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Evyoproticc...

O@eiA® Kat’ apynVv vo EKPAc® TNV EMKPIVI] OV EVYVOUOGVHV Tpog Tov Kabnynt k.
K.X. TlovvakoyAov yioo Tnv vmootpién Kot TNV LITOUOVY|, 10101TEPA KATA TNV EKTOVNON
TOL TAPOVTOG, KOl TNV EUMIGTOGUVN KOl TPOCOTMIKN UEPUVO TPOS TO TPOCMOTO OV T
tehevtaion Tpia ypoévia. H ocvvolkn eumeipio tTov omovddv pov Bo ftov tedeing
drpopeTikn av amovciale o 1610¢ katl 1 dovAeld Tov. Ex ¢ opddag tov Epyactnpiov
Oepkadv Zrpofrlopnyovov, vidbm vrdypeog mpog T dddktopa BapPapa Acodtn kot
mv voynoela. dddktopa Evyevia Kovtodéovtog yia 10 ypdvo mov pov odiébecav,
TaPEXOVTAS OV cuveyn TeXVIKN vrootpiEn kot kabodnynon. T evyapiot®d yo v
KaAOGUVT Kot TV tpobupia va fondncovy, tépa amd Kabe TumiKY| voXPEWoT, OTWS Kot
OA0VG TOVG GALOVG PIAOVG aTO TNV EPEVVITIKT] OLLAA.

Kaf6tt 1 ohokApmon G SIMAOUATIKNG LoV €PYACIOG GUUTIMTEL E TNV OAOKANPOON
TOV OTOLOOV MOV 6TO TUNuUe Mrnyovordymv Mnyovikov tov EBvikov Metcofiov
[Tolvteyveiov, Ba NBela va eVYOPIGTHO® Kot OGOVE, PIAOVS Kot GUVASGEAPOVG, LE TOV £Vl
N Tov AALo TpdTOo, fon NGV GTNV TEPATMOT TOV VIOYPEDGEDY OV MG CTOVIOGTY).

Téhog, €vYOPIGTO TOLG O1KOVG HOL OVOPOTOVS Yo TV Oydmn Kot T otpény TOovG.
[dwitepa de, tovg yoveic pov, Xpiotdeopo kot Iavayidta yio T OTolEg TPOSMMIKES
Buoieg pLov e£ac@dMoaY TO TPOVOLULO VA TPOYLOTOTOWC® CVTESG TIG GTTOVOLC.
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Epyoaotipro Oeppikav Xrpofriopnyovav
Movada IMaparining Yroroyrotikng Pevotoduvokig &

Beltiotomoinong

AvaBaduiouévn NMapaAdayn tng TEXVIKNG ZUNVoOUS

Zwuatidiwv otn BeAtiotonoinon

Ytoyo G mapovons epyaciag amotérece M ovATTLEN €VOG EVOALAKTIKOL aiyopiBuov
Ytoyaotikng Beitiotomoinong Pacilopévov oty edparopévn  pébodo  Epmvoug
Yopatdiov (Particle Swarm Optimization — PSO). H mpoindpyovco kevipikn 18éa.
TAOGLOVETOL OO OOKIHOGUEVES GTO YMPO TNG PEATIGTOTOINONG AVGELS KOl A0 OPIGUEVEG
npocOnkeg TOL YPAPOVTOC, HE OTOXO TO TEMKO OmOTEAESUO Vo amoterécet pio
AELTOVPYIKY] KOL OVTOY®VICTIKY] EVOAAOKTIKY ADOM, €01KEA OGOV 0popd mpofAnpato
BeAtiotomoinong g mpog meprosotepa ToV £vOg Kprtnpimv. Tapovoidletar deEodwkd M
TPO0d0¢ Tov aAyopiBuov pe kdbe mpocsONKM, eved ektifevion mopdAinia Kot Oldpopa
OVTIITPOCMOTEVTIKG NG OYUNG TOv O0paTOg 1TNG XTOYOOTIKNG Beltiotomoinong
nopadelypata, Yoo AOyoug cOykpiong ahdd kot tAnpotntoc. [dtaitepn pveia yivetar otovg
onuooereig E&ehktikovg AlyopiBuovg (EA), to avtimaho 60£0¢, OVGLUCGTIKA, TNG TEXVIKNG
Yunvovg Zopoatwdiov, eni tov omoiwv 10 Epyactiplio Ogpuikdv Ztpofilopunyavov
(E®) éyet va emdeilel omovdaio dpactnpldtTnTa Kol TEYVOYVMOGIo Kol O YpapoV i
oxetikn gunepio. Emyeipeiton pio amevbeiog avtimapafors), 1060 @rAocoeiog 0G0 Kot
TPOKTIKNG, TOV dVO 10EDV, VD ivar cagng Kad' OAN v £KTaeN QVTOV TOV EKTOVILOTOG
N mpdOeon avtioToiyong, TUNUATIKE, TG Hog e TNV GAAN, OCTE Vo TOVIOTEL 0 €viaiog
YOPOKTAPOS TOV YMPOL NG ZTOXUOTIKNG BeAtiotomoinong kot vo tovtomoinfovv to

Ayl YOPOKTNPIOTIKA TOV LEBOO®V VT®V.



O oloxkAnpowuévog aiyoplBuog dokipdletol, KATOMY, ©€ EMAEYUEVEG EPOPUOYEC,
aKodNUaiKod Kot Bropnyovikod evolapépovtog, OAec 600 otdywv: Ol TEPITTOCELS TOV
ponupoatikov ovvaptioeov ZDT-1 wkor ZDT-3 eival oviimpoo®mevtikd  delypoto
TPOPANUATOV TOV £XOVV OVOTTTUYOEL OO OKAOMUOTKO POPEN EOIKA MG LEGO OOKIUNG Kot
OVYKPIoNG TETOIWV HeBOOMV KOl OTOTEAOVY GTNV OLGIO LLOVTEAOTOINGCT] T®V SVGYEPEIDV
OV OVOUEVETOL VO GUVOVTNGEL €vag aAyoplOpoc PeAtiotomoinong o€ Plounyovikég
epappoyés. Télog, dokipdletor kot €vavtt TG, VIO MEPLOPIGHOVS, GEPOSVVOUIKNG
BeAtiotomoinong mrepvyiov agpoovumiestr. Ta  omoteAéopoata  mov  ektifevton
TPOCPEPOVIOL YL GUYKPION NG TOpovcas mPATaons pHe &vav  evoelktikd EA,
emPefardvouv ta 6ca givor YVOOTE Yoo TIG OPOPES OTY GLUTEPLPOPE T®V OO

TEYVIKDOV, EVO TIGTOTOIOVV TNV AVIUYOVICTIKOTNTA TOV TOPOVGLALOUEVOD AOYIGUIKOD.
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1. IIporoyog

(To xvpiowg ocopo ™G SMAOUATIKNG aVTNG gpyociag eivar ypauuévo oty AyyAkn
yYAoooa. To keipevo mov axkoAovBel amotelel pio WOONTEPMOG EKTEVY] TEPIANYN OVTNG,
o6mov yivetor pdMoTa enikAnon oynudTev Kot podnuatikdv tonov on’ to EevOyAwosoo
TUAUO, ME amoTéAECUO Vo Olvel o OpKETE TANPT €KOVO TOV TEPLEYOUEVOL TNG
SmAouatikng epyoaciog. H dopn tov eAAnvikov keipévon akoAovbel avotpd ) doun o€
KEQALOLO, TOV AETTOUEPOVG EEVOYAMGGOL KEWEVOV.)

H mopodca owmhopotikn epyocio otoyeber otnv onuovpylo Kot dokiur piog
avafPaduicpévne mapaAiloyng g texvikng Peitiotomoinong mov Pocileton ot puébodo
Yunvoug Zopatdiov (BXY), (Particle Swarm Optimization - PSO) [1]. O npotewvopevog
alyopOpog (ITA) daveileton v mpovmdpyovca Pacikn wWéa e BEX, eni g omolag
yivovtal otn cuvéxeln TpocOnkes Kol PEATIOCELS, e OKOTO TO TEAMKO OMOTEAEGLO VO
amoterel éva, Katd T0 SOLVATOV GTO TANICLO OIMAMUOTIKNG EPYOCING, AVIOYOVIGTIKO Kol
nnpeg epyaieio Beltictomoinong, yua xprion o€ kébe idovg epaproyec.

To BewpnTkd vVToPabdpo Tov TAPOVTOG ekTEIVETAL TEPA OO TOL GTEVE OpLaL TNG TEYVIKNG
BXY: mopovcidletor ekteVdG 0 €VPVTEPOC YMOPOG NG ZTOYXAOTIKNG BeAtiotomoinong
(ZB), vmomeployn tov omoiov amoTEAEl, GAAMGTE, M GLYKEKPIUEVN TEYVIKN Kol Ol
dwapopeg mapariayés e Idwutépmc eppévovpe otovg Agyopevovg E&eAkTikovg
AXyopiBuovg (Evolutionary Algorithms - EA) [45, 46], kab0Tt amoteAodV TV o EVPEMG
EQOPUOGHEVT] Ko dNUOPIAn néEBodo B mg onpepa kot eivar evOEIKTIKOL TG PLAOGOQIaG
Kol TNG TPOKTIKNG mov démovv t XB. H éviovn dpacmpdmrta tov Epyactmpiov
Oepukav Zrpofrrounyovov (EOX) ot ypnon kot kupiog oty ovamtuén Aoyispkon
Bacwopévouv otovg EA ametédhece 10 évavoua yio v €kmdVNCT NG £PYACLOG GVTNG,
wote vo kataotel duvatn 1 avtimapofoin tov dvo pebodwv. To mAnBog oyeTikdv
OMNUOCIELGEMY TTPOSIOEL TO EVOLPEPOV OO akadNLOTKOVS Kot Bropnyovikohg KOKAOVS va.
enevovoovy ot BXEE, omwc Mon kdvovv pe toug EA. Tlapovoidlel, cuvenmg, €vtovo
EVOLQEPOV Kot M TOpdAANAN e&étaon TV 000 TEYVIKOV, Yo v JmioTmdovy TuydV
OHOLOTNTEG 1 SLPOPES GTN OOWN| KO TN CLUTEPIPOPE Kot Vo, EVIOTIGOOVV T E100TOLA
otoyyelo ¢ kabepdg, ta omoio, palota, Ommg Bo deyybel, mapovsialovv evbeia
avtiotoryion HETOED TOVC. ATMTEPOG GTOYOG AVTNG NG BewpnTikng depevbivnong eivat,
UEAETAOVTOG QVTOVG TOVS VO YAPOKTNPLOTIKOVS EKTPOCHTOVG TOVGS, VO KOTAOEIEOVIE TOV
evioio  yopokmpa OA®V TV XToYaoTIKOV MebBddwv. Emmiéov, mpoxvmtovv
CLUTEPACUATO Y10 TO TAOG M pia 1 N GAAN pumopodv vo avafabuctovy, avioAAIcoovTog
YOPOKTNPLOTIKAL.

O aAyopBuog mov avamtvydnke mpooavatoriletar ot emilvorn mpoPinudtov IloAiv-
Kpumpuokng Beltiotonoinong (IIKB), oniadr mpoPAnudtov OTOL EMOIOKETOL M



BEATIOTOTNTO TOV AMOTEAEGLOTOS OC PO Ave Tov eviag kputnpiov. H TIKB eivan éva
EexmP1oTO KEPALOLO TNG PEATIOTOTOINONG, LE TIG OIKEG TOV 1OIOUTEPOTNTESG KOl TPOUKTIKECS,
YL T Ko TG yiveton wtaitepn pveio o€ oyeTikn mopdypoapo g epyoaciog. H eméktaon
evog aAdyopiBuov Pertiotomoinong dote va aviamokpifel oe epapuoyéc ITKB dev elvan
amAn] vrobeor, ovtiBeta eivor €icov oamoutnTiKn pe TV avamtuén Tov oL TOV
alyopiBpov. Evdektiko givat, 01t to ¢ Oa avtipetomiotodyv ta nTHote Yeptopod Tov
vroynoeiov AWoewv ot tepintdcelg [IKB anacydince icwg nepiocdtepo an’ 6,1t OA TO
vroéAoua pépn tov ITA.

H teyviki BZX avikel 6ty owoyEveld HobNUOTIKOV HOVIEA®Y OV €ival YvOOoT MG
Nonpootvn Zunvovg (NX) [28, 29], mov anaptiletar and TpaKTIKES TOV UOHVTOL TN
GLVAAOYIKT] GUUTEPLPOPA EVOC GLVOAOL eUPiv GvTwV, TOLA®V, YOPLOV, EVIOU®V KAT.
[Mveton o extevig emokoOmmor] ¢ NX Kot Kotdmy ETKEVIPOVOUOCTE GE OLTN
kabeavt ™ BXX: mopovcudletor 10 pobnpatikd g vadPfabpo, Omwg ovTod
SpopemdnKe VoTEPO ATO APKETEG TPOSOHNKEG Kol OAAAYES TNV TEAELTAlN deKaEeTia, LE
EULPOAOT OTIG PLOGTIKES TAPAUETPOVG TTOL TO SEMOLY. AKoAoVOwC, eEetdleTon 1) emppon
QLTAOV TOV TOPAUETPOV GTN GVUTEPLPopd TS BEX katd v avalimon tov BEATIGTOV
Moeov. Xopic va oellyetor KAmow TOPAPETPIK) HeAéTn 1 meipapa, pe TAN00g
avopopdv ot oyetikn Pploypopic [11, 12] ko emikAnon g VRAPYOVLOOC
TEYVOYVOOIOG, TEKUNPIOVOVTOL O EMAOYES TTOV EYIVOV GTO TPOTEWVOUEVO AOYICUIKO, OGOV
aQopd TNV TN Kol SIOKOLOVGT] TV PLOUIGTIKOV QUTOV TOPAUETPOV.

210 4° kePAAO10, Y10 TPOTN POPE Yivetar avapopd ota véa oTotyeia Tov givol TopdvTo
otov ITA. Avé evomnta mapovotdlovion pia-pion or kopPukdtepeg Aettovpyieg Tov, HE
obvToun TOPAOESN TOV EMKPATECTEPOV GTO YDPO OVTICTOY®V TPUKTIKAOV, OV
nePinTOoN. Xe  KAMOES TEPWMTMGELS, €KTIOEVTOL  SAQOPES  EVOAAOKTIKEG OV
doKaoTNKAY Kot EVTNPETOVY ToV 1010 oKOTO Kot e€nyeital TG EMOPOVV GTO TEAIKO
arotédeopa. [Ipénel va toviotel 611 0 TTA dnpovpyndnke Kot TpoypappaticTnKe €K TOV
unoevog, pe e€aipeon euoikd tov mpovimdpyovia wopnve e BEX. Acparadg, og Kamow
onueia, mn axolovBoduevn 000G potdlel pe mpoimbpyovses cLVNOEIS TPAKTIKEG TOL
katovopdlovtal, dtupépoviag ota onueia povo amd avtés. [N'evikd, dpmg, o TTA amoxiivel
OPKETA OO TNV TETOATNUEVN.

Téhog, o ITA doxipudotnke oe Tpia TpoPAnuata, o kabéva pe Tig 101TePOTNTEG Tov. Tar
OVo TPAOTO AmOTELOVV HaONUOTIKG TPOPANUATO EAOYIGTOTTOIMMGNS dVO GLVOPTHCEMV
oTOYOV Kol £xovv avortuyfel akpBdg yu avtd T0 oKOomd, va aglohoyoldv aAdyopiBuovg
BeAtotomoinong. To mpdto elvar oyetikd omAd kol ypnoipevce Kupiwg vy vo
ToTOTOMGEL TNV KaAN Agttovpyia tov TTA. To deldtepo eival amontnTikdTEPO Kot TOAD
dwdedopévo oty €101k PipAoypagia. O ITA dokipdonke aKOUo G€ £VOL TPOKTIKOTEPTG
VONG TPOPANUA: ypnowomomOnke yio v avalmon tov PBEATIGTOL TEPLYPAULOTOG



OEPOTOUNG TOL TTEPVYIOL OTATOPO €VOC 0EOVIKOU GULUTIEGTH, VWO OVGTNPOVG
TEPLOPICUOVE KOl [E KPUTNPLL TNV KOA OEPOSLVOIKT ATAO0GT TOV HELOVOUEVOD
TTEPLYIOV OAAAQ KoLl TV KAADTEPT SLVOTY] AELITOLPYIN TOV WG CLVICTMGCAG TOV GUUTIECTY].

To woAD  wovomomTikd  amoteAéopato  TOV  SOKIM®OV  emiPefordvovy TV
avToyovieTikotnTo Tov ITA Kot TV KATOAANAOTNTA TOv ®¢G Pdong Yo TEPAUATIGHODS
Kol TPOoONKeS, e oKOmd TN PeAtioon TV emd0cemV Kol TG TANPOTNTAS Tov. Tétoteg
TPOTAGELS Y10 UEAAOVTIKEG EMEUPACELS YIVOVTOL OTNV KOTOANKTIKY] TOPAYPOPO TOL
KEWWEVOL TNG OIMAMUOTIKNG EPYUCING.

2. Xroyaotiki) Behtiotomoinon - Ilolv-kprrnpraxi
Beltiotomoinon

2.1. Zroyootikéc MéBodol

Ot péBodor Pertiotonoinong dwkpivovioar oe Xtoxaotikés (EM) Kot ALTIOKPOTIKES
[40, 45]. H BXX, aAld kot n owoyévewn tov E&elktikdv MeBddwv, Tig omoieg Oa
eEeTACOVLE TOPOKAT®, CLYKOTAAEYOVTOL OTIC TPDOTEG. O YOPUKTNPIGUOC «OTOYUOTIKES
TOVG OMOOIdETOL AOY® TNG TLYALOTNTOG TOL OEMEL MOAAEG A0 TIC AELTOLPYIEG TOL
ovvBétouv o térota péBodo: m erhocogia. tovg Pacileton katd éva Pabud oty
«epmAdvnon» evtog Tov N-dudotatov y®pov (6mov N 1o minbog tov petafAntdv Tov
TpoPANLatog) oe avalitnon tov onueimv 0mov To TPOPANUA BPIcKEL IKAVOTOMTIKY, €
duvatov Pértiotn, Avor. Ilpoxtikd, cvuminpdvovv avtfy v toyxoaio avallnon e
€101K0VG UNYAVIGHOVG TTOV EKUETAAAEDOVTOL TNV UEXPL CTLYUNG GUYKEVIPOUEVT EUmeELpiol
Y0 TOL YOPOKTNPLOTIKA TOV YMPOL aval)Tnong, TPOKEEVOD VO EMGTEDGOVY TNV EVPECT
tov Bertiotov, katevBovovrog katdAinia v OAn dwdwocio kol mepropilovrog v
ToyooTNTA. Avtol ot unyavicuol eivar cuvnBwg eumvevouévol amd tm eHon (e£EMEN TV
ewwv - EA, ovvioviopdg ayéinc/ounvovg - BEX). Mio tuomkn -mAnbvopokn- XM
Swyepiletar tavtdypova éva mANBvopd amd vmoyneleg Avoelg mov OBa Ppebovv
JtdoyKd o€ Oapopeg BEGEIC OTO YDPO, EMAEYUEVEG EVIEAMS TLYOIOL GTNV 0Py Kot
VTOOEIKVVOUEVES OPYOTEPQL.

Ot attokpatikég pnéEbodot, amd v dAAN, tpoceyyilovv Tic PEATIOTEG AVGELS LE ATOADTMOC
dounuévo Kol oTOXELVUEVO TPOTO, aKOAOLOMVTOG TNV KAIOTN NG GLVAPTNONG 7OV
exppalel to otdyo-kpunplo ¢ Pertioronoinong. Oco avt n KAion, otnv ovcia M
TAPAYMYOS TNG GLVAPTNONG-OTOXOV, TEIWVEL GTO UNdEV, TOGO MO KOVTH PPIOKOLOCTE GE
aKpPOTUTO TNG GLVAPTNONG. AV aVTO TO AKPOTOTO €ival OAIKO, cvuminTel pe TN PEATIO



Momn. Ot cutiokpatikég nébodot pmopovv woAd ypryopa va odnynbodv ce BEATIOT Ao,
EPOCOV OUMG OEV «TtaylOeLTOVVY o€ Tomkd okpdtato. Emiong, n epappoyn tovg sivon
advvaTN oV OE UTOPOLUE VO LIOAOYICOLHE TNV TOPAY®YO TNG GLVAPTNONG GTOYOL
Tavtol 1 6YedOV TOvVToL 6To TTedio TV Asewv Tov Ba eEgTaoTel.

Mo XM dev €xet kapio tétoto €EApTNON OO TN dVVATOTNTO EVPECTG TNG TAPAYDYOV,
mov umopel vo glvar kot eEoupeTikd damavnpr, o0TE KIVOLVEVEL TOGO OO OPIGTIKY
TaYIOELON OE TOMIKO OKPOTATO. XTNV TPAYHATIKOTNTO, O8 Ypetdletal vo yvopilovue to
TOPOKPO Yoo T0 TPOPANUa, TEPav omd TIG UETOPANTEG TOVL, TPOKEWWEVOL VO TNV
epappocovpe. Eivor Loumdv edkora mpocapprociun o€ Ka0e mpdfAnpa, £6Tm Kt av yeVIKd
Kkabvotepel mEPIGGOTEPO VO, BPEL IKOVOTOMTIKY AVON.

2.2. E&ghktikoi AlyopiOpol

H ¥éa tov EA petpd Mdn t1éccepic dekaetiec (ong kot eivon gumvevopévn omd 1
AapBwvictikn avtiinym g EEEMENG Tov €0V Kot g TdANg avtdv Yo emPioon. Ot
VIOYNQLEG Avoelg mov amaptifovv Tov mAnBucpd evog EA, aviummposwmmeboviar omd
YOVIOUDUOTO, EVOEXOUEVMOS OLAOIKA KOIKOTOMUEVE, OV €KEPALOVY TOV GLVOLOGUO
TILOV PETOPANTOV oL divel Tnv kdBe Aon. O EA epapudlet ota yovidiopato ovtd Eva
OUVOAO OmO TEAECTEG, MOV UE TN OEPA TOLG VOl EUTVELGUEVOL OO TG OLAPOPES
dwdwoaciec ot omoieg ovviotatow 1 EEEMEN: Awctadpwon/Avoarapaymyr, dvcowkn
Emloyn won Metdhhoén. Emedn opwmg oev eivol amoAdTog Goehg 0 TPOTOG OV To
TOPATAVE® GLVOLALOVTOL, KOt €V TEAEL OEV EMOPKOVV Y10 VO LOVTEAOTOMGOVY LE ATOAVTY
akpifela ™ @uoikn olepyoacio mov odnyel ot Pertioon TOV YUPUKINPIGTIKOV VG
€100V, VIEIGEPYETAL KO 1] TUYOLOTNTAL.

"Evag EA npoonaet va Bpet Aon og va mpdPAnua mposapudlovtag v avaltnon g,
pe v O Aoy mov éva €uPlo €idog mpocapudlel Ta YOPAKTNPIGTIKA TOV OTIG
OTOUTNOELS TOV TTEPPAAAOVTOC TOV, TPOKEEVOL VO EMPIOCEL. AEV KATOPEPVOLV OUW®G
oo to €idn vo emPiocovy, mwapd UOVO OLTO TOL OMOOEIKVOOVTOL IKAVOTEPO, VO
TPOGOPUOGTOVV, £TGL Kot 0 EA dev emevovel oe OAa TO YOVIOLOUOTO TTOV oaptilovy ToV
TANOvoUO, OAAG amoppinTEl KATOWL KOL YEVVA KOWVOLPLO, TPOIOVIO NG EEEMKTIKNG
dwdkaciog. Avt 1 evorliayn AapPavel xopa ke yevid-emovainyn Tov aAiyopifuov.
Y1606 elvar va emPLOVOLYV TAVTO TO TPOGUPUOGTIKOTEPO €101 - OL KOAVTEPES AVGELS -
KOl [E OLVEYN OOTAVP®ON KOl UETOAAAEN OLTOV VO EMTVYXAVOLUE TNV OAOEVOL
KoAOTEPT TPpOoGapUoYn - Avon. [apepmntovimg, n petdAroén eival o KHPLOG EKPPUGTNG
MG oToYaoTIKOTNTOG oTov EA: oty amAodotepn TG HOPQN, CLVICTOTOL GTNV OTAY|
petafoAn tov 1 og 0 N tovumaAy, evdg bit TOV YOVIOIOUATOS-XPOUOCOUOTOS, LE OTOLN
aKaBOp1oT ENMNTMOON EYEL VLTO GTIG IOIOTNTES TOV YOVIOLDUOTOG,



"Evac tomikdg EA akoAovBel v €€ng pon, 0mw¢ amewkoviletal kol 6to oyfua 2.1: agpod
apywomromBovv tuyaio A to mAN00g vroyMEleg AVGELS, ePoprOlOVTaL ETOVOANTTIKAE TO
akorovBa Pripato, £0¢ 0TOV 1KOVOTOMOEl KATO10 KPITHPLO TEPUATIGLOV TOV aAyopifpov:

o Aworoyodvtan ot A Ao amd T0 OTO10 EEEIOKEVUEVO AOYIGUKO VITOAOYICUOV
TOV CLVAPTNCEOV-CTOY®V givar dtobéopo, e&dyetor onAad” yoo v kabepuid
QVTIOTOUYN TYN TNG AVTIKEIUEVIKNG GUVAPTNOTG.

o Ot koATepEG €€ avTOV g16€pYovTal oTovg EmmidekTovg, 6mov, ava mdoo otiyun,
ovyKotaAEyovtol ot € To TAN00g KaAOTEPES, HEYPL OTLYUNG, ADGELS.

e Emiéyovian oamd tov tpé€yovia mAnBvopd ot p 1o mANBog yoveig, oamd
oraoTavpon tov omoiwv Bo TpokdyeL 1) emOUEVN YeEVEQ TANBOLG A, Ol amtdyovol
(evoéyeton p=A). H Swdwaocio g emroyfqg AouPdavelr, @Quoikd, vroyn tnv
moldtnTo TG KAOE Avong, PACEL TYNG OVTIKEEVIKNG GLVAPTNONG, OAAG O1ETETAL
Ko 00 KOO0 TVYOOTN T

e [lpaypotomoteitor  S106TAOPMOGT, L0 SLOOIKOGIO TOV TAPAYEL VEEC VITOYTPLES
AoELg GLUVOETOVTOG TUNUATO TOV YOVIOLOUATOG KOOEVOS EK TOV YOVEWV.

e H véa yevid TEMK®OG SOUOPOOVETAL LLE TNV TPOCGONKT TTPoidvTV peTarrlaing,
apoL OVTY| EPAPUOCTEL G€ TVYaIN EMAEYEVTA LEAT TOL TANOLGLOV, KOl EMTIGHOV,
0 omoiog emPBairel avbaipeta v emPiwon kol Tapovsio eVOg 1 TEPICGOTEP®V
EMALKTOV oTN v YeVED, Yo va €yyundel oToyelmd®mG TNV ToOTNTA TNG VENG
OVTNG YEVEQG.

