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Abstract

The purpose of this diploma thesis is the prediction and minimization of aerody-
namically induced noise, or wind noise, in automotive applications. Both of goals
of this work are accomplished using CFD-based methods .

In order to computationally predict the wind noise levels of vehicles and to localize
the noise sources, a CFD-based Noise Source Identification (NSI) model has been
programmed in OpenFOAM©, developed and owned by Toyota Motor Corporation
(TMC). The model aims at determining the flow patterns that contribute to the
generation of acoustic pressure fluctuations; and consequently sound. The unsteady
flow fields of velocity and vorticity acquired from a transient CFD simulation are a
prerequisite for the evaluation of the model’s equations. To this end, the model’s
workflow is demonstrated on a Toyota production car for localizing the noise sources
around the vehicle’s body.

Thereinafter, a shape optimization is applied to the production car for the reduc-
tion of noise levels perceived by the driver. The optimization was conducted in the
OpenFOAM© environment, using the continuous adjoint method, developed by the
Parallel CFD & Optimization Unit (PCOpt/NTUA). The driver’s side view mir-
ror (SVM), considered to be the main wind noise contributor, is parametrized and
morphed accordingly in order to minimize the aforementioned objective function. A
optimal SVM shape for noise reduction has been obtained.
Major part of this thesis was carried out in the premises of Toyota Motor Europe
(TME) in Brussels, Belgium, during a 7 month long internship, with Mr. Antoine
Delacroix as the industrial advisor.
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Σκοπός της διπλωματικής εργασίας είναι η πρόλεξη και ελαχιστοποίηση του αεροδυ-

ναμικά επαγόμενου θορύβου, σχετιζόμενου με εφαρμογές της αυτοκινητοβιομηχανίας.

Και οι δύο αυτοί στόχοι υλοποιούνται χρησιμοποιώντας μεθόδους και μοντέλα Υπολο-

γιστικής Ρευστοδυναμικής (ΥΡΔ).

Προκειμένου να προσδιοριστούν υπολογιστικά τα επίπεδα αεροδυναμικού θορύβου αυ-

τοκινήτων οχημάτων και να εντοπιστούν οι θέσεις των πηγών αεροδυναμικού θορύβου,

προγραμματίστηκε σε περιβάλλον OpenFOAM©
μοντέλο Υπολογιστικής Αεροακου-

στικής (ΥΑΑ), το οποίο αναπτύχθηκε και ανήκει στην Toyota Motor Corporation
(TMC) . Το μοντέλο στοχεύει στον προσδιορισμό των σημείων της ροής που συμ-
βάλλουν στη δημιουργία ακουστικών διακυμάνσεων πίεσης και, κατά συνέπεια, στη

δημιουργία θορύβου. Τα χρονικά μη-μόνιμα πεδία ταχύτητας και στροβιλότητας, όπως

προκύπτουν από λογισμικό ΥΡΔ, απαιτούνται από τις εξισώσεις του μοντέλου. Η ροή

εργασίας του αεροακουστικού μοντέλου εφαρμόστηκε στην περίπτωση ενός επιβατικού

αυτοκινήτου μαζικής παραγωγής της εταιρίας Toyota , για τον εντοπισμό των πηγών
αεροδυναμικού θορύβου γύρω από το σώμα του οχήματος.

Στη συνέχεια, εφαρμόστηκε βελτιστοποίηση μορφής στο εν λόγω επιβατικό αυτοκίνητο

παραγωγής με σκοπό τη μείωση των επιπέδων θορύβου που αντιλαμβάνεται ο οδηγός

του οχήματος. Η βελτιστοποίηση μορφής βασίστηκε σε λογισμικό της συνεχούς συζυ-

γούς μεθόδου και διεξήχθη στο περιβάλλον του OpenFOAM©
, με χρήση του συζυγούς

κώδικα ροής που έχει αναπτυχθεί από την Μονάδα Παράλληλης Υπολογιστικής Ρευ-

στοδυναμικής & Βελτιστοποίησης (ΜΠΥΡ&Β). Ο πλευρικός καθρέπτης του οχήματος
θεωρήθηκε ως κύριος παράγοντας παραγωγής αεροδυναμικού θορύβου, παραμετροποι-

ήθηκε και παραμορφώθηκε με σκοπό την ελαχιστοποίηση της συνάρτησης κόστους του
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προβλήματος βελτιστοποίησης.

Το μεγαλύτερο μέρος της διπλωματικής εργασίας πραγματοποιήθηκε στις εγκατα-

στάσεις της Toyota Motor Europe (TME) στις Βρυξέλλες, κατά τη διάρκεια μίας
επτάμηνης πρακτικής άσκησης, με τον κ. Antoine Delacroix ως επιβλέποντα από την
πλευρά της βιομηχανίας.
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Chapter 1

Introduction

Automotive aeroacoustics play a significant role in modern vehicle performance,
as they have a strong influence on customer perception, safety and comfort. High
levels of interior cabin noise can negatively impact the perception of the driver
and, most importantly, lead to fatigue and reduced concentration. While, at low
cruising speeds, engine and tire-road noise dominate, at high speeds (generally above
100 kph), aerodynamically induced noise begins to contribute significantly more to
overall noise.
In the past, cabin noise reduction was usually accomplished by high quality sealing
and acoustic glazing. Nevertheless, these solutions lead to increased car weight
and production costs. Today, achieving competitive wind noise performance also
depends on detecting and minimising aeroacoustic noise sources generated by the
vehicle’s shape, by either means of experimental or computational methods. Since
experimental approaches are excessively expensive, car manufacturers are investing
considerable time and effort on Computational Aeroacoustics (CAA), for developing
high-fidelity numerical methods that can predict interior and exterior noise levels
with adequate accuracy.
Due to the nonlinearity of the governing equations, developing such CAA schemes
for predicting the sound production on fluid flows is a difficult challenge. A direct
but unbearably expensive approach to CAA is the Direct Numerical Simulation
(DNS) approach, where the compressible flow governing equations resolve both the
flow field, and the aerodynamically generated acoustic field. In contrast to the
DNS approach, engineers preferably use hybrid CAA approaches, where the sound
generation and sound propagation are computed in a decoupled manner. In such a
regime, the sound generation alone is determined by flow field characteristics, and
thus is resolved using standard Computational Fluid Dynamics (CFD) solvers, while
acoustic solvers or analogies model the sound propagation. Such a hybrid approach
is also followed in this diploma thesis for the wind noise evaluation of conventional
car vehicles.
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Basics of Vehicle Aeroacoustics

1.1 Basics of Vehicle Aeroacoustics

The perception of sound relies on the response to the stimulus of acoustic pressure
to the human ear. Acoustic pressure p′ is the local pressure deviation from the
ambient pressure due to acoustic wave propagation, and may be defined as

p′ = p(t)− p0 (1.1)

where the ambient presure p0 is a temporal average

p0 = p = lim
T→∞

1
T

∫ T/2

−T/2
p(t+ t′)dt′ (1.2)

which is not perceived auditevely. The p′ term is also called fluctuating sound
pressure. An acoustic signal’s strength can be appropriately measured by its mean
root square or rms value prms of acoustic pressure, defined as

prms =
√

(p′)2 (1.3)

Owing to the wide range of hearing sensitivity spanning a number of orders of
magnitude, from approximately 2× 10−5 Pa (approximate threshold of hearing) to
up to 2× 102 Pa (threshold of pain), the logarithmic sound pressure level Lp (SPL)
is commonly used [1], defined as

Lp = 10log
(
prms
pref

)2

= 20log
(
prms
pref

)
(1.4)

where pref = 2 ·10−5 Pa is the international reference pressure, corresponding to the
threshold of hearing for a sinusoidal signal at roughly 2 kHz. The sound pressure
level Lp is measured in decibels (dB).

Thereinafter, the sound intensity I can be derived in a spatial point x from sound
pressure and sound velocty, as

I(x) = p′v′ (1.5)

and sound power P is then obtained by an integration of sound intensity over a
closed surface S, i.e.

P =
∮
S
I · ndS (1.6)

Distinction between sound and noise is a purely subjective matter, since noise is
practically unwanted sound, depending on the listener and the circumstances. Noise
generation varies widely upon each industrial application. In the case of motor ve-
hicles, noise emission comprises drive train noise, tire-road noise and aerodynamic
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Basics of Vehicle Aeroacoustics

noise [2].

Aerodynamically induced noise can, in principle, be expressed by three noise gen-
erating mechanisms. Each of these mechanisms, in turn, can be approximated by
idealised models. The first mechanism originates from unsteady volumetric flow,
such as that emanating from a leak into the cabin of a vehicle, or from the exhaust
of a piston engine [1]. This mechanism can be idealised by a monopole sound source,
which is essentially a point in space of fluctuating pressure. The second mechanism
arises from the interaction of unsteady pressure fluctuations upon a surface. An
example of this is Von Kármán vortex shedding in the vicinity of a rigid body. This
mechanism can be modeled by a dipole sound source, comprising of two adjacent
monopole sources oscillating out of phase. The last noise generating mechanism
is caused by unsteady internal stresses in the fluid flow. This mechanism can be
modelled by a quadropole source, i.e. by two adjacent dipole sources out of phase.
These three different fundamental noise sources are illustrated in fig. 1.1.

Figure 1.1: Representation of the fundamental noise sources. [3]

Each of these sound sources scales differently with flow speed u or Mach numberM ,
leading to the following relationships [1]

Imonopole ≈
ρ

c
u4 = ρu3M (1.7)

Idipole ≈
ρ

c3u
6 = ρu3M3 (1.8)

Iquadropole ≈
ρ

c5u
8 = ρu3M5 (1.9)

where I is the sound intensity, ρ is the air density and c is the speed of sound.

The dependance of sound sources upon the flow’s Mach number can be very useful in
understanding the wind noise characteristics of a travelling vehicle. At the relatively
low cruising speeds that a car travels, where M < 0.1, the monopole sound domi-
nates, followed by dipole and quadropole sound. Thereupon, dipole and quadropole
sources were sometimes neglected from the aeroacoustic study for simplicity. Never-
theless, as the most significant aerodynamic noise mechanisms in vehicles are either
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Basics of Vehicle Aeroacoustics

monopoles or dipoles, experimental observation tends to find that the intensity of
aerodynamic noise increases with flow speed raised to between the fourth and sixth
power [1]. Based on the above, in a more general sense, vehicle wind noise can be
separated into three principles; broadband wind rush noise, which is a quadropole
noise caused by turbulent flow in the vicinity of the vehicle; tonal noise, which is a
monopole caused by sharp edges or holes in the bodywork; resonance noise, which
is a dipole noise caused by the fluid forces acting on the structure. Fig. 2.2 shows
graphically those three wind noise classifications.

Figure 1.2: Aeroacoustic noise sources around the area of the side view mirror.[1]

Considering that gaps on the bodywork are absent and high quality sealing is applied
to the windows of modern production cars, the tonal monopole noise becomes less
of an issue and dipole sound comes to be the leading problem for car manufacturers.
As already mentioned, dipole sound originates from unsteady pressure fluctuations
acting on the solid surfaces of the car. The pressure fluctuations on any surface
of the vehicle mainly comprise two parts; convective (or hydrodynamic) pressure
fluctuation and acoustic pressure fluctuation 1. Both of hydrodynamic and acoustic
pressure fluctuations induce vibrations on the vehicle’s structure (mainly on the side
glass) and contribute to the overall cabin noise in their own separate ways.

The energy of convective pressure fluctuation is mainly concentrated at the low
frequency range and can excite the side glass to vibrate and hence radiate noise
into the interior. Concurrently, the energy of acoustic pressure fluctuation is mainly
concentrated an the high frequencies and can be transmitted into the vehicle interior
with certain transmission loss through the glass. These two kinds of noise generation
and transmission mechanisms are both studied by car manufacturers for reducing
cabin noise and improving ride comfort.

1 Main difference between the two is that acoustic fluctuations propagate with the speed of
sound, whilst hydrodynamic fluctuations are convected by local velocity
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Motivation & Objectives

1.2 Motivation & Objectives

The motivation of this diploma thesis stems from the challenge of, on the one
hand predicting, and on the other hand minimizing the flow induced noise in auto-
motive applications, i.e. the noise generated due to the aerodynamic shape of the
car’s geometry. Therefore, the purpose of this diploma thesis is twofold; the primary
goal is the wind noise evaluation of conventional car vehicles, i.e. the programming
of a hybrid CAA tool in order to predict the wind noise levels and characteris-
tics of car vehicles with adequate accuracy. To this purpose, a vortex sound based
model, developed by Toyota Motor Corporation (TMC), has been programmed in
OpenFOAM© for the first time within the context of this thesis. The unsteady flow
fields of velocity and vorticity acquired from a transient incompressible CFD simula-
tion are a prerequisite for the evaluation of the model’s equations. The model returns
a key performance indicator (kpi) referred to as Acoustic Pressure Density Source
(APDS), which is expressing the intensity of noise sources in the flow, regarding a
frequency range of interest. Hence, it acts as a virtual Noise Source Identification
(NSI) tool, identifying and localizing the primary sources of wind noise inside the
fluid domain and around the car’s geometry. A visualization of the APDS index
field can help determine the main wind noise generating components on the vehicle’s
shape.

Secondary objective of this thesis is the reduction of these flow induced noise sources,
using a gradient-based shape optimization. After determing the main noise generat-
ing component of the vehicle, a shape optimization is performed in order to obtain
its optimal shape for noise reduction. Such a reduction could be well achieved by
a minimization of the APDS levels, regarding a specific frequency range of inter-
est. This could only be accomplished through an unsteady optimization framework.
Nevertheless, the application of an unsteady optimization is prohibitively expen-
sive in an industrial enviroment. Owing to this, a surrogate model expressing the
generation of wind noise in a steady-state manner is used as the cost functional
of the optimization process, based on [4]. The drawback of the latter steady-state
approach is that it aims at reducing wind noise in a broadband sense, i.e. it can-
not directively reduce noise in specific frequency ranges of high importance. The
shape optimization performed is based on the continuous adjoint method and is
conducted using the OpenFOAM© adjoint solver, developed by the Parallel CFD &
Optimization Unit (PCOpt/NTUA).
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Chapter 2

Aerodynamic analysis

2.1 Flow Modelling

The set of differential equations that describe the motion of any viscous fluid flow
are the Navier-Stokes equations, namely the conservation of mass eq. 2.1 and the
conservation of momentum eq. 2.1. These are written in tensor notation as

∇ · u = 0 (2.1)

∂u

∂t
+ (u · ∇)u = −∇p+∇ · τ + g (2.2)

where u is the velocity component, p is pressure, τ is the stress tensor and g ac-
counts for the external forces acting on the fluid.

The present thesis is concerned with the external turbulent flow that develops around
a car geometry. Turbulent flows are chaotic in nature; they are characterised by
random fluctuations of pressure and velocity, whilst also being highly irregular and
diffusive. Moreover, a turbulent flow exhibits random flow structures that stretch
in a wide spectrum of both length and time scales, the so-called eddies. In order to
be able properly resolve all of the temporal and spatial scales of a turbulent flow,
infinitesimally small discretization in both space and time must by used. Such an
approach is called Direct Numerical Simulation (DNS). The cost of a DNS simula-
tion is unbearably large, even for low Reynolds number flows.

On account of this, when simulating turbulent flows, the flow governing equations
are usually filtered in both space and time, while the smallest spatial and temporal
scales are no longer being resolved, but rather modelled.

7



Large-Eddy Simulation (LES)

2.1.1 Reynolds-Averaged Navier-Stokes Equations

The most widely used approach for simulating turbulent flows is the use of the
Reynolds-Averaged Navier-Stokes (RANS) equations. The RANS equations consi-
tute time-averaged equations of motion for fluid flow and can be used with approxi-
mations based on knowledge of the properties of flow turbulence to give approximate
time-averaged solutions to the Navier–Stokes equations. The idea behind them is
Reynolds Decomposition, suggested by Osborne Reynolds in 1895, whereby an in-
stantaneous quantity is decomposed into its time-averaged and fluctuating quantities
[5, 6]

u(x, t) = ū(x, t) + u
′(x, t) (2.3)

Figure 2.1: Representation of the Reynolds decomposition in an unsteady flow.

In the case of unsteady fluid flow, the time filtering applies only to the smallest
temporal scales whilst the larger time scale flow structures are resolved, as shown
graphically in fig. 2.1. The latter approach is the so-called Unsteady Reynolds
Averaged Navier-Stokes (URANS). The system of the URANS equations for an
incompressible and statistically steady fluid flow, can be written in Einstein notation
and Cartesian coordinates as

∂uj
∂xj

=0 (2.4)

∂ūi
∂t

+ ūj
∂ūi
∂xj

+ ∂p̄

∂xi
− ∂

∂xj

[
ν

(
∂ūi
∂xj

+ ∂ūj
∂xi

)]
− ∂

∂xj

(
−u′

iu
′
j

)
=0 , i = 1, 2, 3 (2.5)

where 2.4 consitutes the conservation of mass, or continuity, equation and 2.5 con-
stitutes the momentum equation, written in non-conservative form. The ’¯’ symbol
stands for the mean value of a flow variable, whereas the ’ ′’ symbol denotes the
fluctuating part of a flow variable. The stress term τ

′
ij/ρ = −u′

iu
′
j appearing in

2.5, is the so-called Reynolds stress tensor and is usually modelled according to the
Boussinesq hypothesis [6, 7].
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Large-Eddy Simulation (LES)

2.1.2 Large-Eddy Simulation (LES)

Large-Eddy Simulations [8] are closely related to Direct Numerical Simulation
(DNS), in a sense that the most turbulent length scales are being resolved. Specifi-
cally, the LES strategy entails that the large energy-containing flow structures of the
turbulent wall bounded flow, are solved with adequate spatio-temporal resolution,
whereas the smallest dissipative scales of the flow are represented by a subgrid-scale
(SGS) model.

For this purpose, any flow field u(x, t) is filtered in space and time onto its resolved
and residual part, as

u(x, t) = ũ(x, t) + u(x, t)′ (2.6)

where for the resolved part, a filter convolution kernel G is applied [9]

ũ(x, t) =
∫ ∞
−∞

∫ ∞
−∞

u(x′
, t)G(x′ − x, t− τ)dτdx′ (2.7)

The filter kernel G is associated with a cut-off length ∆, which is generally the mesh
size. By applying a filter of size ∆, the Navier-Stokes equations can be written in
conservative form as

∂ũj
∂xj

= 0 (2.8)

∂ũi
∂t

+ ũj
∂ũi
∂xj

= −1
ρ

∂p̃

∂xi
+ ν

∂2ũi
∂xj∂xj

−
∂τ sgsij

∂xj
(2.9)

where the stress tensor τ sgsij = ũiuj − ũiũj of 2.9 is referred to as the subgrid scale
stresses term1 (SGS), accounting for the effect of momentum transport caused by
unresolved turbulent motions on the resolved scales. The SGS term is normally
modeled by a standard eddy-viscosity Smagorinsky model [8], as

τ sgsij −
1
3τ

sgs
kk δij = −2Cs∆2|S̃|S̃ij (2.10)

where δij is the Kronecker symbol and S̃ij the strain rate tensor of the resolved
velocity field, defined as

S̃ij = 1
2(∂ũi
∂xj

+ ∂ũj
∂xi

) and |S̃| =
√

2S̃ijS̃ij (2.11)

1 Since the filter can be coarser than the employed grid, a more proper term would be subfilter,
ranther than subgrid. Nevertheless, the latter labelling is used for historical reasons. [9]
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Dimensional analysis shows that the eddy viscosity νt can then be determined as

νt ∝ λ · qsgs (2.12)

where λ = Cs∆ is the length scale of the unresolved motions and qsgs their corre-
sponding velocity scale. Assuming isotropic turbulence, the constant yields Cs =
0.18. On the contrary, close to the walls where turbulence is anisotropic and the νt
value has to be reduced, a damping function is usually used.

2.1.3 Detached Eddy Simulation (DES)

The DES formulation was created to address the challenges faced by LES sim-
ulations, when dealing with highly turbulent and massively separated flows, com-
monly found in aerospace and ground transportation applications. Specifically, the
difficulties associated with the use of standard LES models, particularly in near-wall
regions, has lead to the development of hybrid models, attempting to combine the
best aspects of both RANS and LES formulations in a single solution strategy. Such
a hybrid model is the Detached-Eddy Simulation (DES) [10] approach. The model
in practice treats the near-wall regions in a RANS-like manner, while the rest of the
flow is modeled in an LES-like manner. In light of this, the model is formulated by
replacing the distance function term d, in the Spalart-Allmaras model of eq. 4.8,
with a modified distance function

d̃ = min(d, CDES∆) (2.13)

where CDES is a constant and ∆ = max(∆x,∆y,∆z) is the largest dimension of the
grid cell in question.

URANS

LES

Δ

d < Δ

Figure 2.2: Representation of the switch between URANS and LES close to the walls,
based on the mesh resolution [11]

The introduction of the modified distance d̃ causes the model to behave as a URANS
in the regions close to the walls where d < CDES∆, and switch to an LES Smagorin-
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sky model away from the solid boundaries. The latter DES approach implies that a
sufficiently fine grid size must be used only in the region close to the walls, contrary
to the DNS approach, where fine grid is needed in all directions.

2.1.4 Delayed Detached Eddy Simulation (DDES)

The original DES formulation can exhibit an incorrect behavior in thick bound-
ary layers and shallow separation regions. Specifically, when the stream-wise grid
spacing becomes less than the boundary layer thickness, this may result to an early
transition to LES mode close to the walls. In principle, this early transition may
reduce the calculated skin friction and, in turn, cause and early separation. This
numerical phenomenon is termed Grid Induced Separation (GIS).

For this purpose, a sheilding function fd was defined to ensure that the solution
will be a URANS solution, even if the grid spacing is smaller than the boundary
layer thickness [12], so as

d̃ = d− fd ·max(0, d− CDES∆) (2.14)

with
fd = 1− tanh[(8rd)3] (2.15)

where rd is defined as
rd = ν + νt

k2d2
√

( ∂vi
∂xj

)2
(2.16)

The latter is the origin of the so-called Delayed Detached-Eddy Simulation (DDES).
The difference lies in the fact that, on contrary to the natural DES formulation where
the length scale depends solely on the grid, in the DDES formulation it depends also
on the eddy-viscosity νt. [13].

