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Abstract

This diploma thesis is concerned with the theory and application of Multidis-
ciplinary Analysis and Optimization (MDAO) methods, mainly in the area of
PDE-constrained optimization. The vast growth of computational power in re-
cent years has made numerical simulations an indispensable tool in engineering,
enabling the analysis of ever more complex systems. In the context of engineer-
ing, these systems are often multidisciplinary, meaning that they require expertise
from different scientific disciplines, which gives rise to the need for MDAQO. The
mathematical framework behind MDAO allows for efficient coupling of numerical
models simulating different physical phenomena, with the aim of both analyzing
and optimizing the system being modelled.

In order to manage the complexities involved with MDAO, a software package
is developed in Python. The package, named mSense, is used for the applications
throughout the thesis. mSense provides tools for both Multidisciplinary Analysis
(MDA) and Multidisciplinary Optimization (MDO), allowing the user to easily
switch between different methods, selecting the one best-suited to each individ-
ual problem. An MDO problem can be formulated and solved in multiple ways,
each defining a MDO different architecture. In mSense three different architec-
tures are implemented: Multidisciplinary Feasible (MDF), Individual Discipline
Feasible (IDF) and Collaborative Optimization (CO). The package is first used to
validate and benchmark the performance of the implemented MDO architectures
on standard test problems.

The presented MDAO methodology is applied to two Fluid-Structure Inter-
action (FSI) problems. The first models an airfoil inside an inviscid flow field.
The airfoil is attached to a torsional spring, and is therefore able to rotate. The
system is analyzed with an MDA, and the equilibrium is found. Then the shape
of the airfoil is optimized, using the MDF and IDF architectures, and comparing
the results. The second problem is concerned with the flow of liquid through a
vertical elastic tube. As the fluid flows through the tube, it deforms it. The aim
of the optimization is to control the deformation of the tube, by manipulating the
properties of the tube’s elastic material. The MDF architecture is used.

Finally, the problem of aerostructurally optimizing an aircraft wing is solved.



The ONERA M6 wing, which is widely used as a benchmark for Computational
Fluid Dynamics (CFD) codes, is considered. Since no structural model exists for
the ONERA M6, a simple beam finite-element model for the bending of the wing
is developed. The aerostructural model is analysed, computing the deformations
and stresses that the wing undergoes during flight, and then optimized using MDF'.
Two different objective functions are used in the optimization, during which both
the shape and structure of the wing are allowed to vary. The results obtained from
the two objective functions are compared.



ITepiAndn

To Vépa authc TN dimhwpatinic epyaciag elvon 1 Vewplor xaL 1 EQUPUOYT TWV e-
V60wv Hohutopeaxhic Avdiuone xou Behtiotonoinong (Multidisciplinary Analysis
and Optimization, MDAO). H porydoia abEnon tne Umohoyto Tixng Loy bog o TEAEU-
Tafor yeOVLUL EYEL XATACTHOEL TIG UPIUUNTIXEG TPOCOUOLOCELG EVal TOAUTIIO EQYaAElD
OTOV TOUEN TNG Ny ovoroyiag, xadag ETLTEETEL TNV AvAAUGT] ONOEVAL XAl TOAUTAOXOTE-
ewv cuoTNUdTLY. To cuoThuaTa aUTA Eival GLYVE TOAVETLOTNUOVIXG-TOAUTOUENXA,
ATOUTMVTAC TEYVOY VOG0 amd SLopopeTind Tedla, To omolo dNUIOVEYEL TNV avdyxr Yio
ued66ouc MDAO. To padnuatind vndfatpo mlow and to MDAO emitpénel tnyv ano-
Teheopotinr] oULELEN aEEIUNTIXOY HOVTEAWY, o€V Ao Tol OTOL0 TEOCOUOWWVEL EVaL
OLUPOPETIXO PUOIXO PAUVOUEVO, UE GXOTO TNV avdAUoT xou BEATIoTOTONGT TOL LTH
eZ€Tao Lo THUATOC.

Mo T Srayelplon tne moAumhoxdtntog mou oyetiCetar ye to MDAO avanticoeton
EVOL TAXETO AOYLOUIXOU 01N YAwooo Tpoyeaupatiopoy Python. To maxéto, ovouo-
Tt mSense, ypnoylomoleiton yia Tic e@apuoyes tng epyaciag. IlepihoufBdver epyahela
1600 ylo. ToAutopeox, avdhuon (Multidisciplinary Analysis, MDA), éco xou Beh-
tiotonoinon (Multidiscplinary Optimization, MDO), emitpénovtag oto ypriotn va
emAéCel T uéYodo mou epopuoleton xahOTEPH 6TO EXAC TOTE TEOBANUA. Eva tpdoBin-
uoe MDO urogel vo emAutel ye modamhéc mpooeyyioeic, xan xdie pla amoteAel pio
orapopeTixy apyttextovixr) MDO. ¥to mSense vhomoloOvta TEELG SLUPORETIXES oYL
textovixée, mou elvan: 1 Multidisciplinary Feasible (MDF), n Individual Discipline
Feasible (IDF) xou 1 Collaborative Optimization (CO). To noxéto yenoulonoieito
QEY G YLl VOL ETUXURMOCEL TNV LAoToNon TN %AdE apyITEXTOVIXNG Xou Vo GUYXEIVEL
NV enldoo| Toug, oe BVo TpdTUTA TEoPBAuata MDO.

H pedodoroyic MDAO eqopudleton €ncita o 800 mpofAAuata aAnAenidpaomg
eevotov-otepeol (Fluid-Structure Interaction, FSI). To npdto mpdfinua poviero-
Tolel TNy ouuneptpopd ulag acpotourc eviog atelBois medlou poric. H agpotour| elvon
TEOGOEUEVY) OE €Vl GTRENTXO EAATHRLO, YUPw amtd To onolo unopel va otpagel. To
ornuelo wooppomiog TOU CUGTANATOC aEPOTOUR-EAUTH PO UTOAOY{(EToL UEGW TOAUTO-
MEAXNS OVEAUCTG (MDA). 21N ouvéyew, To oYUa TG acpoTourc PehTioTonoteliTon
ue ypnon twv apyrtextovixwv MDE xou IDF, xou o amoteAéopato ouyxpivovon.
Avtixeipevo tou dedtepou TeoAUaToS efvan 1) por) pEUGTOU OE XAHETO ENACTING O~



Mo, Xxondg tng Bedtiotomoinong elvar o EAeyy0g TNG TUPUUOPPWONE TOU GWAY VA
UEOCL TEOCUPUOYTS TV UAXOVY WLOTATGOY TOU LAXOL Tou cwhfva. Xenotuonotelto
n apyrtextovixy MDF.

To tekevtalo mpoBinua mou emhbeTon ebvon 1 agpodouixy| BeATioTonolnon TTéPL-
yag agpooxrdpoug. Emiéyeton n ntépuya ONERA M6, n omola yenowonoteiton ou-
YV YL TNV ETXOPOOT XWdIXwY LUTOAOYIGTIXNG PEUC TOdLVAUIXYS. 20TOCO, Yiol TNV
TTEQUYH QUTY| OEV UTAPYEL £TOLO BOUXO LOVTEND, OTIOTE avamTOOGETAL VAl OTAO UO-
VTEAO TEMEQUOUEVY GTOElWY UE 8ox0UC, To omolo yovtehormotel TV xdudm tne
ntépuyac. Méow moluvtopeonhc avdhuone (MDA), emhbeton to agpodouxd poviéo
xou UTOAOYILOVTOL Ol TORUUORPMOELS XAl TUCELS TOU AVATTUCCOVTIOL GTNV TTEQUYX
xotd Ty TThoT. Axoloulel douxy| Betiotonolnon ot BeATioTonolnom wopgnc, Ue
o%omo6 TNV BeATiwon 0poPEVKY YapaXTNEIOTIXGY TN TTeplyas. Aoxiudlovion 8Vo
OLUPOPETIXES GUVOPTACELS OTOYOL XU GUYXEIVOVTAL.



Nomenclature

CFD Computational Fluid Dynamics

CO Collaborative Optimization

DoF Degree of Freedom

FEM Finite Element Method

FSI  Fluid-Structure Interaction

GPU Graphics Processing Unit

IDF Individual Discipline Feasible

MDA Multidisciplinary Analysis

M DAQO Multidisciplinary Analysis and Optimization
M DF Multidisciplinary Feasible

M DO Multidisciplinary Optimization

MPI Message Passing Interface

NTUA National Technical University of Athens
NURBS Non-Uniform Rational B-Splines

PCOpt Parallel CFD and Optimization unit

PDFE Partial Differential Equation

PUM A Parallel Unstructured Multirow and Adjoint
w.r.t with respect to

XDSM Extended Design Structure Matrix



Contents

1 Introduction 11
1.1 Brief introduction to MDAO . . . . . .. .. ... ... 11
1.2 MDAO terminology and mathematical description . . . . . . . . .. 12

1.2.1  Graphical representation of multidisciplinary models with
the (X)DSM . . . . . . . . 17
1.3 The mSense package for MDAO . . . . . . ... ... ... ..... 19
1.4 Thesisoutline . . . . . . . .. .. 20

2 MDAO Theory 22

2.1 Multidisciplinary Analysis (MDA) . . . . ... ... ... ... ... 22
2.1.1 Fixed-point methods . . . . . . ... ... ... .. 22
2.1.2 Newton’smethod . . . . . ... ... ... ... ... .. 24

2.2 Derivative computation for gradient-based MDO . . . . . . . . . .. 26
2.2.1 Derivatives of single-discipline models . . . . . . . . ... .. 26
2.2.2  Derivatives of multidisciplinary models . . . . . . . .. . .. 28

2.3 Multidisciplinary Design Optimization (MDO) . . . .. ... .. .. 31
2.3.1 Monolithic architectures . . . . .. .. .. ... ... ... 32
2.3.2 Distributed architectures . . . . . . .. ... 34

3 Benchmarking different MDO architectures 38
3.1 Sellar’s problem . . . . . . .. ... 38
3.2 Martins’ scalable problem . . . . . ... ..o 46

3.2.1 Scalability study . . . . ... ... o 52

4 The airfoil-spring system 60
4.1 Problem description . . . . . . .. ... Lo 60
4.2 MDA . . . 62
4.3 Shape optimization (MDO) . . . . ... ... ... ... ... 66

4.3.1 Setup . . . ... 67
432 Results. . . . .. .. 68



5 Elastic Tube FSI
5.1 Problem description. . . . . . . .. ..o
52 MDA . . . . e
5.3 Material Property optimization (MDO) . . . . ... ... ... ...

6 Aerostructural optimization of the ONERA M6 wing
6.1 Problem description. . . . . . ... ... ...
6.1.1 Aerodynamic model . . . . .. ... ... L.
6.1.2 Structural model . . . . . ... ... ... L
6.1.3  Aircraft configuration . . . . . . ... ...
6.2 MDA . . . .
6.3 Shape and structural optimization (MDO) . . . . ... ... .. ..
6.3.1 Results. . . . .. .. ..

7 Conclusions and recommendations for future work
7.1 Summary and conclusions . . . .. .. ... L
7.2 Recommendations for future work . . . . . . ... ...

Bibliography

A MSense basic user guide

10



Chapter 1

Introduction

1.1 Brief introduction to MDAO

Modern engineering systems are most often multidisciplinary. They are comprised
of multiple physical components which are analyzed and designed with regard to
various physical phenomena. The design process employed currently in the major-
ity of engineering applications is sequential. The engineers working on a project
are often grouped by either discipline or physical subsystem, and information is
usually passed between teams in a predetermined, one-way manner. For exam-
ple, in the design of an aircraft, the aerodynamicists optimize the shape of the
aircraft with the goal of minimizing its drag, subject to other aerodynamic con-
straints. The optimized geometry and the aerodynamic loads are passed to the
structural engineers, who must then design the internal structure. Finally, the con-
trol engineers tune the aircraft’s controls systems according to the aerodynamic
and structural characteristics provided. This approach essentially disregards the
interactions between the disciplines or components, and is therefore unable to ex-
ploit them, likely leading to sub-optimal designs. Multidisciplinary Analysis and
Optimization (MDAO) aims to offer a standardized mathematical framework for
the efficient design of such systems.

The history of MDAO is rooted in aeronautics. In his 1974 paper, Haftka [13]
optimized the structural design of an aircraft wing using a finite element model
and simplified aerodynamics. A decade later, a symposium was held at NASA’s
Langley Research Center where Sobieski [33], among others, discussed the use of
MDA and MDO for the design of aeronautical, naval and other systems. Over
the last twenty years, the evolution of both hardware and software has enabled
the analysis and optimization of ever more complex systems. Instead of designing
single components, it is now possible to consider entire systems at once [18, 25, 37].
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1.2 MDAO terminology and mathematical de-
scription

An engineering system is modelled numerically through sets of equations which
are solved to predict the internal state of the system. In the general case, these
equations are non-linear and implicit in the internal state variables. The equations
of a (single-discipline) model with n states can be represented in the following
residual form:

Tz(ylayQ)ayn)zov (NS (1,TL) (11)

In the above expression, r; is the residual of the i-th equation and y; the i-th

state variable. Both the residuals and the states can be compactly written as

. T T

vectors of size n, namely R = [7“1 Ty ... rn] and Y = [yl Yo ... yn} .
The equations are then succinctly written as:

R(Y) =0 (1.2)

A numerical model of a multidisciplinary system consists of multiple sub-
models, one for each discipline. Each sub-model has its own set of equations
and state variables. Consider a multidisciplinary model with m disciplines. For
the i-th discipline, its residual and state vectors are R; and Y;. However, it is no
longer correct to just write R;(Y;) = 0, as discipline 7 may depend on the state of
some other discipline Y. The full set of equations describing the multidisciplinary
model should be written as:

Ri(Y:,Yar...,Y) =0, i € (1,m) (1.3)

The above representation of the multidisciplinary model will be referred to as
the residual form. For eq. 1.3 to be solved, the residual and state vectors of all its
disciplines are concatenated, resulting into a single large set of equations. In order
to better understand the residual form, let us consider the aerostructural model of
an aircraft wing. This system is comprised of two disciplines (m = 2), aerodynam-
ics and structures. The aerodynamics discipline is, in essence, represented by the
CFD solver which simulates the airflow around the wing. For compressible flow the
solver might solve for the three velocity components (V' = v,,v,,v,), the density
(p) and the energy (F) at each node of the CFD mesh. For the structures discipline,
the FEM solver might solve for the displacement components (U = uy, uy, u,) at
each node of the structural mesh. The residual and state variables vectors for each
discipline are Ropp and Yopp, and Rpgy and Yegy respectively. Therefore, the
set of equations is:
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Rern(Yern, Yempy) =0
C’FD( CFD FEM) (14)

Rrev(Yorp, Yrewm) =0

Formulating a multidisciplinary model in the residual form is not always desir-
able, nor is it always feasible. There often exist efficient and specialized solvers for
each discipline, which rarely give access to their internals. Even if all disciplinary
solvers are able to compute and export their residuals, the solution of the resulting
concatenated system is likely not as efficient, as if each solver solves its respective
disciplinary equations.

A more modular form of multidisciplinary models exists, which considers not
the states, but only the inputs and outputs of each discipline. Consider again
a model of m disciplines. The outputs of discipline 7 are denoted by Y; and
are either a subset of its internal variables Y;, or directly derived from them.
The inputs of discipline ¢ are the outputs of the other disciplines i.e. Y#i =
[}71 o Y Yiﬂ Ym]Tl The variables Y; are responsible for the cou-
pling between the disciplines, and therefore named the coupling variables. The
set of equations which describe the multidisciplinary model is now expressed as
follows:

Yi=Yi(Yju), i € (1,m) (1.5)

This representation is referred to as the functional form of the multidisciplinary
model. Returning to the aerostructural wing model example, the CFD solver now
only exports variables of interest, like the pressure P and shear stress 7 values, at
all points on the wing surface. Similarly, the FEM solver exports the displacement
values U at the wing surface. The output variables of each discipline are Yern
and }A/F em respectively. The set of equations for the aerostructural wing model in
the functional form are:

Yorp = Yorp(Yrem) (1.6)
Yrem = Yrem(Yorp)

Here, each disciplinary solver actually solves for its own state variables (unlike

in the residual form, where it just computes and exports its residuals), and then
exports the necessary outputs, without the need to expose its internals. This also
means, that the functional form equations can be solved in a decoupled fashion, as
each disciplinary analysis can be executed independently, in contrast to the residual
form, where the large set of concatenated equations is solved at once. Essentially,
the residual and functional forms differ in the set of variables they handle. The

Tt is not necessary that discipline i has as inputs the outputs of all other disciplines. The
input vector Yj; is written that way for the sake of generality.
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functional representation handles a much smaller number of variables. This is
because the size of the discipline output, denoted by ny, is typically much smaller
than the size of its state vector ny,. For the aerostructural wing model example,
the number of nodes on the wing surface, and therefore the number of variables,
is typically much smaller than the number of nodes in the entire domain. Finally,
it is noted again, that not all models can be written in residual form. This is
true only if each disciplinary solver involved provides access to its internals, and
is hence able to export its residuals. The two forms for multidisciplinary models,
i.e. residual and functional, are presented in greater detail in [26, Chapter 13].

A Multidisciplinary Analysis (MDA) is the process of simultaneously satisfying
all disciplinary equations, which requires the solution of either eq. 1.3 for all Y},
or eq. 1.5 for all Y;. Multidisciplinary Optimization (MDO) is the process of
optimizing a multidisciplinary system, while ensuring multidisciplinary feasibility,
namely ensuring that all discipline states are compatible or that eqs. 1.3 and 1.5
are satisfied. Simply put, this means that MDO respects and takes into account
the interactions between the disciplines.

An MDO problem can be formulated and solved in various different ways, which
are termed formulations or architectures. MDO architectures are broadly placed
into two categories, monolithic and distributed, based on whether they solve
one or more optimization problems. Monolithic architectures formulate and solve
a single optimization problem, whereas most distributed architectures solve an op-
timization problem for each discipline, and a system-level coordinating problem.
For this reason, most distributed architectures are also called multi-level. Pop-
ular monolithic architectures are the Multidisciplinary Feasible (MDF) and
Individual Discipline Feasible (IDF) [24] and Simultaneous Analysis and
Optimization (SAND)? [14], while Bi-Level Integrated System Synthe-
sis (BLISS) [35] and Collaborative Optimization (CO) [5] are representative
examples of distributed architectures. Comparisons indicate that for most prob-
lems monolithic architectures tend to perform better, generally requiring fewer
disciplinary evaluations and having more robust convergence [36, 12].