2.3. Iowv-Kprvtnprokn Beitiotomoinon - Katd Pareto Kvpwopyia

Onwc vroypappiomke otov mporoyo, o ITA, mapdtt eivan o BEon va Aoel TpoPAnuata
evOg otOYoL, avamtuydnke pe yvopovo Ty KoAn omnddoon évavtt mpoPfinudtov TToiv-
kpunploxkng Beltiotomoinong (IIKB). H mpocéyyion twv tedevtaimv eivar mwol
SLPOPETIK OO avT TOV TPOPANUATOV €VOC HOVASIKOD GTOYOL, Yo dVO KLPIovg
Adyovg:

I.  "Eva mpoPinua IIKB emdéyeton yevikd mepiocdtepeg g piog PEATIOTEG ADGELS:
AT0dEKTEC UTOPOLV VoL YIVOUV OVTEG TOVL £YOVV TNV ATOALTY ATOO0CN G TPOG
éva 6TOY0 UOVO, AGYETMOG TNG EMIO0GTG TOVS G TPOG TOLS VITOAOITOVS. Y TAPYOVV
Kol EVOLAUECEC ADGELS 7oL  amodidoVY  £€vol  OMOTEAEGUO  TEPLOCOTEPO
LGOPPOTNUEVO G TPOG TOVG OAPOPOVS GTOYOVG, LE TKOVOTOINTIKY) GUVOALKY|
TO10TNTO, YWOPIG VO ETTVYYEAVOVV TO ATOAVTO G TPOG KATOOV €€ QVTAOV. ZTdvio
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pio ko povadikn Avon Ba pmopei va eEacparicel ™ PEATIOT| ®G TPOg OAA TO
Kpurtnpa. amdooon, KoM avTd Ta Kpitnpla ivot, YEVIKE, avTikpovoueva. Av dgv
elval, GAwote, to TPOPANUA poc pmopel va avaybel ce evdg oTOYOL KOl VO
AVTILETOMIOTEL AVAAOYMG.

Il.  Agv glvar dvuvatd vo KatatdEOvpe e AmOALTO TPOTO TO GUVOAO TMOV dVVATMV
AMoemV ®¢ TPOG TNV TOWOTNTA TOVG, UE PACTN TEPIGGOTEPO TOV EVOG KPLTNPImV.
A6 000 AVGELS TOV LITEPIGYVOLV N Hia TNG AAANG OC TPOG Evay Amd dVO GTOYOVC,
mota etvan ) kaAvtepn? Tlap’ dha avtd, Ba ypelaotel va emAéovpe petacd dVo 1
TEPIOCOTEPMV AGEMV TOAEG POPES, EMEVOVOVTAG GE KATOEG KOl OMOPPITTOVTOGS
GAAeC.

[Mveton Aowmdv Katavontd, OtL mpémer vo. avoamtuyfovv pnyoavicpoi mov: o) Oa
KOTATAOOOVV TIC AVGELS e TN peyaldtepn dvvarr| altoxpatia (mov Bo amopaivovrol yio
10 mown AOon Oa mpotiunOel évavti pag GAANG, €K TPAOTNG OYE®S 1G0OVVOUNG),
Aappdvovtag voyn kot TG 110t TEG TOV TPOPANpaToS, Kot B) B wBodv Tov akydpBuo
Vo ovaKOAOWEL ADCEG mov B KoADTTOuV €va €upy KOl TOWKIAOUOP(PO  (QAGLLOL
SLPOPETIKOV GLVOVAGLMV aTOO0GNS MG TPOG TA, HLAPOPO KPLTHPLOL.

H npdn emdinén Bpioket ev puépet 816€000 otnv évvola G katd Pareto kopropyiog [23],
oOUE®VO, PE TNV omoia pio AVoM Kpivetal o¢ un kvplopyovuevy, 0tav kopio GAAN Adon
dev Eemepvd v emidoon g w¢ mpog OAOYE tovg tebeipévong otdyovg TavTdYPOVO.
Oewpolpe dg, Ot1 pion Aon xovpiapyel ent piag GAANG 6tav givor KOADTEPT QLTINS WG TPOG
€va 0TOY0 TOLAG(IOTOV, EVM OV €lvarl YEPATEPT OWTNG G TTPog KAbe dAloV EexmploTd
(€. 2.1). To 6VOVOAO T®V UM KLPLLPYOVUEVOV ADGEMV OV Umopohv va doBodv og éva
TpOPANLO SopopP@OVOLY TO Aeyduevo Métwmo Pareto ko dgv tifeton Oépo mepontépm
oLYKPLONG UETAED TOV.

H 6evtepn emdiwén pmopet va emitevyBel dia moAhdv 0dmv. [ToAréc emepPdoelg pmopovv
va yivouv o€ évav adyoplOpo BEATIoTOmoinoNg TPOKEEVOL va ToV amobapphvovy amd 1o
va emkevipwbel e meplopiopuévo e0pog Acemv. Tn pHeyaldTepT GLVEIGPOPA G AVTO TNV
€Youv o1 povtives Tov avalopuPdvouy Kot TV Katdtasn Twv vToyneiov COLE®V [E TNV
apyn ™G Kupuapyiag, Omov pmopel vo Anedel emmAéov vmdym, OLGUEVOS YO TNV
€KAOTOTE LTOYN PO AVOT), 1] VITAPEN SVGAVAAOYO TOAADY TOAD OLOLOV AVGEWMV.

H Aertovpyia avimpocomrevtikdv tétouwv povtivav (SPEA 2) moapovcidletol ektevdg
otV mopdypogo 2.3.



3. Hepi g MeB660v Xpunvovg Xopatioimv

3.1. Nonpoosvvn Zpuivovg kon Teyvikn Zpuivovg Xopotidiov

‘Evog xohdg opiopdc ¢ Nonpoovvng Xpnvovg (Swarm Intelligence) eivau:
«M GCLAAOYIKN GULUTEPLPOPE OVTAPKAOV HEV, OTOKEVIPOUEVOV OE, TEXVNTOV 1|
QLOIK®OV cVOTNUATOV». Me amdd Adywa, NZ eival avt 1 akabdpiotn dvvaun mov
VONUOTOOO0TEL TN GLUTEPLPOPE EVOC GLVOAOL ATOU®MV KATO TNV ETOPN TOVS UE TO
wePPAALOV TOVG OALG KOl TV OAANAETIOPOCT TOVG: VA OV LTLAPYEL KATOLN GOPNG
apyn mov opilel mmwg Ba cvuneprpepBel avtd T0 GVVOAO, N dpAcT TOLG dLEMETAL UTO
Aoyikn kot opotoyéveta. ‘Eva kadd mapddetypa gival pia amotkio popunyKidv mov,
xopic T1g Wwitepa e&elntnuéveg 01e£000vg emkovaviag HETOED TOV HEADV NG,
KATAQEPVEL VO GLVTOVIGTEL Ayoya Kot vo emttvuyel omovdaio mpdypata. Ot pédodot
NX elvor padnpatikd epyaieio, pe vroPadpo eunvevopévo and tétolo Tapadeiypota
(ouqvn yopldv, eVIOp®V, TOLMOV KAT.), TOV EKUETOAAEDOVTOL QVTH TN VONUOVO
dpaon yo va emMAVGOLY TPOPANLATA.

H teyvikn Zunvovg Zopoatdiov [1], topa, n onoia mpoékvuye apylkd wg epyareio
LEAETNG KOWMVIKNG SVUTEPLPOPAG kol pete€elytnke o pnéBodo Peitictonoinong,
HHEITAL TN CLUTEPLPOPE €VOG GUNVOLG TOLMAOV €V TTNOEL KOTA TNV avalntnon
TPOPNG. ATOK®OIKOTOLDVTOG £VOL GOVOAD ETUEPOVS OPACEMY, OTMS T.Y. N ATOPLYN
oV0YKPOVONG HETAED TOVG OAAE Kol M mpoomdBelo va punv amopokpuvlovuv and To
oUNVvog kot amodidovids Tig ota dtopa plog TANOVOUIOKNG GTOYXOOTIKNG HeBdooL
kataAnyovpe ot BEE. Onwg kot ta movAd, ta péAn tov TAnBvspol piog tétotog
pnebddov avalntovv Avon oto mpoPAnua Bacilopeva 1660 GTNV TPOCHOTIKY TOVG
avtiAnym tov y®pov avaltnong, 660 Kol 6T GVAAOYIKY] TPOOSO TOL GUNVOVLG. AV
ToxoV, OMAadY, KAmolo dtopo deiyver va to mnyoiver wioitepo KaAd, £xoviog
AVOKAADWYEL KOO0 TOAAQ LTTOGYOUEVT ADom 1| Teployn Aoemv, dAo To cunvog Ha
OVYKAIVEL TPOG TO PEPOC TOV, JLATNPDVTOG TNV ATOUIKT TOV EYPNYOPON.

Xi,k+1 - Xi,k +\7i,k+1 (eq- 3-1)

\7i,k+1 = W\7|k +C (Ghest, - )Zi,k) (eq. 3.2)

SoC

‘R (Pbest, = X, )+Cy R

cogn

H poBnpotikn dwotonowon tov mopardve divetar and tig €6, 3.1 ko 3.2. To kdbe
ocopatidto 1 éxel avd maca otypn (smavainyn K) pio taydtnta mtiong \Q/ivk, 7oL

kaBopiler T 6éom TOL OTO YDPO )ﬁ(i'k. Evdwpépov mapovoidler 10 modg opiletar m

toyoTnTo. TTRong: oto 2° péhog e 3.2 Stakpivovpe Tpec mapdyovieg, Tovg Opovg
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Kextnuévne Toydtnrac 1 Opunc (inertia), Nontxic 1 I'vwotikic Emipponc (cognitive
influence) kv Kowwvikng Emipporc (social influence) avtiotoryo. E&etdlovpe tov
kabéva Eeymplotd:

O 6pog opung amodidel v emidpacn g Omol0g KEKTNUEVNG TaXOTNTOS £XEL TO
oopatidlo ot véa TOL TOYOTNTA TTHONG, MOOTE Vo amo@evydei po ToAD amdTOUN
dtakHpaven TayvT TV TTong mov 0a e&ébete 1 Sradikacio avalntnong. To W og
avtd ToV Opo KaAeitar 2ovreleotiic Opung, kabopilel L T0c0G6TO TNG TapeAbovong
TG Toyvtntog Ba dtotnpnbel og opun ko, ©¢ €K TOLTOV, €ival N TPAOTN €K TOV
TPLOV Pacik®V pLOUCTIKOV Tapapétpov e BEX.

O 6poc voNTIKNG €MPPONS 0modidel TNV emidpacn TG 010G EUTEPIAC KAl AVTIANYNMG
TOL ATOUOVL otV endpevn tov kivnon. Exepdaletor o¢ pia tdon tov copatidiov va
Kwnlel mpog Omov €xel KATAPEPEL UEXPL TOPO VO ONUEIOCEL TNV KOADTEPT
npocomiky enidoon (Personal best - Pbest;) eneidn exei Bewpei ot Oa Bpet axdua
KaAOteEPN Aomn oto mpoPAnpa. O mapdyovtag Ceogn Kodeitar Nontikdg Xvviedeostng
Emtéyvvong kot eivan 0 8e0tepog o€ oepd Pactkdg puOuetikodg mapdyoviag. O o Reogn
naipvel toyoio Tpég petacy 0 kot 1 kot ekmpocwnel T0 GTOXAGTIKO GTOLYEID GTO
vonTikd 6po.

O tpitog 6poc, aVTOG TG KOWMOVIKNG EMPPONG, ATOSIOEL TOV TPOTO [E TOV OTOi0 M
YEVIKOTEPT] KATAGTOOT KOl TPOOO0S GCVGGMOEIOL TOL GUNVOLG PapOVEL GTNV ETOUEVN
kivnon tov copatidiov. Exepaletor wg pio tdon tov copatidiov va kivn el mpog
0éomn ¢ KahdTEPNG UEYPL GTIYUNG ADOMG TTOV £XEL EVIOTIGEL GLVOMKA 0 AAYOP1OLOC
(Global best - Gbestj)). O mapdyovtag Csoc koreitar Kowwvikdg Zuvvieleotig
Emtéyyvvong ko givar o tpitog Pacucdg pubuieticdg mapdyovtag. [a tov Rsee 1oy0el 0,11
Kot Yo Tov Reogn.

To oyetwd péyebog tv 6H0 cvvtedest®dV emitdyvvong kabopilel 10 Katd TOGO TO
COUOTIO «CLUHOPPDOVETO» UE TIG EMITAYEG TNG GLAAOYIKNG CLUTEPLPOPAS KOL
Kot TOco akolovBel 1o 01kO TOV «EvoTiKTon. Onwg Ba cuintOel kol TapakdT®,
&xel mapotnpnbetl 6TL N Evtova VONTIKN CUUTEPLPOPA EVVOEL TNV - KATWOG YOVOPOELON
aAld ypnyopm - e€epedvnomn TOoL YOpPOL avalnTnong mov givalr mTEPLGSOHTEPO
emBbounT Kotd TOo TWPOTO OTAO NG PeATiotomomTiKng mpoomdbelog. H
CLUTEPLPOPA PACEL KOWVMOVIKNG EMPPONG, avtifeta, guvoel TNV O EKAETTUGUEVT
KOl OTOYXELVUEVN oavalntnon otnv mepoyn Tov Peitictov Adcewv, oa@od o
aAyOoplOpOg €€l EVTOMIGEL TIC VIOTMEPLOYES OVTES, TPOG TO TEPOG TNG EKTEAECNG TOV.
A&iler va avapepBel 0TL €xovv yivel melpapaticpol pe 0Aa ta mlavd evaAloKTIKA
oymuota g BEX mov mepthapfdvouv povo 00 €k TV Op®V OPUNG, VONTIKNG Kol
KOWMOVIKNG EMPPONG, TOV EMPERALOVOVV TNV AVOTEPOTNTO TOV TANPOVS GYNLATOG.



Emonpaivetar 611 0o Adyog mov kot o mapdyovroag Gbesti éxer deiktn 1 eivan 611, o€
npofiuota TIKB, dev avtihapfdvovtol arapaitnto OAo to dropa v 101 Ao ©¢

Kabolkd kaivtepn. Apa 1o Gbest givat yevikd id1ov tov kdbe atdopov, 6Tmg akpiPmg
kat to Pbest.

To oyfqua 3.1 oamewoviler T pon &vog otoyel®on Té€Totov aAyopiBuov BXXE, kat’

avtioToyio pe avtnv evog otolysidon EA (oy. 2.1).

3.2. PoOmon tov Kvpiov Hopapétpov tng BXX

H myn mov Ba AdPouv or tpelg autég puBuiotikég mopduetpot, oniodn ot ovo
OUVTEAEGTEG EMTAYVVONG KOl O GUVIEAEGTNG OPUNG, KO 1] LETAPOAN, EVOEYOUEVAS, AVTNG
™G TWNG KOTA TN pon NG dtadikaciog avalnnong emAEyovtal e yvouova Tig €ENg 0vo
emBounTég KATOoTAGELS:

Ot taydTNTES TTHONG VAL UMV TAPOLV 1O10UTEPA VYNAEG TILES KOlL, TO KUPLOTEPO, VOL
LNV LIAPYOVV VIEPAKOVTICUOL KOt OMOTOUES OLIKVUAVOELS OTIG TUWEG OQUTEC.
Ewdrhog, tinota dev eumodilel éva dropo va Pyet kot extdg opimv 1oV YDOPOL
avalnTnong 1, aKOLO Kol oV KATO10G KATAAANAOG UNYOVIGOG TO KPOTAEL KOVTA )
EVTOC TV opiwv owt®v, vo unv €xel v embount cvumeppopd. [opdAinia,
dgv emBopov e Kot vo Yivouv ot ToydTnTeg TOAD HKPES.

O aAy6p1Bpog vo ETOEIKVOEL IKOVOTTOMTIKT £EEPEVVNTIKN IKOVOTNTO GTO TPMOTOL
otad ¢ ovalnTnong, va €uvoeitol ONAadN 1 VONTIKY CLUUTEPLPOPE Kot Ot
ToYOTNTES VO €ival opKOVVIOG VYNAES DOTE OYETIKO LEYAAEG OMOGTACELS EVTOC
0V YOpov avalnmons va koaivmtoviar ypnyopa. Ilapdiinia Opwmg, va pnv
ndoyel ota VOTEPQ GTA, GTAV TO GUNVOG £XEL TOAVOTUTA CLYKAIVEL KOVTA GTIC
BéAtioteg Aoelg Kou Yoo va TIG €viomioel, mpémel vo  ekAemtuvOBel otov
amoutovpevo PBabud m ovumeprpopd tov: vo odnynbdodv cmoTE Kol e OPKETH
UIKPES TaYOTNTEG TO COUATIOWN TPOS TIG EMOIWKOUEVES AVGEIS. AT 1 o™ TG
OTOYEVUEVNG KOl EEOVUYIOTIKA HWMKPOGKOTIKNG TPOCEYYIONG TV PeATioT®mV pE
exueTaiievon g NON CLYKEVIPOUEVNG TANPOPOpiag (o dOKIOG etvar o 6pog
exploitation - expetdAlevon) Bewpeiton ayirielog Trépva g Oepeliddovg BEX.

"Exovv mpotabel moArég dopBwtikéc emepfdoelg oto padnuatikd vrofabpo g BEXZ
TPOKEWEVOL va emtevyfodv To mapamdve, UHETOED TV omoimv 1 emPBOAN} SuVaUIKA
HETOPAALOLEVOL VD TTEPLOPIOTIKOD OPOL GTNV TaLTNTA TTNoNG. Mia T€Tola TPpocsOnKn
Nrav Kot 0 1010¢ 0 cvvtereotng opung W, o omoilog amovsiole amd TNV TPOTN YPOVIKA
npotaot ™ BEZ. ‘Eyetl eniong deEaybel mAn0og mapapetpikdv peAet®mv (TepiocOTEPE]



AETTOUEPELEC GTO KVPIWEC GO0 THG EPYUCTINAG).

Mio GAAn mpdtaon, mov viobeteiton kKo otov ITA, eivor avt) TOV YPOUUIKAOG
uetafairiopevov puouotikdv Topopétp®v Csoe ,Coogn kot W xat’ avaroyio Tov
TOGOGTOD TMV GLVOMK®OV EMAVOANYE®MY TOL oAyopiBpov mov £€xovv oAokAnpwOei
(e€. 3.4, 3.5, 3.6). Ilopatmpeiote 011 00 W kot Ceogn pHEWOVOVTOL HE TNV TAPOSO TV
emovalyenv, evd 10 Cse avédvetat. 'Etol, o akydpiBuog teiver va guvoel Ao kot
TEPLGGOTEPO TNV avalTNon VIO GLAAOYIKY ETPPOT, EVO TTEPLOPILOVTOL GTAOIUKA KOl OL
TayOTNTEC TTNHOMG, LE TN Helmon Tov cuvtedeoT| opung. Ta Ave Kot KATm Oplo AVTNG TNG
petafolng empPdirovioar KatdAANAQ OGTE TO AOPOICUA TOV CLUVTIEAEGTOV EMTAYVVONG
KOl O GUVTEAEGTNG OpUNG va unv emrpémovv vrepfoiikn tayvtnta. To mapdv oynua,
OmwG eivol TPOPOVEG, TPOGAVOTOMIETOL OTO VO EVIGYVCEL TNV EKUETAAAEDON YWPIG VOl
ocuopupipdoet v oD koAl e€epevvnTikn kavdtrta g BEX.

3.3. Avtutapafoin BXZX kot EA

E&etalovtag 10 Bewpntikd voPabpo TtV 300 We®V, TapaTnpovE APECOS TIS €ENG
OPO1OTNTEG: Kat 01 VO glvat otoxaoTikéG HéBodot kol pdiota TAnfvoplakoy THTOVL,
YXEPAYOYOVUV ONAAOY| €va TEMEPACHEVO TANO0G VIOYNPiV AVCE®MV TOV KIVEITOL LE
TPOTO KOTO PEYAAO TOGOGTO TLYaio €VTOC TOL TEHIOL OPLGUOL TOL TPOPANUATOC
avalntovtoag Avon(-€1g) Tov. Me KatdAAnAn epapuoyn €vog cuVOAOL TeAeaTwV €mi
TOV oTOpU®V TOL TANOLOHOV amoomovV eVOeEifels yio v evdgyouevn 0Béomn tov
mrodpevov Bertiotov, evioydoviag TNV amod0oTIKOTNTA CLTNAG TNG OadIKACiaG.
Awatnpovv, PBefoaimg, T TAEOVEKTNUATO TOV GTOYACTIKOV HEBOd®V, TV guKOoAin
YEPLGUOV, TNV aveEoptnoia kot eveM&ia TOVG.

Yy mpdén, poralovv oto 0Tt drayetpilovron Kot devtepedovteg TANOLOLOVS, dTMG
o1 emidextor otovg EA xat to apyeio tov Pbest otn BEZ, o1 omoiot vrostnpilovv
Aertovpyio TV TEAEGTOV YeEWPOAYDYNoNG tov TANBvouov. O e Pacikds TOLG
ninbvopog eivar otabepod peyébovg, aAld eved otn BEX dwatnpeitor avtovclog
péxpt téAovg kol amhid emavatomobeteitor oto Ydpo, otovg EA avavedvetat
ovveYms, Kabmc véeg Aoelg yevvavtal ot Béon avtdv mov amoppiednkav eAéwm
KOKNG emidoons. Xvvendg n BEX yapaxtnpiletar and pio décpevon vo PeEATIOVEL
EMUEADG OLo TOV TANOBLVoUO NG, evd ot EA ¢povtilovv amid va dtatnpovv évoav
apOpod atdépv avd yevid oe YN eninedo.

‘Eneita, vrdpyovv coageig aviiotoryieg avapeoo oTig d1adIKAGIEG XEIPAYDYNONG TOV
vroyneiov tov €vOog Kol tov GAlov (mivaxkag 3.1), mapdtt avtol kabBavtoi ot
tehecTEC Oev elvan 1660 drakpitol otn BEX 6co0 eivar otovg EA. H dractadpwon
Bouiler évrova ™ Owadikacio emovatomofETNONG TOL GUNVOLS GTO YDOPO, OTOL
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otoyelon amd OloQopeTikd Atopa (gviote KOl  OELTEPELOVTI®V TANOVGUOV)
ocuvumapyovv otn véa Avon mov mpokvmtel. O opiopdg Pbest/Ghbest Ovpuiler tov
EMTIGHO, VIO v évvola OTL Kol Ot 00 €EVANPETOLY TNV TOLOTNTO TNG VENG
«POVPVIAG» vIoyNeiov Avcewv emPdiloviag va Anedst vdyn n mponyoduevn
fetikn Spaoctnpromra. Onwg Ba dovpe kar mapakdto, o mepumtwoelg [IKB, 1
avadelgn piog Avong oe Global Best poialer moAd pe v emdoyn Kabotl, £6T® KL av
otn BXZX 6¢ drakvPevetal | emPiwon Tov copatidiov, av avtd emdeyel, 0 pOAOG TOL
evioyvetor onpovtikd. Eivor Aowmov e€icov peyding Poapvtntac n €mAoyn avty va
yivetat a&lokpaTikd.

AAAN onuovtikny opotdtnta givor M Vvmapén Cotikng onuacioag puOUIGTIKOV
TOPALETPOV, Ol OMOIEG LAAMGTA TPOTIUATOL VO HETAPBAAAOVTAL KATAAANAQ KOTA TN
pon tov oAyopiBupov, mpokewévov vo vrofondncovv T petdPfacn amd Evtovn
€EEPELVNTIKY OPACTNPLOTNTO O QAoM NG éekuetdlievons. Eml mapadeiypatt,
opoiwg pe to OGO €ldOpE YO0 TOVS GLVIEAEGTEG emtdyvvong, ovvnbiletar va
emPaAletal Kot 6TadlOKN HElWOT o1V TOAVOTNTA EQAPLOYNG HETAAAAENC.

H ov{mon mov Aappdaverl yodpa oty mapdypapo 3.4 KaToANyel 6€ OTOTEPO GUYKPIONG
TV yapoknpotikov EA kot BXX Ocov apopd otn ocvoumepipopd TOvg KATA TNV
extéleon, to puOUOd TPOOdoL, TN YEVIKOTEPTN €midoom kol To TEMKO amotédecua. Ta
oynpata 3.3, 3.4, 3.5 ancwkoviCouv ta amoteAéopota Piog TEPAUOTIKNG TPOSTADELNS VL
KatadeyBovv avtd Ta YoupakIPIoTIiKa. Xmpig va pmopodue vo Edyove GUUTEPACUOTO
Yo TG yevikdtepeg oOvvaromteg g Kabepiag pebddov, agold vmhpyovv Amepeg
woapoAlayéc g  kabgpdg, mOwiAng  TOALTAOKOTNTOG KOl  OTOTEAEGLOATIKOTNTOC,
UTTOPOVLLE VO TOPUTNPNCOVLE Koo whylo oawvopeva: 1 BEX delyvel va cvykAivel mo
YPNYOPO KT TIG TPADTES EMAVOANWYELG-YEVIES, EMOEIKVOOVTOG e€OPETIKN €EEPELVITIKN
wavotnta. Kotdmy, kdvel v gpedvion g n Oepehdong mpofAnpatikdttd g ot
QAo NG exuETAALEvaNS KO 1] TPOODOG ovaKoTTeTal amdtopa, 0 EA kepdilel £dapog kot
EVOEYOUEVMG TPOOTEPVA, dIVOVTAG GLYKPIGILO 1) KOADTEPO TEAMKO OMOTEAEC L.

