 

parallelization (see section 6.2). 

 

Optimization methods all perform the following procedure:  

 
1 ( ( ( ...( ))))  ,  S : the population during the k  iterationk k k th

m n oS T T T T S
 

 

where Tm, Tn, To etc. are manipulation operators that act on the population to 

extract its successors. 

 

As we have seen, three are the main classes of operators in evolutionary 

computation, which are implemented in one way or another in every application of 

an EA: Selection, Crossover/Recombination and Mutation. The Elitism feature is 

also popular enough to be considered a must-addition. Interestingly, there is an 

adjacent operation in PSO, for very one of those in EA‘s. The most easily 
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recognizable equivalence is that of mutation and crossover with the swarm update 

formulae of PSO: There, information and experience stemming from more than one 

individual is taken into consideration, resulting in the formation of a new candidate 

decision variable vector. These two operations, however, that of randomized, 

chaotic mutation and that of well-structured, deterministic crossover, are not easily 

separable in PSO. The author of the paradigm, R. Eberhart often makes the remark 

that PSO seems to be performing „mutation with a conscience‟  [12,14,24], in the 

sense that there is some added randomness in the way that particles are relocated in 

space, very reminiscent of ‗bit flipping‘, but that this relocation is still governed by 

determinism to a sufficient extent. The crossover element is present in the way that 

two particles, a Gbest and a Pbest are combined to dictate the particle‘s new course . 

 

In PSO, there is no selection operator per se, as the same S particles carry on 

throughout a run, without elimination or generation of additional swarm members. 

Selection does occur, however, when, in multi-objective problems, we choose one 

non-dominated solution to act as a Gbest, thus serving as a global guide for other 

swarm members. This solution earns Gbest status, not at the expense of a fellow 

particle‘s survival, but its role in the swarm is elevated.  

 

As for elitism, it is encountered in the Pbest scheme: A secondary population, kept 

in an external archive, also of size S, is comprised of the best solutions discovered 

thus far for every swarm member and represents the particles‘ memory of their past 

achievements. Pbest vectors do not generally coincide with their adjacent particle‘s 

current location space, and are therefore reminiscent of the elite archive, which 

stores the best overall solutions attained and is utilized when and if the crossover 

operator requires it, for mating. The equivalences between the operators of each 

method are summarized in table 3.1: 

 

EA operators PSO equivalents 

Mutation PSO velocity adjustment formula 

  

Crossover PSO velocity adjustment formula 

  

Selection Gbest selection scheme 

  

Elitism Pbest scheme 

 

Table 3.1 
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Both search techniques are governed by parameters, the cautious selection of which 

is crucial in taking the maximum out of the search technique‘s potential. We have 

already taken a thorough look at the major tuning parameters of PSO, and 

emphasized their impact, especially on the dynamic characteristics of convergence 

and how the desired gradual reallocation of the swarm‘s resources from exploration 

to exploitation must be facilitated. Although a direct analogy between said 

parameters and those in EA‘s is not possible, we can observe certain common 

trends in the way they are handled: Mutation probability also decreases with 

generations, to signal the passage from intense exploration to the prioritization of 

solution refinement. We witnessed the benefits of such a linear variance scheme for 

inertia weight and the acceleration coefficients, already.  

 

Performance-related distinctions 

 

This segment highlights differences in performance and convergence 

characteristics. This survey helps comprehend the ways in which either heuristic is 

strong or weak, the areas in which either can be enhanced and the benefits a 

possible hybridization can yield. For this, we refer to past empirical studies and 

experimental results that overlook the latest advances and illustrate, as much as 

possible, the bare optimization methods, to better point out these distinctions, 

which still exist but may have been bridged somewhat by the ongoing development 

of these methods. 

 

Peter J. Angeline [9] was the first to address EA‘s (GA‘s in part icular) and PSO in 

a comparative context. This work made evident the exploitation weaknesses of the 

then-newborn PSO and stimulated the addition of inertia weight. He tested both 

methods using popular benchmark mathematical functions, namely the Sphere, 

Rastrigin and Rosenbrock functions (see [9]), all of the form:
1

( )
n

i

i

f g x , hence 

why he repeated every experiment for 3 different n values. The outcome was, 

among other, figures 3.2, 3.3, 3.4: 
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Fig. 3.3 Mean fitness per generation over 50 trials (sphere model funct ion). 

 

 
Fig. 3.4 Mean fitness per generation over 50 trials (Rosenbrock function).  

 

 
Fig. 3.5 Mean fitness per generation over 50 trials (Rastrigin function).  
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Over all three functions, PSO shows a significantly faster rate of convergence at the 

very early stages of search, then quickly halts its progress. The GA decreases its 

fitness at a slower, steadier pace and ultimately manages to slightly surpass PSO‘s 

performance. This occurs at all three vector widths (n) tested. These figures are 

highly indicative of the fact that PSO is principally a faster search method and the 

GA a more thorough, adaptive and fine heuristic. Under particular circumstances, 

they both excel, at exploration and exploitation respectively. The Particle Swarm‘s 

disadvantage is its inability to dynamically adjust its velocity and particle step size 

to the demands of the problem once in the general region of the optima. This causes 

its convergence curve to flatten out dramatically. The Genetic optimizer finds 

optima at a slower rate but has no trouble tuning its operators so that it can better 

reflect the granularity of the local search region. 

 

To attempt to justify this ineptitude of basic PSO (emphasis on basic, as later 

additions and developments have, to a large extent, eradicated these shortcomings) 

at coping with demanding localized search is not an easy task. Quoting P. 

Angeline: ―Particle Swarm's commitment to a highly directional manipulation 

formula can occasionally hinder its performance on some problems under certain 

conditions. Conversely, when the gradient information supplied by the personal 

and global best correctly indicates the direction to the optima, performance of 

particle swarm is exceptional…Consequently, particle swarm optimization will 

perform best in environments where the average local gradients point towards the 

global optima but may have difficulties when the average local gradient point in 

the wrong direction or is constantly changing. Evolutionary optimizations, 

however, will be able to perform well in environments where the local average 

gradient does not point towards the global optima.  ‖. 

 

Conclusion 

 

The above have hopefully shed some light on the distinctive peculiarities of the two 

heuristics; this pair represents the cream of the crop of Stochastic methods and 

Evolutionary Computation in general, and since they demonstrate such converse 

qualities, future research will – already has – focus on hybridizing them [33,34]. 

Possible hybrids could include a self-adaptive technique similar to those used in 

evolutionary computation (mutation strategies), capable of dynamically adjusting 

velocity step size during the course of a session. 

 

However, even for PSO on its own, the potential for improvement is astounding, 

especially so since it is relatively recent, contrary to EA‘s, who date back almost 
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three decades, have received considerable attention from the academic and 

industrial society,  and occupied ample research resources, becoming the prominent 

search optimization method today. The preceding survey evidences the need to 

enhance PSO‘s exploration capabilities, to match the competence of EA‘s in that 

area, while retaining the marginal convergence speed advantage. PSO has 

manifested issues with premature convergence [17, 24] to local optima and a 

general tendency to collapse towards the first non-dominated solutions found, 

instead of exhausting its chances to cover the full Pareto front. Implementation of 

mutation-like techniques can help moderate such phenomena (see chap. 4).  
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4. The Proposed Algorithm 
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4.1. Swarm update 
 

(In this segment, unless otherwise stated, we speak exclusively in terms of single-

objective optimization, hereon referred to as SOO. Additionally, throughout the entirety 

of this work, we consider all optimization problems as minimization problems.) 

 

This is where the next generation is derived from the previous one, where all swarm 

members are given new individual flight velocity values and are, consequently, relocated 

in search space, assigned new position vectors. This procedure is described by the two 

core formulae of PSO, repeated here as they were featured in chapter 3: 

 

, 1 , , 1X  X V      (eq. 4.1)i k i k i k  

, 1 , , ,V W V ( ) ( )     (eq. 4.2)i k i k cogn cogn i i k soc soc i i kC R Pbest X C R Gbest X  

 

In accordance to Evolutionary Optimization terminology, particle position vectors Xi,k are 

from here may also be referred to as 'Chromosomes' and an iteration referred to as a 

'generation'. 

 

In the algorithm proposed in this work, inertia weight decreases linearly with iterations 

(eq. 4.3). The spirit of this is to allow for faster, more dynamic search (maximized 

exploration) during the earlier stages of the optimization process while gradually limiting 

the speed of the particles to encourage more focused search (maximized exploitation), as 

the algorithm approaches its ultimate convergence. 