The latter DDES formulation was used in this thesis in order to resolve the turbu-
lent flow that develops around the vehicle’s geometry, using the standard PIMPLE
solver and the DDES model of OpenFOAM© v.1906.
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Chapter 3

Aeroacoustic Analysis

An aeroacoustic analysis aims on the prediction of noise generation owing to
turbulent fluid motion or fluid structure interaction. Such an analysis is mostly ac-
complished by means of computational methods. In principle, hybrid CAA rely on
converting unsteady turbulent flow and near field sound data, acquired from a CFD
solver, into far field sound information. Analytical models, commonly referred to as
acoustic analogies, allow this near field unsteady data conversion process to far field
sound, some of which are named after Lighthill [14], Curle [15], Ffowcs-Williams
and Hawkings [16].

Most of these analytical approaches reach final expressions containing a sound wave
propagation operator L, i.e. of the form [17]

L(u, φ′) = Sφ′ (3.1)

where u denotes the mean velocity field, φ′ the perturbating acoustic variable (usu-
ally the fluctuating density ρ′ or pressure p′) and Sφ′ the sources of φ′ . Thereby, the
source term Sφ′ can be provided by an incompressible CFD solution while the wave
operator is then responsible for transferring the information to the far field.
Depending on the application, aeroacoustics involve the modelling of either tonal or
broadband noise. For tonal noise, (U)RANS (2.1.1) can be adequate [17]. Never-
theless, as already discussed on the introduction, broadband noise includes source
terms depending on turbulent flow structures and unsteady internal fluid stresses.
Therefore, determining the characteristics of broadband noise requires the detailed
modelling of such unsteady source structures. This need largely invalidates URANS
modelling, which can be grossly wrong in such situations, and renders flow models
such as DDES (2.1.4) more appropriate.
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Acoustic Analogies

3.1 Acoustic Analogies

Acoustic analogies are commonly used in numerical aeroacoustics to reduce the
aeroacoustic sound sources to simple emmiter types. Acoustic analogies were ini-
tally introduced by Lighthill in 1952 [14]. In general, such analogies are derived
by rearranging the compressible Navier-Stokes equations into various forms of the
inhomogeneous wave equation, where the source terms express the acoustic sources.
Approximations are later introduced to make the source terms independent of the
acoustic variables. In this way, linearized equations are derived which describe the
propagation of the acoustic waves in a homogeneous, quiescent medium.

3.1.1 Lighthill’s Equation

The basic idea of Lighthill [14, 18] was to reformulate the general equations of
fluid dynamics, in order to derive a wave equation. The derivation of the Lighthill
equations starts from the momentum equation in conservative form, by neglecting
the force term f

∂ρu

∂t
+∇ · π = 0 (3.2)

where u is the velocity component and πij = ρuiuj + (p− p0)δij − τij is the momen-
tum flux tensor. Considering an ideal linear acoustic medium, stress terms may be
neglected and the flux tensor can be written as

π0
ij = (p− p0)δij = c2

0(ρ− ρ0)δij (3.3)

Therefore, the momentum eq. 3.2 reduces to

∂ρui
∂t

+ ∂

∂xi
(c2

0(ρ− ρ0)) = 0 (3.4)

where, sequentially, the continuity equation allows us to also eliminate the momen-
tum density ρui term from 3.4.
Subsequently, by applying a time derivative on 3.4, a spatial derivative on 3.2 and
by subtracting the two resulting equations, we obtain(

1
c2

0

∂2

∂t2
−∇ · ∇

)
(c2

0(ρ− ρ0)) = 0 (3.5)

Therefore, the homogeneous wave equation of ρ′ = ρ− ρ0 has been derived, charac-
terised by a propagation speed of c0 (speed of sound). This equation is referred to
as the equation of linear acoustics and is valid at the farfield, away from noise sources.
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Thereinafter, Lighthill asserted that the sound generated by turbulence in a "real
fluid" is exactly equivalent to that produced in the ideal acoustic medium, forced by
a stress distribution of the form

Lij = πij − π0
ij = ρvivj + ((p− p0)− c2

0(ρ− ρ0))δij − τij (3.6)

where τij accounts for viscous stresses and δij is the Kronecker delta. The latter
tensor Lij is the so-called Lighthill’s stress tensor.

Similarly, by rewriting the momentum eq. 3.2 for an ideal, stationary acoustic
medium of mean density ρ0 and speed of sound c0, subjected to the externally ap-
plied stress of Lij yields(

1
c2

0

∂2

∂t2
−∇ · ∇

)
(c2

0(ρ− ρ0)) = ∂2Lij
∂xi∂xj

(3.7)

Eq. 3.7 is known as Lighthill’s equation, describing the propagation of ρ′ 1 caused
by spatial disturbances of the stress tensor Lij in the medium. The problem of
calculating the flow generated sound reduces to solving this wave equation, where
the source term ∂2Lij/∂xixj is provided e.g. by a CFD simulation. This source term
can be interpreted as a quadrupole term, when free field conditions are assumed,
i.e. no solid bodies are present [16]. A free field turbulent field exerts very weak
sound sources, especially at low Mach numbers. However, in the presence of walls,
the sound radiation can dramatically be enhanced, since compact bodies radiate a
dipole sound field associated to the force which they exert on the flow.

Figure 3.1: Illustration of the Lighthill’s integral equation. The real field is replaced
by aquiescent medium with a distribution of volume noise sources, positioned at y.
The density ρ′ is determined at x by an integration of the sources inside volume V .

The solution of eq. 3.7 for a free field radiation condition with outgoing wave
1 A sharp distinction must be made between the fluctuating density ρ′ and the acoustic density

ρα, since ρ′ is just a superposition of flow and acoustic parts within flow regions.
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behaviour can be obtained in intergal form as

(ρ− ρ0)(x, t) = 1
4πc2

0

∂2

∂xi∂xj

∫
V

Lij(y, t− |x− y|/c0)
|x− y|

dy (3.8)

where y denotes the source coordinate, x the coordinate at which we compute the
density fluctuation and V is the volume of the domain of integration. The latter
is Lighthill’s integral equation, illustrated in fig. 3.1. It should be noted that the
tensor Lij is evaluated at retarded time 2 τ = t− |x− y|/c0.

In conclusion, Lighthill’s equation predicts noise radiation from free turbulence,
while the whole set of compressible NS have to be solved in order to evaluate
Lighthill’s tensor. However, this means that we have to resolve both the flow struc-
tures and acoustic waves, which implies an enormous challenge for any numerical
scheme. In order for the Lighthill’s equation to be of practical use, further approx-
imations that decouple the flow field from the acoustic field should be made; see
[14, 19].

3.1.2 Curle’s Equation

The main limitation of Lighthill’s theory is that it is valid only on free turbulence
induced radiation. Therefore, it cannot be applied to situations where solid bodies
are present in the flow. As already mentioned, solid bodies have a significant impact
on noise, since any compact body will radiate sound in the form of a dipole field.
The Curle analogy is a formal solution of the Lighthill analogy, which takes hard
surfaces into consideration.

Hence, the problem that Curle addressed in [15], was to determine the sound gen-
erated by turbulence in the vicinity of an arbitrary, fixed surface Γs, illustrated in
fig. 3.2.

Thereby, the surface Γs is defined by the function f(x), which has the following
property

f(x) =


0 for x on Γs
< 0 for x within the surface Γs
> 0 for x in Ω

(3.9)

The derivation of Curle’s equation starts with multiplying the momentum equation
2 Retarded time τ referres to the time when the acoustic waves were generated and began to

propagate from the source.
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(a) Turbulent source region
next to solid body

(b) Solid body

Figure 3.2: Illustration of the Curle’s equation setup. The solid body is placed inside
a quiescent medium with a distribution of volume noise sources, where Lij 6= 0. A
function f(x) is used to model the solid boundaries. Taken from [19].

3.2 with a Heaviside function H(f), or

H(f)∂ρvi
∂t

+H(f) ∂

∂xi
(c2

0(ρ− ρ0)) = −H(f)∂Lij
∂xj

(3.10)

After mathematical operations and rearrangements described in [15, 16], eq. 3.10
results to the following wave equation(

1
c2

0

∂2

∂t2
−∇ · ∇

)
(c2

0(ρ− ρ0)H(f))

= ∂2LijH(f)
∂xi∂xj

− ∂

∂xi

(
(ρvivj + (p− p0)δij − τij)

∂H(f)
∂xj

)

+ ∂

∂t

(
ρvj

∂H(f)
∂xj

)
(3.11)

The latter inhomogeneous eq. 3.11 is called Curle’s wave equation, and is valid
throughout all space, including the region enclosed by Γs. In contrast to Lighthill’s
analogy which accounts only for free turbulence, this equation now takes also the
presence of solid bodies in the flow into account. For this reason, eq. 3.11 comprises
two additional source terms on the RHS, expressed in terms of spatial derivatives
of the Heaviside function H(f). Thereby, according to [19], the second term on the
RHS corresponds to a dipole and the third term to a monopole.
Specifically, surface dipole represents the production of sound by the unsteady force
that the body exerts on the exterior fluid, whereas the monopole is responsible for
the sound generated by volume pulsations (if any) of the body [16].
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Solving eq. 3.11 for ρ′(x, t) using Green’s function yields

(ρ− ρ0)(x, t)= 1
4πc2

0H(f) ·
[

∂2

∂xi∂xj

∫
Ω

〈Lij〉
|x− y|

dy

− ∂

∂xi

∮
Γs

〈ρvivj + (p− p0)δij − τij〉
|x− y|

dSj(y)

+ ∂

∂t

∮
Γs

〈ρvj〉
|x− y|

dSj(y)
] (3.12)

where the 〈 〉 symbol indicates that the terms have to be evaluated at retarded
time τ = t− |x− y|/c0. The latter equation is known as Curle’s integral equation.

It should be emphasized that no assumptions have been made nor in Curle’s neither
in Lighthill’s analogy, but only a reformulation of NS equations was made, which
was solved using Green’s function.

3.1.3 Powell’s Vortex Sound Theory

Vortex sound theory is based on the argument that aerodynamic noise is gener-
ated as a result of the movement of vortices, or of vorticity, in an unsteady fluid
flow, suggested by Alan Powell in 1961 [20]. In consideration of this, the noise pro-
duction parts of Lighthill’s tensor Lij are expressed in terms of local vorticity. The
latter approach is very convenient on low Mach number flows, since the vorticity
ω = ∇× v is a very convenient quantity to describe them.

Considering a homentropic irrotational flow, Powell’s derivation starts from Euler’s
equations in Crocco’s form

1
ρ

Dρ

Dt
= −∇ · v (3.13)

∂v

∂t
+∇B = −ω × v (3.14)

with B being the total enthalpy defined as

B =
∫ dp

ρ
+ v2

2 = i+ 1
2v

2 (3.15)

and i being the stagnation enthalpy.
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By taking the divergence of 3.14 and the time derivative of 3.13 and subtracting
the resulting equations, we obtain

∂

∂t

(
1
ρ

Dρ

Dt

)
−∇2B = ∇ · (ω × v) (3.16)

Thereupon, we introduce the equations of state

dp = c2dρ+
(
∂p

∂s

)
ρ

ds, di = dp

ρ
(3.17)

Since the entropy is constant (ds = 0) accross the flow, by taking into consideration
eqs. 3.17, eq. 3.16 becomes

∂

∂t

(
1
c2
Di

Dt

)
−∇2B = ∇ · (ω × v) (3.18)

The independent acoustic variable of Powell’s formulation is chosen to be the en-
thalpy B. For this purpose, a reference potential flow U0 with stagnation enthalpy
B0 is defined, and enthalpy is decomposed around B0, i.e. B = B0 +B′ 3.

In view of this, expressing eq. 3.18 in terms of B′ yields

1
c2
D2

0B
′

Dt
−∇2B′ = ∇ · (ω × v) + 1

c2
D2

0B
′

Dt
− ∂

∂t

(
1
c2
Di

Dt

)
(3.19)

where D0/Dt = ∂/∂t+U0 · ∇.

At low Mach number flows, eq. 3.19 reduces to

1
c2

0

D2
0B
′

Dt2
−∇2B′ = ∇ · (ω × v) (3.20)

The latter inhomogeneous wave equation is referred to as the Powell’s vortex sound
equation. This equation clearly states that homentropic flow can generate sound
only if moving vorticity is present. The use of a vortex sound formulation is partic-
ularly powerful when a simplified vortex model is available for the flow in question.
Examples of such flows are discussed by Howe [21], Disselhorst & van Wijngaarden
[22] and Peters & Hirschberg [23]. As far as this thesis is concerned, a model based
on vortex sound was used to predict the noise from car geometries, presented next.

3 Note that i′ = p′/ρ0 and B′ = i′ + v0 · v′.
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3.2 Vortex sound based NSI model

In order to resolve wind noise issues associated with automotive applications, it
is important to determine the locations of the primary sources of sound generation
around the vehicle. The application of a systematic methodology for noise source
identification (NSI) would enable the localization of the sound sources and, in turn,
would allow engineers to redesign the vehicle in order to reduce (or minimize) the
noise generation. To this purpose, a CFD-based NSI model has been developed
and owned by Toyota Motor Corporation (TMC), according to patent No. US
2019/0354647.

Specifically, V.L. Phan [24], in his patent, discloses a formula that makes a link
between acoustic pressure fluctuations on the surface of the vehicle with variables
of the flow. Thereby, V.L. Phan proposes a method that aims at determining which
flow patterns contribute most to the acoustic pressure on a surface of interest. This
link is realised through the means of an unsteady CFD solver and with the use of
Powell’s equation [20], i.e. by an evaluation of enthalpy in space.

Given a cruising vehicle subjected to uniform flow conditions, the setup for the
NSI method, as developed by V.L. Phan, starts by defining a fluid volume Ω around
the vehicle. This volume is practically where the NSI model’s equations will be eval-
uated and should, therefore, enclose the regions of interest regarding wind noise, i.e.
typically the A-pillar, the side view mirror and the side window, as illustrated in
fig. 3.3. Secondly, a surface of interest S is defined, where the unsteady pressure
fluctuations are computed; this surface is typically chosen to be the side window
(side glass).

(a) Volume Ω of evaluation-integration (b) Fluid volume Ω and surface S

Figure 3.3: Fluid volume of evaluation Ω containing the main noise generating
components of the vehicle. Points on the fluid volume are denoted as z while surface
points on the side glass as y

We let y denote any point of the surface S, z denote any point in the fluid volume
Ω and r = y − z their distance vector. The aim is to compute how much does a
point z of Ω contribute to unsteady pressure fluctuations on a point y on the side
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glass. This information can be useful for pinpointing the regions of the fluid volume
Ω that are responsible for the unsteady pressure fluctuations on S, and therefore for
wind noise. Concurrently, the aim is to determine the noise sources of Ω regarding a
specific frequency range of interest. This demand of a frequency domain framework
implies the need of a Fourier transform on the unsteady flow variables of interest.

In view of this, the transient flow fields of velocity ũ are sampled (stored in memory)
inside volume Ω with a defined sampling timestep ∆t. Thereinafter, the unsteady
time series of fluctuating velocty ũ(t) are transferred to the frequency domain via a
Fourier transform, i.e.

uf (f) =
∫ ∞
−∞

ũ(t)e−2πiftdt (3.21)

Evaluating eq. 3.21 for every spatial node z yields the spatial fields of velocity in
frequency domain uf . In order to numerically obtain the uf field, a Fast Fourier
Transform (FFT) algorithm was implemented in OpenFOAM© v.1906, based on the
LIBROW library [25]. The code, in turn, was upgraded to reduce the frequency
domain resolution from broadband, to 1st or 1/3rd octave bands 4.

By employing Powell’s formula of vortex sound (eq. 3.20), V.L. Phan derives a final
relational expression for the Acoustic Pressure Density Source (APDS), expressed
in the frequency domain, of the form

APDS(y, z, fm) ∝ fm
2

|r|4
· |uf | · |u× r| · |ω × r| (3.22)

where |uf | is the amplitude of velocity in frequency domain, u is the time averaged
velocity, ω is the time averaged vorticity, fm is the frequency band and r = y − z
is the distance between the evaluation points.

Eq. 3.22 constitutes an index that shows the degree of contribution of the flow
field’s point z to the surface acoustic pressure fluctuation of a point y, regarding
a frequency band of interest fm. Note that APDS is a function of three variables,
where two of which are position vectors of grid nodes. Given the mesh sizes and
resolutions commonly used in automotive CFD, storing such a field in RAM mem-
ory can be very expensive, or even prohibitive. There lies the need of reducing
the frequency domain resolution from broadband to octave frequency bands. Such
a reduction decreases drastically the number of frequencies to be stored, thus the
memory requirements.

Integrating eq. 3.22 on the vehicle’s window surface S, yields the APDS(z, fm)
4 Hereinafter, the index fm will denote a frequency band around the corresponding central

frequency. The band’s boundaries are fm =
√

2fmin = fmax/
√

2 for 1st octave bands and fmax =
21/6fm and fmin = fm/21/6 for 1/3rd bands respectively.
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field for every spatial node z and every frequency band fm, i.e.

APDS(z, fm) =
∫
S
APDS(y, z, fm)dS (3.23)

The volume field of eq. 3.23 may be referred as the volume acoustic pressure density
source field. High values of the APDS(z, fm) field pinpoint the regions of the flow
field that contribute most to the generation of the acoustic pressure fluctuations of
frequency fm on the side glass.

Equivalently, by integrating eq. 3.22 inside the evaluation volume Ω, we obtain
a surface field of APDS for every surface node y and frequency band fm, i.e.

APDS(y, fm) =
∫

Ω
APDS(y, z)dΩ (3.24)

The surface field of eq. 3.24 may be referred to as the surface acoustic pressure
density field, expressing the acoustic pressure fluctuations distribution on the side
glass, owing to the turbulent flow structures of Ω. High values of the APDS(y, fm)
field pinpoint the areas on the side glass that experience high-energy containing
pressure fluctuations of frequency fm.

The described procedure of the NSI method can be arranged in the following work-
flow of seven consecutive steps :

1. Perform a transient CFD simulation for a total physical time of T seconds, to
obtain the unsteady velocity ũ and vorticity ω̃ flow fields. Truncate the initial
T ∗ seconds corresponding to the warm-up period of the simulation.

2. Store the unsteady velocity fields of ũ inside the evaluation volume Ω, with a
user-defined sampling timestep ∆t. The FFT time window Tf and sampling
timestep ∆t should aim for the desired frequency domain resolution.

3. Perform a Fast Fourier Transfrom (FFT) on the unsteady velocity flow fields
ũ to obtain the velocity in frequency domain uf fields. Reduce the frequency
domain resolution by an integration to 1st or 1/3rd octave bands.

4. Apply a time averaging on velocity and vorticity for an averaging time window
of Tw, to obtain the mean velocity u and vorticity ω fields.

5. Compute the APDS(y, z, fm) index by an evaluation of eq. 3.22.
6. Integrate the APDS(y, z, fm) field on the vehicle’s side window surface S to

obtain a APDS(z, fm) volume field for each frequency band fm, according to
eq. 3.23.

7. Integrate the APDS(y, z, fm) field inside the evaluation volume Ω to obtain
a APDS(y, fm) surface field on the side glass for each frequency band fm,
according to eq. 3.24.
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The aforementioned windows of physical time used in the workflow of the NSI model
are illustrated in fig. 3.4.

t = Tt = 0

warm-up period T*

t = T*

FFT time window Tf

Averaging time window Tw

sampling timestep Δt

Figure 3.4: Representation of the time windows used for the computation of APDS.
The FFT time window and the averaging time window do not necessarily coincide.

Given that the time series of fluctuating velocity are ergodic 5, the time window for
performing the FFT should typically be chosen so as to include all of the temporal
scales of the resolved velocity field; specifically, when cutting off large time scales,
while they may not be of interest since they correspond to low frequencies, these
attenuated frequency components become aliased to the larger frequencies, resulting
to a deformed result.

Concurrently, since the initial conditions of the simulation do not agree with the
real states of the system, this leads to a initialization bias in the simulation out-
put, referred to as the warm-up period. Given that the time series of the unsteady
variables reach at some moment statistical stationarity, the warm-up period of the
simulation can be defined with adequate accuracy. In this thesis, the MSER-5 algo-
rithm [26] was employed for detecting the warm-up period.

MSER-5 is an algorithm that acts upon batched (batch size of 5) data X(j) to find
the optimal truncation point d∗ in the data series where the standard error (test
statistic) in the data is at a minimum when the data before that point is deleted
[27]

d∗(j) = arg min
0≤d(j)≤n

[
1

(n(j)− d(j))2

n∑
i=d+1

(
Xi(j)−Xn,d(j)

)2]
(3.25)

where eq. 3.25 is applied to a series of b = [n/5] batch averages of the data.

The latter NSI model was programmed for the first time in OpenFOAM© v.1906,
within the context of this thesis. To this purpose, the original PIMPLE solver of
OpenFOAM© was augmented to compute the vorticity field and to sample the un-
steady velocity fields inside a predefined evaluation volume, using a user-defined
sampling frequency. To this end, both the augmented PIMPLE solver and the NSI
model, as well as the FFT utility code, were parallelized in order to use distributed
memory through the MPI message passing interface.

5 A process is ergodic if its statistical properties can be deduced from a single, sufficiently long,
random sample of the process.
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3.3 Application to a Production Car

In this section, the aforementioned vortex sound based NSI model is applied to
a production car for localizing the noise sources in the flow. The aim is to determine
the flow structures developed around the upper body of the vehicle that contribute
to wind noise. As described in 3.2, the first step towards evaluating the APDS
index is to select a fluid volume around the car. To this purpose, a volume of eval-
uation Ω is defined, enclosing the components of high importance, i.e. the A-pillar,
the side view mirror and the driver’s side window. Concurrently, the driver’s side
windows are considered to be the main mechanism of transmiting sound waves from
the exterior to the interior, due to their vibrational response to unsteady pressure
excitation. Therefore, the surface S of the model is chosen to be the driver’s side
window. The particular production car comprises two sets of side windows next to
the driver, both of which compose the surface S.

The production car’s geometry, as well as the volume of evaluation Ω are illus-
trated in fig. 3.5. The volume Ω is entirely a fluid volume, hence it excludes any
surface point that lies within its boundaries.

(a) Vehicle’s geometry (b) Volume of evaluation Ω

(c) Top view of volume Ω

Figure 3.5: The production car’s geometry. A fluid volume Ω is defined, enclosing
the A-pillar, side view mirror and side window. The volume Ω is entirely a fluid
volume, therefore it excludes any surface within its boundaries.

The required unsteady flow data are obtained by using the standard PIMPLE solver
of OpenFOAM©, while a DDES (2.1.4) approach is used for resolving the turbulent
flow structures, together with the Spalart-Allmaras turbulence model (4.1.2).

23



Application to a Production Car

CFD Mesh

In order to conduct the unsteady flow simulations around the car geometry, a compu-
tational domain is firstly defined. Owing to the apparent symmetry of the problem,
a half-car models is used instead of the full-car model. This approach is expected to
introduce numerical errors in the vicinity of the symmetry plane, but the benefits
in terms of computational cost outweigh, since the size of the domain is practically
downsized to half.

