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Optimization of Vehicle Air Duct Geometry

Diploma Thesis Abstract

Marianna Panagiotidou

The objective of this diploma thesis is to use a stochastic optimization
method and implement it (constrained where needed) to optimize the shape of
the defroster duct of a passenger car in order to achieve the fastest possible
windshield defrosting and/or defogging. The optimal geometry can be used as a
starting point for further optimization using the adjoint method in order to find
the global optimum geometry. Furthermore, the effect of the duct width is
studied in order to find an appropriate geometry in the case of a Head-Up
Display (HUD) installation in the car.

The optimization process is based on a metamodel-assisted evolutionary
algorithm (MAEA). The EASY platform developed by the Parallel CFD &
Optimization Unit of the National Technical University of Athens (PCOpt/NTUA)
is used. An additional tool developed by PCOpt/NTUA and used in this study is
the regression model tool. This study is the sequel to a relevant diploma thesis
(that of L. Germanou) in which the optimization problem of the defrosting
performance was addressed exclusively by using the continuous adjoint method
and an experiment was carried out to validate the results.

To achieve its objective, this diploma thesis incorporates design of
experiments techniques, mesh morphing, regression models and evolutionary
algorithms. The above have been decided in order to eliminate the dependency
on the initialization of gradient-based optimization methods as well as the
limited geometry morphing capacity which characterizes free-form deformation
(FFD), due to fixed topology.

A new objective function that is more representative of the target of
increasing the defrosting efficiency, being therefore more suitable for our study,
is formulated and used. In order to address the problem, it is necessary to
compute the percentage of the windshield area where the velocity is lower than
a minimum acceptable value for sufficient defogging and defrosting. A step
function, which assigns a zero penalty to cells with a velocity above the target
value and a penalty of unity elsewhere, is adopted as the evaluation tool during
the MAEA optimization. However, in order to be compatible with the next
optimization step, which relies upon the continuous adjoint method, it is a
prerequisite to express the performance of the duct with a differentiable
function. For this purpose, a sigmoidal objective function is developed and two
velocity thresholds are defined, a minimum acceptable value below which



maximum penalty is assigned and a target value above which no penalty is
imposed. The min-max nature of the problem can be approximated satisfactorily
by setting appropriate thresholds based on the requirements of the problem and
the engineers’ experience.

With this study, a new optimal geometry for the original width case was
determined. This geometry has the same total pressure drop and a better
velocity pattern, compared to the original one. It can be fed into the adjoint
optimization method as a starting point in order to optimize geometry.
Furthermore, the preliminary optimization steps for the reduced width duct gave
the appropriate geometry for further optimization with stochastic and
deterministic methods.

Major part of this diploma thesis was carried out in the premises of
Toyota Motor Europe, in Belgium, with Mr. Antoine Delacroix as industrial
advisor.



BeAtiotomoinon l'swustpiag Aspaywyov
AvToKkivi)Ttov

lepiAnyn AimAwuatiknc Epyaciac

Mapiavva avayiwtidov

TKOTOG auTng TNG OSIMAWUATIKNG egpyaciag elvat 1 xpnon upag
OTOXNOTIKNG HeBOSOL Kat 1 e@appoyn TS (LE TOUG KATAAANAOUG TTEPLOPLOUOVG)
Y@ Tn PBeEATIOTOTMONON TOU OXNUATOG TOU QEPAYWYOU €VOG EeMBATIKOV
QUTOKLVI)TOV WOTE va emitevxBel n tayOtepn amomaywon/amobaufwon tov
avepobwpaka (mapumnpil). H BéEATIoT Yewpetpla umopel va xpnopomombel wg
onuelo exkkiviong ¢ ovluyous peBdSov Tpokewévou va Ppedel 1 oAka
BéATio yewpetpla. EmmAgoy, pedetdtal ) emiSpaotn Tou TAGTOUS TOU AYWYOU
Tpokelpévov va Ppedel pa KATAAANAN Yewpetpla ywr v  TepimTwon
EYKATAOTAONG GUOTILATOS SLa@avous 000vng dedopevwv oto mapumpil (Head-
Up Display, HUD) oto autokivnto.

H Sadikacia BeAtiotomoinong Baciletal oe évav eLeAlkTikO aiyoplOuo
pue petampotvma  (MAEA). Xpnowomoteitar 1 mAateoppa  EASY  mou
avattuxOnke amd 1 Movada [MapdAAnAng YmoAoylotikng Pevotoduvauikng &
BeAtiotomoinong touv EMIT (MITYPB/EMII). ‘Eva emmAéov epyaAeio Tov
avamtuxOnke amd tn MIIYPB/EMII kat xpnowomomOnke o auti] TN HEAETH
elval To EPYAAELO LOVTEAOV TIAALVEPOUNONG. AUTY) 1| LEAETN €lval 1] GUVEXELA ULAG
OXETIKNG SimMlwpatikng gpyaciag (tng A. F'eppavov) otnv omoia to MPOLANUQ
BeATioTomOMONG NG ATMOS00NG ATOTAYWONG EEETACTNKE ATOKAEIOTIKA LLE TN
ouvluyn péEBoSo kat SednxOn éva melpapa ywr v emkOPpWON  TWV
QATIOTEAECUATWV.

Avt 1 SIMAWUATIKY €PYNOiA EVOWUATWVEL OXESIACUO TEXVIKWV
TEPAUATWY, LOPPOTIO(NOT TAEYUATOG, LOVTEAX TIAALVEPOUN 0TS KAl EEEALKTIKOVG
aiyopiBpovg. Ta Tapamdvew eTAEXONKAV TIPOKELLEVOL Vo eEaAeLpBOel ) §dpTnoM
amo TNV apxKoToimon Twv ueBddwv BeAtiotomoinong pe Baon v kAion kabwg
KOl 1] LKAVOTNTA LOPQOTIOMOTG TIEPLOPLOUEVNG YEWHETPLAG, AOYw NG oTtaBepng
TOTIOAOYIOG WG ATMOTEAECUA TNG UEIWONG TNG TOLOTNTAS AOYW TNG gvalcOnaoiag
TOVU TIAEYUATOG.

AvamtiyxBnke HlX VEX OVTIKELMEVIKY] OULVAPTNON TOU elval Tl
QVTITTPOCOWTEVTIKN TOU OTOXOUL TNG ainomng Tng AmOTAYWOoNG Kol EMOUEVWSG,
TEPLOCOTEPO KATAAANAN Yl TNV VTTOYT HEAETT). [IPOKEIPUEVOL VO AVTIHETWTILOTEL
To TPOPANUQ, ival amapaitnTo va VTIOAOYLOTEL TO TTOGOOTO TNG TEPLOXTG TOV
avepobwpaka OToU 1 TaVTNTA €lval YAUNAOTEPT] WLAG EAAYLOTNG ATTOSEKTIG
TG yw emapkn amobapfwon kat amomdywon. YoBeteltat pia Brnpoatikn



ouvapTnOoN, N oTtolx ATOSISEL PNSEVIKN KUPWOT) 0€ KEALA UE TAXVTNTA TTAV®W ATIO
TNV TIU-0TOXO0 KoL eviaia TTown oToudnToTe aAAoVU, WS epyaAeio a&loAdynong
Kata TN Stapkela g BeAtiotomoinong péow eEEAKTIKWV aAyoplBpwyv. Lotdoo,
yw@ va eivar cupfaty pe to emopevo Prpa BeAtiotomoinong, TG ouluyolg
uebodov, eival avaykaio va ek@paotel pe pa Stapopiowun ocvvaptnon. ' to
OKOTIO QUTO, XPNOLUOTIOLEITAL Pl OLYHOEONG ouvdapTnomn kal kabBopilovtal dvo
opla TaXVTNTAG, UL EAGXLOTN ATTOSEKTY] TIUN KATW ATO TNV OTola amodidetaL 1)
UEYLOTN TOLVY] KAL MLA TLU-0TOX0G TAV®W Ao TNV omola amodidetal undevikn
mown. H @von elaxlotomoinong tov mpoPANHaTOS UTOpPEl va TPOCEYYLOTEL
(KOVOTIOTIKA UE TOV KABOPLOUO KATAAANAWY KATWTATWV oplwv PACEL TwV
ATALTICEWV TOVU TIPOSAUATOS KAL TNG EUTELPLAG.

Me auTr) TN HEAETN, TTPOCaSLOPIOTNKE WA VEX BEATIOTT YEWUETPLX YA TNV
APXIKI TEPITITWOT MAGTOUG. AuTi 1 YEWUETPIla Exel TV (Sl TTTWoOM TIlEON S KAl
éva KaAUTEPO poTifo TaxVLTNTAG, OE OUYKPLON HE TO apxlkd. Mmopel va
Tpoodotnoel TN peBodo BeAtiotomoinong pe tn ovluyn TEXVIK) wG ONUEL
ekkivnong ywa va Bpet v oAkkd PéAtiotn yewpetpla. EmmAfov, T«
TIPOKATAPKTIKG Brjuata BEATIOTOTOMONG Yl TOV aywyd UELWUEVOV TIAATOUG
Edwoav ™MV  KATAAANAN yewpeTpla ywx mepaltépw PeAtiotomolnorn e
OTOXNOTIKEG KOL ALTIOKPATIKEG HeBoSouG.

Meyddo Tuqpa TG  SMAWMATIKNAG  g€pyaciag ekmoviiOnke  oOTIg
eykataotaoels TG Toyota Motor Europe, oto BéAylo, umd v emifAeym tov
unxavikov k. A. Delacroix.
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Chapter 1 1

1 Introduction

1.1 HVAC - Defroster Nozzle

HVAC units and distribution systems are an integral part of the cabin
climate control function. To ensure the comfort of the occupants, i.e. drivers and
the passengers, the right amount of conditioned air at desirable temperature and
humidity levels should be delivered to the target locations (Park & Kim 2003,
Sugarman 2005). Adequate flow delivery is also important for the safe operation
of a vehicle that requires proper defogging and defrosting capabilities.

At the same time, the energy required for the flow delivery should be
minimized for better fuel economy, while the adverse effects of the associated
acoustic noises should be limited (Shojaeefard et al. 2015). To achieve these
goals, the designs of the ducts and the registers as part of climate control system
are carefully evaluated and optimized for greatly varying ambient conditions as
part of vehicle development process.

Furthermore, due to the tight packaging in vehicle interiors, the available
physical space for HVAC units and distribution systems is very limited. Designers
of climate control systems are often required to work around the geometrical

restrictions imposed by other vehicle interior components, often without up-
front understanding of the impact of potential design changes on the system
performance.

In addition, complex physics such as flow turbulence, thermal mixing and
radiation play important roles in determining air flow distribution, fan power
requirement, and air temperature stratification inside a vehicle cabin. However
visualization and measurement of such physical effects are difficult in real
vehicle applications.

System optimization in a climatic wind tunnel or through road testing for
widely varying ambient conditions requires significant time and effort,
particularly when some of the testing has to be conducted for transient
conditions. Besides, the evaluation matrix tends to be large due to various
operating modes (defrosting/ventilation/bi-level /foot well) of an HVAC system.

1.2 Head-Up Display

Inside the car cabin, installations can be found which interact with the
HVAC air flow. Such an installation is the Head-up displays (HUDs). Head-up
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displays are the current state-of-the-art solution to reducing driver errors
originating from distractive interfaces, such as on-board entertainment displays
or in-vehicle information systems (IVIS). Compared to head-down displays
(HDDs) which are integrated into the vehicle's control panel, the frequency and
duration of glances towards the display are reduced by presenting information
directly on the windshield in the driver's field of vision (Ablassmeier et al.,
2007). Consequently, the response time to unanticipated road events is reduced
when information is displayed on a HUD instead of a HDD (Horrey and Wickens,
2004, Liu and Wen, 2004, Sojourmer and Antin, 1990), and the number of
collisions is significantly reduced (Charissis et al., 2008). Using HUDs also leads
to a, generally, more consistent speed control and reduced mental workload (Liu
and Wen, 2004), reduced navigational errors (Burnett, 2003), and smaller
variances in lateral accelerations and steering wheel angle (Yung-Ching, 2003).

Head-up displays can be divided in two categories: a) in-car and b) on-
board.

In-car HUD displays are the most advanced form of HUDs. They provide
the information on the windshield of the car and no external device is needed.
The technology for HUD varies on the system. Some cars use transparent
phosphors on the windshield that reacts when a laser shines on it. Only when the
laser is on, is the information projected on the glass. Others use a similar system
but incorporate mirrors to project the images on the windshield. A display unit is
installed below the dashboard which projects the information on a set of mirrors.
The driver actually sees is the virtual image of the display screen in front of the
windshield at a distance called the projection distance.

On-board HUD is a device which can be mounted on the top of the
dashboard and projects information on its integrated transparent display.
Instead of displaying the image on the windshield as the In-car HUD does, it
projects the image on its own transparent screen. Most on-board HUDs work by
linking to either driver phone’s internal GPS or finding a signal of their own from
a satellite to determine the velocity of the car at any given time, and display the
information back on their display.

1.3 CFD-based Optimization

As proven, the accurate prediction of HVAC air flow and its interaction
with cabin parts, is a mandatory process in order to design an HVAC system that
works in the desired way.