 

max
0 1 1

max

( )
( )      (eq. 4.3)iter iter

iter

N N
W W W W

N
 

 

As has been elaborated previously, Pbest of an individual swarm member, or personal 

best, signifies the position in search space in which this particular member achieved its 

best fitness (objective value vector) so far. Fittingly, Gbest, or global best, signifies the 

position that holds the overall best fitness up to this point in the search session, attained 

by any one of the members of the swarm. These two concepts may be fairly self-

explanatory when it comes to single-objective optimization: each swarm member carries 

with it the memory of its best fitness achieved and where that occurred, whereas all 

swarm members are aware of where the best solution so far is located, and are drawn 

towards it. In multi-objective optimization, things are a bit more complicated: on one 

hand, there lies the common issue of solution comparison and ranking: which is best 
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among different solutions in N-dimensional space? How will it be possible to compare 

two individuals based on more than one conflicting criteria? How will Gbest or the 

individual Pbest be determined? Moreover, it is understood that there cannot be one 

Global Best by its strict definition, since we aim to achieve solutions as uniformly diverse 

as possible and to cover the biggest possible range of combinations of good fitness in 

different objectives. Therefore, in MOO, the Gbest concept is similar to Pbest in that, 

every swarm member carries its very own Gbest vector, that may not be the same for any 

other swarm member [5, 6, 7]. 

 

In this work, as for W, a linearly variant approach was adopted for both the cognitive 

acceleration coefficient Ccogn and the social acceleration coefficient Csoc (eq. 4.4, 4.5). A 

decreasing W and Ccogn along with an increasing Csoc, all within an appropriate range, 

[0.9:0.4], [2.5:0.5] and [0.5:2.5] respectively, yield better results [21, 27]. The choice of 

parameter values for this work was made along those lines, with no further parametric 

analysis conducted other than tests for validation of the above. 

 

max
cogn ,0 ,1 ,1

max

( )
C ( )   (eq. 4.4)iter iter

cogn cogn cogn

iter

N N
C C C

N
 

 

max
soc ,0 ,1 ,1

max

( )
C ( )    (eq. 4.5)iter iter

soc soc soc

iter

N N
C C C

N
 

 

The increasing Csoc, decreasing Ccogn theme is in similar spirit to the 

exploration/exploitation scheme described earlier. It is understood that cognitive 

influence is linked to the earlier stages of convergence, where we aim for coverage of the 

greatest possible part of feasible space and social influence to the latter stages, where we 

want to make the most out of the experience already gained in order to capture the 

illusive optima. 

 

4.2. Initialization 
 

(From here onward, we address the Multi-Objective version of the proposed optimizer) 

 

During the initialization phase, swarm members are assigned to randomly distributed 

locations in feasible space. The process is governed by a random number generator and 

thus, all performance-related data demonstrated later in this work are products of 

averaging the outcome of multiple sessions utilizing different random generator seeds, to 
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guarantee an independent of any randomness, dependable verdict. 

 

Additional care is taken with the initialization of flight velocity of each particle: with 

Pbest fitness vector assigned infinite starting values and Gbest equalized with their 

respective members' starting location, assigning zero starting velocity is not an option. 

Also, an initial velocity that would drive the member outside feasible space, activating the 

constraint operator, must be avoided at all costs as it would severely hinder the 

algorithm's prospects. Velocity is therefore set equal to a percentage of the distance 

between the member's starting chromosome and the center of feasible space, and directed 

towards it. This percentage must be kept low, or the whole swarm will collapse towards 

the same area on the first generation. A mere 'push' is only intended. 

 

It should be noted that this particular initialization procedure is far from common 

practice: Most PSO alternatives [5, 6, 15, 18, 21] set initial velocity at 0 and equal Pbest 

to its corresponding chromosome. The first evaluations that come as the very next step, 

determine the Gbest archive and the algorithm proceeds normally. In ref. [25], an overly 

sophisticated scheme is proposed, incorporating varied Probability Distributions and 

Low-Discrepancy sequences into the initialization of the swarm. 

 

4.3. Elite-related operations 
 

In this section we address the issues of non-dominated solution sorting or elite sorting 

and solution diversity, which are innate to any stochastic MOO algorithm, be that an EA, 

swarm-intelligence-based or other. Two representative examples of the state-of-the-art in 

Multi-objective Evolutionary Computation are shortly surveyed before we proceed to 

discuss the practices of this work: 

 

 Non-dominated Sorting Genetic Algorithm II (NSGA II): Proposed by Deb et al. 

[3, 4], this algorithm is a revised version of the original NSGA also proposed by 

Deb et al. [2]. Both are based on several layers of classifications of the 

individuals. Before selection is performed, the population is ranked on the basis of 

non-domination: all non-dominated candidate solutions are classified into one 

category and receive a dummy fitness value, which is a function of the number of 

individuals dominated by each such solution. All candidates are likewise 

classified in additional layers, as this first group of classified individuals is 

ignored and another layer of non-dominated individuals is considered. The 

process continues until all individuals in the population are classified. The chance 

of a particular individual to be selected is proportional to this dummy value, 

which portrays its strength among other members of the population. The areas 
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upon which NSGA II is an improvement to the original NSGA are computational 

efficiency, the addition of elitism and the implementation of a diversity operator 

without requiring additional parameters to be input by the user (unlike the original 

NSGA and its ‗fitness sharing‘ factor). 

   

 Pareto Archived Evolution Strategy (PAES): This algorithm was introduced by 

Knowles and Corne [23]. PAES consists of a (1+1) evolution strategy (i.e. a single 

parent that generates a single offspring) in combination with a historical archive 

that records some of the non-dominated solutions previously found. The utility of 

this archive is that of a reference point to which each individual is compared. 

Such a historical archive is the elitist mechanism adopted in PAES. However, an 

interesting aspect of this algorithm is the procedure used to maintain diversity 

which consists of a crowding procedure that divides objective space in a recursive 

manner. Each solution is placed in a certain grid location based on the values of its 

objectives (which are used as its ‗coordinates‘ or ‗geographical location‘). A map 

of the said grid is maintained, indicating the number of solutions that reside 

within each grid sub-space. Since the process is adaptive, as in NSGA II, no extra 

parameters are required. 

 

4.3.1. Non-dominated sorting 
 

The proposed algorithm (PA) handles elite sorting in two phases, which take place during 

each generation: First, after all swarm members have undergone evaluation, it extracts        

(fig. 4.1) those that are found non-dominated among the current population, with regard 

to fitness during the current generation. Those individuals, flagged as 'GND' (for 

'generation-non-dominated') for the remainder of this generation, are obviously the only 

ones among the current population that have a chance to enter the updated elite archive, 

or Pareto front, as being globally non-dominated also presupposes not being dominated 

by any in the current swarm. Then, the GND particles join the current elite archive in a 

unified temporary archive, and all compete against each other (fig. 4.2) for Pareto 

dominance, forming the new Pareto front after all dominated solutions, old and new, are 

ousted (fig. 4.3, 4.4, 4.5). The simpler and more straightforward alternative of 

immediately subjecting the entire current swarm to a Pareto dominance test against the 

entire elite archive was avoided to promote the overall computational efficiency. The dual 

phase scheme yields the additional benefit that the Pareto front update process is easier to 

monitor. 
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Fig. 4.1 An entire ‗generation‘ of the swarm, illustrated in the domain of objectives. Circled are the GND 

particles (Case ZDT-1, axes refer to its two objectives, abscissa for F1, coordinate for F2). 

 

 

 
 

Fig. 4.2 The non-dominated of a given generation are joined by the current elites (Case ZDT-1, axes refer 

to its two objectives, abscissa for F1, coordinate for F2). 
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Fig. 4.3 The non-dominated of a given generation alongside the current elites (Case ZDT-1, axes refer to 

its two objectives, abscissa for F1, coordinate for F2). Circled are those among the GND who are also 

globally non-dominated and will be in the new, updated elite archive. 

 

 

 
 

Fig. 4.4 The non-dominated of a given generation alongside the current elites (Case ZDT-1, axes refer to 

its two objectives, abscissa for F1, coordinate for F2). Circled are those among the GND who fail the 

dominance check and will not be in the new, updated elite archive. 
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Fig. 4.5 The new, updated elite archive (Case ZDT-1, axes refer to its two objectives, abscissa for F1, 

coordinate for F2). Circled are the new entrants, compared to the previous generation. 

 

 

4.3.2. Elite Spacing 
 

By default, the size of the elite archive cannot exceed a given value, specified a priori by 

the user. Upon reaching this threshold, and every time that a newly formed Pareto front 

contains more individuals than dictated by the elite archive size limit, elite spacing is 

engaged, to indicate which members will be retained and which dropped. Elite spacing 

not only serves the purpose of decreasing the archive's dimension, but is also responsible 

for the disparity and quality spread of elite solutions in objective space. Therefore, it 

boasts a certain degree of sophistication, rather than choose randomly. 

 

Our aim is to 'cut' individuals from relatively crowded areas of the front, as opposed to 

scarcer parts. The closer two elite individuals are to one another in terms of fitness, the 

greater the chance that only one will be retained, as they present a very similar set of 

objective function values and we seek as many differently 'weighted' final solutions as 

possible. The adopted scheme is labeled ‗density‟ and is similar in practice to most 

popular diversity operators, like NSGA and NSGA II [2, 3, 4].  

