
National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

Multidisciplinary Analysis and Optimization: Theory,
Implementation and Application

Diploma Thesis

Dimitrios Pallas

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2024

1

Acknowledgements

First and foremost I extend my deepest gratitude to my supervisor, Professor
Kyriakos C. Giannakoglou, for guiding me throughout my Diploma Thesis, from
start to finish. I truly appreciate all the helpful insight he provided and all the
time he devoted to helping me at every step of the way.

I would like to also thank the members of the PCOpt/NTUA, especially Dr.
Varvara Asouti, Dr. Xenofon Trompoukis and Dr. Marina Kontou. They were
all very helpful and willing, assisting me a great many times, mainly on technical
issues that I faced.

Lastly, I am grateful to my friends, family and parents for believing in me
throughout my studies at NTUA. I thank them for their love and support.

2

3

Abstract

This diploma thesis is concerned with the theory and application of Multidis-
ciplinary Analysis and Optimization (MDAO) methods, mainly in the area of
PDE-constrained optimization. The vast growth of computational power in re-
cent years has made numerical simulations an indispensable tool in engineering,
enabling the analysis of ever more complex systems. In the context of engineer-
ing, these systems are often multidisciplinary, meaning that they require expertise
from different scientific disciplines, which gives rise to the need for MDAO. The
mathematical framework behind MDAO allows for efficient coupling of numerical
models simulating different physical phenomena, with the aim of both analyzing
and optimizing the system being modelled.

In order to manage the complexities involved with MDAO, a software package
is developed in Python. The package, named mSense, is used for the applications
throughout the thesis. mSense provides tools for both Multidisciplinary Analysis
(MDA) and Multidisciplinary Optimization (MDO), allowing the user to easily
switch between different methods, selecting the one best-suited to each individ-
ual problem. An MDO problem can be formulated and solved in multiple ways,
each defining a MDO different architecture. In mSense three different architec-
tures are implemented: Multidisciplinary Feasible (MDF), Individual Discipline
Feasible (IDF) and Collaborative Optimization (CO). The package is first used to
validate and benchmark the performance of the implemented MDO architectures
on standard test problems.

The presented MDAO methodology is applied to two Fluid-Structure Inter-
action (FSI) problems. The first models an airfoil inside an inviscid flow field.
The airfoil is attached to a torsional spring, and is therefore able to rotate. The
system is analyzed with an MDA, and the equilibrium is found. Then the shape
of the airfoil is optimized, using the MDF and IDF architectures, and comparing
the results. The second problem is concerned with the flow of liquid through a
vertical elastic tube. As the fluid flows through the tube, it deforms it. The aim
of the optimization is to control the deformation of the tube, by manipulating the
properties of the tube’s elastic material. The MDF architecture is used.

Finally, the problem of aerostructurally optimizing an aircraft wing is solved.

4

The ONERA M6 wing, which is widely used as a benchmark for Computational
Fluid Dynamics (CFD) codes, is considered. Since no structural model exists for
the ONERA M6, a simple beam finite-element model for the bending of the wing
is developed. The aerostructural model is analysed, computing the deformations
and stresses that the wing undergoes during flight, and then optimized using MDF.
Two different objective functions are used in the optimization, during which both
the shape and structure of the wing are allowed to vary. The results obtained from
the two objective functions are compared.

5

Περίληψη

Το θέμα αυτής της διπλωματικής εργασίας είναι η θεωρία και η εφαρμογή των με-

θόδων Πολυτομεακής Ανάλυσης και Βελτιστοποίησης (Multidisciplinary Analysis
and Optimization, MDAO). Η ραγδαία αύξηση της υπολογιστικής ισχύος τα τελευ-
ταία χρόνια εχει καταστήσει τις αριθμητικές προσομοιώσεις ένα πολύτιμο εργαλείο

στον τομέα της μηχανολογίας, καθώς επιτρέπει την ανάλυση ολοένα και πολυπλοκότε-

ρων συστημάτων. Τα συστήματα αυτά είναι συχνά πολυεπιστημονικά-πολυτομεακά,

απαιτώντας τεχνογνωσία από διαφορετικά πεδία, το οποίο δημιουργεί την ανάγκη για

μεθόδους MDAO. Το μαθηματικό υπόβαθρο πίσω από το MDAO επιτρέπει την απο-
τελεσματική σύζευξη αριθμητικών μοντέλων, καθένα από τα οποία προσομοιώνει ένα

διαφορετικό φυσικό φαινόμενο, με σκοπό την ανάλυση και βελτιστοποίηση του υπό

εξέταση συστήματος.

Για τη διαχείριση της πολυπλοκότητας που σχετίζεται με τοMDAO αναπτύσσεται
ένα πακέτο λογισμικού στη γλώσσα προγραμματισμού Python. Το πακέτο, ονόμα-
τι mSense, χρησιμοποιείται για τις εφαρμογές της εργασίας. Περιλαμβάνει εργαλεία
τόσο για πολυτομεακή ανάλυση (Multidisciplinary Analysis, MDA), όσο και βελ-
τιστοποίηση (Multidiscplinary Optimization, MDO), επιτρέποντας στο χρήστη να
επιλέξει τη μέθοδο που εφαρμόζεται καλύτερα στο εκάστοτε πρόβλημα. ΄Ενα πρόβλη-