Improving the performance of products, processes and services without
increasing the cost has always been a major topic of interest for the engineering
sector/industry. Optimization targets of engineering problems usually take the
form of improvement of efficiency and/or reduction of/decrease in costs. For
example, in the automotive industry, engineers try to optimize the shape of the
vehicles to reduce drag and fuel consumption.
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Computational Fluid Dynamics (CFD) has proven to be a valuable tool for
predicting duct performances (pressure losses and relevant flow features) both
in early and advanced phases of design. In internal aerodynamics, the
aerodynamic CFD-based design optimization of ducts systems (e.g. HVAC system,
cooling systems) has acquired an important role in the automotive industry.
CFD-based optimization is implemented to enhance the efficiency of the HVAC
system by achieving improved defrosting and defogging performance of the
vehicle. Since their introduction in automotive applications, shape and topology
optimization have been gradually gaining more ground and are now considered
as established approaches to complex optimization problems.

Over the years several approaches to the methods of optimization have
been studied and implemented. It is at the engineer’s discretion to select the
appropriate optimization method that will yield the optimal results with the least
required effort and cost. Irrespective of the optimization method, in order to
proceed it is necessary to first model the optimization process which includes
identifying the problem, setting an objective and defining the design variables
and constraints, if any, under which the problem will be studied. In shape
optimization, the parameterization of the geometry is also a key issue to address.
By parameterizing the geometry, a number of control points are defined and the
optimization process will search for the optimal solution for the sum/total of the
control points.

Thus, an optimization process that incorporates a CFD tool for air flow
prediction can result to an optimal HVAC design.

1.3.1 Optimization

Optimization methods have been implemented in order to solve
quantifiable problems of several scientific fields, such as mechanics, physics, and
economics. The problems to be solved can have one single target (Single
Objective Optimization - SOO) or many targets (Multi-objective optimization -
MOO). The purpose of an optimization method is to specify the values of the free
parameters/variables of the problem that will yield a minimum or maximum
value of the objective function defined by the requirements of the problem
(minimization or maximization problems). In this diploma thesis, only
minimization problems are presented, however, this does not limit the scope of
the work since maximization problems can easily be transformed to
minimization ones. The free parameters are named design variables. It is
common to have equality and inequality constraints that have to be respected in
order to reach an acceptable final solution.

In CFD-based optimization, it is very common to have contradictory
objectives. A problem of more than one targets can be addressed as a multi-
objective optimization (MOO) or, alternatively, can be transformed to a single
objective optimization (SOO) by incorporating all the objectives into a weighted
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one. Based on the nature of the problem and the available resources, any of the
two options can be selected.

Optimization methods are distinguished based on the way they seek for
the optimal solution. Stochastic methods explore the design space in a
randomized way whereas deterministic methods will reach the optimal solution
by taking into consideration the gradient of the objective function. Nowadays,
new hybrid methods that combine elements of the two methods have been
developed. In complex aerodynamic problems, developing a deterministic
method requires more time and effort and the developed method cannot always
be adapted to similar problems. On the other hand, the deterministic method will
converge to an optimal solution in significantly less cycles than a stochastic
method; however, based on the initialization of the method, this optimum might
not be the global optimum of the problem. Stochastic methods are comparatively
more general and more appropriate for use in several problems of the same
nature. One of the main drawbacks of stochastic methods is that they can be very
slow in reaching the optimal solution, which will however be the global optimum
of the design space. The latter is secured if instead of improving a single
candidate solution, as is the case in deterministic methods, several candidate
solutions are evaluated and monitored. As a trade-off to the improved
performance of the method, population-based optimization methods have a
higher computational cost than single-individual based methods.

Thus, in a given problem which has independent design variables that
their values affect the output variables, it is better to study this relation among
these variables prior to an extensive optimization process.

1.3.2 Design of Experiments

The Experiment Design or Design of Experiments (DoE) is an efficient and
ubiquitous process for planning experiments and exploring complex problems
(Antony 2003). It is widely used in research and development as an effective tool
to develop and improve existing products and processes. Implementing a DoE
will yield the relationship between factors affecting a process and the output of
that process (cause & effect relationships).

As an alternative to the DoE approach, the one-factor-at-a-time (OFAT)
and trial-and-error practices can be applied; however, these do not guarantee
lower cost or accurate and complete results. Altering one factor at a time in
studies has the drawback of higher costs since more experiments need to be
carried out. Moreover, in real life problems where more than one factors can
change at a time and the output is dependent on combinations of factors in
addition to single factor changes, the OFAT approach cannot capture the
complexity of the problem. On the other hand, trial and error practices require a
deep understanding of the problem and can be very slow and not lead to the
optimal results.
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A design of experiments can be used to choose between alternatives
(comparative experiment), identify the key factors affecting the output
(screening experiment) or model the response surface of the problem. The latter
is adopted when the objective is to reach a target, maximize or minimize a
response, reduce variations in the process, make a process robust or optimize
based on multiple goals. Once the objective of the study is determined, the next
step of the Design of Experiments is to identify and select the process model. The
process model consists of the inputs and outputs of the problem. The inputs of
the process can be controlled or not and are called factors and co-factors
respectively. Defining the range of the factors should not be done light-heartedly
since extreme values can result in unfeasible runs and reduced smoothness in
the response surface. The output of the experiment, the response, is studied as a
function of the above factors.

An important part of the DoE is to select the experimental design, i.e. the
way in which the design space will be sampled. The amount of information
obtained by a DoE for a given amount of experiment cost can be maximized by
selecting the appropriate experiment design. Based on the number of factors and
the objective of the study, a randomized or structured/systematic design can be
selected. Randomized designs are the method of choice in comparative studies,
whereas in screening and response surface studies systematic designs yield
better results. Standardized designs include the full factorial design in which all
possible combinations of the factor levels are selected to run, or fractional
factorial design which consists of only an adequately chosen fraction of the full
factorial design.

As stated previously, one of the functions of the DoE study is to use the
experimental data to derive an approximation of the cause and effect
relationship by linking the inputs and outputs of the problem. Not only does the
DoE unveil the direct link between a single factor and the response but it also
deals with the interactions, i.e. the situation in which the simultaneous influence
of the input variables on the response is not additive. The Design of Experiments
along with Regression analysis will generate a mathematical model which
describes the model process.

The mathematical model relates the dependent variables (responses) to a
function of the independent variables (factors) and the unknown coefficients of
the function. The most known form of regression analysis is the least-squares
method. In order to perform a regression analysis, it is necessary to have at least
as many sets of experimental data as the number of coefficients of the regression
model. Regression analysis can be used for both interpolation and extrapolation,
however, the latter can be very susceptible to errors since it is making
assumptions on data outside the range of the available data and the difference
between estimation and actual data can be significant.



6 Chapter 1

1.3.3 Gradient-free Optimization

One of the main representatives of stochastic optimization methods
(gradient-free optimization methods) are the evolutionary algorithms
(Giannakoglou, 2002, Marco and Lanteri, 2000). These stochastic methods are
inspired by Charles Darwin’s theory of evolution, according to which the
individuals of a population will compete with each other in order to procure the
necessary resources to survive and attract partners to reproduce. Certain
individuals that are fitter or adapt quicker to the challenges of their environment
have a better chance of succeeding in surviving and reproducing, therefore, it is
the genes of this set of individuals that will be passed on to the next generations.
This concept is known as natural selection and it entails that the individuals of
future generations will carry the best characteristics from the previous
generations. In this way, as the generations progress, the populations evolve and
adapt to the current environment. In a similar way, the evolutionary algorithm
will spawn a population of candidate solutions which will be evaluated in order
to select the elite population, most of which will reproduce to create the new
generations of offspring. The offspring candidate solutions might perform better
than the parents. By evaluating the offspring, selected individuals are selected to
become the parents of the next generation and the cycle continues until one of
the terminating criteria is met. Four basic operators are employed in the

optimization method; a selection operator to select the parent population, a
crossover operator to generate the offspring based on the combination of the
parents’ genes, a mutation operator to introduce new genetic material to the
population and an elitism operator to select the individuals that will consist the
elite population.

Evolutionary algorithms were first introduced in the 1960’s but at the
time the lack of computational resources rendered them unfeasible. It wasn’t
until the 1990, when computer science was advanced enough and computers
were more affordable, that evolutionary algorithms were established as an
effective optimization method.

The most known applications of evolutionary algorithms are the genetic
algorithms, the evolution strategies and genetic programming. In all three
applications some distinctive traits can be identified. Evolutionary algorithms
monitor populations of individuals that evolve throughout the generations. Being
a population-based optimization method, the evolutionary algorithm will
converge to the global optimum of the problem, therefore increasing the
reliability of the method but the computational cost as well. In order to
determine the successful individuals that will comprise the parents of the next
generation it is necessary to evaluate their performance by assigning scores
based on the objective function of the problem. These ratings can be cost scores
in minimization problems or fitness scores in maximization problems. In
evolutionary algorithms, the evolution of the populations is based on the fitness
scores of the individuals. Moving a generation forward entails that new
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individuals, offspring of the fittest parents, will be introduced to the population
whereas the weakest individuals of the previous generation will be eliminated.
Finally, the succession of generations is characterized by heredity from the
parents to the offspring, but new traits can also be spawned in a stochastic way.

Evolutionary algorithms are well established methods thanks to the
simplicity of their implementation as long as the necessary software is available.
In order to implement an evolutionary algorithm to a new problem, it is not
necessary to tamper with the optimization process as is the case in deterministic
optimization where the formulation of the problem changes with every new
objective function. The evaluation tool, necessary to assign fitness scores to the
candidate solutions, is external and treated as a black box, hence, simplifying the
setup of the optimization process.

1.3.4 Gradient-based Optimization

A gradient-based method is an algorithm to solve optimization problems
with the search directions defined by the gradient of the objective function at the
current point. One major representative of the gradient-based optimization
methods is the adjoint method. The adjoint results to computational tools for the
computation of the gradient of the (objective) function while simultaneously
ensuring that the basic equations defining the problem are satisfied (in
aerodynamics flow equations: Euler of Navier-Stokes equations). The term
adjoint and the relevant expressions were first introduced in control theory. In
mathematics, the equivalent subject is that of Lagrange multipliers. Bearing in
mind that in an optimization method, the gradient of the objective function is
required in order to point to the solution that yields the minimum value of the
objective function (e.g. though the steepest descend method), it is common
practice when referring to adjoint methods in aerodynamics to incorporate both
the computation of the gradient and the minimization process of the objective
function, i.e. the wholesome of the optimization problem or of inverse design.

1.4 Purpose and Structure of Thesis

From all the above, it can be concluded that the correct design of the
HVAC unit plays a major role in the car industry. Furthermore, in cases where a
new car design is primarily based on a previous model, the design optimization
of the HVAC unit is mandatory.

The objective of this diploma thesis is to use Design of Experiment and
stochastic CFD optimization methods to optimize the shape of the defroster duct
of a passenger car (TOYOTA Yaris) in order to achieve the fastest possible
windshield defrosting and/or defogging. Furthermore, a preliminary
optimization is carried out taking into account the use of a HUD display which
limits the available area for the HVAC defroster nozzle.
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The stochastic optimization process is based on a metamodel-assisted
evolutionary algorithm (MAEA) which is materialized by the EASY platform
developed by the PCOpt/NTUA while incorporating regression models. The
candidate designs that come of are further optimized using EASY and CFD tools.

This study is the sequel to a relevant diploma thesis (that of L. Germanou)
in which the optimization problem of the defrosting performance was addressed
exclusively using the continuous adjoint method and an experiment was carried
out to validate the results. This thesis aims to establish a procedure in which
optimized candidate solutions are derived from stochastic optimization process
and can subjectively be used as the starting point of the costly CFD -adjoint
optimization process to achieve the global minimum of the cost function.

This thesis consists of 7 chapters. In Chapter 2, the Design of Experiments
(DoE) methods are discussed while in Chapter 3 the Evolutionary Algorithm is
presented. The optimization of an existing HVAC duct is presented in Chapter 4.
In Chapter 5 the effect of the limited width duct due to the HUD display is
assessed and a preliminary procedure of finding the optimized duct geometry
which can further be fed into an EA or adjoint optimization method is carried
out. Finding the optimal geometry is out of this thesis scope, since the exact HUD
display geometry is not available. Finally, in Chapter 6, the outcome of this work
is concluded and some proposals for further steps are provided.
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2 Design of Experiments (DoE)

2.1 General

In its simplest form of DoE, studies and experiments are carried out with
only one free variable. The scientist alters the value of the variable in every run
of the experiment and observes the impact on the outcome of the experiment.
However, nowadays it is very common to have many design variables, therefore
in this case the scientist has to alter the value of the variables one by one and
then carry out the experiment. There is, however, a more efficient method in
carrying out the experiments. Instead of altering the variables one at a time, the
scientist can alter all the design variables simultaneously. The advantages are:

1. The experiment will take place fewer times, therefore the cost and time
required is reduced.

2. The complexity of reality is delineated. In the physical world, problems
have various variables that change simultaneously.

3. Information on the impact of the outcome by the alteration of a
combination of free variables is made available.

Design of Experiments defines the way the variable values will be altered
in order to ensure that the execution of the experiments yield useful data for
analysis. Design methods are described in the paragraphs below.