Distributed architectures often make a distinction between local and shared or
global design variables. A design variable is local for a discipline if it directly enters
this discipline only. The vector of design variables local to discipline 7 is denoted
by X;. If a design variable directly enters more than one disciplines (even if not
all of them), then it is considered shared. The vector of shared design variables is
denoted by Z. For a problem with m disciplines, the vector of all local and shared
design variables is denoted by X and obviously X = [Z Xy Xy ... Xm}T. A
similar distinction is made for constraints. A constraint evaluated by only a disci-
pline’s state Y; or output variables f/i, local design variables X; and shared design

2Also referred to as All-At-Once or AAO
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variables 7, is considered local to discipline 7. Else, namely if the constraint’s
evaluation requires the state/output or local design variables of more than one
disciplines, it is then shared. The vector of all local and shared inequality con-
straints is denoted by G and obviously G = [Go Gy Gy ... Gm] . The vector

of all equality constraints is defined as H = [HO H, Hy ... Hm}T. Finally, if

f is the (scalar) objective function of the MDO problem, then F' = [f G H}T is
the concatenated vector of the objective and all constraints. This notation is used
throughout this thesis. All symbols commonly appearing are found in table 1.1.
Most MDO architectures achieve multidisciplinary feasibility in one of two
ways. The first is to use an MDA somewhere inside the MDO process (MDF,
BLISS). The second method makes use of target variables (IDF, CO). A target
variable is a copy of (usually) a coupling variable, which is entirely controlled
by the optimizer. For example, for the coupling variable }Afi, its corresponding

target variable is Yit. Now, the inputs of a discipline ¢ are no longer Y. =

Vi oo Viy Vi ... V]lobut Vi = [¥¢ ... Vi, Vi, .. vi]l
This enables all disciplinary analyses to be evaluated completely independently
of each other, since the output of a disciplinary evaluation is no longer an input
for any other discipline. In order to ensure multidisciplinary feasibility suitable
constraints, called feasibility or consistency constraints, are applied. The feasi-
bility constraint corresponding to target variable Yit, denoted by Hy,, is defined

as follows:

H, =Y!-Y,=0 (1.7)

The optimizer uses the constraint Hf/z_ to drive the value of Yit to be equal to

the value of YZ

An MDO problem, regardless of the architecture used, is most often solved
with gradient-based optimizers. This is because of the large computational cost of
an MDO solution, which arises from the disciplinary interactions and the need to
resolve them. Gradient-based optimization algorithms are typically more efficient
than their gradient-free counterparts, but require the computation of the deriva-
tives of the objective and constraints F', with respect to the design variables X,
namely j—? For MDO architectures which use an MDA to achieve multidisciplinary
feasibility at each cycle (for example MDF), the computation of % must also take
the interaction between the disciplines into account. For this reason, % is com-
monly referred to as the (total) coupled derivatives in the context of MDAO.
For efficient computation of the coupled derivatives, multidisciplinary analogs of
the direct differentiation and adjoint method [10] exist, named the coupled direct

and adjoint methods, first presented in [34].
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Symbol

Description

m Number of disciplines

Y; State vector of the i-th discipline

Y; Output vector of the i-th discipline

R; Residual vector of the i-th discipline

R, Functional form residual vector of the i-th discipline, R; =Y; — Y;(Y;)
n( Size of a vector, for example ny; is the size of Y;

X; Design variables local to the i-th discipline

A Shared or global design variables

X Vector of all design variables, X = [Z X X9 ... Xm]T
G Vector of inequality constraints local to the i-th discipline

Gy Vector of shared or global inequality constraints

G Vector of all inequality constraints, G = [Go Gy Gy ... Gm}T
H; Vector of equality constraints local to the i-th discipline

Hy Vector of shared or global equality constraints

H Vector of all equality constraints, H = [HO H, Hy ... Hm]T
f Objective function (scalar)

F Vector of objective function and constraints

—~
~—
*

Variable value corresponding to the optimal

0*

Target variable, for example Y/ is a copy of Y;

t
H

Feasibility constraint, for example Hy, =Y} —Y; corresponds to Y

Table 1.1: Commonly used MDAO symbols and their description. All capitalized
symbols used throughout this thesis are vectors, unless indicated otherwise.
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CFD B B

. FEM .

Performance

Figure 1.1: Design Structure Matrix (DSM) for the three-discipline, aerostructural
wing model. Aerodynamics (CFD) and structures (FEM) are strongly coupled,
since they communicate data to each other. Performance only receives data from
the other two disciplines.

1.2.1 Graphical representation of multidisciplinary models
with the (X)DSM

Although the mathematical definition of a multidisciplinary model should be an
adequate description of its structure, the complexity of such models makes it often
hard to interpret the underlying data-flow quickly and effectively. The complexity
is further increased when considering an MDAO process, for example an MDO
architecture applied to a specific model. For this purpose, the eXtended Design
Structure Matrix, or XDSM, was developed [22]. As the name suggests, the XDSM
is an extension to the simpler Design Structure Matrix (DSM), also called the N?
chart or interaction matrix. For model with m disciplines the DSM is represented
by a m x m grid. The diagonal entries are the disciplines and are marked by their
name. The off-diagonal terms describe the interdisciplinary interactions. For a
row i, the off-diagonal terms are the outputs of discipline 7. If the j-th entry of row
1 is marked by a black square, then discipline’s 2 output directly enters discipline j.
In order to make the DSM’s usage clear, consider again the previously presented
aerostructural wing model. A third discipline is added, called performance. This
discipline is not a PDE solver like aerodynamics (CFD) and structures (FEM).
Instead it is a simple function which calculates some output with information
from aerodynamics and structures. Further details about performance are not yet
necessary. The DSM for the three-discipline, aerostructural wing example is shown
in fig. 1.1. Since m = 3, the DSM is 3 x 3 matrix.

An apparent drawback of the DSM is that does not expose clearly what infor-
mation is passed from one discipline to another. This is undesired, especially in
large applications, where there exist many and complex interactions. The XDSM

17
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Figure 1.2: Extended Design Structure Matrix (XDSM) for the three-discipline,
acrostructural wing example. Aerodynamics (CFD) and structures (FEM) are
strongly coupled, since they communicate data to each other. Performance only
receives data and computes a performance metric f.

tackles this problem by replacing the off-diagonal terms with line connections,
which explicitly state the communicated variables. In the aerostructural wing
model example, the outputs of acrodynamics might be the pressure P and shear
stress 7 at the wing surface, and the lift L and drag D of the wing. Similarly, the
outputs of structures might be the displacement U of the wing surface and the
weight of the wing W. Finally, performance might calculate some performance
metric f with information from the other two disciplines. This is showcased in the
corresponding XDSM in fig. 1.2.

Furthermore, the XDSM can be used to visualize MDAO processes such as
an MDA, or an MDO architecture applied to a specific problem. This is done
by placing not only the disciplines on the diagonal, but also MDA blocks and/or
optimizers. Consider that the MDF architecture, although not thoroughly pre-
sented yet, is applied to the aerostructural wing example (fig. 1.3). The goal is to
optimize the performance metric f w.r.t Xopp and Xpgys, which are the design
variables of aerodynamics and structures respectively. Inputs to the XDSM are
usually placed on top of the diagram, such as the initial values of the design vari-
ables X2pp and X2p,,, while outputs are placed typically on the left, such as the
optimized values of the design variables X pp and Xjp,,. At each optimization
cycle, MDF uses an MDA to enforce multidisciplinary feasibility. This is shown in
the XDSM by the diagonal block named "MDA”. A second block, named ” Opti-
mizer”, uses the value of the computed performance metric f, to update the values
of the design variables. Inside this XDSM, there exist two closed-loop processes,
one corresponding to the MDA and the other to the optimizer. This is indicated
by a continuous black arrow for each process, which must begin and end at the

same diagonal block. For the MDA process for example, the arrow begins at the
"MDA” block, connects the ”CFD” and "FEM” blocks, and returns to "MDA”.
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Figure 1.3: XDSM for the MDF architecture applied to the example aerostructural
wing problem.

1.3 The mSense package for MDAO

A major part of this thesis is the implementation of a software platform for the
rapid development and testing of MDAO methods. Several MDAQO frameworks
already exist, with OpenMDAO [11] and GEMSEO [9] being notable open-source
examples. There also exist commercial packages, such as Isight from Dassault
Systemes [19], ModelCenter from Phoenix Integration, Optimus from Noesis Solu-
tions and VisualDOC from Vanderplaats Research and Development [4], to men-
tion just a few of them. Commercial packages provide easy component integration,
having easy to use graphical interfaces and wrappers for engineering analysis pro-
grams. However, they lack the modularity of the aforementioned open-source codes
and do not have the coupled derivative computation capabilities (coupled direct
and adjoint methods), often relying on finite-difference approximations.

MSense (Multidisciplinary + Sensitivity) is an open-source Python package de-
veloped to facilitate the setup and solution of MDAO problems. It aims to provide
a platform that is fairly easy to use, but can also be extended to suit the specific
needs of each user. The MDA module of mSense can use either fixed-point or
Newton-based methods to couple disciplines. MSense leverages the coupled direct
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and adjoint methods, as well as finite-difference and complex-step 3 approxima-
tions for the computation of the coupled derivatives of multidisciplinary models.
Derivative approximation can be used either at the discipline, or at the system
level, which makes the process of computing sensitivities quite flexible. For ex-
ample, in a two-discipline system, one discipline might provide its own partial
derivatives, while the other might not. MSense is able to approximate the partial
derivatives of the second discipline, and then use the coupled direct or adjoint
methods to compute the total coupled derivatives. If that is not desirable, mSense
is also able to compute the coupled derivatives directly, through approximation
at the system/MDA level. The following three architectures are currently imple-
mented in mSense:

e MDF
e [IDF
e CO

They can be used for any MDO problem the user sets up. MSense is currently
able to utilize the optimization solvers available in Scipy [38], such as SLSQP [20]
and COBYLA [30], and the interior point optimizer Ipopt [39]. Finally, mSense
has the capability to record the execution of each discipline, in order to avoid evalu-
ating or differentiating a computationally expensive discipline multiple times with
the same input values. It should be mentioned that the code only supports multi-
disciplinary models expressed in the functional form. All applications presented in
this thesis are implemented in mSense. The source code, as well as examples, can
be found at: https://github.com/dlmpal/mSense. A basic user guide is included
in the appendix.

1.4 Thesis outline

The thesis is organized as follows:

e Chapter 2 A thorough presentation of the theory behind MDAO. The dif-
ference between single-discipline and multidisciplinary models is explained.
Methods for the solution of the coupled disciplinary equations are presented.
The direct and adjoint methods for the computation of the coupled deriva-
tives are derived. Several monolithic and distributed architectures are dis-
cussed.

3The underlying disciplinary code(s) must be able to use complex number arithmetic.
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Chapter 3 The performance of three MDO architectures is tested. Two
standard MDO benchmarks problems are used. The first is Sellar’s problem,
which a simple analytic problem of two disciplines. The second is Martins’
scalable problem. As the name implies, this problem’s dimensionality can
be selected arbitrarily.

Chapter 4 A Fluid-Structure Interaction (FSI) problem is considered. The
problem consists of an airfoil inside a two-dimensional flow field. The airfoil
is able to rotate about an axis normal to the flow plane, and attached to
the axis is a spring. The equilibrium point of the airfoil-spring system is
found through an MDA. Then the shape of the airfoil is optimized using
MDO, with the goal of achieving a desired lift value. The MDF and IDF
architectures are compared.

Chapter 5 A second FSI problem is considered. Fluid flows through an
elastic tube, deforming it. The solution to the problem is found through
an MDA. Then, the material properties of the tube are optimized, using
the MDF architecture, in order to control the maximum displacement of the
tube.

Chapter 6 A typical MDAO problem, the aerostructural analysis and op-
timization of an aircraft wing is solved. The wing used is the ONERA M6.
Since no structural model exists for the wing, a finite-element beam model
is developed, which computes the bending of the wing. Using an MDA, the
deformations and stresses that the wing undergoes during flight are com-
puted. Then, the aerostructural model of the wing is optimized, using the
MDF architecture. Two objective functions are used.
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Chapter 2
MDAO Theory

2.1 Multidisciplinary Analysis (MDA)

A Multidisciplinary Analysis or MDA is the process of solving the equations of
the multidisciplinary model. This is equivalent to driving the residuals of all
disciplines to zero simultaneously, or converging the coupling variables to a state of
equilibrium, effectively making all discipline states compatible. When considering
the residual form of the multidisciplinary model (eq. 1.3), any conventional solver
for systems of nonlinear equations will suffice, since this approach essentially results
in one large set of nonlinear equations, which are solved in a monolithic fashion.
For the functional form, the system of equations (eq. 1.5) is typically solved by a
fixed-point method in segregated manner. Generic nonlinear solvers can also be
used for functional form models, resulting in a semi-segregated, semi-monolithic
approach.

2.1.1 Fixed-point methods

Fixed-point methods use appropriate iterates to arrive at the solution that satisfies
the governing equations of all disciplines. In general, the iterate is of the form:

YFE=Yi(Vih), i€ (1,m) (2.1)
where index k refers to the current MDA iteration. The MDA analog of the Jacobi
method used for systems of linear equations, called Jacobi MDA, is obtained by
eq. (2.1) for:

- ~ A1 oh N
Vi =yl o vED Y L Y (2.2)
Essentially, at each Jacobi MDA iteration all disciplinary analyses are executed

using the previous coupling variable values Y = [Ylk’l YR Y,L-I_fll e Yn’j_l] ,
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which were computed during the last iteration. This allows the concurrent exe-
cution of all disciplines, as is the case with the Jacobi method for linear systems.
The process is shown in algorithm 1.

Algorithm 1 Jacobi MDA

1: Initialize all coupling variables: Y = [)710 N 4
2: while ||[Y* — Y*7!|| < e do

3: fori=1,mdo

4: Yz‘k :Yi(f/lk_l’"'73311_1171?1‘@_11""7}}71]271)

5: end for

6: k=k+1

7: end while

Similarly, the iterate for the Gauss-Seidel MDA is given by:
Pho= (7 v vA v 23
The Gauss-Seidel MDA uses the latest coupling variable values, meaning that
disciplinary analyses cannot be executed in parallel. However, the convergence
properties are generally better than those of the Jacobi MDA, as shown in [2].
The process for the Gauss-Seidel MDA is shown in algorithm 2.

Algorithm 2 Gauss-Seidel MDA

. Initialize all coupling variables: Y0 = [V VP ... Y/;{}T

1

2: while ||[Y**! — Y¥|| < € do

3 fori=1, mdo

4: }A/ik:}A/i(f/lk—i_lv"'?}}ilil?)?iﬁ-_llﬂ”'7?7]:;_1)
5:  end for

6: k=k+1

7: end while

Both methods can make use of relaxation, namely:
Y= (1-aY " +aYi(Y) (2.4)
The use of under-relaxation (a < 1) can be very beneficial for MDA applica-
tions, in order to facilitate convergence!.

1An MDA (for a functional form model) is considered converged when an aggregate scalar
quantity of the functional residuals of all disciplines, called residual metric, is lower than some
(MDA) tolerance €. This, of course, is implementation dependant but in mSense, the MDA

. . 5 5 v -y
residual metric is defined as follows: |[YAT! — Y| =Y, w
2
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2.1.2 Newton’s method

Newton’s method is a popular approach for solving systems of nonlinear equations.
It starts from an initial guess, and at every iteration k it constructs a linear
approximation to the solution of the nonlinear system of equations. By solving
the resulting linear system, it produces a correction by which it updates the actual
solution. For the residual form of the multidisciplinary model (eq. 1.3), Newton’s
method yields:

OR k=1 9R k-1 ORy k=1 k k-1
oYy Y2 Y AY/ R}
ORy k=1 Ry k-1 ORy F=1 | | A Yk RE1
oYy Y U OV, 2] _ 2
: : . : : : (2.5)
ORm K1 Ry, k-1 oRm k1| | AYY RE-1
oY1 Y5 e OYm

Y=Yt - AYF i (1,m)

At iteration k, the residuals and their derivatives are computed using the state
variable values from the previous iteration. Specifically, the residuals are computed
as RF1 = Ry(YF1, Y71 ... YE~1) and their derivatives as (Yk Ly,
It is important to note that in the above expression all entrles ‘are either vectors or
matrices. For example, entry 5 8RZ is a vector of size n; X n;, where n; and n; are the
sizes of the state vectors of dlscnplines 1 and j respectively. This means that each
discipline has to provide the derivative of ng, residuals w.r.t Z;”zl ny; state vari-
ables, which basically forms the i-th row of the Jacobian matrix of 2.5. Of course,
this can only be done if each and every disciplinary solver gives access to its inter-
nals, and specifically the computation of its residuals. The process for Newton’s
method for multidisciplinary models in residual form is shown in algorithm 3.

Applying Newton’s method to residual form models results in an entirely mono-
lithic solution process. In contrast, the fixed-point methods discussed previously
solve the MDA problem in an segregated manner. A third approach is produced
by applying Newton’s method to the functional form of a multidisciplinary system.
The functional form residual of each discipline is defined as R; = Y; — Y(Yﬁgm)
Applying Newton’s method produces the following system:

- s k-1 ~ k—1 © k—1-
oy oy ORy N "
ovh Y5, Y AY}k le !
o, "1 aR,Fl R, 1 AV A1
& o - 2 2
oY1 199 OYm =
: ; : 5 (2.6)
. e . e L e Ok pk—1
8Ptmk 1 aptmk: 1 a@mk 1 AYF RE-
L 0Y; 0Ys OYm -
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Algorithm 3 Newton MDA (residual form)

1: Initialize all state variables: Y = [YIO Y9 .. .YO}T
2: while ||R*|| < € do
3: fori=1,mdo

Compute RF™*

for j =1, m do

end for
end for
Solve (SE)A-1AY* = RF=1 for AY*
10 YF=YkI_AYF
11: k=k+1
12: end while

4
5
6: Compute % B
7
8
9

From the definition of the functional form residual, it follows that:

OR; I, z' =
i / (2.7)
Eq. 2.6 can be re-written as:
- o k—1 o k—17
)% )% . .
]k X _8_{/; Ce —ﬁk X AY'lk le_l
Yy " Yy T Ok k—1
: : . : : : (2.8)
L M i AVl LR
L oy Y )

VE =Y _AYE Qe (1,m)

Similar to eq. 2.8 all entries of the Jacobian matrix of 2.8 are also matri-
ces. Each discipline has to provide the derivatives of ny. output variables w.r.t
Z;.”:LJ 4Ty, The process for Newton’s method for functional form multidisci-
plinary models is shown in algorithm 4.

The system of eq. 2.5 will always be equal to or greater in size, compared to
that of eq. 2.8, since for every discipline i, ny, > ny.. However, assembling the
Jacobian of the residual form (eq. 2.5) can be cheaper than its functional form

counterpart (eq. 2.8). This is because obtaining the functional derivatives g}f_ is
J

analogous to obtaining total derivatives at the discipline level, the cost of which
might not negligible.
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Algorithm 4 Newton MDA (functional form)
1: Initialize all coupling variables: Y = Yo vo ... Y/O]T
2: while ||[Y* — Y*7!|| < e do
3 fori=1 mdo

Compute R}~

for j =1, m do

- k-1
Y;
Compute oy,

end for
end for
Solve (g—g)k_lAf/k = R* 1 for AY*
10 Yrk=yYk1_AYF
11: k=k+1
12: end while

2.2 Derivative computation for gradient-based MDO

In order to perform gradient-based optimization the derivatives or sensitivities of
the objective function and the constraints w.r.t the design variables are required.
In the context of MDAOQO, computation of these derivatives must also take the
coupling between the disciplines into account. This is specifically required for
MDO architectures that use an MDA to ensure multidisciplinary feasibility, such
as MDF.

2.2.1 Derivatives of single-discipline models

Before presenting the various method of computing coupled derivatives of multi-
disciplinary models, it can be useful to discuss derivative computation in single-
discipline models. Consider a vector valued function F' of size ng and vector X
of size ny. F represents all the objectives and constraints of the system, and X
the design variables vector. The (matrix) quantity that must be computed is the
Jacobian matrix of F' w.r.t X, namely:

dry dFy _dF
X1  dXz T dXpy
dFs> dFs dF>
dF dX1  dX2 T dXpy (2.9)
dX : : . : '
dFn,  dFn, dFy
dX1  dXz T dXny

In engineering applications it is more common for F' to be directly computed
from the state variables of the corresponding model, rather than from X directly.
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In general, the dependence of F' on X can be both direct and indirect. For a
single-discipline model with state vector Y, of size ny, and through the chain-rule
of differentiation, it follows that:

dF  OF O0FdY

X 09X ovax

For a given design variable vector X and a state vector Y that satisfies the

model equations, the residuals become zero, namely R(X,Y’) = 0, where R is the

residual vector of the system. Again, through the chain-rule of differentiation and
noting that j—ﬁ? = 0, since R = 0, it follows that:

(2.10)

ORdAY  OR

oy dX 90X

By solving eq. 2.11 for 3—}; and substituting the result in eq. 2.10, the total

sensitivity of F' w.r.t X is computed. Egs. 2.10 and 2.11 constitute the direct

differentiation method. In order to compute j—;, this method requires the solu-

tion of nx linear systems (of size ny X ny each), i.e. its cost scales with the number

of design variables. Through substitution and clever rearrangement of operations,

a second method can be derived. By substituting eq. 2.11 in eq. 2.10 the following
is obtained:

(2.11)

dF _OF _OF OR™'OR,

dX 90X 9Y oY 090X

The order of operations in the last term of eq. 2.12 is slightly modified such
that:

(2.12)

dF _OF _ OFOR™\OR _
dX 90X oY oY '0X
dFF  OF +OR

dX 00X X

Term ¢ = 3—5%71 is the vector of adjoint variables. It can be computed by

solving g—gT = g—gT. This yields the adjoint method:

dF  OF . 0R

dX 90X X
OR"T  OFT
ay Ty
This approach requires the solution of ng linear systems (also of size ny X ny
each), meaning that it scales with the number of objectives and constraints. The
adjoint method is often preferred in engineering design optimization, since often

(2.13)
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nx >> npg, meaning that the number of design variables is far greater than the
number of constraints and objectives.