 

Elite individuals are ranked based on closeness to their nearest elite neighbor on the front. 

The density of a particular member is derived exclusively from the distance, measured in 

the objective domain, to its closest partner; in fact it is equal to that distance. After 

density has been calculated for all current Pareto front occupants, the one with the lowest 

value is ousted from the front. The process is repeated until we reach the desired elite 
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archive dimension. Prior to those calculations, distances are of course non-

dimensionalized by absolute objective value range (derived from the absolute greatest and 

lowest value difference documented so far). Please note that the most 'dense' individuals 

always appear in pairs as, if the smallest distance documented during an iteration is that 

of member A from member B, such is also the case for the distance of B from A. Deleting 

both A and B would not have the desired effect, which justifies that only one individual is 

removed and the procedure is repeated from scratch, i.e. distances calculated all over 

again.  

 

 
 

Fig. 4.6 The current Pareto front through the spacing process (Case ZDT-1, axes refer to its two 

objectives, abscissa for F1, coordinate for F2). Circled are the individuals to be dropped. 

 

 
 

Fig. 4.7 The updated Pareto front through the spacing process (Case ZDT-1, axes refer to its two 

objectives, abscissa for F1, coordinate for F2).. As dots appear the particles which were dropped. 
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Fig. 4.8 The ultimate Pareto front, post spacing, limited by the maximum elite archive size (here, 10). 

(Case ZDT-1, axes refer to its two objectives, abscissa for F1, coordinate for F2) 

 

 

4.4. Gbest & Pbest assignment 
 

This section of the algorithm is of great importance: It signifies the transition to MMO, as 

the update of Gbest and Pbest archives is self-explanatory in SOO, whereas in multi-

objective cases it is, in the author's opinion, a vast difference maker and sets apart a 

simply functional MO PS Optimizer and a really competitive alternative. Hence, this is 

where most novelty of this work lies. It should also be noted, that there is no direct 

equivalent to this phase in Evolutionary Optimization, unlike what has been presented up 

to this point. Let us shortly review the most standout attempts to extend PSO's utility to 

MOO: 

 

 The algorithm of Parsopoulos and Vrahatis [22]: This algorithm adopts an 

aggregating function (three types of approaches were implemented: a conventional 

linear aggregating function, a dynamic aggregating function and a special 

weighted aggregation approach in which the weights are varied in such a way, that 

concave portions of the Pareto front can be generated). 

 

 Dynamic neighborhood PSO proposed by Hu and Eberhart [7]: The dynamic 

neighborhood PSO has limited utility for problems of a maximum of 3 objectives. 

This concept assumes considerable prior knowledge in terms of the problem's 

properties. Instead of a single Gbest, a local Lbest is obtained for each swarm 
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member that is selected from the closest two swarm members. The closeness is 

considered in terms of one of the objectives, while the selection of the optimal 

solution from the closest two is based on the other objective. The selection of the 

objectives for obtaining the closest neighbors and local optima is usually based on 

the knowledge of the problem being considered for optimization. Usually the 

simpler objective is considered for the detection of the closest partner. A single 

Pbest solution is maintained for each member that gets replaced by the present 

solution only if the present solution dominates the current Pbest. Regardless of its 

limited utility, Dynamic Neighborhood is a novel and very interesting concept. 

 

 MOPSO, an alternative proposed by Coello et al. [5, 6]: This very interesting 

proposal maintains an external non-dominated solution repository. Hypercubes of 

the objectives space explored so far are generated, and each particle is located 

using hypercube topology to define a new coordinate system. Of all those 

hypercubes, those containing particles that are also in the repository are ranked 

based on how many such particles they contain (the fewer, the higher up the order 

they get). Gbest particle assignment is made randomly from one of those 

hypercubes, after they are subjected to weighted roulette selection.  

 

As was clarified earlier, every individual swarm member is assigned not only his own 

Pbest, but Gbest also, in direct contradiction to the notion of 'One Globally Best Solution'. 

To properly accommodate the pursuit of a spread out Pareto front would not be possible, 

if only one elite was appointed Global Best (remember, Gbest‘s act as gravitational points 

during swarm position update). The process of selection of a suitable Gbest for every 

current swarm member is designed on the basis that: i) it must not interfere with elite 

spreading and ii) it must endorse the progress of every individual deterministically,  to 

some extent, i.e. the choice of Gbest must consider the direction in which each swarm 

member has the greatest potential. Regardless of what method we opt for, Gbest‘s are 

always picked out from among globally non-dominated solutions, namely elites. 

Therefore, from now on, we can address Gbest‘s simply as index numbers of the elite 

archive, instead of as stand-alone variable and fitness vectors. 
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4.4.1. Gbest selection alternatives 

 

4.4.1.1. Overview 
 

A few different approaches were tried and, even though we have settled down to one and 

fully endorse it, three of them will be presented in detail, to showcase how each added 

feature enhances the overall performance, followed by suggestions on possible further 

improvements. 

 

i. 'Roulette' method 

 

Exactly as the title suggests, this method assigns a Gbest to each and every swarm 

member simply by randomly selecting any one elite from the current Pareto front, without 

any determinism involved in any way. This randomness guarantees a very good degree of 

disparity in the final solution front, but due to the lack of a 'smart' search feature, it falls 

behind in convergence speed and overall performance compared to other, more 

sophisticated alternatives (fig. 4.13). 

 

ii. 'Proximity' scheme 

 

This method is deterministic to some extent, as it assigns as Gbest that elite, which is 

closest, in terms of fitness, not in search space, to the examined swarm member (fig. 4.9). 

In other words, the non-dimensionalized distance of the said member from each and every 

current elite in the domain of objective functions is calculated, and the one found closest 

is appointed Gbest of this member (in fig. 4.9 the selected elite appears to be the second 

closest, but that is not the case after the non-dimensionalization of distances). This is an 

attempt to locate a 'projection' of the said swarm member on the Pareto front, which is 

theoretically its direction of natural progress. Depending on the shape of the Pareto front, 

its curvature etc., the proximity scheme does not always work as intended: On close 

inspection of fig. 4.10, we observe that of all non-dominated solutions, the red particle is 

closest to the circled elite, which will consequently be picked as Gbest. However, as is 

easily noticed, the Gbest which was assigned on the basis of proximity does not dominate 

the adjacent swarm member (red particle). Rather, it only is 'better' according to one of 

two objectives. To the left of the chosen elite lies another solution which completely 

dominates the red particle (fig. 4.11) and would, in that sense, be a better option, as 

moving towards it would universally improve the examined individual. 
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Fig. 4.9 Demonstration of the proximity scheme. Circled is the selected Gbest (Case ZDT-1, axes refer to 

its two objectives, abscissa for F1, coordinate for F2). 

 

 

 
 

Fig. 4.10 The shortcoming of the proximity method. Circled is the selected Gbest, which, however, does 

not dominate the examined particle (Case ZDT-1, axes refer to its two objectives, abscissa for F1, coordinate 

for F2). 
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Fig. 4.11 Circled is the manually selected and recommended Gbest, as opposed to the one selected by the 

proximity scheme (Case ZDT-1, axes refer to its two objectives, abscissa for F1, coordinate for F2). 

 

 

iii. Combo* method 

 

* A combination of the principle of Pareto dominance and roulette selection. 

 

The last and most advanced scheme adopted, and the one the final algorithm uses by 

default, is the combo method, in which roulette selection is also applied, but only among 

elites that dominate the examined swarm member. Every single one of the solutions in the 

elite archive are checked for dominance over the examined individual, and out of those 

which pass (fig. 4.12), one is selected randomly. This method is already an improvement 

compared to the previous one, as the picked Gbest is guaranteed to be an overall better 

solution than the examined swarm member. By using roulette selection, we also allow for 

the stochastic element to be present. 
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Fig. 4.12 Demonstration of the combo method. Circled are the candidates for the roulette phase of the 

method (Case ZDT-1, axes refer to its two objectives, abscissa for F1, coordinate for F2). 

 

 

4.4.1.2. Direct comparison 
 

 
 

Fig. 4.13 Direct performance comparison between the three presented methods (Case ZDT-1, axes refer to 

its two objectives, abscissa for F1, coordinate for F2), conducted using default settings and identical 

population data (swarm size S=50, max. Elite archive size=35).  