2.2 Factorial Design

2.2.1 Full Factorial Design

Full Factorial Design requires the highest number of runs of the

computation compared to other types of design for the same level of
discretization of the design space (Antony 2003). In this case, for k design
variables, each discretized in |; levels of same distances between the two limits,
the number of experiments required is the product 1,1, ...1x. For instance, for
three design variables A,B,C with four (4), three (3), and two (2) levels
respectively per variable, 4 x3x 2 = 24 experiments are required in a full
factorial design. The matrix of this design is presented below:
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Every triplet of values defines univocally one (computational)
experiment. In the third column, the values (0,1,2,3) correspond to the four
same-distance levels of the variable C. Therefore, 0 is the lowest level and 3 is the
highest level of the variable, as defined by the user. In the second column, the
values (0,1,2) are the 3 levels of variable B, etc.

More often than not, the number and runtime of the computational
experiment reach large prohibitive levels in a full factorial design since all
possible combinations of the design variables need to be examined. In this type
of design, the responses for all possible combinations will be computed if the
design variables are discrete and all the levels of the variables are considered. In
the case of continuous variables, the accuracy of the design relies on the
discretization applied and the number of levels examined. Most of the problems
in mechanics comprise continuous variables, as is the case in this diploma thesis.
Further examples of this design with limited variables and levels are presented.

2.2.2 2n Factorial Design

This type of full factorial design is the simplest possible form and takes
into consideration only the upper and lower limits of the design variables
(Antony 2003). This type of design is preferred in problems with qualitative
variables as well as in cases where a quick review of the responses is needed. In a
problem of two free variables A and B, each of which has two levels, the possible
combinations according to the 2™ factorial design are: 00, 01, 11, 10. If the real
values of the respective levels of the variables are a;,a, and b;,b, then the
possible combinations can also be expressed as (a;b;,a;b,,a,by,a,b,). The
results of the problem solved for the combinations of variables is symbolized as
f(..), where the contents of the parenthesis are the levels of the variables.
Therefore, the proposed experiments yields the responses
f(a;by), f(a;by), f(ayb;) and f(a,b,). This design is called 2" symmetric. Since
only two levels are examined, it is common practice to represent the two levels
as - and + that correspond to 0 and 1. According to the introduced notation, the
matrix of the full design is:
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The following equations are solved in order to specify the main effect of
the variables A and B:

1

Fy = 5 [(f(a2b1) - f(a1b1)) + (f(azbz) - f(a1b2))]
1

Fp = 2 [(f(b2a1) - f(b1a1)) + (f(bzaz) - f(b1az))]

where F denotes the main effect

2.1

Four experiments are required in order to specify the main effects of the
design variables. The main effect indicates how much, or not, does the variable
impact the result of the experiment.

In experiments with stochasticity, each experiment is carried out p times
in order to define the best sample. The results are added and the mean value is
calculated and subsequently used in equation 2.1 for the calculation of the main
effects. In this case, equations 2.1 are expressed as:

_ f:l(fi(azbﬂ - fi(a1b1)) N Z?:l(fi (azby) — fi(a1b2))

Fa 2p 2p
Foo= Z?:1(fi(bza1) - fi(b1a1)) N Zfﬂ(fi(bzaz) - fi(blaz)) 2.2
v 2p 2p

This thesis does not address stochastic experiments; however, the above
paragraph is presented for the sake of completeness.

The interaction AB is defined as the mean value of the difference of the
effect variable B has when variable A is at level 1 (its value being a,) and the
effect variable B has when variable A is at level 0 (its value being a;):

_ f(agby) + f(a;by)  f(ayby) + f(asb,)
AB — 2 - 2 2.3

where F denotes the effect of the interaction. It is proven that the same equation
applies for the interaction BA.

In general, the method described above can also be implemented for
problems of k free variables, in which case the design is called 2X symmetric. The



12 Chapter 2

k), the

total number of main effects is k, the interaction of the two factors is (2

interactions of three factors are (13?) and so on. It is recalled that:

k!
(11() “i(k—1)! 2.4

The total number of effects is 2X — 1. The property of binomial factors

K. (k) = 2K — 2 indicates that the addition of the effect of a constant factor

i
results in a total number of effects of 2X — 1. The effect of the constant factor

includes all the effects that are not examined and considered constant. The term
“effects” denotes the sum of main effects and interactions. For instance, in a
problem of 4 design variables (k = 4), the 2* factorial design has the following
effects:

Fo, ¥a, Fp, Fab, Fo, Fac) Foces Fabes Fas Fads Fods Fabds Facds Feds Focds Fabed
The effect F, indicates the effect of the constant factor which is created by the
variables that are not examined. In a way, it does not fall into the category of
effects since it does not include any of the examined variables.

[t must be mentioned that in stochastic experiments, each experiment is
carried out n times and statistical analysis of the findings takes place afterwards.
Stochastic experiments are outside the scope of this diploma thesis, therefore,
further analysis is not deemed necessary.

2.2.3 Full Factorial Design of 3 or more Levels

It is a fact that in industrial applications variables are quite frequently
separated in two levels in order to proceed with a quick study and obtain an
estimation of the space of the responses with the least possible computational
effort and cost (Antony 2003). A study of more levels is required when the
desired level of accuracy is high and therefore the approximation of the real
response map with a regression surface of higher order is attempted.

The example of an experiment of k free design variables of three levels
will be presented. The aforementioned design requires 3¥ experiments, all of
which have to be carried out in order for the factorial design to be full, with
3k — 1 effects. The number of runs of the experiments increases exponentially
with the increase of number of free variables. For instance, for a problem of three
variables 33 = 27 runs are required, whereas when the number of variables
increases to 5, the required number of experiments reaches 35 = 243, therefore
increasing significantly the total runtime and cost of the design.

The main effects of the variables are k. The interactions are of 2,3, ...,k
factors. The need of an approximation model of higher order results in the
increase of the order of the interactions. Interactions of the AB®2C® ... K% form
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appear now, where c; are integers that point to the power of the respective
variable in the particular interaction. For example, the interactions of a problem
of 4 design variables are:

ABCD, ABCD?, ABC2D, AB2CD, ABC?D?, AB2C2D, AB2CD?, AB2C?D?

In this thesis it is decided that interactions where the power of the first
variable is more than one will be ignored. These interactions are useful when
designing a block (a type of design that will not be presented in this diploma
thesis), a fractional factorial design and approximation models. These
interactions correspond to nothing in the physical world. The interactions to be
analyzed are selected by the user based on their experience and the nature and
requirements of the problem. A main criterion for this selection is the
importance of the variables in each interaction, the desired accuracy of the study
as well as the cost of executing the experiments (high cost can result in reduced
capacity for experiments leading to reduced study of the interactions).

2.2.4 Complex full factorial design of many levels

So far only symmetric designs have been presented, i.e. design where the
variables are discretized in the same number of levels. However, in several cases
designs that require combination of variables of different number of levels are
utilized. These designs are called non-symmetric designs. In a non-symmetric
design with several and different levels of the variables, the matrix of the design
variable vectors is significantly more complex and attention, while devising the
experiments, is needed to ensure all possible combinations of the variables are
studied. This method is not used in this diploma thesis and therefore will not
further be presented.

2.3 Fractional Factorial

Fractional designs are expressed using the notation 1¥-p, where | is the
number of levels of each factor investigated, k is the number of factors
investigated, and p describes the size of the fraction of the full factorial used
(Antony 2003). Formally, p is the number of generators, assignments as to which
effects or interactions are confounded, i.e., cannot be estimated independently of
each other. A design with p such generators is a 1/(lp) fraction of the full
factorial design.

For example, a 25-2 design is 1/4 of a two level, five factor factorial
design. Rather than the 32 runs that would be required for the full 2> factorial
experiment, this experiment requires only eight runs.
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2.4 Central Composite Design

The central composite design is a design of experiments that results in
great accuracy of the model that will be trained later without increasing though
the number of levels of the variables. It is applied only in problems with
quantitative design variables that are continuous in the design space. This design
consists of:

o A factorial design, full or fractional. In full factorial designs of a small
number of levels, Central Composite Design can be implemented to
ensure increased accuracy of the design. This design is called initial
design.

. A group of central points, whose values are the mean value of the
products of the variables and a factor. For further explaining, visualize
the problem of three design variables where the CCD would place the
central points at the center of the squares of the design space.

o A group of axial points, whose values are determined by the central
points, increasing by one factor the respective variable at a time.

In the case of two levels per variable, the central points are calculated as
the mean value of the levels of each variable. Each coordinate of the central
points is multiplied by a factor to produce the axial points. This factor is the
radius of the circle formulated by the axial points with respect to the central
points (i.e. the axial points are located on a circle in relation to the central
points). It is an important parameter of this type of design and its value changes
based on the problem at hand and the approximation area. In a 2p factorial
design, for a radius greater than one, the values of the axial points in each
direction denote the new minima and maxima of each variable. It is noted that
the radius is defined non-dimensionally in relation to the values of the design
variables.

There are three distinct types of designs:

1.  Circumscribed (CCC): This is the most common type of design. The
distance from the center to the axial points is defined based on the
problem and which points of the design space are of greater interest.
The axial points expand the limits of each variable. There is a cyclical,
spherical, hyper-spherical symmetry depending on the variables. The
circumscribed design is produced by the existing factorial design
augmented with axial and central points.

2. Inscribed (CCI): The initial limits of the variables are not violated. The
axial points serve as the limits of the variables and a factorial design is
produced in the interior. The distinction from other types of design is
the fact that the factorial design is not based on the limits of the
variables. It is, essentially, a circumscribed design divided by an
appropriate number in order to detain the design to the limits of the
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variables. It is therefore a product of a scaling of the above mentioned
type of design.

3. Face Centered (CCF): In this type of design the axial points are located in
the middle of each edge of the squares of the factorial design space. The
radius of the central composite design is equal to one.

These types of designs are rotational. The selection of the radius is an
important feature when devising the design. In order to maintain their rotational
properties, the radius depends on the number of runs of the experiment and the
design variables:a = [number of factorial runs]*/*

For instance, in a full factorial design of k design variables with two levels
per radius, the radius is calculated as:a = [21‘]1/4

The axial points are located at a distance +a, —a respectively in relation to
the central point and the (active) variable whose value is altered. For a radius of

one, the axial points reside on the limits of the variables.

2.5 Other Types of Design

2.5.1 Block Design

In combinatorial mathematics, a block design is a set together with a
family of subsets (repeated subsets are allowed at times) whose members are
chosen to satisfy some set of properties that are deemed useful for a particular
application (Cavazzuti 2013). These applications come from many areas,
including experimental design, finite geometry, software testing, cryptography,
and algebraic geometry. Many variations have been examined, but the most
intensely studied are the balanced incomplete block designs (BIBDs or 2-
designs) which historically were related to statistical issues in the experiments. A
block design in which all the blocks have the same size is called uniform.

2.5.2 Taguchi method

Taguchi's designs aimed to allow greater understanding of variation than
did many of the traditional designs from the analysis of variance (Cavazzuti
2013). Taguchi contended that conventional sampling is inadequate here as
there is no way of obtaining a random sample of future conditions. Taguchi
proposed extending each experiment with an "outer array" (possibly an
orthogonal array); the "outer array” should simulate the random environment in
which the product would function. This is an example of judgmental sampling.

Later innovations in outer arrays resulted in "compounded noise." This
involves combining a few noise factors to create two levels in the outer array:
First, noise factors that drive output lower, and second, noise factors that drive
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output higher. "Compounded noise" simulates the extremes of noise variation
but uses fewer experimental runs than would previous Taguchi designs.

2.5.3 Box-Behnken

Box-Behnken designs are experimental designs for response surface
methodology (Cavazzuti 2013), devised by George E. P. Box and Donald Behnken
in 1960, to achieve the following goals:

e Each factor, or independent variable, is placed at one of three equally
spaced values, usually coded as -1, 0, +1.

e The design should be sufficient to fit a quadratic model, that is, one
containing squared terms, products of two factors, linear terms and an
intercept.

e The ratio of the number of experimental points to the number of
coefficients in the quadratic model should be reasonable.

e The estimation variance should more or less depend only on the distance
from the center and should not vary too much inside the smallest (hyper)
cube containing the experimental points.

Each design can be thought of as a combination of a two-level (full or
fractional) factorial design with an incomplete block design. In each block, a
certain number of factors are put through all combinations for the factorial
design, while the other factors are kept at the central values. For instance, the
Box-Behnken design for 3 factors involves three blocks, in each of which 2
factors are varied through the 4 possible combinations of high and low. It is
necessary to include center points as well (in which all factors are at their central
values)

2.5.4 Optimal design

In the design of experiments, optimal designs are a class of experimental
designs that are optimal with respect to some statistical criterion. The creation of
this field of statistics has been credited to Danish statistician Kirstine Smith.

In the design of experiments for estimating statistical models, optimal
designs allow parameters to be estimated without bias and with minimum
variance. A non-optimal design requires a greater number of experimental runs
to estimate the parameters with the same precision as an optimal design. In
practical terms, optimal experiments can reduce the costs of experimentation.

The optimality of a design depends on the statistical model and is
assessed with respect to a statistical criterion, which is related to the variance-
matrix of the estimator. Specifying an appropriate model and specifying a
suitable criterion function both require understanding of statistical theory and
practical knowledge with designing experiments.
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3 Evolutionary Algorithms

3.1 General

As mentioned previously, the stochastic optimization process in this
thesis is based on a metamodel-assisted evolutionary algorithm (MAEA) which is
materialized by EASY platform developed by the PCOpt/NTUA while
incorporating regression models. In the paragraphs below, EA, EASY, MAEA and
regression models are described.