Another approach of obtaining the total sensitivities j—f; is through approxima-
tion. Perhaps the most common approximation technique is finite-differences.
A first-order, forward, finite-difference approximation of % is computed as:

dF _ F(X + hé;) — F(X) (2.14)
dX; h

In the above equation ¢é; is a unit vector of size nx, pointing in the i-th direction,
and h is the approximation step-size. The step-size has to be small relative to
the magnitude of X;. The presented finite-difference scheme is only first order
accurate, and other more precise schemes exist. A much more accurate variant
of the finite-difference approximation, is the complex-step method [27]. As the
name suggests, instead of taking a real step in the i-th direction, the complex-step
method perturbs the function in the imaginary plane, i.e.:

dF  Imag(F(X + jhé;))
ax; h
Although the complex-step method is much more accurate than any finite-
difference scheme, it requires that the underlying numerical model supports complex-
number arithmetic. Accuracy notwithstanding, all approximation methods suffer
from the fact that they scale linearly with the number of design variables n,,
similar to the direct differentiation approach of eqs. 2.10 and 2.11.

(2.15)

2.2.2 Derivatives of multidisciplinary models

The methods presented in the previous section can also be applied to compute the
(coupled) derivatives of multidisciplinary models with some adjustments. Consider
again a vector valued function F', of size ng, containing the objectives and con-
straints, and a design variables vector X, of size nyx. In the context of MDAQO, the
derivatives of F' w.r.t X are referred to as coupled derivatives, or coupled sensitiv-
ities. Likewise, the direct differentiation and adjoint methods for both the residual
and functions forms of the multidisciplinary model are referred to as the coupled
direct differentiation and coupled adjoint method respectively. The cou-
pled direct differentiation and adjoint methods were first presented by Sobieski in
[34]. Martins [25] used the coupled adjoint method for a two-discipline, aerostruc-
tural system (expressed in the residual form), and compared its performance and
accuracy with that of complex-step approximation.

For a model of m disciplines expressed in the residual form (eq. 1.3), the residual
vector R; of a discipline 7 is a function of all discipline state variables and the design
variables, namely: R;(X,Y7,...,Y,,). Differentiating R; w.r.t X yields:
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R _ OR ~OR;dY;
dX 90X = oy;dX

(2.16)

By rearranging, and writing the above for every discipline residual vector, the
following linear system of equations is produced:

OR1 OR; ORy aYq ORy

Y% oYs ' OYm ax

ORy  ORs IRy e 8%

oY1 9Ys T OV, ax | _ | ox (2 17)
ORm  ORm ORm dYm IRy

oY, 9Y> Yo ax X

The objectives and constraints vector F' can now be differentiated w.r.t to X:

vy
5

dF _ OF OF  OF 9F 7 | dX

ax “ox e oms o awl) .
av,
dX

Egs. 2.17 and 2.18 are the equivalent of the direct differentiation method
(egs. 2.10 and 2.11) for the residual form of multidisciplinary models. The adjoint
approach is also obtainable, and is expressed as follows:

V|
Bt

dF 9F . .
X “ox "

C X

LN (2.19)

ORm
0X

The vector of the adjoint variables [W] W}
solution of the following linear system:

W] is computed from the

ORy T OB T oR T oF T

oY) oYa Y vy oY1

Ry T ORy T Ry T | |y oF T

oY1 1)) OYm 2 — oYy (2 20)
ORm T ORwm T ORm ' | |V, or T

o1 Yo OYm Y

Egs. 2.19 and 2.20 are the analogous to the adjoint method (eq. 2.13) for
the residual form of multidisciplinary models. For residual form models, the size
of each linear system that has to be solved, both for the coupled direction differ-
entiation and coupled adjoint methods, is of size ny x ny, where ny = > ny,",.

Both the direct differentiation and the adjoint approaches can also be obtained
for models expressed in the functional form. For a model of m disciplines, the
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output of discipline i is computed as Y, = ?;(X , ?}-#), being a function of all
discipline outputs and the design variables. Differentiating the Y; w.r.t X yields:

dY, <~ Y, dy; Y,
- > = (2.21)
j=1,j#i

dX #,affj dx 0X

Writing the above equation for all m disciplines, the following linear system is
obtained:

] —B—YI - —% le 6?1

. Y2 OYm ax X

_o g _o% | | av ot
oY1 e OYm ax — 0X (222)

o _ova AR

oY1 Ys ax X

Differentiating the objective and constraints vector F' w.r.t the design variables
vector X yields:

dFF OF [a_F OF a_F] ax (2.23)

aX ~ 0X oYy 9Ye T 9Vm

Egs. 2.22 and 2.23 represent the direct differentiation method for mul-
tidisciplinary systems in functional form. Again, by rearrangement, the adjoint
method can be obtained:

)%

0X
dF  OF gr
W
o0X

The vector of adjoint variables is now denoted by ®, to distinguish it from its
residual form counterpart. It is obtained from the solution of the following linear
system:

[ 7 _on' _on 1 oF T
Vs OV P, o,
_on g _on | | @, or T
oY1 OYm — | oY (2.25)
_ov T o I A
= 8{/1 8{/2 T . 8Ym
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Eqgs. 2.24 and 2.25 represent the adjoint method for multidisciplinary models
in the functional form. For functional form models, the size of each linear system
that has to be solved, both for the coupled direction differentiation and coupled

adjoint methods, is of size ny X ny, where ngy = 3 ny™ .

The Jacobian matrices [Sﬂ and [ } present in the linear systems for both

the coupled direct differentiation and adJomt approaches, are equivalent to the
matrices in the left-hand-side of Newton’s method for the residual (eq. 2.5) and
functional (eq. 2.8) forms respectively. As it was noted when comparing the resid-
ual and functional Newton forms, the system arising from the functional form is
typically significantly smaller in size, since for every discipline ny, > ny.. However,
obtaining the partial derivatives required in the functional direct differentiation

and adjoint methods can be much more costly than the residual form counter-
3Yz

parts. The terms % and are partial derivatives at the multidisciplinary level,

dY

but are total derivatives at the discipline level. Both g)’f and 5 oY; 1 are matrices of size

ny, X ny and ny. x nx respectively. Therefore, each dlsmphne has to provide the

derlvatlves of ny. objectives w.r.t S 1,5 Ty, T design variables. If a discipline
uses the direct differentiation or adjoint methods presented in the previous section,
providing these derivatives requires the solution of either Z;”zl gy, T X direct

differentiation or ny. adjoint linear systems. This becomes intractable even for

OR; 8R
oY and

in the direct and adjoint methods for the residual form of the multldlsmphnary
model are often available or cheaply computed at the discipline level, and more
importantly do not require any linear system solutions. Hence, in large multidisci-
plinary models, with computationally demanding disciplinary solvers, the residual
form is better suited, at least for the computation of the coupled derivatives.

It should be noted that both finite-difference and complex-step approximations
can also be used for evaluating the coupled derivatives in multidisciplinary mod-
els. Their poor scaling is much more pronounced here, since approximating the
sensitivity to each design variable requires a separate MDA to be performed.

moderately sized applications. The partial derivative terms 5% appearing

2.3 Multidisciplinary Design Optimization (MDO)

Multidisciplinary Design Optimization or MDO differs from single-discipline design
optimization in that MDO has to take the interactions between the disciplines of
the multidisciplinary model into account. The compatibility of discipline states
is often referred to as multidisciplinary feasibility in the context of MDAOQO, and
should not be confused with the notion of feasibility in classical optimization, which
describes whether a certain design vector satisfies all constraints. Feasibility is a
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requirement of any MDO formulation or architecture, and different formulations
achieve it in different ways. These architectures can be placed into two broad
categories: monolithic and distributed. Monolithic architectures formulate the
MDO problem so that it can be solved as a single optimization problem. On the
other hand, distributed architectures decompose the original problem into smaller
optimization problems, with the hope of reducing the total computational cost,
by exploiting the structure of the problem. In the following sections, examples of
each category are presented.

2.3.1 Monolithic architectures
Multidisciplinary Feasible (MDF)

All monolithic architectures formulate and solve a single optimization problem.
Perhaps the most straight forward monolithic architecture is the Multidisci-
plinary Feasible (MDF) architecture [24]. MDF constructs an optimization
problem most similar to classic single-discipline optimization. Each MDF cycle
begins by solving the multidisciplinary model’s equations through an MDA. Af-
ter all discipline states are compatible, namely after the MDA has converged, the
objective and the constraints can be evaluated. Then, the coupled derivatives are
computed, through the methods described in chapter 2.2.2. The values of the
objective, the constraints and the derivatives are passed to the optimizer, which
updates the design variables vector. For a model of m disciplines in functional
form, the MDF architecture is expressed mathematically as:

minimize f(X,Y)
with respect to X

subject to  G(X,Y) (2.26)

while solving  R(X,Y) =0, for Y

In the above expression f is the objective function, G and H are the vectors of
. . . . . A A ~ 9T
all inequality and equality constraints respectively, and R = [Rl, R, ..., Rm} and
~ ~ A A T . .
Y = [YI, Ys, ...,Ym} are the concatenation of residual and output vectors of all

disciplines. Specifically, R; is the functional form residual for discipline 7, defined
as follows:

~ ~ ~

R =Y; = Yi(Y;) (2.27)



One major advantage of the MDF formulation is that feasibility is ensured at
every optimization cycle, so even if optimization stops prematurely, the discipline
states are compatible and the optimization result is meaningful. The disadvantage
of MDF is that, at each cycle, a fully converged MDA solution is required, which
can be costly. However, the MDF architecture is often the choice for large, PDE-
constrained optimization problems, since it is the most effective architecture for
systems with a large number of coupling variables and computationally expensive
disciplinary solvers. This is because MDF can handle multidisciplinary models
expressed both in the residual and functional forms, and leverage the efficiency of
the coupled adjoint method (in the residual form). It is therefore commonly used
in high-fidelity aerostructural optimization [16, 17], but is also used effectively
in other MDO problems, such as the design and trajectory optimization of small
satellite [15]. The architecture is described in algorithm 5.

Algorithm 5 Multidisciplinary Feasible (MDF)

1: Initialize X,V

2: repeat

Solve R(X,Y)) =0, for Y (MDA)

4:  Compute f(X,Y), G(X,Y), H(X,Y)
5. Compute j—f(, g—)G(, Z—g (Coupled derivatives, see Chapter 2.2.2)
6: Update X using f,G, H, 4L d¢ di
7

@

until Optimization has converged

Individual Discipline Feasible (IDF)

Another popular monolithic formulation is the Individual Discipline Feasible
or (IDF) [24]. Instead of an MDA, the IDF architecture achieves feasibility
by using target variables. The target variables, denoted by }Afit, are estimates
of the coupling variables Y; which are entirely controlled by the optimizer and
should match Y; upon convergence. Each discipline ¢ computes its outputs using
as input not the outputs of other disciplines }A/#,-, but the target variables }A/j;i =

Yt ... Vi, Vi, Y;JT This effectively decouples the disciplines, allowing

(2
the disciplinary solvers to execute independently. For every target variable vector

V! an equality constraint H;(th,f/@) = Y! —Y; = 0is added. Through these

constraints, the optimizer drives the value of Yit to equal that of Y. At optimization
convergence and through satisfaction of the these constraints, multidisciplinary
feasibility is ensured, since then f/f = Y;. Due to this, they are appropriately
named feasibility constraints. For a multidisciplinary model of m disciplines in
the functional form, IDF is expressed mathematically as:
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minimize f(X,Y?)

with respect to X, vt

subject to G(X,Y") <0
H(X,YY) =0
HI(VE, V) = Vi = Vi =0, for € (1,m)

7

(2.28)

while solving Ri(X,Yi,f/;i) =0, forY;, i€ (1,m)

J

The main advantage of IDF' is that all disciplines can evaluate their outputs

independently and in parallel. However, unlike MDF, the IDF formulation does not
guarantee multidisciplinary feasibility at all optimization cycles. Therefore, if the
optimization has to be stopped early, the discipline states might not be compatible
and the optimization result might not be meaningful. A further disadvantage of
IDF is that the optimizer most solve a much larger system. The introduction of the
target variables forces the optimizer to handle ", ny. more ”design” variables
and constraints, since for the optimizer handles the target variables as if they were
regular design/decision variables. This creates the need for efficient optimizers
designed for large problems, when using this architecture. IDF is described in
algorithm 6.

Algorithm 6 Individual Discipline Feasible (IDF)

1: Initialize X,Y"

2: repeat

33 fori=1 mdo

£ V=Yi(X.YL)

. t vVt VY — VitV

5 HL(VLY) =YY,

6: end for R R ) )

7. Compute f(X,Y"),G(X,Y"), H(X,Y"), H(X,Y")

_ df dG dH dH! df dG dH dH!

8: Compute E,d—X,d—X,d—X,m,m,F,m t t
9:  Update X,Y" using f,G, H, H', & 49 di I A 4G 4l dIT:

Y dX 0 dX 0 dX dX 0 gyt dytd 4yt dyt

10: until Optimization has converged

2.3.2 Distributed architectures

The second broad category of MDO architectures are distributed ones. Instead
of solving a single optimization problem, they solve multiple smaller problems.
Based on how they achieve feasibility, distributed architectures can be classified
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as variants of the MDF and IDF (monolithic) architectures. Distributed MDF
architectures use an MDA to ensure the compatibility of discipline states (similar
to MDF), whereas distributed IDF architectures use target variables and feasibility
constraints (similar to IDF). The Collaborative Optimization (CO) architecture is
presented below, which is the only distributed architecture implemented in mSense.

Collaborative Optimization (CO)

Collaborative Optimization (CO) is a popular distributed architecture intro-
duced by Braun [5]. CO decomposes the optimization problem into a system-level
optimization problem and a separate optimization subproblem for each discipline.
To decouple both the execution of the disciplinary solvers and the solution of
the discipline subproblems, CO introduces target variables not only for the disci-
pline outputs, but also for the shared and local design variables. Specifically, the
system-level problem controls the shared design variables Z and target variables
for the local design variables X; and outputs Y; of each discipline, denoted by X!
and Yit respectively. The discipline ¢ subproblem controls target variables for the
shared design variables Z, denoted by Z!, and its local design variables X;. The
mathematical formulation of the system-level problem is as follows:

minimize f(Z, X', Y")

with respect to 7, X', vt
subject to Go(Z, X', Y*) <0 (2.29)

Ho(Z, X', Y =0

and J' =0, i€ (1,m)

In the above expression, X' is a concatenation of the target variables for

all local design variables, namely X' = [X! XI. .. X}fn]T, similar to YT =
DA/lT v,o oY) ]T which includes the target variables for all discipline out-

puts. A set of equality constraints J; is added, which enforce multidisciplinary
feasibility at the optimum. These are feasibility constraints, similar in function
to those used by IDF. The term J; corresponds to the optimized solution of the
discipline i subproblem, which is stated as follows:
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minimize J;(Z!, X;,Y;) = || X! — X;|)?

+1Z; - Z|?
+ |1V = Vil
with respect to 7!, X; (2.30)

subject to Gi(Zf,Xi,Y/i) <0
Hi(ZfaXz’)Y/i) =0

while solving  R;(Z!, X;, Yj;i) for Y;

The derivatives of the optimized discipline-level objectives .J;, denoted by J;,
are required by the system-level optimizer optimizer. Braun [6] showed that these
post-optimality sensitivities can be computed as:

d‘]z* _ t *
dJ*

L — _92((ZHY — 7 2.31
Y-z - 2) (231)
d‘]z* _ t *

v 20y = Y7)

)

where X/, (Z!)* and Y;* are the optimized values of X;, Z! and Y;, namely their
values at the end of the i-th discipline-level optimization.

In essence, the concept behind CO is that the system-level problem minimizes
the objective function, while the discipline subproblems minimize the interdisci-
plinary inconsistency. Since J = 0 at the optimum, the values of all targets
match the values of the variables they are trying to estimate, namely (X!)* = X7,
(V1) =¥y and (2)) = 2"

CO has the obvious advantage that all disciplinary analyses and optimizations
are completely separated. However, the formulation faces major convergence is-
sues, especially when gradient-based optimizers are used [1]. This is because,
at the optimum both the feasibility constraints .J* and their gradients are zero,
which is a violation of the Karush-Khan-Tucker optimality conditions, significantly
hindering convergence. Despite these drawbacks, the architecture has been used
extensively in a wide range of MDO problems, including the design of flight tra-
jectories [23], satellite constellations [7] and even a scanning optical microscope
[29]. The architecture is described in algorithm 7.
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Algorithm 7 Collaborative Optimization (CO)

10:
11:
12:

13:
14:

1
2
3
4
5:
6
7
8
9

: Tnitialize Z, Z!, X;, X!, Y;, Y} for i € (1,m)
: repeat

fori=1, mdo
repeat . A R
Solve Ri(Z}, X;,Y,;) = 0 for Y;

Compute Ji(Z@'taXi,Yi)a Gi(ZitaXia}A/i)v Hi(ZfaXi,Yi)
dJ; dG; dH; dJ; dG; dH;

Compute d_ZZ’?’ d_Zit’ d_Zf’ dX;’ dX;’ dX;’

t . dJ; dG; dJ; dG;
Update Z;, X; using J;, g, 55+, 55+, oo ax

until Discipline-level optimization has converged
end for ) A X
Compute f(Z, X", Y"), Go(Z, X', Y"), Hy(Z, X", V")

dZ> dZ > dZ 0 dZ 7 dXt’ dXt’ dXt’ dXP qyt’ 4yt 4yt dyt

Update Z, X!, Y using f, Gy, J*, %, .

until System-level optimization has converged
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Chapter 3

Benchmarking different MDO
architectures

In chapter 2.3 various MDO architectures were presented. The question that
naturally arises is which architecture to use for a given problem. The ultimate
goal of any architecture is to find the optimum of the MDO problem, without
violating the constraints or multidisciplinary feasibility. However, when comparing
architectures, it is not enough that an architecture can successfully arrive at the
optimum. It is also necessary that it does so in a reasonable amount of time, or for
a reasonable number of disciplinary evaluations. Many benchmark problems have
been proposed, with the earliest example of such work perhaps being the NASA
MDO test suite released in 1996 [28]. In this chapter, several MDO benchmark
problems are presented and solved, with the goal of comparing the performance of
the MDO architectures available in mSense.

3.1 Sellar’s problem

Sellar’s problem [32] is a simple mathematical problem comprised of two disci-
plines. It considers the minimization of a scalar function f w.r.t three design
variables x1, 21, 2. The problem is constrained by two inequality constraints g,
and ¢gs. Design variable x; and both constraints are local, while z; and z, are
shared. The outputs of the two disciplines are y; and ys respectively. The math-
ematical formulation of the problem follows, while the problem’s XDSM is shown
in fig. 3.1.
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Figure 3.1: Sellar’s problem: XDSM

minimize f =2+ 23 +yl +e ¥
with respect to 1z, 21, 29
subject to g1 =3.16 — > <0
go=1Yy2—24<0 (3.1)

while satisfying R; =y, — \/x% +20+1x —02%y, =0
R2=y2—|y1|—Z1—2220
The three MDO architectures implemented in mSense are tested: MDF, IDF,
and CO. For MDF, the Gauss-Seidel MDA is used and its termination tolerance
is set to 107*. The coupled derivatives are computed using the coupled adjoint

approach of egs. 2.24 and 2.25. To make the application of the coupled adjoint
method clear, eq. 2.25 yields:

_ oy oF T
éy O FI] = |90
2

0y2

where F = [f g1 ggf. Since np = 3, the above 2 x 2 linear system has to be
solved three times, before the coupled derivatives can be computed. For clarity’s
sake, by substituting I’ the above equation is written as:

1 9| reT of  Og 992
Ay2 1] — %yl Jy1  Oy1
_Op ®J | |L Yo Om

Oy1 Oy2  Oy2  Oy2

Each column of the matrix on the right corresponds to the solution of a different
linear system. Similarly, eq. 2.24 yields:
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dF  OF Su
dX 09X (o 2] o

where X = [zl 29 xl}T. By substituting X and F', the equation is written as:

a4 df  df of of of
dz1 dzo dx 0z1 0Oz 011 oy1 Oy1 Oyn
dgr dgn dgi | _ [On 91 Og1 | _ [@T ol ] 9z1 0Ozz Oz
dz1  dza  dm dz1 0Oz Om 1 2 Oy Oy1 Oyn
dg2  dg2  dg2 992 092 992 dz1 0Oz2 Omi
dzl dZQ dzl 821 822 8([1

IDF solves a slightly larger optimization problem, as the optimizer is respon-
sible not only for the design variables z1, z1, 29, but also the target variables
yt and yh. There is also the addition of the feasibility constraints, which are
ht =yt —y; =0 and kY = yb — yo = 0. Using these constraints the optimizer will
drive the values of 3! and y% to match the values of y; and y, at the optimum,
namely (y!)* = y; and (y5)* = y;, effectively enforcing multidisciplinary feasibility.
For the sake of clarity, the optimization problem that IDF solves is the following:

minimize f = x% + Z% + (yi)Q +ev:
with respect to w1, 21, 29, yi, y§
subject to g1 = 3.16 — (y})? < 0
gQZ(yg)—QZLSO
hi=y -y =0
hy =y —y2=0

while satisfying Ry =y, — \/x% + 20421 —02%yb=0
Ro=1y— |yl —21 — 22 =0
CO formulates and solves a system-level problem and two discipline subprob-
lems. The system level problem handles the shared design variables z; and 2o, and

target variables for the local design variable z; and disciplinary outputs y; and s,
denoted by x}, ¥} and vy respectively. It is written as:

minimize f = (z}) + 22 + (y})? + %
with respect to  z%, 21, 20, ¥}, ¥
subject to  J; =0
Jy =0
where J; and J; are the optimized feasibility constraints of each subproblem. The

subproblem for the first discipline handles z; and target variables for the shared
design variables z{ ; and 23 ;. It is formulated as follows:
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minimize = (2} — 211)?