μα MDO μπορεί να επιλυθεί με πολλαπλές προσεγγίσεις, και κάθε μία αποτελεί μία
διαφορετική αρχιτεκτονικήMDO. Στο mSense υλοποιούνται τρεις διαφορετικές αρχι-
τεκτονικές, που είναι: η Multidisciplinary Feasible (MDF), η Individual Discipline
Feasible (IDF) και η Collaborative Optimization (CO). Το πακέτο χρησιμοποιείται
αρχικά για να επικυρώσει την υλοποίηση της κάθε αρχιτεκτονικής και να συγκρίνει

την επίδοσή τους, σε δύο πρότυπα προβλήματα MDO.
Η μεθοδολογία MDAO εφαρμόζεται έπειτα σε δύο προβλήματα αλληλεπίδρασης

ρευστού-στερεού (Fluid-Structure Interaction, FSI). Το πρώτο πρόβλημα μοντελο-
ποιεί την συμπεριφορά μίας αεροτομής εντός ατριβούς πεδίου ροής. Η αεροτομή είναι

προσδεμένη σε ένα στρεπτικό ελατήριο, γύρω από το οποίο μπορεί να στραφεί. Το

σημείο ισορροπίας του συστήματος αεροτομή-ελατήριο υπολογίζεται μέσω πολυτο-

μεακής ανάλυσης (MDA). Στη συνέχεια, το σχήμα της αεροτομής βελτιστοποιείται
με χρήση των αρχιτεκτονικών MDF και IDF, και τα αποτελέσματα συγκρίνονται.
Αντικείμενο του δεύτερου προβλήματος είναι η ροή ρευστού σε κάθετο ελαστικό σω-

6

λήνα. Σκοπός της βελτιστοποίησης είναι ο έλεγχος της παραμόρφωσης του σωλήνα

μέσω προσαρμογής των υλικών ιδιοτήτων του υλικού του σωλήνα. Χρησιμοποιείται

η αρχιτεκτονική MDF.
Το τελευταίο πρόβλημα που επιλύεται είναι η αεροδομική βελτιστοποίηση πτέρυ-

γας αεροσκάφους. Επιλέγεται η πτέρυγα ONERA M6, η οποία χρησιμοποιείται συ-
χνά για την επικύρωση κωδίκων υπολογιστικής ρευστοδυναμικής. Ωστόσο, για την

πτέρυγα αυτή δεν υπάρχει έτοιμο δομικό μοντέλο, οπότε αναπτύσσεται ένα απλό μο-

ντέλο πεπερασμένών στοιχείων με δοκούς, το οποίο μοντελοποιεί την κάμψη της

πτέρυγας. Μέσω πολυτομεακής ανάλυσης (MDA), επιλύεται το αεροδομικό μοντέλο
και υπολογίζονται οι παραμορφώσεις και τάσεις που αναπτύσσονται στην πτέρυγα

κατά την πτήση. Ακολουθεί δομική βελτιστοποίηση και βελτιστοποίηση μορφής, με

σκοπό την βελτίωση ορισμένων χαρακτηριστικών της πτερύγας. Δοκιμάζονται δύο

διαφορετικές συναρτήσεις στόχου και συγκρίνονται.

7

Nomenclature

CFD Computational Fluid Dynamics

CO Collaborative Optimization

DoF Degree of Freedom

FEM Finite Element Method

FSI Fluid-Structure Interaction

GPU Graphics Processing Unit

IDF Individual Discipline Feasible

MDA Multidisciplinary Analysis

MDAO Multidisciplinary Analysis and Optimization

MDF Multidisciplinary Feasible

MDO Multidisciplinary Optimization

MPI Message Passing Interface

NTUA National Technical University of Athens

NURBS Non-Uniform Rational B-Splines

PCOpt Parallel CFD and Optimization unit

PDE Partial Differential Equation

PUMA Parallel Unstructured Multirow and Adjoint

w.r.t with respect to

XDSM Extended Design Structure Matrix

8

Contents

1 Introduction 11
1.1 Brief introduction to MDAO . 11
1.2 MDAO terminology and mathematical description 12

1.2.1 Graphical representation of multidisciplinary models with
the (X)DSM . 17

1.3 The mSense package for MDAO . 19
1.4 Thesis outline . 20

2 MDAO Theory 22
2.1 Multidisciplinary Analysis (MDA) 22

2.1.1 Fixed-point methods . 22
2.1.2 Newton’s method . 24

2.2 Derivative computation for gradient-based MDO 26
2.2.1 Derivatives of single-discipline models 26
2.2.2 Derivatives of multidisciplinary models 28

2.3 Multidisciplinary Design Optimization (MDO) 31
2.3.1 Monolithic architectures . 32
2.3.2 Distributed architectures . 34

3 Benchmarking different MDO architectures 38
3.1 Sellar’s problem . 38
3.2 Martins’ scalable problem . 46

3.2.1 Scalability study . 52

4 The airfoil-spring system 60
4.1 Problem description . 60
4.2 MDA . 62
4.3 Shape optimization (MDO) . 66

4.3.1 Setup . 67
4.3.2 Results . 68

9

5 Elastic Tube FSI 73
5.1 Problem description . 73
5.2 MDA . 75
5.3 Material Property optimization (MDO) 76

6 Aerostructural optimization of the ONERA M6 wing 80
6.1 Problem description . 80

6.1.1 Aerodynamic model . 80
6.1.2 Structural model . 83
6.1.3 Aircraft configuration . 86

6.2 MDA . 88
6.3 Shape and structural optimization (MDO) 90

6.3.1 Results . 92

7 Conclusions and recommendations for future work 101
7.1 Summary and conclusions . 101
7.2 Recommendations for future work 102