3.2 (u.A) Evolutionary Algorithm

The (n.A) Evolutionary Algorithm makes use of three populations, the
parent population P%, the offspring population Pf and the elite population P¢ of

every generation (g). The parent population comprises of the individuals that
will reproduce to generate the offspring of the next generation (Giannakoglou
2005). The elite populations comprises of the fittest/best individuals (solutions)
that have emerged from the very beginning of the evolution procedure until the
current generation. The elite population is used to reinforce the “good”/desired
characteristics of the individuals of the new generation (elitism) and provides
the optimal solutions at any point of the evolution procedure/at the point that
the evolutionary procedure is stopped.

The process of an Evolutionary Algorithm is described in the following
steps:

1. Initialization: The population of the zero generation (g = 0) is initialized
by a Pseudo Random Number Generator. The generator will provide each
individual of the population with a value for each of the design variables
in a random manner. The values of the design variables have to satisfy the
limits/have to lie in the design space set by the user. The user can opt for
specified/preset values for the zero generation.

2. Evaluation: All the individuals of the offspring population Plg are
evaluated on the appropriate evaluation tool, i.e. the selected evaluation
tool is called for each vector of design variables and the vectors of the
objective functions values and of the constraints, if applicable, are
obtained. In the case of constrained problems, the vector of constraints is
added to the objective function vector. The use of penalization functions is
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required in order to deal with in-equality constraints of the following
formcy, (¥) < cf"¢5. Depending on the severity/magnitude of the violation
of the constraints, a penalty (most frequently, exponential) penalization is
added to the objective function vector. This penalty takes the form of
thres

exp (ak %) where ay, is the coefficient that shows/expresses how

severe the penalty will be, ¢, (x) is the value of the constraint for the
respective variable vector, cf"is the maximum allowed value of the
constraint, dj is the relaxation boundary that defines the value after
which death penalty will be assigned/implemented to the variable vector.
The death penalty is a penalty so high that, when added to the objective
function vector, the candidate solution will no longer participate in the
reproductive procedure/process in a significant manner.

Renewal of the elite population: The elite population P? is renewed with
the individuals of the new generation that have better
characteristics/performance. Each individual of the population is
compared to the individuals of the elite population. If there is a design
variable vector that is superior in at least one objective and not inferior in
any of the objectives, then this design variable vector is included in the
elite population by replacing the worst/weakest elite individual.

Elitism: Elite individuals replace randomly some of the individuals of the
offspring population. It is common practice to replace weak individuals in
order to ensure that in the next generation there will be no worse
solutions compared to the previous generation. This process is called
Elitism.

Selection of parents: Making use of the parent selection operator will yield
the next parent generation. Both the offspring population of the current
generation and the parent population of the previous generation
participate in the procedure of selection.

Reproduction: The process of reproduction will yield the next generation
of offspring. Two or more parents are selected and subsequently
crossovered and mutated in order to generate a new offspring.
Convergence Criteria: The termination criteria, i.e. if the number of
evaluations has reached a maximum level or if the process has converged
and can no longer yield improved solutions compared to the current ones
for a reasonable number of latest generations. If the stopping criteria are
met the process terminates, if not it is resumed from step 2 with the
offspring of the new.
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3.3 EASY Software

Evolutionary Algorithm optimization can be carried out with several
commercial or open-source software. In this diploma thesis, the EASY
(Evolutionary Algorithm System) platform developed by the PCOpt/NTUA is
used (Kampolis & Giannakoglou 2009). This platform is an optimization software
designed for general purpose. As long as the evaluation tool is available, the
EASY software can solve problems of any scientific field, single or multi objective,
constrained or not. It is a powerful optimization tool already used by Industry.

The software incorporates both stochastic and deterministic methods
that contribute, combined or separately, to the solution of each problem. In
addition to the evaluation tool, the EASY software can also make use of low-cost
metamodels for the evaluation of the fitness of the individuals. The metamodels
employed are connected to the evolution and provide a low-cost estimation of
the performance of each candidate solution. In this way, significant reduction of
the computational complexity/cost can be achieved, due to the fact that fewer
evaluations with the (most of the times) time-consuming evaluation tool are
required. Another feature that allows further reduction of the computational cost
and the runtime is the parallel evaluations of the fitness scores in CPUs and
GPUs.

3.4 Metamodel Assisted Evolutionary Algorithms (MAEA)

In the majority of the problems where the appropriate-relative evaluation
tool is time-consuming, such as solving the Navier-Stokes equations, the
computational cost is prohibitively high, rendering thus the optimization process
through EAs unfeasible. The use of metamodels contributes to the reduction of
the number of evaluations and consequently the reduction of the computational
time (Kampolis et al. 2007). Metamodels do not provide an exact evaluation of
each individual but rather an approximation of the real vector of objectives with
fractional computational resources. In the course of the evolution, the
metamodel’s role is to point to the most promising individuals that will be re-
examined through the exact evaluation software. This technique is called Low-
Cost Pre-Evaluation of the candidate solutions. The incorporation of metamodels
in optimization through Evolutionary algorithms led to what is called today
Metamodel Assisted Evolutionary Algoritmhs (Karakassis and Giannakoglou,
2006).

Metamodels have to be trained properly using points that have been
already evaluated through the exact evaluation tool. The Database (DB) consists
of variable vectors that have been evaluated by the exact evaluation tool. A
subset of the database serves as the samples that will train the metamodel
(training patterns); this subset is selected according to the type of the
metamodel. The size of the subset is of great importance for the validity of the
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metamodel; a non-representative sample may lead to false estimations of the
variable vectors that are pre-examined.

The metamodels can be local or global. Local surrogate models
approximate solutions of a defined area of the design space whereas global
models provide reliable solutions for candidates in any area of the design space.
Metamodels are also categorized based on their connectivity to the evolution, on-
line or off-line.

3.4.1 Off-line and On-line MAEA

Off-line metamodels are usually global surrogate models. The metamodel
is trained once before the initiation of the EA, therefore it is independent to the
evolution of the solutions during the optimization. The exact evaluation software
is used to create the database out of which samples will be selected
automatically for the training of the metamodel. In multi objective optimization
problems separate metamodels are trained for each objective function. In the
course of the optimization process, only the approximation of the objective
variable vector, provided by the pre- trained metamodel, is taken into
consideration. Upon convergence of the optimization process the optimal design
variable vector will be re-evaluated through the exact evaluation tool in order to
specify the real objective variable vector.

On-line metamodels are surrogate models that are trained in the course of
the optimization process. Initially the metamodel is trained by a training sample
provided by the exact evaluation tool. Afterwards, as the generations evolve and
additional exact evaluations have been made, the metamodel is re-trained by the
renewed training sample. In the case of On-line MAEA, the evaluation tool and
the metamodel are used alternatively. In this category of MAEA, the metamodel
changes and adapts as the generations progress. Main representative of either
category are the artificial neural networks.

3.4.2 MAEA with Low-Cost Pre-Evaluation

The Low-Cost Pre-Evaluation serves as a low-cost classifier of the design
variable vectors of each generation (Kampolis, 2009, Giotis, 2001). The

individuals with the most promising performance according to the metamodel
approximation will be re-evaluated through the exact evaluation software.
Experience shows that local metamodels provide more accurate approximations
when the objective function space is complicated.
The steps of the MAEA that relies upon the Low-Cost Pre-Evaluation are
presented below:
1. The optimization process begins with a conventional (p,A) EA, that is, the
first generations are evaluated through the exact evaluation tool provided



Chapter 3 21

by the user. The individuals of these first generations will be recorded in
the database that will be later used for the training of the metamodel.

2. The training of the metamodel can take place only after the size of the
database reaches a sufficient/adequate level. The fitness scores of the
candidate solutions of the following generations will be approximated by
the metamodel. The runtime and computational cost of the metamodel
“evaluation” is insignificant compared to the exact evaluation. In local
metamodels, the performance assigned to the candidate solution is site-
specific, i.e. depends on the nearest points of the database and their
performance.

3.  The objective variable vectors that are acquired by the evaluation of each
generation are ranked from most to least suitable. In single objective
optimization this is an easy, univocal and self-evident/obvious task. On
the contrary, in multi objective optimization, the comparison and
classification is a much more complicated procedure. In the latter, the
metamodel will yield one performance at a time.

4. The most promising candidate solutions of each generation are re-
evaluated through the exact evaluation software. The number of these
evaluations, implicitly determined by the user, defines the computational
cost for each generation. The exact solutions enrich the database to be
used for the training of the metamodel in next generations.

5.  Each design variable vector is paired with its objective variable vector.
The termination criteria check takes place, if the process has converged
then the optimization process stops, if not the new generation is created
and the process goes on.

3.5 Regression Model

Metamodels frequently used alongside Evolutionary Algorithms are the
Artificial Neural Networks and Regression Models (Rao 2008). In this diploma
thesis, offline Regression models were used therefore only these will be
presented.

Regression analysis dates back to the 19th century when the need to
determine the orbits of celestial bodies around the sun from astronomical
observations was first addressed by Legendre and Gauss. The earliest form of
regression is the well-known method of least squares in which a solution is
approximated for overdetermined systems, i.e. systems where the number of
equations is greater that the number of unknowns. The most important
application of the method of least squares is the least square fitting, a
mathematical procedure for determining the best fitting curve to a given set of
points by minimizing the sum of the squares of the offsets of the points from the
curve.
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Regression analysis includes the dependent variable, the set of
independent variables and the unknown coefficients of the function. A
regression model will relate the dependent variable to a function of the
independent variables and the unknown coefficients.

Based on the number of independent variables, regression analysis can be
distinguished to single or multiple regression. In single regression, the effect of
only one variable of the response is considered whereas in multiple regression
several factors can enter the analysis separately so that the effect of each can be
estimated.

Furthermore, regression models can be distinguished in two main
categories, linear and nonlinear regression. In linear regression, the dependent
variable is approximated by a linear combination of the independent variables.
Linear regression consists of least squares fitting of lines as well as polynomials.
On the other hand, nonlinear regression, such as exponential, logarithmic,
trigonometric models, involves nonlinear combinations of the input factors. In
nonlinear regression, there is no unique formula to determine the best fit
function, therefore iterative methods and numerical optimization are
implemented to determine the curve of global minima of error. In some cases, it
is possible to linearise the approximation function and proceed with linear
regression, however, this may entail severe implications to the model in terms of
alterations in the error structure and effect of independent variables on the
response.

Several key assumptions are made in order to implement a regression
model, for instance homoscedasticity (constant variance) of the errors, normality
of the error distribution, statistical independence of the errors and a
representative sample of the population used for to train the regression model.
Linear independence of the independent variables is a common assumption that
however does not apply always, for example data fitting with polynomials is
considered a linear regression model that treats the exponents as independent
variables that are linearly dependent. Additional assumptions are made based on
whether the regression is single or multiple and linear or non-linear.

Regression models can serve as a complimentary tool to evolutionary
algorithms.

In Regression model, unknown parameters are introduced and the
definition of them determines the quality of the adjustment of the polynomial
function to the solutions of the real model. These parameters are computed by
solving a simple linear method of least squares.

For a vector of N independent variables x, the first-order regression
model is:

N
9@ =bo+ ) byrn+e a1
n=1
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where b,, n =0, ...,N are the unknown parameters of the model and ¢ is the
error.
The second-order regression model is defined in a similar way:

N N N N
y(f) = bo + z bnxn + Z bl-l-xl-z + 2 2 bl]xlx] +¢ 3.2
n=1 i=1

i=1 j=i+1

where bj; are the additional unknown parameters of the model.

i reveals the interaction of the

variables and constitutes a very important feature in complex problems with
interactions. The above-mentioned models are the most frequently used,
however, any other model of higher degree and different interactions can be
devised and used. The order and interactions of variables of the model are
subject to the nature of the problem and their definition depends on the
knowledge and experience of the user.

Unknown parameters b; of the regression model are defined by
employing the Least Squares Method that minimizes the error €. The assumption
that K fitness scores y;, Vs, ..., yx for the design variable vectors X, X5, ..., X) are
known is made. Both the objective variable vector y; and the respective design
variable vector x;; are known, where i denotes the solution and j the respective

The product of the design variables x;x

design variable. Let ; be the error of the result of the least squares method to the
real result, for the i observation. The analysis of a first-order regression models
is presented for simplicity’s sake. Utilizing a first-order model and solving for the
error the following equation for each performance is obtained:

N
& =Y —bo — z bjxij 3.3
j=1
The Least Squares function is:
K K N 2
L=Z€2=Z J’i—bo—zbjxij 3.4
] i=1 j=1

=1 i

The function L has to be minimized with respect to the parameters b;,

therefore its first-order derivatives with respect to the parameters have to be
Zero:
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dL o z ) 3.5
— =-2 Yi_bo_ b]xu xij=0]=1,2,...,k
ab, Z ’ Z

= =

These equations can easily be solved when expressed in matrix form.
The initial equation of the observations is:

y=Xb+e¢ 3.6

YI 1 x4
wherey— 1 X21 22 XZN ,b =
1 XKl XKZ

In general, y is a vector of dimension K, as long as the experiments, X, are
a matrix of dimensions KxN with N free variables, b is a vector of dimension N
and ¢ is a vector of K random errors.