+ (Zi,l - 21)2
(Zé,l - 22)2
+ (i — )’

with respect to x, 2171, 25,1
subject to g1 = 3.16 — (y£)* <0

while satisfying R, =y, — \/x% + 25, +21—02%y5=0

The second discipline subproblem handles only target variables for the shared
design variables z{ , and z§,. It is written as:

minimize Jp = (21, — 21)

(25,2 - Z2)2
+ (v — 1)’

with respect to zf,Q, Z39
subject to g = (y5) —24 <0
while satisfying Ry = yo — !yil —Zzip—22=0

The system-level problem minimizes the objective function f, while respecting
the J; = 0 and J; = 0 feasibility constraints. The discipline subproblems minimize
J;, while respecting ¢;. The feasibility constraints J; = 0 and J; = 0 guarantee
that at the optimum the values of all target variables match the value of their
corresponding variable, for example (z})* = 2}. The XDSMs for MDF, IDF, and
CO are shown in figures 3.2,3.3 and 3.4 respectively.

The three architectures are compared in their ability to reach the optimum
and the number of function calls required In order to compute the disciplinary
derivatives, for example a—gi, gzl or aT’ finite-differences with a step size of 10~*
are used for all architectures. The resultlng MDO problems are solved using a
Sequential Quadratic Programming (SQP) algorithm, namely SLSQP [20]. In
the case of CO, SLSQP is used not only for the system-level problem, but also
for the discipline-level subproblems. The termination tolerance for SLSQP is set
to 107 and the maximum amount of cycles to be performed is set to 30. The
starting and optimal values for the problem are shown in table 3.1. Reference
optimal values are obtained from Sellar’s original paper [32]. The evolution of
the relative error for each architecture is shown in fig. 3.5. The relative error is
defined as €porarive = 5L f* , where f* is the reference optimal objective value. The
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Figure 3.2: Sellar’s problem: XDSM for the solution of the problem using MDF.
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Figure 3.3: Sellar’s problem: XDSM for the solution of the problem using IDF.
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Figure 3.4: Sellar’s problem: XDSM for the solution of the problem using CO.



Variable | Starting value | Optimal value
21 4 1.978
Z9 3 0
x 1.0 0
Y1 0.8 1.776
Y2 0.9 3.775
f 5.0465 3.1834
Table 3.1: Sellar’s problem: Starting and reference optimal values, obtained from
[32].
Architecture MDF IDF CcO
Discipline 1 evaluations 61 30 1210
Discipline 2 evaluations 53 24 601
Objective evaluations 61 30 168
Optimization cycles 9 7 30
Optimized objective value | 3.18339 | 3.18339 | 3.1828

Table 3.2: Sellar’s problem: Performance comparison between MDO architectures
for. The number of evaluations also includes evaluations required for computing
disciplinary derivatives through finite-differences.

number of evaluations for each discipline and the objective, as well as the number
of optimization cycles required by each architecture are shown in table 3.2.

By observing the results, it is clear that IDF achieves the best performance,
while CO performs worse than the two monolithic architectures. Because the
selected starting values do not satisfy multidisciplinary feasibility, IDF and CO
have to gradually drive the values of their respective feasibility constraints to
zero. Both architectures are able to guide the solution to feasibility, although IDF
does this in much fewer cycles, as seen when comparing figures 3.6 and 3.7. The
performance of MDF is comparable to that of IDF, but the MDA solved at each
iteration increases the disciplinary evaluations substantially. The poor convergence
properties of CO are evident, even for this small mathematical problem. CO
requires two orders of magnitude more disciplinary evaluations than IDF and MDF,
many more optimizer iterations, and is still unable to precisely reach the optimum.
The results are in agreement with those present in [12].
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Figure 3.5: Sellar’s problem: Evolution of the relative error. Comparison of the
MDFEF, IDF and CO architectures. The relative error is defined as €pgejative = ! }f ,
where f* is the reference optimal objective value.
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Figure 3.6: Sellar’s problem: Evolution of IDF’s feasibility constraints.
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Figure 3.7: Sellar’s problem: Evolution of CQO’s feasibility constraints.

3.2 DMartins’ scalable problem

This MDO problem has the particular feature that its dimensionality can be se-
lected arbitrarily. Many of its parameters can be varied, resulting essentially in
unique problems. These are:

e The number of disciplines, m
e The number of global design variables, ny
e The number of local design variables for discipline, ¢ nx,

e The number of output variables for discipline, i ny;

The problem is formulated mathematically as follows:
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minimize f = X(Z"Z+) Y;'Y))
=0
with respect to  Z, X, i € (1,m)
subject to G, =Y; —1<0
j=m
while satisfying R; = Cv,Y; = Ay (Cz,Z + Cx, X — Y Cy,Y;) =0, € (1,m)
J=0,j#i

(3.2)

In the above expression Z is the vector of global design variables (size nz), X;
is the vector of local design variables for discipline i (size ny,) and Y; is the vector
of output variables for discipline i (size ny,). The constraints G; are local for each
discipline. Coefficients Ay and Ay are used so that the values of f and Y; are scaled
to around unity, and are computed as: A\ = (37" ny;)"! and Ay = (m + 1)1
Matrices Cy;, Cz, and C, can also be chosen arbitrarily, provided that all of the
Cy, are non-singular. In the original paper [36], Martins chooses these matrices as
follows:

o (Cy, is an ny, X ny, identity matrix
o (7 is a ny, X nz matrix of ones

o (Cx, is any, X nx, matrix of ones

Obviously, the inversion of the identity matrices Cy; is trivial, which makes
solving the equation R; = 0 very cheap. Although Martins uses finite-differences

for computing the disciplinary partial derivatives g?, g}? and g& , here the differ-
i J

entiation is performed analytically as:

9Y;

oz

9Y;

0X;

9Y;

7Y,

Again, in the general case this requires inverting the matrix Cy, for each dif-
ferentiation (or solving m + 1 linear systems), but if Cy, is an identity matrix the

cost is negligible. The XDSM for the scalable problem with m = 3 is shown in fig.
3.8.

=Cy'Cy

= Cy'Cx, (3.3)

= Gy Gy,
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Figure 3.8: Martins’ scalable problem: XDSM for three disciplines

The MDO problem is solved using the MDF, IDF and CO architectures. For
MDF, the Gauss-Seidel MDA is used, with a termination tolerance of 10~% and no
relaxation. The coupled derivatives are again computed using the coupled adjoint
method, similar to Sellar’s problem. For m = 3, eq. 2.25 yields:
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Therefore, computation of the coupled derivatives requires solving a ny xny lin-
ear system (where ny = 7| ny;) a total of np times, where np = 1+52°_ ng, =
1+ Zle ny,. After solution of the linear systems, the coupled derivatives are
computed using eq. 2.24:
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IDF solves a larger optimization problem, introducing target variables Y} and

feasibility constraints H}

Y! —Y; = 0. This means that the optimizer used by

IDF has to handle > " ny, extra design variables and constraints. For the sake

=0

of clarity, the optimization problem that IDF solves (for m = 3) is the following:
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minimize
with respect to

subject to

while satisfying

F=AZTZ 4 (TR + )T V) + ()T (VD)

Z, X1, Xo, X, Vi, YL, Vi

Gi=Y1-1<0

Go=Y,—1<0

G3=Y;—1<0

H =YY, =0

Hy=Y{~Y,=0

Hy=Y{~Y;=0

Ry = Cy,Y1 — A&y (Cz, Z + Cx, X1 — Cy, Y1 — Cy, Yo — Cy,Y3) =
Ry = Cy,Ys — A&y (Cz,Z + Cx, Xy — Oy, Y1 — Oy, Yo — Oy, Y3) =
Rz = Cy,Y3 — Ay (Cz,Z + Cx; X3 — Oy, Y1 — Oy, Yo — Cy,Y3) =0

0
0

Finally, CO solves a system-level problem and three discipline subproblems.
The system-level problem handles the global design variables Z and copies of the
local design variables X! and the coupling variables Y;. The system-level problem
is defined as follows (m = 3):

minimize [ = A(Z7Z + (V) (¥)) + (Y8 () + () (D))
with respect to  Z, X{, X4, X5, Y], Yy, Yy
subject to J{ =0

=0
Ji=0

Each discipline subproblem handles its local design variables X; and copies of
the global design variables Z!. The three discipline subproblems are defined as

follows:

minimize
with respect to
subject to

while satisfying

minimize
with respect to
subject to

while satisfying

o= [|XT = Xl + 1121 = Z|)° + 1Y =l

Zf,Xl

Gi=Y—-1<0

Ri = CyY) = A\&yv(Cz, Z 4+ Cx, X1 — Oy Y1 — Cy, Yo — Cy,Y3) =0

Jo = || Xy — Xo|P + 112, — Z|* + Yy — Ya|?

Zs, X,

Go=Y,—1<0

Ry = Cy,Ys — Ay (Cz,Z + Cx, Xy — Oy, Y1 — Oy, Yo — Cy,Y3) = 0
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Figure 3.9: Martins’ scalable problem: XDSM for the solution of the problem
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Figure 3.10: Martins’ scalable problem: XDSM for the solution of the problem
using IDF.

minimize .y = X} — Xy2 + 1|25 — ZI? + | V{ - Yol
with respect to  Z%, X3
subject to G3=Y3—1<0
while satisfying Rz = Cy,Ys — Ay (Cz,Z + Cx, X3 — Cy, Y] — Cy, Yo — Cy,Y3) =0

The system-level problem minimizes f, while the discipline subproblems min-
imize the disciplinary inconsistencies Ji, Jo and J;. The XDSMs for MDF, IDF
and CO are shown in figures 3.9, 3.10 and 3.11 respectively.

The three architectures are compared in their ability to reach the optimum and
the number of function calls required. Again, SLSQP is used as the optimizer. The
termination tolerance is set to 107® and the maximum allowed number of cycles
is 10. The problem is solved for m = nyz = nx, = ny, = 3, and the matrices Cy;,
Cyz, and Cy, are chosen as above. The starting and reference optimal values for
the problem are shown in table 3.3. The configuration of the problem and the
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Variable | Starting value | Optimal value
Z -1 0
X; -1 -0.667
Y, 0 1
f 9.334 1

Table 3.3: Martins’ scalable problem: Starting and reference optimal values, ob-
tained from [36]. Since Z, X; and Y; are vectors in general, the values provided
are used for all their entries.

Architecture MDF | IDF | CO
Total discipline evaluations 236 24 5396
Total discipline differentiations 16 20 2127
Optimization cycles 5 5 11
Optimized objective value 1 1 | 1.0003

Table 3.4: Martins’ scalable problem: Performance comparison between the MDF|
IDF and CO architectures.

starting and reference optimal values are the same as the ones used in the original
paper by Martins [36]. The evolution of the relative error for each architecture is
shown in fig. 3.12. The relative error is defined as €gejative = f_—f*, where f* is the
reference optimal objective value. The number of evaluations for each discipline
and the objective, as well as the number of optimization cycles required by each
architecture are shown in table 3.4.

Similar to Sellar’s problem, IDF performs the best and CO performs the worst
out of the three architectures. MDF requires the same number of optimization
cycles as IDF, but many more disciplinary evaluations because of the MDA it solves
at every iteration. CO again requires two orders of magnitude more disciplinary
evaluations and differentiations, compared to the other architectures. However,
all three architectures are able to accurately reach the optimum. Furthermore,
despite the starting point being infeasible (in the multidisciplinary sense), both
the IDF and CO architectures are able to achieve feasibility, by driving their
respective feasibility constraints close to zero. Similar to Sellar’s problem, IDF
converges to a feasible solution much faster than CO, as shown in figures 3.13 and
3.14. Interestingly, the evolution of all feasibility constraints for both disciplines
is nearly identical, possibly because the disciplinary functions are the same.

3.2.1 Scalability study

By exploiting the fact that the size of Martin’s problem can be selected arbitrarily,
a study can be performed about the scaling characteristics of the used MDO archi-
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Figure 3.12: Martins’ scalable problem: Evolution of the relative error.
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parison of the MDF, IDF and CO architectures. The relative error is defined as
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Figure 3.13: Martins’ scalable problem: Evolution of IDF’s feasibility constraints.
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Figure 3.14: Martins’ scalable problem: Evolution of CQO’s feasibility constraints.

tectures. Three disciplines are used (m = 3), and the number of design (nx, and
nyz) and coupling (ny,) variables can vary. Only the MDF and IDF architectures
are included in this study, since CO performed significantly worse for the baseline
configuration of the problem. All studies are performed on laptop with a quad
core 11th generation Intel i7 processor.

First, the performance of the two architectures is tested for an increasing num-
ber of design variables. The number of local design variables for each discipline
(nx,) and the number of shared design variables (nz) are set equal (ny, = nyz),
and range from 10 to 130 with increments of 10. The number of coupling variables
is set to 30 (ny, = 30). Both the MDF and IDF architectures use SLSQP as the
optimizer, with the termination tolerance set to 1078 and a maximum of 10 cycles
allowed. Figure 3.15 shows the solution time as a function of the total number
of design variables. It is clear that the solution time for both architectures scales
nonlinearly with the number of design variables. Interestingly, the number of op-
timization cycles, the number of total disciplinary evaluations and the number of
total disciplinary differentiations do not change significantly with the number of
design variables (figures 3.16, 3.17 and 3.18 respectively). Since the cost per disci-
plinary evaluation/differentiation is not heavily influenced by the number of design
variables (egs. 3.2 and 3.3), the increase in solution time comes mainly from the
linear system that SLSQP has to solve at each cycle. The size of this system scales

o4



51 -e— MDF
IDF

Time [s]

T T T T T
10 20 30 40 50 60 70O 80 90 100 110 120 130

Figure 3.15: Martins’ scalable problem: CPU time as a function of the number of
design variables (local and shared, nx, = nyz)).

directly with the number of variables the optimizer is responsible for. However,
this is not an inherent drawback of the architectures, but rather, it is relevant to
the choice of optimizer.

A second study is performed where the number of coupling variables per disci-
pline ny; is increased from 10 to 130 with increments of 10. The number of design
variables is set to 30 (nx, = nz = 30). Again, SLSQP is used as the optimizer
with settings identical to before. The solution time increases nonlinearly with in-
creasing ny, (fig. 3.19), but for IDF it seems to increase more rapidly, especially at
ny, > 90. Increasing ny; directly impacts the time per disciplinary evaluation/dif-
ferentiation, since the size of the linear system that each discipline solves is equal
to ny, X ny,. Furthermore, for the IDF architecture increasing the number of cou-
pling variables essentially increases the number of design variables (since for each
coupling a target variable is assigned), and, consequently, the size of the linear
system that SLSQP solves at each cycle. MDF faces a similar problem, in that
increasing the number of design variables increases the size of the linear system
required for coupled derivative computation (either via the coupled direct eq. 2.22
or the coupled adjoint eq. 2.25 methods). Despite this and requiring many more
disciplinary evaluations due to the MDA it solves at each cycle (fig. 3.21), MDF
seems to handle the increasing number of design variables noticeably better than
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Figure 3.17: Martins’ scalable problem: Number of total disciplinary evaluations
as a function of the number of design variables (local and shared, nx, = nz)).
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Figure 3.18: Martins’ scalable problem: Number of total disciplinary differentia-
tions as a function of the number of design variables (local and shared, nx, = nyz)).

IDF for this problem, at least with respect to solution time. It should also be
noted that besides the difference in disciplinary evaluations, the two architectures
require about the same number of the more costly disciplinary differentiations (fig.
3.22) and optimization cycles. It can therefore be concluded that the performance
of IDF with respect to the number of coupling heavily relies on the optimizer used.
Due to this, MDF is perhaps the better choice for problems with many coupling
variables, especially if no efficient, large-scale optimizer is available.
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Chapter 4

The airfoil-spring system

4.1 Problem description

A symmetric NACA-0012 airfoil is placed inside of a two-dimensional inviscid
flow field. The airfoil is able to rotate about an axis normal to the flow plane,
and passing through its quarter chord, where a torsional spring of stiffness J is
attached. The freestream is horizontal, and has a magnitude of U,,. The angle of
attack a of the flow relative to the airfoil is:

a=0a,+0=10 (4.1)

where o, = 0 is aforementioned freestream angle and 6 is the structural angle,
namely the angle between the airfoil chord and the horizontal axis. The flow
produces a moment M,.,, about the quarter chord which, at equilibrium, is equal to
the spring moment, Mj,,i,, = JO. By equating the two moments, the equilibrium
angle 6 for the airfoil-spring system can be computed:

Moero = J0 (4.2)

The moment produced by the flow is, in general, a non-linear function of .,

—> Uy

Figure 4.1: Airfoil-spring system: Schematic.

60



SR AV AYAYY T ANA AVAV A s ANAY: VAVAY)
TAVAVAYAVAY S S VAV v AVAVG vy AV ST
e

YA S AP S A ';'Ae:é::,g:' CRY

S =
A AV S
‘e‘:s'é'%“‘v"ee'vf.%‘,s £ Pavas
L

&

S Y N vﬂ»'.ﬂvquv"“‘ 5
k) ] AR
AR R OO AP A LR
AVAVA AV 1 g VAT AAVAVAN AT v AV S PRI
KRS AN "4";“'4)‘&' T SRR L
1 XA QOEED

NS
|
SED
e
v
Py,
]
7a)
T
S

WAV
A
s

%% 7 VAV AVAY |
/) TAVA V5 AVAVAY AT SYAVA
AT
75 o v

LA
V.
s

A
)

CNERD
SRR
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or 0, namely: Meyero = Maero(0).

Therefore, the above equation is a nonlinear
equation in 6:

MaerO(g) —-J0=0 (43)

The roots of this equation correspond to the equilibrium points of the aerostruc-
tural system. The inviscid flow around the airfoil is modelled using the Euler equa-
tions. They are discretized through the vertex-centered, finite-volume method and
solved by the in-house, GPU-enabled, CFD solver PUMA [3]. An unstructured,
triangular mesh is generated around the airfoil, consisting of 7870 nodes and 15489
cells. A close-view of the mesh around the airfoil is seen in fig. 4.2.

The aerostructural system includes two disciplines, namely aerodynamics and
structures, where the latter is nothing else but the spring model. The input of
aerodynamics is the structural angle 6, used to compute the aerodynamic moment
M. The spring model computes the structural angle for a given moment, therefore
its input is M and its output is #. The two disciplines are hence strongly coupled,
with the coupling variables being # and M. The XDSM of the airfoil-spring system
is shown in fig. 4.3.

Technically, before every call to the aerodynamics solver, the mesh should be
rotated by 6. In order to avoid the extra computational cost, the flow velocity is
simply turned by -6, effectively achieving the same effect.
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Aerodynamics @
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Figure 4.3: Airfoil-spring system: XDSM.
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@ ' M / Aerodynamics —@
i,

L.

Spring

Figure 4.4: Airfoil-spring system: XDSM for the Gauss-Seidel MDA.