AmO To TOPOTAVE®, TO OMOI0L OLOMIGTEVOVTOL KOl OO TO TEPAUATO TNG TOPOVONG
epyaciog (Ke@. 5), pmopodpe va cvopmepavovpe yovopikd 6tt o EA givan évag moAv mo
GOPPOTNUEVOS UNYOVIGUOS avalnTnong, Xopig speavny advvapio ot pio | v GAAn
eaon ovtig. H BXZ, and v GAAn, deiyvel va mAeovektel ot @don g e&epedvnong
0ALG yével To Omoto mPOoPadiopa AOY® KOKNG CUUTEPLPOPAS oTa TeEAevTaio oTddwo. Na
toviotel, Pefaimg, 0Tt 0 odyoplBpoc BEX 100 avotépm cuvykpitikod mepdpatog dev
EVOOUATOVEL LETAPANTEG TOPAUETPOVC, Ol 0ToieC Ba PeATiovay ca@dS TV amdO0GT| TOL,
€101KA TPOC TO TEAOG. ALOPAIVETOL GOPDG 1 TPOOTTIKY| VPPOIGHOV TV dV0 pebBdd®V, pe
tov EA vo mpocpépel v 1ooppommuévn ko otabepr tov amddoor kot 1 BEX v
TEPLOTACIOKY] ToVTNTO 6VYKAoNG TS. H 1dwa n BEX pmopet va Bertiodel onpovtikd ov
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davelotel otoyyeio amd tovg EA dote va pmopel vo mpooapudlel KoAvtEpo TO
YOPOKTNPLOTIKA TNG OVAAOYO LE TNV TTPOOJO TNS avalTnonG.

4. O mpotetvopevog aryoprOpog

To 4° kepdharo mopadéter pio-pio T drokprtéc Aeitovpyieg ToL TPOTEWVOUEVOL
aiyopiBuov, Omwg avtd opilovior pe yvopova v Ol0KPIGN TOL KMOOKOL GE
vropovtivesg, yopic arapaitnTa va Tnpeital  6e1pa pe TV omoia AVTEG EKTELOVVTAL.
Otav 6¢ yivetoar avaioyn emonuoveon, exeEnynomn N mopomouny, Hewpeitar 6TL 0
TEPLYPAPOUEVOS UNXAVICUOG Elvol TPOTOTVTTOG. £TO TEAOG TOV KEPAANIOV LTLAPYEL TO
TANPES dLdypappo pong g akoAovdiag TV 010@op®V VTOPOLTIVOV (4.24).

4.1. EnavatomodéTnon Xunqvoug

Hekwdpe pe m dwdkacio avavémong g 0éong Tov copatidiov 6To XOpo
avalntnong, HEcm tov enavakabopiopod g TaxvINTog TTHong tovs. Eeapuolovrat
oniadn ot BegpeMmocig eéiomwoelg g BEX (€€. 4.1, 4.2), mov efetdotnkov ©TO
kepaiato 3 (emoavarapBavovior Yy Adyovg mAnpdétnrag). Evtog g idag
VTOPOVTIVOG YIVETOL KOl 1) TPOCOPUOYN TOV GLVIEAEGTAOV EMTAYVLVONG KOL TOV
OVUVTEAEGTH] OPUNG, COUPOVO HE TO CYNUO YPUUMKNG UETOPOANG oL culnthOnke
eniong oto keediaro 3 ko otverar and tig eElowoelg 4.4, 4.5 kar 4.3 yo kdéOe
péyebog, avtictorya.

4.2. Apywomoinon

[Ipoywpovpue o1 dadikacio apykomoinong tov aiyopibpov: €d® amodidetol 6To
k00e copatioro n mpotn Béon mov Ba AdPel oto YOPO duo TN EKKIVAGEL NG
avalnmnons. Mia yevvitpla toyxaiov apltiudv emiéyet Toxaio TipéG evTOC TOL TESIOV
0PIGHOD TOV UETAPANTOV GYEOIOGHOV KOl KATMG £TGL CUUTANPOVETOL EVOL TANPEG
dtdvoopa oyedacpov yuo kKéBe dropo. H taydmmrta mtiong dev eivar dvvatdv va
apykomonBei Toyaio, 0AAE TpOTIHATOL VO UNV am0d00el UNdeVIKN apyIKn TaYVTNTA,
Ommg B NTov pio ETAOYN: To cOUATIOW EEKIVOUV e HIKPN TOYVTNTO TTHONG TPOG
T0 KEVIPO TOL YWpov avalnong, pe PETPO avdroyo TG andGTACNG TOVS Amd
avtov. Amopevyetal £tot va Ppebel kdmolo copatidlo kTOS y®Pov avalTnong non
amo TNV TPAOTN ETAVAANYN.
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4.3. Xaipopog Enidektov Avoewv

AxoAiovBel 1 wEPLYypap] TOV AEITOLPYLOV TOV £XOVV VO KAVOLV UE TN YEVIKOTEPT
dlayxeipton TV ovd maco oTiypn un kvptopyodpevev Avcewv. Ipoeavmg, avtég
anevBovovtor oe mpoPfAnuato [MIKB. Gupifovpe 611 T dv0 kOplo {nTHpaTe TOL
xpnlovv mpocoynNg eival 1 KATAPTIOT TOL HETMOTOV TOV U1 KLPLAPYOVUEVOV ADGEWDV
Kol 1 €E0oQAAoN UL0G GYETIKNG ETEPOYEVELNG HETOED TOV TEPLEYOUEV®V TOV, DGTE
vo  kataAnovpe oe €va oOvoro Abcewv mov BOo  KOAODTTEL o TOIKIALX
oVUPIBacTIKOV GLUVOLACUOV HETAED TV Kprtnpiov. ['ivetor pio cvvtoun mapdbeon
TOV ONUOPIAESTEP®V TEYVIKOV (TEPpav TG SPEA 2 mov €yet oM cvl{nmOel), petaly
TV omoiov 1 néBodog NSGA II, moAd kovtd otnv omoia BpiokeTal Kol 1 TPAKTIKY
mov viwofetOnke otov I1A.

H xoatdption 1ov HETOTOV TOV pUn KLPLAPYOOUEVOV AVCE®MV (1] TOV EMAEKTOV, GE
oporoyio EA) yivetal e dvo otadia. IIpdta cuykpivovtor peta&d tovg ot AVGELG
TOL OVTIGTOLXOVV OTIS TPEYOLOEG BE0EIC TOL GUNVOLG Kol EMIAEYOVTOL Ol Un
Koplapyovueveg avdapecd tovg (ox. 4.1). Katomv avtég eioywpovv otovg Mo
vapyovieg emilektoug (o). 4.2), T0 GHVOLO TOV OTOLOV SAUOPPDOVETOL TEMKE OV
anopprpBovv 6cec Aoelg Tposkvyav Kuplapyovueves (oy. 4.3, 4.4, 4.5).

H dwdwkacio tpodOnong g avopolopop@iag 610 cHVOAO TOV EMAEKTOV AVGEDV
TOIPVEL TN LOPPN EMAEKTIKNG ATOPPIYNG OVTOV TOV «TEPLTTEVOVVY, LTTO TNV £vvola
OTL VTAPYOVV KL GALEG TOAD Opoleg ADGELS, ONAAOT TOAD KOVTA TOVS GTO YMPO TMOV
Kpunpiov. Qg o6tov Eemepaotel éva mpokabopiopévo, amd to YPNoTN, Aved Oplo
nABovg tov emAéktov d¢ yivetal kapio mapéupocn ota mepeyopueva tov. Epdcov
avtd Eemepaotel, amoppintetar 1o mAgovalov TAN00g Acemv, ®¢ €ENG: amodideTal
oe k@B pun Kovplapyovuevo dtavucpe  oyedtocpod  pian Tun, iom  pe v
-00100TATOTOMUEVT)- ATOGTOCN ANd TO TANGIEGTEPO TOV GALAO UM KLPLAPYXOVUEVO
dtopo. H amdéotaon oavtn UETpATOL GTO YDPO TV GTOY®V, OYl TOV UETUPANTOV
oyedlacopov. O vVToOYNPLOG KE TN HIKPOTEPT TETOLO TIUN amoppintetot (o). 4.6), Kot
dtepyacio emavarappfavetalr ¢ 6tov ot enidektol va givon Tov gmBouuntod mAn6ovg
(oy. 4.7, 4.8).

4.4. Evnuépoon Personal Best & Anodoon Global Best

Oocov apopd v avavéwon tov davoopatog Pbest, vrdpyovv dibpopec emhoyéc.
Olec, 0nmg eivar euoko, Eektvoby and cOykpion g véag Avong-0€omg oto Ydpo
T0V copotdiov pe to vapyov Pbest. Kvplopyel n pia Abon eni g aAAnG? Av vau,
TOTE TPOPAVAOS EMAEYETOL 1] KLPLlaPY0G AVOT. AV Kapld dev kKuplapyel emt NG AAANG,
elvalr ot OloKkpITIKY] pOG vyépelo. vo emMAEEOLUE HETAED OVTIKATAGTAONG M
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dtatnpnong tov tpéxovrog Pbest. O TIA, xotapynv, emAéyel va aviikabiotd to
Pbest.

Mia GAAn depyaocia, ywpig vOnuo ce povokprrnplakd mpofAnpota, aAid Kopupikn
otnv IIKB pe BXX, givar n andédoon ce kbbe copatido evog Gbest davicpatog, to
omoio mpoeavmg Oo emAeyel amd TOVG EMIAEKTOVLG, OAAG TTOG; AVATTOGGOVTOL
pnébodot mov o Ba mapepmodilovv, aArd 0o vmootnpilovv TNV €TEPOYEVELD TOL
ovvoroL TV TEMKOV Aoewv. Eetdlovtal ouykekpiuéva ot €ENG EVAAAAKTIKEG, LE
aVEOVOO ATOTEAEGULATIKOTNTO, OTMC OTOOEIKVIEL 1] GUYKPLIGT| TOVG, TO ATOTEAEGLLOTO
¢ omoiag anewovilet to oy. 4.13:

e H pé@odog g Povrétag: EmAéyetar yio kdbe copatido, mg Gbest avtov,
€VOG OTMOLOGONTOTE €K TOV EKAEKTOV, €vieA®S Tuyoio. Edd n etepoyévela
eEumnpeteitor adldd N pnéBodog dev elvar 101aiTEPU GTOYXEVUEVT], LE EMIMTOOT
oto pLOUO TPoddov.

e H péBodog g Eyydtnroeg: Ymoloyiletoaw m oamdGTOGN, GTO YDOPO TOV
otoyov, Tov g&etaldpevovr copatdiov omd kibe PEAOG TOV EMAEKTOV.
Emléyetoan to mAnciéotepo. H Aoy g eyyvintag eivar va ocvvdebel to
GTOUO HE 100 KOVTIVY] TOVL UM KLPLapYOoLUEVT ADGT, TOV OVOUEVETOL VO EYEL
KOl TOPOUOL0L YOPOKTNPLOTIKA, ONANON va 0ivel Opota 6yeTikn Papdtnta otov
éva M Tov aGAAo o16)0. Otewog dpwg eEnyodv ta oy. 4.10, 4.11, n eyyvtnTa dev
anokAeietor vo cuvoécel To copotidlo pe po emilekTn Avon 1 omoio 0vTE
Kav Kuplopyel eni avtov! Katt 1étoto dev givar emBountd, xkabdg de cuvadet
pe 1o poio tov Gbest g 0dMyov Tpog PeAticwon.

e H «ovvovaotiki)» péBodoc: Edd spopuoletoar mdi povAéta, aArd pdvo
petald tov kvpldpyov eni tov efgtaldpevov copatdiov skiektov. Etot
pumopovpe TOvAdyloTo Vo €yyunBovpe 0tL o mpokvmtov Gbest Ba eivar pia
oVVOMKA KaAvTePN Aon and to e&gtalduevo copatidlo otnv Tpéyovca Béon
Tov, N €&icov kaAn, av T0 copatidlo Ppioketatl oe un Kvplapyovuevn Béon-
AOom. Xpnowomotleital oty Tpéyovca £kdoomn tov ITA.

H mapdypagog 4.4 olokAnpovetar pe mPOTAcES Yo mepoutépm PeAitiomon g
ddikaciog anddoong Global Best.

4.5. Ahdlec Asrtovpyieg

O yepopdg meplopiopdv mov tifevtar toyxdv amd 10 TPOPANUa yivetor amd
KOTOAANAO TEAEGTI] OV GLYKPIVEL TIC TIUEG TOV TEPLOPIOTIKOV GUVOPTNGEW®V, Y0l
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ka0e vmoynela Avom, pe o Opta wov €xovv tebel. Olot or mepropiouoi
AVTILETOTILOVTAL OG AV KAEIOTEC avVIo®OELS (€. 4.6), OMMC AMTOJEIKVVETAL OO TIG
e€. 4.7, 4.8, 4.9 611 umopel va ypagel kdBe eidovg meplopiopoc. O teAesTNg
TEPLOPIOUDV de AapPavel avotnpd LIOYN TOoL T0 KaBoplopévo dvw 0plo aAAd divel
Kol €va emmAéov meplB®Plo, TEPAV ALTOV. AV Hd TIUN GLVAPTNONG TEPLOPIGLOV
Bpioketar peta&d tov opiwv, TOTE N avtictoyn Adomn dev amoppintetorl pev, oAl
VEIoTOTAL QVGUEVH TPOCOPUOYN TOV TIUOV GLVOPTHCE®WV oTOY®V ¢ (g£. 4.10),
ocOpPOVa L TO ek0eTIKO oynua ¢ €€. 4.11.

To onpavtikdtepo eviehdg véo atotyeio tov TTA givar o Teleotiic Avadevong (Shuffle
operator). Ovopdletor €tol d10TL emepPaivel Plata ot pon g Pertiotomoinong,
emavopywkonolel  («aVOKOTEVEL) TO OUNVOG €VAO  VLWOJEIKVOEL Kol  VEEG,
ovykekpéveg katevBuveels avalnong yio Tig EVOTOUEVOVCES EMAVOANYELS TOV
alyopiBuov. To 16eatd onueio €papuoyNg ™G avadevons €ival Katd ta TeAgvTOi
otdda TG PeATioTonoinong, 6TOV N MTHON TOL GUNVOVS EXEL CYETIKA OVOKOTEL Ko
0. copatidln £govv Katakabicel Alyo mold otig telkég Tov Bécelg. H kadn mpdiun
ocoumepleopd ¢ BEX pag emrpémer v moAvTEAEL VA E0OEYOLUE UEPIKEG
0ELOAOYNGELS L€ TO VO EMOVOPYIKOTOW|COVUE TO GUNVOS, Yopig PéPota va
daypbyoovpe v Katayeypopupévn tpdodo (to apyeio Tov ekAekTt®V dratnpeitar),
Kivnon mov umopel vo amo@épel omovdaion 0QEATN, Kupiwg WG TPOG TNV ETEPOYEVELL
KOl 1GOPPOTIO TOV TEMKOV HETOTOL, OTWG deiyvouv ta o). 4.14 ko 4.22. Avddevon
ekteAeital pia popd oe xkabopiopévo amd to ypMotn onueio Ko, TPOUPETIKA, pia
devTEPN, EPOCOV TANPOVVTOL CUYKEKPIUEVO KPLTNPLAL GYETIKA LUE TNV KATAGTAGT TOL
HETOTOL TOV U1 KUPLapYoLUEVOV Avcewv. Ot 600 avTég TPEMEL Vo améYovV UETAED
TOVG OPKETA, YL VAL £XOVV ATOTEAECLLA.

O punyoviopdg xabopiopod L{ovodv vyYnAng mpotepaldOTnTag Acltovpyel ®G €ENC:
evtomilovtor ekeivol ot emidektor - mpokabopicpuévov mAnBovg - mov eivon
TEPLOCOTEPO amopovopévolr oto pétomo (oy. 4.15) war ypilovrar «onpeia
Bapvmtacy. IMapdiinia pe v emavapywkonoinomn, 10 apyeio Tov Pbest
enavakaBopiletal ko mTAéov, oe kKaBe copatidoo amodidetar og Pbest vwoypewtikd
éva ek TV onueiov avtov (oy. 4.17). Ztn ovvéyelo aenvetoar o alyopduog va
KUANGEL KOVOVIKE, pe TV mopéupacr avtn va €xel oG amoTéAeoa 1 avalntnon vo
evtafel otig Tponyovpévemg «mapapeAnuéves» avtég meployés (oy. 4.17 - 4.20). To
nABoc Tov onueiov Bapvttag eivar Kadd va opiotel oe yaunAn tiun (2:5), dote
va efocpoiiotel o0 emBuuntodc, VYNANG KATELOLVTIKOTNTOS YOPAKTAPOAS TOL
UNYOVIGHLOV.
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4.6. Eicooog - [Ipoemieypéveg PvOpiceig

>10 oynqua 4.23, téAog, amewoviletal 1o apyeio €16600v tov ITA, dmov drakpivovtal
pnédota ot mpotewodpeveg pvuioels. Emonuaivovial ot Agttovpyieg mov eivar ot
d1dBeom Tov ypno pHéo® Tov apyeiov, Om®G 1 OMMA®ON HETAPANTOV GYESACHLOV Kol
eMPOAN TEPLOPICUDOV, O OPIOUOS TOV PLOUCTIKOV TOPAUETP®V Kl TOV TANOVOHOV
TOL GUNVOVG KA.

5. Hewpapata kon IIotomoinon

5.1. Mapovoioon SOKIHAGTIKOV TPOANPATOV

To mpoPfAuota mov emeAéynoav Yo vo OOKIUOCTEL TEPAUATIKO O TPOTEWVOUEVOG
alyopBpog (ITA) elvar 6ho ehaylotomoinong OVO GUVAPTNGEWV-CTOYWV. AQEVOG,
onAadn, amotelolv mePUTOCELS TOAv-Kpunplokng Pertiotomoinong (IIKB), oty
OVTILETMOMION TOV 0moiwV Kuping Ttpocavatoiiletat o I[TA, apetépov o1 dVO HOVO GTOYOL
OLlELKOADVOVY TNV EMOEIEN TOV OMOTEAECUATAOV, OPOV O YDOPOG TV AVGE®V glval Ot-
dwaotaroc. Ta 600 €€ avTOV TOV TPLOV TPOPANUATOV TPOEPYOVTIOL GO LU0 OIKOYEVELN
paOnuoTik®v cuvoptnoe®v (1 YeVIK Hopen Ttwv omoiwv diveton and v &&. 5.1) mov
wpoopilovtor yio TETOEG OOKIUEG AOYICUIKOV PBEATIGTONOINGNG, EVOMUATMOVOVTOG 1|
KaBepio d1popeTikég TPoKANcELS Yoo Tov adyopiBupo. H tpit epappoyn, meptocotepo
TPOKTIKOL  €VOL0QEPOVTOG, apopd oTn Peitictomoinon, vVrd wePOPGHOVS, TOL
TEPIYPAULOTOS TNG O0EPOTOUNG €VOG TTEPLYIOL GTATOPO ONO GULUMIESTH EAEYYOUEVNG
dudyvone.

H axping pobnuotiky datdmoon g npdtng TEPITT®OONG, UE TNV KMOIKN ETMOVLUIN
ZDT-1, diveton amd v €€. 5.2. Eipaote, emumiéov, oe Béom va vmoloyicovpe v
avVOALTIKT ADoM ToL TPOoPANHATOS, Vo eEarydyovpe, ONAOON, TNV AVOALTIKY EKOPACT] TOV
petomov Pareto tov un kvpopyovpeveov Avcedv tov (€. 5.3). To pétono avtd, mov

TOPOVGLALEL GLVEXELD GTO YDPO TOV ADGE®V KO KLPTN LOPPT, OmEKoVILETaL GTO Gy
5.1.

Y1 dedtepn pabnuotiky cuvaptnon (ZDT-3), g omoiag n axpiPrg datdmmon divetal
and Vv €&. 5.4, vrelcépyetal KOTAAANA0 €Vag TPLY®VOUETPIKOG OPOC oL TNG Otvel
OCLVEYELD OTO YMPO TOV ACEMV. LVYKEKPIUEVA, TO AVUALTIKE VTOAOYIGUEVO (€€, 5.5)
HETOTO TV U1 KUPLOPYOOUEVODY ADCE®V OovTHG amoteAeiton omd S5 Kvptd, un
napokeipeva Tuqpata. H avénuévn duskoAio Tov GUYKEKPILEVOL TPOPANUOTOC GE GYEOT
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LE TO TPONYOVUEVO GLVIGTATOL GTOV EVIOMIGUO AVGEMV Amd OAOL TO EMUEPOVS TUNUOTO
TOV HETOMOV, TTov omekoviletal oto oynua 5.2. H ZDT-3 eivat, o¢ ek To0TOVL, £Vl TOAD
KOAO HETPO TG emidooNg VO aAyopiBUov KaTh TN QAT TG EKUETALLEVTTG.

H tpit epappoyn, Pyoipévn amd to ydpo TV ZTpofrlopnyovodv, cuvictotol oTnv
gvpeon tov BEATIOTOVL TEPLYPAUUOTOS OEPOTOUNG TTEPLYIOL OO TNV OKTIVOL TOSOG TOV
oTATOpa 0EOVIKOD GLUTIESTH. BéATioTON, e Kpitipla TNV KOAN aepOodLVOIKT] 0Tdd0oT)
TOV UEUOVOUEVOL TTTEPVYIOVL (EANYLOTOTOINGCT TOV GUVIEAESTN OMWAEIDV OMKNG TEONG
™G PoNG YOP® TOVL) OAAL KOU TN GLVEICEOPE TOv otnv embounty Aeltovpyiot TOL
OLUTIESTN] G GLVOAOVL, dNANSN TN OTPOPN TNG PONG Kot cLVaKOAoLON avénom g
oToTkNG TG ieons. O pabnuotucdg opiopds tov kprmpiov yiveror otig €. 5.6 kan 5.7.

MertafAntég oyediaocpon tov TpoPfAnuotoc eivol ot cuvtetaypéves towv 14 ehedbepov (e
Tov 18 cvvolikd) onueiov eAéyyov tov kaumvAmv Bezier pe t Pondeia twv omoiwv
oynpoatileTton 1o mepiypoppa tov agpotopmv. Ta onueio avtd popdlovion HETOED TV
TAELPAV VIEPTIESTG KOl VITOTIEGNG, TOL ATOdIdOVTAL OO EEXMPIGTY KAUTOAN 1) Kabepd

(oyx. 5.3).

INo va propovpe va eyyvnBodie TV KATOGKELOGILOTNTO KOl EMOPKT UNYOVIKT OVTOYN
tov TrepLvyiov mov Oa mpokvyel amd ™ JwdwKasio, eMPAAAOLUE TEPLOPIGUO GTO
eM16T0 A0 OV Umopel va £xel £vol OTO00NTOTE TETOL0 TTEPVYLIO GE O1APOoPES BEGELC
Katd unkog tov. Ta eAdyyioto avtd ThyT, TOoL EKPPALOVTOL WG TOGOGTO TOV UNKOLG TNG
YopONg tov, divovrtal otnv €&. 5.8. Tétolovg meplopiopovg oto mdyoc, B€tel ko to id10 10
Aoylopkd agloAdynong, mov pdAlota eetdlel ™V KOvVOToinGt TOvg OUEC®OS UOMG
SwpopemBel n yeopetpia, Tpwv 1 vroynea Avomn tpowbnbeil otov emddtn g pong. Ot
neplopopol avtol givar Aydtepo ovotnpol amd TOVG TOPATAVED KOl TO CKETTIKO TOLG
etvat va amoppiyouv Tig eVIEADS AMAPASEKTES YEMUETPIEG TPV AVTEG OEGUEVCOVY TOVG
ONUOVTIKOVG VTOAOYIGTIKOVS TOPOVS TOV OOLTEL 1 EXIAVGT) TNG PONS YUP® TOVG.

‘Evog emumAéov meploptopdc mov tibetan gival n oTpoen TG pong Tov EMTVYXEVOLV TOL
nTepLYLR Vo etvan TovAdyiotov 207, Yo va punv emtpanel vrepfoikdg cuupiBacuog g
KAVOTNTOG TOL TTTEPVYIOL VO AEITOVPYEL MG GLVIGTMOGO GUUTIEGTH], GTNV TPOSTADELD Y10
KOAY] 0epoduvakn anddoon (g&. 5.9).

O emvtng pong mov ypnoomombnke, tov M. Drela, apaypatonolel pia tkovomom ik
TPOPAEYN TOV YOPAKTNPLOTIK®V TG O10146TATNG PONG YOP® OO TO TTEPVYLO, EMAVOVTOG
TO OPLOKO GTPMOUO UE YPNON OAOKANPOUATIKNG peBdOoV Kat, aplOuntikd, T1g eEl0MoElg
Euler yia to e§mtepucd medio ponc.
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5.2. Amoteréopato

[MapdAinio pe tov ITA doxipudotnke kol €vag apketd TANPNG Kot doKipacuévog EA g
vrokatnyopiog T@v E&ehktikdv Ztpatnykov, mov £xel avomtuybel and to EOZ, oyt
1660 Y10 Adyovg amevbeiog cvykpiong, 660 yia va eE0yBobV TO0TIKA GUUTEPAGLLOTA V10!
™ CLUTEPIPOPA TV 000 ueBOdV Kat, SimAo GTO OEOOUEVNG OMOTEAEGUATIKOTNTOG
Aoyiopiko EA, va S1amietenTel Kot 1 avToy®vieTIKOTNTA TOV TOPOVTOG EKTOVILOTOG,.