The computational domain is a rectangular box around the half-car, comprising
an inlet, and outlet, the sides and the top as well as the road (shown in fig. 3.6).
The inlet lies 15m upstream from the vehicle, while the outlet lies 25m downstream,
in order to secure uniform inlet and outlet flow conditions. Similarly, the height and
width of the computational domain are approximately 11.6m and 11m respectively,
such as the flow on the top and the sides is practically unaffected by the presence
of the vehicle’s geometry.

 15 m  25 m 

11.6 m

Figure 3.6: Rectangular computational domain around the vehicle’s geometry. The
inlet lies 15m upstream from the vehicle, while the outlet lies 25m downstream, in
order to secure uniform inlet and outlet flow conditions.

The domain of 3.6 is in turn discretized to form a mesh consisting of cell elements
6. In order for the DDES model to function properly, the mesh resolution has been
kept adequately fine, especially in the areas of high importance. As a result, the
employed mesh comprises of 2.8 · 106 surface elements for representing the half-car’s
surface and 4 · 107 polyhedral volume elements for representing the fluid domain.

Moreover, local refinements near the vehicle’s surface and in the areas of relatively
high velocity gradients were used, while a coarser mesh was kept at the far field fluid
domain. Notably near the wall boundaries, a wall function approach was used in
order for the viscous boundary layer to be properly resolved, by featuring layers of
prismatic elements, referred hereinafter as viscous layers. As described in 2.1.4, the
DDES model is expected to switch to a URANS in the region of the viscous layers.

6 The computational mesh was generated and provided by TME
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Application to a Production Car

Furthermore, the surface mesh has been locally refined on the vehicle’s upper body
components considered of high importance regarding wind noise, i.e. on the side
view mirror, the A-pillar and the side windows (shown in fig. 3.7). Clearly, 51444
faces represent the A-pillar, 25383 faces the side view mirror and 16398 faces the
side windows.

(a) A-pillar, side view mirror
and side window geometries

(b) Surface mesh resolutions on
the A-pillar, mirror and window

Figure 3.7: Surface mesh resolution on the components of interest regarding wind
noise, i.e. the A-pillar, the side view mirror and the side window.

The evaluation volume Ω was defined, consisting of a total of 695137 polyhedral
elements. The mesh resolution of Ω is illustrated in fig. 3.8 with the use of a cross-
sectional plane. A local refinement near the vehicle’s surfaces, were high velocity
gradients occur, can be observed. Thereinafter, in order to avoid any singularities
in the computation of eq. 3.22, since the APDS index is highly dependent on the
cells-to-faces distance r (APDS ∝ 1/|r|4), the viscous layers that lie in close prox-
imity to the surface S were excluded from the volume Ω.

(a) Parallel to the road cross-sectional
plane of evaluation volume Ω

(b) Volume mesh resolution on the
cross-section plane of volume Ω

Figure 3.8: Volume mesh resolution on a cross-section of the evaluation volume Ω.
The evaluation volume Ω consists of a total of 695137 hexahedral elements, excluding
the prismatic elements of the viscous layers.
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Application to a Production Car

3.3.1 Unsteady Flow Simulation

The unsteady flow fields required by the NSI model are obtained by means of a
DDES simulation, using the standard PIMPLE solver of OpenFOAM©. A uniform
inflow velocity of u∞ = 38.9 (m/s), corresponding to a cruising speed of 140kph,
was imposed on the inlet while a zero Dirichlet condition was imposed on the car’s
surface, including the wheels which were modeled as stationary.

A workflow of the following 6 steps was followed:
1. Initialize with a well converged steady-state RANS solution, so as to reduce

the initialization bias of the unsteady simulation.
2. Run a DDES flow simulation for a total physical time of T = 0.5s, with

a timestep of ∆t = 10−5s. Sample the unsteady velocity fields inside the
volume Ω with a sampling frequency of ∆f = 50kHz (sampling timestep of
∆t = 5 · 10−5s).

3. Monitor the time series of fluctuating velocity ũ(t) in predifined points of the
fluid domain, using probes.

4. Perform a MSER-5 analysis, based on eq. 3.25, on the time series of fluc-
tuating velocity ũ(t), in order to determine the warm-up period T ∗ of the
simulation.

5. Average the fluctuating velocity ũ and vorticity ω̃ fields by using an averaging
time window of Tw = 0.2s (0.3s → 0.5s).

6. Perform a Fast Fourier Transform (FFT) on the unsteady velocity fields of
volume Ω, using a FFT time window of Tf = 0.3s (0.2s → 0.5s). Reduce the
frequency domain resolution to 1/3rd octave bands.

The aerodynamic force coefficients were computed during the DDES simulation.
The time history of the unsteady lift and drag coefficients, CL and CD respectively,
normalized around their mean value, are presented in fig. 3.9
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Figure 3.9: Time history of the unsteady Lift coefficient CL and Drag coefficient CD
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Application to a Production Car

During the simulation, several probes have been located inside the volume Ω, to
monitor the time series of the unsteady velocity ũ(t). Fig. 3.10 illustrates the time
series of ũ(t) at 4 such locations upstream and downstream of the side view mirror.

p1

p2

p3

p4

(a) Probe locations in volume Ω (b) Instanteneous velocity ũ
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Figure 3.10: Unsteady velocity magnitude time series ũ(t), obtained by the DDES
solution, plotted for four probe locations p1-p4 on a cutting plane of the evaluation
volume Ω. The initial 0.2s were truncated since they correspond to the simulation’s
warm-up period, determined by the MSER-5 algorithm.

It is observed that a warm-up period is clearly present in the time series; i.e. the
velocity magnitude initially exhibits an upwards trend and takes up time to reach
statistical stationarity 7. The MSER-5 algorithm of eq. 3.25 was applied to 10 ve-
locity time series to properly determine the length of the warm-up period T ∗. The
T ∗ value returned from MSER-5 differ from probe to probe, while the largest T ∗
value was T ∗ = 0.2s, considered to be the warm-up period of the simulation.

7 A process is statistically stationary if its statistical properties do not change when shifted in
time. In this specific case, the mean value and standard deviation of velocity magnitude variate in
time, until they converge to specific values.
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Application to a Production Car

It is noted that the latter approach does not necessarily determine the warm-up
period with absolute accuracy; foremost, total simulated physical time of T = 0.5s
may not be a sufficiently long sample of the process and may not capture the broader
unsteadiness of the physical problem; secondarily, the 10 probe positions were cho-
sen subjectively and may not speak for every fluid point of Ω.

The unsteady velocity flow fields ũ of volume Ω were transferred to frequency do-
main via a Fast Fourier Transform (FFT). The frequency domain velocity magnitude
fields |uf | are presented in fig. 3.11, plotted on a cross-section of Ω. Each frequency
index fm denotes a 1/3rd octave band around the corresponding frequency.

0.02 |uf | 2.3 0.02 |uf | 7.4

(a) fm = 25 Hz (b) fm = 125 Hz

0.02 |uf | 0.46 0.02 |uf | 0.46

(c) fm = 1000 Hz (d) fm = 2000 Hz

Figure 3.11: Magnitude of velocity in frequency domain |uf |, obtained by an FFT on
the unsteady velocity ũ, plotted on a cross-sectional plane of volume Ω. The frequency
domain resolution has been reduced to 1/3rd octave frequency bands.

In low frequency ranges (e.g. 125 Hz), the |uf | fields exhibit greater magnitudes
than on high frequencies (e.g. 2000 Hz), showing that the larger eddy structures of
the wake downstream of the side view mirror contain more energy than the smallest
dissipative scales. Concurrently, at low frequencies, the |uf | fields display a coher-
ent, streamlined behaviour, while at higher frequencies show less coherent, dispersed
structures.
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Lastly, the mean velocity u and mean vorticity ω fields were obtained by an time
averaging of the corresponding unsteady flow fields, over a time window of T = 0.3s,
illustrated in fig. 3.12.

0.0 v̄(m/s) 66 0.0 ω̄(1/s) 100

(a) Averaged velocity magnitude field v (b) Averaged vorticity magnitude field ω

Figure 3.12: Mean velocity magnitude u and vorticity magnitude ω fields, averaged
over a time window of T = 0.3s

3.3.2 Computation of the APDS volume field

With the use of the latter flow fields acquired by the DDES solution, eq. 3.22 is
evaluated. The resulting APDS index creates a two-way link between the acoustic
pressure fluctuations on the side glass and their sources on the fluid volume. An inte-
gration of APDS(y, z, fm) on the vehicle’s side glass surface S (eq. 3.23) results to
the acoustic pressure density source field APDS(z); one for each frequency band fm.

Only the frequency band of fm = 2kHz is deemed of high importance, since the
driver’s ear is highly sensitive to this frequency range, whereas it does not respond
to low frequency noise. Fig. 3.13 illustrates the acoustic pressure density source
field for the frequency band of fm = 2kHz.

0.0 4.8e-05

Figure 3.13: The acoustic pressure density source APDS(z) for the frequency band
of fm = 2 kHz, plotted on vertical and horizontal cross-sections of the evaluation
volume Ω. It can be observed that high values of the APDS(z) field are tlocated on
the wake of the SVM, as well as close to the A-pillar.
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It is observed in fig. 3.13 that high values of the APDS index are located down-
stream of the side view mirror, as well as near the A-pillar, i.e. close to noise gener-
ating components. Meanwhile, since APDS depends on the proximity (∝ 1 /|r|4),
the highest APDS levels are found close to the driver’s side window.

For properly determining the spatial patterns of the APDS field, iso-surfaces are
used, i.e. surfaces in space representing points of constant APDS value. By vi-
sualizing the noise sources distribution field with iso-surfaces (fig. 3.14), we can
illustrate the flow patterns of Ω that contribute the most to wind noise.

0.0 4.8e-05

Figure 3.14: The noise source distribution field APDS(z) for the fm = 2 kHz
frequency band, visualized with the use of iso-surfaces inside volume Ω. The flow
patterns that contribute to pressure fluctuations of 2 kHz are the A-pillar’s and SVM’s
wake.

It is shown in fig. 3.14 that the flow patterns originating from the side view mirror
and the A-pillar are mainly responsible for the acoustic pressure fluctuations (of
frequency fm = 2kHz) exerted on the side glass. However, the APDS field exhibits
clearly more prominant structures downstream of the mirror, than downstream of
the A-pillar. Therefore, one can argue that the side view mirror is the dominant
noise generating component.

Figure 3.15: Illustration of the APDS(z) field for fm = 2 kHz around the vehicle’s
side view mirror (SVM) with the use of iso-surfaces. The inner edge of the mirror
appears to contribute the most to the 2 kHz pressure fluctuations.
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Considering that the SVM is the main wind noise contributor, we can pinpoint spe-
cific areas on its geometry with the greatest potential for noise reduction. Fig. 3.15
suggests that the inner edge of the SVM contributes the most to the generation of
acoustic pressure fluctuations, therefore it should be the first geometry feature to
be modified.

3.3.3 Computation of the APDS surface field

Lastly, an integration of the APDS(y, z) field inside the evaluation volume Ω results
to the surface pressure fluctuations distribution fields of fig. 3.16 , expressing the
acoustic pressure fluctuations distribution on the side glass for each frequency band
fm.

0.0 5.2e-02 0.0 2.6e-02

(a) fm = 25 Hz (b) fm = 40 Hz

0.0 7.2e-04 0.0 3.4e-07

(c) fm = 125 Hz (d) fm = 2000 Hz

Figure 3.16: The surface pressure fluctuations distribution field APDS(y) over the
driver’s side windows for specific frequency bands fm.

At low frequency bands (e.g. 125 Hz), the pressure fluctuations index field follows
a coherent pattern, resembling the vorticity of the mirror’s wake, while at higher
frequency bands (e.g. 2000 Hz) exhibits significantly smaller magnitudes and a
more incoherent behaviour.
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Chapter 4

Wind Noise Optimization

In this chapter, an adjoint-based optimization for the reduction of noise in automo-
tive applications is presented and applied, based on [4]. The aim of the optimization
worfklow is the reduction of wind noise perceived by the driver’s ear, when cruising
at high speeds. The big wind noise contributor is considered to be the vehicle’s
SVM; From a fluid point of view, the side view mirror is a bluff body exposed to
a high speed flow. The flow structures in the wake of an SVM are highly transient
and subject the vehicle’s surfaces (e.g. doors, windows) to significant unsteady pres-
sure fluctuation. This unsteady pressure variations ultimately propagate inside and
around the vehicle as sound [28]. For this purpose, a cost functional expressing
the creation of noise in terms of turbulence intensity is used. The evaluation of the
cost functional is done in a steady-state manner, by means of a RANS equations
solver. The cost functional is minimized using an uncostrained gradient-based opti-
mization algorithm, where the framework’s control parameters, or design variables,
shape the vehicle’s SVM. The evaluation of the cost functional’s gradient w.r.t. the
design variables is performed using the continuous adjoint method, which implies
the simulation of an auxiliary set of PDEs, at a cost equivalent to the standard
RANS.

4.1 Formulation of the Primal Problem

The primal problem consists of the mathematical formulation and numerical so-
lution of the state equations that govern the physics of the aerodynamic problem
under consideration. This optimization problem is concerned with turbulent flows
developed around car geometries. The mean flow is resolved through a RANS sim-
ulation, while the turbulent flow patterns are being modeled. Moreover, a high-Re
mesh has been utilized, together with the use of wall functions.
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Governing Equations

4.1.1 Governing Equations

Regarding the aerodynamic optimization problem that concerns this thesis, the
turbulent flow that develops around the car’s geometry is governed by the steady-
state incompressible Navier-Stokes equations. On account of this, the time-averaged
RANS (2.1.1) equations are used to model the turbulent flow.

The system of the RANS equations for an incompressible and steady-state fluid
flow, can be rewritten in Einstein notation and Cartesian coordinates as

Rp = ∂v̄j
∂xj

=0 (4.1)

Rv
i = v̄j

∂v̄i
∂xj

+ ∂p̄

∂xi
− ∂

∂xj

[
ν

(
∂v̄i
∂xj

+ ∂v̄j
∂xi

)]
− ∂

∂xj

(
−v′

iv
′
j

)
=0 , i = 1, 2, 3 (4.2)

where 4.1 consitutes the conservation of mass, or continuity, equation and 4.2 con-
stitutes the momentum equation, written in non-conservative form. The ’¯’ symbol
stands for the mean value of a flow variable, whereas the ’ ′’ symbol denotes the
fluctuating part of a flow variable.

The extra stress term τ
′
ij/ρ = −v′

iv
′
j appearing in 4.2, is the so-called Reynolds

stress tensor. According to the Boussinesq hypothesis, proposed by Boussinesq in
1877 [6, 7], this extra stress term may be expressed in terms of mean flow variables
as

−v′
iv

′
j =νt

(
∂v̄i
∂xj

+ ∂v̄j
∂xi

)
− 2

3kδ
j
i (4.3)

where δji is the Kronecker delta, k is the turbulent kinetic energy (TKE), defined as

k= 1
2v

′
iv

′
i (4.4)

Boussinesq introduces the new viscosity-like variable νt, referred to as turbulent,or
eddy, viscosity. The turbulent viscosity, in simple terms, is a property of the flow,
representing the net effective mixing between fluids.

By taking 4.3 into consideration, the momentum conservation eq. 4.2 yields

Rv
i =vj

∂vi
∂xj
− ∂

∂xj

[
(ν + νt)

(
∂vi
∂xj

+ ∂vj
∂xi

)]
+ ∂p

∂xi
=0 , i = 1, 2, 3 (4.5)

where the ’¯ ’ symbol is omitted for simplicity since all flow variable correspond to
the mean flow. This convection will be followed for the rest of this thesis.
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Spalart-Allmaras Model

4.1.2 The Spalart-Allmaras Model

The Spalart-Allmaras model is a one-equation model that solves a modelled trans-
port equation for the kinematic eddy turbulent viscocity [29]. This model was ini-
tially designed specifically for aerospace applications involving wall-bounded flows
and has shown good results for boundary layers subjected to adverse pressure gradi-
ents. In its original form, it is more effective in low-Reynolds number flows, requiring
the viscosity-affected region of the boundary layer to be properly resolved (y+ ∼ 1)
meshes 1, except when wall functions are used.

The model is proposing a transport equation for a viscosity-like variable ν̃, com-
monly referred to as the Spalart-Allmaras variable. Specifically, the following trans-
port PDE is proposed

Rν̃ =vj
∂ν̃

∂xj
− ∂

∂xj

[(
ν+ ν̃

σ

)
∂ν̃

∂xj

]
− cb2
σ

(
∂ν̃

∂xj

)2

−ν̃ P (ν̃)+ν̃ D (ν̃)=0 (4.6)

from which, the eddy viscocity νt can then be explicitly expressed as

νt = ν̃fv1 (4.7)

The production P and destruction D terms of eq. 4.6 are defined as

P (ν̃)=cb1Ỹ , D(ν̃)=cw1fw(Ỹ ) ν̃
d2 (4.8)

where Ỹ is computed through

Ỹ =Yfv3 + ν̃

d2κ2fv2 (4.9)

while the vorticity magnitude Y is defined as

Y =
√

2S : S , S= 1
2

(
∇u− (∇u)T

)
(4.10)

The term S in eq. 4.10 is the rotation rate tensor, where d denotes the distance of
the points in the flow domain from the nearest wall boundary surface. Regarding

1 y+ stands for the non dimensional distance from the wall, defined as y+ = vτy/ν, with
vτ = √τw being the friction velocity, y the absolute distance from the wall and ν the kinematic
viscocity. Here, the y+ value denotes the distance of the first cell centre from the nearest wall,
used to determine the mesh resolution near the wall boundaries of the computational domain.
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Wall Functions

the numerical evaluation of eq. 4.6, since OpenFOAM© uses a cell-centered finite
volume discretization scheme, the term d denotes the distance of cell-centres from
the closest boundary face-centres [30].

Finally, the functions fv of the model are defined as

fv1 = χ3

χ3 + c3
v1

, fv2 = 1(
1 + χ

cv2

)3

fv3 = (1 + χfv1)
cv2

[
3
(

1+ χ

cv2

)
+
(
χ

cv2

)2
] (

1+ χ

cv2

)−3

χ = ν̃

ν
, fw=g

(
1 + c6

w3

g6 + c6
w3

)1/6

g = r+cw2(r6−r) , r= ν̃

Ỹ κ2d2
. (4.11)

The constants of the model can be found in [29], whilst the Levi–Civita symbol eijk
of eq. 4.10 is defined as

eijk =


+1 (i, j, k) ∈ (1, 2, 3), (2, 3, 1), (3, 1, 2)
−1 (i, j, k) ∈ (1, 3, 2), (3, 2, 1), (2, 1, 3)

0 i = j, j = k, k = i
(4.12)

4.1.3 Wall Functions

Turbulence models, such as k− ε, are only valid for predicting isotropic and fully
developed turbulent flows. This is not the case for wall bounded flows, where the
fluid close to the wall is greatly influenced by viscosity effects. This layer of fluid,
residing on the bounding surface, is called the boundary layer. In order to properly
predict the flow properties of the boundary layer, two approaches can be followed.

One approach is to directly integrate turbulence to the wall. Turbulence models,
such as the Spalart Allmaras model and k− ε, are capable of allowing the viscosity-
affected region to be resolved all the way down to the wall, including the viscous
sublayer (shown in fig. 4.1). This approach is the so-called Low-Reynolds number
of Turbulence modelling [6]. Concurrently, the viscous sublayer contains a large
amount of information, due to steep velocity profiles and statistically incoherent
flow structures. Owing to this, when utilising a Low Reynolds number model, very
fine grids must be used, where the first cell-centre must be placed in the viscous
sublayer (preferably y+ = 1), so as to be able to properly resolve the flow character-
istics. Nonetheless, this requirement leads to the need for substantial computational
resources, typically not available in an industrial enviroment.
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On the contrary, another way to deal with the near-wall region is the use of the
so-called wall functions. Wall functions are empirical equations, used to predict the
physics of the flow in the near-wall region. Practically, they are used to bridge the
inner region between the wall and the fully developed turbulent one. The latter
approach is the so-called High-Reynolds number of Turbulence modelling. When
using a High Reynolds model, the first cell-centre needs to be placed in the log-law
inertial sublayer (shown in fig. 4.1), in order to secure accurate results. Since the
viscous sublayer no longer needs to be fully resolved, much coarser grids can be
used, rendering wall functions a great choice for industrial applications.

Figure 4.1: Velocity profiles across the different regions of the boundary layer.

Regarding this diploma thesis, the wall functions are being employed to estimate
the values of νt at the closest-to-the-wall cells of the computational domain. Con-
sidering this optimization problem, this is very important since the next to the wall
νt values define the objective function, described in section 4.2.3.

Specifically, as programmed in OpenFOAM©, wall functions are based on a sin-
gle formula for modelling both the inner sublayer and the logarithmic part of the
boundary layer, the so-called Spalding’s Law [31]

fWF = y+
P − v+

P − e−kB
[
eκv

+
P − 1− κv+

P −
(κv+

P )2

2 − (κv+
P )3

6

]
= 0 (4.13)

where κ is the von Kármán constant equal to 0.41, B ≈ 5.5 and the non-dimensional
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distance and velocity at the first cell-center P of the wall are given by 2

y+
P = ∆Pvτ

ν
, v+

P = |vi|
P

vτ
(4.14)

The νt values at the first cell-centers off the wall are obtained by computing the
viscous flux at the boundary faces f

τij|fnj = (ν + νft ) v
P
i

|Pf |
(4.15)

Solving the flow equations using wall functions practically means that eq. 4.13 is
solved for vτ at each face f using the Newton-Raphson method and, in turn, νft is
obtained by adjusting 4.15 accordingly [4].

4.1.4 Primal Equations

Based on the aforementioned analysis, the set of differential equations that de-
scribe the physics of the steady-state external aerodynamic problem under consid-
eration read

Rp=−∂vj
∂xj

=0 (4.16a)
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i =vj
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∂xi
=0 , i = 1, 2, 3 (4.16b)
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]
− cb2
σ

(
∂ν̃

∂xj

)2

−ν̃ P (ν̃)+ν̃ D (ν̃)=0 (4.16c)

The above-mentioned mean flow equations along with the turbulence model equa-
tion 4.16 and their boundary conditions are referred to as the primal (or state)
equations of the optimization problem. The vector of primal variables, U, contains
the flow variables vi , p and the turbulence model variable ν̃.