The function L is expressed as:

e2=¢ce=(W—-Xb)(y—Xb)=y'y—2b'X'y +b'X'Xb 3.7

W
INgE

i=1

The symbol (') symbolizes the transposed matrix. By differentiating the
above function in a similar manner as above, we get:

oL
55 = ~2X'y +2X'Xb =0 28
X'Xb =Xy

The latter equation is identical to equation3.5. Therefore the calculation
of the elements of vector b will take place though equation 3.8 in its matrix form.
b=XX)"1X"y 3.9

The matrix X'X is of dimension NxN whereas X'y is a vector of dimension
N. Both are calculated relatively easy. The system can be solved by employing
several methods, such as the Gauss Elimination. Since X’'X is a symmetrical
matrix, the most straightforward way to solve is the Cholesky method.

After solving, the regression model can be expressed in the form of
matrices:
v, = Xb 3.10

where ¥,is the prediction of the model for each vector b.



Chapter 4 25

4 Optimization of the Original HVAC Duct

4.1 General

Scope of this work is the optimization of TOYOTA Yaris HVAC duct in order
to achieve better performance with respect to the defrosting/defogging
procedure.

4.2 Design Parameters

In order to proceed with shape optimization of the duct geometry, it is
necessary to define first the design parameters and their range.

In the studied case, three design parameters which define the geometry are
chosen, namely: 1) Distance: distance of duct outlet from windshield (Figure 4.1),
2) Opening: opening of outer duct outlet (Figure 4.2) and 3) Angle: angle
between duct outlet and tangent to windshield (Figure 4.3).

Based on these, a certain number of geometries are generated and
simulated. The upper and lower limits of the design parameters are presented in
Table 4.1.

Figure 4.1: Design parameter: Distance
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Figure 4.2: Design parameter: Opening

Figure 4.3: Design parameter: Angle

Table 4.1: Design parameters values

Parameter Lower limit Nominal value Upper limit
Distance [mm)] -25% - 240%
Opening [mm] -26% - 48%

Angle [deg] -35% - 30%

4.3 Design Constraints

After selecting the design parameters, appropriate constraints should be
set in order to achieve a desired and realistic optimal geometry to manufacture.
In the studied case, there are two kinds of constraints: a) geometric and b) flow
related and specifically the total pressure drop.

4.3.1 Geometric Constraints
Geometric constrains (construction procedure, operability,, fitting in front

component, aesthetic etc.) concern the shape of the duct and are determined by
collaboration between designers and engineers. In the studied case, three
geometric constraints are imposed, namely: 1) Frozen position and shape of inlet
of defroster (Figure 4.4) in order to reduce costs of altering HVAC unit, 2)
Parallel edges of outlet of defroster (Figure 4.5) for aesthetics reasons and 3)
Constant distance and opening throughout the width (Figure 4.6) for IP
constraints and aesthetic reasons. All the generated duct geometries must
respect these constraints.
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4.3.2 Total pressure Drop

The fan of the defrosting system is driven by the car engine power or by
electricity power in the case of an electric car. Thus, higher efficiency of this
system means that it has the desired operation with the lowest possible power
consumption. According to this, the new duct geometries should have equal or
lower total pressure drop compared to the starting (reference) configuration.
This is the flow related constraint used in this study.

4.4 Sampling of Design Space

Having set the design parameters and constraints, the determination of the
geometries to be studied from the entire design space, is possible.

A three-level design is proposed so as to model possible curvature in the
response function and to handle the case of nominal factors at 3 levels.
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Having 3 design variables [k] allows to run a full factorial experiment of 3
levels (3k factorial design) which results to 33=27 new designs. The design
parameters values for these designs are depicted in Table 4.2.

Table 4.2: Design parameters values of the 27 new designs

Distance Opening Angle |Distance Opening Angle Distance Opening Angle
-25% -26% -35% -25% -26% 0% -25% -26%  30%
-25% 0% -35% -25% 0% 0% -25% 0% 30%
-25% 48% -35% -25% 48% 0% -25% 48%  30%
0% -26% -35% 0% -26% 0% 0% -26%  30%
0% 0% -35% 0% 0% 0% 0% 0% 30%
0% 48% -35% 0% 48% 0% 0% 48%  30%
240% -26% -35% 240% -26% 0% | 240% -26% 30%
240% 0% -35% 240% 0% 0% | 240% 0% 30%
240% 48% -35% 240% 48% 0% | 240% 48%  30%

4.5 Preparation of New Geometries

Having determined the values of the design parameters for the 27
geometries, it is now possible to create these geometries in order to evaluate
them and find the most promising ones.

New geometries can be generated by two methods: 1) generation with CAD
and b) changing through morphing the original surface mesh. In this study, the
morphing procedure is used and the new geometries meshes will result from the
mesh of the original duct.
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4.5.1 CAD

A CAD software is used in order to create the new geometry based on the
design parameters values. The CAD data are used to create a water tight surface
mesh which finally leads to surface and volume mesh and the evaluation can be
performed (Figure 4.7).

Water tight Surface &
CADdata —> gyrface > Volume mesh

Figure 4.7: CAD based creation of new geometries

The major disadvantage of this method is that it is a very slow procedure
and requires every time the construction of a different mesh each time a new
geometry must be evaluated.

4.5.2 Morphing

Another approach is to use morphing tools in order to create the new
geometries based on existing mesh of the original duct (Figure 4.8).

Existing Mesh

Surface mesh > morphing > Volume mesh

The advantages of this method is that once morphing parameters are set,
the morphing procedure is very quick and mesh quality improvement can take
place without altering significantly the initial mesh.

The disadvantages of this procedure is that setting morphing parameters
can be difficult based on some requirements. Another drawback is that morphing
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can result to unrealistic mesh geometries which require manual check and
evaluation (attention is needed when setting morphing parameters and
generating mesh geometries) (Figure 4.9).

Original Duct MorphedDuct Manual Modifications

Figure 4.9: Manual morphing modifications

In order to reduce the generation of unrealistic geometries, a special entity
in meshing, the nested elements must be used. They are entities that act as
constraints during the morphing actions (Figure 4.10). A nested element acts as
an un-deformable shape. The movement in the 3D space that the nested element
are allowed to do, depend on the constraints that are imposed to them by means
of degrees of freedom.

In this study, the nested elements ensure that the curvature of the
windshield curve on axis y remains constant during morphing. The elements on
the windshield are dependent of the single element in the lower part of the duct.
Translation and rotation around all three axes is not allowed.

Figure 4.10: Nested Elements
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Morphing tools provide two options: a) box morphing and b) direct fit
morphing.

e  Box morphing

Box morphing is performed via boxes that can be reshaped by moving
control points that are located along their edge. Multiple hexahedral morphing
boxes following the shape of the structure are created around the part of
assembly that is intended to be morphed. Moving or sliding control points results
in the morphing on the entities inside the morphing box along the desired
direction (Figure 4.11). In this method, linked boxes can be used in models
where symmetry appears, but morphing box parameters can result in conflicting
displacements.

Figure 4.11: Box morphing

e Direct fit morphing

Direct fit morphing is performed without using boxes; it can be used for
local modifications or complete assemblies, as it can guarantee smooth
continuity (Figure 4.12). The specified part of the model can be displaced as a
non-deformable body while the surrounding area absorbs the movement
without damaging the continuity of the model.
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Purple = Morphed entities = Control entities

Blue = Bounds = Frozen entities

Figure 4.12: Direct fit morphing

Parametric morphing

By defining the desired morphing actions as parameters, the user can
enforce desired shape modifications by simply changing the numerical input
values of the appropriate parameters. This functionality is highly useful in DoE
studies.

Morphing parameters

For performing the mesh morphing, the definition of the morphing
parameters is necessary. For the studied case, morphing parameters derive from
geometry constraints and are:

- Distance (used for Direct Fit Morphing)

- Opening (used for Direct Fit Morphing)

- Angle (used for Box Morphing)

4.6 Solver & Mesh

For the solution of the flow, the construction of mesh is mandatory. To
speed up building the model, CAD data is only used for parts where high
accuracy is needed. Laser scanned surface data is used for the rest of interior
(Figure 4.13).

After geometry clean-up, CAD data is precisely stitched to STL data in ANSA

software running in TME. Mesh refinement boxes are defined to achieve high
accuracy where needed while balancing overall computational cost (Figure 4.14).
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Nozzle
Windshield
Mirror

IP around nozzle

Precise stit€hing of CAD
datawith STE

CAD data

Figure 4.14: CAD data to STL in ANSA

The volume mesh is a combination of structured layers and unstructured
mesh. Layers are generated to simulate with accuracy the flow in the boundary
layer (Figure 4.18).

Figure 4.15: Volume mesh
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After the generation of the mesh for each desired geometry, the solution of the
flow can be obtained by solving the Navier-Stokes equations. The general solving
procedure is depicted in Figure 4.16. Any other useful data, can be computed via
post-processing. The used software is openFOAM and the solver is the
simpleFoam.

Standard CFD process

Flow (velocity & Pressure) Target Value
CFD S(.)lver Post-
(Navier- : :
processing | Defrosting-
-

— | defogging
performance

Figure 4.16: The general solving procedure

Before the solving, with the pre-proccessing procedure, boundary flow
conditions concerning the inlet and the outlet flow are set. The flow velocity is
fixed with a zero gradient for pressure at the inlet and, at the outlet, the gauge
pressure is 0 atm with a zero gradient for velocity (Figure 4.17).

Pressure = 0 (atm)
Zero gradientvelocity

Inlet: Fixed velocity Outlet:
Zero gradient pressure

Figure 4.17: Pre-processing procedure

After the pre-proccessing procedure, the solution of the flow is achieved by
solving the Reynolds-Averaged Navier-Stokes (RANS) equations assuming
steady state. Flow is assumed incompressible and the k-¢ turbulence model is
used. Finally, 2nd order accuracy is chosen.
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The solving phase is successful if all values are converging to a stable result
and that the residuals of the Navier-Stokes equations are very small (below 1E-4
and 1E-6 for pressure and velocity respectively).

In addition to the residuals, the velocity and pressure at a probed location
as well as the value of the objective function are monitored.

After solving the flow, the computation of other useful parameters (like
velocity pattern) is able through a post-processing procedure as it can be seen in
Figure 4.18. For example, by generating streamlines, it can be concluded that
recirculation occurs in the lower half of the windshield while at the upper half
the velocity magnitude is almost zero (Figure 4.18).

Flow Velocity pattern
I Max
I Min

Cabin : Static pressure Cabin : Velocity magnitude

I Umag =0 m/s

Figure 4.18: Post-processing results

4.7 Target & Objective Function

The target of this study is to improve the velocity pattern of the air close to
the windshield (Figure 4.20). In other words, the aim is to achieve more uniform
distribution of the velocity and increase its magnitude on the weakest areas
(Figure 4.19), which for the current design is mostly the upper part of the
windshield (Figure 4.21). At the same time, as stated previously, the new duct
geometries should have equal or lower total pressure drop compared to the
starting (reference) configuration.
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Current velocity pattern

U<Utar

Target: more than
Utar everywhere

Figure 4.20: Area of interest

Optimization volume

Mathematical
target: U=Utar
upper half

Figure 4.21: Optimization target: improvement of velocity magnitude in the
upper half windshield

The evaluation of each new shape is performed by the use of objective/cost
functions. In a minimization problem like the studied one, lower value of the
objective function means better performance.

The used objective functions are described below.

1 2
Fobj = E f (uiz - ui,tarz) dQear 4.1

Qtar

Or, in a general form,

Fobj = j FObj-Qtar dQear 4.2

Otar
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The volume-averaged total pressure losses (Fp,) and the fluid power
dissipation (Fp, ) can be computed by:

1, 1,
Fp,= - f<p+§uk >uinid5_f<p+zuk )uinidS

T St So
n; is directed outwards

F _fv+vt 6ui+6uj2
PL ™ 2 ax] axi
0

4.3

df

Proving that the volume-average total pressure losses are the equivalent
of the fluid power dissipation will allow us to use the existing dissipated power
objective function and therefore, reduce the need to interfere further with the
source code.

The analysis applies to shape optimization and the total kinetic energy along as
its time derivative is:

1 2
Eyin = jzui dfl
n
OEkin Oul
ot j Yiae d
n

At the same time, the momentum equation:
Jdu; du; Jdp arl j_

RY%Y = — R
C T Yo Tox ox
Ou; _ ou; dp ou; auj
ul a ulu] ax] + u’l a u’l a [(V + vt)( axl 4.4
T T T
term(1) term(2) term(3)
(?(ul)2 10u®u;
term(1) = =
2 axj 2 axj
o(u:
term(2) = (au;p)

Ui

0 0
term(3) = y; F [(v + vt)Sij] = [(v + vt)uiSi]-] V+v)Sij5— 5%,
j j

ou;
where— %0
6x]-

should be satisfied and so does the continuity equation:
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d
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= Esl.j
Therefore it is proven that:
1 v+v
S10 4.7
and the dissipated power is:
MSijzd.Q 48

4.8 Results of DoE Study

After having constructed the evaluation tool for the new geometries, it is
now possible to estimate the performance of the 27 ducts as they described in
Table 4.2. The performance of original duct is depicted in Figure 4.22, while
indicatively 3 out of 27 ducts along with their performance are depicted in

Figure 4.23.
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D: Distance
O: Opening
A: Angle

Figure 4.22: Air velocities for original duct

Duct appearance Duct performance

D=-25%
0=-26%
A=-35%

D=0%
0=48%
A=0%

D=24.0%
0=0%
A=30%

Figure 4.23: Geometry and performance of various ducts
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From the examination of the performance of these 27 ducts, it can be
concluded that:
a) for constant angle and opening, distance increase is beneficial,
b) for constant distance and opening, angle decrease is somehow
beneficial,
c) for constant angle and distance, opening values lower or equal to the
original one give better performance.