To amoteAéopato mopovoldlovtal HE TN HOPPN TOV UETOTOV U1 KLPLIPYOVUEVOV
Moegov oto omola kotéAnEe 1 ektédeon KABe oiyopiBuov, yun dedopévo dve Oplo
mAn0ovg a&rorloynBévtwv vroyneiov. [paypatorombnkay 5 dtopopeticés eKTEAEGELS L
SpPOopPETIKN YevETEPOA TVYOL®V aplBudv Yo kabepia, dote vo eCorerpbel n emppon| g
TUYOTNTAG OTO EVOEIKTIKG omoTéAeso. EmmAéov dtapoppddnke kot mapovsialertar, yo
Kka0e meipopa Eeywplotd Ko kabepio ek tov 600 pueBddwV, T0 AVTIoTOLXO SLAYPOLLLO
Aeixtn Ymepoyrkov. O deiktng vepdykov givorl (ol LETPIKT) GLVAPTNOT TOL TOPEYEL Hia
TOWTIKY €KOVOL NG TPodOoL TNG avalTnong, Katoypaeoviag T0 TOocooTd €VOG
TPOKOOOPIGUEVOL TUNUOATOG TOV YDOPOL T®V AVGE®V €nl TOL omoiov «KvLPLAPYED» ava
TGO OTIYU] TO GUVOAO T®V UN  KLPPYOoOUEVOV AVGe®mv mov  &xel Ppet o
Bertiotorommc. To telkd Sdypappo mov emdekvietor ivor mpoidv eEaywyns Tov
HEGOV OPOL TOV JAYPOUUATOV KOOEMAS €K TOV 5 EKTEAEGEMV aVE TEPITTOOM).

Yto oynuata 5.5 ko 5.6 eoaivetal n enidoom tov KAOe PelticTomomt 610 TPOPANUA
ZDT-1, ekme@pacpévn HEGH TOL OYPAUUOTOS OEIKTN LITEPOYKOV KoL TO GNUEIR TOL
petmmov Pareto, 6mov dtaxpiveTar Kot 1 avaAvtikny Ao yuo kaAvtepn emonteia. To dVo
AOYIOUIKA  ekTEAEOTNKOY HE TIC Tpoemheynéveg pubuicelg tovg Kot pe  idw
YAPOKTNPLOTIKA TANBVGLOD, evd enetpdmnooy 5000 a&oloynoelg oto kabéva. Opoimg
Kot yio ) dokiun évavtt g ZDT-3, 6nov enetpammoov 10000 agoloynoelg 1o molD.
[Mopd v avotpéTTa, Y0 TIC ATOITHGES TOL TPOPANUATOS, TOV 0piov VTOV, Kot Ot
000 adyopiBuol To YoV TEPIPNUO GTOV EVIOTMICUO AVGE®V KOl amd To 5 OloKplTd
Tunpato Tov petmov. O og ITA cuvémeoe oyeddv €€ 0AOKANPOL UE TNV OVOAVLTIKY ADoM
(oy. 5.7, 5.8).
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Ocov apopd, TEAOG, TNV TPOKTIKY €QAPUOYN PEATIOTONOINGONG NG CEPOTOUNG TOV
ntepLyiov, enetpinnoay povo 1500 aglodoynocelg, 0€d0UEVOL TOV VTOAOYIGIOD, QLTH TN
QOpd, VTOAOYIGTIKOV KOGTOLG OWTAV, £VTOG TV OMOI®MV, TAVIMS, 0ol 000 aAyOptOuoL
delyvouv va cuvékivay. Tovileton  Tpoeavig €£0pTNON TOV ATOTEAEGUATOV OO TO
npoemieyévia Oplo. petafantov oyediacpov. Ta oy. 5.9 ko 5.10 amewovifouv 10
Suypoppor delKTn LLEPOYKOV KOl TIG TEMKEG AVCELS TOL AMEOWCAY Ol TPOGTADELEG TV
Vo Aoyopkadv. Amd to tedevtaio, ylo v mepintwon tov 1A, emAéyovtor 600 axpaieg
Moelg kot ota o). 5.11 avomapdystot, yopig va tpnbel kAipaxo, 1 yeoperpio tovg,
OOV POIVETOL O JAPOPETIKOG TPOGUVOTOMGUOG (EAAYIOTEG AMMAELEG TO €va, HEYIOTN
ovumieon pong To GAL0) 30O, KaTA To AAAL «PBEATIOTOV» EVOALAKTIKMOV ETAOYMV.
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To mopamdve mePpdpato KOTEOEWEAV TNV  OVIOYOVIGTIKOTNTO TOV TPOTEWVOUEVOL
AoyiopKoD, apob avtd otabnke emdéia dimha otov EA, Eenepvdvtag Tov ota onueia. To
gvydproto glvar, 0TL evd M Taparrayn vty g BEX enédeiée kot mdAl tnv ToA ypriyopn
e€epeuvnTIKY GLUTEPLPOPA TTOL YapakTNPilel T HEB0dO, dev Pdvnike va mpoPinuatileton
kaBOAov ota teEAevtTain otddl ™S avalnTnong, Selypa OTL Ol GYETIKEG TOPEUPACELS
AmEOMGOV KaPTOvG,.

6. Xvumepaocparta - llpotacelg yro peAlovtiki epyacio

To kavomomrikd detypata tov duvatotitov tov ITA mov AdPape katd T1g doKIUESG TOV
KafioTovV pia 6tépea PACT Y10 TEWPOUOTIGHOVS KOl VITOOEIKVOOVY KOAES TPOOTTIKEG Yo
nepatép® avamtuén tov. ‘Hom and to xepdlowo 4 €govv yivel kdmoleg VOEEIS Yo TIC
TPAOTEG OLUPOUIVOUEVEG PEATIOOELS. YTAPYOLV OPKETEG TPOGHNKES TOV UTOPOVV VO TOV
avafoduicovv onpoavtikd, toco and dmoyr enidoons 660 Kot TANPOTNTOG Kot evEMEING,
KAmoleg €K TV OmoiwVv pmopohv va yivouv dueco Kot KAmoleg, Mo @Aod0o&eg Kot
HEYOAVTEPNG KAMUOKAG, 7OV {0MG VoL UTOPOLV VO GUUTEPIANPOOVV GTOVG GTOYOLG
LEALOVTIKTG OITAMUATIKNG EPYOCTOG:
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—> epartépo  Pertioon Tov pnyoviepov amddoong Gbhest. Onmog  Exet
emovelnupéva toviotel, N oladikacio avty eivoar kopPikng onuacioc. Kdbe
BeAtioon tng €xel Gueorn OeTKN EMATOON OTNV TOYLTNTO TPOOIOVL TOL
alyopiBuov. Ot duokoAies Kol TPOKANGELS oL Topovctalet 1 emhoyn Gbest elvat
KOWEG e To yevikotepo tpoPinua g ITKB, avtd g emAoyng Pdoel mollamAmv
Kprmpiov. Qg ek TOVTOV, UTOPOVUE VO GTPOUPOVE TPOG TO YEVIKOTEPO YDOPO TNG
I[IKB yw vo oavtAnoovpe 10€eg Yoo omoteAecpotikny ovopdduorn e Xy
napdypoaeo 4.4 avaeépape To 0PEAN oL Bo Exel TOAVY] EUTAOKT LLOG UETPIKNG
ouvapTnong mov Bo Aapfavel veoyn T HopeN Tov petdnov Pareto. Xxomdg elvan
va emAéyovpe Gbest yio kdBe coupatido, Pacer eEoocediong oyt HOVO TV
KOADTEPOV TPOOTTIKMOV PEATIOONG TNG GLYKEKPIUEVNG AVONG OAAL Kol TNG
KOADTEPNG SVVOTHG ETEPOYEVELNG TOV LETOTOL TV LT KUPLOPYOVUEVOV AVGEMV.

—> AoOyypovn avalitnon - Tvppfarétnra pe molv-enelepyastika nepifdriovra.
Kaf6t1 1 TAelovotnta TV VITOAOYIGTIKGV TPOPANUATOV CUEPO OVTILETOTIETOL
vd Kobeotwg mapdAinAng enelepyacioc, €ivor amapaitnto va yivovv OAeg ot
dvvatég mpocapuoyés wote o IMA va pmopel vo Aertovpyncel pe m UEYIOTN
amodoTIKOTNTA o¢ éva Tétolo mepiBdArov. Kdti tétoo0 mpoimoBéter va pn
xpewotel €m’ ovdevi va peivel KAmolog ek TV OBECL®V  EMEEEPYOOTMOV
adpavic. [Ipémer Aowrdv va anepmiéEovpe v 0E0AOYNON TOV GOUATOIOV and
™V €VVolo TG «ETOVAANYNS» Tov aAyopiBuov. Zmnv mapovca popen tov 1A,
évag KOKAOG Aertovpyiag Tov oAokAnpmveTol 0tav ohokAnpwdel n aglordynon
ooV TV Bécewv otig omoieg PBpioketon copatioro. AkorovBmg, OA0 TO GUNVOC
enavatomofeteitor oto YOpo Ko mpoywpd mpog emavaciordynon. o va
amOPUYOVHE TO QOIVOUEVO VO «TTEPIUEVEL TO oVOTNHA TNV Kabvotepnuévn
OAOKANP®OT NG 0EOAGYNONG £VOG VoYM Eiov Yo va oOAoKANpwBel o kbxlog, Oa
emavanpoypappatioteil o [TA dote £vog kKOKAOG Tov va cvumintet pe v e&étaon
€VOG KOl LOVO VTOYNPIOL: LE TNV «EMGTPOPN» VO vITOYNEiov and a&lorAdynon,
10 copatio Ba emavartomobeteitoan apéome, eved ot e€icmoelg 3.1 ko 3.2 Oa
AopBavouy vwoOYN TN UEYPL OTIYUNG VITOPKTH TANPOPOPIa, OGYETMS TOV TL KAVOLV
o1 VTOYN POt TOL a&loAoyovVTOL EKEIVN TN GTIYUN.

—> [Ipocappoyr] Tov TeEAe0TN Avadsvons. X1y mopdypapo 4.5 eEnyndnke o porog
TOV TEAEOTN ovadevong kot delydnke OTL pmopel vo 0ONYNOEL GE GNUAVTIKY
BeAtioon tov TehkoV omoteAéopotoc. Ilap’ Ola avtd, mapopével Evog
VIEPPOAMKA TOPEUPATIKOS UINYOVIGHOC, EVD, GTNV TOPOVGO LOPPN TOV, ATOTEL Vol
Exel TPOYWPNOEL OPKETA 1 aval)TnNon TPoTod AVTOG EUTAAKEL, EWOAALMG deV EYEl
Vv emBount) ocvuneprpopd. A&ilel va eEeTAcovpE Pio EVOALAKTIKY TPOCEYYIOT,
OOV 0 TEAEOTNG avaodevans Bo amacyolel LOVO £va TOGOGTO TOL GUNVOLG. AT
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Oua meplopioel 10 pioko EUTAOKNG TOV, UE OMOTEAECUO, VO UTOPOVUE VO TOV
YPNOUOTOU|COVE VOpPITEPA. XKOTOG eivor vo peTOHOpPmOEl 0 TEAESTNG O€
Baoikn cLVIGTOGO TOV OAYOPIOLOV, CUUUETEXOVTAG O APUOVIKAE GTY| dtodKacio
BeAtioTomoinong Kot Kab’ OAn TV KTOGT ALTAG.

—> Aigpeivnon Tov puOeTIKOV TapapéTpmv. O cLVTEAESTNG OpUNG Kot Ot dVO
ovvtedeaTtég emtayvvong xpnlovv mpocoync. EEnynoape 1on yoti dtopopetiég
TIWEG  owtdv  Toupldlovy  kaAbtepa o€ O1dpopeg QACES NG  dSladikaciog
BeAtiotomoinomng Kot voBetOnKe Eva GYNUO YPOLUIKNG TPOCUPUOYNG OLTOV
OLVOPTNGOEL TV AELOAOYNCEMY TOL EYoVV OAOKANPwOEL. To oynua avtd elvar pev
OOTEAECUATIKO, €0IKA KoTtd TO TEMKO oTAd0 NG avalnmmons, oAAd Og
ovykpivetar pe v eEaIpeTIK) TPOGUPUOCTIKOTNTO 7OV TOPOLGSLALOVV GE
avéioyeg meputdoelg ot EA  (otpatnywés petdAroéng kAm.). Ilpémer va
avartuyBobv mo eEelntuéva péoa aviyveuong TV avaykK®V Tov TPOPANLOTOG
oe kdOe @domn Kol SLVOLIKNG TPOCAPUOYNS TOV TAPUUETPOV o€ avTéc. [Tépav
avTtov, Tpénel va defaybel Ko pio TANPNG TAPOUETPIKT dlEPEHVNOT Y10 AVTA TO
Tpio pey€dn, kabmg Kot yia Tig dtdpopeg puOUIcEL TOV TEAESTN AVAIEDTHG.

—> Egappoynl kdmowog pedddoov uny axpifovs mpo-alioidynons. Y miapyovv
pofnuotikd poviéAo. mov divouv TN OuVATOTNTO VO, EMITUYOVUE MO KOAN
TPOCEYYION NG TG TNG OVTIIKEWWEVIKNG CLVAPTNONG UioG VITOYNQLag AVoNg
EKUETOAAELOUEVOL TNV TTANPOPOpia OV ivar dtaBéoiun Yo Tov TepBaiiovta T
Aoom avt yopo avaltnong, dNAadn Tig Tponyovéveg eEetaceioeg AGELG TOV
yertovevovv pe avtiv [41]. Mio tétowa péBodog pmopel va VIOKOTOOTHOEL
TEPLOTACIOKA TO O00EGIH0 AOYIoUIKO akplodc a&loAdynone, HE TPOPAVESG
OpeLOc, a@ov ovtn 1 dwdkacio mopeuPoAng (1 Opowa) €xel TOAD HIKPOTEPO
VTOAOYIOTIKO KOGTOG GTNV TAEOYN QIO TOV TPAKTIKOV EQapuoydv. Mia tétoln
puébodog o pmopovoe va ypPNOUEDSEL Yo VO HOG OMOEL -yopic 1dwaitepn
emPdpovon- pia Tpotn £vOEEn tov g Ba e&elybel éva copatidlo epdcov Tov
amodobel kabe éva ex tov vroyneiov Gbest, kabiotdviag avty ) dvckoin
AmOPUOT) «EK TOV acPAA0VS». 'Eva evoektikd tétolo pafnpuatikd epyaieio eivon
10 Agyouevo Kriging, ex tov G Krige mov 10 mpdtewve. To Kriging
dwpopornoteiton amd dAAa tétola epyareia Adym TG WO10TNTAC TOV VO TOPEYEL,
EKTOG TNG EKTIUNONG TNG CLVAPTNONG KOGTOVGS, TO KOVOVIKE KaTaveEUNEVO TOOVE
opdiua ovtic. H eumhokr tov Kriging oe mpopiiuata IMKB moapovotalet
TPOKANGEIS OUOLEG HE OVTEC TOVL OVIIUETOTICOUE WHE TNV TOAV-KPITNPLOKTY|
enéktaon g BXZ, 0 0 yplowv £xel pio OYETIKN EUTEPIN GTNV EQAPLOYT| TOL GE
ouvovaouo pe EA.
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1. Foreword - Abstract



The main objective of this work has been the development and subsequent validation of a
complete optimization tool based on the concept of the Particle Swarm. Particle Swarm
Optimization (PSO), as which, the entirety of optimization-oriented applications of the
Particle Swarm is referred to, is a subcategory of the great family of Swarm Intelligence
techniques. As such, it introduces processes inspired from the collective activity of a
swarm of insects, flock of birds and school of fish or similar to assess the search for
optimal solutions to a variety of problems. The proposed algorithm (PA) borrows the
original core idea of PSO, and applies a series of additions and adjustments, some of
which original, some inspired from trends in the ongoing advances in the field of
optimization.

Swarm intelligence itself is a subcategory of the Stochastic Methods, which essentially
encapsulate all optimization techniques that rely, to some extent, on randomized search
within all specified variable ranges to locate the optima. This thesis extends its
perspective beyond Swarm Intelligence and approaches Stochastic Optimization
holistically, attempting to outline the common features among its various aspects and
extract clues as to how each one can be enhanced. Particular attention is given to the most
popular and widely applied Stochastic Methods branch, that of Evolutionary Computation
and Evolutionary Algorithms (EA’s). After EA’s and PSO have been introduced and
discussed in depth in chapter 2 and 3, a long discussion is conducted to highlight the
similarities or equivalences between the two, as far as both their philosophical and
mathematical background and their practical application is concerned.

The purpose of this is not only to determine the adjacencies between the various
components and defining features of these two paradigms, but also to gain insight into
possible improvements, either by borrowing principles from each other or by hybridizing.
At this point, suffice to say that the prominent product of this analysis is that PSO has a
relatively faster rate of progress through the earlier stages of a run, while EA’s in general
shine at a later stage, the phase of exploitation, namely the phase when search space has
almost been exhausted and the optimizer focuses on refining the located solutions by
searching in their immediate vicinity, thus slightly improving the end result. This rough
observation greatly impacts this entire work and its efforts in improving the generic PSO
optimizer are focused on moderating this fundamental disadvantage.

In PSO, the members of the swarm, or particles, are driven by two main forces: the
particle’s individual perception of search space, as it is shaped by its own progress thus
far (cognitive influence), and its interaction with the rest of the swarm, its awareness of
the progress of the swarm as a whole (social influence). The relative effect of these two
driving forces is dependent upon a series of tuning parameters. Their choice of value is
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therefore crucial, especially so since it is understood that cognitively and socially
influenced behaviors relate to performance in different stages of the optimization process.
In section 3.4, these governing parameters are discussed: Their impact is analyzed,
relevant experiments and literature are surveyed and the various existing trends are
reviewed. The choice of parameters for the PA is elaborately justified, especially from the
perspective of addressing the lacking exploitation capabilities. A scheme that dynamically
alters these parameters is adopted, inspired by similar beneficial practices in EA’s.

Chapter 4 provides an overview of the entire PA: each section examines a major aspect
and its internal processes in depth. A short survey of popular equivalents comes with the
introduction of each feature. Unless explicitly stated otherwise, the various processes and
features are original. Similarities to existing techniques are present in some cases, while
others deviate from common practice. Occasionally, a few alternative approaches to a
certain issue will be presented, and their distinctive characteristics will be discussed. The
optimizer was generally developed and programmed from scratch. The most notable
novelties are the highly directional and strategic social influence structure and the shuffle
operator, a scheme designed to intervene late in the algorithm’s progress by appropriately
re-positioning the swarm and determining certain directions in which to intensify search,
thus maximizing its efficiency. Other main points, like the constraint operator,
responsible for administering candidate solutions in breach of any constraints imposed by
the problem, and the initialization phase are also worth mention.

Emphasis was placed on multi-objective optimization (MOQO) problems, namely
problems where the optimality of a solution is judged on multiple criteria. As was
explained, the multi-objective regime is completely different to the single-objective one
and poses additional challenges, some of which are specific to PSO and pertain to the
elevated roles of cognitive and social influence. The reader is introduced to the details of
MOO and the current trends in dealing with such problems (the Pareto concept, non-
dominated solution sorting methods etc.) in chapter 2. In section 4.3 | specifically
elaborate on the approaches adopted in the PA to facilitate a successful transition to
MOO: A solution selection/sorting procedure determining the best solutions so far,
wherein to invest. A solution spacing routine is designed and incorporated to guarantee
the sought diversity among the various optimal solutions.

The PA is tested against three problems: each of two objectives, with its individual
peculiarities. The first two are benchmark mathematical function cases, especially
developed by optimization researchers for exactly this purpose: ZDT-1 and ZDT-3. The
latter, with its challenging non-contiguous set of optima is a very popular experimental
tool. One last test, of a more practical orientation, utilizes the PA for the optimization of a
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cascade compressor’s stator airfoil, with regard to individual aerodynamic efficiency and
good static pressure rise qualities. This case features strict constraints and a higher
computational cost per examined candidate solution, thus, a more demanding problem.
The PA is subjected to these tests alongside EA-based optimization software of
established competitiveness, serving as a point of reference. The demonstrated results
showcase the earlier speculated differences in behavior between EA’s and PSO, and how
the added features have somewhat bridged this gap. They also grant the PA validation as a
fully functional and competent optimizer and a decent foundation for further
experimentation.

In chapter 6, a few suggestions for future work are laid out; various adjustments to the

existing features, possible on a short-term basis, as well as more ambitious enhancements
that may be achieved as part of a larger project.
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2. On Evolutionary
Computation




2.1. Stochastic Methods in Optimization

This major branch of Numerical Optimization techniques, under which falls
Particle Swarm Optimization, has been growing rapidly in popularity over the last
decade or two, with a few becoming “industry standard” approaches for solving
challenging optimization problems [45]. This is thanks to their ease of
implementation, user-friendliness, non-strictly-mathematical background and high
adaptivity to any problem.

Perhaps the best way to define Stochastic Methods is in direct contrast to their
‘rival’ family of optimization paradigms, the Deterministic Methods. Deterministic
methods are entirely dependent upon knowledge - exact or approximate - of the
gradient of the objective function of the problem throughout search space; there is
no strict demand for the gradient function to be continuous or perfectly smooth (or
for the objective function itself), but its value must be generally calculable in the
region of any candidate solution, for the optimization algorithm to benefit from the
evaluation of said candidate. The algorithm handles this information appropriately
to determine the direction in which lie the minima or maxima of the target function,
or, in other words, points in space where the objective gradient verges on zero, to at
least one of which, convergence is guaranteed, and at a high rate. It should be
noted, without loss of generality, that Deterministic Methods are not able to
provide any indication of whether the discovered optimum is a global optimum
(which is the desired outcome) or a local one. Unless some additional mechanism is
engaged to keep the algorithm from getting trapped in such a local optimum, the
optimizer will be terminated when it achieves (relative) a near-zero gradient.
Therefore, deterministic methods carry the indisputable advantage of a very fast
convergence (usually with respect to the number of solutions which will have to be
individually examined, or evaluated, for the optimizer to reach an optimum
solution), at the peril of ultimately settling for a false optimum. Additionally, in
most practical problems the gradient value is difficult (extremely complicated
mathematical representation of the examined phenomenon) or even impossible
(non-linear, convex, non-contiguous systems) to extract, and therefore,
incorporation of such a method is prohibited. One should not overlook the added
obstacle of industrial confidentiality, which may not allow the revelation of
sufficient information as to the specifics of the problem.

Conversely, stochastic methods [40] have no requirement that any details are

known on the nature of the problem (although a general understanding of the case
at hand is always beneficial). All that is needed is a list of the associated variables
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and the range within which to search. All stochastic methods are principally search
methods or heuristics. In their majority, they are also population-based: they
depend on a finite population of ‘agents’ initially unleashed into variable space in
random fashion. Subsequently, an iterative process is spawned, which determines
new eligible agent destinations. This process also encapsulates randomness to one
extent or another, but is profoundly deterministic in nature. It essentially
manipulates all data gathered by the agents in their venture, inspecting their current
whereabouts, as well as their history, from both an individualistic and a holistic
perspective. It intelligently combines the information from various sources to form
a visualization of the problem space which provides clues as to the possible
location of the optima, or at least indications of the more promising subregions, in
which to intensify search. The qualities that govern this process along with the
overall behavior of agents are the distinguishing element of each heuristic. It has
become a trend for these qualities to be inspired by natural or other everyday-life
processes, which is the case for both PSO, and the prominent Evolutionary
Algorithms presented in the very next segment.

In summary, stochastic methods are advantageous in their universality, as they can
almost instantly, with few, if any, alterations deal with any optimization problem,
regardless of the technical discipline it falls under, the dimensions of search space,
the availability of the various objective function gradients and other particular
specifications. A single competitive stochastic optimizer can find numerous and
very diverse applications, in finance, research & design and other areas. The price
paid for the lack of specificity is the relatively low convergence rate and high total
computational expense needed to reach a satisfactory result.

Deterministic methods boast a considerable convergence rate margin over most
stochastic paradigms, presuppose, however, that the problem lends itself to
derivation of its objectives. Ultimate success is not guaranteed, even when a careful
study precedes the optimization process, for careful selection of an appropriate start
point. Research is constantly focused on developing intelligent counter-measures
against entrapment in local optima. The competitiveness of a procedure centered
round a deterministic method is rather associated with the means of calculating the
gradient than with the method itself. When a particular optimization process is
bound to be repeated on numerous occasions to deal with the same or a very similar
object, depending on the size of the project and the resources it occupies, the
development of a specialized optimizer, tailored to the peculiarities of this
particular case, may be justified. The resulting algorithm, however, will have
limited utility beyond this particular application.
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2.2. Evolutionary Algorithms

In this segment, we are introduced to the most popular and widely incorporated
stochastic method subdivision to date, the Evolutionary Algorithms (EA’s). An
overview of the EA’s basics is deemed mandatory, because, even though this work
studies PSO, this is done in juxtaposition with the EA. The reader can take
advantage of this article to familiarize with principles of Evolutionary Computation
in general, and with specific terminology that will be used, often arbitrarily, over
the entire length of this work.

Evolutionary Algorithms are not a new concept at all; in fact they date back to the
60’s and are originally attributed to John H. Holland [46], who not only proposed
the paradigm, in its Genetic Algorithm (GA) variation, but also pointed out its great
potential as a heuristic optimization scheme. Other prominent sub-classes of EA’s
are Evolutionary Strategies (ES) and Evolutionary Programming. It is nowadays
common practice for different aspects of the range of Evolutionary methods to
hybridize or borrow features from each other, to the point that the separating
boundary is hazy and they cannot strictly be classified.

EA’s, including the genetic variation, saw considerable advances over the past two
decades, rising in popularity. As a population-based technique, an EA acts on
populations of strings —more commonly binary- that represent chromosomes from
living organisms. The distinguishing manipulation procedure outlined in the
previous segment here resembles the Evolution of Species, as it is portrayed by
Charles C. Darwin [47]. Evolution is perceived as the process via which a species
adapts to its natural environment, to meet its demands and, ultimately, survive. All
known elements of the evolutionary process are present in an EA, albeit simplified:
Survival of the Fittest, Natural Selection, mating and reproduction, competition
over available resources and, last but not least, Mutation.