The boundary conditions used for the closure of the primal problem are (a) Dirichlet
conditions for the velocity vector v and the turbulence model variable ν̃, along with a
zero Neumann condition for p at the inlet and wall boundaries of the computational
domain and (b) a, usually zero, Dirichlet condition for p along with zero Neumann
conditions for v and the turbulence model variable at the outlet boundaries [19].

2 where the fricition velocity vτ is computed over the wall faces f as v2
τ = −τij |fnjtIi , where nj

and tIi refer to the components of the unit vectors which are where normal to the wall and parallel
to the velocity, at the first cell P [4]

37



Formulation of the Adjoint Problem

4.2 Formulation of the Adjoint Problem

As already mentioned, an optimization problem aims at the minimization of a
cost functional F , given a design space defined by a vector of design variables b.
In such an optimization regime, the adjoint problem consists of the derivation of
the field adjoint differential equations which can in turn lead to the evaluation of
δF/δb, i.e. the gradient of the cost functional F w.r.t. the design variables b.
In general, F may depend on the state variables U or on b = (b1, b2, ..., bn). The cost
function F may directly depend on b; for example, in shape optimization problems,
F usually includes the normal unit vector to the surface on which F is defined,
which depends directly on b. Concurrently, F also depends on U which, in turn,
depends on b itself; meaning that by varying the design vector b, U varies also in
order to satisfy the primal equations. Therefore, F = F (b,U(b)) holds.
Gradient based methods (GBMs) make use of the derivative of F w.r.t. the design
variables, or δF/δbn, in order to minimize F . Typical GBMs algorithms are steepest
descent, conjugate gradient [32], quasi-Newton methods like BFGS [33] and SR1
[34] and Newton’s method [35]. The key factor for determining the computational
cost of the optimization algorithm is the way δF/δbn is computed. For example,
in a direct differentiation (DD) approach, the derivatives of the state variables U
w.r.t. the design variables bn are computed at first and, through them, the δF/δbn
values are derived. As a result, a DD evaluation costs as many as N equivalent state
solutions, i.e. as if the state equations were solved for a total of N times.
In an aerodynamic shape optimization, where the state or flow equations may origi-
nate from the Navier-Stokes equations, the solution of N equivalent flow simulations
(EFS) increases excessively the computational cost. The great advantage of the ad-
joint method is that it computes δF/δbn at a cost that practically does not depend
on N . Owing to this, when designing an adjoint based optimization framework,
we can choose an indifferently large design space, whenever needed, e.g. in large
industrial optimization problems.
An introduction to the continuous adjoint method follows, based on [19, 36]. The
adjoint solver, used in this thesis, has been developed in OpenFOAM© by the
PCOpt/NTUA team.

4.2.1 Introduction to the Adjoint Variables

The formulation of the continuous adjoint method is based on the definition of the
augmented objective function L, defined as

L=F+
∫

Ω
ΨiRidΩ (4.17)

where F is the objective function or functional, Ri = 0 are the residuals of the state
equations, Ψi are the adjoint variables and Ω the computational domain.
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Considering that the residuals of the primal equations are set to zero, L ≡ F .
The augmented objective function L may also be viewed as the Lagrangian of F
and the adjoint variables Ψi as Lagrange multipliers.

Differentiation of eq. 4.17 w.r.t. bn yields

δL

δbn
= δF

δbn
+ δ

δbn

∫
Ω

ΨiRidΩ (4.18)

To further expand the δ/δbn derivative of the integral term
∫

Ω ΨiRidΩ in eq. 4.18,
two alternative approaches may be followed. Originally, the continuous adjoint
equations were derived by further developing this derivative term as follows

δ

δbn

∫
Ω

ΨiRidΩ=
∫

Ω
Ψi
δRi

δbn
dΩ +

∫
Ω

ΨiRi
δ(dΩ)
δbn

(4.19)

Considering that δ(dΩ)
δbn

= ∂
∂xk

(
δxk
δbn

)
dΩ, (proof can be found in [19]), eq. 4.18 reads

δL

δbn
= δF

δbn
+
∫

Ω
Ψi
δRi

δbn
dΩ +

∫
Ω

ΨiRi
∂

∂xk

(
δxk
δbn

)
dΩ (4.20)

After expanding eq. 4.20 and by using the following relation between the total and
spatial derivatives of any quantity Φ

δ

δbn

(
∂Φ
∂xj

)
= ∂

∂xj

(
δΦ
δbn

)
− ∂Φ
∂xk

∂

∂xj

(
δxk
δbn

)
(4.21)

(proof also be found in [19]) and the Green-Gauss theorem, the final FI sensitivity
derivatives expression containing the field variations of xk is received. The latter is
the so-called FI adjoint formulation.

To avoid the evaluation of integrals containing the term δxk/δbn, the Leibniz theo-
rem for integral variations can be employed as

δL

δbn
= δF

δbn
+
∫

Ω
Ψi
∂Ri

∂bn
dΩ +

∫
S

ΨiRink
δxk
δbn

dS︸ ︷︷ ︸
LBterm

(4.22)

in a domain with variable boundaries (S = S(b) = ∂Ω). Eq. 4.22 is the origin of
the so-called SI adjoint formulation.
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The LBterm that appears in this equation denotes the surface integral term in-
troduced by the use of the Leibniz theorem. Originally, the LBterm was usually
ignored, under the assumption that the state equations Ri are satisfied along the
boundaries S. Regarding CFD problems, in fine grids the value of the LBterm may
become negligible and ignoring it does not harm the computed derivative accuracy.
Nevertheless, depending on the case, as well as the mesh coarseness, this term may
become very important and can affect the gradient accuracy.

An alternative expression, surrogate to the LBterm reads [36]

∫
S

ΨiRink
δxk
δbn

dS=−
∫

Ω

∂

∂xj

{
−uivj

∂vi
∂xk
− uj

∂p

∂xk
− τaij

∂vi
∂xk

ui
∂τij
∂xk

+ q
∂vj
∂xk

}
δxk
δbn

δΩ

(4.23)
where τij = ν

(
∂vi
∂xj

∂vj
∂xi

)
is the stress tensor and τaij = ν

(
∂ui
∂xj

∂uj
∂xi

)
is the adjoint stress

tensor. Eq. 4.23 will be referred to as V term.

However, the V term expression includes a grid displacement term δxk/δbn, typically
difficult to evaluate. To compute δxk/δbn through finite differences, each design vari-
able has to be displaced by ±ε , where ε is an infinitesimally small quantity. The
computational cost of the FD approach is that of solving 2N grid displacement
equations, i.e. equal to the FI approach.

To alleviate the need of computing δxk/δbn in the domain Ω, the adjoint formu-
lation is enhanced by solving the adjoint to a hypothetical grid displacement PDE.
In view of this, a Laplace equation is utilized as a grid displacement PDE (gdPDE),
defined as

Rm
i = ∂2mi

∂x2
j

=0 (4.24)

where mi are the Cartesian displacements of the grid nodes. Along the boundary,
mi represents the displacement of the boundary points. The displacement com-
ponent mi is both a function of xk, since the gdPDE is satisfied on the given grid
and bn, since the design variables directly affect the boundary conditions of eq. 4.24.

The latter is the origin of the so-called Enchanced SI (E-SI) adjoint formulation,
in which, the gdPDE is considered to be an additional state equation, or, an extra
constraint in the optimization.

The continuous adjoint formulation for the aerodynamic shape optimization prob-
lem that concerns this thesis, is based in the aforementioned E-SI formulation and
is presented in the next section.
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4.2.2 The E-SI Continuous Adjoint Formulation

The introductory generalised adjoint methodology will be used for the given aero-
dynamic shape optimization problem, that concerns this thesis. The starting point
for the derivation of the adjoint equations is the definition of the Lagrangian or aug-
mented objective function L. In the general E-SI approach used in this thesis, the
augmented objective function is defined by expanding F with the volume integral
of the state equations, multiplied by the corresponding adjoint variables, as

L=F+
∫

Ω
uiR

v
i dΩ+

∫
Ω
qRpdΩ+

∫
Ω
ν̃aR

ν̃dΩ+
∫

Ω
ma
iR

m
i dΩ (4.25)

where ui is the adjoint velocity component, q is the adjoint pressure, ν̃a is adjoint
to ν̃ 3 and Ω is the computational domain. The last field integral term in eq. 4.25
corresponds to the laplacian grid displacement PDE. This term would be absent
in the FI or SI adjoint formulations. A complete review on the different adjoint
formulations can be found in [37].

Differentiating eq. 4.25 w.r.t the design variables bn and applying Liebniz and
Green-Gauss theorem on the volume integrals with variable boundaries (S = S(b) =
∂Ω) one gets

δL

δbn
= δF

δbn
+ δ

δbn

∫
Ω

(
uiR

v
i + qRp + ν̃aR

ν̃ +ma
iR

m
i

)
dΩ (4.26)

= δF

δbn
+
∫

Ω
ui
∂Rv

i

∂bn
dΩ+

∫
Ω
q
∂Rp

∂bn
dΩ+

∫
Ω
ν̃a
∂Rν̃

∂bn
dΩ

+
∫
S
ma
i nj

∂

∂xj

(
δxi
δbn

)
dS−

∫
SW

∂ma
i

∂xj
nj
δxi
δbn

dS+
∫

Ω

∂2ma
i

∂x2
j

δxi
δbn

δΩ

+
∫
S

(
uiR

v
i + qRp + ν̃aR

ν̃ +ma
iR

m
i

)
nk
δxk
δbn

dS (4.27)

where the boundary S of the computational domain Ω can be expressed in terms of
the boundaries SI , SO, SW and SWP

standing for inlet, outlet, fixed and controlled
(thus, parameterized) wall boundaries of Ω, respectively, as S = SI∪SO∪SW ∪SWP

.
Furthermore, xk denotes the coordinates of the boundary’s surface points while nk
is the normal to that surface unit vector component.

Since the only boundary that can be deformed is the parameterized boundary SWP

and all the other boundaries are fixed, the term δxk/δbn in eq. 4.26 only applies

3 The adjoint turbulence model equations and variables are neglected in the commonly used
"frozen turbulence" assumption.
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for that controlled boundary SWP
, which yields

δL

δbn
= δF

δbn
+
∫

Ω
ui
∂Rv

i

∂bn
dΩ+

∫
Ω
q
∂Rp

∂bn
dΩ+

∫
Ω
ν̃a
∂Rν̃

∂bn
dΩ

+
∫
SWP

ma
i nj

∂

∂xj

(
δxi
δbn

)
dS−

∫
SWP

∂ma
i

∂xj
nj
δxi
δbn

dS+
∫

Ω

∂2ma
i

∂x2
j

δxi
δbn

δΩ

+
∫
SWP

(
uiR

v
i + qRp + ν̃aR

ν̃ +ma
iR

m
i

)
nk
δxk
δbn

dS (4.28)

Since the residuals of the state equations must equal to zero over the entire domain
Ω, the expression L = F holds and thus δL/δbn = δF/δbn.

Note that a sharp distinction must be made here between the symbols δ()/δbn and
∂()/∂bn in eq. 5.7. Specifically, δΦ/δbn denotes the total (or material) derivative of
an arbitrary quantity Φ and speaks for the total change in Φ by varying bn, whilst
∂Φ/∂bn denotes the partial derivative of Φ and speaks for the variation in Φ due to
changes in the flow variables excluding the contributions from the space deforma-
tion. From a discrete point of view, the partial derivative represents the variation
in Φ if the internal grid nodes of Ω remained unchanged [19].

The total and partial derivatives are linked through the following relationship

δΦ
δbn

= ∂Φ
∂bn

+ ∂Φ
∂xk

δxk
δbn

(4.29)

Figure 4.2: The deformation of the starting geometry of the aerodynamic shape (solid
line) to the new one (dashed line) causes the total variation in the quantity Φ, given
by δΦ = ∂Φ + ∂Φ δxk

δbn
. The total variation in Φ accounts both for the changes in the

flow variables due to the change of the geometry through ∂Φ and on the displacement
of the corresponding node through ∂Φ δxk

δbn
[19].

If the total derivative of Φ was to be computed on a surface ( e.g. a car’s surface),
eq. 4.29 whould take a slightly different form. In this case, for any small surface
deformation, only the normal part of that deformation velocity δxk/δbn can be taken
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into account, thus
δsΦ
δbn

= ∂Φ
∂bn

+ ∂Φ
∂xk

nk
δxm
δbn

nm (4.30)

In eq. 4.30, the symbol δs()/δbn is used to distinguish the surface constrained ma-
terial derivative from the unconstrained material derivative of eq. 4.29 [19].

In the following mathematical operations to be made, it should be noted that re-
peated partial derivative operators can be interchangeable, i.e.

∂

∂bn

(
∂Φ
∂xj

)
= ∂

∂xj

(
∂Φ
∂bn

)
(4.31)

while the same does not necessarily apply for the total derivatives, i.e.

δ

δbn

(
∂Φ
∂xj

)
6= ∂

∂xj

(
δΦ
δbn

)
(4.32)

4.2.3 Differentiation of the Objective Function

In order to proceed with the formulation of the adjoint differential equations,
we must further develop the term of the total derivative of the objective function
δF/δbn, wich appears in eq. 5.7. In the case of a general objective function that
comprises both surface and volume integrals, this may be expressed as

F =
∫
S
FSinidS +

∫
Ω
FΩdΩ (4.33)

where FSi and FΩ are integrands on the boundary or the volume of the computational
domain respectively, while ni is the normal to the surface unit vector.
By differentiating eq. 4.33 w.r.t. the design variables bn one gets

δF

δbn
= δ

δbn

∫
S
FSinidS + δ

δbn

∫
Ω
FΩdΩ (4.34)

In what follows, the steps for the derivation of the final expressions of the surface
and volume intergals are better presented in detail in [19].

Surface Integral of eq. 4.34
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The derivative of the surface integral in eq. 4.34 takes the following final form

δ

δbn

∫
S
FSinidS=

∫
S

∂FSi
∂vk

ni
∂vk
∂bn

dS+
∫
S

∂FSi
∂p

ni
∂p

∂bn
dS+

∫
S

∂FSi
∂τkj

ni
∂τkj
∂bn

dS

+
∫
S

∂FSi
∂ν̃

ni
∂ν̃

∂bn
dS+

∫
S
ni
∂FSi
∂xm

δxk
δbn

nkdS

+
∫
S
FSi

δni
δbn

dS+
∫
S
FSini

δ(dS)
δbn

(4.35)

By using differential geometry we could further express the derivatives of the geo-
metrical quantities that appear in eq. 4.35 as

δni
δbn

= − ∂t
∂xi

(
δxk
δbn

nk

)
(4.36)

δ(dS)
δbn

= −kδxk
δbn

nkdS (4.37)

where ∂t()/∂xi denotes the tangential derivative and k the mean curvature of the
surface. Computing the mean curvature k though is not a trivial task, especially
on unstructured meshes. Furthermore, even though the tangential derivative of any
quantity Φ that can be defined on a surface S and its ambient space can be expressed
as

∂tΦ
∂xi

= ∂Φ
∂xi
− ∂Φ
∂xm

nmni (4.38)

this cannot be done for the mesh deformation velocity (δxk/δbn)nk, since it can only
be defined on the wall surface SWP

, but not its ambient space [19]. For these rea-
sons, in a discrete sense, eq. 4.35 stays as it is and the terms δni/δbn and δ(dS)/δbn
can alternatively be evaluated by finite differences.

Volume Integral of eq. 4.34

After applying Leibniz theorem for the differentiation of the integral terms with
moving boundaries (S = S(b) = ∂Ω) we obtain

δ

δbn

∫
Ω
FΩdΩ=

∫
Ω

∂FΩ

∂bn
dΩ +

∫
S
FΩnk

δxk
δbn

dS (4.39)

Eq. 4.39 can further be expanded by taking into consideration the dependency of F
on the state variables U. Generally, F may be expressed in terms of flow variables
vi, p or turbulence model variables (e.g. k, ω, ν̃) , but also in terms of differential
expressions of these quantities (e.g. the stress tensor τij). Therefore, considering
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that F = F (b,U(b)) with U(b) = (vi, p, ν̃), eq. 4.39 takes the form

δ

δbn

∫
Ω
FΩdΩ=

∫
Ω
F́ v

Ω,i
∂vi
∂bn

dΩ+
∫

Ω
F́ p

Ω
∂p

∂bn
dΩ+

∫
Ω
F́ ν̃

Ω
∂ν̃

∂bn
dΩ+

∫
S
F́ v
S,i

∂vi
∂bn

dS

+
∫
S
F́ p
S

∂p

∂bn
dS

∫
S
F́ ν̃
S

∂ν̃

∂bn
dS

∫
S
FΩnk

δxk
δbn

dS (4.40)

where F́Φ
Ω includes the partial derivative ∂FΩ/∂Φ plus any term that might result

from the use of Gauss divergence theorem for integrals of the form
∫
ω

∂
∂bn

(
∂Φ
∂xj

)
dΩ.

By substituting these final surface and volume integral expressions in eq. 4.34,
the final expression of δF/δbn results to

δF

δbn
=
∫

Ω
F́ v

Ω,i
∂vi
∂bn

dΩ+
∫

Ω
F́ p

Ω
∂p

∂bn
dΩ+

∫
Ω
F́ ν̃

Ω
∂ν̃

∂bn
dΩ+

∫
S

(
F́ v
S,i+

∂FSk
∂vi

nk

)
∂vi
∂bn

dS

+
∫
S

(
F́ p
S+ ∂FSi

∂p
ni

)
∂p

∂bn
dS+

∫
S

(
F́ ν̃
S + ∂FSi

∂ν̃
ni

)
∂ν̃

∂bn
dS

+
∫
S

∂FSk
∂τij

nk
∂τij
∂bn

dS+
∫
SWp

FΩnk
δxk
δbn

dS+
∫
SWp

ni
∂FSWp,i
∂xm

nm
δxk
δbn

nkdS

+
∫
SWp

FSWp,i
δni
δbn

dS+
∫
SWp

FSWp,ini
δ(dS)
δbn

(4.41)

Eq. 4.41 contains the partial derivatives of the flow variables U w.r.t. the design
variables bn which would typically require the solution of N systems of equations,
similar to the Navier-Stokes ones with a cost approximately of N EFS. To reduce
this great computational cost, one should formulate and numerically solve the ad-
joint field equations.

The aforementioned analysis of differentiating a general objective function will be
applied to the wind noise objective function that concerns this diploma thesis.

Surrogate Noise Objective Function

Whilst noise is an inherentely unsteady phenomenon, the application of an un-
steady optimization workflow is practically too expensive, if not impossible, in an
industrial enviroment. For this reason, a surrogate model expressing the generation
of wind noise in an incompressible and steady-state manner is used as the objective
function of the optimization process.
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According to Proudman’s model [38], the acoustic power generated by isotropic tur-
bulence can by derived from Lighthill’s theory of aerodynamic noise. Proudman’s
formula, in turn, can be correlated to the turbulent kinetic energy and dissipation
or the levels of turbulent viscosity.

Based on industrial experience, an objective function which is linked to the noise
perceived by the driver of a car and which depends exclusively on the turbulence
viscosity is given by [4]

Fν =
∫

Ω′
ν2
t dΩ (4.42)

where νt is the turbulent viscocity and Ω′ is a volume residing next to the driver’s
window with a user-defined thickness.

Figure 4.3: Finite volume Ω′ used for the definition of the surrogate noise objective
function 4.42. The volume is residing next to the driver’s window and has a user-
defined finite thickness.

By utilizing the objective function of eq. 4.42, one wishes to reduce noise by exclu-
sively using a steady-state flow solver (to obtain the νt field), without coupling it
with an acoustic one. Furthermore, since νt is only obtained by solving a turbulence
model, it is necessary to differentiate the turbulence model in the adjoint formula-
tion, in order to secure accurate sensitivity derivatives, while otherwise these would
have a zero value irrespectively of the body’s shape.

Differentiating eq. 4.42 w.r.t. the design variables bn and applying Leibniz’s theo-
rem results to

δFν
δbn

= δ

δbn

∫
Ω′
ν2
t dΩ =

∫
Ω′

∂ν2
t

∂bn
dΩ +

∫
S′
ν2
t nk

δxk
δbn

dS

=
∫

Ω′
2νt

∂νt
∂ν̃︸ ︷︷ ︸

F́ ν̃Ω

∂ν̃

∂bn
dΩ +

∫
S

′
ν2
t nk

δxk
δbn

dS (4.43)
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where S ′ is the surface corresponding to the residing volume Ω′ . Eq. 4.43 implies
that an extra source term F́ ν̃

Ω must be added to the adjoint turbulence model equa-
tion, in the cells contained within Ω′ .

4.2.4 Derivation of the Field Adjoint Equations

By looking back at eq. 4.26, in order to reach a final expression for δL/δbn we
must further develop the terms ∂Rp/∂bn, ∂Rv

i /∂bn and ∂Rν̃/∂bn, i.e. the partial
derivatives of the state equations w.r.t. the design variables.

Therefore, by differentiating the Navier-Stokes continuity 4.16a and momentum
4.16b equations we get

∂Rp

∂bn
= − ∂

∂xj

(
∂vj
∂bn

)
(4.44)

and

∂Rv
i

∂bn
= ∂vj
∂bn

∂vi
∂xj

+vj
∂

∂xj

(
∂vi
∂bn

)
+ ∂

∂xi

(
∂p

∂bn

)

− ∂

∂xj

[
(ν + νt)

∂

∂bn

(
∂vi
∂xj

+ ∂vj
∂xi

)]
− ∂

∂xj

[
∂νt
∂bn

(
∂vi
∂xj

+ ∂vj
∂xi

)]
(4.45)

where the differential operator ∂()/∂bn was conveniently interchanged with the op-
erator ∂()/∂xj, according to eq. 4.31.