In order to better assess the performance of these 27 ducts, the objective
function and the total pressure drop are computed for each duct. The percentage
difference from original for the objective function and the total pressure drop is
depicted in Figure 4.24 through Figure 4.26.

Y
=]

Total Pressure Drop

Obje ctive Function

. ™ e
-5 -40%
distance distance

Figure 4.24: Objective function and total pressure drop difference from original
duct for original opening and angle values and variable distance value

Y
=]

Total Pressure Drop

Obje ctive Function

Fa
€3

opening o opening

Figure 4.25: Objective function and total pressure drop difference from original
duct for original distance and angle values and variable opening value

Total Pressure Drop

Objective Function
]

angle o angle

Figure 4.26: Objective function and total pressure drop difference from original
duct for original distance and opening values and variable angle value
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It is concluded that Distance and Opening have a significant effect on
objective function and total pressure drop: higher distance value results to lower
objective function and total pressure drop values (Figure 4.24), higher opening
value results to higher objective function and lower total pressure drop values
(Figure 4.25). Finally, Angle has little effect on objective function and total
pressure drop (Figure 4.26).

The performance of the 27 geometries for the objective function and the
total pressure drop is summarized in Figure 4.27.

(=1
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= L
z
s -
@ Criginal Duct
o @
] a
S 3
x 3]
=
- =
w Lkl
@ i
o L

Five geometries & .
perform betterthan /

the original duct on
both targets +— Improved velocity pattern

Objective Function

Figure 4.27: Performance of the 27 geometries

In order to evaluate the combined effect on performance from the
simultaneous variation of parameters values, an appropriate parametric study
was carried out in which one parameter takes a constant value while the values
of the other two are varied (Figure 4.28).

Objective Function = F(opening, angle) Objective Function = F(distance, angle)

; : = —
e - .E 10
g . ° 5 o | oo .
g™ 2
g-z: E o
e o ]
s -Z5% 8

303 el -30 L]

opening e distance

Figure 4.28: Results of parametric study

From this study it is concluded that:
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a)  Assigning the minimum value to the opening parameter results always to
better velocity patterns but higher total pressure drop as well.

b)  As the value of angle increases, the distance and opening parameters have
less effect on the objective function.

c)  Although the parameters are independent, their contribution to the
objective function is not.

d) The objective function approximation must contain interaction terms to
serve as a suitable approximation to the true relationship.

In order to find the optimal duct geometry, an optimization procedure is
needed by which the performance of each new duct is quantified and the
geometry is alternated accordingly.

The computation of the duct performance by solving the RANS equations is
costly, especially having in mind that many calculations should be performed due
to the evaluation of every new geometry which makes this procedure time
expensive.

To overcome this problem, the regression model which can approximate
the precise performance value will be used as an evaluation tool. In this case, the
computation of the objective function is performed only for the most promising
solutions. An indication of the computation cost difference between the two
methods is depicted in Figure 4.29. The mathematical expression of this tool is:

w

3

3 3 3
y= Z azix; + Z azi—1xf + 2 azi_px] + Z Z Qi+ (j-2)+9XiX]
i=1 i=3 j 4.9

i=1 i=1j=2
i<j
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2500
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15 m Set up automated
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e Train &Evaluate RSM
10 ® Morph & Solve DoE cases
® Set up DoE
5
0

RSM Exact
Evaluation Method

Figure 4.29: Comparison between the exact and the RSM evaluation methods

The determination of the coefficients (training) of this tool is performed by
the use of a software developed by the PCOpt/NTUA which is fed with the value
of the objective function for the corresponding geometries. The training
procedure is depicted in Figure 4.30.

ExactSolutions Train Exact Solution of Evaluate Evaluation Tool

From DoE Random point RSM

RS
Add Extra pointto _

Exact Solutions

Figure 4.30: Training procedure of the evaluation tool

The optimal geometry that is derived from the RSM tool can then be fed
into an optimization procedure that relies on the numerical solution of the RANS
equations. In this way, a good approximation of the best geometry can be found
by RSM, which then can be further optimized by a more precise tool.

To ensure RSM is accurate, 8 more duct geometries are taken into account
which correspond to the 8 vertices of the inner cube concerning the studied
design space (Table 4.3).
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Table 4.3: Design parameters values of the 8 new designs
Distance Opening Angle DistanceOpeningAngle
-14% -14% -19% 72% -14% -19%
-14% -14% 13% 72% -14% 13%
-14% 22% -19% 72% 22% -19%
-14% 22% 13% 72% 22% 13%
4.9 EASY Loop

In order to be able to optimize the duct geometry, an automated procedure

which will alter the parameter values and evaluate the objective function, is
mandatory. This procedure should evaluate the new geometries for two
objectives, the objective function and the total pressure drop (a two-objective
optimization).

In this study, EASY v2.0 is used which is a generic optimisation software

developed by PCOpt, NTUA. Its chosen parameters values are:

20000 total calls of evaluation tool
10 bit per design variable - binary-Gray coding
Parent and Offspring population size: 30/90
Elite archive size: 15
Tournament size and probability: 2/90%
Crossover probability and mode: 95% - two points per variable
Mutation probability: 2%
It should be mentioned that in this case, an off-line metamodel is used

instead of solving RANS equation and its training procedure is depicted in Figure

4.31.

Evaluation Tool geometry solution Geometry

Initial . EASY Pareto Optimal Exact Final Optimal

Re-train

evaluationtool

Figure 4.31: Training procedure of the evaluation tool with EASY
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4.10Results of the Optimization Loop

As it was described, the studied case is a multi-objective optimization
problem and thus the best solutions will be appear on a Pareto Front.
Points/solutions on Pareto Front dominate all other solutions. The optimal one
will be searched on this front and will be chosen by the engineer taking into
account other criteria.

For the studied case, the optimized solutions and their Pareto Front are
depicted in Figure 4.32. As it can be seen, there are many geometries that
perform better than the original duct.

150 T T T T T T T

T T
Exact solutions

Originalduct =
100 %

\\ Pareto frontier + |
o %
S \ %
o 50 - "\ X : i n
©
Qo
=] 0 i} |
0
(7]
o N
o T~— s S
50 - i -
——+
_100 1 1 1 1 1 1 1 1 1
-30 -25 -20 -15 -10 -5 0 5 10 15 20

Obijective function (%)

Figure 4.32: Optimized solution and Pareto Front

From the Pareto Front it can be seen that the lower the objective function
value, the higher the total pressure drop is. In order to weight the two objectives
and choose the optimal geometry, the following way of thinking is used: In order
not to alter the load of the motor of the HVAC unit, total pressure drop value is
desired to be the same as the original duct, and thus the optimal solution should
have a zero percentile total pressure drop. In that way the optimal geometry is
chosen (Figure 4.33) which has the same total pressure drop and a reduced
objective function value by 22% compared to the original one.
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Figure 4.33: Optimal solution

4.11 Study of Optimized Duct Performance

The optimal solution has about the same total pressure drop compared to
the original duct and lower objective function which means desired air velocity
pattern through the windscreen. The optimal duct has lower Distance and Angle
values and slightly higher opening value. The comparison between the two ducts,
as well as the performance of the new one, is depicted in Figure 4.34 through
Figure 4.36.

Original Duct Optimal Duct

Obj. function - -22%
Total pressure drop - -7%
Figure 4.34: Optimal and original ducts
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Original Duct Final Duct

Umag =0m/s

IMax

Umag =0 m/s
Figure 4.35: Velocity pattern of optimal duct
Original Duct Final Duct

Umag 0 m/s

Umag=0 m/s

Figure 4.36: Streamlines & Velocity Glyph of optimal duct
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5 Study of Width Parameter

5.1 Explanation of Width Parameter

Until now, the width of the duct (or its length alongside the windshield),
was consider constant. As described in Chapter 1, new installations in the car (as
a HUD display) require duct length reduction in order to fit properly. But, such a
change will result to a different performance of the HVAC system and as a result
the defrosting/defogging rate may not meet the requirements.

In order to add an HUD device in the studied car, the width of the duct
should be altered. The appropriate duct width depends on the HUD geometry. In
our case, the HUD geometry is not known and so, nothing but a preliminary
study can be carried out to explore the effect of width on performance.

In this chapter, a study is carried out in order to find the effect of the width
on the performance. Initially, a parametric study is performed altering the width
in order to determine its effect on performance. For the most promising width
case, a DoE study is carried out as it was done for the constant width case
(Chapter 4). The next step, (the optimization with EASY) is not performed in this
case, since the HUD geometry is not known and a more detailed optimization
would be unnecessary and therefore a “waste” of computational power.

Figure 5.1: Examples of On-board (left) and In-Car (right) Head-Up -Diplays

5.1.1 Parameters

For the preliminary study, the values of design parameters are those of
the initial duct. The width takes five values below the nominal one.
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5.1.2 Morphing

For performing the mesh morphing, the determination of the morphing
parameters is necessary. Along the three morphing parameters described in the
previous chapter (Distance, Opening, Angle), one is added concerning the width
of the duct. It is a Box Morphing parameter (Width, Figure 5.2).

Figure 5.2: Box morphing parameter: Width

5.1.3 Results

The parametric study for the width gave the performance of 5 new duct
geometries with reduced width. Their performance can be seen in Figure 5.3 and
the total pressure drop in Figure 5.4.

Max (Nominal » Min

Figure 5.3: Velocity pattern of reduced width ducts

Pressure Drop = F(width)

20%
15%

10%

5%

pressure drop
i ettt et

0% ! e
min max

-5%
width

Figure 5.4: Total pressure drop of reduced width ducts
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The ducts with width A and B have a sufficient width decrease compared with
the original one and acceptable velocity patterns. The difference on velocity
pattern between the original duct and duct A can be seen in Figure 5.5.

Figure 5.6 depicts streamlines of these two ducts. The difference on

velocity pattern between the original duct and duct B can be seen in Figure 5.7.

Original Duct A

Figure 5.5: Velocity patterns of original duct and duct A

Original

S i
“\!‘ : \N"l.\j .

-
=
2

N

Figure 5.6: Streamlines of original duct and duct A

Original Duct B

Figure 5.7: Velocity patterns of original duct and duct B



Chapter 5 51

5.2 Objective Function

The target remains the same, to achieve velocities of minimum Utar in
order to get the appropriate level of defrosting and/or defogging. The used
objective function is appropriate for the constant width duct since it leads to
almost 0% of the upper windshield with a velocity lower than the target value
set. Since the width is now an optimization variable due to the use of HUD, the
current form of the objective function may be inappropriate. The reduced width
in accordance to the same mass flow, results to high air velocity and a deficit
appears at the base of the windshield and the sides.

As observed in Figure 5.8, the current objective function takes high values
in areas where the velocity exceeds the minimum target, due to the fact that it
evaluates the deviation from the target value. Although appropriate for studies
where uniformity of the velocity pattern is a primary goal or in cases where the
velocities in the optimization volume are consistently lower that the target value,
it becomes evident that a new objective function should be used. This new
objective function must penalize solutions with very low air velocity in both
lower and upper parts of the windshield.

[
c Utar I
g | /
S ~—~—— [ Sigmoidal OF
E - _X } Current OF
E W _____ Step OF
=
o

Figure 5.8: Current and proposed objective function

5.2.1 Definition of Objective Function

The new objective function is a sigmoid one which can be formulated as:

Otar
1
fObj =1- 1+ e_kz(u_umin)+k1
Cinf

Umax — Umin

einy: infinitesimally small positive number
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The formulation of the sigmoid function instead of a simpler step function
is made in order to ensure that the objective function can be differentiated and
therefore, is appropriate for gradient-based optimization in future studies.

The equivalent step function is:

0, U < Uy
fobj(u) = {1 e

5.2
’ U 2 Upin

Although not used in this study, the derivative of the new objective
function is presented below in order to be prepared for a future application of
the adjoint method:

aFobj: 1 f afobjdg
U O lg,, Ou tar
afobj B _kze_kz(u_umin)+k1 5.3

ou - (1 + e_kz(u_umin)+k1)2

The penalties assigned to each cell according to the sigmoid
function are presented in the analysis below:

1 1
Foru = upn: fobj =1- P m————— =1- T oh
1 1
Foreps—>+0 > —->+t00=——-1- 400 =
einf einf
1 ] 1
In{——=1] - +00=k; = 400, sincek; =In|—-1
€ins €inf
Therefore, 54
fObj=1_1+eli1
k1—>+oo=>1+ek1—>+0=>1—1+ek1—>1=>f0bj—>1
1

Foru = Upay: forj =1

1
€inf

2k
k2 = !