Bibliography 106

A MSense basic user guide 107

10

Chapter 1

Introduction

1.1 Brief introduction to MDAO

Modern engineering systems are most often multidisciplinary. They are comprised
of multiple physical components which are analyzed and designed with regard to
various physical phenomena. The design process employed currently in the major-
ity of engineering applications is sequential. The engineers working on a project
are often grouped by either discipline or physical subsystem, and information is
usually passed between teams in a predetermined, one-way manner. For exam-
ple, in the design of an aircraft, the aerodynamicists optimize the shape of the
aircraft with the goal of minimizing its drag, subject to other aerodynamic con-
straints. The optimized geometry and the aerodynamic loads are passed to the
structural engineers, who must then design the internal structure. Finally, the con-
trol engineers tune the aircraft’s controls systems according to the aerodynamic
and structural characteristics provided. This approach essentially disregards the
interactions between the disciplines or components, and is therefore unable to ex-
ploit them, likely leading to sub-optimal designs. Multidisciplinary Analysis and
Optimization (MDAO) aims to offer a standardized mathematical framework for
the efficient design of such systems.

The history of MDAO is rooted in aeronautics. In his 1974 paper, Haftka [13]
optimized the structural design of an aircraft wing using a finite element model
and simplified aerodynamics. A decade later, a symposium was held at NASA’s
Langley Research Center where Sobieski [33], among others, discussed the use of
MDA and MDO for the design of aeronautical, naval and other systems. Over
the last twenty years, the evolution of both hardware and software has enabled
the analysis and optimization of ever more complex systems. Instead of designing
single components, it is now possible to consider entire systems at once [18, 25, 37].

11

1.2 MDAO terminology and mathematical de-

scription

An engineering system is modelled numerically through sets of equations which
are solved to predict the internal state of the system. In the general case, these
equations are non-linear and implicit in the internal state variables. The equations
of a (single-discipline) model with n states can be represented in the following
residual form:

ri(y1, y2, . . . , yn) = 0, i ∈ (1, n) (1.1)

In the above expression, ri is the residual of the i-th equation and yi the i-th
state variable. Both the residuals and the states can be compactly written as

vectors of size n, namely R =
[
r1 r2 . . . rn

]⊤
and Y =

[
y1 y2 . . . yn

]⊤
.

The equations are then succinctly written as:

R(Y) = 0 (1.2)

A numerical model of a multidisciplinary system consists of multiple sub-
models, one for each discipline. Each sub-model has its own set of equations
and state variables. Consider a multidisciplinary model with m disciplines. For
the i-th discipline, its residual and state vectors are Ri and Yi. However, it is no
longer correct to just write Ri(Yi) = 0, as discipline i may depend on the state of
some other discipline Yj. The full set of equations describing the multidisciplinary
model should be written as:

Ri(Y1, Y2, . . . , Ym) = 0, i ∈ (1,m) (1.3)

The above representation of the multidisciplinary model will be referred to as
the residual form. For eq. 1.3 to be solved, the residual and state vectors of all its
disciplines are concatenated, resulting into a single large set of equations. In order
to better understand the residual form, let us consider the aerostructural model of
an aircraft wing. This system is comprised of two disciplines (m = 2), aerodynam-
ics and structures. The aerodynamics discipline is, in essence, represented by the
CFD solver which simulates the airflow around the wing. For compressible flow the
solver might solve for the three velocity components (V = vx, vy, vz), the density
(ρ) and the energy (E) at each node of the CFDmesh. For the structures discipline,
the FEM solver might solve for the displacement components (U = ux, uy, uz) at
each node of the structural mesh. The residual and state variables vectors for each
discipline are RCFD and YCFD, and RFEM and YFEM respectively. Therefore, the
set of equations is:

12

RCFD(YCFD, YFEM) = 0

RFEM(YCFD, YFEM) = 0
(1.4)

Formulating a multidisciplinary model in the residual form is not always desir-
able, nor is it always feasible. There often exist efficient and specialized solvers for
each discipline, which rarely give access to their internals. Even if all disciplinary
solvers are able to compute and export their residuals, the solution of the resulting
concatenated system is likely not as efficient, as if each solver solves its respective
disciplinary equations.

A more modular form of multidisciplinary models exists, which considers not
the states, but only the inputs and outputs of each discipline. Consider again
a model of m disciplines. The outputs of discipline i are denoted by Ŷi and
are either a subset of its internal variables Yi, or directly derived from them.
The inputs of discipline i are the outputs of the other disciplines i.e. Ŷj ̸=i =[
Ŷ1 . . . Ŷi−1 Ŷi+1 . . . Ŷm

]⊤1. The variables Ŷi are responsible for the cou-
pling between the disciplines, and therefore named the coupling variables. The
set of equations which describe the multidisciplinary model is now expressed as
follows:

Ŷi = Ŷi(Ŷj ̸=i), i ∈ (1,m) (1.5)

This representation is referred to as the functional form of the multidisciplinary
model. Returning to the aerostructural wing model example, the CFD solver now
only exports variables of interest, like the pressure P and shear stress τ values, at
all points on the wing surface. Similarly, the FEM solver exports the displacement
values U at the wing surface. The output variables of each discipline are ŶCFD

and ŶFEM respectively. The set of equations for the aerostructural wing model in
the functional form are:

ŶCFD = ŶCFD(ŶFEM)

ŶFEM = ŶFEM(ŶCFD)
(1.6)

Here, each disciplinary solver actually solves for its own state variables (unlike
in the residual form, where it just computes and exports its residuals), and then
exports the necessary outputs, without the need to expose its internals. This also
means, that the functional form equations can be solved in a decoupled fashion, as
each disciplinary analysis can be executed independently, in contrast to the residual
form, where the large set of concatenated equations is solved at once. Essentially,
the residual and functional forms differ in the set of variables they handle. The

1It is not necessary that discipline i has as inputs the outputs of all other disciplines. The
input vector Ŷj ̸=i is written that way for the sake of generality.

13

functional representation handles a much smaller number of variables. This is
because the size of the discipline output, denoted by nŶi

, is typically much smaller
than the size of its state vector nYi

. For the aerostructural wing model example,
the number of nodes on the wing surface, and therefore the number of variables,
is typically much smaller than the number of nodes in the entire domain. Finally,
it is noted again, that not all models can be written in residual form. This is
true only if each disciplinary solver involved provides access to its internals, and
is hence able to export its residuals. The two forms for multidisciplinary models,
i.e. residual and functional, are presented in greater detail in [26, Chapter 13].

A Multidisciplinary Analysis (MDA) is the process of simultaneously satisfying
all disciplinary equations, which requires the solution of either eq. 1.3 for all Yi,
or eq. 1.5 for all Ŷi. Multidisciplinary Optimization (MDO) is the process of
optimizing a multidisciplinary system, while ensuring multidisciplinary feasibility,
namely ensuring that all discipline states are compatible or that eqs. 1.3 and 1.5
are satisfied. Simply put, this means that MDO respects and takes into account
the interactions between the disciplines.

An MDO problem can be formulated and solved in various different ways, which
are termed formulations or architectures. MDO architectures are broadly placed
into two categories, monolithic and distributed, based on whether they solve
one or more optimization problems. Monolithic architectures formulate and solve
a single optimization problem, whereas most distributed architectures solve an op-
timization problem for each discipline, and a system-level coordinating problem.
For this reason, most distributed architectures are also called multi-level. Pop-
ular monolithic architectures are the Multidisciplinary Feasible (MDF) and
Individual Discipline Feasible (IDF) [24] and Simultaneous Analysis and
Optimization (SAND)2 [14], while Bi-Level Integrated System Synthe-
sis (BLISS) [35] and Collaborative Optimization (CO) [5] are representative
examples of distributed architectures. Comparisons indicate that for most prob-
lems monolithic architectures tend to perform better, generally requiring fewer
disciplinary evaluations and having more robust convergence [36, 12].

Distributed architectures often make a distinction between local and shared or
global design variables. A design variable is local for a discipline if it directly enters
this discipline only. The vector of design variables local to discipline i is denoted
by Xi. If a design variable directly enters more than one disciplines (even if not
all of them), then it is considered shared. The vector of shared design variables is
denoted by Z. For a problem with m disciplines, the vector of all local and shared

design variables is denoted by X and obviously X =
[
Z X1 X2 . . . Xm

]⊤
. A

similar distinction is made for constraints. A constraint evaluated by only a disci-
pline’s state Yi or output variables Ŷi, local design variables Xi and shared design

2Also referred to as All-At-Once or AAO

14

variables Z, is considered local to discipline i. Else, namely if the constraint’s
evaluation requires the state/output or local design variables of more than one
disciplines, it is then shared. The vector of all local and shared inequality con-

straints is denoted by G and obviously G =
[
G0 G1 G2 . . . Gm

]⊤
. The vector

of all equality constraints is defined as H =
[
H0 H1 H2 . . . Hm

]⊤
. Finally, if

f is the (scalar) objective function of the MDO problem, then F =
[
f G H

]⊤
is

the concatenated vector of the objective and all constraints. This notation is used
throughout this thesis. All symbols commonly appearing are found in table 1.1.

Most MDO architectures achieve multidisciplinary feasibility in one of two
ways. The first is to use an MDA somewhere inside the MDO process (MDF,
BLISS). The second method makes use of target variables (IDF, CO). A target
variable is a copy of (usually) a coupling variable, which is entirely controlled
by the optimizer. For example, for the coupling variable Ŷi, its corresponding
target variable is Ŷ t

i . Now, the inputs of a discipline i are no longer Ŷj ̸=i =[
Ŷ1 . . . Ŷi−1 Ŷi+1 . . . Ŷm

]⊤
, but Ŷj ̸=i =

[
Ŷ t
1 . . . Ŷ t

i−1 Ŷ t
i+1 . . . Ŷ t

m

]⊤
.