In order to analyze the term ∂νt/∂bn appearing in eq. 4.45, we need to express
νt in terms of the state variables through the turbulence model. For the Spalart-
Allmaras model used in this thesis, we have

∂νt
∂bn

= ∂νt
∂ν̃

∂ν̃

∂bn
,with ∂νt

∂ν̃
=fv1 +ν̃ ∂fv1

∂ν̃
= fv1 +

3c3
v1χ

2(
χ3 + c3

v1

)2 (4.46)

Subsequently, by differentiating the Spalart-Allmaras turbulence model of eq. 4.16c,
one gets

δRν̃

δbn
= ∂ν̃

∂xj

∂vj
∂bn

+ vj
∂

∂xj

(
∂ν̃

∂bn

)
− ∂

∂xj

[(
ν + ν̃

σ

)
∂

∂xj

∂ν̃

∂bn

]

− 1
σ

∂

∂xj

(
∂ν̃

∂bn

∂ν̃

∂xj

)
− 2cb2

σ

∂ν̃

∂xj

∂

∂xj

(
∂ν̃

∂bn

)

+ ν̃

(
− ∂P
∂bn

+ ∂D

∂bn

)
+ (−P +D) ∂ν̃

∂xj
(4.47)
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Differentiating the production P and destruction D terms of the model w.r.t. design
variables bn yields

− ∂P
∂bn

+ ∂D

∂bn
=Cν̃

∂ν̃

∂bn
+C∆

∂∆
∂bn

+CY
1
Y
emjk

∂vk
∂xj

emli
∂

∂bn

(
∂vi
∂xl

)
(4.48)

The ∆ term appearing in eq. 4.47 corresponds to the distance from the wall bound-
aries 4, introduced by the Spalart-Allmaras turbulence model. Its derivative ∂∆/∂bn
requires further treatement, covered in section 4.2.6. The Cν̃ , C∆ and CY are the
derived coefficients equivalent to

CY =
(
−cb1−cw1C

r

Ỹ

)
fv3 (4.49)

C∆ =− 2
∆3

[
cw1r C

(
∆2− ν̃fv2

κ2Ỹ

)
+cw1fwν̃−cb1

fv2

κ2 ν̃

]
(4.50)

Cν̃ =
(
−cb1−cw1C

r

Ỹ

)(
∂fv3

∂ν̃
Y + fv2

κ2∆2 + ∂fv2

∂ν̃

ν̃

κ2∆2

)
+cw1C

r

ν̃
+cw1

fw
∆2 (4.51)

C= cw1 ν̃
2

∆2

[
1 + cw2(6r5 − 1)

] c6
w3

g6 + c6
w3

(
1 + c6

w3

g6 + c6
w3

)1/6

(4.52)

∂fv2

∂ν̃
=− 3

νcv2

(
1 + χ

cv2

)−4

(4.53)

∂fv3

∂ν̃
= 1
cv2

(
fv1

ν
+χ∂fv1

∂ν

)3
(
1+ χ

cv2

)
+
(
χ

cv2

)2
(1+ χ

cv2

)−3

+ 1
νc2

v2

(1+χfv1)
(
3+2 χ

cv2

)
c2
v2

(
1+ χ

cv2

)−3

−3(1+χfv1)
νc2

v2

3
(
1+ χ

cv2

)
+
(
χ

cv2

)2
(1+ χ

cv2

)−4

(4.54)

The differentiation of the turbulence model’s equation allows us to take into con-
sideration any variation in the flow’s turbulence, due to the deformations of the
geometry’s shape. Therefore, it is emphasized that obtaining adjoint-based sensitiv-
ities for the specific objective function would not have been possible without a full
differentiation of the turbulence model, since otherwise, the acquired sensitivities
would have zero values irrespectively of the geometry’s shape. A more complete and
in-detail presentation of the adjoint formulation to the Spalart-Allmaras model can
be found in [19, 39].

4 The same term in eq. 4.8 was labeled as d, to differ from the mesh size length ∆.
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Subsequently, by substituting eqs. 4.44, 4.45 and 4.47 into the expression of eq.
5.7, we obtain the final expression of the material derivative of the augmented
objective function w.r.t. the design variables

δL

δbn
=
∫
S
BCui

∂vi
∂bn

dS+
∫
S
BCp ∂p

∂bn
dS+

∫
S
BC ν̃a ∂ν̃

∂bn
dS+

∫
S
BCma ∂

∂xj

(
δxi
δbn

)
dS

+
∫
S
(−uinj + ∂FSk

∂τij
nk)

∂τij
∂bn

dS−
∫
S
ν̃a

(
ν+ ν̃

σ

)
∂

∂bn

(
∂ν̃

∂xj

)
njdS

+
∫

Ω
Ru
i

∂vi
∂bn

dΩ+
∫

Ω
Rq ∂p

∂bn
dΩ+

∫
Ω
Rν̃a

∂ν̃

∂bn
dΩ+

∫
Ω
Rma

k

δxk
δbn

dΩ

+
∫
SWp

ni
∂FSWp,i
∂xm

nm
δxk
δbn

nkdS+
∫
SWp

FSWp,i
δni
δbn

dS+
∫
SWp

FSWp,ini
δ(dS)
δbn

−
∫
SWP

∂ma
i

∂xj
nj
δxi
δbn

dS+
∫

Ω
ν̃ν̃aC∆

∂∆
∂bn

dΩ+
∫
S
ma
iR

m
i nk

δxk
δbn

dS (4.55)

where

BCui =uivjnj+(ν + νt)
(
∂ui
∂xj

+ ∂uj
∂xi

)
nj−qni+ν̃aν̃

CY
Y
emjk

∂vk
∂xj

emlinl

+ ∂FSk
∂vi

nk+F́ v
S,i (4.56)

BCp=ujnj+
∂FSi
∂p

ni+F́ p
S (4.57)

BC ν̃a = ν̃avjnj+
(
ν+ ν̃

σ

)
∂ν̃a
∂xj

nj−
ν̃a
σ

(1 + 2cb2) ∂ν̃
∂xj

nj+
∂FSk
∂ν̃

nk+F́ ν̃
S (4.58)

BCma =ma
i nj (4.59)

As already mentioned, the aim of the adjoint method is to bypass the expensive
computation of expressions of the form ∂U/∂bn, i.e. the derivatives of state vari-
ables U w.r.t. the design variables bn .

This can be accomplished by setting the multipliers of ∂vi/∂bn, ∂p/∂bn, ∂ν̃/∂bn
and δxk/δbn, in the volume integrals of eq. 4.55 to zero, or

Rq=−∂uj
∂xj

+ F́ p
Ω =0 (4.60)

Ru
i =uj

∂vj
∂xi
− ∂(vjui)

∂xj
− ∂

∂xj

[
(ν+νt)

(
∂ui
∂xj

+ ∂uj
∂xi

)]
+ ∂q

∂xi
+F́ v

Ω,i

+ν̃a
∂ν̃

∂xi
− ∂

∂xl

(
ν̃aν̃
CY
Y
emjk

∂vk
∂xj

emli

)
=0 , i=1, 2, 3 (4.61)
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Rν̃a =−∂(vj ν̃a)
∂xj

− ∂

∂xj

[(
ν+ ν̃

σ

)
∂ν̃a
∂xj

]
+ 1
σ

∂ν̃a
∂xj

∂ν̃

∂xj
+ 2cb2

σ

∂

∂xj

(̃
νa
∂ν̃

∂xj

)

+ν̃aν̃Cν̃ + ∂νt
∂ν̃

∂ui
∂xj

(
∂vi
∂xj

+ ∂vj
∂xi

)
+ (−P+D) ν̃a + F́ ν̃

Ω =0 (4.62)

Rma

k = ∂2ma
k

∂x2
j

+ ∂

∂xj

{
uivj

∂vi
∂xk

+uj
∂p

∂xk
+τaij

∂ui
∂xk
−ui

∂τij
∂xk
−q ∂vj

∂xk

}
=0 (4.63)

The aforementioned system of PDEs consitutes the Field Adjoint Equations (FAE).
Specifically, the first two equations constitute the adjoint Navier-Stokes equations,
eq. 4.62 the adjoint Spalart-Allmaras model 5 and eq. 4.63 the adjoint grid dis-
placement equation. The FAE relate quite a lot the primal equations; e.g. the
adjoint continuity equation 4.60 remains the same, whilst the adjoint momentum
equation 4.61 comprises similar convection, diffusion and adjoint pressure gradient
terms. Nevertheless, eq. 4.61 contains an extra non-conservative "adjoint trans-
pose convection" term, which combined with the nature of the adjoint boundary
conditions, renders convergence a difficult challenge.

4.2.5 Adjoint Boundary Conditions

The system of the field adjoint PDEs is a closed system with its own corresponding
adjoint boundary conditions (ABC). The ABCs are obtained similarly, by setting
the multipliers of the surface integrals which contain ∂U/∂bn terms to zero. We
may name these surface integral terms of eq. 4.55 as

I1 =
∫
S
BCui

∂vi
∂bn

dS (4.64)

I2 =
∫
S
BCp ∂p

∂bn
dS (4.65)

I3 =
∫
S
BC ν̃a ∂ν̃

∂bn
dS (4.66)

I4 =
∫
S
BCma ∂

∂xj

(
δxi
δbn

)
dS (4.67)

I5 =
∫
S
(−uinj + ∂FSk

∂τij
nk)

∂τij
∂bn

dS (4.68)

I6 =
∫
S
ν̃a

(
ν+ ν̃

σ

)
∂

∂bn

(
∂ν̃

∂xj

)
njdS (4.69)

I7 =
∫
S
ma
iR

m
i nk

δxk
δbn

dS (4.70)

5 The extra source term F́ ν̃Ω only applies for the cells contained within the volume Ω′
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Developing these terms depends on the type of the boundary surface S. Neverthe-
less, the boundary condition of the adjoint grid discplacement PDEs is the same
regardless of the boundary’s type, namely ma

k = 0, so that the term I4 can van-
ish. Additionally, the term I7 containing the term ma

k also gets vanished along all
boundaries S.

What follows is a distinction between the adjoint boundary conditions, regarding the
different types of boundaries. A more complete presentation of the adjoint boundary
conditions can be found in [19].

Inlet Boundaries SI

At the inlet boundaries SI , a Dirichlet boundary condition is imposed for the veloc-
ity component ui (and thus δui/δbn), while a zero Neumann condition is used for
the pressure p. Since SI is fixed, δxk/δbn = 0. After taking into consideration eq.
4.30, ∂vi/∂bn = 0 and ∂ν̃/∂bn = 0 is also valid. This means that I1 = I3 = 0.

Integrals I2 and I5 are eliminated by demanding

u〈n〉=−
∂FSI ,j
∂p

nj (4.71a)

uI〈t〉=
∂FSI ,k
∂τij

nkt
I
inj + ∂FSI ,k

∂τij
nkt

I
jni (4.71b)

uII〈t〉=
∂FSI ,k
∂τij

nkt
II
i nj + ∂FSI ,k

∂τij
nkt

II
j ni (4.71c)

where tIi , tIIi are the components of the tangent to the surface unit vectors. The first
tangent vector tIi is an arbitrary vector parallel to SI whereas tIIi is orthogonal to
ni and tIi and is given by tIIi = eijknjt

I
k. The velocity component u is analyzed into

its components uI〈t〉 and uII〈t〉 along the directions tIi and tIIi respectively.

The integral term I6 is elliminated by imposing a zero Dirichlet condition on ν̃a,
whereas, since no boundary condition arises for q by the aforementioned ellimina-
tion of these integral terms, a zero Neumann boundary condition is chosen for the
adjoint pressure q.

Outlet Boundaries SO

On the outlet boundaries SO, a Dirichlet boundary condition is imposed on the
pressure and zero Neumann conditions are imposed on the velocity components.
Similar to the inlet boundary, the outlet boundary is fixed, or δxk/δbn = 0 and by
taking into consideration eq. 4.30, ∂p/∂bn = 0 also holds. Consequently, integral I2
along SO vanishes automatically. Due to the distance of the outlet boundary from
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the controlled area, an almost a uniform velocity profile can be assumed along SO.
The latter implies that δτij/δbn = 0 along S0 and therefore integral I5 can also be
neglected.

In order to eliminate I1, its integrand should be set to zero, or

BCui =uivjnj+(ν + νt)
(
∂ui
∂xj

+ ∂uj
∂xi

)
nj−qni+ν̃aν̃

CY
Y
emjk

∂vk
∂xj

emlinl

+ ∂FSk
∂vi

nk+F́ v
S,i=0, i = 1, 2, 3 (4.72)

Eq. 4.72 comprises three PDEs which, in turn, include four unknown quantities
(the three adjoint velocity components and the adjoint pressure). Therefore, one of
them should be extrapolated from the interior of the domain. This is chosen to be
the normal component of the adjoint velocity, u〈n〉.

By multiplying eq. 4.72 with ni, we obtain an expression for the adjoint pressure

q=u〈n〉v〈n〉+2(ν + νt)
∂u〈n〉
∂n

+
∂FSO,k
∂vi

nink+F́ v
SO,i

ni

+ν̃aν̃
CY
Y
emjk

∂vk
∂xj

emlinlni=0 (4.73)

The adjoint tangential velocity component can be obtained by multiplying eq. 4.72
with the tangent to the surface vectors tli , l=1, 2.

v〈t〉u
l
〈t〉+(ν + νt)

(
∂ul〈t〉
∂n

+ ∂u〈n〉
∂tl

)
+
∂FSO,k
∂vi

nkt
l
i+F́ v

SO,i
tli

−ν̃aν̃
CY
Y
emjk

∂vk
∂xj

emzinzt
l
i = 0 , l=1, 2 (4.74)

Finally, a Robin-type boundary condition is imposed on ν̃a in order to eliminate
integral I3, as

BC ν̃a = ν̃avjnj+
(
ν+ ν̃

σ

)
∂ν̃a
∂xj

nj+
∂FSO,k
∂ν̃

nk+F́ ν̃
SO

=0 (4.75)

where the term ν̃a/σ (1 + 2cb2) ∂ν̃
∂xj
nj found in eq. 4.58 where BC ν̃a was initially de-

fined, has been elliminated from 4.75 due to the zero Neumann boundary condition
imposed on ν̃ for the outlet boundaries SO.
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Unparameterized/Fixed Wall Boundaries SW

Alongside SW , the imposed boundary conditions for the state variables are the
same as those used at the inlet, i.e. Dirichlet boundary conditions for the velocity
component and a zero Neumann boundary condition for the pressure. By taking
into consideration that δxk/δbn = 0 for the SW boundaries, the following conditions
for the adjoint velocity are derived

u〈n〉=−
∂FSW ,j

∂p
nj (4.76a)

uI〈t〉=
∂FSW ,k

∂τij
nkt

I
inj + ∂FSW ,k

∂τij
nkt

I
jni (4.76b)

uII〈t〉=
∂FSW ,k

∂τij
nkt

II
i nj + ∂FSW ,k

∂τij
nkt

II
j ni (4.76c)

along with a zero Neumann condition for the adjoint pressure q. Furthermore, we
know that ν̃ is equal to zero on the wall boundaries, hence integral I3 vanishes au-
tomatically. However, this is not the case for the gradient of ν̃. The integral I6 is
elliminated by imposing a zero Dirichlet boundary condition on ν̃a.

For the wall boundaries, it is often useful to define tIi to be parallel to the primal
velocity vector direction at the first cell centre adjacent to the wall P , i.e.
tIi = uPi /

∥∥∥vP
∥∥∥ [19], as shown in fig. 4.4.

Figure 4.4: Representation of a finite volume adjacent to the wall, where n is the
outwards normal unit vector, tI is parallel to the velocity vector at the first cell centre
P and tIIi = eijknjt

I
k. [19].

Parameterized/Controlled Wall Boundaries SWP

The controlled wall boundaries SWP
, are the boundaries of the domain that may

change during the optimization and thus δxk/δbn 6= 0. By taking into consideration
eq. 4.29, we conclude that the material and partial derivatives of flow quantities
are no longer identical along SWP

. As a result, the total variation of the normal and
tangent to the surface vectors are not zero, leading to the appearance of some extra
terms during the formulation of the adjoint boundary conditions [19, 4].
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4.2.6 Adjoint Wall Distance Equations

At this point, the adjoint to the wall distance equations will be derived. Fore-
most, it is necessary to account for the contribution of wall functions to the adjoint
formulation. The wall functions are being used for the treatement of νt near the
wall boundaries, where the objective function of eq. 4.42 is evaluated.

In view of this, after satisfying the field adjoint equations and their boundary con-
ditions, the sensitivity derivatives eq. 4.55 yields

δL

δbn
=TWF
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∫
SWp

SD1
∂τij
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njt
I
inmnk
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∫
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(
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∂xm
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δxk
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nkt
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+
∫
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∂xm

nm
δxk
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nkdS+
∫
SWp

FSWp,i
δni
δbn

dS+
∫
SWp

FSWp,ini
δ(dS)
δbn

−
∫
SWP

∂ma
i

∂xj
nj
δxi
δbn

dS+
∫
SWp

AWF
∆

∂∆P

∂bn
dS+

∫
SW
AWF

∆
∂∆P

∂bn
dS

+
(∫

Ω
ν̃ν̃aC∆

∂∆
∂bn

dΩ
)
IΩ

(4.77)

with

SD1 =−uI〈t〉+φ〈tI〉〈n〉+φ〈n〉〈tI〉 (4.78)

SD2,i=(ν+νt)
(
∂ui
∂xj

+ ∂uj
∂xi

)
nj−qni+

∂FSWp,k
∂vi

nk+F́ v
SWp,i

(4.79)

φij =
∂FSWp,k
∂τij

nk (4.80)
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The terms TWF
SD ,

∫
SWP
AWF

∆
∂∆P

∂bn
dS and

∫
SW
AWF

∆
∂∆P

∂bn
dS summarize the contribution

of the wall functions differentiation to the sensitivity derivatives, based on [40].

By looking at eq. 4.77, almost all of the involved terms are surface integrals over
the wall boundaries SW and SWP

. These terms can be numerically computed with
no exceptional computational cost, therefore they can remain unchanged. On the
contrary, the last term IΩ is a field integral across the entire domain Ω, render-
ing it much more difficult to compute. Furthermore, the integrand of IΩ contains
the variation of the distance field ∆ w.r.t. the design variables bn, which is not
straightforward to evaluate. One approach would be to compute ∂∆/∂bn by using
finite differences, i.e. by perturbating the design variables by an infinitesimally small
quantity ε. By applying central differences, the total derivative of the distance field
∆ could be assesed as

δ∆
δbn

= ∆(bn + ε)−∆(bn − ε)
2ε (4.81)

In turn, by taking into consideration eq. 4.29, we could compute the requested
partial derivative of ∆ through

∂∆
∂bn

= δ∆
δbn
− ∂∆
∂xk

δxk
δbn

Evaluating eq. 4.81 requires the numerical calculation of the distance field ∆ for
a total of two times; one for each set of the perturbated design variables. Con-
currently, the distance field ∆ could be calculated by measuring and storing the
distances of each volume cell centre with each face centre of the boundary surface.
This procedure can exert a great computational cost, especially in big mesh sizes,
commonly found in industrial applications.

An alternative approach to this would be to use the eikonal equation, in order
to calculate the distance field ∆. Such an equation could be the Hamilton-Jacobi
equation, which gives a very good approximation to the Euclidean distance [19, 16],
given by

∂∆
∂xj

∂∆
∂xj

= 1 (4.82)

Eq. 4.82 constitutes a first-order non-linear partial differential equation. In or-
der to numerically solve it by using standard finite-volume schemes, this may be
transformed to

R∆ = ∂ (cj∆)
∂xj

−∆∂2∆
∂x2

j

− 1 = 0 (4.83)

with cj = ∂∆/∂xj acting as a ’convective velocity’ term.
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The residual eq. 4.83 should be solved alongside with the state equations, i.e.
as an extra contraint of the optimization process. Based on the adjoint methodol-
ogy, by satisfying the eikonal equation, we will no longer require to calculate the
term ∂∆/∂bn.

As a result, since the primal equations are being increased by one, the augmented
objective function should be defined again, in order to include the residual of the
additional state equation through the volume integral term F∆

L=F+
∫

Ω
uiR

v
i dΩ+

∫
Ω
qRpdΩ+

∫
Ω
ν̃aR

ν̃dΩ+
∫

Ω
ma
iR

m
i dΩ+

∫
Ω

∆αR
∆dΩ︸ ︷︷ ︸

F∆

(4.84)

where ∆a denotes the adjoint to the distance field. By differentiating the new
augmented function of eq. 4.84 w.r.t. the design variables, one gets

δL

δbn
= δF

δbn
+ δ

δbn

(∫
Ω
uiR

v
i dΩ+

∫
Ω
qRpdΩ+

∫
Ω
ν̃aR

ν̃dΩ+
∫

Ω
ma
iR

m
i dΩ

)
+ δF∆

δbn
(4.85)

In eq. 4.85, all of the derivative terms have been already developed on the previous
sections, except for the extra derivative term δF∆/δbn. In this regard, by using
Leibniz’s theorem on the derivative of the extra field integral we get

δF∆

δbn
= δ

δbn

∫
Ω
∆aR

∆dΩ=
∫

Ω
∆a

∂R∆

∂bn
dΩ+

∫
SWp

∆aR
∆nk

δxk
δbn

dS (4.86)

By developing the term ∂R∆/∂bn, i.e. by differentiating the Hamilton-Jacobi equa-
tion and substituting it in eq. 4.86 we get

δF∆

δbn
=
∫
S

2∆a
∂∆
∂xj

nj
∂∆
∂bn

dS+
∫
SWp

∆aR
∆nk

δxk
δbn

dS−
∫

Ω
2 ∂

∂xj

(
∆a

∂∆
∂xj

)
∂∆
∂bn

dΩ (4.87)

Finally, by substituting eq. 4.87 into eq. 4.85 and zeroing the multiplier of ∂∆/∂bn
in the resulting volume integrals, the field adjoint distance equation is derived,
namely

R∆α = −2 ∂

∂xj

(
∆α

∂∆
∂xj

)
+ ν̃ν̃aC∆ = 0 (4.88)

where the term ν̃ν̃aC∆ is contributed by the differentiation of the Spalart-Allmaras
turbulence model. It should be noted that eq. 4.88 is solved at a post-processing
step, after solving the coupled system of the adjoint field equations. The boundary
conditions for the adjoint Hamilton-Jacobi equation can be found in [41].
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Subsequently, the field integral term IΩ in eq. 4.77 can be replaced as

∫
Ω
ν̃ν̃aC∆

∂∆
∂bn

dΩ =
∫
SWp

∆aR
∆nk

δxk
δbn

dS−
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∂∆
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nmnk
δxk
δbn

dS (4.89)

4.2.7 Final Sensitivity Derivatives Expression

After taking into consideration all of the above, the final expression for the sensi-
tivity derivatives reads

δL
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∫
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∫
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Eq. 4.90 consitutes the sensitivity derivatives expression based on the E-SI adjoint
formulation. It comprises surface integral terms over the boundaries of the domain,
therefore it can be evaluated with a relatevely small computational cost. Further-
more, it is used to compute the sensitivity maps, i.e. map representations of the
derivative of the objective function w.r.t. the normal displacement of the boundary
wall faces.