Umax — Umin

1 + e *2(Umax—Umin)+k1

Therefore,
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f 1 1 1 !
Obj - N -k ( max— min)'l'k = - 2k
14 e Rl u 1 1+ e—m(umax—umin)+k1
_ 1
B 1+ek 5.5
Since ky = 400,671 - 40, f,,; > 0
So, for u < upyn:
U — Uy
U—Upipn <0 =2k, ( min) - 400
(umax - umin)
= —kz(u - umin) + kl - +0o0
& —ky(U — Upin) + kg = +00
& e kaU-tmin)+tke 5 oo 5.6
1
=1- 1 + e—k2(Wmax—Umin)+k1 -1
S forj > 1
and, for u > Uy, gy
U — Upin > Umax — Umin >0
(U — Upin) (Umax — Umin) —1
(um%x - umin)) (umax - umin)
2(u—u,y;
_ mn < _2
(urgax - umisl)
2(u—u,,;
— T +1<-1 (1)
(umax - umin)
—2k (U — u,y; 5.7
= ) + ey = o M)
max — Umin
—2(u — u,,;
— k1< ( mm) + 1>
Umax — Umin
2(u—u,,; —2(u — Uy,
1) = - (1t — Yomin) +1<—1<0<:>k1<—( "“”)+1>
(umax - umin) Umax — Umin
- —0 < _kz(u - umin) + kl - —00 & fobj -0
Summarizing, the penalties of the sigmoid function can be expressed as:
1—e;,r=+1, U< Uy
fObj(u)_){ e; mi+0 u>u - 5.8
inf = ’ = Ymax .

5.2.2 Error of Objective Function
The relative error of the objective function can be calculated by:
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Esig — Este
error = S9  SteP
Estep
Estep = 1 upmin
Umin Umax Ueo
gsig=J. fobjdu-l'f fobjdu+f fobjdu 5.9
0 Umin Umax
T T T
A B C

We assume that:

Umin Ui
A= f fobjdu = umin(l - el-nf) + (1 -1+ emf)ﬂ =
0

2
€ins
= Umin (1 - T)
U ~ Umax
¢= — 5 Gy
Umax Umax 1
B = fu . fopjdu = fu | (1 “Ix e_kz(u_umin)+k1)du
min umaxmm e—kz(u_umin)+k1
] jumm (1 + e_kz(u_umin)"'kl) du 5.10
-1 [In1 + e ke lutmin)+a ] mex
kZ Umin
1

= _k_ []n(l + e_kz(umax_umin)+k1) — ]n(l + ekl)]
2

1 1 1+e
- — —kiy _ kY] = — — - -
r [In(1+ e " 1) —In(1 + e 1)] 5 ln< 1T ol )l

1 1 ki ky 1 (Umax
= _k_z nm=k—2=2—k1(umax — Upnin) =§(

- 1) Umin

Umin

So, for ejr = 0, A = Upp, C = 0, therefore,

1/u
Esig - Estep Umin + 7 (% B 1) Umin = Umin
error = . = MR
step Umin
5.11

1 (umax 1) _ 100 (umax 1) o
-5 - - 5 - 0

2 Umin 2 Umin

5.3 Results of Study

Having selected the ducts of width A and B, we proceed with the DoE study
in order to establish which geometry is most promising, the same procedure as
in the previous chapter is followed.
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In both width A and B cases we have: 33+23=35 geometries. The first 33=27
geometries have the same parameters as shown is Table 4.2 and the parameters
of the remaining 23=8 geometries are shown in Table 4.3.

The performance of the original, width A and width B geometries are
depicted in Figure 5.9. For the studied geometries, the error value (Eq. 5.11) was
found to be below 2%.

Indicatively, the performance for 3 of 35 ducts along with their geometry
for width A, are depicted in Figure 5.10 while Table 5.1 shows the percentage
difference of the objective function between those 3 ducts and the original one.
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S e® . @ % ® Width B
© ]
-B o o :
° So® ° M Initial Duct

) o ® ,
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Figure 5.9: Performance of the original, width A and width B geometries
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D: Nominal
0O: Max
A: Nominal

D: Max
0O: Nominal
A: Max

Figure 5.10: Geometry and performance of various width A ducts

Table 5.1: Objective function difference of various width A ducts

Duct

Obj. Function difference [%]

D: Min, O: Min, A: Min

D: Max, O: Nom, A: Max

D: Nom., O: Max, A: Nom.

-35.9

-2.3

-26.9

Having examined the results of the DoE studies, we conclude that for both
width A and B cases, the most promising geometries have the same parameter
values. The parameter values and the objective function and total pressure drop
percentage difference are presented in Table 5.2 whereas the duct performance
and geometry can be seen in Figure 5.11.

Table 5.2: Objective function and total pressure drop difference of optimal ducts

Width | Design Parameters | Objective Function | Total pressure Drop
A D: Max -26.9% -11.5%
0: Nom
B A: Max -26.7% -14.1%
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Original Duct Duct Width A Duct Width B

Parameter
Values

Geometry

Duct Performance

Figure 5.11: Geometry and performance of most promising width A and B ducts

5.4 Operation for different mass flows

The reduced width ducts were further studied concerning their
performance for varied mass flow. Indicatively, the comparison of performance
between the original and the reduced width A duct for various mass flow
percentages, is depicted in Figure 5.12. As it can be seen, even for low mass flow
values, the reduced width duct (compared to the original) has higher stream
velocities which result to sufficient defogging and defrosting.

This performance indicates that the reduced width ducts can operate in the
appropriate manner even using lower power. In this way, these ducts can be
used in cars where low power consumption is mandatory (i.e. hybrids). Thus,
the manufacturing line of the HVAC could be the same for different vehicles
changing only the programming for the flow value for power reduction.

It should be noted that higher mass flow will defog/defrost the windshield
more quickly than lower mass flow. Thus, in order to find the most efficient
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concept, the time needed and the power consumption for various mass flows
should be considered. The above can result to a duct geometry that can be used
into different cars and having different mass flow and power consumption
according to its programming.

Mass

Original duct Best candidate width A
flow

-50%

-26%

0%

23%

Figure 5.12: Performance of original and width A duct for various mass flows
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6 Conclusions and Future Research

6.1 Conclusions

Aim of this work was to optimize the HVAC duct geometry of a TOYOTA
Yaris passenger car for better performance. The optimal geometry is derived by
optimization process which is based on a metamodel-assisted evolutionary
algorithm (MAEA). This geometry can be used as the starting point for the
adjoint optimization method for fine tuning and for reaching the global optimum
solution. With this procedure, an optimized geometry was found which has 22%
lower value of the objective function and the same total pressure drop with the
original one.

Due to the possibility of installing a HUD device, a preliminary study
concerning the width of the duct was carried out. Since the width is now an
optimization variable due to the use of HUD, a new objective function was
developed and used which will penalize solutions with very high or very low air
velocity. It was found that, as the width decreases, there is: a) improvement of
velocity pattern in upper half windshield, b) loss of velocity on lower sides of
windshield and c) increase of total pressure drop. Further optimization can be
carried out when the geometry of the HUD device is known.

6.2 Future Research

From the findings of this work and the nature of the studied problem, the
further research steps that propose are:

e Concerning the original duct, the optimized geometry that it was found
should be used as a starting point for an adjoint optimization in order to
fine tune the already available solutions.

e Concerning the new duct and when the HUD geometry is known, the
findings of the DoE study can be used in a MAEA optimization procedure
to find the optimal geometry which can then be used as a starting point
for the adjoint optimization.
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EONIKO METXOBIO IIOAYTEXNEIO
XXOAH MHXANOAOI'QON MHXANIKQN
TOMEAX PEYXTQN

MONAAA ITAPAAAHAHXZ YITOAOT'TETIKHX
PEYXTOAYNAMIKHY & BEATIXTOIIOIHXHX
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BeAtiotomoinon F'swustpiag Aspaywyov
AvTokwnTov

AtmAwuatikny Epyacia
Mapiavva Havayiwtidov

EmifAeyn:
KaOnyntnc K. X. l'avvakoyiov

AbBnva
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Ytoxo¢ AtmAiwpatikng Epyaciag

Ytoxog NG SMAWUATIKNAG epyaciag elvat 1 e@apuoyn HeBOSwV
Ixeblaopov Ilelpapdtwv Kol oToXaoTikwv uebddwv PeAtiotomoinong, otov
AYwYO QTOTAYOTO(NoNG TOU HUTPOOTVOU avepobwpaka (mapumpil) evog
avtokwntov Toyota Yaris. Zkomog tng Swadikaciag BeAtiotomoinong eival M
emitevdn BeAtiwpévng amdédoong kat amobdpfwong ya to oxnua. EmumAov,
HEAETATAL M €MISPAOT TOU MAATOUG TOU AYWYOU TPOKELUEVOL va Bpebel pia
KATAAANAN  YEWUETPlA Yyl TNV TEPIMIWON EYKATACTAONG OUCTHHATOS
Sta@avoils 086vngs dedopévwv oto apumpif (Head-Up Display, HUD).

Avty 1N SmMAwpaTiKy epyacia EVOWUATWVEL OXESACUO  TEXVIKWV
TEPAPATWY, LOPPOTIONOT TAEYUATOG, LOVTEAX TIAALVEPOUNOTG Kal EEEALKTIKOVG
aAyopiBuovg. AvamtiooeTal eMIONG PLX VEQ AVTIKELLEVIKIT] CUVAPTNOT TIOV Elval
TILO AVTLTIPOCWTEVTLKI] TOU 0TOXOU TNG AUENONG TNG ATOTAYWONG KL, EMOUEV®G,
TEPLOCOTEPO KATAAANAT YL TNV VTIOYN UEAETT).



YeAlba 2

BeAtioToTonon Tou Ap)LkoV Aywyov

KaBopiopoc Mapapetpwv MeAétng Xyedraopov Melpapatwv
OpllovTtal apylKd oL TApAUETPOL oYXESLAO OV KAl TO EDPOG TOVG:
1. Amootaon: n amootaon NG €£060v TOL aywyoU amd tn BAcn Tov
avepobwpaka (Zxnua 1)
2. Twvio: n ywvia petadd mg e€66ov ToU aywyol Kol TNG EQATTOUEVNG
0TO KEVTPO TOL Ttapumpif (Zxnua 2)
3. Avoutypa: To TAdTOoG NG €§050V TOL AYWYOU (ZxNHa 3)

[IpotelveTal €vag oxeSLHOUOG TPLWOV ETUTTESWV TIPOKEILEVOU VA LOVTEAOTIOMBEL 1)
TUXOV KOUTUAOTNTA TNG OUVAPTNONG AMOKPLONG KAl va Slaxelplotolv ol
OVOpXOoTIKOL TTapdyovtes o€ 3 emimeda. Me tpelg petafAntég oxediaopov [K] kat
évav TANPY TOPAYOVTIKO oOxeSlaoud Tpuwv emmedwyv (3K mapayovtikog
oxedlaopog) mPokVUTITOVY 33=27 VEES YEWUETPIEG Apa KAl 27 TIPOCOUOLWOELS Yl
va kaboplotel n amddoon TwV VTTOYNELWV YEWUETPLWV.

Ixnua 1: Mapapetpog Zxedlaopov: Ixynua 2: Mapapetpog Zxediaopov: F'wvia
Améotaon

Ixynua 3: Mapapetpog Lxedlacouov: Avorypo

‘Exovtag emA€lel TIC TApAUETPOUS oxedSlacpuov, kabopilovtal KatdAAnAol
TEPLOPLOUOL £TOL WOTE VA ETLTELYXOOVV EMOVUNTEG KAl PEAALOTIKEG YEWUETPLES.
It HEAETN QLT OL TTEPLOPLOUOL KATATACOOVTAL O€ 2 KATNYOPLEG:

a. YEWUETPIKOL TEPLOPLOPOL AOYw TPOSLAYPAPWY CYETIKWV UETAEY AAAWV
LE TNV KATKOKELT, TN AELTOUPYIKOTNTA KAL TNV aloONTIKN TOL aywyol KAl TOu
Tivaka opyavwyv (Zynua 4, Zxnua 5, Zynua 6)



YeAiba 3

B. meploplopol oxeTIKOl PE TNV TMTWON OAKNG TiEoNS Yl va emitevyOel
BEATIOTN amdS00T SLATNPWVTAS XAUNAK T EMITES A TNG KATAVAAWOTG Lo VOG.

Ixynua 4: Ieploplopds 1: Kabopiopévn Ixynua 5: Meploplopds 2: MapdAAnia
B€om kat oynua g £l0680v ToL Ay wWYOoU TolYWHATA NG €080V TOU Ay WYOL

i i r;p’?-:?.&i 9% ST 53
Ixnua 6: Ieploplopndg 3: Ztabept) amodGTACT ATIO TO TAPUTIP L] Kot TAATOG VO iy HaTOG
™G €£060V TOL aywWYOL Kab’ GA0 TO PIKOG TOU aywYyoU

Mposctownacia NEwv F'swueTpLOV

OL 27 véeg yewpeTpleg TOL €YOUV TPOKVYPEL ATO TOV TAPAYOVTLKO
oXeSLAONO HOVTEAOTOLOVUVTAL OTOV UTIOAOYLOTH] KAVOVTAG XPTON EPYUAEIWV
LOPEOTIOINONG EMUPAVELAKOV TAEYHATOG (ZxMua 7).

Existing Mesh

Surface mesh > morphing —> \Volume mesh

Ta Stabéopa epyareia pop@omoinong mov xpnopomolovvtal eivat Vo:
a. TMapapetpog ywviag: popotmoinomn xwpiov, Ta otoxela mov Ppilokovtal
EVTOG TOL YWwplov pop@oTolovvTal Pe HETaKivion 1} KUALOT TwV onpeiwv
eAéyyxov mov BplokovTtal oTIS akués Tov Ywplov (ZxNua 8).