In nature, the fittest is going to survive. Not only will he better manage to secure
the necessary resources, food, shelter etc. but he will also defend himself properly,
avoid death/elimination and attract mates for breeding, consequently securing the
perpetuation of his genes. The more successful he is at doing the above, the more
offspring he will eventually produce, the more his genes will be present in future
individuals. Should both mates be of the same high quality, which is highly
probable, then chances are they will produce exceptional offspring that might even
outperform them and then, go on to breed to produce and further improve the
species. Weak and under-average members of a population, on the other hand, will

2-4



have difficulty surviving, as they are bound to be eaten or killed in their search of
food and shelter, stroke by disease etc. Even if they avoid elimination, their genes
are destined for long-term elimination as they will boast limited attractiveness and
their chances of mating, much less with a mate of certain prospects, are low. The
flourishing of fitter individuals and eventual extinction of underperforming ones
gradually improves the overall quality of the population. The specimen has evolved
thanks to the survival of those members of the population who demonstrated higher
adaptivity and potential.

As with nature, the governing theme in EA’s is Survival of the Fittest. The quality
of a solution to the problem represented by a gene/chromosome/individual is
commonly referred to as Fitness of this individual or the corresponding variable
vector. Each additional iteration of the algorithm coincides with a new generation
for the specimen. The genes present in a future generation are for the genetic
operators (Selection, Crossover/Recombination, Mutation) to determine. The
specifics of the mating/breeding process are equally important: Who will mate with
whom and exactly how will each parent impact the offspring? How often will one
reproduce? In one way or another, the algorithm is made to enforce the position of
promising individuals-solutions in the struggle for survival by granting them
increased mating chances, selecting them over those of lower standards, who are
replaced by the brood of the survivors. The purpose of the algorithm is to
constantly improve the overall fitness of the population, in hope that, by enhancing
the entire population we are approaching the optimum in whatever our population’s
quality is measured with; the Objective(s).

As the internal nuts and bolts of evolution are not known to us in their entirety,
stochasticity must be present as a substitute for every unknown or unpredictable
factor that impacts the form of the genetic progression. The random element is first
encountered in the initialization of the population, which is scattered over search
space, as dictated by a random number generator, an integral part of the EA.
Another area where randomness is key is in mutation; part of the chromosome is
tweaked, in an attempt to enrich the population with solutions of added diversity.
The process of mutation is traditionally chaotic (although certain variations are
very strategic and targeted) but is necessary to stir the population, to avoid
jamming into a particular area of search space. Aside from those two cases,
stochasticity is, as we will witness, implicated in every single aspect of the EA, in
one way or another.
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A common practice is for the candidate solution to be represented as an array of
bits (Os and 1s). Arrays of other types and structures can be utilized similarly. The
main property that makes these genetic representations convenient is that their parts
are easily aligned to each other due to their fixed length, which facilitates simple
crossover operations and greatly accommodates mutation, as it can be performed
simply by flipping bits (details in following following paragraphs). Variable length
representations may also be used. Tree-like representations are also experimented
with, but are more commonly exclusively associated with Evolutionary
Programming. These binary strings are handled in accordance to the schemata
theorem (we shall not speculate further, as it is not the purpose of this work).

Let us now briefly go over the flow of a basic EA:

The algorithm handles three subpopulations, stored in separate archives that are
potentially renewed every generation g:

i.  Parents, let 4 be the size of the respective archive.

ii.  Offspring/children, of size 4.
iii.  Elites, of size e, where the best solutions thus far are stored.

Directly following the random initialization of A chromosomes (g=0), the iterative
generation process is entered. Candidates are evaluated by the specific evaluation
software that must be available externally. Evaluation is the calculation of fitness
of every candidate solution, in effect the exact calculation of the objective function
value adjacent to its variable vector. The elite archive is updated accordingly. The
selection operator T, is engaged to pick out those p individuals that will assume
parenthood status at the reproduction phase. The offspring that comprise the next
generation (g+1) are shaped out of a mix of chromosomes resulting either from the
application of the mutation operator T, upon members of the current population, or
Elitism (Te), or regular offspring produced by the crossover/recombination
operators T,. A new generation ensues, starting with evaluation of the new A
chromosomes, unless a termination criterion is satisfied. A termination criterion in
EA’s can either be the exhaustion of an upper limit of allowed evaluations, or the
surpassing of a desired target value, or the algorithm reaching a state where it has
registered any progress over a given number of consecutive generations or other. In
fig. 2.1, a flow chart of a standard EA illustrates the above. Below, the three main
operators, along with a fourth — elitism — are shortly reviewed:
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> Selection is usually implemented in one of the following ways:

e Proportional selection, where each candidate has a chance to be
selected, directly proportional to his normalized fitness (his fitness
value divided by the sum of all candidates’ fitness values) or
inversely proportional to it, depending on whether the problem is of
maximizational or minimizational orientation, respectively.

e Linear ranking, where the population is sorted by descending fitness,
and p (or fewer) are selected from atop the list.

e Tournament selection, where linear ranking is essentially applied to a
number k of stochastically preselected candidates.

It should be noted, it is not uncommon for any of the above mechanisms to
deliberately pick out a few of the not-so-promising individuals, even those
with bottom rankings, to reflect the earlier mentioned natural
unpredictability; perhaps these seemingly unimpressive individuals bear
impressive potential...

> Crossover also comes in numerous variations, the most popular being 1-
point crossover, where the chromosome is divided in two, and the resulting
child inherits one part from each parent (in the simplified case of 2 parents
producing one child). It should be emphasized crossover is addressed very
differently should solutions not be binarily represented.

> Mutation is responsible for introducing and preserving added solution
diversity, by unpredictably modifying members of the existing population.
Among other contributions, it serves as an additional counter-measure
against entrapment in local optima. A basic approach is flipping one (or
more) random bits of a chromosome (turning O to 1 and vice versa).
Crucially, the probability of a mutation occurrence changes dynamically
during an EA run, mostly depending on the state the optimizer is in, its
recent rate of progress etc.

> Elitism, finally, is the act of de facto introducing elite members of the
population into the parent archive, without putting them through selection.
Elitism can be seen as a reassurance that every next generation will at least
not be a step backwards from its preceding, since top solutions have
participated in the generation of the new population.
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Fig.2.1 Flow chart of a generic EA.
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2.3. Multi-Objective Optimization — Pareto optimality

Optimization problems with multiple criteria of optimality (K>1) are given special
mention in this segment. It is imperative for the reader to comprehend the major
differences in the way such problems are dealt with, compared to single-objective
cases, as the later proposed optimizer specializes in Multi-objective Optimization
(MOO) and its performance will exclusively be demonstrated and tested against
such problems.

The main concern regarding problems with K>1 objectives is the classification of
solutions. It is not possible to rank two objects based on two or more criteria,
except if either is better or worse by all said criteria. This issue extends to
Optimization: How are we to decide, for example, which solution will join the elite
archive, or participate in reproduction as a parent, in an EA? Additionally, it is
understood that an optimization method’s purpose and measure of performance
should not only be its ability to deliver a single satisfactory solution, but numerous
solutions of sufficient diversity, offering us choice among multiple solutions which
will either be of balanced quality according to all criteria or favor some over other
in a distinct blend. Research efforts are, and have been, centered on accomplishing
these two things:

v Develop solution-sorting techniques that will achieve the greatest possible
meritocracy in selecting the candidates that will not only be preserved, but
also depended upon to guide the search further. For lack of an absolute
means of comparison of individuals in a K-dimensional objective domain,
the reliability and efficiency of these techniques can only be evaluated by
the quality of the final outcome of the algorithm.

v' Encourage the optimizer to propagate solutions from as wide an area of
objective space as possible, thus achieving a set of fit variable value
combinations that are spread out, as universally as possible, across the
perceived multi-dimensional surface of overall optimality.

In resolution of the first concern raised, we introduce the concept of Pareto
Dominance. According to Vilfredo Pareto’s principle [23], a solution dominates
another if it clearly outperforms it with regard to at least one criterion, while being
at least equal to it, if not better, according to each and every other criterion.
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Formally put, a variable vector X %R, dominates a variable vector X,eR,,
X, <X, (for a minimization-oriented problem, which, unless stated otherwise, will be the
case for the entire length of this segment) if and only if:

[FO<F®Vke 1..K |n[3ke 1..K :FO<F?] (eq. 2.1)

where F" is the fitness of the i candidate according to the k™ objective, %, being N-
dimensional feasible search space.

Conversely, the solution is labeled as non-dominated should there not be at least
one other solution that beats it to every objective set by the problem. In a set of
candidates, there will always be a minimum of one which is non-dominated, but it
is not a given that there will be any completely dominated (dominated by all)
individuals. The set of non-dominated solutions, namely those that can better
anyone else (including each other) by at least one criterion, form what is referred to
as the Pareto Front. In MOO, being included in the Pareto front is the closest an
individual can come to earning ‘Best’ status. As should be evident by now, no
comparative consideration is viable between two habitants of the Pareto front, as, if
examined in pairs, either will have the upper hand by at least one objective rating:

A
F2
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0
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0
“m 0
5 (A)>E(B) H p O
LI 0
m
5 >
F,(A)<F (B) F

Fig 2.2 An illustration of the objective domain in a 2-objective minimization problem. Black
points comprise the current front of non-dominated solutions.
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By far the two most established solution sorting schemes in practice are NSGA
(Non-dominated sorting algorithm), especially in its advanced version NSGA I, by
Deb et al. [2, 3], and SPEA (Strength-Pareto Evolutionary Algorithm). The
approach adopted in this work (see chap. 4), though original, is quite similar to
NSGA, which will thus be reviewed at a later stage. We will now take a brief look
at SPEA, to exemplify the function of such techniques:

SPEA 2 [35] establishes a hierarchy among candidate solutions by sorting them in
descending order of ®; -as it would otherwise (single-objective problem) sort them
according to their fitness value-, which is calculated separately for each solution, a
follows:

1. Each candidate is assigned a value S;, equal to the number of individuals it
dominates (fig 2.3).

2. Each candidate is then assigned an additional parameter R;, the sum of S of
all other solutions that it is dominated by (fig 2.4).

3. A‘third factor is calculated, D;, which reflects the density of the surrounding
the candidate region of objective space. D; is roughly proportional to the
average of distances of all other solutions from the examined one.

4. Lastly, @;is calculated by adding R; and D;.

-

Fy

Fig 2.3 The calculation of S; in SPEA 2, in a 2-objective minimization problem.
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F

Fig 2.4 The calculation of R; in SPEA 2, in a 2-objective minimization problem.

Factors S; and R; clearly represent the dominance theme in SPEA. Notice how all
non-dominated solutions will have an R value of 0. Density factor D;, on the other
hand, is purposed to favor isolated candidates over solutions that fall too close to
one another, to help achieve the desired disparity of ultimate solutions that was
highlighted earlier in this segment. All similar techniques, NSGA included,
incorporate some sort of mechanism that boosts the sorting status potential of such
‘rarer blends’ of objective function values.
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3. On Particle Swarm
Optimization




3.1. Swarm Intelligence and the Particle Swarm Paradigm

Particle swarm optimization (from here onward referred to as PSO) is a distinct
member of the rather large family of Swarm Intelligence methods for optimization.
The particle swarm paradigm is originally attributed to James Kennedy and Russell
Eberhart, who captured the concept while approaching stochasticity in social
behavior from a rather philosophical point of view [28]. Hence, the resulting
algorithm was initially developed as a social behavior study and simulation tool. A
simplified version was observed to be able to serve as an optimization heuristic and
it was proposed as such in 1995 in its namesake work: “Kennedy, J. and Eberhart,
R.: Particle Swarm Optimization” [1].

In 1989, Gerardo Beni and Jing Wang first defined Swarm Intelligence as “the
collective behavior of decentralized, self-organized systems, natural or artificial”.
Swarm intelligence systems are typically made up of a population of simple agents
interacting locally with one another and with their environment. As there is no
centralized control structure dictating how individual agents should behave, certain
interactions between said agents lead to the emergence of ‘intelligent’ global
behavior, whereof these agents may be - and usually are - completely unaware.
Depending upon the nature of the agents themselves and on that of their
interactions, which are, in large part, stochastic (meaning they feature randomness),
the different concepts, whether of philosophical or technical interest, are labeled
under 'bird flocking' intelligence, 'ant colony' intelligence, 'fish schooling'
intelligence etc.

“There is some degree of communication among the ants, just
enough to keep them from wandering off completely at random. By
this minimal communication they can remind each other that they
are not alone but are cooperating with teammates. It takes a large
number of ants, all reinforcing each other this way, to sustain any
activity - such as trail building - for any length of time. Now my
very hazy understanding of the operation of brains leads me to
believe that something similar pertains to the firing of neurons....”

(Douglas Hofstadter, 1979)

From a purely technical standpoint, the term 'Swarm Intelligence' is used to
describe algorithms and distributed problem solvers inspired by and modeled after
this intelligent collective behavior. PSO in particular is inspired by the
choreography of a bird flock or fish school in search of food. Its creators opted to
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nickname the agents 'particles’ due to their appearance as dots on screen in the early
illustrations of the algorithm during execution. From conception to establishment
as an efficient optimizer, PSO went through numerous phases via trial and error:
After the initial social behavior model showed optimization potential, several new
features, all in attempt to simulate a force that presumably drives a member of a
bird flock or fish school, were incorporated and tested. Kennedy [28] quotes Craig
Reynolds [29] as arguing that a very realistic simulation of a bird flock is achieved
by assuming individual birds are driven by these 3 local forces:

v" collision avoidance, namely pulling away before they crash into one another

v velocity matching, trying to maintain about the same speed as their flock
neighbors

v' flock centering, trying to converge towards a perceived 'center' of the flock
in motion

It is also understood that, while a flock is flying randomly in search of edibles,
every single member depends largely on observing other birds eating or seeing
another member of the flock descending toward something it has found. Such
socially inherited information weighs almost as heavily as seeing the food itself.
Most of the flock may be unaware of the exact location of food, but readily
responds to such social signals, indications that a member of the flock may have
run into something interesting. The utility of this for optimization purposes is
evident: Besides having a population of search agents randomly exploring problem
space in search of a better solution to the problem, these search agents can
continuously exchange clues as to their current status in approaching the target.
This social awareness, coupled with the individual's ability to search with their own
senses and maintain a memory of its own recent experience perfectly lends itself to
the development of a population-based stochastic optimizer. As soon as this was
realized, the social simulation tool was simplified and PSO was officially proposed.
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3.2. Particle Swarm Optimization

According to the earlier described analogy, a swarm (let S be its size) is essentially
a set of particles released within search space and allowed to move about freely. By
reaching any position in space, a particle takes up a unique set of decision variable
values, therefore representing a potential or candidate solution to the problem at
hand.

Each individual particle is, at all times, described by its own position vector X and
velocity vector V. It should be noted that, at the absence of time in its strictest
sense, or, if you will, considering the time step to equal one time unit, both position
and velocity are measured as distance. Velocity is numerically taken equal to the
distance that will be traveled by the particle from its current position, to reach its
next, as is illustrated by the formula of position update [1]:

Xia= Xi+V, (eq. 3.1)

ik+1
where position and velocity values are directly added.

Particles are characterized by cognitive and social memory, meaning they can
recognize the points in space where good solutions were located in the past either
by themselves or by any other member of the swarm. The various interactions
between particles, as well as the fashion in which this memory is taken advantage
thereof, dictate the velocity that a given particle travels with at any given moment.
This process of updating velocity is described by the following formula:

Updated Velocity = Carried Momentum + Cognitive Influence +
Social Influence

Or, in its numeric form [1]:

—

\7i,k+1 :W'Vk +C

i ' Rcogn(lsbeSti - Xi,k)+c ‘R (ébESti - Xi,k) (eq. 3.2)

cogn soc

where X; is the position vector of the i swarm member during the k™ iteration of

the algorithm and V,, is the velocity vector of the i swarm member during the k"

iteration. At this early stage, an iteration of the algorithm can be perceived as a
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cycle between two consecutive speed and position updates of a given particle. On
the right hand side of eq. 3.2, the first term represents the momentum that the
particle in motion is already carrying, and is known as inertia or momentum,
whereas W is known as inertia weight or the momentum coefficient.

The second term matches cognitive influence and expresses the way in which the
particle's past experience impacts its course of 'flight', independently of the rest of
the swarm's whereabouts. It is also encountered in relevant literature as 'local drive'
or 'local accelerator'. A few slightly different approaches have appeared over the
years as to how this cognitive influence will be numerically represented. This
'Personal Best' alternative, or 'Pbest' for short, which is by far the most prominent,
suggests that the particle is drawn towards the location of its best so far achieved
solution (Pbest;), or fitness rating, or simply fitness, as which, solution relative
quality is commonly referred to in Evolutionary Computation.

Coogn * Reogn (PPESE, — X, )

cogn

The other two factors that complete the cognition term are Ccogn and Reogn,
cognitive acceleration coefficient or local acceleration coefficient or cognitive
learning rate and random cognition coefficient, respectively. Rc¢ogn takes random
values, uniformly distributed between zero and one, € (0,1). As such, it provides
the necessary stochasticity in the process of iterative relocation of the particles.
Ceogn Can take up various values, either constant or variant throughout the
algorithm's execution. The higher its value, the more the cognition term factors in
the particle's behavior over other stimula from the swarm or the environment. A
higher Ccogn is also observed to promote exploration of search space, as it
encourages the particle to deviate from the swarm and rely on its own perception of
the environment. Such behavior is traditionally sought at the earlier stages of the
optimization session.

The third term from the right hand side of eq. 3.2 matches social influence and
expresses the way in which the general behavior of the swarm as a whole and its
overall progress impacts the course of every individual member. Other, less
frequent labels are 'global drive' or 'global accelerator'. As for cognitive influence,
there are various practices in computational applications of the PSO concept.
Again, the most prominent is utilized in this work, and that is the 'Global Best'
scheme, or 'Gbest', which suggests that, similarly to Pbest, the particle is drawn
towards the best solution among all that the whole swarm, namely any one particle
in it, has achieved so far. Dynamic Neighborhood PSO [7] also deserves to be
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mentioned. In this technique, the examined particle is influenced by its close
neighbors, as opposed to the whole swarm. A 'Local Best' solution, picked among
the most fit of those immediately surrounding the particle is considered, in place of
the Global Best. An interesting concept, with considerable utility especially for
Multi-Objective problems, it has not yet been very widely endorsed.

Csoc ) Rsoc (ébeSti - )_{i,k)

The social term is completed by Csc and Rsoc, social acceleration coefficient or
global acceleration coefficient or social learning rate and random social
coefficient, respectively. The same as for Rcogn applies for Rsec. Csoc Can also be set
to a constant value or vary and, along with Ccgy and W, is crucial to the algorithm's
convergence characteristics and efficiency. The choice of these parameters must be
carefully made, if possible exclusively for every problem. Certain trends have
naturally been established and recommended value sets proposed - a more in-depth
review will follow. Suffice to say, the higher the Cy, value, the more the social
term weighs in on the particle's behavior. Contrary to Ccogn, a higher Csoc i
observed to promote exploitation, focusing the swarm's efforts on refining the most
promising already found solutions. Obviously, as we approach the later stages of
the optimization session, the optimizer's performance benefits tremendously from
such behavior.

In [32] Kennedy introduces four models of PSO, defined by omitting or restricting
components of the velocity formula. The complete formula above defines the 'Full
Model'. Dropping the social component results in the 'Cognition-Only Model’,
whereas dropping the cognition component defines the 'Social-Only Model'. A
fourth model, the 'Selfless’, is essentially the Social-Only Model, operating
similarly to Dynamic Neighborhood PSO, with a slight twist: It does not consider
the individual particle's Pbest vector at all but instead considers a 'Best' solution
chosen exclusively among its neighboring fellow particles. Therefore, the particle's
very own experience has no impact whatsoever on the swarm's course of flight,
hence why the variation was tagged 'Selfless’. In [17], Carlisle and Dozier
experimentally compare these models, even against dynamic environment problems
(problems where the sought optimum is motive throughout the process) and
confirm the superiority of the Full Model.
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Fig.3.1 Flow chart of a generic PSO optimizer.
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3.3. PSO Parametric Tuning

In this segment, we discuss the parameters that govern Particle Swarm Optimizers.
These are none other than the 3 major parameters in the original PSO formulae:
Ceogn (cognitive acceleration coefficient), Csoc (social acceleration coefficient) and
inertia weight W, from eq. 3.2.

> Inertia Weight

Inertia weight W is examined prior to the acceleration coefficients, as it indirectly
impacts their choice. It should be noted, at this point, that inertia weight was absent
from the initial proposal of PSO [1], but was added [11] soon afterwards, as it was
witnessed that PSO suffered from severe instability: Flight velocities occasionally
took values too high for the population to be contained within the boundaries of
allowed search space. Additionally, the high velocities meant that PSO, despite
boasting considerable speed of convergence during the earlier iterations,
encountered difficulties in properly benefiting from the spotted solutions by
thoroughly searching the space around them, for refined results. This process, often
referred to as exploitation, is equally vital to the general performance of a search
scheme as is swift and universal exploration at the start. In spite of the considerable
advances since its invention, exploitation is still considered PSO's Achilles heel,
especially in comparison to EA's, which feature excellent exploitation capabilities

[9].

As mentioned, W was hastily implemented as a means of keeping velocity below a
given threshold and particles from overshooting space boundaries. Up to that point,
this role was filled by an imposed maximum value for velocity or relocation step
size. A novel touch was to equalize this velocity threshold to the maximum variable
range, thus ensuring that variables, in the worst possible case that they would
exceed those variable boundaries, would not do so by much. This 'Vmax' IS
attributed to the original authors of PSO [12, 13] and found use even after W came
into play. A more sophisticated approach was proposed by Clerc [30, 31]: The
'Velocity Constriction Factor' scheme employed a coefficient K<1, a function of
Csocs Ceogn, A simplified version, for demonstrative purposes only, is shown below:
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’ Rcogn(l:_jbeSti - Xi,k) + Csoc ’ Rsoc (ébeSti - )_{i,k):| (eq 33)

cogn

K= 2
‘2—40—\/ ¢’ 4o ‘

¢=C,,,+Cs. 024

cogn

0.2 1 1 1

Fig. 3.2 The decrease of the Constriction factor K with the sum @ of the acceleration coefficients,
meant to contain the ultimate velocity value should the acceleration coefficients rise too high.

Notice how it is decreed that it should be ¢>4. Many PS optimizers still abide by
this guideline [6] that the sum of the two acceleration coefficients should be about
4.0 or more. After its implementation, W was observed to additionally serve as a
tuning parameter to balance between global and local exploration. Since a
maximum velocity constraint (whether imposed immediately or via the constriction
factor) affects global exploration ability indirectly while inertia weight affects it
directly, it is obviously preferable to dictate search characteristics through inertia
weight only. Focus was placed on experimentally pinpointing a suitable value that
would facilitate the desired swiftness in the earlier stages but would not
compromise the necessary fine search towards the optimizer’s termination. It was
found [13] that PSO with an inertia weight in the range [0.9:1.2] had the desired
balanced behavior, which was highlighted by the fact that it achieved the best
solution for a given number of evaluations. These experiments also rendered the
maximum velocity imposition obsolete and this practice was abandoned.

The next major advance was adopting a linearly variant (decreasing) inertia weight
to match the much-discussed velocity requirements of each phase (high at the start,
steadily lowering as we approach the global optima). As reported in [24], this
‘adaptive' inertia weight was inspired by the variant scheme successfully
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implemented in the Simulated Annealing technique, another popular evolutionary
optimizer, for its, reminiscent of inertia, temperature parameter. Eberhart and Shi
[12] conducted an in-depth parametric analysis and concluded that a linearly
decreasing (with iterations/generations) W in the range [0.9:0.4] is a reliable,
versatile choice. Other, more extreme applications see W nullified before or upon
fulfillment of the maximum iterations criterion. Others maintain a variant approach
for part for the session's duration while keeping inertia constant over the remaining
iterations [17].

(N

maxiter Niter) +W1 (eq 34)

variant inertia weight , W = (W, -W,) N

max iter

» Acceleration Coefficients

The cognitive acceleration coefficient Ccogn and social acceleration coefficient Cyoc
serve as tuning parameters to determine the balance between one particle's drive
towards its Pbest and towards the Global Best, or, if you will, between learning
cognitively and socially. In earlier bibliography, including the initial PSO proposal
by Eberhart [1, 5, 8], it is recommended that both coefficients are set at 2.0. In
practice, depending on the case at hand, this may vary and one may take on a
greater value than the other, in which case, to avoid uncontrollably high velocity
values, it is also recommended [26 , 30] that Ccogn + Csoc = 4.0. This is based on
the results of the Velocity constriction factor validation experiments (see velocity
constriction formulae eq. 3.3). In [12, 13], it is argued that even lower values,
around 1.4, must be used to ensure competitive efficiency without jeopardizing
convergence.

Soon, in the same spirit as with inertia weight, concerns were raised on the poor
late performance of PSO and its shortcoming in conducting finer grain search as we
approach the end of a run. Inspired by the linearly decreasing mutation and
crossover probability factors in popular EA's [9,17], a similar variant scheme as for
W, was proposed by Eberhart and Shi [13] and first applied by Ratnaweera and
Halgamuge [27] and Tripathi et al. [21]. The latter extensively investigate the effect
of a range of W and Cy,/Ccogn Values on the performance of the algorithm and
concur that a decreasing inertia weight and C¢ogn along with an increasing Cso, all
within an appropriate range, [0.9:0.4], [2.5:0.5] and [0.5:2.5] respectively, yield
better results.
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Cognitive accel. coef., C..,, = (Croqn0 = Coogna) (Nmalx\;ter ~Ner) +Cpony (€0. 3.5)

max iter

) (Nmaxiter — Niter) +C

Social accel. coef., C . = (C,,. , —C., N

(eq. 3.6)

soc,1
max iter

The increasing Csoc, decreasing Ccogn theme is in similar sense to the
exploration/exploitation scheme described earlier. It is understood that cognitive
influence is linked to the earlier stages of search, where we aim for coverage of the
greatest possible part of feasible space and social influence to the latter stages,
where we want to make the most out of the experience already gained in order to
capture the illusive optima. May | add, near the end of the run, where a great
percentage of particles have come to a halt and progress, if any, is very slow, the
cognitive term has limited utility, as most particles are effectively their own Pbests
i.e. current fitness is also the best achieved thus far. This fact nullifies cognitive
acceleration and magnifies the importance of the social term in keeping the
optimizer going.