57



Shape Optimization

4.3 Shape Optimization

At this stage, the sensitivity derivatives will incorporate with the optimization
process. As already mentioned, the sensitivity derivatives can be used to produce
the sensitivity maps, i.e. colormaps that represent the derivative of the objective
function w.r.t. the surface-normal displacement of the surface grid points. Sensi-
tivity maps give us an insight on how our goemetry should be deformed, in order
to minimize or mazimize the objective function. Positive sensitivities indicate an
outwards movement of the geometry whilst negative sensitivities an inwards one,
based on the convention for the surface normal unit vector, facing from the fluid
to the solid boundaries. In conclusion, sensitivity maps can be a powerfull tool for
the engineer by providing general guidelines towards a new geometry design, that
wishes to minimize the cost function.
On the other end, another effective way to utilize the sensitivity derivatives is to use
them in an automatic shape morphing framework. Such a framework would require
a shape morphing tool, capable of automatically deforming the geometry in the di-
rection indicated by the sensitivity derivatives. Concurrently, the deformation of the
geometry could change the mesh in two ways; either by deforming the mesh along
with the geometry or by deforming the geometry alone and remeshing the resulted
domain afterwards. The second approach requires an automatic mesh generator,
which, in most industrial applications, is not a wise or cost-effective choice. In the
case of the computational domain around the car, that concerns this thesis, a mesh
deforming tool is being employed.
Specifically, a mesh parameterization and displacement strategy based on volumetric
B-splines, which can be seen as a Free Form Deformation (FFD) method, is being
used. The method uses a set of control points in 3D space, in the form of a struc-
tured control grid. Displacement of a control point results to deformation of the grid
nodes that are under the influence of the corresponding control point. Moreover,
the cost of each mesh movement is extremely small, the minimum degree of surface
continuity can be defined a priori and the setup of each case is not cumbersome. The
FFD tool is being coupled with the adjoint solver to form a complete optimization
cycle. Both the FFD tool and the adjoint solver, as much as their coupling, have
been developed in OpenFOAM© by the PCOpt/NTUA team [42].

4.3.1 Mesh Deformation Tool

The implemented FFD tool, used in this thesis, makes use of volumetric B-splines,
i.e. B-splines defined in 3D space. In order to discuss the use of volumetric B-Splines
in the morphing process, at first the 1D equivalent, i.e. a B-spline curve will be
presented in brief. A more complete presentation on the mathematical background
of B-splines can be found in [42].
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B-spline curves

A B-spline curve x(u), is a 2-Dimensional curve defined by bi, i ∈ [0, n] control
points, given by

x(u) =
n∑
i=0

Ui,p(u)bi (4.91)

where Ui,p(u) is the i-th basis function with a degree of p. Hereinafter, the summa-
tion sign may be dropped, in line with Einstein’s convection of repeated indices.

The resulting x curve of eq. 4.91 is a piecewise polynomial function, with each poly-
nomial having a maximum degree of p. The basis function Ui,p(u) is defined by a set
of knots in ascending order, known as the knot vector, ξi, i ∈ [0,m],m = n+ p+ 1.
Knots can have a multiplicity greater than one, i.e. they can present in the knot
vector more than once. Therefore, the so-called uniform knot vector

ξ = [0, ..., 0︸ ︷︷ ︸
p+1

,
1
N
, ...,

N − 1
N

, 1, ..., 1︸ ︷︷ ︸
p+1

] (4.92)

where N = n−p+1, is used. This knot vector results to clamped curves, i.e. curves
that pass through the first and last control points. The number of control points
has to exceed the curve degree by at least one, i.e. n+ 1 ≥ p+ 1, or n ≥ p.

Two consecutive knots define a knot span. The zero order basis function is given by

Ui,p(u) =

1, if ξi < u < ξi+1.

0, elsewhere.
(4.93)

whereas the higher degree basis functions are given by

Ui,p(u) = u− ξi
ξi+p − ξi

Ui,p−1(u) + ξi+p+1 − u
ξi+p+1 − ξi+p

Ui+1,p+1(u) (4.94)

where u ∈ [0, 1]. Each control point, or equivalently each basis function, is affecting
only points with parametric coordinate residing residing in the p + 1 knot spans
defined by [ξi, ξi+p+1). The very desirable property of the B-spline curves is its local
support, i.e. a certain part of the curve can be morphed whilst the rest of the curve
can stay intact. Moreover, the continuity of the curve can be determined a priopi;
an advantageous property of a mesh movement algorithm.

Volumetric B-splines

In agreement with B-spline curves, volumetric B-splines are B-spline curves assigned
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in 3D space. The definition of a volumetric B-spline can be done through expanding
the theory of B-splines in a 3 dimensional coordinate system, presented briefly below.

Let bijkm ,m ∈ [1, 3], i ∈ [0, I], j ∈ [0, J ], k ∈ [0, K] be the Cartesian coordinates of
the ijk − th control point of the 3D structured control grid, where I, J and K are
the number of control points per control grid direction. The Cartesian coordinates
x = [x1, x2, x3]T = [x, y, z]T of a CFD mesh point residing within the boundaries
defined by the control grid are related to the parametric ones with the following
expression.

xm(u, v, w) = UI,pu(u)VJ,pv(v)WL,pw(w)bijkm , m = 1, 2, 3 (4.95)

where u = [u1, u2, u3]T = [u, v, w]T are the mesh point parametric coordinates,
U, V,W are the B-splines polynomial basis functions defined in each different direc-
tion and pu, pv, pw their respective degrees.

A mapping from <3(x, y, z) → <3(u, v, w) is required, in order to compute the
mesh parametric coordinates. Owing to this, the volumetric B-splines can repro-
duce any geometric shape to machine accuracy. This is not necessarily the case, e.g.
an approximate mapping <3(x, y, z)→ <3(u, v, w) is performed in NURBS fitting.

Given the control points position, the knot vectors and the basis functions de-
grees, the parametric coordinates (u, v, w) of a point with Cartesian coordinates
r = [xr, yr, zr]T can be computed by solving the system of equations

R(u, v, w) =

x(u, v, w)− xr = 0
y(u, v, w)− yr = 0
z(u, v, w)− zr = 0

 (4.96)

where xm(u, v, w), m = 1, 2, 3 are computed through eq. 4.95, based on the given
b values. The 3×3 system of eq. 4.96 can be solved independently for each parame-
terized mesh point using for example the Newton-Raphson method, after computing
and inverting the Jacobian ∂xm/∂uj , m, j ∈ [1, 3]. The Jacobian matrix is com-
puted analytically through a closed form expression resulting by differentiating eq.
4.95 w.r.t. the components of u. Since the evaluation of the parametric coordinates
of each point is independent from the rest of the grid points, this phase may run in
parallel.

The aforementioned mapping process has to be done only once at the beginning
of the optimization and thereafter eq. 4.95 can be used to compute the CFD mesh
coordinates according to the values of the parametric ones at a negligible compu-
tational cost. In addition, since xm depends only on (u, v, w) and b, the deformed
meshes are step-independent. This means that, for a given final control points po-
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sition, the same mesh quality will be obtained independent of the number of steps
taken to reach that position [42].

Figure 4.5: Arbitrary control grid consisting of 7× 7× 10 control points, around the
car’s side view mirror. Control points are coloured based their k value. Surface and
volume mesh points residing within the boundaries of the control grid will be displaced
following a possible displacement of the control points.

The volumetric B-spline control points are arrranged in a control grid, containing
the geometry that we want to modify. As a result of the <3(x, y, z) → <3(u, v, w)
mapping, a possible displacement of the control points results to displacement of
the surface and volume mesh points residing within the boundaries of the control
grid.

4.3.2 Control Point Update Method

In this section, the method by which the control points are updated from one
optimization cycle to the other is presented. The control point coordinates, or
equivalenty the design variables, are updated according to the computed sensitivity
derivatives.

There are various methods for updating the design variable components. Never-
theless, all methods update the design variables using a scheme of the form [43]

bnewn =boldn + ηpn (4.97)

where b are the design variables, pn the direction which the design variables will
follow and η a user-defined step length, which may be computed through.

η= ∆bmax
∆bact (4.98)
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where ∆bmax is the maximum allowed displacement of the control points bn as de-
fined by the user and ∆bact is the maximum displacement of the control points as
calculated from the optimization for η=1.

In this thesis, the Fletcher-Reeves Conjugate Gradient method [32] was used to
update the b vector of design variables. At the end of each morphing iteration, the
quality of the mesh was evaluated according to the standard mesh checking routines
of OpenFOAM©. The Conjucate Gradient method’s mathematical background will
be presented in brief. However, the simplest and most straightforward method, the
Steepest Descent, will be firstly mentioned, as it forms the basis for all the other
methods.

Steepest Descent

The steepest descent is the simplest and most robust gradient method. Owing to its
robustness, the method is usually the first choice for use in optimization algorithms.

The basic idea of steepest descent’s method is that a function F , differentiable
in a neighborhood of a vector b, decreases fastest if one goes from b in the direction
of the negative gradient −∇F (b). In that sense, the gradient −∇F (b) consitutes
the direction pn that updates the vector b. Therefore, equation 4.97 may take the
form

bnewn =boldn − η
δF

δbn
(4.99)

Steepest descent makes use of a 1st order gradient scheme and thus, depending on
the case, it may fall short on accuracy. Higher order update schemes, such as the
2nd order BFGS method [33] could then be used to imporve the gradient’s precision.

Conjugate Gradient

The conjugate gradient is an iterative method, used for the numerical solution of par-
ticular systems of linear equations 6. It is commonly used to solve unconstrained lin-
ear optimization problems. The nonlinear Fletcher-Reeves conjugate method [32],
which concerns this thesis, generalizes the conjugate gradient method to nonlinear
optimization problems, discussed briefly below.

For a quadratic function F (b) = ||Ab − C||2, the minimum of F occurs where
the gradient is equal to zero, i.e.

∇bF = 2AT (Ab− C) = 0 (4.100)
6 Namely those whose matrix is symmetric and positive-definite.
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The gradient ∇bF of eq. 4.100 indicates the direction of maximum increase, there-
fore one can simply start to update b accoring to the steepest descent, i.e.

∆b0 = −η0∇bF (b0) (4.101)

where η0 is an adjustable step length, determined by a line search in this direction,
until it reaches the minimum of F , i.e.

η0 := arg min
η

F (b0 + η∆b0) (4.102)

This initial step ∆b0 of length η0 along the steepest descent makes up for the first
iteration of the iterative method. The following steps constitute one interation, in-
dicated as i, of moving along a subsequent conjugate direction pi :

1. Compute the steepest direction ∆bi = −∇bF (bi).
2. Compute the Fletcher-Reeves parameter βi = ∆biT∆bn/∆bi−1

T∆bi−1.
3. Update the conjugate direction pi = ∆bi + βipi−1

4. Perform a line search to obtain ηi = argminηF (bi + ηpi)
5. Update vector b, in line with eq. 4.97, as bi+1 = bi + ηipi

The algorithm terminates when it locates the minimum, or when some tolerance cri-
terion is reached. Concurrently, a pure quadratic function will reach the minimum
quite faster than a non-quadtratic function.

The aforementioned conjugate gradient algorithm is employed in this thesis for the
update of the design variables b, in each optimization cycle, with F being the ob-
jective function of eq. 4.42. The big drawback of the method is that each line
search subiteration, requires an additional functional evaluation of F (bi + ηipi),
thus a recomputation of the primal fields. As a result of this, for a total of N con-
jugate gradient iterations, the primal equations must also be solved for a total of
N times. Nevertheless, utilizing this method is more efficient in terms of memory
requirements.
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4.4 Applications and Results

In this section, the adjoint-based shape optimization workflow is applied to the
same production car for the reduction of the noise percieved by the driver, accor-
ing to the surrogate objective function of eq. 4.42. As already mentioned, the big
wind noise contributor is considered to be the vehicle’s SVM, responsible of being
a source of unsteady pressure fluctuations. From another point of view, in agree-
ment with the objective function’s approach, the side view mirror is responsible of
being a source of highly turbulent flow, expressed in terms of high νt values. The
high νt values, in turn, can relate to the creation of unsteady pressure fluctuations,
based on the work of [4, 38]. Concurrently, the vehicle’s windows, being subjected
to a turbulent pressure excitation, are considered to be the main mechanism for
transmiting sound waves from the exterior to the interior of the vehicle. In view of
this, the aim is the reduction of the turbulent viscosity levels inside a volume that
is residing next to the vehicle’s side windows.

The particular production car comprises two side windows next to the driver, both
considered as noise transmission mechanisms, shown in fig. 4.6.

(a) Vehicle’s geometry (b) Vehicle’s top view

(c) Vehicle’s side view

Figure 4.6: The production car’s geometry . The driver’s side windows, considered
as noise transsmiters to the interior of the car, are highlighted in red. The aim of the
optimization is the minimisation of the objective function of eq. 4.42, within a thin
volume residing on the highlited windows.

To this end, the volumetric B-Splines of section 4.3.1 were used, in order to morph
the shape of the driver’s mirror and handle the mesh displacement during the opti-
mization loops, without imposing any constraints.
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CFD Mesh

In order to numerically solve the flow equations around the car’s geometry, a com-
putational domain is defined, where the primal and adjoint PDEs are integrated.
The computational domain is in turn discretized to form a mesh consisting of cell
elements. Owing to the limited computational resources and the apparent symmetry
of the problem, a half-car model is used for the CFD simulations, instead of the full-
car model. Although this approach is expected to introduce numerical errors in the
vicinity of the symmetry plane, the benefit in terms of computational cost outweighs.

In this particular case, the computational domain around the half-car is a rect-
angular box, consisting of an inlet, an outlet, the sides and the top as well as the
road (shown in fig. 4.7). The inlet lies 15m upstream from the vehicle, while
the outlet lies 25m downstream, in order to secure uniform inlet and outlet flow
conditions. Similarly, the height and width of the computational domain are ap-
proximately 11.6m and 11m respectively, such as the flow on the top and the sides
is practically unaffected by the presence of the vehicle’s geometry.

Figure 4.7: Computational domain around the vehicle’s half-car model geometry.

The CFD mesh comprises 5 · 106 surface elements for representing the car’s surface
and 25 · 106 polyhedral volume elements for discretizing the fluid domain 7. Fur-
thermore, a hybrid approach has been used for the treatment of the viscous region
close to the walls, in order for the boundary layer to be resolved. Specifically, the
mesh features 7 layers of prismatic elements near the wall boundaries, where the
wall functions combined with the Spalart-Allmaras model are integrated, with an
average y+ value of y+ ≈ 25. With the use of refinement boxes, the mesh has been
refined in areas considered of high importance, i.e. where the flow is expected to
contain more information; namely the area around the body of the vehicle, the rear
part were a wake is expected to develop as well as the A-Pillar, SVM and side win-
dows, which concern the present wind noise aerodynamic problem.

7 The surface and volume mesh were provided by TME.
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Nevertheless, in order to be able to run the optimization cycles at an affordable
CPU cost, the surface mesh resolution remained relatively low in the geometries
of interest; namely 13930 cells for the representation of the mirror (fig. 4.8) and
14017 cells for the side windows. All simulations were conducted with a stationary
mesh on the wheels while, as shown on 4.8, the geometry of the vehicle’s tires was
intersected with the road by 10mm, to account for tire deformation.

(a) SVM’s geometry (b) Mesh on SVM

(c) Wheel’s ge-
ometry

(d) Mesh on
wheel

Figure 4.8: Mesh resolution on the side view mirror (SMV) and wheel surface. The
surface mesh was generated with an average cell edge length of about 1 mm and consists
of 13930 faces on the SVM and 132263 faces on the wheel.

Concurrently, for the evaluation of the objective function of eq. 4.42, a thin vol-
ume Ω′ residing on the vehicle’s side windows has been defined (shown in fig. 4.9).
The volume Ω′ comprises only prismatic cells, while the wall functions technique is
employed to determine the νt values along the volume’s cell centers. It consists of a
total of 71146 hexahedral elements, excluding the surface mesh elements of S ′ .

(a) Windows surface S′ (b) Volume Ω′

Figure 4.9: The volume Ω′ is residing on the windows surface S′ with a thickness t
of approximately 1 mm and consists of a total of 71146 hexagonal cell elements. The
ν2
t field is integrated inside Ω′ in order to obtain the scalar objective funtion
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4.4.1 Flow Simulation

The primal and adjoint simulations were conducted on the aforementioned mesh,
in the OpenFOAM© environment. The mean flow equations were solved by us-
ing the standard steady-state, pressure-based SIMPLE algorithm, by utilizing a
second-order upwind scheme for the convection terms. Moreover, spatial gradients
were discretized using the Green–Gauss theorem and a linear interpolation of the
neighboring cell values on the mesh faces for the quantities of interest. The pri-
mal simulation reached convergence after 5000 iterations, with the use of relaxation
factors.
The adjoint equations, in turn, were solved by using the adjoint OpenFOAM© solver
developed by PCOpt/NTUA, by using a second order downwind scheme for the con-
vection terms.

For the RANS flow simulation, a uniform inflow velocity of v∞ = 27.7(m/s) was
imposed on the inlet, equivalent to a cruising speed of 100 kph. Furthermore, a zero
Dirichlet condition for the velocity was imposed on the car’s surface, including the
wheels which were modeled as stationary 8.

-1800 p 520

(a) (b)

-1e-09 q 3e-09

(c) (d)

Figure 4.10: Primal pressure p and adjoint pressure q distributions on the vehicle’s
surface. The adjoint pressure maximizes on the window and has a smaller magnitude.

8 Since spinning wheels induce noise on a wind tunnel experiment which cannot be modeled
through the means of this work, both the simulation and the experiment were performed with
stationary wheels for a better correlation between the two.
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The pressure p and adjoint pressure q distributions on the car’s surface are illustrated
in fig. 4.10, obtained by fully converged solutions. The adjoint pressure locates its
maximum on the side windows, while overall has a significantly smaller magnitude
than pressure9.
The primal and adjoint flow fields of pressure, velocity and turbulence model vari-
able are illustrated in fig. 4.11, using a cross-sectional plane that is parallel to the
road.

-300 p (m2/s2) 300 -5.e-10 q (m2/s2) 5.e-10

(a) Pressure p (b) Adjoint pressure q

0.0 v (m/s) 50.8 0.0 u (m/s) 10.e-11

(c) Velocity v (d) Adjoint velocity u

0.0 ν̃ (m2/s2) 0.04 -3.e-09 ν̃α (m2/s2) 3.e-09

(e) Spalart variable ν̃ (f) Adjoint Spalart variable ν̃α

Figure 4.11: Primal and adjoint fields, plotted on a cross-sectional plane parallel to
the road. The adjoint fields advance in a reverse-like manner compared to the primal
ones and have a significantly smaller magnitude.

The adjoint flow fields appear to develop in a reverse-like manner compared to the
primal ones and have a significantly smaller magnitude.

9 Pressure referes to kinematic pressure rather than static, given dimensionally in (m2/s2),
since OpenFOAM© solves for p/ρ when the flow is incompressible.
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After a fully-converged primal solution, the νt field is obtained. Fig. 4.12 illustrates
with the use of isosurfaces the νt field downstream of the side view mirror. High
levels of νt are observed along the mirror’s wake, where the flow is turbulent. The ν2

t

field is then calculated and integrated inside volume Ω′ for a functional evaluation
of the objective function.

0.0 νt 0.05

(a) νt field’s isosurfaces (m2/s2) (b) ν2
t field of volume Ω′

Figure 4.12: The νt field illustrated using iso-surfaces downstream of the SVM. The
ν2
t field is in turn calculated and integrated inside Ω′ to evaluate the objective function.

Sensitivity map on the side view mirror

After solving the field adjoint equations, the final sensitivity derivatives expression
of eq. 4.90 can be evaluated. A map representation of the sensitivity derivatives
field gives rise to the sensitivity map of fig. 4.13. The sensitivity map pinpoints
the areas on the side view mirror’s surface that show the greatest potential for noise
reduction. Areas coloured in blue should be pushed inwards while red coloured areas
should be pulled outwards.

push pull

Figure 4.13: Sensitivity map on the vehicle’s side view mirror (SVM). Blue coloured
areas should be pushed inwards, while red coloured areas outwards for noise reduction.
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4.4.2 Optimization Results

A volumetric B-Splines control grid consisting of 7×7×10 control points, shown in
fig. 4.14, was used in order to parametrize the driver’s mirror geometry and morph
it accordingly. The optimization was performed without imposing constraints, apart
from allowing a maximum deflection of 2mm in each optimization cycle. It should
be noted that in general, an unconstrained morphing might lead to impractical op-
timized shapes, such as a vanishing mirror.

In keeping with the available resources, the optimization algorithm was allowed
to advance for 4 cycles, while the 5th cycle resulted to a deformed mesh failing the
quality metrics, exhibiting negative cell volumes and high cell skewness. Upon the
end of each cycle, the flow equations were solved anew and the objective function
was evaluated for each deformed SVM geometry. The convergence of the objective
function is presented in fig. 4.14. The wall clock time for computing a single cycle
was 17.5 h, in 100 processes of Intel(R) Xeon(R) E5-2630 v4 @2.20 GHz CPUs.

(a) Control grid on SVM
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(b) Noise objective function conver-
gence

Figure 4.14: Convergence history of the noise objective function F . All values
have been devided by Finit, where Finit is the objective value computed by the baseline
geometry. After a total of 4 optimization cycles, a 16% reduction on F is observed.

As shown in fig. 4.14, the objective function F has reduced by a factor of 16% after
4 optimization cycles. This amount of reduction can be considered as relatively
small, hence, one would normally progress for more than 4 iterations.

Nevertheless, as already mentioned, the optimization involved extreme mesh dis-
placements and the simulation crashed after 4 iterations. In order for the algorithm
to be able to proceed any further, a new mesh should be generated from scratch on
the optimized geometry. On account of this, within the context of this thesis and
the resources available, a reduction of 16% was considered acceptable, since a clear
downwards trend on the objective function has been observed.
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The optimized side view mirror geometries are shown in fig. 4.15 from an iso-
metric view and in fig. 4.16 from a top-down view. The optimal mirror is thicker
and appears as if it has rotated inwards around its rotational axis, in a position that
is now facing the side window.

(a) Baseline (b) 2nd optimization cy-

cle

(c) 3rd optimization cycle (d) 4th optimization cycle

Figure 4.15: Baseline and three morphed side view mirror geometries.

(a) Baseline (b) 2nd cycle

(c) 3rd cycle (d) 4th cycle

Figure 4.16: Top view of the baseline and of the three morphed side view mirror
geometries. The inner edge on the upstream of the optimized mirror appears to be
rounded off, possibly minimizing the local detachment of the flow.
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Moreover, the mirror’s inner edge on the upstream has been notably rounded off.
This modification results to a smoothly curved surface for the upcoming streamlines,
possibly minimizing the detachment of the flow in the specific area.