YeAlba 4

b. Tapapetpog amdéoTaoNng kKal avolypatog: pop@omoinon amevbeiog
EQPUAPUOYNG, TO EMAEYUEVO TUNUA TOU HOVTEAOU WETAKLVEITAL WG UM
TAPALOPPWOLUO CWHA KAl oL TEPIPAAAOVOEG TIEPLOYEG ATTOPPOPOVV TN
UETATOTILON XWPIS VA TIPOKAAECOVV AOUVEXELEG GTO LOVTEAOD (ZxMua 9).

Ixnua 8: Mopg@oToinon xwplov Ixnua 9: Mop@omoinaom Anevbelag
E@appoyng
Enidvon

'EXOVTaG YEVEDEL T VEQ TIAEYHATA KOL OPIOEL TIG 0pLAKES GLVONKEG, 1) AVom
™G pomng mpokuTTeL emAvovTag TiG Reynolds-Averaged Navier-Stokes (RANS)
e€lowoels vtoBéTovtag OTL N pon| elval otabepr) oto xpovo. H pon Bewpeital
aovpTieoTn Kot vioBeteital To povtédo tUpPng k-e. TéAog, emAéyetan akpifelax
2N TGénG.

ZToyol Kot AVTIKELWEVIKT) ZuvdapTon

Ytoxol ™G BeAtioTomoinong elvat 1 €MITELEN OUOLOLOPENG KATOVOUNG
TOUXLTNTWV avw NG Utar umpooTtd amod Tov avepobwpaka Kabwe Kat 1 amo@uyn
aV&NONG ™G OALKNG Tiieon s p; HeTa& £l0080V Kat e€680V Tov aywyou.

H afloddoynon kdbe véou oYNUATOG TIPAYUATOTOLEITAL HE TN XPNON NG
QVTIKELLEVIKTG IOV EKPPALEL TNV ATTOKALOT] TWV TAXUTHTWV ATO TNV EMOLUNTA:

1 2
Fobj = E j (uiz - ui,tarz) dQegr

Otar
OOV 244, EVAL EVAG LIKPOG OYKOG EAEYXOV UTIPOCTA ATO TO TTAPUTIPILL.

'‘Oykog gAéyxov opileTal TO AVW ULOO TUNUO UTPOOTA ATO TO TUPUTIPI]
KAOWG 0TO KATW TUNUA Ol TAXVTNTES lval w¢ €Tl TO TTAE(OTOV TGVW amtd 5m/s,
KOl ETOPEVWG, CUVELTQEPOVV GTNV AUENOT) TNG TIUNG TNG AVTIKELEVIKNG XWPIS va
QTOTEAEL TTPAYHATIKE TO TUHA qUTO TTPOPBANUATIKNY TTEPLOXT).

Amotedéopata peAETnc Xyedaouov Mepapndtwy

E€etdlovtag v amodoons tTwv 27 aywywVv CUUTEPALIVETAL OTL OL PETAPANTES
Améotaon kot Avolypa €XOouv ONUAVTIKY EMSPAOT OTNV  OVTIKELLEVIKN
ouvvdptnon (Fpp;) xat otnv Ttwomn oA Tieons (p.) LVYNAOTEPES TLUES
ATOOTAONG £XOVV WG ATOTEAECUA XAUNAOTEPEG TIUES Fypj KoL P, VYMAOTEPES
TIHEG Slavolypatog £Xouv WG amoTéAsopa LVYMAOTEPEG THEG Fppj aAAG wan
XaUNAOTEPES TEG pr. TEAOG, 1) YwVia £xeL pkpn) emiSpaon 1060 otV F,pj 060 Kat
otV p;. H amdédoon twv 27 yewpetpiwv 660V a@opd Tnv amokAlon ng
TOXVUTNTAG ATIO TNV EMLOVUNTI) KAL TNV TTTWON OALKTG TILEOTG TIAPOVGLALOVTL OTO
Ixnua 10.
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Ixyfiua 10: Amtodoon Twv 27 YEWUETPLWDV

BeAtiotomoinon pe EEsAiktiko AdyopiOuo

H emiAvon ¢ por¢ kal KAt EMEKTAOCT 0 UTTOAOYLONOG TNG ATTOS00TG TOU AYWYOU
ue emidvon twv RANS e€lowoewv ouvendyetal VPMAS VTTOAOYLOTIKO KOOGTOG, Yl
VO QVTIHETWTILOTEL TO TPOBANUA aUTO, VIoBETEITAL WG Epyareio agloAdynoNG Tov
eCeAlkTIkOV oAyopiBpov éva povtédo maAvSpounong Tov Tpooeyyilel TIg
akpBéc (To6oo ToloTIKA 600 Kal amd amoPn KOGTOUG) TIUEG TNG AVTIKELUEVIKNG
ouvvaptong H pabnupatikn ék@paor tTov povtéAov TaAvdpounong eivat:

3 3 3 3 3
_ 2 3
y= Z azix; + Z asi_1X; + Z as;_Xx; + Z Z Qi (j-2)+9XiX;
i=1 i=3 j

i=1 i=1j=2
i<j

H Siadikaoia ekmaidevong Touv véou epyaieiov afloAdynong amekovileTtal otnv
Zynua 11.

ExactSolutions _, Train — ExactSqutlo_n of _, Evaluate —— > Evaluation Tool
From DoE Randompoint RSM

RS
Add Extrapointto _

ExactSolutions

Ixnua 11: Awadikaoia ekmaidevong AoyLopikov afloAdynong



YeAlba 6

Xpnowomoteital To Aoylopko yevikng BeAtiotomoinong EASY v2.0. Ag onueiw0el
0Tl e@apupootnke évag (30,90)EA kat to Tpoava@epBEv amoouvSedeuevo
UETATIPOTUTIO YL TNV A§LOAGYNOT) TWV AVCEWV.

AToteAfopata BEATIOTOTMOINONC

[Tapammpeital 6TL VTTAPXOLV TOAAEG YEWUETPIEG IOV €XOUV KAAUTEPT ATOSOON
amd tov apxko aywyo (Zxnua 12). H BeAtiom yewpetpla Ba mpokvpel amd
EMAOYT onuelov Mavw oto Pareto pe kpLtplo TV ox£on AVALECK OE TTWON
pexan Fopj. Mpokewévou va unv petafAndet to @optio otov avepotipa g
HOVASAG KALLATIOHOV, 1) TITWOT) Py TIPETEL v Statnpel otabept) Ty, on pe avt
TOV apXlkoV aywyov, EMOUEVWG 1) BEATIOTN YEWUETPlO TIPETEL va EXEL UNSEVIKT)
moocooTlala peTafoArn. Me Bdomn Ta TapATAvVw ETAEYETAL 1) BEATIOTN YEWUETPLX
aywyou (Zxnua 13) mov €xeL TOoM p; 60T KL TOV APYLKOU AywYyoU KAl LELWUEV
T ™G Fpp; KaTd 22% o€ 0X€0M PE TOV APXIKO aywYO.
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Zxynua 12: YmoAoyloBév Métwmo Pareto EA
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Ixnua 13: Emoyn BEATIOTNG AVong

[Tapovolaletal TMOPAKATW 1 YEWUETPl KAl 1 amoOdoon TOu apxlkol Kal
BéATIoTOL Oy WYOU:



YeAlbo 7

Original Duct Optimal Duct

Distance - 240%
Opening - 8%

Angle - -35%
Fopj - 22%

- -7%
1 ApYKOG Kol BEATIOTOG Ay wyOS

lMax

Umag =0 m/s

Umag= 0 m/s
Ixnua 15: Taydmmteg apykov (aplotepd) kal fEATIoTOU aywyov (6€€d) mAnciov Tov
avepobwpaka

l Max

I Umag =0 m/s

I Umag=0 m/s

Ixnua 16: Polkég ypappes Kot SLaovioHATH TAXVTHTWY apXLKOU Kal BEATIOTOV aywyou




YeAlba 8

MeAétn Metwong IIAatovg

Eiynon tnc mapauétpov [Adtoug

MeALOVTIKEG EYKATAOTAOELS OCUOTNHATOS Sta@avols 006vng SeSopévwv otov
avepobwpaka (Head-Up Display, HUD) ota véa avtokivita amaitovv peiwon
TOU TIAGTOUG TOU QywYOU TIPOKELUEVOU Vo eAeLBepwOEl XWPOG yla TNV AVETN
epapuoyn g o0ovne. IMapovolaletal pio TOAPAPETPIKN UEAETN, OTNV OTOlX
UETABAAAETAL TO TAATOG TOU AywYovU, ywx va kaboplotel 1 emibpaocn otnv
anddoon. I'a TI§ T TOAA& LVTIOOXOUEVEG YEWUETPLEG TTov Ba mpokVYovy, B
mpaypatomombel peAétn Xxediaopol Ilewpapdtwv, OTMwG otnv TePITTWON
OVOUXOTIKOU TIAATOUG.

NapapeTpkn MeAétn

[IpootiBetatl kot e€etaletal AAAN Pl TAPAUETPOS OXETIKN UE TO TMAATOG TOU
aywyou (Zxqua 17). ATO TNV TApaUETPIKN LEAETT) YIA TO TTAGTOG TTPOKVTITOUV OL
ATOSO0ELS TWV 5 VEWV YEWUETPLOV UELWUEVOL TIAATOVG (Zxua 18 kat Txrua 19).

Ixnua 17: Mapapetpog pop@omoimong xwplov: MAGtog

Max (Nominal » Min

i, ooy O ™ g"\m M
o< b b . § W L ¥ . 3 e

Ixnua 18: TayvtnTeg yia aywyols HELWUEVOU TIAGTOVG
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Pressure Drop = F(width)
20%

A
B

0% ! "o
min max

15%

10%

5%

pressure drop
B St et ]

-5% -
width

Ixynua 19: IItwon 0Akn ¢ Tieon§ o€ aywYoU§ HELWUEVOL TTARTOUG

Ol aywyol pe ta pewwpéva mAatn (A kot B) €gouv ikavomomtikny anodoorn o€
OXEOT LE TOV APYLKO aAyWYO Kol amo@aciletal va eEeTao0oVV TEPATEPW.

0pLopoc Néag AVTIKELPEVIKNC ZUVAPTONC

Omwsg ava@EépOnNKe TPONYOUHEV®WS, 1) AVTIKELUEVIKY) GUVAPTNON TOU
xpnowomoloVTayv HEXPLS 8w, EKPPATEL TNV ATIOKALOT) TWV TAXVTHTWV ATO TNV
emBLUNT, 0TO Avw TUNUA TOL TapUTPil. KabBwg mA¢ov o0TOoUG aywyous Tov
efetadovtal ol TaYVUTNTEG elval VPYNAGTEPEG OTO AVW TUNUA KAl Sev pmopel va
mpoPAe@Bel oe Toleg TePLOYEG Oa MAPOUCLHOTEL EAAEUPA  TOXVTHTWY,
SLLEAIVETAL T AVAYKT Y1 EKPPAOT] VEX AVTIKELUEVIKNG CLVAPTNONG oL Ba elval
IO AVTLTIPOCWTIEVTIKY TOU 0TOXOU TNG HEAETNG. H véa avTikelpevikn cuvapnon
elval oLyHoELdN G KaL 1 LABUATIKY EK@PAOoT) VTG ElvaL:

F ! f 1 ! A0y kg = In[———1) &k 2k
;= — —_ , =n _— =
obj Qi ar Qe 1 4 e~ka(u—umin)+ky ~tar’ 1 Cinf 2 Urox — Uim
1—eme+1, uSumin

fonj(W) = { e = +0, U > Uy

AToTeEALonaTA LEAETNC

Emavodaufavetar 1 peAétn Zxedlaopov Ilepapdtwy, Kot yux TS Svo
TEPIMTTWOELS HEWHEVOL TAGToug (A kot B) kataokevdlovtan: 33+23=35
YewUETPIEG oL omoieg Kat agloAoyoVvtat pe tov kwdika CFD. H andédoon twv 35
YEWUETPLWV Yl KABe TEPIMTWON TMAGTOUS KABWG KAl TOU apXlkol TAATOUG
Tapovaolalovtal oto Txnua 20.
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YeAiba 10

® Original Width
® Width A
® Width B

M Initial Duct

Ixnua 20: AT6S00M YEWUETPLWV APXLIKOU KAl LELWUEVOV TIAATOUG

AZloAOYWOVTAG TA ATOTEAECUATA TWV UEAETWV TPOKVUTITEL OTL KAl ylA TA SVO
efetalOpeva TAAGTN, OL TILO UTIOOYOUEVEG YEWUETPlEG Talpvouv (SLeG TLUES
TAPAUETPWVY. Ol TIHEG TWV TIAPAPETPWY KABWG KAL OL TIHEG TNG AVTIKELUEVIKIG
OLVAPTNONG KL TTTWONS OALKNG Tiieon ¢ Tapovoialovtal Txnua 21.

Original Duct

Parameter
Values

Width A
D: Max
0: Nominal
A: Max

Width B
D: Max
0: Nominal
A:

é § - Fobj = '269% Fobj = -267%
S g - pe=-11.5% pe=-14.1%
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Ixnua 21: Fewpetpia kat amdédoon BEATIOTWY aywywv TAGTOUS A Kot B
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