This enables all disciplinary analyses to be evaluated completely independently
of each other, since the output of a disciplinary evaluation is no longer an input
for any other discipline. In order to ensure multidisciplinary feasibility suitable
constraints, called feasibility or consistency constraints, are applied. The feasi-
bility constraint corresponding to target variable Ŷ t

i , denoted by H t
Yi
, is defined

as follows:

H t
Yi
= Ŷ t

i − Ŷi = 0 (1.7)

The optimizer uses the constraint H t
Yi

to drive the value of Ŷ t
i to be equal to

the value of Ŷi.
An MDO problem, regardless of the architecture used, is most often solved

with gradient-based optimizers. This is because of the large computational cost of
an MDO solution, which arises from the disciplinary interactions and the need to
resolve them. Gradient-based optimization algorithms are typically more efficient
than their gradient-free counterparts, but require the computation of the deriva-
tives of the objective and constraints F , with respect to the design variables X,
namely dF

dX
. For MDO architectures which use an MDA to achieve multidisciplinary

feasibility at each cycle (for example MDF), the computation of dF
dX

must also take
the interaction between the disciplines into account. For this reason, dF

dX
is com-

monly referred to as the (total) coupled derivatives in the context of MDAO.
For efficient computation of the coupled derivatives, multidisciplinary analogs of
the direct differentiation and adjoint method [10] exist, named the coupled direct
and adjoint methods, first presented in [34].

15

Symbol Description
m Number of disciplines
Yi State vector of the i-th discipline

Ŷi Output vector of the i-th discipline
Ri Residual vector of the i-th discipline

R̂i Functional form residual vector of the i-th discipline, R̂i = Ŷi − Ŷi(Ŷj ̸=i)
n() Size of a vector, for example nYi

is the size of Yi
Xi Design variables local to the i-th discipline
Z Shared or global design variables

X Vector of all design variables, X =
[
Z X1 X2 . . . Xm

]⊤
Gi Vector of inequality constraints local to the i-th discipline
G0 Vector of shared or global inequality constraints

G Vector of all inequality constraints, G =
[
G0 G1 G2 . . . Gm

]⊤
Hi Vector of equality constraints local to the i-th discipline
H0 Vector of shared or global equality constraints

H Vector of all equality constraints, H =
[
H0 H1 H2 . . . Hm

]⊤
f Objective function (scalar)
F Vector of objective function and constraints
()∗ Variable value corresponding to the optimal

()t Target variable, for example Ŷ t
i is a copy of Ŷi

H t
() Feasibility constraint, for example H t

Yi
= Ŷ t

i − Ŷi corresponds to Ŷ
t
i

Table 1.1: Commonly used MDAO symbols and their description. All capitalized
symbols used throughout this thesis are vectors, unless indicated otherwise.

16

CFD

FEM

Performance

Figure 1.1: Design Structure Matrix (DSM) for the three-discipline, aerostructural
wing model. Aerodynamics (CFD) and structures (FEM) are strongly coupled,
since they communicate data to each other. Performance only receives data from
the other two disciplines.

1.2.1 Graphical representation of multidisciplinary models
with the (X)DSM

Although the mathematical definition of a multidisciplinary model should be an
adequate description of its structure, the complexity of such models makes it often
hard to interpret the underlying data-flow quickly and effectively. The complexity
is further increased when considering an MDAO process, for example an MDO
architecture applied to a specific model. For this purpose, the eXtended Design
Structure Matrix, or XDSM, was developed [22]. As the name suggests, the XDSM
is an extension to the simpler Design Structure Matrix (DSM), also called the N2

chart or interaction matrix. For model with m disciplines the DSM is represented
by a m×m grid. The diagonal entries are the disciplines and are marked by their
name. The off-diagonal terms describe the interdisciplinary interactions. For a
row i, the off-diagonal terms are the outputs of discipline i. If the j-th entry of row
i is marked by a black square, then discipline’s i output directly enters discipline j.
In order to make the DSM’s usage clear, consider again the previously presented
aerostructural wing model. A third discipline is added, called performance. This
discipline is not a PDE solver like aerodynamics (CFD) and structures (FEM).
Instead it is a simple function which calculates some output with information
from aerodynamics and structures. Further details about performance are not yet
necessary. The DSM for the three-discipline, aerostructural wing example is shown
in fig. 1.1. Since m = 3, the DSM is 3× 3 matrix.

An apparent drawback of the DSM is that does not expose clearly what infor-
mation is passed from one discipline to another. This is undesired, especially in
large applications, where there exist many and complex interactions. The XDSM

17

CFD P, τ L,D

U FEM W

f Performance

Figure 1.2: Extended Design Structure Matrix (XDSM) for the three-discipline,
aerostructural wing example. Aerodynamics (CFD) and structures (FEM) are
strongly coupled, since they communicate data to each other. Performance only
receives data and computes a performance metric f .

tackles this problem by replacing the off-diagonal terms with line connections,
which explicitly state the communicated variables. In the aerostructural wing
model example, the outputs of aerodynamics might be the pressure P and shear
stress τ at the wing surface, and the lift L and drag D of the wing. Similarly, the
outputs of structures might be the displacement U of the wing surface and the
weight of the wing W . Finally, performance might calculate some performance
metric f with information from the other two disciplines. This is showcased in the
corresponding XDSM in fig. 1.2.

Furthermore, the XDSM can be used to visualize MDAO processes such as
an MDA, or an MDO architecture applied to a specific problem. This is done
by placing not only the disciplines on the diagonal, but also MDA blocks and/or
optimizers. Consider that the MDF architecture, although not thoroughly pre-
sented yet, is applied to the aerostructural wing example (fig. 1.3). The goal is to
optimize the performance metric f w.r.t XCFD and XFEM , which are the design
variables of aerodynamics and structures respectively. Inputs to the XDSM are
usually placed on top of the diagram, such as the initial values of the design vari-
ables X0

CFD and X0
FEM , while outputs are placed typically on the left, such as the

optimized values of the design variables X∗
CFD and X∗

FEM . At each optimization
cycle, MDF uses an MDA to enforce multidisciplinary feasibility. This is shown in
the XDSM by the diagonal block named ”MDA”. A second block, named ”Opti-
mizer”, uses the value of the computed performance metric f , to update the values
of the design variables. Inside this XDSM, there exist two closed-loop processes,
one corresponding to the MDA and the other to the optimizer. This is indicated
by a continuous black arrow for each process, which must begin and end at the
same diagonal block. For the MDA process for example, the arrow begins at the
”MDA” block, connects the ”CFD” and ”FEM” blocks, and returns to ”MDA”.