4.2 MDA

In order to determine the equilibrium point of the airfoil-spring system, a MDA
is performed. The problem is first solved using the Gauss-Seidel approach, the
procedure for which is described in algorithm 2. The XDSM for the solution
process using the Gauss-Seidel MDA is shown in fig. 4.4.

The spring stiffness J is set to 0.05N.m/° and the inflow velocity U, to 90m/s.
The starting point is # = 9.1° and M = 0.1N.m/°, and no relaxation is used. The
termination tolerance of the MDA is set to 10%. The evolution of the residual
metric and the coupling variables during the MDA iterations can be seen in figures
4.5 and 4.6. In total, the MDA requires 8 iterations to reach the specified tolerance,
requiring 8 calls to the disciplinary solvers. It converges to the point 6§ = 6.45°
and M = 0.322N.m/°.

The problem is also solved using the Newton’s method (in the functional form),
as described in algorithm 4. At each MDA iteration each discipline has to be
evaluated and differentiated. The aerodynamics discipline has to provide %_1\947

while spring must provide 88—]\94. The former is computed using first-order finite-
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Figure 4.5: Airfoil-spring system: Residual metric evolution for the Gauss-Seidel
MDA.

9.0 4 L o) 4 L 4 ®
F0.30
8.5 1
g L 0.25
E 8.0 1 E
)} =
g =)
o =
T 7.5 - 0.20 g
=
fras} [=]
Y =
=
w 7.0 A
F0.15
6.5 1 — = = — &
- - - v -
F0.10
T T T T T T T T T
0 1 2 3 4 5 6 7 8
Iteration Mo.

Figure 4.6: Airfoil-spring system: Coupling variables evolution for the Gauss-
Seidel MDA.
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Figure 4.7: Airfoil-spring system: XDSM for the Newton MDA.

Method Gauss-Seidel | Newton
[terations 8 D
Aerodynamics evaluations 8 10
Spring evaluations 8 10

Table 4.1: Airfoil-spring system: Performance comparison between Gauss-Seidel
MDA and Newton MDA.

differences, while the latter is computed analytically. At the k-th Newton-MDA
iteration, the following linear system is solved:

_ M (p(k—1) k (k=1) _ (k=1)
1 (g )} {AM} - {M M0 )

00 (M(k—l)) 1 Aek Q(k—l) _ H(M(k_l))

T M

The XDSM for the solution process using the Newton MDA is shown in fig.
4.7.

The values of the spring stiffness and the inflow velocity, the starting point and
the termination tolerance remain the same. The evolution of the residual metric
and the coupling variables during the MDA iterations can be seen in figures 4.8
and 4.9. The MDA converges in 5 iterations, requiring 10 calls to each disciplinary
solver, or 20 total disciplinary evaluations. The increased cost of the Newton MDA
(per iteration) is directly caused by the need to assemble the Jacobian matrix of
eq. 4.4, which apart from evaluation, requires differentiation of the disciplines. The
MDA converges to the same point as the Gauss-Seidel MDA, namely 6 = 6.45°
and M = 0.322N.m/°. A brief performance comparison between the two MDA
methods used can be seen in table 4.1.

The results computed by the MDAs are verified by a graphical solution to
the system. The curve of the aerodynamic moment M,.., as a function of the
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Figure 4.8: Airfoil-spring system: Residual metric evolution for the Newton MDA.
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Figure 4.9: Airfoil-spring system: Coupling variables evolution for the Newton
MDA.
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Figure 4.10: Airfoil-spring system: Operating characteristic curves. The points of
intersection correspond to equilibrium points, or MDA solutions.

structural angle 6 is produced by executing the aerodynamics solver for various
values of # in a range from —10° to 10°. Similarly, the curve of the spring moment
Mpring as a function of ¢ is produced by computing M, = JO for the same
0 range. Intersections of the two curves correspond to solutions of eq. 4.2. The
curves are shown in fig. 4.10. There exist three solutions, namely (—6.45, —0.322),
(0,0) and (6.45,0.322). The MDAs converge to the last of the three solutions, to
which their starting point is the closest.

4.3 Shape optimization (MDO)

Shape optimization is performed in order to achieve a desired lift value for the
airfoil. The objective function is simply:

f=05(L—L*)? (4.5)

where L and L* are the actual and desired lift values respectively.

The entire airfoil-spring system is considered, rendering the optimization prob-
lem multidisciplinary. The MDF and IDF architectures, implemented in mSense,
are used to solve the MDO problem.
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Figure 4.11: Airfoil-spring system: Parameterization of the NACA-0012 airfoil
section using volumetric NURBS. The control points, highlighted in red, can move
along the y-axis.

Design variable | Size | Lower bound | Baseline Value | Upper bound
by 6 -0.1125 -0.075 -0.0375
bo 4 -0.0375 0.0 0.0375
b3 6 0.0375 0.075 0.1125

Table 4.2: Airfoil-spring system: Design variables for the airfoil shape optimization
problem, along with their dimension, lower and upper bound, and baseline value.

4.3.1 Setup

The airfoil shape is parameterized using volumetric NURBS. The shape is con-
trolled by a 10 x 7 morphing box. Only 16 out of the 70 points are actually used
to manipulate the airfoil’s shape. These are the control points of the NURBS,
and can move along the y-axis. The parameterization is shown in fig 4.11. The
y-coordinates of the 16 control points constitute the design variables of the opti-
mization problem. They are divided into 3 groups, corresponding to the top (b;),
middle (by) and bottom (b3) rows of red points shown in fig 4.11. The points in
each group have the same lower and upper bound, and baseline value (fig. 4.2).
For the aerodynamics discipline by, by and b3 are now also inputs. Before each
flow analysis (primal solver) the computational mesh has to be adapted to match
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the parameterized airfoil. This procedure is performed by PUMA, using Inverse
Distance Weighting (IDW). Sensitivities with respect to the design variables b; are
computed by PUMA’s continuous adjoint solver. The sensitivity of any output
of the aerodynamics discipline with respect to 6 is computed using first-order,
finite-differences, similar to section 4.2.

The XDSM for optimizing the airfoil-spring system using MDF is shown in
fig. 3.2. At each MDF iteration the disciplines are guided to feasibility through
the Gauss-Seidel MDA, which is chosen instead of the Newton variant due to the
smaller number of disciplinary evaluations required. The termination tolerance is
set to 10~* and no relaxation is used. After the MDA is converged, the computation
of the coupled derivatives follows.

Aerodynamics has to provide the derivatives of M and f with respect to b; and

0, namely %2/[ , gg , aa]\;[ and . The spring model only provides the derivative of 8

with respect to M, i.e. a_M' The coupled derivatives of the objective with respect
to the design variables, namely j—li, are computed using the provided disciplinary
sensitivity information and the coupled adjoint equations of 2.24 and 2.25. For
the sake of clarity, the coupled adjoint method for the airfoil-spring system yields:

8o [

=

db — b

, H-14

where b is the concatenated vector of b;, i.e. b = [bl bo b3:|T. Therefore,
the computation of the coupled derivatives requires the solution of a 2 x 2 linear
system at each optimization cycle.

IDF adds target variables and feasibility constraints for § and M. The target
variables are denoted by #' and M*, while the feasibility constraints are hj) =
0t —0 =0 and hl, = M* — M = 0. Aerodynamics must provide the sensitivities

£
S

@
SRS

of f and h%, with respect to b and 6, which are —f, % and d:bM , dZé” , while the
spring model has to prov1de . The derivative of any feasibility constraint can

be computed easily through the chain rule. For example, ng is computed as

th = ‘fljly , where ng is computed by the adjoint solver of PUMA. The XDSM

for IDF is shown in ﬁg 4.13.

4.3.2 Results

For both the MDF and IDF architectures SLSQP is chosen as the optimizer, with
the termination tolerance set to 1075. The spring stiffness J is set to 0.7N.m/°
and the freestream velocity U, to 90m/s. The initial values of by, by and b3 are
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Figure 4.12: Airfoil-spring system: XDSM for the solution of the shape optimiza-
tion problem using MDF.

Aerodynamics

Figure 4.13: Airfoil-spring system: XDSM for the solution of the shape optimiza-
tion problem using IDF.
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Figure 4.14: Airfoil-spring system: Evolution of the objective function value for
the shape optimization problem. Comparison between the MDF and IDF archi-
tectures.

found in table 4.2. The starting point of the coupling variables is § = 6.45° and
M = 0.322N.m/°, which is no longer a feasible point, since the stiffness value J
has changed. The evolution of the objective function value for both architectures
is shown in fig. 4.14, while the evolution of IDF’s b} and hf, feasibility constraints
is shown in fig. 4.15. Despite the starting point being infeasible, IDF manages to
converge the solution to multidisciplinary feasibility. The number of calls to the
aerodynamics primal and adjoint solvers, as well as the number of total SLSQP
iterations for each architecture are found in table 4.3. Both architectures are able
to converge to the solution. In order to reach the same level of convergence, IDF
requires 3 less calls to the primal solver than MDF', but 4 more calls to the adjoint
solver and 4 more optimizer iterations. Therefore, MDF performs better for this
problem, requiring a lower computational cost overall. This contrasts the results
obtained from the simpler benchmark problems of chapter 3, which can perhaps
be attributed to the more numerically complicated nature of the problem itself,
combined with the fact that, in aerodynamics, derivatives w.r.t § (24 and %) are
approximated using finite-differences. The inaccuracies caused by this might be
handled better by MDF than IDF, leading to the performance difference.
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Figure 4.15: Airfoil-spring system: Evolution of IDF’s feasibility constraints.

Architecture MDF | IDF

Primal calls 30 27

Adjoint calls 5 9
Optimization cycles 5 9

Table 4.3: Airfoil-spring system: Performance comparison between the MDF and
IDF architectures for the shape optimization problem. MDF requires more primal
solver calls than IDF, but less adjoint solver calls and less optimization cycles.
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Figure 4.16: Airfoil-spring system: Comparison of the Mach number field around
the baseline (left) and optimized (right) airfoils. Instead of rotating the airfoil, the
angle of attack « is adjusted, so that the same (aerodynamic) effect is achieved.
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Chapter 5
Elastic Tube FSI

5.1 Problem description

Fluid flows through an elastic tube of internal and external radius R; = 0.2m and
R, = 0.3m respectively, and length L = 0.6m. The flow is considered laminar,
the fluid density is py = 103% and its kinematic viscosity vy = 0.07’%2. The
solid outer wall of the tube is modelled as an linear-elastic material with Young’s
modulus £ = 10°Pa and a Poisson’s ratio of v = 0.2. The fluid enters with an
inlet static pressure of Pj,; = 11500Pa and exits with P,,;.; = 10000Pa. The
lower and upper ends of the elastic wall are fixed in all directions, while the left
end is under the fluid’s pressure and the right end is free to deform. The problem
is symmetric along the tube’s center-line, therefore only the right-half is modelled.
The domain is visualized in fig. 5.1.

The flow analysis is performed using PUMA, which was introduced in chapter
4. The incompressible Navier-Stokes equations are solved. At the inlet and outlet
static pressure boundary conditions are imposed. At the FSI interface the no-slip
condition is enforced, while the left-most boundary is considered symmetric. The
linear-elastic, plane-stress problem is solved using SFEM, which is an MPI-enabled
finite-element code developed by the author. As previously described, the upper
and lower ends of the elastic domain are fixed in all directions, the right end is
free to deform and at the interface the solid is subjected to the fluid’s pressure. A
structured, quadrilateral mesh is used for the fluid domain, with inflation layers
used normal to the fluid-solid interface, in order to resolve the laminar boundary
layer. The solid domain is meshed using triangular elements. The mesh is matching
at the interface, meaning that the fluid and solid nodes match one-to-one. The
fluid mesh consists of 7200 nodes and 7433 quadrilaterals, while the solid mesh is
comprised of 6690 nodes and 13378 triangles. The mesh is visualized in fig. 5.2.

The FSI model includes two disciplines, these being the flow and structural
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Figure 5.1: Elastic tube FSI: The 2-dimensional FSI domain.

Figure 5.2: Elastic tube FSI: A close view of the mesh at the fluid-solid interface.
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Figure 5.3: Elastic tube FSI: XDSM.
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Figure 5.4: Elastic tube FSI: XDSM for the Gauss-Seidel MDA.

solvers. The solvers are coupled through the fluid-solid interface, at which the
fluid’s pressure causes the solid to deform. The coupling variables are hence the
fluid pressure P and the elastic displacements U = [ux uy} at the interface. Since
the fluid and solid meshes are matching at the interface, no mapping is required to
transfer the pressure loads or the displacements from one mesh to the other. For a
given U, the fluid solver (PUMA) first deforms its mesh accordingly, then solves the
flow equations, and finally outputs the pressure P at the interface. Similarly, the
solid solver (SFEM) solves the linear-elastic equations for a given P, and produces
U at the interface. The XDSM for the FSI model is shown in fig. 5.3.

5.2 MDA

The FSI model reaches equilibrium by means of the Gauss-Seidel MDA (presented
in chapter 2.1.1. The MDA termination tolerance is set to 10~* and no relaxation
is used. The corresponding XDSM is shown in fig. 5.4.

The MDA converges in 3 iterations, and the residual history is shown in fig.
5.5. The final, deformed FSI domain is visualized in fig. 5.6. The fluid domain
is coloured by the vertical velocity magnitude, while the solid domain is colored
by the horizontal displacement. The maximum horizontal displacement is about
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Figure 5.5: Elastic tube FSI: Residual metric evolution for the Gauss-Seidel MDA.

Uszmaz = 0.057m, while the maximum vertical velocity is about Vj ;ua, = 0.987.

5.3 Material Property optimization (MDO)

It is possible to control the maximum horizontal displacement U, ;4. of the elastic
tube wall by changing the value of the Young’s modulus E of the solid. Increas-
ing F increases the stiffness of the solid wall, therefore reducing the maximum
displacement. For a desired value of the displacement Uy .., this process can be

formulated as a minimization problem where the objective function is:

f - 0‘5(Um,mam - U::,maz)2 (5-1)

The solid domain is divided into 4 equally-sized regions lengthwise, each one
having a separate value of E. The regions are visualized in fig. 5.7.

The resulting optimization problem is solved using the MDF approach. At each
iteration feasibility is ensured through the Gauss-Seidel MDA, for which the termi-
nation tolerance is set to 1072 and no relaxation is used. The coupled sensitivities
of the objective f w.r.t the design variables F; are obtained using finite-differences
on the MDA level, meaning that for each perturbed design variable a separate
MDA is needed. This brings the cost of each optimization cycle to nx + 1 MDAs,
where nx is the number of design variables (here nx = 4). Although this approach
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Figure 5.6: Elastic tube FSI: The deformed FSI domain, resulting from the MDA.
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Figure 5.7: Elastic tube FSI: The solid domain is divided into 4 equal-sized regions.
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Figure 5.8: Elastic tube FSI: XDSM for the solution of the elastic tube’s material

property optimization problem using MDF.

Region | Baseline | Optimized
1 10° 1897544
2 10° 1898094
3 10° 1900584
4 108 1907181

Table 5.1: Elastic tube FSI: Baseline and optimized values for the Young’s modulus

(in Pa) for each region.

suffers in both accuracy and computational cost, it is chosen here due to ease of
implementation. SLSQP is chosen as the optimizer, and its termination tolerance

is set to 107%. The XDSM for MDF for the FSI system is shown in fig. 5.8.
The baseline value for all F; is 10°Pa. The desired value of the maximum

horizontal displacement is U*

T,maxr

= 0.03m. The optimization converges in 4 cycles.

The evolution of U, e, during the MDF optimization cycles is shown in fig. 5.9.
The final values of F; are shown in table 5.1. All E; converge to about 190000 Pa.
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Figure 5.9: Elastic tube FSI: Evolution of the maximum horizontal displacement

during the MDF cycles, for the elastic tube’s material property optimization prob-
lem. The desired value is U* = 0.03m.
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Chapter 6

Aerostructural optimization of
the ONERA M6 wing

The aerostructural optimization of aircraft wings is one of the most common use
cases of MDAQO. Here, the ONERA M6 wing is considered, which is a popular
benchmark for CFD codes. Because no standard structural model exists, a simple
finite element model is constructed, consisting of beam elements along the span
of the wing. First, using an MDA the equilibrium of the aerostructural system is
computed. Then, using MDO, certain characteristics of the wing, such as the drag
it produces, are improved.

6.1 Problem description

The ONERA M6 wing is placed inside of a three-dimensional, inviscid flow field.
At flow conditions of Mach M = 0.84 and an angle of attack equal to 0 (a = 0°),
the flow is transonic, producing a shock-wave near the leading-edge of the wing.
The wing is not rigid, and deforms due to the forces acting on it. These are the
aerodynamic forces, computed by integration of the pressure on the surface of the
wing, and the wing’s own weight. The wing is cantilevered, meaning that it is
fixed at the root but free to move in any direction at the tip. In order to make the
MDAO problem meaningful, it is considered that the wing is a part of an aircraft
configuration, and therefore has to carry the weight of the aircraft. This is used
when setting up the optimization problem.

6.1.1 Aerodynamic model

The ONERA M6 is wing is a swept, semi-span wing with no twist. It uses the
symmetric ONERA D airfoil section. The wing has a span of 1.1963 meters, a
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Figure 6.1: ONERA M6: CAD model of the wing.

mean aerodynamic chord of 0.64607 meters, an aspect ratio of 3.8, a taper ratio
of 0.562, a leading-edge sweep angle of 30° and a trailing-edge sweep angle of 18°.
The geometry of the wing is shown in fig. 6.1. Wind tunnel tests concerned with
the flow over the ONERA M6 were conducted by Schmitt and Charpin [31]. The
tests were performed for various transonic Mach numbers and angles of attack.
The results of [31] are widely used to validate CFD codes.

The flow around the wing is modelled using the Euler equations. The in-
house, GPU enabled CFD solver PUMA, introduced in chapter 4, is used on an
unstructured mesh of 72791 nodes and 341797 cells. The surface mesh of the wing
is shown in fig 6.2.

The wing’s surface is parameterized using volumetric NURBS. There exist 280
control points in total, of which only 18 are updated during optimization, while
the rest remain unchanged. In fig. 6.3, the points in blue correspond to the fixed
control points, while the red points are free to move in the span-wise and flap-wise
directions. Since the 18 control points can move in two directions, this results in
36 shape parameters or design variables for optimization.
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Figure 6.2: ONERA M6: Mesh around the wing.

Figure 6.3: ONERA M6: The (baseline) volumetric NURBS parameterization of
the wing. The points in blue are the control points for the NURBS. The points in
red are the active control points, and they are able to move in the span-wise and

flap-wise directions.



6.1.2 Structural model

In order to use the ONERA M6 wing for aerostructural MDAO, a structural model
must first be developed. A simple but effective approach of modelling the elastic
behaviour of the wing under aerodynamic loading, is to consider a beam model
which captures the bending of the wing in the span-wise direction. The model
is constructed from one-dimensional beam finite elements. Each element has 2
nodes and 2 DoF per node. For a node 7 its two DoF correspond to the vertical
displacement v; and rotation w;. A single beam element is shown in fig. 6.4. The
FEM model is implemented in SFEM, which is finite-element code developed by
the author and introduced in chapter 5.

V1, W1 Vg, W2

G q

Figure 6.4: ONERA M6 structural model: Schematic of a single beam element.

The total deflection inside each element is interpolated as follows:

T

v(s) = [Ni(s) Na(s) Ni(s) Na(s)] [vn wi va ws (6.1)

In the above equation, N; are the element shape functions, which are formulated

as:
Ni(s) =1 —3s? + 25°
Ny(s) = L(s — 25> + s°
PP (62
N3(s) =3s* — 2s
Ny(s) = L(—s*+ 5%)

where L is the length of each element. The normalized coordinate s is simply 7,
where x is a coordinate along the element’s length. The element stiffness matrix
is:

12 6L —12 6L
EI | 6L 4L> —6L 2L2
I3 | —12 —6L 12 —6L
6L —4I? 6L —2I2

K, = (6.3)

where F is Young’s modulus and [ is the moment of inertia of each element. The
bending moment inside each element is computed as:
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Symbol Description Value Units
E Young’s modulus | 3.5 * 107 Pa
Oyield Yield stress 4 % 10° Pa
N Safety factor 2 -
04 Design stress 2 % 108 Pa
p Density 2710 | kg/m?
R; Outer radius 0.2 m
tY Initial thickness 0.03 m

Table 6.1: ONERA M6 structural model: Material and geometrical properties of
the beam elements.

d*v
From the bending moment, the bending stress is easily calculated as:
c
op(s) = =My(s) (6.5)

I

where c¢ is the distance between the furthest point on the elements cross-section
and its bending-axis. Each element i has a hollow, cylindrical cross-section, of
outer radius R; and thickness ¢;. Therefore, ¢ = R;. The material properties and
geometric properties of the elements are found in table 6.1. Although the radius
of each element is fixed, its thickness is allowed to change during optimization.