 

A first performance comparison, the results of which are shown in fig. 4.13, confirmed 

the above speculation as to the potential of each scheme. The MO version of the 

algorithm was set for 5000 maximum evaluations, featuring a 50 particles population and 
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permitting a maximum elite archive size of 35, with every initialization and swarm update 

related parameter at default (more on this default set to follow). As predicted, roulette 

Gbest selection, despite achieving a very good disparity of final solutions, is weak in 

terms of convergence speed and general performance. The Combo method is evidently the 

better option, followed by proximity, as it not only boasts the fastest convergence but also 

gives a nicely spread out ultimate set of solutions, which is not the case for the proximity 

operator, which despite converging at a competitive rate, fails in achieving a decent 

disparity in the final solution front. This can be attributed, in part, to the shortcoming 

described earlier. It should be duly noted that the performance gap between proximity and 

the Combo is larger than illustrated in fig. 4.13, as the latter is limited by the analytically 

calculated optimum of ZDT-1, to which it converged before reaching the threshold of 

5000 evaluations. 

 

4.4.1.3. Suggestions for immediate improvement 
 

Already, potential improvements to the algorithm are evident: By eliminating or limiting 

the leftover stochastic element in favor of an even more deterministic approach, 

performance can be further enhanced. That can be achieved through combining proximity 

and dominance and dropping roulette selection:  

 

 All elites dominating the examined swarm member are subject to the proximity 

operator, which is responsible for the final pick, based on closeness. 

 

 Elite solutions are ranked on proximity, in increasing order of distance from the 

examined swarm member. In the same order, they are all checked for Pareto 

dominance upon the said member. The first one to pass this check (the closest 

dominant elite) earns Gbest status. 

 

Even further improvement can be achieved by implicating the density of an elite 

candidate for Gbest status: Of all elites dominating the examined swarm member, the one 

with the highest density value is picked. Not only does this criterion lead to an elite which 

is a definite upgrade compared to said swarm member, but it is also a substantial step in 

the direction of solution spread and diversity! 

 

4.4.2. Pbest update alternatives 
 

Things are much simpler when it comes to the update of the archive of personal best 

solutions, or 'cognitive memory', as it is referred to in Swarm Intelligence literature. On 
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most occasions, the simple principle of Pareto dominance is applied: The fitness of the 

current solution is compared to its current personal best vector; should the new solution 

completely dominate the Pbest, then it takes its place. Accordingly, if it is dominated by 

the reigning Pbest, nothing is changed. When neither is the case, i.e. when neither of the 

two dominates the other, we are presented with three options: 

 

 Opt for the new solution. This is the 'confident' alternative, as it invests heavily 

on newer solutions to drive the optimizer forward. 

 

 Retain the current Pbest. This is the 'play safe' option, which will only alter the 

Pbest archive once presented with a definite upgrade. 

 

 Randomly select one of either and proceed. 

 

All three alternatives were tried on two different problems (cases ZDT-1 and ZDT-3), 

with no clear winner. Therefore, none receive the author's recommendation. The 

algorithm is set at the 1
st
 option by default, whereas the 2

nd
 and 3

rd
 are the most common 

choices in relevant literature [5, 6, 7, 15, 18, 21, 22]. 

 

4.5. Additional features 

 

4.5.1. Constraint operator 

 

Optimization problems are generally subject to constraints; apart from the natural 

constriction of variable values within an upper and lower bound, additional 

conditions must apply for a solution to be acceptable. Such conditions may include 

intermediate quantities of the problem, the decision variables themselves, or even 

the objectives. A typical issue commonly handled by the constraint operator of an 

optimizer that may otherwise not be clearly classified under constraints, is when we 

intend for a variable to take values from within an open ‗()‘ range, i.e. 

blower<xi<bupper. This range will be regularly declared as closed in the variable 

declaration section of the algorithm‘s input file, and it is then up to the constraint 

operator to reject values equal to the lower and/or upper bounds.  

 

The Kc constraints of any problem must be expressible in this particular inequality 

format: 

( )    ,   1,      (eq. 4.6)perm

i i cC x C i K  
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Where ( )iC x  is the Constraint function value corresponding to a variable vector x , 

calculated by the very same external evaluation software that calculates objectives, and 
perm

iC  the permitted upper threshold, beyond which, solution x  is considered as having 

failed the constraint. It is possible for any condition to be converted into the above 

format: 

 

 

( )     ( )                 (eq. 4.7)

( )   ,   if  ( )
     

( )   ,   if  ( )

( ) =   ,   if  ( )
  

( )      ,   if 
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( )     ( )                 (eq. 4.8)
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 ( )     ( )      (eq. 4.9)perm

i i i i iC x C C x C C  

 

where ε equals 10
-14

 or any tiny quantity, for that matter. 
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The consequences of failing a constraint are reflected on the ultimate fitness of the 

particle, which is appropriately modified, dealing a severe blow to the candidate‘s 

competitiveness. It is common practice to assign an infinite fitness (ex. 10
14

) value to a 

candidate for failing even one of Kc constraints. In this work, a somewhat more 

‗forgiving‘ approach is adopted, where the constraint limits are relaxed, containing 

‗penalization‘ within reasonable lines for those candidates that have only just surpassed 

the constraint thresholds. A second, slightly higher threshold relax

iC  is introduced, set by 

the user according to his best knowledge or judgment of the problem‘s specifications. 

Fitness of an individual is subject to the following modifications, subsequently to the 

calculation of constraints: 

 

( )                     ,   if  ( )

( )  ( ) ( ( ))    ,   if  < ( )      (eq. 4.10)

                        ,   if  ( )

perm

i i

perm relax

i i i i

relax

i i

F x C x C

F x F x h C x C C x C

C x C
 

 

( )
 where:     ( ( )) exp      (eq. 4.11)

perm

i i
i relax perm

i i

C x C
h C x

C C
 

 

The fitness of any particle can additively receive multiple h  increments, if the particle 

has entered the relaxed area in more than one constraint functions. It is self-explanatory 

that if a particle falls under case (3) of eq. 4.10, it is automatically excluded from the 

processes of solution sorting and Gbest assignment. 

 

The algorithm can benefit massively from this ‗forgiving‘ approach, especially in heavily 

constricted problems where the algorithm will have difficulties even assembling a 

dependable first population of acceptable solutions, from which to proceed. It is not an 

infrequent occurrence to have an optimization session terminated before it has even set 

off, due to all initial particles failing to be established as 100% viable solutions. Crucially, 

if one considers that an optimum often lies at the edge of feasible search space – a 

problem‘s constraints are effectively limiting its potential of resolution – it is 

understandable that, in the long run, we might be rewarded for offering these pariahs of 

the swarm an opportunity to contribute, even from a slightly ( h  penalty) disadvantageous 

position. 
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4.5.2. The SHUFFLE operator 

 

4.5.2.1. Overview 

 

Inspired by mutation operators widely utilized in Evolutionary Computation, the shuffle 

technique was developed to step in at a certain checkpoint and, by stirring the algorithm's 

database, to reintroduce stochasticity in the search process. It essentially re-initializes the 

swarm, while retaining records of the progress of the algorithm as far as solutions are 

concerned. At the same point, it detects areas in search space that have been relatively 

neglected so far, and ensuing search is made to focus on these areas, by encouraging 

particles to travel in specific directions. 

 

Various reasons call for the implementation of shuffle or similar measures: Due to the 

nature of the objectives, constraints and other unique characteristics of the problem at 

hand, the algorithm may encounter obstacles in exploring certain areas of search space 

[23], which will result in a final set of solutions that is not as diverse as we would like, 

containing a plethora of, very similar to one another, solutions and failing to locate those 

illusive 'hidden' optima. Case ZDT-3, presented later in this work, is a perfect example of 

such a problem, as its convex, non-contiguous analytic solution can be quite a challenge 

to capture. Moreover, shuffle seems to limit the impact that random number generation 

has on the algorithm's behavior, granting added consistency. Without it, PSO largely 

depends on its initialization. Shuffle, among other things, re-initializes the swarm, so the 

final outcome is now a product of more than one events of stochasticity. 

 

The innate premature convergence that PSO 'suffers' from [9, 17, 24], as opposed to other 

optimization heuristics that proceed slower and explore more thoroughly, GA's being a 

good example thereof, poses an additional obstruction. On the other hand, this increased 

rate of progress of PSO is a privilege, as it secures a decent result early on, allowing us to 

'spend' evaluations on the shuffle feature, to fine-tune our solution set and take a second 

look at problematic areas of search space. Let be emphasized that Pareto front refinement 

is the main problem in the development of a PSO optimizer. As we approach the final 

stages of the optimization process, it is not uncommon for a large percentage of the 

swarm to have come to a halt: Individuals that find themselves in a non-dominated 

position are effectively their own Gbest and Pbest. That means they only rely on their 

momentum factor to keep them from stopping completely and further progress, if any, is 

extremely slow. When this phenomenon appears, some drastic measure has to be taken to 

keep the optimizer in motion, and shuffle is one such measure. One such case is fig. 4.14, 

where not much more can be done as far as capturing the analytically calculated optimum 
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curve. However, solution diversity, especially towards the rightmost edge, could have 

improved substantially, if exploration of that part had been prioritized. 