It should be emphasized, at this point, that throughout the relevant literature, most
proposals, if not all, adopt equal value for both acceleration coefficients, and in
doing so, favor none of the two acceleration terms over the other. The trend is to
keep PSO perfectly balanced between global and local search. However, there is no
evidence that both terms contribute equally to the overall performance of the
algorithm, and I would like to raise the point that Cs,c=Ccogn may not facilitate PSO
achieving the ultimate in search efficiency. On the contrary, in light of the
experimental work of Dozier et al. in [17], where he validates the superiority of the
Social-only model over all other restricted variations of PSO, one is led to consider
that the Social term may indeed have a higher contribution to the quality of the
final solution, and should therefore be favored. Additionally, as almost any
significant innovation of this work is in the direction of advancing the
sophistication of the Gbest selection process and the overall functionality of the
Social learning procedure, | have opted to endorse Cs,c and would recommend a
Csoc>Ccogn SCheme. Should a variant scheme be adopted, as is also the case with
this proposal, the above recommendation does not apply for the entire ranges, i.e. it
only has to be: {average Csoc}>{average Ccogn}-
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» Population Size

Contrary to EA's, where extensive analyses and surveys have been published with
regard to parent-offspring ratios and other population-related data, no particular
guidelines are set in relevant literature as to the impact of the size S of the swarm
on the performance of a particle swarm optimizer. This is left to be decided
according to our best knowledge of the examined problem, which indicates an
appropriate compromise between a large population and a capable number of
iterations (for a given maximum allowed evaluations).

3.4. PSO versus Evolutionary Algorithms

Despite the slightly competitive implications in the title, this segment is not
intended to draw a comparison between the two paradigms, at least not one that
will deliver a conclusion of the ‘better/worse’ kind. It is understood that both
heuristics are highly representative members of the family of Population-based
Stochastic Methods in Optimization, and as such, feature commonalities that may
not be discernible at first, but are present. Studying these similarities helps better
comprehend the philosophy of population-based stochastic optimizers and may
inspire the observation of other natural phenomena, besides the evolution of
species (EA’s) and social interaction of sentient beings (PSO), that may also lend
themselves to the conception and development of new approaches to evolutionary
thinking and optimization. It is indeed fascinating how identifying similar
intermediate processes (referred to as operators in strict evolutionary computation
terminology) in both, emphasizes the unified fashion in which every mechanism in
nature assesses the search for the better, the stronger, the closer, the faster, the
optimal.

There are also distinctions between the two - distinctions in philosophy that extend
into practical application, as well. By studying the structure and the mathematical
background of either, we gain insight into what is later validated by experiments:
competitive results from both, but very different means of getting there,
fundamental differences in convergence behavior and interesting dissimilarities in
sheer performance at various stages of an optimization session. Reviewing these
distinctions can send us in the right direction when it comes to future development.
Each paradigm’s shortcomings and strengths are highlighted, pointing out the
necessary additions or the features that one can borrow from the other to improve
its overall utility, to complement its advantages and counter its disadvantages. We
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are particularly interested, fittingly, in all the ways in which PSO can benefit from
the major developments in the area of Evolutionary Computation.

A comparative review of philosophy and practice

We begin by closely examining some philosophical aspects of both methods,
highlighting those that distinguish them:

First and foremost, both methods are stochastic. That means they are governed by
randomness, and in great part rely on it to extract clues as to the location of optima,
or even to discover the optima themselves. Crucially, this information may not be
obtainable via any other, more orthodox, deterministic means. Their role is to
improve upon basic random search, as exhaustive exploration of all ranges of
problem space is not possible or computationally viable. They incorporate
intelligent criteria, which indicate the areas in which this search must be focused,
for the identification of optimal solutions to be accelerated.

What is more, they do not require the knowledge of the gradient of the objective
function, or any knowledge on the specifics of the problem at hand, whatsoever.
This is of vital importance when such information is impossible or very hard and
costly to extract. This also means they feature remarkable adaptability to any
optimization problem, and that they address every such problem in the same way,
regardless of its specifications. This adaptability is reminiscent of the way in which
all things progress self-reliantly in the natural environment, as far as both their
long-term characteristics and short-term activity are concerned.

Both are population-based, depending heavily upon a finite number of search
agents let loose into search space. Even more fundamental is the form of
interaction of these agents, which is essentially the identity of each method and the
core of its functionality. Without any loss of generality, all such methods are based
on intelligently comparing and combining the achievements of various agents, to
collectively achieve a sum greater than its parts. This is done by applying various
operators that manipulate the population and its gained experience. On close
inspection of the two paradigms, we notice that:

e Both schemes traditionally adopt secondary populations. EA’s carry the elite
archive, and access its content whenever they see fit and PSO features
particle experience or memory, with its Pbest (personal best solution thus
far).
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e Both, unless otherwise specified, have a population of standard size.
Particles, however, are retained throughout the ‘hunt’ process and all effort
is centered on delivering them all to a rewarding spot in search space.
Genetic candidates may not survive for more than a few generations each, as
the algorithm reallocates its available search resources from those
individuals performing poorly to new individuals generated from those
performing relatively well...

e ...hence the essence of intense competition in EA’s: The ‘survival of the
fittest’ concept means that one individual’s life means another’s death. PSO
has a more coordinative character, an essence of teamwork and fellowship,
as particles are bound to support and guide each other, for the process to
culminate. On the other hand, in PSO, parent information is partly (Pbest)
contained within each particle, while it is freely shared in evolutionary
optimization.

One point worth of mention is the ‘generation’ element in EA’s. PSO also works
iteratively and most existing configurations copy the generation trend, but is not as
constricted by this obligation to simultaneously update its population.
‘Asynchronous’ variations have been developed for EA’s, to rid them of this
setback, but PSO is naturally asynchronous. The absence of selection, with
elimination in mind, allows for particles to be updated independently of the
progress of the rest of the swarm, relying only on what data is available upon
completion of their evaluation and fitness assignment. Therefore, it lends itself to
parallelization (see section 6.2).

Optimization methods all perform the following procedure:
S =T (T (T, (T...(S")))) , S*: the population during the k™ iteration

where T, Tn, T, etc. are manipulation operators that act on the population to
extract its successors.

As we have seen, three are the main classes of operators in evolutionary
computation, which are implemented in one way or another in every application of
an EA: Selection, Crossover/Recombination and Mutation. The Elitism feature is
also popular enough to be considered a must-addition. Interestingly, there is an
adjacent operation in PSO, for very one of those in EA’s. The most easily
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recognizable equivalence is that of mutation and crossover with the swarm update
formulae of PSO: There, information and experience stemming from more than one
individual is taken into consideration, resulting in the formation of a new candidate
decision variable vector. These two operations, however, that of randomized,
chaotic mutation and that of well-structured, deterministic crossover, are not easily
separable in PSO. The author of the paradigm, R. Eberhart often makes the remark
that PSO seems to be performing ‘mutation with a conscience’ [12,14,24], in the
sense that there is some added randomness in the way that particles are relocated in
space, very reminiscent of ‘bit flipping’, but that this relocation is still governed by
determinism to a sufficient extent. The crossover element is present in the way that
two particles, a Gbest and a Pbest are combined to dictate the particle’s new course.

In PSO, there is no selection operator per se, as the same S particles carry on
throughout a run, without elimination or generation of additional swarm members.
Selection does occur, however, when, in multi-objective problems, we choose one
non-dominated solution to act as a Gbest, thus serving as a global guide for other
swarm members. This solution earns Gbest status, not at the expense of a fellow
particle’s survival, but its role in the swarm is elevated.

As for elitism, it is encountered in the Pbest scheme: A secondary population, kept
in an external archive, also of size S, is comprised of the best solutions discovered
thus far for every swarm member and represents the particles’ memory of their past
achievements. Pbest vectors do not generally coincide with their adjacent particle’s
current location space, and are therefore reminiscent of the elite archive, which
stores the best overall solutions attained and is utilized when and if the crossover
operator requires it, for mating. The equivalences between the operators of each
method are summarized in table 3.1:

EA operators PSO equivalents
Mutation PSO velocity adjustment formula
Crossover PSO velocity adjustment formula
Selection Gbest selection scheme

Elitism Pbest scheme
Table 3.1
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Both search techniques are governed by parameters, the cautious selection of which
is crucial in taking the maximum out of the search technique’s potential. We have
already taken a thorough look at the major tuning parameters of PSO, and
emphasized their impact, especially on the dynamic characteristics of convergence
and how the desired gradual reallocation of the swarm’s resources from exploration
to exploitation must be facilitated. Although a direct analogy between said
parameters and those in EA’s is not possible, we can observe certain common
trends in the way they are handled: Mutation probability also decreases with
generations, to signal the passage from intense exploration to the prioritization of
solution refinement. We witnessed the benefits of such a linear variance scheme for
inertia weight and the acceleration coefficients, already.

Performance-related distinctions

This segment highlights differences in performance and convergence
characteristics. This survey helps comprehend the ways in which either heuristic is
strong or weak, the areas in which either can be enhanced and the benefits a
possible hybridization can yield. For this, we refer to past empirical studies and
experimental results that overlook the latest advances and illustrate, as much as
possible, the bare optimization methods, to better point out these distinctions,
which still exist but may have been bridged somewhat by the ongoing development
of these methods.

Peter J. Angeline [9] was the first to address EA’s (GA’s in particular) and PSO in
a comparative context. This work made evident the exploitation weaknesses of the
then-newborn PSO and stimulated the addition of inertia weight. He tested both
methods using popular benchmark mathematical functions, namely the Sphere,

Rastrigin and Rosenbrock functions (see [9]), all of the form: f =Zg(xi), hence
i=1

why he repeated every experiment for 3 different n values. The outcome was,
among other, figures 3.2, 3.3, 3.4:
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Over all three functions, PSO shows a significantly faster rate of convergence at the
very early stages of search, then quickly halts its progress. The GA decreases its
fitness at a slower, steadier pace and ultimately manages to slightly surpass PSO’s
performance. This occurs at all three vector widths (n) tested. These figures are
highly indicative of the fact that PSO is principally a faster search method and the
GA a more thorough, adaptive and fine heuristic. Under particular circumstances,
they both excel, at exploration and exploitation respectively. The Particle Swarm’s
disadvantage is its inability to dynamically adjust its velocity and particle step size
to the demands of the problem once in the general region of the optima. This causes
its convergence curve to flatten out dramatically. The Genetic optimizer finds
optima at a slower rate but has no trouble tuning its operators so that it can better
reflect the granularity of the local search region.

To attempt to justify this ineptitude of basic PSO (emphasis on basic, as later
additions and developments have, to a large extent, eradicated these shortcomings)
at coping with demanding localized search is not an easy task. Quoting P.
Angeline: “Particle Swarm's commitment to a highly directional manipulation
formula can occasionally hinder its performance on some problems under certain
conditions. Conversely, when the gradient information supplied by the personal
and global best correctly indicates the direction to the optima, performance of
particle swarm is exceptional...Consequently, particle swarm optimization will
perform best in environments where the average local gradients point towards the
global optima but may have difficulties when the average local gradient point in
the wrong direction or is constantly changing. Evolutionary optimizations,
however, will be able to perform well in environments where the local average
gradient does not point towards the global optima. .

Conclusion

The above have hopefully shed some light on the distinctive peculiarities of the two
heuristics; this pair represents the cream of the crop of Stochastic methods and
Evolutionary Computation in general, and since they demonstrate such converse
qualities, future research will — already has — focus on hybridizing them [33,34].
Possible hybrids could include a self-adaptive technique similar to those used in
evolutionary computation (mutation strategies), capable of dynamically adjusting
velocity step size during the course of a session.

However, even for PSO on its own, the potential for improvement is astounding,
especially so since it is relatively recent, contrary to EA’s, who date back almost
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three decades, have received considerable attention from the academic and
industrial society, and occupied ample research resources, becoming the prominent
search optimization method today. The preceding survey evidences the need to
enhance PSO’s exploration capabilities, to match the competence of EA’s in that
area, while retaining the marginal convergence speed advantage. PSO has
manifested issues with premature convergence [17, 24] to local optima and a
general tendency to collapse towards the first non-dominated solutions found,
instead of exhausting its chances to cover the full Pareto front. Implementation of
mutation-like techniques can help moderate such phenomena (see chap. 4).
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4. The Proposed Algorithm



4.1. Swarm update

(In this segment, unless otherwise stated, we speak exclusively in terms of single-
objective optimization, hereon referred to as SOO. Additionally, throughout the entirety
of this work, we consider all optimization problems as minimization problems.)

This is where the next generation is derived from the previous one, where all swarm
members are given new individual flight velocity values and are, consequently, relocated
in search space, assigned new position vectors. This procedure is described by the two
core formulae of PSO, repeated here as they were featured in chapter 3:

—

Xi,k+1 - ;(i,k +\7i,k+1 (eq- 4-1)
‘R (Pbest, — X, )+C,. -R (Gbest, - X,,)  (eq.4.2)

SOC

\/i,k+1 = W\/Ik +Ccogn
In accordance to Evolutionary Optimization terminology, particle position vectors X; are
from here may also be referred to as '‘Chromosomes' and an iteration referred to as a
'generation’.

In the algorithm proposed in this work, inertia weight decreases linearly with iterations
(eq. 4.3). The spirit of this is to allow for faster, more dynamic search (maximized
exploration) during the earlier stages of the optimization process while gradually limiting
the speed of the particles to encourage more focused search (maximized exploitation), as
the algorithm approaches its ultimate convergence.

W = (\No _Wl) (Nmaxiter B Niter) +W1 (eq 43)

max iter

As has been elaborated previously, Pbest of an individual swarm member, or personal
best, signifies the position in search space in which this particular member achieved its
best fitness (objective value vector) so far. Fittingly, Gbest, or global best, signifies the
position that holds the overall best fitness up to this point in the search session, attained
by any one of the members of the swarm. These two concepts may be fairly self-
explanatory when it comes to single-objective optimization: each swarm member carries
with it the memory of its best fitness achieved and where that occurred, whereas all
swarm members are aware of where the best solution so far is located, and are drawn
towards it. In multi-objective optimization, things are a bit more complicated: on one
hand, there lies the common issue of solution comparison and ranking: which is best
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among different solutions in N-dimensional space? How will it be possible to compare
two individuals based on more than one conflicting criteria? How will Gbest or the
individual Pbest be determined? Moreover, it is understood that there cannot be one
Global Best by its strict definition, since we aim to achieve solutions as uniformly diverse
as possible and to cover the biggest possible range of combinations of good fitness in
different objectives. Therefore, in MOO, the Gbest concept is similar to Pbest in that,
every swarm member carries its very own Gbest vector, that may not be the same for any
other swarm member [5, 6, 7].

In this work, as for W, a linearly variant approach was adopted for both the cognitive
acceleration coefficient Coqn and the social acceleration coefficient Csoc (eq. 4.4, 4.5). A
decreasing W and Ccogn along with an increasing Csoc, all within an appropriate range,
[0.9:0.4], [2.5:0.5] and [0.5:2.5] respectively, yield better results [21, 27]. The choice of
parameter values for this work was made along those lines, with no further parametric
analysis conducted other than tests for validation of the above.

N . —N.
Ccogn = (Ccogn,o _Ccogn,l) ( mali;ter |ter) +Ccogn,1 (eq 44)
max iter
Csoc - (CSOC,O _CSOC,l) (Nma|<:ter - Niter) +CSOC,1 (eq 45)
max iter

The increasing Cso, decreasing Ceogn theme is in  similar spirit to the
exploration/exploitation scheme described earlier. It is understood that cognitive
influence is linked to the earlier stages of convergence, where we aim for coverage of the
greatest possible part of feasible space and social influence to the latter stages, where we
want to make the most out of the experience already gained in order to capture the
illusive optima.

4.2. Initialization

(From here onward, we address the Multi-Objective version of the proposed optimizer)
During the initialization phase, swarm members are assigned to randomly distributed
locations in feasible space. The process is governed by a random number generator and

thus, all performance-related data demonstrated later in this work are products of
averaging the outcome of multiple sessions utilizing different random generator seeds, to
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guarantee an independent of any randomness, dependable verdict.

Additional care is taken with the initialization of flight velocity of each particle: with
Pbest fitness vector assigned infinite starting values and Gbest equalized with their
respective members' starting location, assigning zero starting velocity is not an option.
Also, an initial velocity that would drive the member outside feasible space, activating the
constraint operator, must be avoided at all costs as it would severely hinder the
algorithm's prospects. Velocity is therefore set equal to a percentage of the distance
between the member's starting chromosome and the center of feasible space, and directed
towards it. This percentage must be kept low, or the whole swarm will collapse towards
the same area on the first generation. A mere ‘push’ is only intended.

It should be noted that this particular initialization procedure is far from common
practice: Most PSO alternatives [5, 6, 15, 18, 21] set initial velocity at 0 and equal Pbest
to its corresponding chromosome. The first evaluations that come as the very next step,
determine the Gbest archive and the algorithm proceeds normally. In ref. [25], an overly
sophisticated scheme is proposed, incorporating varied Probability Distributions and
Low-Discrepancy sequences into the initialization of the swarm.

4.3. Elite-related operations

In this section we address the issues of non-dominated solution sorting or elite sorting
and solution diversity, which are innate to any stochastic MOO algorithm, be that an EA,
swarm-intelligence-based or other. Two representative examples of the state-of-the-art in
Multi-objective Evolutionary Computation are shortly surveyed before we proceed to
discuss the practices of this work:

e Non-dominated Sorting Genetic Algorithm Il (NSGA I1): Proposed by Deb et al.
[3, 4], this algorithm is a revised version of the original NSGA also proposed by
Deb et al. [2]. Both are based on several layers of classifications of the
individuals. Before selection is performed, the population is ranked on the basis of
non-domination: all non-dominated candidate solutions are classified into one
category and receive a dummy fitness value, which is a function of the number of
individuals dominated by each such solution. All candidates are likewise
classified in additional layers, as this first group of classified individuals is
ignored and another layer of non-dominated individuals is considered. The
process continues until all individuals in the population are classified. The chance
of a particular individual to be selected is proportional to this dummy value,
which portrays its strength among other members of the population. The areas

4-4



upon which NSGA 1l is an improvement to the original NSGA are computational
efficiency, the addition of elitism and the implementation of a diversity operator
without requiring additional parameters to be input by the user (unlike the original
NSGA and its ‘fitness sharing’ factor).

e Pareto Archived Evolution Strategy (PAES): This algorithm was introduced by
Knowles and Corne [23]. PAES consists of a (1+1) evolution strategy (i.e. a single
parent that generates a single offspring) in combination with a historical archive
that records some of the non-dominated solutions previously found. The utility of
this archive is that of a reference point to which each individual is compared.
Such a historical archive is the elitist mechanism adopted in PAES. However, an
interesting aspect of this algorithm is the procedure used to maintain diversity
which consists of a crowding procedure that divides objective space in a recursive
manner. Each solution is placed in a certain grid location based on the values of its
objectives (which are used as its ‘coordinates’ or ‘geographical location’). A map
of the said grid is maintained, indicating the number of solutions that reside
within each grid sub-space. Since the process is adaptive, as in NSGA Il, no extra
parameters are required.

4.3.1. Non-dominated sorting

The proposed algorithm (PA) handles elite sorting in two phases, which take place during
each generation: First, after all swarm members have undergone evaluation, it extracts
(fig. 4.1) those that are found non-dominated among the current population, with regard
to fitness during the current generation. Those individuals, flagged as 'GND' (for
‘generation-non-dominated’) for the remainder of this generation, are obviously the only
ones among the current population that have a chance to enter the updated elite archive,
or Pareto front, as being globally non-dominated also presupposes not being dominated
by any in the current swarm. Then, the GND particles join the current elite archive in a
unified temporary archive, and all compete against each other (fig. 4.2) for Pareto
dominance, forming the new Pareto front after all dominated solutions, old and new, are
ousted (fig. 4.3, 4.4, 45). The simpler and more straightforward alternative of
immediately subjecting the entire current swarm to a Pareto dominance test against the
entire elite archive was avoided to promote the overall computational efficiency. The dual
phase scheme yields the additional benefit that the Pareto front update process is easier to
monitor.
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particles (Case ZDT-1, axes refer to its two objectives, abscissa for F;, coordinate for F,).

28

T
“gen_non_dom" @
“current pareto”

26 L B
24 - - - . . |

22 ® B

0.8 I I I I I I

Fig. 4.2 The non-dominated of a given generation are joined by the current elites (Case ZDT-1, axes refer
to its two objectives, abscissa for F,, coordinate for F,).
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Fig. 4.3 The non-dominated of a given generation alongside the current elites (Case ZDT-1, axes refer to
its two objectives, abscissa for F;, coordinate for F,). Circled are those among the GND who are also
globally non-dominated and will be in the new, updated elite archive.
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Fig. 4.4 The non-dominated of a given generation alongside the current elites (Case ZDT-1, axes refer to
its two objectives, abscissa for F;, coordinate for F,). Circled are those among the GND who fail the
dominance check and will not be in the new, updated elite archive.
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Fig. 4.5 The new, updated elite archive (Case ZDT-1, axes refer to its two objectives, abscissa for F,
coordinate for F,). Circled are the new entrants, compared to the previous generation.

4.3.2. Elite Spacing

By default, the size of the elite archive cannot exceed a given value, specified a priori by
the user. Upon reaching this threshold, and every time that a newly formed Pareto front
contains more individuals than dictated by the elite archive size limit, elite spacing is
engaged, to indicate which members will be retained and which dropped. Elite spacing
not only serves the purpose of decreasing the archive's dimension, but is also responsible
for the disparity and quality spread of elite solutions in objective space. Therefore, it
boasts a certain degree of sophistication, rather than choose randomly.

Our aim is to 'cut' individuals from relatively crowded areas of the front, as opposed to
scarcer parts. The closer two elite individuals are to one another in terms of fitness, the
greater the chance that only one will be retained, as they present a very similar set of
objective function values and we seek as many differently 'weighted' final solutions as
possible. The adopted scheme is labeled ‘density’ and is similar in practice to most
popular diversity operators, like NSGA and NSGA Il [2, 3, 4].

Elite individuals are ranked based on closeness to their nearest elite neighbor on the front.
The density of a particular member is derived exclusively from the distance, measured in
the objective domain, to its closest partner; in fact it is equal to that distance. After
density has been calculated for all current Pareto front occupants, the one with the lowest
value is ousted from the front. The process is repeated until we reach the desired elite
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archive dimension. Prior to those calculations, distances are of course non-
dimensionalized by absolute objective value range (derived from the absolute greatest and
lowest value difference documented so far). Please note that the most 'dense’ individuals
always appear in pairs as, if the smallest distance documented during an iteration is that
of member A from member B, such is also the case for the distance of B from A. Deleting
both A and B would not have the desired effect, which justifies that only one individual is
removed and the procedure is repeated from scratch, i.e. distances calculated all over
again.

5.5
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“removed elites” ()
"candidate_elites"

45 - L=

35

25

Fig. 4.6 The current Pareto front through the spacing process (Case ZDT-1, axes refer to its two
objectives, abscissa for F, coordinate for F,). Circled are the individuals to be dropped.
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Fig. 4.7 The updated Pareto front through the spacing process (Case ZDT-1, axes refer to its two
objectives, abscissa for Fy, coordinate for F,).. As dots appear the particles which were dropped.
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Fig. 4.8 The ultimate Pareto front, post spacing, limited by the maximum elite archive size (here, 10).
(Case ZDT-1, axes refer to its two objectives, abscissa for F, coordinate for F,)

4.4. Gbest & Pbest assignment

This section of the algorithm is of great importance: It signifies the transition to MMO, as
the update of Gbest and Pbest archives is self-explanatory in SOO, whereas in multi-
objective cases it is, in the author's opinion, a vast difference maker and sets apart a
simply functional MO PS Optimizer and a really competitive alternative. Hence, this is
where most novelty of this work lies. It should also be noted, that there is no direct
equivalent to this phase in Evolutionary Optimization, unlike what has been presented up
to this point. Let us shortly review the most standout attempts to extend PSQO's utility to
MOOQ:

e The algorithm of Parsopoulos and Vrahatis [22]: This algorithm adopts an
aggregating function (three types of approaches were implemented: a conventional
linear aggregating function, a dynamic aggregating function and a special
weighted aggregation approach in which the weights are varied in such a way, that
concave portions of the Pareto front can be generated).

e Dynamic neighborhood PSO proposed by Hu and Eberhart [7]: The dynamic
neighborhood PSO has limited utility for problems of a maximum of 3 objectives.
This concept assumes considerable prior knowledge in terms of the problem's
properties. Instead of a single Gbest, a local Lbest is obtained for each swarm
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member that is selected from the closest two swarm members. The closeness is
considered in terms of one of the objectives, while the selection of the optimal
solution from the closest two is based on the other objective. The selection of the
objectives for obtaining the closest neighbors and local optima is usually based on
the knowledge of the problem being considered for optimization. Usually the
simpler objective is considered for the detection of the closest partner. A single
Pbest solution is maintained for each member that gets replaced by the present
solution only if the present solution dominates the current Pbest. Regardless of its
limited utility, Dynamic Neighborhood is a novel and very interesting concept.

e MOPSO, an alternative proposed by Coello et al. [5, 6]: This very interesting
proposal maintains an external non-dominated solution repository. Hypercubes of
the objectives space explored so far are generated, and each particle is located
using hypercube topology to define a new coordinate system. Of all those
hypercubes, those containing particles that are also in the repository are ranked
based on how many such particles they contain (the fewer, the higher up the order
they get). Gbest particle assignment is made randomly from one of those
hypercubes, after they are subjected to weighted roulette selection.