18

X0
CFD, X

0
FEM P 0, τ 0, U0

X∗
CFD, X

∗
FEM Optimizer XCFD XFEM

MDA U

P ∗, τ ∗, L∗, D∗ P, τ CFD P, τ L,D

U∗,W ∗ U FEM W

f Performance

Figure 1.3: XDSM for the MDF architecture applied to the example aerostructural
wing problem.

1.3 The mSense package for MDAO

A major part of this thesis is the implementation of a software platform for the
rapid development and testing of MDAO methods. Several MDAO frameworks
already exist, with OpenMDAO [11] and GEMSEO [9] being notable open-source
examples. There also exist commercial packages, such as Isight from Dassault
Systèmes [19], ModelCenter from Phoenix Integration, Optimus from Noesis Solu-
tions and VisualDOC from Vanderplaats Research and Development [4], to men-
tion just a few of them. Commercial packages provide easy component integration,
having easy to use graphical interfaces and wrappers for engineering analysis pro-
grams. However, they lack the modularity of the aforementioned open-source codes
and do not have the coupled derivative computation capabilities (coupled direct
and adjoint methods), often relying on finite-difference approximations.

MSense (Multidisciplinary + Sensitivity) is an open-source Python package de-
veloped to facilitate the setup and solution of MDAO problems. It aims to provide
a platform that is fairly easy to use, but can also be extended to suit the specific
needs of each user. The MDA module of mSense can use either fixed-point or
Newton-based methods to couple disciplines. MSense leverages the coupled direct

19

and adjoint methods, as well as finite-difference and complex-step 3 approxima-
tions for the computation of the coupled derivatives of multidisciplinary models.
Derivative approximation can be used either at the discipline, or at the system
level, which makes the process of computing sensitivities quite flexible. For ex-
ample, in a two-discipline system, one discipline might provide its own partial
derivatives, while the other might not. MSense is able to approximate the partial
derivatives of the second discipline, and then use the coupled direct or adjoint
methods to compute the total coupled derivatives. If that is not desirable, mSense
is also able to compute the coupled derivatives directly, through approximation
at the system/MDA level. The following three architectures are currently imple-
mented in mSense:

• MDF

• IDF

• CO

They can be used for any MDO problem the user sets up. MSense is currently
able to utilize the optimization solvers available in Scipy [38], such as SLSQP [20]
and COBYLA [30], and the interior point optimizer Ipopt [39]. Finally, mSense
has the capability to record the execution of each discipline, in order to avoid evalu-
ating or differentiating a computationally expensive discipline multiple times with
the same input values. It should be mentioned that the code only supports multi-
disciplinary models expressed in the functional form. All applications presented in
this thesis are implemented in mSense. The source code, as well as examples, can
be found at: https://github.com/dlmpal/mSense. A basic user guide is included
in the appendix.

1.4 Thesis outline

The thesis is organized as follows:

• Chapter 2 A thorough presentation of the theory behind MDAO. The dif-
ference between single-discipline and multidisciplinary models is explained.
Methods for the solution of the coupled disciplinary equations are presented.
The direct and adjoint methods for the computation of the coupled deriva-
tives are derived. Several monolithic and distributed architectures are dis-
cussed.

3The underlying disciplinary code(s) must be able to use complex number arithmetic.

20

• Chapter 3 The performance of three MDO architectures is tested. Two
standard MDO benchmarks problems are used. The first is Sellar’s problem,
which a simple analytic problem of two disciplines. The second is Martins’
scalable problem. As the name implies, this problem’s dimensionality can
be selected arbitrarily.

• Chapter 4 A Fluid-Structure Interaction (FSI) problem is considered. The
problem consists of an airfoil inside a two-dimensional flow field. The airfoil
is able to rotate about an axis normal to the flow plane, and attached to
the axis is a spring. The equilibrium point of the airfoil-spring system is
found through an MDA. Then the shape of the airfoil is optimized using
MDO, with the goal of achieving a desired lift value. The MDF and IDF
architectures are compared.

• Chapter 5 A second FSI problem is considered. Fluid flows through an
elastic tube, deforming it. The solution to the problem is found through
an MDA. Then, the material properties of the tube are optimized, using
the MDF architecture, in order to control the maximum displacement of the
tube.

• Chapter 6 A typical MDAO problem, the aerostructural analysis and op-
timization of an aircraft wing is solved. The wing used is the ONERA M6.
Since no structural model exists for the wing, a finite-element beam model
is developed, which computes the bending of the wing. Using an MDA, the
deformations and stresses that the wing undergoes during flight are com-
puted. Then, the aerostructural model of the wing is optimized, using the
MDF architecture. Two objective functions are used.