 

 

 
  

Fig. 4.14 A typical situation where shuffle is missed (Case ZDT-1, axes refer to its two objectives, 

abscissa for F1, coordinate for F2). The PSO optimizer has almost fully converged to the sought  front, but 

the elite solution set suffers from imbalanced diversity (observe the rightmost edge). 

 

 

The operator is first engaged after a certain % of maximum allowed evaluations have 

been completed. It is additionally engaged once more before the termination of the 

algorithm and only if a certain solution disparity criterion is also met, namely when the 

difference between the density of the most and least dense areas on the non-dominated 

front surpasses a given threshold. Simply put, if the density value of the elite individual 

with the lowest such value becomes lower than X times that of the one with the highest 

such value, the current non-dominated front is considered to be too imbalanced, and 

shuffle is re-engaged. Two shuffle sessions cannot occur too close to one another, as the 

algorithm must be given time to progress from the 1
st
 shuffling or it will not culminate. 

The algorithm must also have achieved some degree of convergence before the 2
nd

 shuffle 

session or it will occur under inappropriate circumstances (ex. it will be difficult to 

identify the less dense areas in need of further exploration if the algorithm is still in the 

wake of the 1
st
 shuffle). Therefore, a necessary minimum of in-between generations is 

imposed. 

 

As was mentioned in the introduction, apart from the re-initialization, there is a special 

mechanism that conducts highly targeted search, depending on the condition and progress 
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of the optimizer at the point of shuffle engagement. This mechanism recognizes the areas 

that require more attention and encourages the swarm to prioritize them during 

exploration. This identification is based on measurements of solution crowding along the 

non-dominated front. It ranks elite archive members on their density values and selects a 

given number of those with the highest such value (fig. 4.15). These solutions are 

essentially from the scarcer parts of the Pareto front and represent the neglected areas in 

space. As you can observe in fig. 4.16, where both the non-dominated front and the 

swarm's fitness are illustrated, the areas that have been chosen do not only feature elite 

scarcity, but are also being explored by a low percentage of the population. The optimizer 

must aim for the neighborhood of these solutions in the ensuing generations, which is 

why they are branded 'gravity points'. 

 

The re-initialization phase includes relocating the swarm in space in a completely random 

fashion (fig. 4.17). Velocity vectors are retained, as is the elite archive. The list of Gbest 

indexes is not altered or emptied, but is left to be updated by the normal flow of the 

algorithm. The Pbest archive is completely renovated, and this is the core of the shuffle 

process: Each swarm member's Pbest (parameter vector and fitness) is equalized to a 

random gravity point, similarly to how Gbest‘s were allocated randomly by the Roulette 

scheme, in the previous segment. Gravity points are, in this way, directly implicated in the 

swarm update process via the cognitive factor in the PSO formula. Thus, the flight of the 

swarm is directed towards the neglected areas (fig. 4.17-4.20). 

 

The exact number of the said 'low density' elites that are picked out as gravity points is up 

to the user, and is input as a percentage of the elite archive size. A low such percentage 

(<10%) is recommended as the shuffle scheme is rather intended to drastically focus on 

the few scarcest areas. For regular problems, with a contiguous, non-convex pursued 

front, 2-5 gravity points are more than adequate. For more complicated cases, an excellent 

example of which is the ZDT-3 case examined in this work, where the pursued front is 

complicated, a maximum of 7-8 gravity points may prove suitable. A greater number 

would best be avoided as it will result in great disparity of gravity points along the current 

front and the shuffle scheme having a minor effect compared to the intended. That is 

better comprehended if we take a look at the effect of the relocation of Pbest‘s: In the few 

generations that immediately follow the shuffle call, the whole swarm is given a strong 

push towards said area(s) (fig. 4.18-4.20). Gbest‘s take on according values and the 

phenomenon is preserved long enough to allow sufficient exploration, for a more 'just', 

better laid-out Pareto front (fig. 4.21). This strong drive towards gravity points can only 

be taken full advantage of, if those points are few. 
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Fig. 4.15 The Pareto front at the point the shuffle operator is first engaged. Circled are the non-dominated 

individuals designated as 'Gravity Points' (Case ZDT-1, axes refer to its two objectives, abscissa for F1, 

coordinate for F2). 

 

 

In our demonstrative run, the full benefit of the shuffle operator is already evident a mere 

10 generations after it is engaged: Fig. 4.21 shows the non-dominated front along with 

the swarm particles' fitness. The swarm itself is considerably more spread out, and the 

imbalances in the elite set (with a size of 25 individuals) have been addressed, as it now 

features excellent disparity and solution diversity, which is also the case for the ultimate 

result of the minimization procedure, after the completion of the given maximum 

evaluations (fig. 4.22). 

 

4.5.2.2. Suggested improvements 
 

 A shuffle operator that affects a percentage of the swarm particles, instead of them 

all. This will serve to reduce the current operator‘s radicalism: A portion of the 

swarm will resume normally and another (a relatively small percentage) will be 

shuffled, in an attempt to locate he optima that have eluded the swarm thus far.    

 

 Implementation of other popular schemes from Evolutionary Computation, such 

as Mutation (which has already appeared in PSO, as was first proposed by van den 

Bergh [8] and put to practice by Coello et al. [6] and others [18,21,27]). 

 

 Development of similar, only milder refinement measures that will complement 

the regular flow of the algorithm, instead of violently interfering. 
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Fig. 4.16 The Pareto front and the swarm particles (illustrated in the objective domain) at the point the 

shuffle operator is first engaged. Circled are the non-dominated individuals designated as 'Gravity Points' 

(Case ZDT-1, axes refer to its two objectives, abscissa for F1, coordinate for F2). 

 

 

 
 

Fig. 4.17 The re-initialization phase. The swarm is randomly relocated in search space, away from 

optimum solutions, hence the huge deviation from the Pareto front (Case ZDT-1, axes refer to its two 

objectives, abscissa for F1, coordinate for F2). 

 

 

 

 



 

4-25 

 

 
 

 
 

 
 

Fig. {4.18, 4.19, 4.20} The optimizer‘s progress since the point of re-initialization, as recorded with a 

2-generation step. Notice the impact of Gravity points (Case ZDT-1, axes refer to its two objectives, 

abscissa for F1, coordinate for F2). 
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Fig. 4.21 The optimizer's progress a few generations after the re-initialization session (here, 10). (Case 

ZDT-1, axes refer to its two objectives, abscissa for F1, coordinate for F2) 

 

 

 
 

Fig. 4.22 The end result yielded by the optimizer, after the implementation of shuffle (Case ZDT-1, axes 

refer to its two objectives, abscissa for F1, coordinate for F2). 
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4.6. User input – Default settings 
 

 
 

Fig 4.23 A sample input file, ‗psoin.dat‘. Every setting is followed by appropriate comments. 

Shuffle-related data and PSO tuning parameters are set at default (recommended) values.  

 

 

Most settings available for the PA can be handled by the user and are accessible via 

‗psoin.dat‘, the program‘s expected input file (fig. 4.23). By editing the file‘s 

contents, the user can, among other things: 

 

 Declare decision variables, including their respective range, lower and upper 

boundary, preceded by an integer ‗switch‘, kd, which specifies if this 

particular variable will actually vary {1} or remain constant{0} throughout 

this particular run, in which case an upper boundary needs not be set.  

 

 Declare any active problem-related constraints. The user has to specify the 

regular constraint threshold and an additional relaxed threshold for each 

constraint.  

 

 Specify a population and elite archive size. 

 

 Specify the conditions of program termination. 
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 Tune the optimizer, by setting the ranges within which W, C cogn and Csoc will 

vary. Notice that inertia weight and Ccogn take on an average value of 0.4 and 

0.95, respectively, whereas Csoc an average of 1.75. These -default- values 

deviate slightly from the recommendations of relevant literature, as featured 

in segment 3.3. A choice accounted for previously, it  was made to boost the 

exploitative qualities of PSO, as opposed to its already considerable 

explorative capability. 

 

Not all possible options available in the algorithm are accessible through the input 

file. A few can only be tweaked by editing the code itself and therefore require a 

recompilation for any changes to apply. For instance, the choice of Gbest selection 

method or Pbest update method is hardcoded, even though all mentioned 

techniques are available. Another two examples of parameters that are not directly 

available for tweaking are densrule and gravperc, both of which relate to the 

shuffle operator.  