The ν2
t field computed for the baseline and the three optimized mirror geometries

is presented in fig. 4.17, plotted on a cutting plane of the volume Ω′ . Each op-
timization cycle results to a decrease of the ν2

t field, while a significant decrease
is observed on the 4th optimization cycle. The objective function value for each
optimized geometry is decreased by 5%, 7% and 16% respectively, compared to the
F value computed using the baseline.

(a) Baseline (b) 2nd optimization cycle

(c) 3rd optimization cycle (d) 4th optimization cycle

Figure 4.17: The ν2
t field computed using the baseline and three morphed SVM

geometries, plotted on a plane inside the volume Ω′. The optimal SVM computes a ν2
t

value, at an order of 16% smaller than the baseline geometry.

The flow characteristics of each deformed geometry can be verified by examining
the flow patterns downstream of the SVM. The computed flow fields are illustrated
on a cross-sectional plane that extends along the mirror’s wake and is parallel to
the road. Fig. 4.18 illustrates the velocity magnitude and fig. 4.19 the turbulent
viscocity, downstream of the baseline and three optimized mirrors.

The optimal mirror has rotated inwards and, as a result, it is directing its wake
directly to the side glass. Furthermore, the recirculation downstream of the mirror
has been reduced compared to the baseline, leading to a slight local increase of the
velocity magnitude. Simultaneously, the local increase of velocity magnitude results
to a decrease on νt values in the wake. Thus, it can be observed in fig. 4.19 that
the νt values have been decreased not only close to the window, where Ω′ is located,
but also along the whole length of the mirror’s wake.
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(a) Baseline (b) 2nd optimization cycle

(c) 3rd optimization cycle (d) 4th optimization cycle

Figure 4.18: Velocity magnitude U field computed using the baseline and three mor-
phed SVM geometries, plotted on a cross-sectional plane parallel to the road. The
optimized geometry appears to be directing the mirror’s wake towards the driver’s side
window.

(a) Baseline (b) 2nd optimization cycle

(c) 3rd optimization cycle (d) 4th optimization cycle

Figure 4.19: The νt field computed using the baseline and three morphed SVM ge-
ometries, plotted on a cross-sectional plane parallel to the road. A reduction on νt can
be observed not only close to the volume Ω′, but also along the length of the mirror’s
wake.
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4.4.3 Correlation with Experiment

An attempt has been made for a fast but reliable experimental validation of
the aforementioned optimization results. In consideration of this, a mock-up model
of the optimized mirror geometry was evaluated in the anechoic wind tunnel. The
mock-up model was based on an equivalent movement of the existing side view mir-
ror that resembles the geometry of the optimized shape.

In order to determine the differences in noise levels between the baseline and the
modified mirror cases, two sets of experimental measurements were conducted;
firstly, a phased array beamforming technique was applied for the localization of
the exterior noise sources; secondly, interior noise levels have been measured for
both cases, using microphones positioned in the cabin, close to the driver’s ear.

The acoustic measurements were performed in the S2A GIE acoustic windtunnel,
in France [44]. The experimental setup for the noise source localization that sup-
ports the beamforming acoustic testing (fig. 4.20) consists of 88 microphones on the
top/horizontal array, arranged in a spiral configuration. The frequency range of the
output acoustic intensity map is 630-8000 Hz and the source separation capability
is 17 cm at 2 kHz.

(a) Production car in windtunnel (b) Front view of mock-up model

Figure 4.20: A view of the production car and of the optimized SVM’s mock-up
model.

The mock-up model of the mirror is shown in fig. 4.20. The driver’s mirror was
rotated inwards until its inner edge became parallel to the side window.

Fig. 4.4.3 presents the noise intensity maps of the baseline case and the mock-
up mirror case, produced by the phased array beamforming technique at the 2 kHz
frequency band. First and foremost, it is observed that the main source of exterior
wind noise is the vehicle’s side view mirrors. Moreover, it is observed in the mock-up
model case that the noise intensity has been notably reduced around the driver’s
SVM, i.e. around the mock-up mirror model.
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Correlation with Experiment

10 dB

(a) Baseline SVM

10 dB

(b) Mock-up SVM

Figure 4.21: Noise intensity maps of the baseline case and the mock-up mirror case,
produced by the phased array beamforming technique at the 2 kHz frequency band.
The driver’s side view mirror on the right image has been replaced by the mock-up
model. Red coloured areas refer to high levels of exterior noise, measured in dB.

Specifically, regarding all frequency ranges, a total decrease of 0.7dB on exterior
noise is achieved with the introduction of the mock-up mirror model. This amount
of exterior noise reduction can be considered significant (hence, not accidental) and
can therefore validate the suggested shape modification.

Furthermore, a reduction has also been observed on the interior noise levels, mea-
sured using microphones positioned inside the cabin. Fig. 4.4.3 presents the interior
noise levels measured for the baseline and the mock-up SVM test cases. It is noted
that the absolute dB values of interior noise have been normalized.

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10  100  1000  10000

In
te

ri
o

r 
n

o
is

e
 (

−
)

frequency band (Hz)

baseline
mock−up

 0.7

 0.75

 0.8

 0.85

 0.9

 100  1000

In
te

ri
o

r 
n

o
is

e
 (

−
)

frequency band (Hz)

baseline
mock−up

Figure 4.22: Normalized interior noise levels of baseline and mock-up SVM.

By averaging over all frequency bands, a mean reduction of 0.14dB is achieved on
interior noise. This amount of reduction corresponds to a 0.67% articulation index
(AI) improvement 10.

10 Articulation index (AI) referres to the amount of speech that is audible to a passenger of the
vehicle.
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Chapter 5

Summary & Conclusions

In this diploma thesis, a prediction of exterior wind noise induced from car ge-
ometries was realised through means of a CFD-based model in the OpenFOAM©

environment. Furthermore, a shape optimization based on the continuous adjoint
method was performed, in order to reduce wind noise levels. The adjoint method
used, developed by PCOpt/NTUA, is formulated based on the Enhanced SI (E-SI)
approach. The Spalart-Allmaras turbulence model was fully differentiated in order
to take into account the effect of the design variable value changes in the flow tur-
bulence.

In order to predict the aeroacoustic characteristics of vehicles and localize the noise
sources, a CFD-based Noise Source Identification (NSI) model, developed and owned
by Toyota Motor Europe (TMC), has been programmed in the OpenFOAM© en-
vironment. A key performance indicator, referred to as Acoustic Pressure Density
Source (APDS), is the output of the model, which determines the fluid regions that
contribute to the generation of acoustic pressure fluctuations. The model requires
the unsteady flow fields of velocity and vorticity around the vehicle, acquired by a
transient CFD simulation. A transfer of the unsteady flow fields of velocity from
the time domain to the frequency domain has been performed via a Fast Fourier
Transform (FFT). The code used, performs an FFT on unsteady scalar field data
and was programmed for the purposes of this thesis in OpenFOAM© v.1906. The
NSI method was applied to a production car; the unsteady flow fields were obtained
by a DDES simulation, combined with the Spalart-Allmaras turbulence model. The
warm-up period of the simulation was detected and truncated using the heuristic
MSER-5 algorithm, implemented in C++.

Thereinafter, a shape optimization workflow using the continuous adjoint method
was utilized, so as to reduce the wind noise levels percieved by the driver of the
vehicle. In order to bypass a expensive unsteady optimization workflow, a surrogate
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Summary & Conclusions

model expressing the generation of wind noise in an incompressible and steady-state
manner was used as the objective functional of the optimization process, expressed
exclusively in terms of turbulent viscosity. The main wind noise generating compo-
nent, the vehicle’s side view mirror, was parametrized using volumetric B-Splines
and morphed accordingly for a minimization of the objective function.

Concluding this thesis, the implementation of TMC’s vortex sound based NSI model
has successfully determined the flow patterns that contribute to aerodynamic noise
(i.e. the A-pillar’s wake and side view mirror’s wake). The APDS results imply
that the main wind noise generating component of the vehicle is the side view mirror
(SVM). Furthermore, the APDS index field suggests that the inner edge of the side
view mirror should be deformed in order to reduce wind noise. This result comes
in agreement with the sensitivity maps produced by the adjoint method, since they
both pinpoint the inner edge of the SVM for noise reduction.
Regarding the adjoint optimization, a reduction of 16% has been observed on the
objective function after a total of 4 optimization cycles. Moreover, the optimized
mirror shape reduces the turbulent viscosity levels both close to the window and
along the entire mirror’s wake. A fast validation of these results in the anechoic
wind tunnel, using a mock-up model of the optimized mirror shape, results to a to-
tal decrease of 0.7dB on exterior noise, corresponding to a 0.67% articulation index
(AI) improvement.

Proposals for Future Work

1. Validation of the current implementation of the vortex sound NSI model,
through experimental means or through comparison with its previous imple-
mentation of the method by TMC.

2. A unsteady DDES simulation around the car geometry for a longer physical
time, in order to determine the broader unsteadiness and better understand
how the unsteady flow fields of interest develop over time.

3. Implementation of the MSER-5 algorithm in OpenFOAM©, so as to apply it
for entire flow fields instead of specific points in the flow, in order to more
accurately detect the warm-up period of an unsteady CFD simulation.

4. Application of the APDS model on the optimized SVM geometry obtained in
this thesis, in order to validate that the optimized mirror reduces the levels of
the APDS index field.

5. Developement of the continuous adjoint method to the APDS model, as a tool
to compute the sensitivity derivatives of the APDS index w.r.t. the vehicle’s
shape. These sensitivity derivatives can be used in an unsteady optimization
workflow, in order to minimize the APDS levels and optimize production cars
for low noise emissions.
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Εισαγωγή

Τα τελευταία χρόνια, η αεροακουστική ανάλυση επιβατηγών αυτοκινήτων λαμβάνει

σημαντική θέση στον χώρο της αυτοκινητοβιομηχανίας, καθώς ο θόρυβος επηρεάζει

έντονα τα επίπεδα συγκέντρωσης, την ασφάλεια αλλά και την άνεση του οδηγού. Σε

χαμήλες ταχύτητες, ο θόρυβος στο εσωτερικό της καμπίνας οφείλεται κυρίως σε πα-

ράγοντες όπως τον κινητήρα, τα λάστιχα ή το σύστημα μετάδοσης κίνησης. Ωστόσο,

σε υψηλές ταχύτητες (άνω των 100 χμ/ώρα), ο αεροδυναμικά επαγόμενος θόρυβος,

δηλαδή ο θόρυβος εξαιτίας της αεροδυναμικής μορφής του αμαξιού, κυριαρχεί στο εσω-

τερικό. Δεδομένου αυτού, η μείωση του αεροδυναμικού θορύβου αποτελεί καθοριστικό

παράγοντα στην ανάπτυξη ποιοτικών και ανταγωνιστικών αυτοκινήτων.

Πρωταρχικός στόχος της διπλωματικής εργασίας είναι ο προγραμματισμός και η ε-

φαρμογή μιας αξιόπιστης μεθόδου, που στοχεύει στον εντοπισμό των πηγών αεροδυ-

ναμικού θορύβου σε επιβατηγά οχήματα. Η μέθοδος προϋποθέτει τον εκ των προτέρων

υπολογισμό των χρονικά μη-μόνιμων πεδίων ροής γύρω από το σώμα του αμαξιού. Δευ-

τερευόντως, τίθεται ως στόχος η μείωση των επιπέδων θορύβου στο εσωτερικό του

οχήματος. Κυρίαρχος παράγοντας παραγωγής θορύβου θεωρούνται τα υψηλά επίπε-

δα τύρβης που αναπτύσσονται κατάντι του καθρέπτη του οδηγού, εκφραζόμενα από

υψηλές τιμές της τυρβώδους συνεκτικότητας. Ενόψει αυτού, συνάρτηση κοστός προς

ελαχιστοποίηση είναι τα επίπεδα της τυρβώδους συνεκτικότητας με χρήση κατάλληλου

χωρικού ολοκληρώματος τους στην περιοχή ενδιαφέροντός τους. Η ελαχιστοποίηση

της συνάρτησης κόστους επιτυγχάνεται μέσω βελτιστοποίησης μορφής του καθρέπτη,

με χρήση της συνεχούς συζυγούς μεθόδου.

Μοντελοποίηση της ροής

Πρώτο στάδιο της παρούσας δουλείας αποτελεί η ανάλυση της τυρβώδους συνεκτικής

ροής γύρω απο τη γεωμετρία του αυτοκινήτου προς μελέτη. Για την μοντελοποίηση

της ροής αυτής, ακολουθήθηκαν δύο προσεγγίσεις· Η πρώτη, απλούστερη προσέγγιση

είναι αυτή των RANS εξισώσεων. Το RANS μοντέλο (2.1.1) επιλύει πρακτικά
την μόνιμη συνεκτική ροή, ενώ το μοντέλο τύρβης Spalart-Allmaras [29] (4.1.2)
μοντελοποιεί τον τυρβώδη χαρακτήρα της. Η δεύτερη προσέγγιση αφορά την επίλυ-

ση μη-μόνιμης ροής με χρήση του υβριδικού μοντέλου DDES (2.1.4), βασιζόμενη
στο μοντέλο τύρβης Spalart-Allmaras. Η υβριδοποίηση έγκειται στην επίλυση των
RANS εξισώσεων κοντά στον τοίχο και των LES (2.1.2) μακρυά, πετυχαίνοντας
έτσι γρήγορη και υψηλής ακρίβειας επίλυση του μη-μόνιμου πεδίου.

Και στις δύο προσεγγίσεις επίλυσης ροής, χρησιμοποιείται η τεχνική των συναρτήσε-

ων τοίχου προκειμένου να προσδιοριστούν τα χαρακτηριστικά του οριακού στρώματος

κοντά στα τοιχώματα του αυτοκίντου, δεδομένης της χρήσης αραιών (κατάλληλων για

μοντέλα τύρβης υψηλών αριθμών Reynolds )ςπλεγμάτων.



Μοντέλο Πρόλεξης Αεροδυναμικού Θορύβου

Για την επίλυση προβλημάτων αεροδυναμικού θορύβου που σχετίζονται με εφαρ-

μογές αυτοκινήτων, είναι σημαντικό πολλές φορές να προσδιοριστούν οι θέσεις των

κύριων πηγών θορύβου γύρω από το όχημα. Ενόψει αυτού, αναπτύχθηκε από την

Toyota Motor Corporation (TMC) μοντέλο υπολογιστικής ρευστομηχανικής με σκο-
πό την αεροακουστική αξιολόγηση ενός οχήματος, καθώς και τον εντοπισμό των πη-

γών αεροδυναμικού θορύβου γύρω από το όχημα. Συγκεκριμένα, το μοντέλο που

κατοχυρώνει ο V.L. Phan μέσω πατέντας No. US 2019/0354647 , χρησιμοποιεί
την ακουστική αναλογία του Powell [20] προκειμένου να προσδιορίσει τις πηγές της
ακουστικής πίεσης που βιώνουν τα παράθυρα του οχήματος, δεχόμενοι ότι οι διαταρα-

χές αυτές προκαλούν δονήσεις στο τζάμι του παραθύρου και διαδίδουν τον θόρυβο στο

εσωτερικό.

Ορίζεται όγκος ρευστού Ω που περικλύει τα εξαρτήματα του αυτοκινήτου που ευ-
θύνονται για τον αεροδυναμικό θόρυβο (πλευρικός καθρέπτης, κολόνα A-Pillar ). Πα-
ράλληλα, ορίζεται S η επιφάνεια των παραθύρων του οχήματος. Κάθε σημείο του Ω
υποδηλώνεται ως z και κάθε σημείο της επιφάνειας S ως x.

(αʹ) ΄Ογκος ρευστού Ω (βʹ) ΄Ογκος Ω και επιφάνεια S

Σχήμα 5.1: ΄Ογκος ρευστού Ω στον οποίο ικανοποιούνται οι εξισώσεις του μοντέλου.
Ο όγκος περικλύει τα κύρια εξαρτήματα του αυτοκινήτου που ευθύνονται για τον αεροδυ-

ναμικό θόρυβο. Σημεία του όγκου συμβολίζονται με z ενώ σημεία της επιφάνειας του
αμαξιού με y.

Με χρήση της εξίσωσης 3.20, ο V.L. Phan καταλήγει σε μια σχέση μεταξύ των
ακουστικών διαταραχών πίεσης και ροϊκών μεγεθών του ρευστού, εκφραζόμενη στο

πεδίο της συχνότητας, που δίνεται από τον δείκτη κατανομής πηγών ακουστικής πίεσης

(Acoustic Pressure Density Source (APDS))

APDS(y, z, fm) ∝ fm
2

|r|4
· |uf | · |u× r| · |ω × r| (5.1)

όπου |uf | το μέτρο της ταχύτητας στο πεδίο της συχνότητας, u η χρονικά μέση τα-
χύτητα, ω η χρονικά μέση στροβιλότητα, fm η ζώνη συχνοτήτων που μας αφορά και



r = y − z η απόσταση μεταξύ των σημείων υπολογισμού.

Ολοκλήρωση της εξ. 5.1 πάνω στην επιφάνεια των παραθύρων S δίνει ·ενα χωρι-
κό πεδίο APDS(z, fm) για κάθε ζώνη συχνοτήτων fm, ή

APDS(z, fm) =
∫
S
APDS(y, z, fm)dS (5.2)

Μεγάλες τιμές του APDS(z, fm) χωρικού πεδίο της εξ. 5.2 εντοπίζονται στα σημεία
της ροής που συμβάλλουν στην ακουστική πίεση που βιώνει το τζάμι του παραθύρου.

Συνεπώς, το πεδίο APDS(z, fm) εκφράζει την ένταση των πηγών θορύβου μέσα στην
ροή.

Αντίστοιχα , ολοκληρώνοντας την εξ. 5.1 εντός του όγκου Ω δίνει το επιφανεια-
κό πεδίο APDS(y, fm) πάνω στην επιφάνεια S των παραθύρων, ένα για κάθε ζώνη
συχνοτήτων fm

APDS(y, fm) =
∫

Ω
APDS(y, z)dΩ (5.3)

Υψηλές τιμές του πεδίου της εξ. 5.3 εντοπίζονται στα σημεία του τζαμιού του παρα-

θύρου που βιώνουν διαταραχές πίεσης συχνότητας fm με μεγάλο πλάτος (ή ενέργεια).

Η ροή εργασίας για τον υπολογισμό των APDS πεδίων δίνεται συνοπτικά από τα
επόμενα 6 βήματα:

1. Εκτέλεση ΥΡΔ προσομοίωσης μη-μόνιμης ροής για έναν φυσικό χρόνο T δευ-
τερολέπτων, ούτως ώστε να αποκτηθούν τα μη-μόνιμα πεδία ταχύτητας ũ και
στροβιλότητας ω̃. Περικοπή των αρχικών T ∗ δευτερολέπτων που αντιστοιχούν
στην μεταβατική περίοδο της προσομοίωσης.

2. Αποθήκευση των μη-μόνιμων πεδίων ταχύτητας ũ εντός του όγκου Ω, για πα-
ράθυρο φυσικού χρόνου Tw χρησιμοποιώντας ένα καθορισμένο απο τον χρήστη
χρονικό βήμα δειγματοληψίας ∆t.

3. Εφαρμογή μετασχηματισμού Fast Fourier Transfrom (FFT) στα πεδία της
μη-μόνιμης ταχύτητα ũ ώστε να υπολογισθούν τα πεδία ταχύτητας στο πεδίο
συχνότητας uf . Μείωση της ανάλυσης του πεδίου συχνότητας από ευρυζωνική
σε 1ec ή 1/3o οκτάβες.

4. Εύρεση των χρονικά μέσων πεδίων ταχύτητας u και στροβιλότητας ω, με υπο-
λογισμό του μέσου όρου των τιμών των πεδίων για χρονικό παράθυρο Τw.

5. Υπολογισμός του δείκτη APDS(y, z, fm) με χρήση της εξ. 5.1.
6. Ολοκλήρωση του APDS(y, z, fm) πεδίου πάνω στην επιφάνεια των παραθύρων
του οχήματος S, προκειμένου να υπολογιστεί το χωρικό APDS(z, fm) πεδίο για
κάθε ζώνη συχνοτήτων fm, με βάση την εξ. 5.2.

7. Ολοκλήρωση του APDS(y, z, fm) πεδίου εντώς του όγκου Ω, προκειμένου να
υπολογιστεί το επιφανειακό APDS(y, fm) πεδίο πάνω στα παράθυρα, για κάθε
ζώνη συχνοτήτων fm, με βάση την εξ. 5.3.



Εφαρμογή σε Αυτοκίνητο Παραγωγής

Η προαναφερθείσα ροή εργασίας για την αεροακουστική αξιολόγηση και τον εντο-

πισμό των πηγών αεροδυναμικού θορύβου ενός οχήματος, εφαρμόστηκε σε επιβατηγό

αυτοκίνητο μαζικής παραγωγής. Η γεωμετρία του αυτοκινήτου δίνεται στο σχήμα 5.2.

Στην εικόνα απεικονίζεται επίσης ο όγκος ρευστού Ω, ο οποίος περικλείει τον κα-
θρέπτη, το A-Pillar και τα παράθυρα του οδηγού.

(αʹ) Γεωμετρία αυτοκινήτου (βʹ) ΄Ογκος ρευστού Ω

(γʹ) ΄Ανω όψη του όγκου Ω

Σχήμα 5.2: Γεωμετρία του αυτοκινήτου παραγωγής. Ορίζεται όγκος ρευστού Ω που
περικλύει τον καθρέπτη, το A-Pillar και τα παράθυρα του οδηγού. Σημειώνεται ότι ο
όγκος Ω αποτελείται εξ΄ ολοκλήρου από σημεία ρευστού και, συνεπώς, αποκλείει οποια-
δήποτε επιφάνεια που βρίσκεται εντός των ορίων του.

 15 m  25 m 

11.6 m

Σχήμα 5.3: Παραλληλεπίπεδο υπολογιστικό χωρίο γύρω από την γεωμετρία του αυτο-

κινήτου. Οι επιφάνειες εισόδου και εξόδου της ροής τοποθετούνται 15m και 11m μακριά
από το αυτοκίνητο, αντίστοιχα, προκειμένου να υπάρχει ομοιόμορφη ροή στην είσοδο και

την έξοδο.



Το υπολογιστικό χωρίο του σχήματος 5.3 διακριτοποιήθηκε σε υπολογιστικό πλέγμα

αποτελούμενο από πολυγωνικά κελιά. Το πλέγμα αποτελείται από 2.8 · 106
επιφανειακά

κελιά για την αναπαράσταση της γεωμετρίας του αμαξιού και 4 ·107
πολυεδρικά ογκικά

κελιά για την αναπαράσταση του χωρίου του ρευστου.