21

Chapter 2

MDAO Theory

2.1 Multidisciplinary Analysis (MDA)

A Multidisciplinary Analysis or MDA is the process of solving the equations of
the multidisciplinary model. This is equivalent to driving the residuals of all
disciplines to zero simultaneously, or converging the coupling variables to a state of
equilibrium, effectively making all discipline states compatible. When considering
the residual form of the multidisciplinary model (eq. 1.3), any conventional solver
for systems of nonlinear equations will suffice, since this approach essentially results
in one large set of nonlinear equations, which are solved in a monolithic fashion.
For the functional form, the system of equations (eq. 1.5) is typically solved by a
fixed-point method in segregated manner. Generic nonlinear solvers can also be
used for functional form models, resulting in a semi-segregated, semi-monolithic
approach.

2.1.1 Fixed-point methods

Fixed-point methods use appropriate iterates to arrive at the solution that satisfies
the governing equations of all disciplines. In general, the iterate is of the form:

Ŷ k
i = Ŷi(Ŷ

k−1
j ̸=i), i ∈ (1,m) (2.1)

where index k refers to the current MDA iteration. The MDA analog of the Jacobi
method used for systems of linear equations, called Jacobi MDA, is obtained by
eq. (2.1) for:

Ŷ k
j ̸=i =

[
Ŷ k
1 . . . Ŷ k−1

i−1 Ŷ k−1
i+1 . . . Ŷ k−1

m

]⊤
(2.2)

Essentially, at each Jacobi MDA iteration all disciplinary analyses are executed

using the previous coupling variable values Ŷ =
[
Ŷ k−1
1 . . . Ŷ k

i−1 Ŷ k−1
i+1 . . . Ŷ k−1

m

]⊤
,

22

which were computed during the last iteration. This allows the concurrent exe-
cution of all disciplines, as is the case with the Jacobi method for linear systems.
The process is shown in algorithm 1.

Algorithm 1 Jacobi MDA

1: Initialize all coupling variables: Ŷ 0 =
[
Ŷ 0
1 Ŷ 0

2 . . . Ŷ 0
m

]⊤
2: while ||Ŷ k − Ŷ k−1|| < ϵ do
3: for i = 1, m do
4: Ŷ k

i = Ŷi(Ŷ
k−1
1 , . . . , Ŷ k−1

i−1 , Ŷ
k−1
i+1 , . . . , Ŷ

k−1
m)

5: end for
6: k = k + 1
7: end while

Similarly, the iterate for the Gauss-Seidel MDA is given by:

Ŷ k
j ̸=i =

[
Ŷ k
1 . . . Ŷ k

i−1 Ŷ k−1
i+1 . . . Ŷ k−1

m

]⊤
(2.3)

The Gauss-Seidel MDA uses the latest coupling variable values, meaning that
disciplinary analyses cannot be executed in parallel. However, the convergence
properties are generally better than those of the Jacobi MDA, as shown in [2].
The process for the Gauss-Seidel MDA is shown in algorithm 2.

Algorithm 2 Gauss-Seidel MDA

1: Initialize all coupling variables: Ŷ 0 =
[
Ŷ 0
1 Ŷ 0

2 . . . Ŷ 0
m

]⊤
2: while ||Ŷ k+1 − Ŷ k|| < ϵ do
3: for i = 1, m do
4: Ŷ k

i = Ŷi(Ŷ
k+1
1 , . . . , Ŷ k

i−1, Ŷ
k−1
i+1 , . . . , Ŷ

k−1
m)

5: end for
6: k = k + 1
7: end while

Both methods can make use of relaxation, namely:

Ŷ k
i = (1− a)Ŷ k−1

i + a Ŷi(Ŷ
k
j ̸=i) (2.4)

The use of under-relaxation (a < 1) can be very beneficial for MDA applica-
tions, in order to facilitate convergence1.

1An MDA (for a functional form model) is considered converged when an aggregate scalar
quantity of the functional residuals of all disciplines, called residual metric, is lower than some
(MDA) tolerance ϵ. This, of course, is implementation dependant but in mSense, the MDA

residual metric is defined as follows: ||Ŷ k+1 − Ŷ k|| =
∑m

i=1
∥Y k+1

i −Y k
i ∥

1+∥Y k+1
i ∥

23

2.1.2 Newton’s method

Newton’s method is a popular approach for solving systems of nonlinear equations.
It starts from an initial guess, and at every iteration k it constructs a linear
approximation to the solution of the nonlinear system of equations. By solving
the resulting linear system, it produces a correction by which it updates the actual
solution. For the residual form of the multidisciplinary model (eq. 1.3), Newton’s
method yields:

∂R1

∂Y1

k−1 ∂R1

∂Y2

k−1
. . . ∂R1

∂Ym

k−1

∂R2

∂Y1

k−1 ∂R2

∂Y2

k−1
. . . ∂R2

∂Ym

k−1

...
... . . .

...
∂Rm

∂Y1

k−1 ∂Rm

∂Y2

k−1
. . . ∂Rm

∂Ym

k−1

∆Y k

1

∆Y k
2

...
∆Y k

N

 =

Rk−1

1

Rk−1
2
...

Rk−1
m

Y k
i = Y k−1

i −∆Y k
i , i ∈ (1,m)

(2.5)

At iteration k, the residuals and their derivatives are computed using the state
variable values from the previous iteration. Specifically, the residuals are computed

asRk−1
i = Ri(Y

k−1
1 , Y k−1

2 , . . . , Y k−1
m) and their derivatives as ∂Ri

∂Yj

k−1
(Y k−1

1 , Y k−1
2 , . . . , Y k−1

m).