 

 
 

The first, set at 20.0, is the maximum order of difference between the lowest and 

highest density value among all non-dominated solutions which, if surpassed, will 

trigger a second shuffle session. The second, set at 0.08 is the percentage (8%) of 

members of the elite archive that can be given gravity point status over a single 

shuffle session. If this percentage of elites does not equal an integer number, it is 

automatically rounded up. Both of these two settings have been discussed earlier in 

this chapter. It is recommended for any such settings not included in the input file 

to be left in their preset state. 
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4.7. Complete Proposed Algorithm (PA) flow chart 
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5. Tests & performance 

validation 
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5.1. Benchmarking function test problems – Overview 

 
There is a huge variety of mathematical problems, commonly oriented towards 

minimizing the value of complex functions, developed by Optimization researchers to 

serve as a benchmark for comparison of various new algorithms. These functions are the 

product of reverse engineering practices and are modeled after the typical obstacles that 

heuristics are bound to encounter when incorporated to solve challenging industrial ‗real-

world‘ problems, especially those with multiple objectives. Such problem peculiarities 

that may cause difficulty in convergence, even more so in converging to a well spread 

Pareto front are multimodality, optima front convexity and/or discreteness, biased search 

spaces and other; a benchmarking problem may involve a single such feature or a 

plethora thereof and test results not only yield a measure of overall performance but can 

also determine the suitability of one or another method for a particular type of problem. 

 

In 1999, K. Deb [2], the creator of NSGA and NSGA II, suggested a systematic way of 

developing test problems for multi-objective optimization. Following these guidelines, 

along with E. Zitzler (creator of SPEA) and L. Thiele [36], they suggested six test 

problems under the label ZDT, the initials of the trio‘s surnames. Of those six problems 

two are featured in this work, ZDT-1 and ZDT-3, and are used to draw the first 

conclusions as to the proposed algorithm PA‘s capabilities and performance, especially 

alongside a representative EA. As is the case for all six ZDT problems, both examined 

cases are of 2 objectives: 

 

 

 

Functions 2( ,..., )nG x x , 1 2( ) ( ,..., )nH F x G x x , as well as n, vary from problem to 

problem. 

 

 

 



 

5-3 

 

5.1.1. Case ‘ZDT-1’ 

 
The simpler test function of the ZDT family, ZDT-1 features a regular convex front: 

 

 

 

The Pareto front of analytically calculated non-dominated optima (fig. 5.1) can be 

reproduced for: 

 

 

Case ZDT-1 has already been introduced in chapter 4, throughout which it was used as a 

means of demonstration of the various features of the proposed algorithm (PA). 

 

 

Fig. 5.1 The target front of the ZDT-1 minimization problem (
2 11F F ). 
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5.1.2. Case ‘ZDT-3’ 

 
ZDT-3 represents the discreteness element; without any discontinuity whatsoever in 

problem variable space, its optima form a Pareto front which, though convex, consists of 

five non-contiguous parts: 

 

 

 
The Pareto front, the discontinuity of which is caused by the introduction of the 

trigonometric sinus function, can, similarly to ZDT-1, be reproduced for: 
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Fig. 5.2 The target front of the ZDT-3 minimization problem. The challenge is to locate solutions on all 5 

portions of the non-contiguous Pareto front. 

 

 

5.2. A turbo-machinery application 

 
The third and final application of the PA presented in this thesis assesses the search for an 

optimal 2-dimensional stator airfoil design of an axial, cascade, controlled diffusion 

compressor, at its default operation point (relatively low Reynolds number, transonic flow 

regime). The airfoil design, belonging to the hub section of the blade, is optimized with 

two objectives in mind:  

 

i. The minimization of total pressure losses, 1min ( ) min lossF x , or 

minimization of the total pressure loss coefficient loss  is given by eq. 5.6:  

 

 

ii. The maximization of static pressure rise, 2max ( ) max minp pF x R R : 

 

Since the operation point is fixed and all inlet data are given, problem variables 

exclusively relate to the shape of the airfoil, which is parameterized using two polynomial 

Bezier curves, one for each side, pressure and suction. Each curve is composed of 160 

points, sufficient for the discretization and grid creation needs of the solver. We have 

opted for 9 control points for each of the two curves and, consequently, 14 

( ( , )  ,   2,3,...,8i ix y i ) variable parameters per side, as the control points at the leading 
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and trailing edge are fixed, at (0,0) and (1,0) respectively (before stagger angle is 

considered). The total of 28 design variables is further reduced to 26, as the abscissa for 

the 2
st
 control point (counting from the leading edge) is also fixed, for both 

sides
2, 2,( 0, 0)s px x . Fig. 5.3 better illustrates the airfoil contour generation process: 

 

 
 

Fig. 5.3 A random suction side of a candidate blade, where the Bezier control points that form the curve 

are also displayed. 

 

 

Stagger angle a 30 

Pitch 0.65 

Flow Inlet angle αin 47 

Mach number at inlet Min 0.54 

Reynolds number Rec 8.41·10
5 

 

Fig. 5.4 Problem specifications. 

 

 

In order for feasible airfoils to be obtained, as far as constructibility and structural solidity 

is concerned, we impose certain thickness constraints at different lengthwise points, at 

30%, 60% and 90% of chord length, precisely. In this particular run, these constraints 

took the following form (all lengths un-dimensionalized by the chord‘s length):  

 

30% . . min

60% . . min

90% . . min

0.09   ,   (relaxed threshold : 0.08)

0.08   ,   (relaxed threshold : 0.07)

0.013   ,   (relaxed threshold : 0.01)       (eq. 5.8)

c l

c l

c l

Th C

Th C

Th C

 

 

We also impose a minimum of flow turning 1 2
ˆ ˆa a , for the resulting airfoil to be an 

integrable component of the entire compressor, apart from its good individual 
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aerodynamic properties: 

 

1 2 min
ˆ ˆ 20    ,   (relaxed threshold : 18 )       (eq. 5.9)a a C  

 

The evaluation software incorporated is the MISES code by M. Drela [37]. Adopting a 

viscous-inviscid zonal approach to the problem, it is essentially a combination of a two-

dimensional integral boundary layer solver with a numerical solver of the Euler equations 

for the external flow and features a relatively low computational cost whilst producing a 

very dependable prediction of the flow's characteristics. This advantage enables us to 

perform as many as 2000-3000 evaluations during a single optimization session, within 

which range the algorithm is expected to have fully converged. 

 

To further enhance the efficiency of the procedure, the evaluation software performs a 

thickness check of its own, prior to handing the candidate over to the flow solver. These 

constraints, with a similar structure as the above (eq. 5.8), and with respective thresholds 

equal to the relaxed values of eq. 5.8, are intended to immediately reject the absolutely 

unacceptable geometries before even an evaluation clock unit is expended thereon. Not to 

mention that, especially if it features negative thickness (an intersection of the suction and 

pressure sides), a problematic geometry would require additional time, even double as 

long, for the solver to conclude and proceed to the next candidate.  

 

5.3. Results 

 
Below are demonstrated the results of the various trials the proposed PSO variation 

underwent along the results yielded by running a certain EA-based optimizer, 

evolutionary-strategies–based, to be precise. The EA-based program is of adequate depth 

and features, developed in the Laboratory of Thermal Turbo-machines of the NTUA 

[indicatively: 38, 41, 42].   

 

To preserve a certain, though qualitative dependability of the results, the duo was run on 

default settings that are each known to have an overall good performance, independently 

of the case at hand. No parametric analysis was conducted for the optimizers to conform 

to each problem‘s specifications and iniquities. As far as the EA package is concerned, 

only those features equivalent in some way to what is implemented in the PA are used: 

SPEA 2 for non-dominated solution processes, a strategic mutation operator with a 

dynamically variable mutation probability, Tournament-type selection with elitism. 

 

Besides the non-dominated solution set achieved by every run of either optimizer, we also 
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introduce a hyper-volume figure, which can give a qualitative measure of the convergence 

rate of the algorithm throughout the duration of a session. For an n-objective problem, 

this hyper-volume metric essentially considers the percentage of a certain, user-defined 

(see fig. 5.12) portion of n-dimensional space that the elite-composed front dominates at 

any given point during a run. If the hyper-volume grid limits have been introduced 

appropriately by the user, as the algorithm approaches the Pareto front hyper-volume 

rating approaches 1.0. It must be emphasized, at this point, that the hyper-volume curve 

displayed in each segment is the product of averaging the outcome of 5 different runs, 

each using different random number generator seeds (RNG‘s) in an attempt to eradicate 

any impact that the RNG would otherwise have on the ultimate conclusions drawn.  

 

The Pareto fronts displayed were chosen from among the average-performing of each five 

of runs, according to their respective hyper-volume rating curves. 

 

5.3.1. ZDT-1 
 

Both programs were limited to a maximum of 5000 total evaluations as the only 

termination criterion. The default set of options was applied to the PA, as in section 4.6, 

except for shuffle, which was only engaged once, at 70% of total evaluations. The swarm 

population was set to S=50 particles, offspring population λ and parents μ to 50 and 20 

respectively. Therefore, both optimizers completed about 100 iterations, during which the 

elite archive size could not exceed 40. 

 

 
Fig. 5.5 Hyper-volume curve with regard to evaluations completed (ZDT-1 benchmark function), after 

5000 total evaluations.  
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Fig. 5.6 Ultimate elite set achieved by the two optimizers (ZDT-1 benchmark function), after 5000 total 

evaluations. PSO has fully converged to the analytically calculated Pareto front, having already gone 

through a shuffle session to improve solution disparity. 