Οι εξισώσεις μη-μόνιμης ροής του μοντέλου DDES επιλύθηκαν στο προαναφερθέν
υπολογιστικό πλέγμα. Στο σχήμα 5.4 δίνονται τα πεδία του μέτρου της ταχύτητας στο

πεδίο συχνότητας |uf |, υπολογισμένα για τέσσερις μπάντες συχνοτήτων.

0.02 |uf | 2.3 0.02 |uf | 7.4

(αʹ) fm = 25 Hz (βʹ) fm = 125 Hz

0.02 |uf | 0.46 0.02 |uf | 0.46

(γʹ) fm = 1000 Hz (δʹ) fm = 2000 Hz

Σχήμα 5.4: Πεδία του μέτρου της ταχύτητας στο πεδίο συχνότητας |uf |, προκύπτοντα
από μετασχηματισμό FFT των μη-μόνιμων πεδίων ταχύτητας ũ, απεικονιζόμενα σε
επίπεδο παράλληλο στον δρόμο.

0.0 v̄(m/s) 66 0.0 ω̄(−) 100

(αʹ) Χρονικά μέσο πεδίο ταχύτητας v (βʹ) Χρονικά μέσο πεδίο στροβιλότητας ω

Σχήμα 5.5: Χρονικά μέσα πεδία ταχύτητας u και στροβιλότητας ω.



Αποτελέσματα χωρικού και επιφανειακού APDS πεδίου

Το σχήμα 5.6 παρουσιάζει τις ισο-επιφάνειες του χωρικού πεδίου APDS(z), για
την 1/3 οκτάβα συχνοτήτων κεντρικής συχνότητας fm = 2kHz. Γίνεται φανερό ότι
τα μοτίβα της ροής που συμβάλλουν στην δημιουργία ακουστικής πίεσης είναι αφ΄ ενός

ο ομόρρους του A-Pillar , ενώ κυρίως δε είναι ο ομόρρους κατάντι του καθρέφτη του
οδηγού.

0.0 4.8ε-05

Σχήμα 5.6: Το χωρικό πεδίο πηγών θορύβου APDS(z) του όγκου Ω, υπολογισμένο
για την 1/3 οκτάβα συχνοτήτων κεντρικής συχνότητας fm = 2kHz.

Στο σχήμα 5.7 παρουσιάζεται το επιφανειακό πεδίο APDS(y) πάνω στο τζάμι των
παραθύρων της θέσης του οδηγού. Υψηλες τιμές του πεδίου εντοπίζονται εκεί όπου οι

διαταραχές πίεσης συχνότητας fm εμφανίζουν μεγάλο πλάτος.

0.0 5.2ε-02 0.0 2.6ε-02

(αʹ) fm = 25 Hz (βʹ) fm = 40 Hz

0.0 7.2ε-04 0.0 3.4ε-07

(γʹ) fm = 125 Hz (δʹ) fm = 2000 Hz

Σχήμα 5.7: Πεδίο επιφανειακών διαταραχών πίεσης APDS(y) πάνω στο τζάμι των
παραθύρων της θέσης του οδηγού, για διαφορετικές ζώνες συχνοτήτων.



Διατύπωση του Συζυγούς Προβλήματος

Αφετηρία για τη διαμόρφωση του συζυγούς προβλήματος είναι η μαθηματική διατύπω-

ση του πρωτεύοντος προβλήματος, το οποίο περιγράφεται από τις RANS εξισώσεις
για ασυμπίεστη και χρονικά μόνιμη ροή συνδυασμένες με το μοντέλο τύρβης Spalart-
Allmaras, [29]. Οι εξισώσεις αυτές, χρησιμοποιώντας τη σύμβαση του Einstein για
τους επαναλαμβανόμενους δείκτες, γράφονται ως εξής

Rp=−∂vj
∂xj

=0 (5.4αʹ)

Rv
i =vj

∂vi
∂xj
− ∂

∂xj

[
(ν + νt)

(
∂vi
∂xj

+ ∂vj
∂xi

)]
+ ∂p

∂xi
=0 , i = 1, 2, 3 (5.4βʹ)

Rν̃ =vj
∂ν̃

∂xj
− ∂

∂xj

[(
ν+ ν̃

σ

)
∂ν̃

∂xj

]
− cb2
σ

(
∂ν̃

∂xj

)2

−ν̃ P (ν̃)+ν̃ D (ν̃)=0 (5.4γʹ)

Εν συνεχεία, ορίζεται η συνάρτηση κόστους F προς ελαχιστοποίηση. Βασιζόμενοι
σε βιομηχανική εμπειρία, μια συνάρτηση κόστους που σχετίζεται με την παραγωγή

αεροδυναμικού θορύβου, εξαρτάται αποκλειστικά από την τυρβώδη συνεκτικότητα νt
και δίνεται από τη σχέση [4]

Fν =
∫

Ω′
ν2
t dΩ (5.5)

όπου νt είναι η τυρβώδης συνεκτικότητα και Ω
′
είναι όγκος που γειτνιάζει στο παράθυρο

του οδηγού του αυτοκινήτου με προκαθορισμένο πάχος.

Σχήμα 5.8: Πεπερασμένος όγκος Ω′
για τον ορισμό της συνάρτησης κόστους 5.5. Ο

όγκος Ω′
γειτνιάζει στο παράθυρο του οδηγού του αυτοκινήτου και έχει προκαθορισμένο

πάχος.

Βασική αρχή της συνεχούς συζυγής μεθόδου είναι ο ορισμός της Λαγκραντζιανής ή

επαυξημένης συνάρτησης κόστους L. Η επαυξημένη συνάρτηση ορίζεται προκειμένου
να εξασφαλιστεί η ανεξαρτησία του κόστους υπολογισμού των παραγώγων ευαισθησίας

από το πλήθος N των μεταβλητών σχεδιασμού. Στην E-SI συζυγή προσέγγιση που



χρησιμοποιείται εδώ, η επαυξημένη συνάρτηση κόστους ορίζεται ως

L=Fν+
∫

Ω
uiR

v
i dΩ+

∫
Ω
qRpdΩ+

∫
Ω
ν̃aR

ν̃dΩ+
∫

Ω
ma
iR

m
i dΩ (5.6)

όπου Ω είναι το υπολογιστικό χωρίο, ui η συζυγής ταχύτητα, q η συζυγής πίεση και
ν̃a η συζυγής μεταβλητή του μοντέλου τύρβης και m

a
i η συζυγής της μεταβλητής mi,

δηλαδή των μετατοπίσεων των κόμβων του πλέγματος.

Διαφόριση της εξίσωσης 5.6 ως προς τις μεταβλητές σχεδιασμού bn δίνει
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όπου για τον όρο της παραγώγου της συνάρτησης κόστους δFν/δbn ισχύει

δFν
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= δ
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όπου S
′
η επιφάνεια των παραθύρων του αυτοκινήτου και F́ ν̃

Ω ένας επιπλέον όρος πηγής

που πρέπει να ικανοποιεί η εξίσωση του συζυγούς μοντέλου τύρβης στο Ω′
. Σημειώνε-

ται ότι αφού L = Fν , τότε δL/δbn = δFν δbn.

Λαμβάνοντας υπόψη την εξ. 5.8 και, εν συνεχεία, θέτοντας τους πολλαπλασιαστές

των παραγώγων των ροϊκών ποσοτήτων ως προς τις μεταβλητές σχεδιασμού εντός

των χωρικών ολοκληρωμάτων ίσους με το μηδέν, προκύπτουν οι συζυγείς πεδιακές

εξισώσεις

Rq=−∂uj
∂xj

+ F́ p
Ω =0 (5.9)
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Οι οριακές συνθήκες των συζυγών εξισώσεων δίνονται αναλυτικά στο αγγλικό κείμε-

νο (4.2.5), ενώ εδώ παραλείπονται για λόγους συντομίας. Μετά την εξαγωγή των

συζυγών εξισώσεων και των συζυγών οριακών συνθηκών, η τελική έκφραση των πα-

ραγώγων ευαισθησίας δίνει
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όπου

SD1 =−uI〈t〉+φ〈tI〉〈n〉+φ〈n〉〈tI〉 (5.14)

SD2,i=(ν+νt)
(
∂ui
∂xj

+ ∂uj
∂xi

)
nj−qni+

∂FSWp,k
∂vi

nk+F́ v
SWp,i

(5.15)
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όπου οι όροι TWF
SD ,

∫
SWP
AWF

∆
∂∆P

∂bn
dS ανδ

∫
SW
AWF

∆
∂∆P

∂bn
dS συνοψίζουν τη συνεισφορά

της διαφόρισης των συναρτήσεων τοίχου στις παραγώγους ευαισθησίας [40].

Μέσω της εξ. 5.13 των παραγώγων ευαισθησίας, μπορεί να προσδιορισθεί η κλίση

της συνάρτησης κόστους ως προς την κάθετη μετατόπιση των επιφανειακών κόμβων

του πλέγματος. Γραφική απεικόνιση των παραπάνω παραγώγων επάνω στην επιφάνεια

του οχήματος συνθέτει τον χάρτη ευαισθησίας του προβλήματος

Βελτιστοποίηση Μορφής Πλευρικού καθρέπτη

Κατόπιν του υπολογισμού των συζυγών πεδίων ροής και των παραγώγων ευαι-

σθησίας, ακολούθησε η αφ΄ ενός παραμετροποίηση και αφ΄ ετέρου βελτιστοποίηση της

μορφής του καθρέπτη του οδηγού, με σκοπό την ελαχιστοποίηση της συνάρτησης

κόστους. Η μορφοποίηση του σχήματος του καθρέπτη, και ταυτόχρονα του πλέγμα-

τος, πραγματοποιήθηκε με χρήση ογκικών B-Splines . Συγκεκριμένα, ορίζεται κουτί
ελέγχου του σχήματος 5.9, που απαρτίζεται από 7× 7× 10 σημεία ελέγχου και περι-
κλύει την γεωμετρία του καθρέπτη.

Σχήμα 5.9: Κουτί ελέγχου ογκικών B-Splines , αποτελούμενο από 7×7×10 σημεία
ελέγχου που παραμετροποιεί την γεωμετρία του καθρέπτη του αμαξιού.

Οποιαδήποτε μετακίνηση των σημείων ελέγχου οδηγεί σε ανάλογη παραμόρφωση των

επιφανειακών και ογκικών κελιών του υπολογιστικού πλέγματος.

Οι συντεταγμένες των σημείων ελέγχου των ογκικών B-Splines αποτελούν τις μετα-
βλητές σχεδιασμού bn της βελτιστοποίησης. Αναναίωση των μεταβλητών σχεδιασμού
από κύκλο σε κύκλο βελτιστοποίησης οδηγεί σε καινούργιες γεωμετρίες καθρέπτη που

ολοένα ελαχιστοποιούν την τιμή της συνάρτησης κόστους Fν . Η μέθοδος ανανέωσης
των μεταβλητών σχεδιασμού bn βασίζεται στην πληροφορία της παραγώγου ευαισθη-
σίας δFν/δbn ούτως ώστε να προσδιορίζεται η κατεύθυνση κίνησης των συνιστωσών
των bn η οποία θα επιφέρει μείωση της συνάρτησης κόστους. Συγκεκριμένα, η μέθοδος
των συζυγών κλίσεων εφαρμόζεται για την αναναίωση του bn, η οποία δίνεται αναλυτικά
στο αγγλικό κείμενο (4.3.2), αλλά παραλείπεται εδώ χάριν συντομίας.



Εφαρμογή σε Αυτοκίνητο Παραγωγής

Η προαναφερθείσα διαδικασία βελτιστοποίησης εφαρμόζεται στο επιβατηγό αυτο-

κίνητο μαζικής παραγωγής που αφορά την παρούσα εργασία, με στόχο τη μείωση των

επιπέδων θορύβου που αντιλαμβάνεται ο οδηγός του αμαξιού. Η γεωμετρία του αυτο-

κινήτου παραγωγής δίνεται στο σχήμα 5.10. Τα παράθυρα στην θέση του οδηγού S
′

πάνω στα οποία ορίζεται ο όγκος Ω′
επισημαίνονται με κόκκινο χρώμα.

Προκειμένου να λυθούν υπολογιστικά οι πρωτεύουσες και συζυγείς εξισώσεις ροής

γύρω από την γεωμερία του αυτοκινήτου, ορίστηκε παραλληληλεπίπεδο υπολογιστικό

χωρίο, που δίνεται στην εικόνα 4.7 του αγγλικού κειμένου. Δεδομένης της προφανούς

συμμετρίας του προβλήματος και των περιορισμένων υπολογιστικών πόρων, χρησιμο-

ποιήθηκε το μοντέλο του μισού αμαξιού. Οι επιφάνειες εισόδου και εξόδου της ροής

τοποθετούνται 15m και 11m μακριά από το αυτοκίνητο, αντίστοιχα, προκειμένου να
υπάρχει ομοιόμορφη ροή στην είσοδο και την έξοδο του χωρίου υπολογισμού.

(αʹ) Γεωμετρία αυτοκινήτου (βʹ) ΄Ανω όψη αυτοκινήτου

(γʹ) Πλάγια όψη αυτοκινήτου

Σχήμα 5.10: Γεωμετρία του επιβατηγού αυτοκινήτου παραγωγής. Τα παράθυρα στην

θέση του οδηγού S
′
πάνω στα οποία ορίζεται ο όγκος Ω′

επισημαίνονται με κόκκινο

χρώμα.

Το υπολογιστικό χωρίο διακριτοποιήθηκε σε υπολογιστικό πλέγμα αποτελούμενο α-

πό πολυγωνικά κελιά. Το πλέγμα αποτελείται από 5 · 106
επιφανειακά κελιά για την

αναπαράσταση της γεωμετρίας του μοντέλου του μισού αυτοκινήτου και από 25 · 106

πολυεδρικά ογκικά κελία για την αναπαράσταση του χωριού του ρευστου. Παράλληλα,

το πλέγμα διαθέτει 7 στρώματα από πρισματικά κελία κοντά στα στερεά τοιχώματα του

αυτοκινήτου, με το πρώτο κελί να βρίσκεται σε αδιάστατη απόσταση y+
κατά μέσο όρο

y+ ≈ 25.



Οι πρωτεύουσες και οι συζυγείς εξισώσεις ροής επιλύθηκαν στο προαναφερθέν υπο-

λογιστικό πλέγμα. Στην είσοδο του χωρίου επιβλήθηκε ταχύτητα ομοιόμορφης ροής

εισόδου v∞ = 27.7(m/s) που αντιστοιχεί ισοδύναμα σε ταχύτητα πλέυσης των 100
(χμ/ώρα). Παράλληλα, οι ρόδες του οχήματος μοντελοποιήθηκαν ως ακίνητες.

Τα πρωτεύοντα και συζυγή πεδία ροής της πίεσης, ταχύτητας και της μεταβλητής του

μοντέλου τύρβης παρουσιάζονται στο σχήμα 5.11, απεικονισμένα σε επίπεδο τομής

που είναι παράλληλο στον δρόμο. Τα συζυγή πεδία δείχνουν να αναπτύσσονται κατά

αντίστροφο τρόπο σε σχέση με τα πρωτεύοντα πεδία ροής, ενώ εμφανίζουν σημαντικά

χαμηλότερο μέτρο.

Παράλληλα, οι κατανομές της πίεσης p και της συζυγούς πίεσης q επάνω στην επι-
φάνεια του αυτοκινήτου δίνονται στο σχήμα 5.12. Η συζυγής πίεση μεγιστοποιείται

στην επιφάνεια των παραθύρων του αμαξιού, ενώ συνολικά παρουσιάζει σημαντικά χα-

μηλότερες τιμές.

-300 p (m2/s2) 300 -5.e-10 q (m2/s2) 5.e-10

(αʹ) Πίεση p (βʹ) Συζυγής πίεση q

0.0 v (m/s) 50.8 0.0 u (m/s) 10.e-11

(γʹ) Ταχύτητα v (δʹ) Συζυγής ταχύτητα u

0.0 ν̃ (m2/s2) 0.04 -3.e-09 ν̃α (m2/s2) 3.e-09

(εʹ) Spalart μεταβλητή ν̃ (ϛʹ) Συζηγής Spalart μεταβλητή ν̃α

Σχήμα 5.11: Πρωτεύοντα και συζηγή πεδία ροής απεικονιζόμενα ανάντι και κατάντι

του καθρέπτη με χρήση επιπέδου παράλληλου στον δρόμο. Τα συζυγή πεδία αναπτύσ-

σονται κατά αντίστροφο τρόπο σε σχέση με τα πρωτεύοντα και εμφανίζουν σημαντικά

χαμηλότερο μέτρο.



-1800 p 520

(αʹ) (βʹ)

-1e-09 q 3e-09

(γʹ) (δʹ)

Σχήμα 5.12: Κατανομή της πίεσης p και της συζυγούς πίεσης q πάνω στην επιφάνεια
του αυτοκινήτου. Η συζυγής πίεση μεγιστοποιείται σην επιφάνεια των παραθύρων του

αυτοκινήτου, ενώ συνολικά παρουσιάζει σημαντικά χαμηλότερες τιμές από την πίεση.

0.0 νt 0.05

(αʹ) Ισο-επιφάνειες του νt πεδίου (βʹ) Το ν2
t πεδίο του όγκου Ω′

Σχήμα 5.13: Το νt πεδίο απεικονιζόμενο κατάντι του καθρέπτη του αυτοκινήτου με
χρήση ισο-επιφανειών. Το ν2

t πεδίο, εν συνεχέια, υπολογίζεται και ολοκληρώνεται εντός

του όγκου Ω′
, προκειμένου να αξιολογηθεί η τιμή της συνάρτησης κόστους.

Αποτελέσματα Βελτιστοποίησης μορφής

Κατόπιν της παραμετροποίσης του καθρέπτη και της επίλυσης της συζψγούς ροής, έγινε

δυνατή η βελτιστοποίηση μορφής του καθρέπτη. Η βελτιστοποίηση πραγματοποιήθηκε

χωρίς να επιβληθούν περιορισμοί, παρά του ότι ορίστηκε μέγιστη παραμόρφωση κα-

θρέπτη 2mm από κύκλο σε κύκλο βελτιστοποίησης.



Σε συμφωνία με τους διαθέσιμους υπολογιστικούς πόρους, ο αλγόριθμος βελτιστο-

ποίησης προχώρησε για 4 συνολικά κύκλους, ενώ ο 5ος κύκλος οδήγησε σε ένα σημα-

ντικά παραμορφωμένο πλέγμα που αποτυγχάνει τις μετρικές. Στο τέλος κάθε κύκλου,

οι εξισώσεις ροής λύθηκαν εκ νέου και η συνάρτηση κόστους αξιολογήθηκε για κάθε

νέα παραμορφωμένη γεωμετρία. Η σύγκλιση της συνάρτησης κόστους παρουσιάζεται

στο σχήμα 5.14. Μετά από συνολικά 4 κύκλους βελτιστοποίησης, παρατηρείται μια
είωση της τάξης του 16% στην F .

(αʹ) Κουτί ελέγχου γύρω από

τον καθρέπτη

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4

F
/F

in
it

Iterations

(βʹ) Σύγκλιση της συνάρτησης κόστους

θορύβου

Σχήμα 5.14: Ιστορία σύγκλισης της αντικειμενικής συνάρτησης του θορύβου F .
΄Ολες οι τιμές έχουν διαιρεθεί με Finit, όπου Finit είναι η τιμή της συνάρτησης κόστους
που υπολογίζει η πρωταρχική γεωμετρία καθρέπτη.

(αʹ) Αρχική γεωμετρία (βʹ) 2ος κύκλος βελτιστο-

ποίησης

(γʹ) 3ος κύκλος βελτιστο-

ποίησης

(δʹ) 4ος κύκλος βελτιστο-

ποίησης

Σχήμα 5.15: Αρχική γεωμετρία του πλευρικού καθρέπτη και τρεις προκύπτουσες από

τη βελτιστοποίηση παραμορφωμένες γεωμετρίες.



(αʹ) Αρχική γεωμετρία (βʹ) 2ος κύκλος βελτι-

στοποίησης

(γʹ) 3ος κύκλος βελτι-

στοποίησης

(δʹ) 4ος κύκλος βελτι-

στοποίησης

Σχήμα 5.16: ΄Ανω όψη της αρχικής γεωμετρίας και των τριών παραμορφωμένων

γεωμετριών του καθρέπτη. Η εσωτερική ακμή της βελτιστοποιημένης γεωμετρίας ανάντι

της ροής είναι αισθητά στρογγυλοποιημένη σε σχέση με την αρχική γεωμετρία, αλλαγή

που πιθανώς μειώνει την τοπική αποκόλληση της ροής.

(αʹ) Αρχική γεωμετρία (βʹ) 2ος κύκλος βελτιστοποίησης

(γʹ) 3ος κύκλος βελτιστοποίησης (δʹ) 4ος κύκλος βελτιστοποίησης

Σχήμα 5.17: Το ν2
t πεδίο υπολογισμένο χρησιμοποιώντας την αρχική και τις τρεις

βελτιστοποιημένες γεωμετρίες καθρέφτη, απεικονισμένο πάνω σε επίπεδο του όγκου Ω′
.Η

βέλτιστη γεωμετρία καθρέπτη υπολογίζει τιμή ν2
t της τάξης του 16% μικρότερη από την

αρχική γεωμετρία.



(αʹ) Αρχική γεωμετρία (βʹ) 2ος κύκλος βελτιστοποίησης

(γʹ) 3ος κύκλος βελτιστοποίησης (δʹ) 4ος κύκλος βελτιστοποίησης

Σχήμα 5.18: Μέτρο της ταχύτητας U υπολογισμένο για την αρχική γεωμετρία και
για τις τρεις παραμορφωμένες γεωμετρίες καθρέπτη, απεικονιζόμενο σε επίπεδο παράλλη-

λο στον δρόμο. Η βέλτιστη γεωμετρία δείχνει να κατευθύνει τον ομόρρου του καθρέπτη

προς το παράθυρο του οδηγού.

(αʹ) Αρχική γεωμετρία (βʹ) 2ος κύκλος βελτιστοποίησης

(γʹ) 3ος κύκλος βελτιστοποίησης (δʹ) 4ος κύκλος βελτιστοποίησης

Σχήμα 5.19: Το νt πεδίο υπολογιζόμενο για την αρχική γεωμετρία και για τις
τρεις παραμορφωμένες γεωμετρίες καθρέπτη, απεικονιζόμενο σε επίπεδο παράλληλο στον

δρόμο. Μείωση στα επίπεδα νt παρατηρούνται όχι μόνο κοντά στο παράθυρο του οδηγού,
όπου ο όγκος Ω′

της συνάρτησης κόστους ορίζεται, αλλά επίσης και κατά μήκος όλου του

ομόρρου του καθρέπτη.
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