In total, 5 elements with 6 nodes total are used, resulting in 12 DoF. The DoF
corresponding to the node closest to the root of the wing are fixed, i.e. they cannot
move in any direction, so the total number of DoF is reduced to 10. The structural
model is visualized in fig. 6.5.

Vg, Wy U3, W3 U2, W2 b1, w1

AnyaENane fl
>t Yo >

vg = we=0 v

g

Figure 6.5: ONERA M6 structural model: Schematic of the structural model. The
leftmost (closest to the wing’s root) node and its corresponding DoF are fixed. The
model computes the bending of the wing.

Unlike the displacements v; and rotations w; which are computed for each
node, the stresses o,; are computed for each element. It is important that, for
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each element, the stress o;,; does not exceed the allowed limit, or design stress 0.
The design stress is equal to the yield stress o4, divided with a safety factor
N, ie. o4 = % For optimization, this corresponds to the set of inequality
constraints o3,; < 04. In order to reduce the dimensionality of the constraint, the

discrete Kreisselmeier-Steinhauser (KS) function [21] is used:

1 NElements
oprs = — log( Z efobi) (6.6)
P i=0

The constraint now becomes opgs < 04. Hence, by using the KS function only
a single structural constraint is required, instead of having one constraint for each
element.

Each element is subject to an aerodynamic force and its own weight. The
aerodynamic force is computed by integrating the surface pressure. In order to
assign an aerodynamic force value to each element, the integration is done in
patches. The patches are equally spaced along the span of the wing, each one
roughly corresponding to each element. This is showcased in fig. 6.6.

Patch 2

Patch 3

Patch 4

Patch 5

Figure 6.6: ONERA M6 structural model: The patches used for integration of the
surface pressure on the wing. The number of patches is equal to the number of
beam elements. Each patch computes the aerodynamic force for its corresponding
element.
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6.1.3 Aircraft configuration

As it was previously mentioned, it is considered that the ONERA M6 wing is part
of a theoretical aircraft configuration, and must therefore carry its weight. This is
done with the aim of making the MDAO problem more realistic, without further
increasing the computational cost by analysing a whole aircraft.

The total weight of the theoretical aircraft Wy, is the sum of its empty weight
Wempty, its payload weight Wy,,i0q and its fuel weight Wy,e. The empty weight
of the aircraft is taken to be almost equal to its structural weight, which is made
up from the weight of the wing Wyin,, the fuselage Wiyseiage and the tail Wiy, In
short, the weight of the aircraft can be computed from the following expressions:

Wtotal = Wempty + Wpaylod + quel (6 7)
Wempty - Wwing + quselage + Wtail '

During optimization only the weight of the wing is allowed to vary. Hence, it is
convenient to express the Wiy, as the sum of a fixed weight Wizeq and the wing
weight:

Wtotal = Wfi:red + Ww'mg (6 8)
Wfixed - quselage + Wtail + Wpaylod + quel .

For the baseline configuration, it is considered that the wing weight is around
10% of the total weight. Given the material and geometrical properties of the

structural model presented in table 6.1, the initial wing weight is W), = 2218N.
0
Therefore, the initial total weight is W2, , = Wg)”_ilng = 22180N. The fixed weight,

which does not change during optimization, is computed as Wyizeq = W, —
Woing = 19962N.

Similar to the weight, the total lift L;., and drag D,,, can be expressed as
sums of components:

Ltotal = Lwing + quselage + Ltail

(6.9)
Dtotal = Dwing + Dfuselage + Dtail

Since only the lift and drag of the wing is known, the values of the other
components have to be estimated. For the lift, it is considered that the wing and
the fuselage produce 90% and 14% of the total amount respectively, while the tail
reduces it by 4%. The baseline ONERA M6, for the conditions described in the
previous section, produces a lift of about 10*N. Therefore, the total baseline lift
is estimated as follows:

2 % 10"
Lo, = BT = 22292N (6.10)
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Quantity | Baseline Value (N) | Constant
Woing 2218 No
Wfi:ved 19962 Yes
Wiotai 22180 No
Luing 20000 No

L puseiage 3111 Yes

L -888 Yes
Liotar 22222 No
Doing 950 No

Dfuselage 950 Yes
Dioir 211 Yes
Diotar 2111 No

Table 6.2: ONERA M6 aerostructural model:

Baseline values of the aircraft’s

weight, lift and drag values. The last column states whether the quantity remains
constant during optimization.

The fuselage and tail lift contributions can now be calculated as:

0 0
quselage = quselage =0.14 % Ltotal

6.11
Ltllil - Lgail = —0.04 = L?otal ( )

The values of L fyseiage and Lyei; Temain constant during optimization, since the
geometry of the fuselage and the tail are not changed. A similar process is followed
for the drag. It is considered that both the wing and the fuselage contributed each
about 45% of the total aircraft drag, while the tail adds the remaining 10%. The
baseline drag value for the ONERA M6 is about 475N. Since the Euler equations
are used, this corresponds only to wave drag. The value of the total baseline drag
can be calculated as:

2 %475
0
= — =2111N 6.12
total 045 ( )
The fuselage and tail drag contributions are now easily computed:
Duseae:DO :045*D0
fuselag fuselage total (613)

Dtail - DO

tai

1= 0.1 D?otal

Similar to L fyseiage a0d Lygi, the values of Dfyseiage and Dyqy remain constant
during optimization. The values of all weight, lift and drag components presented
above can be found in table 6.2.
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Figure 6.7: ONERA M6 aerostructural MDA: XDSM for the Gauss-Seidel MDA.

6.2 MDA

By performing an MDA for the baseline configuration it is possible to determine
the deformation of the wing and the stresses it undergoes while flying. Further-
more, considering that the wing deforms during flight, the drag and lift values
also change. The MDA loop begins by executing the aerodynamics solver, PUMA.
Before each flow solution, the CFD mesh has to be modified to account for the
structural displacements, produced by the FEM solver. After modifying the mesh,
the flow equations are solved, and the surface pressure values are obtained. By
integrating these, the aerodynamic forces per element, denoted by F,., are com-
puted. The FEM solver uses these forces to compute the nodal displacements U.
The FEM nodal displacements are then interpolated to the CFD mesh, and the
process repeats. The coupling variables are the element aerodynamic forces Flaz.o
(of size Ngjements = D) and the nodal displacements U (of size nyoges = 6). Faero 1S
the output of aerodynamics, while U is the output of the structural solver. This
is also shown in the XDSM for the aerostructural MDA (fig. 6.7).

The Gauss-Seidel MDA is used, the procedure for which is described in algo-
rithm 2. The termination tolerance is set to 10™* and no relaxation is used. The
evolution of the residual during the MDA iterations is shown in fig. 6.8. The
MDA converges in 4 iterations. The total lift L,y and drag Dyq, as well as the
aggregated stress opgg for the undeformed and deformed baseline wing are listed
in table 6.3. Finally, the undeformed and deformed configurations are shown in

fig. 6.9.
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Figure 6.8: ONERA M6 aerostructural MDA: Residual metric evolution for the
Gauss-Seidel MDA.

Quantity | Value (undeformed) | Value (deformed) | Unit
Liotal 22715 23367 N
Dioral 2112 2136 N N
ODKS 0 1941346 Pa

Table 6.3: ONERA M6 aerostructural MDA: Values of the lift, drag and the KS
aggregated stress for the baseline aerostructural model. Comparison between the
undeformed and deformed (obtained by the MDA) configurations.
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Figure 6.9: ONERA M6 aerostructural MDA: Comparison of the undeformed
(left) and deformed (obtained by the MDA, right) configurations for the baseline
aerostructural model. The pressure field contours are shown.

6.3 Shape and structural optimization (MDO)

Shape and structural optimization is performed in order to improve certain per-
formance metrics of the wing. The choice of performance metric, namely the
objective function, as well as the set of constraints used can significantly affect
the result of the optimization. For all cases however, the set of design variables
remain the same. These are the shape parameters of the wing, namely the active
control points of the volumetric NURBS, denoted by b, and the thickness of each
structural element ¢. In total, there exist nxy = 42 design variables, 36 of which
correspond to b and 6 of which correspond to t.

A constraint imposed regardless of the choice of objective function is that the
stress does not exceed the maximum allowed amount or design stress o4 This
constraint, denoted by g, is expressed as:

ODKS

_ <1 6.14
g=—=< (6.14)

Again, the discrete KS stress aggregate is used, resulting in a single structural
constraint. A second constraint imposed in all cases is that the total produced lift
Lyt 1s equal or greater than the total weight W, of the aircraft. This constraint
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Figure 6.10: ONERA M6 aerostructural MDO: XDSM for the aerostructural
MDO, using the MDF architecture.

is denoted by h, and is expressed as:

h = Ltotal - Wtotal > 0 (615)

Regardless of the objective function f used, the optimization process is the
same. The Multidisciplinary Feasible (MDF) architecture is used. MDF requires
an MDA at each optimization cycle. The Gauss-Seidel MDA is used, with a ter-
mination tolerance of 10™* and no relaxation. Each optimization cycle begins
by adapting the CFD mesh to the current shape parameters b. Then, the MDA
process converges the system to equilibrium, as described in the previous section.
Each MDA iteration begins by modifying the CFD mesh to account for the struc-
tural displacements, then the aerodynamics solver is executed, solving the flow
equations and computing Fa..,, the (single) wing lift L and drag D. Afterwards,
the structural solver computes U and evaluates the structural weight of the (sin-
gle) wing W and the constraint g. After the MDA converges successfully, a new
discipline, called performance, uses L, D and W to evaluate the constraint A and
the objective f. The process is showcased in the relevant XDSM (fig. 6.10).

For the computation of the coupled derivatives, the coupled adjoint method
is used. There exist nx = 42 design variables in total, while the size of the
objective f and the constraints g and h is np = 3. The disciplinary partial
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derivatives of aerodynamics are computed using the adjoint solver of PUMA. For
each differentiation a total of 2 + N gements calls to the adjoint solver are required.
This is because aerodynamics has to provide the derivatives of its outputs, which
are L, D and Flyero, w.r.t its inputs U and b. The structural discipline has to
provide the derivatives of U, g and W w.r.t Fl.., and t. The newly added third
discipline, performance, has to provide the derivatives of the objective f and the
constraint A w.r.t the lift L, the drag D and the weight W. The disciplinary
derivatives of both the structural and performance disciplines are computed using
finite-differences with a step-size of 1075, For all cases, the SLSQP optimizer is
used. The termination tolerance is set to 107% and a maximum of 10 cycles are
allowed.

6.3.1 Results

Two objective functions are used. The first is the weighted sum of the aircraft’s
drag and structural weight. Reducing the drag has the obvious benefit of improving
aerodynamic efficiency. Reducing the structural weight means that either less
stress is placed on the wing (due to requiring less lift), or that the aircraft can
carry more payload or fuel (for the same lift value). The objective function is
mathematically expressed as:

D W

f=5* (6.16)

The values Dy and W, are used to scale D and W, so that both LW have
a value near 1. Here, D and W correspond to the drag and weight of the wing,
while Dy and W, are the initial wing drag and weight values, found in table 6.2.

The optimization is performed as described previously and summarized in fig.
6.10. The evolution of the wing drag, lift, weight and lift-to-drag ratio is shown in
fig. 6.11. Similarly, the evolution of the total aircraft lift and weight, and the stress
constraint g is shown in fig. 6.12. The optimized stress and thickness distributions
for the wing are shown in fig. 6.13. The optimizer is able to successfully reduce
both the drag and weight, by almost 10% and 50% respectively (compared to the
initial value). Although the lift is decreased, the lift-to-drag ratio increases, since
the drag is reduced by a higher percentage. The reason the lift decreases is due to
the weight reduction. In order to reduce the weight, the optimizer had to reduce
the thickness of the structural elements, meaning that the stress increased. As a
result, the lift also decreases to prevent the stress from exceeding the design limit.
However, the difference of total lift and weight, or Lot — Wiotar also decreases
(fig. 6.12), meaning that at the end of optimization the aircraft is able to carry
less extra weight. Obviously, this is a drawback of this objective function.
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Figure 6.11: ONERA M6 aerostructural MDO: Evolution of the wing drag (upper
left), lift (upper right), weight (lower left) and lift-to-drag ratio (lower right). The
weighted sum of the drag and weight is used as the objective.
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Figure 6.12: ONERA M6 aerostructural MDO: Evolution of the total aircraft lift
and weight, and the stress constraint. The weighted sum of the drag and weight
is used as the objective.
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Figure 6.13: ONERA M6 aerostructural MDO: Stress (upper) and thickness
(lower) distributions along the wing’s span. Element number 0 corresponds to
the element closest to the wing’s root and 4 to the tip. The weighted sum of the
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Figure 6.14: ONERA M6 aerostructural MDO: Comparison of the deformed con-
figurations for the baseline (left) and optimized (right) wings. The pressure field
contours are shown. The optimized wing is less stiff than the baseline, and bends
more. The weighted sum of the drag and weight is used as the objective.
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Figure 6.15: ONERA M6 aerostructural MDO: Evolution of the wing drag (upper
left), lift (upper right), weight (lower left) and lift-to-drag ratio (lower right). The
lift-to-drag ratio is used as the objective.

The second objective function used is the lift-to-drag ratio or %. Here L and D
are the lift and drag values of the wing. Maximizing this function is mainly done
with the aim of improving aerodynamic performance, namely reducing drag and
increasing lift. Again, the optimization is performed using MDF. The evolution of
the wing drag, lift, weight and lift-to-drag ratio is shown in fig. 6.15. Similarly,
the evolution of the total aircraft lift and weight, and the stress constraint g is
shown in fig. 6.16. The optimized stress and thickness distributions for the wing
are shown in fig. 6.17.

The optimizer is able to both increase the lift and reduce the drag of the
wing. Interestingly, the optimizer is able to reduce the drag by a larger amount
than with the previous objective (D% + %) The lift value is also significantly
increased. Figure 6.17 reveals that the optimized thickness distribution is constant,
with all structural elements having the same thickness, equal to the allowed upper
bound. By observing the evolution of the stress constraint g, it is revealed that
for all iterations the value of ¢ is near, or marginally exceeding, the allowed limit.
Therefore, the optimizer moves the thickness values close to the upper bound, to
satisfy the constraint, and ,unlike before, there is no reason to decrease any of
them. Hence, the distribution is constant with a value equal to the upper bound.
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Figure 6.16: ONERA M6 aerostructural MDO: Evolution of the total aircraft lift
and weight, and the stress constraint. The lift-to-drag ratio is used as the objective.

This means that the structural weight of the wing increases, as shown in fig. 6.15.
However, the increase in lift more than makes up for it, as the optimized wing is
able to carry more extra weight than the baseline (fig. 6.16). Thus, this objective
function (%) performs better for this problem and setup than the weighed sum
of the wing’s drag and weight (D% + %) Regardless of the objective function
used, the MDF architecture is able to improve the design and converge towards

the optimum.
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Figure 6.17: ONERA M6 aerostructural MDO: Stress (upper) and thickness
(lower) distributions along the wing’s span. Element number 0 corresponds to
the element closest to the wing’s root and 4 to the tip. The lift-to-drag ratio is

used as the objective.
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Figure 6.18: ONERA M6 aerostructural MDO: Comparison of the deformed con-
figurations for the baseline (left) and optimized (right) wings. The pressure field

contours are shown. The optimized wing is stiffer than the baseline, therefore it
bends less. The lift-to-drag ratio is used as the objective.
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Chapter 7

Conclusions and
recommendations for future work

7.1 Summary and conclusions

The aim of this thesis was to showcase and implement MDAO, and then apply
it to different problems. The theory behind MDAO was detailed, explaining the
difference between single-discipline and multidisciplinary numerical models, and
presenting different MDA methods, MDO architectures and ways to compute the
coupled derivatives. A Python framework, named mSense, was developed to fa-
cilitate easy setup and solution of multidisciplinary problems. The theory was
first applied to standard MDO benchmark problems, which were used compare
the performance of three MDO architectures. Then, an FSI problem was solved,
which was concerned with the analysis and optimization of an airfoil-spring sys-
tem. The resulting multidisciplinary shape optimization problem was solved using
two monolithic architectures, MDF and IDF. The solution of a more computation-
ally expensive FSI problem, simulating flow inside of an elastic, deformable tube
followed. Finally, the methodology is applied to the aerostructural analysis and
optimization of an aircraft wing.

MDADO is a very valuable tool. It provides a robust mathematical framework
for the analysis and design of complex, coupled systems. However, not all meth-
ods are applicable or suitable to all problems. For example, for the problems
tested, it was concluded that the monolithic MDF and IDF architectures tend
to perform overall better than the distributed CO architecture. Furthermore, al-
though IDF performed better than MDF for the simpler benchmark problems, in
the airfoil-spring F'SI problem the opposite held true. Overall, drawing from the
results obtained in this thesis, MDF seems to be the most generally applicable and
performant architecture.
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7.2 Recommendations for future work
Some recommendations for future work are:

e Formulate MDAQO problems using the residual form. The main benefit of
the residual form is that the computation of coupled derivatives (via the
coupled adjoint method) can become significantly more efficient, especially
in problems with many coupling variables and computationally demanding
disciplinary solvers. However, due to the invasive nature of the residual form,
this requires not only changes to existing MDAO software, but also to the
physics solvers, as they must provide extensive access to their internals.

e Investigation of other MDO architectures. The architectures presented in
this thesis are well-established and have been studied quite extensively. Newer
architectures may provide better performance, especially for specific prob-
lems. For example, Asymmetric Subspace Optimization (ASO), developed
for aerostructural optimization problems, has been shown to outperform
MDF under certain conditions [8].

e Use of high-fidelity solvers for aerostructural optimization. In the aerostruc-
tural wing analysis and optimization application presented in this thesis, the
fluid analysis was performed using the Euler equations and the structural be-
haviour was simulated using simple beam elements. The use of a viscous fluid
analysis and a more detailed structural model, such as a shell finite element
model, provides the opportunity for better and more realistic designs.
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Appendix A

MSense basic user guide

MSense is a Python package developed for MDAO. It allows the user to quickly
setup and solve MDAO problems, and makes it easy to switch between various
MDA methods and MDO architectures. MSense is written with an object-oriented
approach and can be used through its Python Application Programming Interface
(API). In order to demonstrate the use of mSense, the code for setup and solution
of Sellar’s problem (from chapter 3) is presented.

Sellar’s problem is an analytic MDO problem which consists of two disciplines
and an objective. The variables present in the problem are the shared design
variables z; and 2z, the local design variable x;, the coupling variables y; and
12, the local constraints g; and g, and the objective f. For Sellar’s problem, the
variables are defined in code as follows:

# Import everything from the API
from msense.api import x*

# Design variables

5 z1 = Variable (name="z1", 1b=-10, ub=10)

5 g2

z2
x1

Variable (name="z2", 1b=0, ub=10)
Variable (name="x1", 1b=0, ub=10)

# Couplings
yl = Variable (name="y1)
y2 Variable (name="y2")

3 # Constraints and objective

gl = Variable("gl", lb=-np.inf, ub=0, keep_feasible=False)
Variable ("g2", 1lb=-np.inf, ub=0, keep_feasible=False)
f = Variable("f")

The first step to using mSense is always to import the functions and classes
defined in the APT module (line 2). All variables present in a problem are defined
in mSense using the Variable class. In order to define a Variable, the user
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must specify its unique name and optionally its size, which defaults to 1. If the
Variable corresponds to a design variable, the user can also specify its lower 1b
and upper ub bounds, which if not specified default to —oo and oo respectively.
Variables which correspond to constraints should have at least one of 1b and 1b
set to a finite value. This is because in mSense constraints are specified through
variable bounds as follows:

Ib<g<ub (A.1)

If 1b=ub, the constraint is treated as an equality constraint. The user can
also specify whether the constraint should remain inside the feasible region during
optimization, by setting the option keep_feasible to True (lines 14 and 15).