 

 

5.3.2. ZDT-3 
 

Similarly, both programs were limited to a maximum of 10000 total evaluations as the 

only termination criterion. The default set of options was applied to the PA, as in section 

4.6, except for shuffle, which was, again, only engaged once, at 70% of total evaluations. 

The swarm population was set to S=80 particles, offspring population λ and parents μ to 

80 and 30 respectively. Therefore, both optimizers completed about 125 iterations, during 

which, the elite archive size could not exceed 80. 

 

 
Fig. 5.7 Hyper-volume curve with regard to evaluations completed (ZDT-3 benchmark function), after 

10000 total evaluations.  

 



 

5-10 

 

 
Fig. 5.8 Ultimate elite set achieved by the two optimizers (ZDT-3 benchmark function), after 10000 total 

evaluations. PSO has converged to the analytically calculated Pareto front, having already gone through a 

shuffle session to improve solution disparity. 

 

 

5.3.3. Turbo-machinery application 
 

This time, both programs were limited to a maximum of 1500 total evaluations, due to 

the high computational demands of this application. Again, the default set of options was 

applied to the PA, as in section 4.6, except for shuffle, which was, again, only engaged 

once, at 70% of total evaluations. The swarm population was set to S=40 particles, 

offspring population λ and parents μ to 40 and 15 respectively. Therefore, both optimizers 

completed ~38 iterations, during which, the elite archive size could not exceed 20. 

 

 
Fig. 5.9 Hyper-volume curve with regard to evaluations completed (Cascade compressor airfoil case), 

after 1500 total evaluations. 
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Fig. 5.10 Ultimate elite set achieved by the two optimizers (Cascade compressor airfoil case), after 1500 

total evaluations. The 2 circled, extreme optima are the airfoil designs displayed below (fig 5.11). They 

were selected with optimality in each of the two objectives in mind. 

 

 

The airfoil case is structured in such a way that it is heavily dependent upon the careful 

choice of starting variable ranges –which must also be relatively narrow. Else, the 

algorithm‘s flow is greatly hindered by frequent constraint violation. For the specified 

search space, both algorithms seem to have converged before the maximum allowed 

computational resource is depleted. Below (fig 5.11) are displayed two extreme solutions 

from the end result set, ‗extreme‘ in the sense that they are picked out from the two 

opposite edges of the Pareto front, each featuring the best possible performance in one of 

the two objectives of the problem. Notice the -subtle- differences in geometry which 

accommodate good individual aerodynamic performance (minimum losses) in one case, 

maximized flow turning and static pressure rise in the other: 
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Fig. 5.11 Two sample designs (not in scale) from the non-dominated solution set achieved by the proposed 

optimizer after 1500 total evaluations. Each represents the optimal (within the framework set by the 

specified ranges of variables) with regard to each of the two objectives, i) Minimized losses, ii) Maximized 

static pressure rise. 

 

 

 

Problem lower bound upper bound Objective function 

ZDT-1 0.0 1.0 F1 

 0.0 7.0 F2 

ZDT-3 0.0 1.0 F1 

 -0.8 6.0 F2 

Airfoil design 0.016 0.04 F1  (Pt losses) 

 0.99 1.1 |F2| (Ps rise) 

 

Fig. 5.12 Summary of the specified grid boundaries for the hyper-volume rating calculations in all 3 test 

cases. These exact boundaries apply for all runs that participate in the averaging procedure and have been 

fittingly picked beforehand to encompass the fitness vectors of all candidates generated during a run.  
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5.4. Discussion of results 

 
Taking a separate at the outcome of each test, starting with ZDT-1, we witness a first 

indication of the PA‘s competitive performance: Halfway through the maximum allowed 

evaluations, it has already almost fully converged to the convex Pareto front, as is 

displayed by the hyper-volume curve (fig 5.5) that has flattened, in conjunction with the 

final non-dominated solution set in fig 5.6 which shows the final coincidence of the 

swarm‘s elites with the analytically computed optimum curve. The EA, on the other hand, 

having consumed all 5000 evaluations, has approached but not reached the Pareto front. 

Its progress rate is very steady throughout the optimization session, which is evidences 

the relatively straight-forward character of the 1
st
 test benchmark function. The excellent 

disparity of the non-dominated set achieved by the PA is attributed to the single shuffle 

session that occurred after 3500 evaluations were completed. Figures 4.41 – 4.22 better 

illustrate the impact of a shuffle session in this test. 

 

Continuing with ZDT-3, the picture only varies slightly. The PA, again, shows an 

excellent progress rate, especially during the first 1/5
th

 of evaluations completed, after 

which it steadily converges to the sought solution fronts. The Pareto is reached before the 

expendable computational resource is depleted (fig. 5.7), accommodating the use of the 

shuffle operator to improve diversity and cover the entirety of the non-contiguous Pareto 

front (fig. 5.8). Shuffle, along with the linearly variable (with iterations) acceleration 

coefficients, account for the remarkable exploitation efficiency which, in theory, is PSO‘s 

greatest shortcoming. Similar experiments conducted by researchers [5, 18, 21], where 

various representative MO optimizers, either EA-based and/or PSO-based, are put 

through the same or very similar tests verify the 10000 evaluations threshold as an 

extremely strict one, validating both PA and EA utilized in this work, performance-wise. 

Indicatively, in [21], NSGA, SPEA and established PSO-MOO algorithms were allowed 

up to 25000 evaluations to achieve very similar results. In [5], where Coello et al propose 

‗MOPSO‘, they feature similar convex, non-contiguous benchmark functions, allowing 

12000 evaluations, within which none of the competitors manages to cover the Pareto 

front. 

 

Finally, the airfoil design case proves the efficiency of both the EA and the PA in coping 

with a complex MOO problem, when the –realistic- computational requirements are 

relatively high. The Drela solver is still considered a computationally cheap alternative to 

a generally very expensive CFD problem, but its demands in CPU time are much higher 

than a benchmark function‘s and closer to industry standards. The added difficulty posed 

by constraints complete a challenging test. The global optima, which obviously depend 

upon the specified design variable ranges, cannot be analytically obtained here, so we rely 
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on experience [39] in this application to specify the 1500 maximum evaluations 

checkpoint. In validation of this, the PA‘s hyper-volume rating curve (fig 5.9) has turned 

flat upon fulfillment of the above termination criterion. Both optimizers achieved solution 

sets of comparable quality, with the PA managing greater disparity in its non-dominated 

front, as well as a slightly wider range of ultimate optima (fig. 5.10). Observe that none of 

the duo managed to reach the elite archive size limit of 20, which is indicative of the 

complexity of the search process in this particular problem.  

 

The demonstrated test results more than validate the proposed algorithm‘s functionality 

and efficiency in coping with varied MOO problems. They also solidify the speculation 

on distinctions between PSO- and EA- based algorithms, regarding both the end result 

and general behavior for the duration of the optimization session. The PA does 

demonstrate the early advantage of swift convergence to the general vicinity of the 

optima, as all three hyper-volume curves clearly show. Subsequently, its progress rate 

decreases, although that is in greater part due to the fact that it has actually reached the 

Pareto front (ZDT-1, ZDT-3). The very good level of diversity among the resulting 

solutions validates the functionality of the premature convergence counter-measures we 

introduced, such as the dynamically variant acceleration coefficients and inertia weight 

and the shuffle operator. Therefore, we can be confident that the speculated exploitation 

handicap has been appropriately addressed. 

 

It should be stated at this point that none beyond a qualitative conclusion should be drawn 

from the differences in performance exhibited between the featured EA and the PA. As 

was outlined in section 5.3, neither algorithm has been fine-tuned to each problem‘s 

specifications and unless the impact of the available settings is thoroughly investigated 

and the various parameters adjusted to facilitate maximized efficiency, we cannot accept 

these test results as a final comparative verdict. The featured EA is a proven, highly 

sophisticated, reliable optimization tool and its testing was intended to serve as a 

benchmark, successfully so: the PA held its own, even surpassing the EA in all 3 tests 

conducted, boasting a marginally faster early convergence rate and a slightly better end 

result for a given number of maximum evaluations. This consistency can at the very least 

establish the PA as an efficient and versatile optimization tool, and a decent foundation to 

build upon in future work.  
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6.1. Concluding summary 

 
The main objective of this work has been the development and subsequent validation of a 

complete optimization tool based on the concept of the Particle Swarm. Particle Swarm 

Optimization (PSO), as which, the entirety of optimization-oriented applications of the 

Particle Swarm is referred to, is a subcategory of the great family of Swarm Intelligence 

techniques. As such, it introduces processes inspired from the collective activity of a 

swarm of insects, flock of birds and school of fish or similar to assess the search for 

optimal solutions to a variety of problems. The members of the swarm, or particles, are 

driven by two main forces: the particle‘s individual perception of search space, as it is 

shaped by its own progress thus far (cognitive influence), and its interaction with the rest 

of the swarm, its awareness of the progress of the swarm as a whole (social influence).  