As was clarified earlier, every individual swarm member is assigned not only his own
Pbest, but Gbest also, in direct contradiction to the notion of ‘One Globally Best Solution'.
To properly accommodate the pursuit of a spread out Pareto front would not be possible,
if only one elite was appointed Global Best (remember, Gbest’s act as gravitational points
during swarm position update). The process of selection of a suitable Gbest for every
current swarm member is designed on the basis that: i) it must not interfere with elite
spreading and ii) it must endorse the progress of every individual deterministically, to
some extent, i.e. the choice of Gbest must consider the direction in which each swarm
member has the greatest potential. Regardless of what method we opt for, Gbest’s are
always picked out from among globally non-dominated solutions, namely elites.
Therefore, from now on, we can address Gbest’s simply as index numbers of the elite
archive, instead of as stand-alone variable and fitness vectors.
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4.4.1. Gbest selection alternatives

4.4.1.1. Overview

A few different approaches were tried and, even though we have settled down to one and
fully endorse it, three of them will be presented in detail, to showcase how each added
feature enhances the overall performance, followed by suggestions on possible further
improvements.

i. 'Roulette’ method

Exactly as the title suggests, this method assigns a Gbest to each and every swarm
member simply by randomly selecting any one elite from the current Pareto front, without
any determinism involved in any way. This randomness guarantees a very good degree of
disparity in the final solution front, but due to the lack of a 'smart' search feature, it falls
behind in convergence speed and overall performance compared to other, more
sophisticated alternatives (fig. 4.13).

ii. 'Proximity' scheme

This method is deterministic to some extent, as it assigns as Gbest that elite, which is
closest, in terms of fitness, not in search space, to the examined swarm member (fig. 4.9).
In other words, the non-dimensionalized distance of the said member from each and every
current elite in the domain of objective functions is calculated, and the one found closest
is appointed Gbest of this member (in fig. 4.9 the selected elite appears to be the second
closest, but that is not the case after the non-dimensionalization of distances). This is an
attempt to locate a ‘projection’ of the said swarm member on the Pareto front, which is
theoretically its direction of natural progress. Depending on the shape of the Pareto front,
its curvature etc., the proximity scheme does not always work as intended: On close
inspection of fig. 4.10, we observe that of all non-dominated solutions, the red particle is
closest to the circled elite, which will consequently be picked as Gbest. However, as is
easily noticed, the Gbest which was assigned on the basis of proximity does not dominate
the adjacent swarm member (red particle). Rather, it only is 'better' according to one of
two objectives. To the left of the chosen elite lies another solution which completely
dominates the red particle (fig. 4.11) and would, in that sense, be a better option, as
moving towards it would universally improve the examined individual.
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Fig. 4.9 Demonstration of the proximity scheme. Circled is the selected Gbest (Case ZDT-1, axes refer to
its two objectives, abscissa for F;, coordinate for F,).
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Fig. 4.10 The shortcoming of the proximity method. Circled is the selected Gbest, which, however, does
not dominate the examined particle (Case ZDT-1, axes refer to its two objectives, abscissa for F;, coordinate
for F,).
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Fig. 4.11 Circled is the manually selected and recommended Gbest, as opposed to the one selected by the
proximity scheme (Case ZDT-1, axes refer to its two objectives, abscissa for F;, coordinate for F,).

iii. Combo* method

* A combination of the principle of Pareto dominance and roulette selection.

The last and most advanced scheme adopted, and the one the final algorithm uses by
default, is the combo method, in which roulette selection is also applied, but only among
elites that dominate the examined swarm member. Every single one of the solutions in the
elite archive are checked for dominance over the examined individual, and out of those
which pass (fig. 4.12), one is selected randomly. This method is already an improvement
compared to the previous one, as the picked Gbest is guaranteed to be an overall better
solution than the examined swarm member. By using roulette selection, we also allow for
the stochastic element to be present.
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Fig. 4.12 Demonstration of the combo method. Circled are the candidates for the roulette phase of the
method (Case ZDT-1, axes refer to its two objectives, abscissa for F1, coordinate for F,).
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Fig. 4.13 Direct performance comparison between the three presented methods (Case ZDT-1, axes refer to
its two objectives, abscissa for F,, coordinate for F,), conducted using default settings and identical
population data (swarm size S=50, max. Elite archive size=35).

A first performance comparison, the results of which are shown in fig. 4.13, confirmed
the above speculation as to the potential of each scheme. The MO version of the
algorithm was set for 5000 maximum evaluations, featuring a 50 particles population and
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permitting a maximum elite archive size of 35, with every initialization and swarm update
related parameter at default (more on this default set to follow). As predicted, roulette
Gbest selection, despite achieving a very good disparity of final solutions, is weak in
terms of convergence speed and general performance. The Combo method is evidently the
better option, followed by proximity, as it not only boasts the fastest convergence but also
gives a nicely spread out ultimate set of solutions, which is not the case for the proximity
operator, which despite converging at a competitive rate, fails in achieving a decent
disparity in the final solution front. This can be attributed, in part, to the shortcoming
described earlier. It should be duly noted that the performance gap between proximity and
the Combo is larger than illustrated in fig. 4.13, as the latter is limited by the analytically
calculated optimum of ZDT-1, to which it converged before reaching the threshold of
5000 evaluations.

4.4.1.3. Suggestions for immediate improvement

Already, potential improvements to the algorithm are evident: By eliminating or limiting
the leftover stochastic element in favor of an even more deterministic approach,
performance can be further enhanced. That can be achieved through combining proximity
and dominance and dropping roulette selection:

v All elites dominating the examined swarm member are subject to the proximity
operator, which is responsible for the final pick, based on closeness.

v’ Elite solutions are ranked on proximity, in increasing order of distance from the
examined swarm member. In the same order, they are all checked for Pareto
dominance upon the said member. The first one to pass this check (the closest
dominant elite) earns Gbest status.

Even further improvement can be achieved by implicating the density of an elite
candidate for Gbest status: Of all elites dominating the examined swarm member, the one
with the highest density value is picked. Not only does this criterion lead to an elite which
is a definite upgrade compared to said swarm member, but it is also a substantial step in
the direction of solution spread and diversity!

4.4.2. Pbest update alternatives

Things are much simpler when it comes to the update of the archive of personal best
solutions, or ‘cognitive memory', as it is referred to in Swarm Intelligence literature. On
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most occasions, the simple principle of Pareto dominance is applied: The fitness of the
current solution is compared to its current personal best vector; should the new solution
completely dominate the Pbest, then it takes its place. Accordingly, if it is dominated by
the reigning Pbest, nothing is changed. When neither is the case, i.e. when neither of the
two dominates the other, we are presented with three options:

v Opt for the new solution. This is the ‘confident' alternative, as it invests heavily
on newer solutions to drive the optimizer forward.

v’ Retain the current Pbest. This is the ‘play safe' option, which will only alter the
Pbest archive once presented with a definite upgrade.

v Randomly select one of either and proceed.

All three alternatives were tried on two different problems (cases ZDT-1 and ZDT-3),
with no clear winner. Therefore, none receive the author's recommendation. The
algorithm is set at the 1% option by default, whereas the 2" and 3" are the most common
choices in relevant literature [5, 6, 7, 15, 18, 21, 22].

4.5. Additional features

4.5.1. Constraint operator

Optimization problems are generally subject to constraints; apart from the natural
constriction of variable values within an upper and lower bound, additional
conditions must apply for a solution to be acceptable. Such conditions may include
intermediate quantities of the problem, the decision variables themselves, or even
the objectives. A typical issue commonly handled by the constraint operator of an
optimizer that may otherwise not be clearly classified under constraints, is when we
intend for a variable to take values from within an open ()’ range, i.e.
Drower<Xi<bupper. This range will be regularly declared as closed in the variable
declaration section of the algorithm’s input file, and it is then up to the constraint
operator to reject values equal to the lower and/or upper bounds.

The K, constraints of any problem must be expressible in this particular inequality
format:

C(X)<C™ | i=1,K_, (eq.4.6)
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Where C,(X) is the Constraint function value corresponding to a variable vector X,
calculated by the very same external evaluation software that calculates objectives, and

CP™ the permitted upper threshold, beyond which, solution X is considered as having

failed the constraint. It is possible for any condition to be converted into the above
format:

C(¥)=C' = [C(®)-CY|z¢ =  (eq.4.7)

C.(X)-CXze , if C(X)>C*
CX-C(X)ze , if C(X)<C

—C,(X) <—e—-CX=CP™ | if C,(X)>C>
C(X)<CX-g=CP™ , if C,(X)<C*

C(x)=C* = |C(X)-Cl|<e =  (eq. 4.8)

C.(X)-CX<e , if C,(X)>C
CX-C.(X)<e , if C,(X)<C*

C.(X)<e+CX=C™™ , if C,(X)>C*

—C.(R)<e-CX=C | if C/(X)<C*

. C(X)=CX = -C(X)<-CX=C™ (eq.4.9)

where & equals 10 or any tiny quantity, for that matter.
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The consequences of failing a constraint are reflected on the ultimate fitness of the
particle, which is appropriately modified, dealing a severe blow to the candidate’s
competitiveness. It is common practice to assign an infinite fitness (ex. 10'*) value to a
candidate for failing even one of K. constraints. In this work, a somewhat more
‘forgiving’ approach is adopted, where the constraint limits are relaxed, containing
‘penalization’ within reasonable lines for those candidates that have only just surpassed
the constraint thresholds. A second, slightly higher threshold C™* is introduced, set by

the user according to his best knowledge or judgment of the problem’s specifications.
Fitness of an individual is subject to the following modifications, subsequently to the
calculation of constraints:

F(X) . if C(X)<CPm
F(X)+h(C.(X)) , if C®™<C,(X)<C™ (eq.4.10)
. if C.(X)>Cr

A\

F(X) =

+00

C,()-C/"

where:  h(C, (X)) =exp Cre

(eq. 4.11)

The fitness of any particle can additively receive multiple h increments, if the particle
has entered the relaxed area in more than one constraint functions. It is self-explanatory
that if a particle falls under case (3) of eq. 4.10, it is automatically excluded from the
processes of solution sorting and Gbest assignment.

The algorithm can benefit massively from this ‘forgiving’ approach, especially in heavily
constricted problems where the algorithm will have difficulties even assembling a
dependable first population of acceptable solutions, from which to proceed. It is not an
infrequent occurrence to have an optimization session terminated before it has even set
off, due to all initial particles failing to be established as 100% viable solutions. Crucially,
if one considers that an optimum often lies at the edge of feasible search space — a
problem’s constraints are effectively limiting its potential of resolution — it is
understandable that, in the long run, we might be rewarded for offering these pariahs of
the swarm an opportunity to contribute, even from a slightly (h penalty) disadvantageous
position.
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4.5.2. The SHUFFLE operator

452.1. Overview

Inspired by mutation operators widely utilized in Evolutionary Computation, the shuffle
technique was developed to step in at a certain checkpoint and, by stirring the algorithm's
database, to reintroduce stochasticity in the search process. It essentially re-initializes the
swarm, while retaining records of the progress of the algorithm as far as solutions are
concerned. At the same point, it detects areas in search space that have been relatively
neglected so far, and ensuing search is made to focus on these areas, by encouraging
particles to travel in specific directions.

Various reasons call for the implementation of shuffle or similar measures: Due to the
nature of the objectives, constraints and other unique characteristics of the problem at
hand, the algorithm may encounter obstacles in exploring certain areas of search space
[23], which will result in a final set of solutions that is not as diverse as we would like,
containing a plethora of, very similar to one another, solutions and failing to locate those
illusive 'hidden' optima. Case ZDT-3, presented later in this work, is a perfect example of
such a problem, as its convex, non-contiguous analytic solution can be quite a challenge
to capture. Moreover, shuffle seems to limit the impact that random number generation
has on the algorithm's behavior, granting added consistency. Without it, PSO largely
depends on its initialization. Shuffle, among other things, re-initializes the swarm, so the
final outcome is now a product of more than one events of stochasticity.

The innate premature convergence that PSO 'suffers' from [9, 17, 24], as opposed to other
optimization heuristics that proceed slower and explore more thoroughly, GA's being a
good example thereof, poses an additional obstruction. On the other hand, this increased
rate of progress of PSO is a privilege, as it secures a decent result early on, allowing us to
'spend' evaluations on the shuffle feature, to fine-tune our solution set and take a second
look at problematic areas of search space. Let be emphasized that Pareto front refinement
is the main problem in the development of a PSO optimizer. As we approach the final
stages of the optimization process, it is not uncommon for a large percentage of the
swarm to have come to a halt: Individuals that find themselves in a non-dominated
position are effectively their own Gbest and Pbest. That means they only rely on their
momentum factor to keep them from stopping completely and further progress, if any, is
extremely slow. When this phenomenon appears, some drastic measure has to be taken to
keep the optimizer in motion, and shuffle is one such measure. One such case is fig. 4.14,
where not much more can be done as far as capturing the analytically calculated optimum
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curve. However, solution diversity, especially towards the rightmost edge, could have
improved substantially, if exploration of that part had been prioritized.

Zdr1 analytic solution ——
badly distributed pareto

Fig. 4.14 A typical situation where shuffle is missed (Case ZDT-1, axes refer to its two objectives,
abscissa for F;, coordinate for F,). The PSO optimizer has almost fully converged to the sought front, but
the elite solution set suffers from imbalanced diversity (observe the rightmost edge).

The operator is first engaged after a certain % of maximum allowed evaluations have
been completed. It is additionally engaged once more before the termination of the
algorithm and only if a certain solution disparity criterion is also met, namely when the
difference between the density of the most and least dense areas on the non-dominated
front surpasses a given threshold. Simply put, if the density value of the elite individual
with the lowest such value becomes lower than X times that of the one with the highest
such value, the current non-dominated front is considered to be too imbalanced, and
shuffle is re-engaged. Two shuffle sessions cannot occur too close to one another, as the
algorithm must be given time to progress from the 1% shuffling or it will not culminate.
The algorithm must also have achieved some degree of convergence before the 2™ shuffle
session or it will occur under inappropriate circumstances (ex. it will be difficult to
identify the less dense areas in need of further exploration if the algorithm is still in the
wake of the 1% shuffle). Therefore, a necessary minimum of in-between generations is
imposed.

As was mentioned in the introduction, apart from the re-initialization, there is a special
mechanism that conducts highly targeted search, depending on the condition and progress
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of the optimizer at the point of shuffle engagement. This mechanism recognizes the areas
that require more attention and encourages the swarm to prioritize them during
exploration. This identification is based on measurements of solution crowding along the
non-dominated front. It ranks elite archive members on their density values and selects a
given number of those with the highest such value (fig. 4.15). These solutions are
essentially from the scarcer parts of the Pareto front and represent the neglected areas in
space. As you can observe in fig. 4.16, where both the non-dominated front and the
swarm's fitness are illustrated, the areas that have been chosen do not only feature elite
scarcity, but are also being explored by a low percentage of the population. The optimizer
must aim for the neighborhood of these solutions in the ensuing generations, which is
why they are branded 'gravity points'.

The re-initialization phase includes relocating the swarm in space in a completely random
fashion (fig. 4.17). Velocity vectors are retained, as is the elite archive. The list of Gbest
indexes is not altered or emptied, but is left to be updated by the normal flow of the
algorithm. The Pbest archive is completely renovated, and this is the core of the shuffle
process: Each swarm member's Pbest (parameter vector and fitness) is equalized to a
random gravity point, similarly to how Gbest’s were allocated randomly by the Roulette
scheme, in the previous segment. Gravity points are, in this way, directly implicated in the
swarm update process via the cognitive factor in the PSO formula. Thus, the flight of the
swarm is directed towards the neglected areas (fig. 4.17-4.20).

The exact number of the said 'low density' elites that are picked out as gravity points is up
to the user, and is input as a percentage of the elite archive size. A low such percentage
(<10%) is recommended as the shuffle scheme is rather intended to drastically focus on
the few scarcest areas. For regular problems, with a contiguous, non-convex pursued
front, 2-5 gravity points are more than adequate. For more complicated cases, an excellent
example of which is the ZDT-3 case examined in this work, where the pursued front is
complicated, a maximum of 7-8 gravity points may prove suitable. A greater number
would best be avoided as it will result in great disparity of gravity points along the current
front and the shuffle scheme having a minor effect compared to the intended. That is
better comprehended if we take a look at the effect of the relocation of Pbest’s: In the few
generations that immediately follow the shuffle call, the whole swarm is given a strong
push towards said area(s) (fig. 4.18-4.20). Gbest’s take on according values and the
phenomenon is preserved long enough to allow sufficient exploration, for a more ‘just’,
better laid-out Pareto front (fig. 4.21). This strong drive towards gravity points can only
be taken full advantage of, if those points are few.
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Fig. 4.15 The Pareto front at the point the shuffle operator is first engaged. Circled are the non-dominated
individuals designated as 'Gravity Points' (Case ZDT-1, axes refer to its two objectives, abscissa for Fi,
coordinate for F,).

In our demonstrative run, the full benefit of the shuffle operator is already evident a mere
10 generations after it is engaged: Fig. 4.21 shows the non-dominated front along with
the swarm particles' fitness. The swarm itself is considerably more spread out, and the
imbalances in the elite set (with a size of 25 individuals) have been addressed, as it now
features excellent disparity and solution diversity, which is also the case for the ultimate
result of the minimization procedure, after the completion of the given maximum
evaluations (fig. 4.22).

4.5.2.2. Suggested improvements

v Ashuffle operator that affects a percentage of the swarm particles, instead of them
all. This will serve to reduce the current operator’s radicalism: A portion of the
swarm will resume normally and another (a relatively small percentage) will be
shuffled, in an attempt to locate he optima that have eluded the swarm thus far.

v Implementation of other popular schemes from Evolutionary Computation, such
as Mutation (which has already appeared in PSO, as was first proposed by van den

Bergh [8] and put to practice by Coello et al. [6] and others [18,21,27]).

v Development of similar, only milder refinement measures that will complement
the regular flow of the algorithm, instead of violently interfering.
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Fig. 4.16 The Pareto front and the swarm particles (illustrated in the objective domain) at the point the
shuffle operator is first engaged. Circled are the non-dominated individuals designated as 'Gravity Points'
(Case ZDT-1, axes refer to its two objectives, abscissa for F,, coordinate for F,).
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Fig. 4.17 The re-initialization phase. The swarm is randomly relocated in search space, away from
optimum solutions, hence the huge deviation from the Pareto front (Case ZDT-1, axes refer to its two
objectives, abscissa for Fy, coordinate for F,).

4-24



25 T T T T T
gravity points| ]
. pareto . ./
swam @
2k
.
. . .
15 3
.
.
. . . . . . .
. . .
1 . "
’
. . . .
LI . . * . .
[ . .
05 il L | *
iy . .
LN |
LI .
iy Puiy
\m) (m) -
o i H H H H H H ~ | N ]
o 01 02 03 04 05 06 07 08 039 -1
14 v T T T T ——
graulty poines| |
. pareto L/
. swarm - @
12
1k
.
m * L]
- .
08
.
[ ] . .
"y . -
L]
06 " .
[ . .
. . * %
n n L] .
—— . .
L SN .
.
04 . | 'C § .
~ ] . .
] .
| | .
u L]
02 " ,,‘—\ .
(m) £
\_/ (=) —
~ m|
o 1 1 . 1 I 1 I 1 1 A=
o 01 02 03 04 05 06 07 o8 09 1
14 T T T T T 2
gravity points| |
. H pareto \ L/
swam o
12+
1k
Ll
|
08 - .
0
. . []
fo
. .
n
08| " .
| . .
|
.
Ny . .
e .
LI S .
04 |m .
) e .
e L]
] K .
| AU I
¢ |
.
0z i ~t .
\ N
") LI
N \m) |
~— ‘)
0 i i i i i i ; i \
0 01 02 03 04 05 06 07 08 LE 1

Fig. {4.18, 4.19, 4.20} The optimizer’s progress since the point of re-initialization, as recorded with a
2-generation step. Notice the impact of Gravity points (Case ZDT-1, axes refer to its two objectives,
abscissa for F;, coordinate for F»,).
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Fig. 4.21 The optimizer's progress a few generations after the re-initialization session (here, 10). (Case
ZDT-1, axes refer to its two objectives, abscissa for F;, coordinate for F,)
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Fig. 4.22 The end result yielded by the optimizer, after the implementation of shuffle (Case ZDT-1, axes
refer to its two objectives, abscissa for F,, coordinate for F,).
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4.6. User input — Default settings

' number of problem parameters, variahle or otherwise kfreeall

W kd houndl houndz2 !

0 1 1

1 0.1 1.2

1 0.4 0.8

1 0.0 1.0

1 0.0 1.0

1 4.0 6.0
B0 ! swarm population size npop
1.2 .7 ! cognitive acceleration coeff. | starting and ending wvalue for the variant scheme
0.6 0.2 ! inertia welight | start/end
1.4 2.1 ! social acceleration coeff. | starting and ending walue for the wvariant scheme
50 ! # of consecutive iterations without progress beyond which to terminate kstop
0. 60 ! 1st shuffle threshold (% on total evals) shufflex
0.15 ! 2nd shuffle threshold (leftover % of total evals) shufflec
5000 ' Maximum Evaluations maxeval
2 ! nNumber of objectiwves nohj
30 I Maximum elite archive size ! maxelite
20 I save elites every (#) generations isave
33 ! dseed (random number generation)
0.2 Vo dnitial welocity coefficient
2 ! - Total number of constraints
wew permitted thres. relaxed thres,

-1.0E- 0.0

0.995955 1.0

Fig 4.23 A sample input file, ‘psoin.dat’. Every setting is followed by appropriate comments.
Shuffle-related data and PSO tuning parameters are set at default (recommended) values.

Most settings available for the PA can be handled by the user and are accessible via
‘psoin.dat’, the program’s expected input file (fig. 4.23). By editing the file’s
contents, the user can, among other things:

v' Declare decision variables, including their respective range, lower and upper
boundary, preceded by an integer ‘switch’, kg, which specifies if this
particular variable will actually vary {1} or remain constant{O} throughout
this particular run, in which case an upper boundary needs not be set.

v Declare any active problem-related constraints. The user has to specify the
regular constraint threshold and an additional relaxed threshold for each
constraint.

v Specify a population and elite archive size.

v’ Specify the conditions of program termination.
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v" Tune the optimizer, by setting the ranges within which W, C¢ogn and Cgoc Will
vary. Notice that inertia weight and Cc.gn take on an average value of 0.4 and
0.95, respectively, whereas Cs,c an average of 1.75. These -default- values
deviate slightly from the recommendations of relevant literature, as featured
in segment 3.3. A choice accounted for previously, it was made to boost the
exploitative qualities of PSO, as opposed to its already considerable
explorative capability.

Not all possible options available in the algorithm are accessible through the input
file. A few can only be tweaked by editing the code itself and therefore require a
recompilation for any changes to apply. For instance, the choice of Gbest selection
method or Pbest update method is hardcoded, even though all mentioned
techniques are available. Another two examples of parameters that are not directly
available for tweaking are densrule and gravperc, both of which relate to the
shuffle operator.

densrule=20.0,gravperc=. 038

The first, set at 20.0, is the maximum order of difference between the lowest and
highest density value among all non-dominated solutions which, if surpassed, will
trigger a second shuffle session. The second, set at 0.08 is the percentage (8%) of
members of the elite archive that can be given gravity point status over a single
shuffle session. If this percentage of elites does not equal an integer number, it is
automatically rounded up. Both of these two settings have been discussed earlier in
this chapter. It is recommended for any such settings not included in the input file
to be left in their preset state.
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4.7. Complete Proposed Algorithm (PA) flow chart

!

Specify PSO parameters and
problem related data
subroutine read_data < Input file

[ /

Initialize the swarm's location
and flight velocity
subroutine initialization

v
EVALUATE the particles (calculate
fitness and constraint rating)
subroutine exact_evaluations

Update particle velocity and
relocate the swarm in search
space
subroutine swarm_update

Apply the constraint operator
subroutine exact_evaluations

J

v
Locate non-dominated individuals
among the swarm in its current
state
subroutine generation_pareto

Update the Elite archive of overall

subroutine update_front

Elite archive
size <
Maximum

NO-—»

T

Update Inertia weight and
Acceleration coefficients
subroutine swarm_update

[

Update each particle's memory
(Pbest) accordingly
subroutine ranking

o

Apply Elite Spacing to
appropriately truncate
the Elite archive
subroutine elite_spacing

Assign a fitting Gbest from
among the Elites to every
particle

Reached 1st

subroutine ranking

3

threshold?

NO

Reached 2nd
shuffle threshold
and additional
disparity criteria
are fulfilled?

- !

Pick out Elites to designate
as Gravity Points
subroutine locatebigdens

l

the swarm, appropriately
reset particle memory
subroutine shuffie

NO

Pick out Elites to designate
as Gravity Points
subroutine locatebigdens

the swarm, appropriately

Reached maximum
permitted evaluations
(or met any other
termination
criterion)?

YES

reset particle memory
subroutine shuffle

[

Export final solutions
subroutine printout > Output file

/
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5. Tests & performance
validation




5.1. Benchmarking function test problems — Overview

There is a huge variety of mathematical problems, commonly oriented towards
minimizing the value of complex functions, developed by Optimization researchers to
serve as a benchmark for comparison of various new algorithms. These functions are the
product of reverse engineering practices and are modeled after the typical obstacles that
heuristics are bound to encounter when incorporated to solve challenging industrial ‘real-
world’ problems, especially those with multiple objectives. Such problem peculiarities
that may cause difficulty in convergence, even more so in converging to a well spread
Pareto front are multimodality, optima front convexity and/or discreteness, biased search
spaces and other; a benchmarking problem may involve a single such feature or a
plethora thereof and test results not only yield a measure of overall performance but can
also determine the suitability of one or another method for a particular type of problem.