The next step after defining all variables is to define the disciplines. In mSense,
the evaluation and differentiation of a discipline is wrapped inside the Discipline
class, which is a Python Abstract Base Class (ABC). When defining a Discipline,
the user must first specify its unique name along with its input and output
Variables. Two of Discipline’s methods are not implemented, and have to
be overridden by the user. These are the _eval() and _differentiate() meth-
ods, which specify how the discipline evaluates its outputs and its disciplinary
derivatives. In the code snippet below, the first discipline in Sellar’s problem is
defined:

from msense.api import x*

> import numpy as np

class SellarDisciplinel (Discipline):
def __init__(self, zl1: Variable, z2: Variable,
x1: Variable, y2: Variable,
yl: Variable, gl: Variable):

# Initialize the base object

super () . __init__(name="SellarDisciplinel",
input_vars=[zl1l, z2, x1, y2],
output_vars=[yl, gi])

def _eval(self) -> None:
# Get the input variable values

_z1l = self._values["z1"]
_z2 = self._values["z2"]
_x1 = self._values["x1"]

_y2 = self._values["y2"]

# Compute yl1 and gl

self. _values["y1"] = np.sqrt(_zl**x2 + _z2 + _x1 - 0.2 x*
_y2)

self._values["gl"] = 3.16 - self._values["y1"]*%x2
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def _differentiate(self) -> None:
# Get the input variable values

_z1 = self._values["z1"]
_z2 = self._values["z2"]
_x1 = self._values["x1"]

_y2 = self._values["y2"]
_yl = self._values["y1"]

# Compute the derivatives of yi

self._jac["y1"] = {"z1": _zi1/_y1,
"z2": 1 / (2*%_y1),
"xi": 1/(2%_y1),

"y2": -0.2/(2%_y1)}

# Compute the derivatives of yl

self._jac["g1"] = {"z1": -2x_yl*self._jac["y1"]l["z1"],
"z2": -2%_ylx*self._jac["y1"]["z2"],
"x1": -2%_ylx*self._jac["y1"]["x1"],
"y2": -2%_yl*self._jac["y1"]l["y2"]1}

Apart from importing the mSense API, numpy is also imported. The class
SellarDisciplinel is derived from the Discipline base class, as seen on line
4. Inside the __init__() function, the instance of the base class must also be
initialized. This is done on line 10, using the super().__init__() method. The
name of the discipline, and its input and output variables are passed as argu-
ments to this method. The only necessary step left to fully define the discipline
is to override the _eval() method, which specifies how the discipline evaluates
its outputs. As seen on lines 15-19, the user can access a discipline’s current in-
put variable values through the _values dictionary. Then, using these values,
the outputs are computed and their values must be placed inside the _values
dictionary (lines 22-23). Although not required, the user can also override the
_differentiate() method to specify how the discipline computes its derivatives.
Similar to _eval(), the user can access the discipline’s current input and out-
put values using the _values dictionary. Using these, the user should update
the _jac dictionary, which stores the disciplinary derivatives (lines 34-43). _jac
consists of one dictionary per output variable, which in turn stores the value of
the derivatives of the output variable w.r.t each input variable. This is demon-
strated in lines 32-41. If the _differentiate() method is not overridden, the
disciplinary derivatives can also be approximated. This can be achieved by calling
the set_jacobian_approximation() method on the instance of the derived class,
for example:

sellar_disc_1 = SellarDisciplinel(zl, z2, x1, y2, yl, gil)
sellar_disc_1.set_jacobian_approximation ()
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When calling the set_jacobian_approximation() method the user can op-
tionally specify the method use for approximation (either "finite_difference"
or "complex_step") and the step-size. By default the finite-differences are used,
with a step-size of 174, If the user wishes to evaluate or differentiate the discipline,
the eval () and differentiate() methods should be called. For example:

sellar_disc_1 = SellarDisciplinel(zl, z2, x1, y2, yi, gil)
input_values = {"x1": 1.0, "=z1": 4, "z2": 3, "y2": 0.9}

3 output_values = sellar_disc_1.eval(input_values)

1

2

jacobian = sellar_disc_1.differentiate (input_values)

Here, input_values is dictionary holding the input variable values with which
the user wishes to evaluate the disciplinary outputs. By calling the eval () method,
mSense first checks that no input variables values are missing and that the sizes of
all passed variable values are correct, then calls _eval (), and returns the output
variable values as a dictionary named output_values. The validity of the output
values is also checked. It should be mentioned here that mSense has the capability
to cache discipline evaluations, which avoids re-evaluating or re-differentiating a
discipline with the same input values. By default, only the values of the latest suc-
cessful evaluation/differentiation are cached. The user can change this by setting
the value of cache_policy inside the base class initializer (super().__init()).
Accepted values are "latest" (cache only the latest evaluation, default), "all"
(cache all evaluations) and None (do not cache). differentiate() works simi-
lar to eval(). By default, a Discipline has to be first evaluated for a set of
input values before it is differentiated. This can be changed by setting the field
_diff_policy from True to False.

The second discipline and the objective in Sellar’s problem are similar are
defined similar to the first discipline:
class SellarDiscipline2(Discipline):

def __init__(self, zl1: Variable, z2: Variable,

yl: Variable, y2: Variable,
g2: Variable):

# Initialize the base object

super () . __init__(name="Disc2",
input_vars=[zl, z2, yi],
output_vars=[y2, g2])

def _eval(self) -> None:
# Get the input variable values
_z1 = self._values(["z1"]
_z2 = self._values["z2"]
_yl = self._values["y1"]

# Compute y2 and g2
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18 self._values ["y2"]

21 def _differentiate(self) -> None:

22 # Get the input variable values
23 _z1l = self._values(["z1"]
24 _z2 = self._values["z2"]

25 _yl = self._values["y1"]

27 # Compute the derivatives of y2 and g2

28 self._jac["y2"] = {"y1": np.sign(_y1l), "=z1": 1.0, "=z2":
1.0}

20 self._jac["g2"] = {"y1": np.sign(_y1), "z1": 1.0, "z2":
1.0}

30

31

32 class SellarObjective(Discipline):

33 def __init__(self, x1: Variable, z2: Variable,

3 yl: Variable, y2: Variable,

35 f: Variable):

36

37 # Initialize the base object

38 super () . __init__("Objective", [x1, z2, yl, y2], [f])

39

10 def _eval(self) -> None:

41 # Get the input variable values

12 _x1 = self._values["x1"]

13 _z2 = self._values["z2"]

14 _yl = self._values["y1"]

15 _y2 = self._values["y2"]

16

47 # Compute f

18 self._values ["f"] = _x1*%*2 + _z2 + _ylx*2 + np.exp(-_y2)

50 def _differentiate(self) -> None:

51 # Get the input variable values
52 _x1 = self._values["x1"]

53 _z2 = self._values|["z2"]

5 _yl = self._values["y1"]

55 _y2 = self._values["y2"]

57 # Compute the derivatives of f
58 self._jac["f"]I["x1"] = 2x*_x1

59 self._jac["f"]["z2"] = 1.0
60 self._jac["f"]["y1"] = 2 * _y1
61 self._jac["£"]["y2"] = -np.exp(-_y2)

The user can now perform an MDA as follows:

1 # Instantiate discipline objects
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6
8
9
10
11
12
13
14
15

16

17
18

19

sellar_disc_1 = SellarDisciplinel(zl, z2, x1, y2, yl, gl)
sellar_disc_2 = SellarDiscipline2(zl, z2, y1, y2, g2)
sellar_objective = SellarObjective(xl, z2, y1, y2, f)

# Create the MDA solver

7 gs_solver = create_solver (type=SolverType.NONLINEAR_GS,

n_iter_max=10,

relax_fact=1,

tol=1le-4,

disciplines=[sellar_disc_1,
sellar_disc_2,
sellar_objectivel)

# Set starting values
starting_values = {"x1": 1.0, "=z1": 4, "=z2": 3, "yi1": 0.8, "y2":
0.9}

# Solve the MDA problem
coupling_values = gs_solver.solve(starting_values)

After instantiating the three Discipline derived objects (lines 2-4), the user
creates a Solver object, through the create_solver () function. This function
returns a Solver object after specifying which disciplines are involved in the
MDA. The user can also optionally specify the type of solver, the maximum it-
erations allowed, the tolerance and the relaxation factor. The default solver type
is "nonlinear_gs", which corresponds to the nonlinear Gauss-Seidel MDA. The
nonlinear Jacobi and Newton methods are also available by setting the type to
"nonlinear_jacobi" and "newton_raphson respectively. By calling the solve()
method with the specified starting values, the solver solves the MDA and returns
the converged values of (only) the coupling variables.

In order to solve an MDO problem, the user must first create it using the
create_opt_problem() function, which returns an OptProblem object. The de-
sign variables, objective, constraints and involved disciplines have to be defined
when creating the problem. The user can also choose if the underlying optimizer
(called a Driver in mSense) should use normalization, by setting the use_norm
argument to either True or False. Normalization can only be used if all design
variables have finite bounds. By setting maximize_objective to True, the prob-
lem is solved as a maximization problem. Bu default, use_norm is set to True and
maximize_objective to False. The user can also set the type of OptProblem.
This corresponds to which MDO architecture should be used to formulate and
solve the problem. The default option is the MDF architecture (type="mdf"), but
the IDF (type="idf") and CO (type="co") architectures are also available. If the
MDF architecture is used, the user is also required to specify the accompanying
MDA solver, as seen in the snippet below:
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# Create the MDO problem
prob = create_opt_problem(type=0ptProblemType .MDF,
design_vars=[x1, zl, z2],
objective=f,
constraints=[gl, g2],
maximize_objective=False,
use_norm=True
disciplines=[sellar_disc_1,
sellar_disc_2,
sellar_objectivel],
solver=gs_solver)

After creating the MDO problem, the user has to set the initial values of
the design vector, and call the solve() method of the OptProblem object. This
method returns the optimized values of the design variables. The user can see
the evolution of the objective function by calling the plot_objective_history()
method of the OptProblem object.

# Set initial design vector values
initial_values = {"x1": 1.0, "zi": 4, "z2": 3}

# Solve the problem
optimized_values = prob.solve(initial_values)

# Plot the objective’s evolution
prob.plot_objective_history ()

The complete code for Sellar’s problem, as well as other examples can be
found in the GitHub repository (https://github.com/dlmpal/mSense), under the
examples folder. In the examples therein more advanced features of mSense are
shown, such as how to set the Driver of an OptProblem.
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Eiwooywyn

To nepiocbdtepa 00y YPOVA TEOBAUNTA OTH Unyovoroyio Efval TOAUTOUENXS-TOAUETLOTNUOVIXG,
%0 ¢ Aoy ohoOVTAL UE GUC THOTA TOL OTIO{0L ATOTEAOUVTOL T DLUPOPETIXES CUVIOTMCES-
medla, xon oLy va e€eTdleTon 1) AAANAETIOPAGT TOUG UE TOAAUTAL QUOIXE PUUVOUEVOL.
H avéryxn oyedaouol tétouwy cuotnudtwy odnoe Ty avdmtuln tng Yewplag tng
Holutopeaxric Avéhuong xa Behtiotonoinone (Multidisciplinary Analysis and Op-
timization, MDAO), n omola mopéyet to padnuotied undPoudeo yla v avdhuon
/ot Bektiotonoinon twv cuotnudtwy avtwy. To xlewo 6gehoc e pedodo-
hoyiagc MDAO eivon 611 umopel var expetodeutel TIc aAANAETLORAOES PETALY TRV
OLUPOPETIXMY CUVICTWOMV-TEDIWY TOU CUCTAUNTOS, PE ATMOTEAEOUN Vo 0dnyel oTo
BéhtioTo oyedlaous. Auto elvar adUVATo av dev Angdolv umddn ol aAAnAemdpdoELs,
1 €dv yiveton 1 unddeon 6t 1 o0leuin ebvon povodpoun.

H Yewpio MDAO éyer ¢ pilec tne otnv agpovaurny| [2]. Khoowd nohu-
TouEod TEOBANoTa elvon Tor TEOPARATA AAANAETBPAUCTC PEVCTOU-GTEREOD (Fluid-
Structure Interaction, FSI), énwe 1 agpodouny| avédhuon xou Bektiotonoinon ntépu-
yog agpooxdgpous. H xiaouxh mpocéyyion enihuong tou mpoBiruatog autol, 6cov
apopd TNV avdhuoT), eivol 0 UTOAOYIOHOS TWV UEPOBUVIHUIXOY QOPTIWY, 1) HETUPORH
TOUG 0T DO AVIAUGT Xall, TEAOC, O UTOAOYLOUOS TV TUCEMY XAl TURUUORPOCEWY
e nTépuyac. Ilpogavng ouwe, 1 petatomon g nTépuyag odnyel oe aAloyt| TNG
ponc YOpw amd authy, dpo xou o€ ahhayh) TV @opTiny. IlpofiAuata 6nwg auto,
omou 1 auidpoun cLleVEn petalld mediwy dev umopel va ayvondel, anoteholv To
x0plo avtixeluevo puerétng tng Yewplag MDAO.

Opoloyio xou padnuaTtixy, TEpLy AP
To cucTApaTa OTN UNYUVOROYlo XU OTH UNYUVIXT YEVIXOTEQH LOVTIEAOTIOLOUVTOL O-
erduNnTd P€cw £VOC CUGTAUNTOS EEIGMOEWY, UE TN AUOT) TwV onolwy Tpooeyyileton

N xotdoToor Tou cucthuatoc. o éva povtého ye n petofintéc xatdotaong, ot
eZloOOEIC QUTES YRAPOVTOL (C:

Ti(yhy% s 7yn) = 07 (S (17n) (1)



YTNV Topamdve €xQEaot), 1; €lval To UTOAOLTO NG 1-00THG e&lowong xou ¥; 1 i-
ooty ueTofAnT xotdotaong. 'pdgovrag T YeTaBAnTég xatdoTacng XL To UTOAOLTA
, , , T T
O€ OLVUCUTIXT| oY), ONAaON Y = [yl Yo ... yn} xor R = [7“1 ro ... rn]
1) PTG EXPEACT) YRAPETUL GUVTOUA WS:

)

R(Y) =0 2)

H hoyuy autr| enextelveton oe moAutoueoxd cuoTAuata, av Yewendel 6t xde
UTOGUGTNUO-TED(D BLard€TEL TO BLIxd TOL BLAVUOUN UETUBANTOY xaTdoTaong Y xon oeT
ellonoeny R;. To éva obotnuo m mediov, xou Aopfdvovtag urodn Tic ahAnAETL-
dpdoeic YeTald Twv TEdlwY, LoyeL OTt:

Ri(Y1,Ys,...,Y,) =0,i€ (1,m) (3)

H nopamdve exdoyr| Tou LovTENOU TOU TOAUTOUENXO) GUG THUNTOS OVOUALETOL U-
mohepotixt|.  H evoddoxtiny| exdoyn autrig ebvan 1 cuvoptnotaxt|, 6mou avtl 1wy
UETOBANTOV xatdotaong Y; xde nediou, Yewpolvtal wévo ol uetaBintéc e€6o0u YZ
O }Afl elvan elte umoclvoho Twv Y; 1 utohoyilovTar dueoa and autéc. Ol elcodol evoc
mediou 7 ouuBohiCovta pe Yj; xou efvan UTOGUVORO TKV EEOBWY OAWY TKV GAAWY TE-

A A~

7 4 / 7’ 7 / " 'y Y T
olwy, dpa o Yevx TepinTwon oy el 6T Yy = [Y1 o Yy Yo Ym} .
'Etot, Y Ty cuvaptnolaxt| Lop@r] ToU TOAUTOUENX0) HOVTEAOU, TO GUVOAO EELOWOE-
®V TOU TO TEQLYPAPEL Elvou:

Y; = Yi(Yj),i € (1,m) (4)

Kde exdoyn €xet SlopopeTind TAEOVEXTHUNTA X0 UELOVEX Tt EB6 ovarpépeton
HOVO 1) TROQaVAG Blopopd OTL 1) UTOAEWHATIXY Lop@Y| dloryetptletar TOM) YeyahdTeQO
oerdud YETOBANTGV and TNV cuvapTnotaxy, xadng To uéyedog Twv e£6dwV YZ elvou
oLYVE TOAD UXEOTERO Tou UeYEVOUC TV PETUBANTOY xatdoTtaong Y;.

H dewpia MDAO aoyoheiton pe v avdAuon xow BEATIOTOTOMGT) TOAUTOUEAX MY
wovtélwv. H nohutopeaxt| avdhuon (Multidisciplinary Analysis, MDA) efvou 1) 6to-
duxaoio TautdypovNe emALoNC TwV EELOWOEWY OADY TOV Unoouompdtwv/ nedlwy. H
nolutoueaxt Behtiotonoinon (Multidisciplinary Optimization, MDO) etvon 1) Suodt-
xaolo fedTioTonolnong evog TOAUTOUENKO) GUOTHUNTOS, 1) oTola TapdhAnia oEfeTon
™V oupPatotnTo YETHED Twv TEdieY, dnhadr AauBdver unodn Tic aAANAETIBEAOELC
Toug. ‘Eva mpéfBinua MDO unogel vo emhuiel pe nepioodtepoug and €vay TpdToUC,
1 apyrtextovéc. O opyitextovixéc MDO yweilovton oe dUo eupeiec xatnyoplec,
novoldeg xou xoataveunueves. Ot mpwteg emAbouy eva TpoBAnua Bedtio tomoinong,
eve ot delTepeg ToAhamAd. Tapadelypoata Tng TpdTng xatrnyoplag etvon oL apyLTeEXTO-
vixéc Multidisciplinary Feasible (MDF) [3] xou Individual Discipline Feasible (IDF)
3], eved mapodeiypoto g Sedtepne eivan ot Bi-Level Integrated System Synthesis
(BLISS) [6] xou Collaborative Optimization (CO) [1].
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To mepiocdtepa npofAfuata MDO, aoyétng apyitextovinfc, emhdovial PECK
auTLOXEATXOY ahyoplluwy BehticTonolnong, Aoyw g Yevxd xoAUTEENS EMB0CY|C
Toug. Ot akydpriuol autol amantody TIC TUEUYWYOUS TNG CUVAETNONG-OTOYOU Xl
TV TEQLOPLOUMY WE TR0 TIC UETABANTES OYEBLOUOU. XNV ToAUTOUEUX Y| BEATIOTO-
To{NnoT, 0 UTOAOYIOUOS TV TORAYOYWY AUTOY TEETEL Vo AauBdver unddmn Ty oAAn-
AemidpaoT TV TEBIWVY, xaL Yol aUTO OvoudlovToL xon TETAEYUEVES Tapdywyot. [
TOV OmOOOTIXO UTOAOYIOUO TV TETAEYUEVOV TOQUYOYWY EYOUV avanTtuylel TETAey-
UEVOL 1) TOAUTOPENXS avahoYa TwV Yetddwy Tng evdeiag Slapoplone xat Tng ouluyoic
ueddédou [5].

To hoyiopixd mSense

ot Suayelplon tne moAumhoxotntog mou oyetiletan ue 1o MDAO avantiooeton
éva mtaxéto Aoytouxol otn yhdooo Python. To néxeto ovopdleton mSense (Multi-
disciplinary + Sensitivity), xou YENOWLOTOLELTOL Yol TNG EQUOUOYES TNG OLTAWUOTIXAS
epyaoiag. XLxomog ToU ToXETOU €lval 1) BIEUXOALYOT] TNG AVATTUENEG TOAUTOUENXWY O-
ELIUNTXOV LOVTEAWY, PEow GULEUENS ECEOUEUIEVGY AOYIOUXGOY OVIAUGTS Yio Xdde
nedlo. To mSense dodétel epyaheio 1600 Yoo TNV avdiucT , 660 xaL yLoL TNV BeA-
TioTomolnon oy poviéhwy. ‘Ocov agopd TN BeAtioTomolnon, oto TaxéTto elval
Teoypauuatiouéves Teelc apyttextovixéc MDO, oo MDF, IDF xa CO, xon mopéyeton
7 OUVUTOTNTA UTOAOYIOUOU TOV TEMAEYUEVODY TORUYWYWY TOCO UECL TWV TETAEY-
UEVOY exBoy Y TN Uedddou eudelag Blapoptong xar tng ouluyols pedodou, oahhd
xou péow mpoaéyylone (memepaopéves Blopopéc). O mnyotog xddxoc, xodde ot
nopadelypata yerong, etvon Swrdéotua 8¢ https://github.com/dlmpal/mSense.