 

Swarm intelligence itself is a subcategory of the Stochastic Methods, which essentially 

encapsulate all optimization techniques that rely, to some extent, on randomized search 

within all specified variable ranges to locate the optima. The most popular and widely 

applied Stochastic Methods branch is that of Evolutionary Computation and Evolutionary 

Algorithms (EA‘s). It is the intention of this work to view all stochastic methods under a 

unified prism and in chapter 2 and 3, after EA‘s and PSO have been introduced in detail, 

a long discussion is conducted to highlight the similarities or equivalences between the 

two, as far as both their philosophical background and their practical application is 

concerned. The purpose of this is not only to determine the adjacencies between the 

various components and defining features of these two paradigms, but also to gain insight 

into possible improvements, either by borrowing principles from each other or by 

hybridizing. The prominent product of this analysis was that PSO has a relatively faster 

rate of progress through the earlier stages of a run, while EA‘s in general shine at a later 

stage, the phase of exploitation, namely the phase where search space has almost been 

exhausted and the optimizer focuses on refining the located solutions by searching in their 

immediate vicinity, thus slightly improving the end result.  

 

In section 3.4, the various governing parameters of a generic PSO algorithm were 

discussed: Their impact was analyzed, relevant experiments and literature were surveyed 

and the various trends were reviewed. The choice of parameters for the proposed 

algorithm (PA) was elaborately justified, especially from the perspective of addressing the 

lacking exploitation capabilities of fundamental PSO. A scheme that dynamically alters 

these parameters was adopted; similar practices and their benefits in EA‘s were 

mentioned. No formal parametric analysis was conducted as part of this work, however.  
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In chapter 4, the main product of this thesis was presented: the entire algorithm was 

reviewed in various sections, each covering a single aspect and all relevant processes. The 

most effort behind building this program was centered round a few distinct points: 

 

 Moderating PSO‘s inherent shortcomings: the premature convergence, the 

problematic behavior when in the general region of optima, which occurs near the 

conclusion of a session. In this direction, apart from the earlier mentioned 

adjustments to tuning parameters, the shuffle operator was introduced. This 

measure is intended to intervene and appropriately re-position the swarm and 

determine certain directions in which to search, directions with evident potential, 

thus revamping the optimization procedure and re-establishing a more efficient 

search. 

 

 Emphasis was placed on multi-objective problems, namely problems where the 

optimality of a solution is judged on multiple criteria. As was explained, the multi-

objective regime is completely different to the single-objective one and poses 

additional challenges, some of which are specific to PSO and pertain to the 

elevated roles of cognitive and social influence. The reader was introduced to the 

details of MOO and the current trends in dealing with such problems (the Pareto 

concept, non-dominated solution sorting methods etc.) in chapter 2. In section 4.3 

I specifically elaborated on the approaches adopted in the PA to facilitate a 

successful transition to MOO: A solution selection/sorting procedure determines 

the best solutions so far, wherein to invest. A solution spacing technique was 

incorporated to ensure the sought diversity among the various optimal solutions. 

   

 A variety of alternatives in determining a fitting Global Best for each particle in a 

MMO problem was given special mention (section 4.4), as a critical step towards 

successfully extending the PA to MOO. I consider Global Best assignment the 

trickiest, and at the same time, the most vital factor in building a competitive, 

MOO-capable particle swarm optimizer. Hence, most novelty of this work and the 

greatest potential for improvement lie there. 

 

 Other main points, like the Constraint Operator, responsible for administering 

candidate solutions in breach of any constraints imposed by the problem, and the 

Initialization phase were given the appropriate attention. 

 

The PA was tested against two benchmark mathematical function cases, especially 

developed by optimization researchers for exactly this purpose: ZDT-1 and ZDT-3. The 
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latter, with its challenging non-contiguous Pareto front is a very popular experimental 

tool. One last test, of a more practical orientation, utilized the PA for the optimization of a 

cascade compressor‘s stator airfoil, with regard to individual aerodynamic efficiency and 

good static pressure rise qualities. This case featured strict constraints and a higher 

computational cost per examined candidate, thus, a more demanding problem. The PA 

was tested alongside EA-based optimization software of established competitiveness, 

serving as a point of reference. The demonstrated results not only granted the PA 

validation as a fully functional and competent optimizer but also showcased the 

previously discussed differences in behavior between EA‘s and PSO. They also 

highlighted the major contributions to the overall enhancement of PSO‘s exploitation 

ability by the addition of the shuffle and variant parameter schemes.  

 

 

6.2. Future Work – Suggestions 
 

The satisfactory outcome of the above verification justifies considering the PA as firm 

ground to build upon and improve, both in performance and in functionality/versatility. 

Improvements can be made through minor additions to the algorithm in its current form 

or by further developing/optimizing the existing features. Major leaps can also be made 

as a result of long-term effort, by following the various trends in modern Evolutionary 

Computation and the field of optimization in general.  

 

Short-term suggestions include: 

 

 Further enhancement of the Global Best assignment process. As has been 

emphasized repeatedly, the efficiency of said mechanism is of great importance 

and one should aim at perfecting it. This challenge goes hand-in-hand with the 

general problem of MOO, that of solution ranking based on multiple conflicting 

criteria. Therefore, ideas and new concepts can be borrowed from the advances in 

that area. A few planned adjustments are described in the respective section, 4.4. 

Those are linked to the density scheme and are intended to implicate the pursuit of 

solution diversity in the selection process. Hybrids of the featured techniques are 

also possible. Inexact pre-evaluation* could find ample use here, to give us a 

rough prediction of the outcome of each option. 

 

 Grid computing compatible asynchronous search. As the tendency to involve 

multi-processor environments and grid computing in the procedure of solution 

evaluation gains momentum, it is ever more crucial for an optimization tool to be 

able to integrate with maximum efficiency in such a regime. A common 
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predicament, when a multitude of processing units of differing capacity are 

handling the evaluation of particles, is for a delay of one or more individuals‘ 

evaluations to postpone the transition to the next generation. It is therefore 

imperative to negate the concept of a ‗generation‘, by making the process of a 

particle‘s relocation in search space completely independent from that of the rest of 

the swarm: the algorithm will no longer address the swarm as a population of 

solutions that must be updated simultaneously. Each solution, upon completion of 

its evaluation → ‗returns‘ to the base of operations → immediately receives its new 

Global Best from within the elite archive, as it has been shaped up to that point → 

updates its Personal Best accordingly → if the solution is found to be non-

dominated, the elite-related processes are spawned → immediately proceeds to 

update its velocity vector and be assigned its new position in space, according to 

the PSO core formulae (eqs. 4.1, 4.2) → it enters the evaluation phase once again. 

  

 Adjustments to the Shuffle operator. This mechanism‘s positive contribution to 

the overall performance of the PA has been evidenced in section 4.5.2. However, in 

its current form, it remains a very ‗violent‘ form of intervention and a very 

demanding one, in terms of swarm experience: the swarm must have already 

approached the general region of the perceived optima for it to work as intended. 

An approach where only a small percentage of the swarm is involved in a process 

launched multiple times and from an earlier stage of the search might be worth 

looking into. The goal is to gradually transform the shuffle scheme into a principal 

component of the optimizer, active throughout a run, similarly to mutation in EA‘s, 

as opposed to the occasionally intervening, radical measure it is now.  

  
Long term additions worth considering are the following: 

 

 A means of highly adaptive, dynamic control of the acceleration 

coefficients ,cogn socC C . The somewhat ‗raw‘ linear variant adopted in this work 

is adequately functional and efficient but cannot match the likes of strategic 

mutation in EA‘s. The A.C.‘s must be made to increase or decrease according to 

some highly sophisticated metric that will reflect the condition of the swarm, the 

current rate of progress and the potential for improvement. 

 

 A formal, complete parametric analysis. Particular attention is due to the 

acceleration coefficients and inertia weight, or the range thereof, if a variant 

scheme is finally settled for, linear or otherwise. Second in priority are the various 

settings of the shuffle operator.  
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 *Implementation of inexact pre-evaluation of some sort. Methods exist, that 

allow the approximation of a solution‘s fitness based on what knowledge we have 

of the previously exactly evaluated solutions in its vicinity [41, 42, 43]. Inexact 

pre-evaluation can occasionally substitute the computationally costly evaluation 

software, with self-explanatory gains. A popular such technique are the Radial-

Basis-Function Networks (RBFN). Another, Kriging, developed by G. Krige, 

provides additional statistical information: apart from the fitness value 

approximation, it also returns an estimation of the possible error of this 

approximation. I have some personal experience in the incorporation of Kriging to 

EA‘s for solving single-objective problems. Kriging‘s proper extension to MOO 

poses some very intriguing challenges, similar to those of PSO.  
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