In 1999, K. Deb [2], the creator of NSGA and NSGA II, suggested a systematic way of
developing test problems for multi-objective optimization. Following these guidelines,
along with E. Zitzler (creator of SPEA) and L. Thiele [36], they suggested six test
problems under the label ZDT, the initials of the trio’s surnames. Of those six problems
two are featured in this work, ZDT-1 and ZDT-3, and are used to draw the first
conclusions as to the proposed algorithm PA’s capabilities and performance, especially
alongside a representative EA. As is the case for all six ZDT problems, both examined
cases are of 2 objectives:

min(F (x), (X)) , where:
rFl'if:' = Fi(x)

QAR =Cxy,. x5, H[Fl(fjl' GFx,,.., xx)) Lorz22 (eq 51

x e(0,1)

Functions G(X,,...,x,), H F(X)-G(X,,....x,) , as well as n, vary from problem to

oy Ap

problem.



5.1.1. Case ‘ZDT-1’°

The simpler test function of the ZDT family, ZDT-1 features a regular convex front:

AT =%

F(x,,..., 3;!)=1+92;[x5f(m—1)],?2=30 (eq. 5.2)

The Pareto front of analytically calculated non-dominated optima (fig. 5.1) can be
reproduced for:

Fl(f)=x1
Hxi=1= o
F(X) =G H(F,G)=H(R.G)
R(E)=x
C53
- ﬂ(f}ﬂ—\[gﬂ—ﬁﬂ_ﬁ (eq. 5.3)

Case ZDT-1 has already been introduced in chapter 4, throughout which it was used as a
means of demonstration of the various features of the proposed algorithm (PA).

T T
Exact ZDT-1 Pareto front

0.8 B

0.6 - —

F2

04 *

0.2 B

0 ! I ! I
0 0.2 0.4 0.6 0.8 1

F1

Fig. 5.1 The target front of the ZDT-1 minimization problem (F, =1—,/F, ).



5.1.2. Case ‘ZDT-3’

ZDT-3 represents the discreteness element; without any discontinuity whatsoever in
problem variable space, its optima form a Pareto front which, though convex, consists of
five non-contiguous parts:

B(I)=xn
Gz, %) =1+92:[in(?3—1}] L w=30 (eq. 54

H(F,G)-1- %—[%]-sin[lﬂ-ﬁ-ﬁl)

The Pareto front, the discontinuity of which is caused by the introduction of the
trigonometric sinus function, can, similarly to ZDT-1, be reproduced for:

A(X) =7
FHx=1ls =
FAZy =0 H(F,G)=H(F,G)
(F(Z) = x

<LFE(;?;. =1—E—[%]-sm[mwﬂ)=1—ﬁ—ﬂ-sin(m-fr-ﬂ)

ME)=x
=2 (eq. 5.5)

By =1-x —x sin (107 x)

L=
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Exact ZDT-3 Pareto front
0.8 - =

0.6 —
0.4 —

0.2 —
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0.6 - -

-0.8 1 1 1 1 1 1 1 1

Fl

Fig. 5.2 The target front of the ZDT-3 minimization problem. The challenge is to locate solutions on all 5
portions of the non-contiguous Pareto front.

5.2. Aturbo-machinery application

The third and final application of the PA presented in this thesis assesses the search for an
optimal 2-dimensional stator airfoil design of an axial, cascade, controlled diffusion
compressor, at its default operation point (relatively low Reynolds number, transonic flow
regime). The airfoil design, belonging to the hub section of the blade, is optimized with
two objectives in mind:

i. The minimization of total pressure losses, Min F(X) —> mino,, or
minimization of the total pressure loss coefficient @, is given by eq. 5.6:

B TPy
@y, =T (eg 5.6)
p:rm —F

ii. The maximization of static pressure rise, max F,(X) —maxR, ->min -R_ .

pml’ B pln

Ry =——> (eq 27)

Since the operation point is fixed and all inlet data are given, problem variables
exclusively relate to the shape of the airfoil, which is parameterized using two polynomial
Bezier curves, one for each side, pressure and suction. Each curve is composed of 160
points, sufficient for the discretization and grid creation needs of the solver. We have
opted for 9 control points for each of the two curves and, consequently, 14
((x,y;) , 1=2,3,...,8) variable parameters per side, as the control points at the leading

5-5



and trailing edge are fixed, at(0,0)and(d,0)respectively (before stagger angle is
considered). The total of 28 design variables is further reduced to 26, as the abscissa for
the 2% control point (counting from the leading edge) is also fixed, for both
sides (x,, =0,x, , =0). Fig. 5.3 better illustrates the airfoil contour generation process:

Fig. 5.3 Arandom suction side of a candidate blade, where the Bezier control points that form the curve
are also displayed.

Stagger angle a 30°

Pitch 0.65

Flow Inlet angle ai, 47°

Mach number at inlet M, 0.54
Reynolds number Re, 8.41-10°

Fig. 5.4 Problem specifications.

In order for feasible airfoils to be obtained, as far as constructibility and structural solidity
is concerned, we impose certain thickness constraints at different lengthwise points, at
30%, 60% and 90% of chord length, precisely. In this particular run, these constraints
took the following form (all lengths un-dimensionalized by the chord’s length):

Thyy.; =C... =0.09 , (relaxed threshold : 0.08)
Thyee; =Cin =0.08 , (relaxed threshold : 0.07)

Thyge,e; 2C., =0.013 | (relaxed threshold : 0.01) (eq. 5.8)

We also impose a minimum of flow turning &, —4&,, for the resulting airfoil to be an
integrable component of the entire compressor, apart from its good individual




aerodynamic properties:
a-a,>C_. =20 , (relaxed threshold : 18°) (eg. 5.9)

The evaluation software incorporated is the MISES code by M. Drela [37]. Adopting a
viscous-inviscid zonal approach to the problem, it is essentially a combination of a two-
dimensional integral boundary layer solver with a numerical solver of the Euler equations
for the external flow and features a relatively low computational cost whilst producing a
very dependable prediction of the flow's characteristics. This advantage enables us to
perform as many as 2000-3000 evaluations during a single optimization session, within
which range the algorithm is expected to have fully converged.

To further enhance the efficiency of the procedure, the evaluation software performs a
thickness check of its own, prior to handing the candidate over to the flow solver. These
constraints, with a similar structure as the above (eg. 5.8), and with respective thresholds
equal to the relaxed values of eq. 5.8, are intended to immediately reject the absolutely
unacceptable geometries before even an evaluation clock unit is expended thereon. Not to
mention that, especially if it features negative thickness (an intersection of the suction and
pressure sides), a problematic geometry would require additional time, even double as
long, for the solver to conclude and proceed to the next candidate.

5.3. Results

Below are demonstrated the results of the various trials the proposed PSO variation
underwent along the results yielded by running a certain EA-based optimizer,
evolutionary-strategies—based, to be precise. The EA-based program is of adequate depth
and features, developed in the Laboratory of Thermal Turbo-machines of the NTUA
[indicatively: 38, 41, 42].

To preserve a certain, though qualitative dependability of the results, the duo was run on
default settings that are each known to have an overall good performance, independently
of the case at hand. No parametric analysis was conducted for the optimizers to conform
to each problem’s specifications and iniquities. As far as the EA package is concerned,
only those features equivalent in some way to what is implemented in the PA are used:
SPEA 2 for non-dominated solution processes, a strategic mutation operator with a
dynamically variable mutation probability, Tournament-type selection with elitism.

Besides the non-dominated solution set achieved by every run of either optimizer, we also

S5-7



introduce a hyper-volume figure, which can give a qualitative measure of the convergence
rate of the algorithm throughout the duration of a session. For an n-objective problem,
this hyper-volume metric essentially considers the percentage of a certain, user-defined
(see fig. 5.12) portion of n-dimensional space that the elite-composed front dominates at
any given point during a run. If the hyper-volume grid limits have been introduced
appropriately by the user, as the algorithm approaches the Pareto front hyper-volume
rating approaches 1.0. It must be emphasized, at this point, that the hyper-volume curve
displayed in each segment is the product of averaging the outcome of 5 different runs,
each using different random number generator seeds (RNG’s) in an attempt to eradicate
any impact that the RNG would otherwise have on the ultimate conclusions drawn.

The Pareto fronts displayed were chosen from among the average-performing of each five
of runs, according to their respective hyper-volume rating curves.

53.1. ZDT-1

Both programs were limited to a maximum of 5000 total evaluations as the only
termination criterion. The default set of options was applied to the PA, as in section 4.6,
except for shuffle, which was only engaged once, at 70%o of total evaluations. The swarm
population was set to S=50 particles, offspring population A and parents p to 50 and 20
respectively. Therefore, both optimizers completed about 100 iterations, during which the
elite archive size could not exceed 40.

0.95 T T T T T

o

o
T
!

0.85 |- - —
0.8 | A
0.75 - — .
0.7 H _— .
0.65 |- /4;/ .
0.6 H ~ 1

055 H / i

Convergence / Hypervolume rating

05 {if EA -5000 Evals. 4
PS0 -5000 Evals.
1 1 1

0.45 1 I 1 L 1 I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Total Evaluations

Fig. 5.5 Hyper-volume curve with regard to evaluations completed (ZDT-1 benchmark function), after
5000 total evaluations.
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Fig. 5.6 Ultimate elite set achieved by the two optimizers (ZDT-1 benchmark function), after 5000 total
evaluations. PSO has fully converged to the analytically calculated Pareto front, having already gone
through a shuffle session to improve solution disparity.

5.3.2. ZDT-3

Similarly, both programs were limited to a maximum of 10000 total evaluations as the
only termination criterion. The default set of options was applied to the PA, as in section
4.6, except for shuffle, which was, again, only engaged once, at 70% of total evaluations.
The swarm population was set to S=80 particles, offspring population A and parents p to
80 and 30 respectively. Therefore, both optimizers completed about 125 iterations, during
which, the elite archive size could not exceed 80.

0.9 . .

0.85 .

0.8 f

0.75 —

0.7 f

0.65 f

0.6 f

0.55 f

0.5 -

Convergence / Hypervolume rating

0.45 PSO - 10000 Evals.
I EA - 10000 Evals.
1 ! ! ! ! 1 ! ! 1

0.4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000

Total Evaluations

Fig. 5.7 Hyper-volume curve with regard to evaluations completed (ZDT-3 benchmark function), after
10000 total evaluations.
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Fig. 5.8 Ultimate elite set achieved by the two optimizers (ZDT-3 benchmark function), after 10000 total
evaluations. PSO has converged to the analytically calculated Pareto front, having already gone through a
shuffle session to improve solution disparity.

5.3.3. Turbo-machinery application

This time, both programs were limited to a maximum of 1500 total evaluations, due to
the high computational demands of this application. Again, the default set of options was
applied to the PA, as in section 4.6, except for shuffle, which was, again, only engaged
once, at 70% of total evaluations. The swarm population was set to S=40 particles,
offspring population A and parents p to 40 and 15 respectively. Therefore, both optimizers
completed ~38 iterations, during which, the elite archive size could not exceed 20.

0.85

0.8
0.75
0.7
0.65
0.6
0.55
0.5

0.45

Convergence [/ Hypervolume rating

0.4 PSO - 1500 Evals.
EA - 1500 Evals.
1 |
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Fig. 5.9 Hyper-volume curve with regard to evaluations completed (Cascade compressor airfoil case),
after 1500 total evaluations.
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Total Pressure Losses

Fig. 5.10 Ultimate elite set achieved by the two optimizers (Cascade compressor airfoil case), after 1500
total evaluations. The 2 circled, extreme optima are the airfoil designs displayed below (fig 5.11). They
were selected with optimality in each of the two objectives in mind.

The airfoil case is structured in such a way that it is heavily dependent upon the careful
choice of starting variable ranges —which must also be relatively narrow. Else, the
algorithm’s flow is greatly hindered by frequent constraint violation. For the specified
search space, both algorithms seem to have converged before the maximum allowed
computational resource is depleted. Below (fig 5.11) are displayed two extreme solutions
from the end result set, ‘extreme’ in the sense that they are picked out from the two
opposite edges of the Pareto front, each featuring the best possible performance in one of
the two objectives of the problem. Notice the -subtle- differences in geometry which
accommodate good individual aerodynamic performance (minimum losses) in one case,
maximized flow turning and static pressure rise in the other:
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Fig. 5.11 Two sample designs (not in scale) from the non-dominated solution set achieved by the proposed
optimizer after 1500 total evaluations. Each represents the optimal (within the framework set by the
specified ranges of variables) with regard to each of the two objectives, i) Minimized losses, ii) Maximized

static pressure rise.

Problem lower bound  upper bound Objective function
ZDT-1 0.0 1.0 (=
0.0 7.0 =5
ZDT-3 0.0 1.0 (=
-0.8 6.0 =5
Airfoil design 0.016 0.04 F1 (Pt losses)
0.99 11 |F2| (Ps rise)

Fig. 5.12 Summary of the specified grid boundaries for the hyper-volume rating calculations in all 3 test
cases. These exact boundaries apply for all runs that participate in the averaging procedure and have been
fittingly picked beforehand to encompass the fitness vectors of all candidates generated during a run.
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5.4. Discussion of results

Taking a separate at the outcome of each test, starting with ZDT-1, we witness a first
indication of the PA’s competitive performance: Halfway through the maximum allowed
evaluations, it has already almost fully converged to the convex Pareto front, as is
displayed by the hyper-volume curve (fig 5.5) that has flattened, in conjunction with the
final non-dominated solution set in fig 5.6 which shows the final coincidence of the
swarm’s elites with the analytically computed optimum curve. The EA, on the other hand,
having consumed all 5000 evaluations, has approached but not reached the Pareto front.
Its progress rate is very steady throughout the optimization session, which is evidences
the relatively straight-forward character of the 1% test benchmark function. The excellent
disparity of the non-dominated set achieved by the PA is attributed to the single shuffle
session that occurred after 3500 evaluations were completed. Figures 4.41 — 4.22 better
illustrate the impact of a shuffle session in this test.

Continuing with ZDT-3, the picture only varies slightly. The PA, again, shows an
excellent progress rate, especially during the first 1/5" of evaluations completed, after
which it steadily converges to the sought solution fronts. The Pareto is reached before the
expendable computational resource is depleted (fig. 5.7), accommodating the use of the
shuffle operator to improve diversity and cover the entirety of the non-contiguous Pareto
front (fig. 5.8). Shuffle, along with the linearly variable (with iterations) acceleration
coefficients, account for the remarkable exploitation efficiency which, in theory, is PSO’s
greatest shortcoming. Similar experiments conducted by researchers [5, 18, 21], where
various representative MO optimizers, either EA-based and/or PSO-based, are put
through the same or very similar tests verify the 10000 evaluations threshold as an
extremely strict one, validating both PA and EA utilized in this work, performance-wise.
Indicatively, in [21], NSGA, SPEA and established PSO-MOQO algorithms were allowed
up to 25000 evaluations to achieve very similar results. In [5], where Coello et al propose
‘MOPSO’, they feature similar convex, non-contiguous benchmark functions, allowing
12000 evaluations, within which none of the competitors manages to cover the Pareto
front.

Finally, the airfoil design case proves the efficiency of both the EA and the PA in coping
with a complex MOO problem, when the —realistic- computational requirements are
relatively high. The Drela solver is still considered a computationally cheap alternative to
a generally very expensive CFD problem, but its demands in CPU time are much higher
than a benchmark function’s and closer to industry standards. The added difficulty posed
by constraints complete a challenging test. The global optima, which obviously depend
upon the specified design variable ranges, cannot be analytically obtained here, so we rely
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on experience [39] in this application to specify the 1500 maximum evaluations
checkpoint. In validation of this, the PA’s hyper-volume rating curve (fig 5.9) has turned
flat upon fulfillment of the above termination criterion. Both optimizers achieved solution
sets of comparable quality, with the PA managing greater disparity in its non-dominated
front, as well as a slightly wider range of ultimate optima (fig. 5.10). Observe that none of
the duo managed to reach the elite archive size limit of 20, which is indicative of the
complexity of the search process in this particular problem.

The demonstrated test results more than validate the proposed algorithm’s functionality
and efficiency in coping with varied MOO problems. They also solidify the speculation
on distinctions between PSO- and EA- based algorithms, regarding both the end result
and general behavior for the duration of the optimization session. The PA does
demonstrate the early advantage of swift convergence to the general vicinity of the
optima, as all three hyper-volume curves clearly show. Subsequently, its progress rate
decreases, although that is in greater part due to the fact that it has actually reached the
Pareto front (ZDT-1, ZDT-3). The very good level of diversity among the resulting
solutions validates the functionality of the premature convergence counter-measures we
introduced, such as the dynamically variant acceleration coefficients and inertia weight
and the shuffle operator. Therefore, we can be confident that the speculated exploitation
handicap has been appropriately addressed.

It should be stated at this point that none beyond a qualitative conclusion should be drawn
from the differences in performance exhibited between the featured EA and the PA. As
was outlined in section 5.3, neither algorithm has been fine-tuned to each problem’s
specifications and unless the impact of the available settings is thoroughly investigated
and the various parameters adjusted to facilitate maximized efficiency, we cannot accept
these test results as a final comparative verdict. The featured EA is a proven, highly
sophisticated, reliable optimization tool and its testing was intended to serve as a
benchmark, successfully so: the PA held its own, even surpassing the EA in all 3 tests
conducted, boasting a marginally faster early convergence rate and a slightly better end
result for a given number of maximum evaluations. This consistency can at the very least
establish the PA as an efficient and versatile optimization tool, and a decent foundation to
build upon in future work.
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6. Discussion - Conclusions
- Suggestions for future
work




6.1. Concluding summary

The main objective of this work has been the development and subsequent validation of a
complete optimization tool based on the concept of the Particle Swarm. Particle Swarm
Optimization (PSO), as which, the entirety of optimization-oriented applications of the
Particle Swarm is referred to, is a subcategory of the great family of Swarm Intelligence
techniques. As such, it introduces processes inspired from the collective activity of a
swarm of insects, flock of birds and school of fish or similar to assess the search for
optimal solutions to a variety of problems. The members of the swarm, or particles, are
driven by two main forces: the particle’s individual perception of search space, as it is
shaped by its own progress thus far (cognitive influence), and its interaction with the rest
of the swarm, its awareness of the progress of the swarm as a whole (social influence).

Swarm intelligence itself is a subcategory of the Stochastic Methods, which essentially
encapsulate all optimization techniques that rely, to some extent, on randomized search
within all specified variable ranges to locate the optima. The most popular and widely
applied Stochastic Methods branch is that of Evolutionary Computation and Evolutionary
Algorithms (EA’s). It is the intention of this work to view all stochastic methods under a
unified prism and in chapter 2 and 3, after EA’s and PSO have been introduced in detail,
a long discussion is conducted to highlight the similarities or equivalences between the
two, as far as both their philosophical background and their practical application is
concerned. The purpose of this is not only to determine the adjacencies between the
various components and defining features of these two paradigms, but also to gain insight
into possible improvements, either by borrowing principles from each other or by
hybridizing. The prominent product of this analysis was that PSO has a relatively faster
rate of progress through the earlier stages of a run, while EA’s in general shine at a later
stage, the phase of exploitation, namely the phase where search space has almost been
exhausted and the optimizer focuses on refining the located solutions by searching in their
immediate vicinity, thus slightly improving the end result.

In section 3.4, the various governing parameters of a generic PSO algorithm were
discussed: Their impact was analyzed, relevant experiments and literature were surveyed
and the various trends were reviewed. The choice of parameters for the proposed
algorithm (PA) was elaborately justified, especially from the perspective of addressing the
lacking exploitation capabilities of fundamental PSO. A scheme that dynamically alters
these parameters was adopted; similar practices and their benefits in EA’s were
mentioned. No formal parametric analysis was conducted as part of this work, however.
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In chapter 4, the main product of this thesis was presented: the entire algorithm was
reviewed in various sections, each covering a single aspect and all relevant processes. The
most effort behind building this program was centered round a few distinct points:

e Moderating PSO’s inherent shortcomings: the premature convergence, the
problematic behavior when in the general region of optima, which occurs near the
conclusion of a session. In this direction, apart from the earlier mentioned
adjustments to tuning parameters, the shuffle operator was introduced. This
measure is intended to intervene and appropriately re-position the swarm and
determine certain directions in which to search, directions with evident potential,
thus revamping the optimization procedure and re-establishing a more efficient
search.

e Emphasis was placed on multi-objective problems, namely problems where the
optimality of a solution is judged on multiple criteria. As was explained, the multi-
objective regime is completely different to the single-objective one and poses
additional challenges, some of which are specific to PSO and pertain to the
elevated roles of cognitive and social influence. The reader was introduced to the
details of MOO and the current trends in dealing with such problems (the Pareto
concept, non-dominated solution sorting methods etc.) in chapter 2. In section 4.3
| specifically elaborated on the approaches adopted in the PA to facilitate a
successful transition to MOO: A solution selection/sorting procedure determines
the best solutions so far, wherein to invest. A solution spacing technique was
incorporated to ensure the sought diversity among the various optimal solutions.

e A variety of alternatives in determining a fitting Global Best for each particle in a
MMO problem was given special mention (section 4.4), as a critical step towards
successfully extending the PA to MOO. | consider Global Best assignment the
trickiest, and at the same time, the most vital factor in building a competitive,
MOO-capable particle swarm optimizer. Hence, most novelty of this work and the
greatest potential for improvement lie there.

e Other main points, like the Constraint Operator, responsible for administering
candidate solutions in breach of any constraints imposed by the problem, and the
Initialization phase were given the appropriate attention.

The PA was tested against two benchmark mathematical function cases, especially
developed by optimization researchers for exactly this purpose: ZDT-1 and ZDT-3. The
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latter, with its challenging non-contiguous Pareto front is a very popular experimental
tool. One last test, of a more practical orientation, utilized the PA for the optimization of a
cascade compressor’s stator airfoil, with regard to individual aerodynamic efficiency and
good static pressure rise qualities. This case featured strict constraints and a higher
computational cost per examined candidate, thus, a more demanding problem. The PA
was tested alongside EA-based optimization software of established competitiveness,
serving as a point of reference. The demonstrated results not only granted the PA
validation as a fully functional and competent optimizer but also showcased the
previously discussed differences in behavior between EA’s and PSO. They also
highlighted the major contributions to the overall enhancement of PSO’s exploitation
ability by the addition of the shuffle and variant parameter schemes.

6.2. Future Work — Suggestions

The satisfactory outcome of the above verification justifies considering the PA as firm
ground to build upon and improve, both in performance and in functionality/versatility.
Improvements can be made through minor additions to the algorithm in its current form
or by further developing/optimizing the existing features. Major leaps can also be made
as a result of long-term effort, by following the various trends in modern Evolutionary
Computation and the field of optimization in general.

Short-term suggestions include:

e Further enhancement of the Global Best assignment process. As has been
emphasized repeatedly, the efficiency of said mechanism is of great importance
and one should aim at perfecting it. This challenge goes hand-in-hand with the
general problem of MOO, that of solution ranking based on multiple conflicting
criteria. Therefore, ideas and new concepts can be borrowed from the advances in
that area. A few planned adjustments are described in the respective section, 4.4.
Those are linked to the density scheme and are intended to implicate the pursuit of
solution diversity in the selection process. Hybrids of the featured techniques are
also possible. Inexact pre-evaluation* could find ample use here, to give us a
rough prediction of the outcome of each option.

e Grid computing compatible asynchronous search. As the tendency to involve
multi-processor environments and grid computing in the procedure of solution
evaluation gains momentum, it is ever more crucial for an optimization tool to be
able to integrate with maximum efficiency in such a regime. A common
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predicament, when a multitude of processing units of differing capacity are
handling the evaluation of particles, is for a delay of one or more individuals’
evaluations to postpone the transition to the next generation. It is therefore
imperative to negate the concept of a ‘generation’, by making the process of a
particle’s relocation in search space completely independent from that of the rest of
the swarm: the algorithm will no longer address the swarm as a population of
solutions that must be updated simultaneously. Each solution, upon completion of
its evaluation — ‘returns’ to the base of operations — immediately receives its new
Global Best from within the elite archive, as it has been shaped up to that point —
updates its Personal Best accordingly — if the solution is found to be non-
dominated, the elite-related processes are spawned — immediately proceeds to
update its velocity vector and be assigned its new position in space, according to
the PSO core formulae (eqgs. 4.1, 4.2) — it enters the evaluation phase once again.

Adjustments to the Shuffle operator. This mechanism’s positive contribution to
the overall performance of the PA has been evidenced in section 4.5.2. However, in
its current form, it remains a very ‘violent’ form of intervention and a very
demanding one, in terms of swarm experience: the swarm must have already
approached the general region of the perceived optima for it to work as intended.
An approach where only a small percentage of the swarm is involved in a process
launched multiple times and from an earlier stage of the search might be worth
looking into. The goal is to gradually transform the shuffle scheme into a principal
component of the optimizer, active throughout a run, similarly to mutation in EA’s,
as opposed to the occasionally intervening, radical measure it is now.

Long term additions worth considering are the following:

A means of highly adaptive, dynamic control of the acceleration
coefficients C oy s Cgoc - The somewhat ‘raw” linear variant adopted in this work

is adequately functional and efficient but cannot match the likes of strategic
mutation in EA’s. The A.C.’s must be made to increase or decrease according to
some highly sophisticated metric that will reflect the condition of the swarm, the
current rate of progress and the potential for improvement.

A formal, complete parametric analysis. Particular attention is due to the
acceleration coefficients and inertia weight, or the range thereof, if a variant
scheme is finally settled for, linear or otherwise. Second in priority are the various
settings of the shuffle operator.
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*Implementation of inexact pre-evaluation of some sort. Methods exist, that
allow the approximation of a solution’s fitness based on what knowledge we have
of the previously exactly evaluated solutions in its vicinity [41, 42, 43]. Inexact
pre-evaluation can occasionally substitute the computationally costly evaluation
software, with self-explanatory gains. A popular such technique are the Radial-
Basis-Function Networks (RBFN). Another, Kriging, developed by G. Krige,
provides additional statistical information: apart from the fitness value
approximation, it also returns an estimation of the possible error of this
approximation. | have some personal experience in the incorporation of Kriging to
EA’s for solving single-objective problems. Kriging’s proper extension to MOO
poses some very intriguing challenges, similar to those of PSO.
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