Oewpla MDAO

[ToAuTopEax) avadAuomn

Yxomoég e mohutopeaxic avéivone (Multidisciplinary Analysis, MDA) efvou 1 e-
TAuon Tou CLCTHUTOC ESIGHOEWY TOU TOAUTOUENXOL Uovtéhou. Tlpoxtind autd
LlOOBLVAEL PE T TOY POVT XavoTolnoT Twv eEIOWMOEWY xaTtdoToone xde nediou. Ou
uévodor MDA ywpeilovton mpaxtixd oe dVo xatnyopiec. H mpdtn xotnyopia amo-
Tehelton amd yevixeuueveg pedodoug otadepol ornuelo, Omwe 1 un-yeauuxy|, block



uedodog Gauss-Seidel xou 1 un-yeauuxr|, block pyedodog Jacobi. H dedtepn xotn-
yopla amotekeiton and pedodoug Poaciouéveg otn pédodo Newton yio un-ypopuuixd
CUC THUOTAL.

T TOANOYLOPOG NMEMAEYUEVOV TTAOAY WY WV

[oe v eqopuoyy| auttoxpatixfc BeAtiotomoinong anapaitnTog elvor 0 UTOAOYLOUOS
TV TURPAYOYWY TNG CLVAPTNOTNE-CTOYOU XAl TV TEPLOPIOUMY KOS TEOS TIC UETAUBAN-
TEC OYEOLOUO0. YE UOVOTOUENXS GUC TAUATA 1) GUC TAUATH EVOS TEBIOU VLol TOV GXOTO
ouTO yenoyomootvtal 1 uédodog eudelag dapdpiong xou 1 ouluyhg pédodog. Av
ue F' oupPBohiileton To BLdVUCUL TIOU TERIEYEL TNV CUVEETNOTN-0TOYO Yol OAOUC TOU
Teploptopolg, e X 1o ddvuoua PETofANTOY oyedlouol xou pe Y xow R Tor Olo-
VOOUOTO PETOBANTOV XATAG TaoTG Xt UTohoimwy avtioTorya, téTe 1 uédodog euieiog
OLUPOPLONC YEAUPETAL:

dF OF OF OR'OR .

X " ox vy ox) )

Ouolwe, 1 ouluync pédodog ypdpeTan:

dF OF . 0R

dX 09X 0X (©)
OR"T = OFT

v T av

omou 1 eivon To Brdvuoua TV cLlLYOY PeTaBANTOY. T'a TohuTougand cuc THUOTA
gyouv avantuydel avtiotoryec uédodol, mou ovoudlovton TeTheYpEVY UEVOBOC EU-
Velog dlapoplong xon memAeyuévn ovluyhc pédodoc. I éva clotnuo m mediewy,
EXPEUOUEVO OTY) CUVAPTNOLOXY UopPY|, 1 TEMAEYUEVN pédodog euleiog dlapoptomng
YedpeToL:

) A £ R —D £ 41 oy,
N Y2 OYm dX 0X
g _ oYy | | v ovy
) %] e OYm dX — X
O ¥ ro| ] |2
oYy 9Y> ce dX 0X (7)
vy
ax
dYo
dF _ oF | 2 2 2] |
dX 8X oY1 oYy OYm
d¥m
dX



[Na o B0 clotnua 1 temheypévn culuyrc uédodog yedpeTou:

oy
0X
oY
dr’ _ OF . [(I)T (I)T (I)T} o0X
dX  0X L I
Y
X
A _on ] or T (8)
- oy, Oom Of Ba
9Ys Yo o or T
—£2 I ce. —==2 2 =
2) %] OYm — Y2
I A 7 30 or T
L oY1 oY e . Y
oTou [¢1 Oy ... gbm} elvar To BLdvUoUOL TwV GLLUYOV UETUBANTOV.

ITohutopsoaxn BeAtioTonolnon

H x0Opua Srapopd tng IloAutoueanric BeAtiotomoinong (Multidisciplinary Optimiza-
tion, MDO) oe oyéon e tnv Movotoucaxr BeAtiotonoinon elvon 611 1 mpdhtn mpénet
vor MBel umoPy Tic IAANAETBEAOEIS TV BLapdpwy TEDIKY Tou cucTAUNTOS. ‘Eva
TeoBAnua MDO urogel vo dwotunwiel xon va emhuiel e didpopoug tpdmoug, xadévag
am6 Toug omolog uLE T pla Btapope Ty apyttexTovixr) MDO. Ot apyitextonxés yo-
oilovton Bdoet 600 xupine xprtneiwy. To meoTo elvor To MW EMTUYYEVOUY TN GUU-
BoatoTNTo TWV PETOPBANTOY XatdoTaong TV Tedlny. Mepiée yenowwonooliv MDA,
eve dAAeg eptoplopolg cupfatotntag. To dedtepo xpithplo ebvon €dv emAbouY Eva 1
TeplocoTepa TpoATuaTa BehtioTonolnong. Ot AeyOUEVES LOVOAMIINES PYITEXTOVIXES
eMADOLY Vol UEYEAO eViado TEOBANUN, EVE Ol XATAVEUNUEVES EMLAUOLY TEPLOCOTEQN
ued TpofBiruata. Mia cuyvd yenoulomowluevn povoldut| uédodog etvon  MDEF,
n omoia yenotuonoelt MDA yio tnv e€aopdiion tng oupPBatétnrog tov nedioy. H
uedodog IDF elvon enlong wovohdiny|, ahhd yenotuonolel teptoplopols cupfatoTnTag
yioo vou emiTOyel T oupPBatoTnTa TV Tedlwy. Ot TEQIOCOTEPES XATAVEUNUEVES oYL
TEXTOVIXEG UTOPOUV VoL xaTryoptonolndoly we xataveunuéves napahhayés tne MDF



! .1}'1,21,22, ! 21, 22 / L1, 21
Y1, 1 Disciplinel @

{91/
[ Y2, 92 / | Y2 / Discipline2 @
E Objective

Yyfuor 1: TpdBhnua tou Sellar: Awdrypouuo XDSM.

xou e IDF, avdhoya pe 1o twg eacgarilouy T cupfatotnro.

> 0yxeLon enioooNng OLoPOPWYV
apyttexTovixwy MDO

H Onopln dugopetixmy apyttextoviney MDO Sruovpyel 1o gpmdtnuo yiot To Tola
uédodog elvar meplocbTEPO amodoTiny| X aldmoTn. O oxomdg xdle apyLTeEXTOVL-
x\C elvon vor xataAigel 6TO BEATIOTO, IXAVOTIOWWVTAS TOOO TOUC TEPLOPIOHOUS TOU
TeofBAAuaTog 660 xou T ouPPATOTNTY PETAEY TWV TEdiY. MnuavTr eivon enione
T XOVOTNTA TNG APYLITEXTOVIXAS VoL AUCEL TO TROBANUA OE AMOBEXTO UTOAOYIC TIXO
xeovo. T tn olyxplon TV BlapopwY UEYLTEXTOVIXWY €Youv TeoTalel oplouva
neoBAAuata, uetald twv omolwy eivar to TEéBAnua tou Sellar [4]. Evdewxtixd, to
XDSM tou mpofifuatog gaiveton 6o oyfua 1. Yuyxplveton 1 enldoon twv apytte-
xtovixwv Multidisciplinary Feasible (MDF), Individual Discipline Feasible (IDF)
xou Collaborative Optimization (CO). Ot apyttextovixéc cuyxpivovTor we IO Tov
aprdud uoloyiopol xde medlou mou amoutolv. Ta amoteréouato patvovtor GToV
mivaca 1.



Apyrtextoviny MDF IDF CO
Troloyiopol tediou 1 61 30 1210
Trohoylouol mediou 2 93 24 601
Trohoylouol cuvdptnonc-otdyou 61 30 168
Enavarrlec Behtiotonomnti 9 7 30
BeAtiotonownuevn Ty cuvdptnong-otoyou | 3.18339 | 3.18339 | 3.1828

Hivoxag 1: HpdBhnua tou Sellar: 20yxplon SLopdpmy dpyITEXTOVIXMY.

O,
— Uy

_— 0

Yyfuo 21 X00TNUO AEROTOUNG-EAUTNEIOU: Ly NUoTIXT) AVATUQACTAO).

2200TNUA AERPOTOUNG-EAATNELOV

Mia aepotoury NACA-0012 tonodeteiton evtog evog atpyBoic mediou porig, eve etvan
TOTOVETNUEVO OE OTEETTIXG EAATAPLO OTO % ™G Yopdnc Tou. Adyw NG PORg avo-
ntbooeTan poTH| Tou Telvel va oTeédel TNy acpotour|. To cloTnua acpotoun-chathpio
amexovi{eton 6T0 oYU 2.

Trdpyouv dVo Tedla, auTd TNG AEEOBUVIUIXAC Xt auUTO TNS doprc. H agpodu-
vo Teptypdpetan and Tig e€lonoeig Euler mtou emhbovton and tov oixelo emAlTr
PUMA. H Souuxn neprypdepetar amd tny avahutixy e&lowon tou ehatnpiou. To onueio
l0opEOTHAS TOU CLUGTHUATOS, dNAAdY| N Ywvia 6 xou 1 ponr) M otny onola toppoTet,
umopel va Beedel péow MDA. Evoewtind, to oidypouua XDSM yia MDA péow tne
yevixeupévng pedodou Gauss-Seidel gatveton oty eixdva 3.

Ipoxewévou 1 aepotour| va mapdyel uior emduunty| Ty dvwone L, yenotuo-
motelton Bedtiotomoinon popgric. H ouvdptnon-ctdyog mou yenowwomoteiton etvon
n f = 0.5(L— L*)% H cepotouf napauetponoteitar JEcm XouTIo) UoppoToinong



(GaussSeidelMD
@ | M / Aerodynamics —@

Eyuor 3: Yootnua agpotopfic-ehatnelov: Audypopua XDSM yia Ty mohutoueax
OVIAUOT) TOU GUOTAUATOC HEOW TNG YEVIXEUUEVNC uedodou Gauss-Seidel.

NURBS. To mpéBinua BeAtiotonolnong etvar TOAUTOPEUXD, EPOCOV TEETEL VUL GUUTE-
otkngiel xou 1 enidpaon tou ehatnplov. XpnowomowlvTo ol apyttextovixéc MDF
xan IDF, %o ouyxpivovtan tar amotedéopatd toug. Xto oyfua 4 gofveton 1 mopela
OUYXAOTG TNG THWNAS TN CLVEETNONG-OTOYOL YL TIS BUO CPYITEXTOVIXEC.

ANMAETOPACT) PELGTOVU-CTEREOU
OE EANCTIXO AYWYO

Peuotd peel eviog dddoTatou EAACTIX0U aywYoU, Tapauop@wvovtds tov. H por
VYewpeiton oTEmTH, xon 1) Tieon 16660u xar €€660L Vewpolvtal YVWwoTés. O aywyog
elvon maxTwpévog ota 600 dxpa. To mpdBinua etvar GUUUETEIXG W TEOC TOV XEVTEIXO
d&ova Tou ary®YoU, xou GEo LOVO TO UGG HOVTEAOTOLELTAL, OTIWS QPalVETAUL OTO Oy U
5. Il T0 peusTd yenoyomoolvta ol e€lowoelc Navier-Stokes, ot omoleg emAdovTton
uéow tou oixelou emhitn PUMA, yopic povtého tipBng (agol 1 poY| eivor otpwth).
"o T0 0TEPEd TUAUA Y ENOWOTOUVTHL O ECIOWOELS ENITEDNE EAACTIXOTNTAS, OL OTIOIES
ETADOVTOL UECEK) XOOLXA TETEPACUEVLY oToLyElwY, ovouatt SFEM, tou avamtiydnxe
YL TIC AVEYXES TNG OLTAWPATIXS EpYaTlag.

Koo 10 peuotd péel, Tupalop@mVveL TOV aywYo, UE amoTéEAEoUO Vo ohAALEL 1)
cor). Ilpoxewevou va Beetel n xatdotaon wwopponiog, yenoylomoleiton TOAUTOUEUXT
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Objective value

1074
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Opt. Cycle No.

Yyfuor 4: Yootnua agpotouric-eratnplou:  Tlopelor olyxhong g twrg Tng
ouvdpTNomNe-otdyou Yl Tig opyttextovixeg MDFE xou IDF, yia to mpéfinua Bei-
TIoTOTOINONG LOPPC TNG AEPOTOUNC.

avédAuon. O Tapauop@wuUEVog aywyog galveton 6To oyfud 6.

Hpoxepévou va eheyydel 1 u€yiotn oplloVTio UETATOTIOT TOU oy wYOU £QopUOlE-
Tou BeATIoTOTOMON TWV PUOKOY WOTATWY Tou UAXO0D Tou. To mEdBAnua emAbeTa
uéow tne opyttextovixic MDF. H clyxhon tne pedoddou gatvetar oto oyrua 7.

Aegpooouxr| PeATicTonolinon tng
ntepuyac ONERA M6

H acpodount| Bertiotonolnorn ntepbywy agpooxap®y anotelel pla and T cuvrn-
Véotepec egapuoyéc MDAO. Emiéyeton 1 mtépuya ONERA M6, xadoe yenot-
HoToLE(ToL GUY VA Yo TNV ETUXVEMOT XWOXWY UTOAOYIOTIXNS peuc ToduvouLxc. H
TTEpuya TotoveTelTan EVTOS TEWOLAG TOTOL, aTEB0UE, BNy NTixol poixo nedlov. Xorn-
owonoolvTon ol e€lowoec Buler, mou emiboviar and tov owxelo emidty PUMA.
AOY® TV AEOBLVAULIXGY BUVIUENY TOL BEYETAL, 1) TTEPUY O XEUTTETOL XATH TO UHXOSC
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Outlet Fixed

Fluid Solid

Symmetry
Interface
Free

Inlet Fixed

Figure 5: FSI ehaotixol aywyol: Avomopdotaot Tou UToloyloTixol ywelou.

— 9.8e-01
— 08
0.6
04
= 0.2

— 0.0e+00

— 0.01

— 0.0e+00

Yyfua 6: FSI ehaotinol aywyol: O mapopop@ouévog aywyods, 6Tws TEOXUTTEL and
NV ToAutopcaxt) avdiuon. To peuotd yewuatiletar and Ty xAIeTh Tou TayLTNTA,
€V TO OTEPED amd TNV 0pllOVTIAL TURAUULORPWOT).
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Yyfuo 71 FSI ehaotinol aywydu: Ilopela ohyxhiong tng TS TG UEYIOTNS opt-
Covtiag YeTaTOTONS Uy mag Yot TNV apyttextovixy MDF, yia 1o mpéfBinua Behtioto-
TONONG TOV PUOIXGY WLOTATWY TOU AYWYOU.

Uy, Wy V3, W3 b2, W2

o (] .|
A

vg = we=0 Vs, Ws

g

Figure 8: ONERA M6: Aopwo povtého tng ttépuyag

e T vo povrteroroiniel Aowndy n douixr TG CUPTERLPOEE, aVATTOCCETAUL HOVTENO
TEMEQUOUEVLY oToLYElwY e doxole. To povtélo ontixonoteitar 6to oyfua 8. T-
Tdpyouy dVo Baduol eheudeplac avd xOuBo, €vag Yo Tn HETATOTIOT XAl VS YioL TNV
oTeoY1 Tou X6ufou.

Ocwpeiton Twe 1 TTEPUYY BEV EIVAL UEUOVOUEVT], AR aVAXEL OE AEEOOUAPOS TOU
omoiou To (dpog TEETEL Vo oMxoEL. AuTO Yivetar (OOTE TO TEOBANUL Vo lvor TE-
PLOGOTERO PEMGTIXG, Ywplc Vo augniel To LTOAOYIG TG XOGTOC AOY L OECOBOUXTC
UEAETNG OAOXANEOL agpooxdpouc. MEow molutoucoxic avdivong urohoyilovTal 1
TOEAULOLPWON TNG TTEPUYUS XA TNV TTHOY, xodig xan T poptio tou oéyetan. Ta
0V0 Tedlar ebvor 1) agpodLVALXY, xat 1) Souixr). LUYxelon PETOED TNG ATOQUUORPWTNG
A0l TOUPUUOPPWUEVNS TTEPLY NS (alveTon 6TO oy Aua 9.

Hpoxewévou va Bertiwdel n enidoon tne ntépuyag epoapudleton Behtiotonoinom.
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— 1.7e+08 \ — 1.7e+05

— 140000 — 140000

120000 120000
100000 § 100000 §
|
|
80000 ! 80000

— 60000 — 60000

pressure
pressure

— 39e+04 — 3.9e+04

Yyfua 9: ONERA M6: X0yxpion petalld tng anopauéppomTng (oproTepd) xou Topa-
Hoppwuévne (6eZid) mTépuyoac.

Mertof3ddheton 1000 TO Y AL TNG TTEQUYAS, OGO XaL 1) BOUT| TNS, UECW oAAXy|C ToU
Ty 0ug TWV douxwy oTotyelwy. Eetdlovton 6Uo cuvaptrioeic-otoyou. H mpdtn etvan
éva Cuytopévo dipolopd tou Bdpoug xou Tng omo¥érxouoag, Ve 1 SelTERT Elval O
Aoyog dvworg mpog omo¥érxovoa. T v enthuor Tou mpofArjuatog yivetar yerion
e apyttextovixic MDFE, vy tnv onolo to dudypaupo XDSM gatvetar 610 oyfua
10. Evdewuixd, oto oyfue 11 nopoucidleton n nopeia ohyxhione tne omodéixouvoag,
™G dvwong, Tou douxol Bdpoug xal Tou AdYou dvemong Teog omic¥EAxouca TG
TTEQUYOS, YIX TNV TEMOTN cuvdptnon-otdyo. H apyitextovin) MDF xatagepver va
Behtiwoel Ty enidoor TG TTEELUYASG XoL PE TI 000 CUVIPTACEIG-OTOY OV, WGTOGO N
devTERn CoLVETNONFoTOYOC (BNhadY|) 0 AdYog dvwong mpog oTLOVEAXOVGOC) odnyel
0€ XUAUTERA ATOTEAECUATOL.
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/ FZ@’!‘O’ L*7 D*

Structures

Per formance

Yyfua 10: ONERA M6: Audrypoupo XDSM yio to mpdBinua tng acpodouxic Bek-
TIoTOTOINOTG TN TTEPUYAS UECW TN apyttextovixic MDE.

490 10600
480 1 10400 -
470

Z 10200 |
460 §
50 10000 4
440 9800 -

T T T T T T T
123456?8910 0123456782910

Drag [N]
Lift [N

Iteration No. Iteration Mo.
1100 + 225
1000 +
= T
E 900 A E‘ 22.0 4
S 500 g
g o
700 A 21.5 4
600 -
——T — T — T T T
12345678910 012345678910
Iteration No. Iteration Mo.

Yynfuo 11: ONERA M6: Hopela olyxhione tne omoVérxouvoas (mdve aptotepd),
e dvewong (Téve 6eZid), Tou Bouxol Bdeous (xdte aploTepd) xat Tou hGYoU dve-
omNg TEog omoVERKOUCY (xéte Belid) ¢ mrepuyag. H ouvdptnon-otdyog ebvan o
Cuytopévo dipotoua Bdpoug xon omeVEAXOUCUS.
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Avoxepalalworn »xal TEOTACELS
Yot LEAANOVTIXNT] LEAETN

O oxomdg autig Tng dtmhwuaTxAc epyastag HTay Vo VAomotoel T uevodoloyio
MDAO xo vo v egopuooel oe dudgopa tpoArjuata. Metd tnv napousioon tng
Yewplag, £yve olyxpton tng enidoong ety apyttextovixwy MDO oce 500 avoiuTixd
meofBifuara. ‘Eneito, emhdinxay 600 mpoBiiuato ahAnAETidpaonc peusTOV-0TEREOD
%0 To TREOBANUN agpOdOUIXYC BEATIOTOTIOMNONG TTEPUYAS UEPOOKAPOUS. JUVONXE, N
uedodoroyla MDAO mapéyet évay alomoTo xar amoTeheouatind 1pémo dloyciotong
TEMAEYUEVOY cLoTNUATWY. 26T600, 10 Tedlo elvar oyeTnd VEO xou UTdEYOLY TiEPL-
YodpLa yioe Bedtiooon xon UEAETY, OTWE 1) VAOTIOMGT) X0 EQUEUOYY) TNG UTOAEWUATIXAC
HOPPNG Yot TOAUTOUENXS. LOVTENL.
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