It is important to note that in the above expression all entries are either vectors or
matrices. For example, entry ∂Ri

∂Yj
is a vector of size ni×nj, where ni and nj are the

sizes of the state vectors of disciplines i and j respectively. This means that each
discipline has to provide the derivative of nRi

residuals w.r.t
∑m

j=1 nYj
state vari-

ables, which basically forms the i-th row of the Jacobian matrix of 2.5. Of course,
this can only be done if each and every disciplinary solver gives access to its inter-
nals, and specifically the computation of its residuals. The process for Newton’s
method for multidisciplinary models in residual form is shown in algorithm 3.

Applying Newton’s method to residual form models results in an entirely mono-
lithic solution process. In contrast, the fixed-point methods discussed previously
solve the MDA problem in an segregated manner. A third approach is produced
by applying Newton’s method to the functional form of a multidisciplinary system.
The functional form residual of each discipline is defined as R̂i = Ŷi − Ŷi(Ŷj ̸=m).
Applying Newton’s method produces the following system:

∂R̂1

∂Ŷ1

k−1
∂R̂1

∂Ŷ2

k−1
. . . ∂R̂1

∂Ŷm

k−1

∂R̂2

∂Ŷ1

k−1
∂R̂2

∂Ŷ2

k−1
. . . ∂R̂2

∂Ŷm

k−1

...
... . . .

...
∂R̂m

∂Ŷ1

k−1
∂R̂m

∂Ŷ2

k−1
. . . ∂R̂m

∂Ŷm

k−1

∆Ŷ k

1

∆Ŷ k
2

...

∆Ŷ k
m

 =

R̂k−1

1

R̂k−1
2
...

R̂k−1
m

Ŷ k
i = Ŷ k−1

i −∆Ŷ k
i , i ∈ (1,m)

(2.6)

24

Algorithm 3 Newton MDA (residual form)

1: Initialize all state variables: Y 0 =
[
Y 0
1 Y 0

2 . . . Y
0
m

]⊤
2: while ||Rk|| < ϵ do
3: for i = 1, m do
4: Compute Rk−1

i

5: for j = 1, m do

6: Compute ∂Ri

∂Yj

k−1

7: end for
8: end for
9: Solve (∂R

∂Y
)k−1∆Y k = Rk−1 for ∆Y k

10: Y k = Y k−1 −∆Y k

11: k = k + 1
12: end while

From the definition of the functional form residual, it follows that:

∂R̂i

∂Ŷj
=

{
I, i = j

− ∂Ŷi

∂Ŷj
, i ̸= j

(2.7)

Eq. 2.6 can be re-written as:
I −∂Ŷ1

∂Ŷ2

k−1
. . . − ∂Ŷ1

∂Ŷm

k−1

−∂Ŷ2

∂Ŷ1

k−1
I . . . − ∂Ŷ2

∂Ŷm

k−1

...
... . . .

...

−∂Ŷm

∂Ŷ1

k−1
−∂Ŷm

∂Ŷ2

k−1
. . . I

∆Ŷ k

1

∆Ŷ k
2

...

∆Ŷ k
m

 =

R̂k−1

1

R̂k−1
2
...

R̂k−1
m

Ŷ k
i = Ŷ k−1

i −∆Ŷ k
i , i ∈ (1,m)

(2.8)

Similar to eq. 2.8 all entries of the Jacobian matrix of 2.8 are also matri-
ces. Each discipline has to provide the derivatives of nŶi

output variables w.r.t∑m
j=1,j ̸=i nŶj

. The process for Newton’s method for functional form multidisci-
plinary models is shown in algorithm 4.

The system of eq. 2.5 will always be equal to or greater in size, compared to
that of eq. 2.8, since for every discipline i, nYi

≥ nŶi
. However, assembling the

Jacobian of the residual form (eq. 2.5) can be cheaper than its functional form

counterpart (eq. 2.8). This is because obtaining the functional derivatives ∂Ŷi

∂Ŷj
is

analogous to obtaining total derivatives at the discipline level, the cost of which
might not negligible.

25

Algorithm 4 Newton MDA (functional form)

1: Initialize all coupling variables: Ŷ 0 =
[
Ŷ 0
1 Ŷ 0

2 . . . Ŷ 0
m

]⊤
2: while ||Ŷ k − Ŷ k−1|| < ϵ do
3: for i = 1, m do
4: Compute R̂k−1

i

5: for j = 1, m do

6: Compute ∂Ŷi

∂Ŷj

k−1

7: end for
8: end for
9: Solve (∂Ŷ

∂Ŷ
)k−1∆Ŷ k = R̂k−1 for ∆Ŷ k

10: Ŷ k = Ŷ k−1 −∆Ŷ k

11: k = k + 1
12: end while

2.2 Derivative computation for gradient-based MDO

In order to perform gradient-based optimization the derivatives or sensitivities of
the objective function and the constraints w.r.t the design variables are required.
In the context of MDAO, computation of these derivatives must also take the
coupling between the disciplines into account. This is specifically required for
MDO architectures that use an MDA to ensure multidisciplinary feasibility, such
as MDF.

2.2.1 Derivatives of single-discipline models

Before presenting the various method of computing coupled derivatives of multi-
disciplinary models, it can be useful to discuss derivative computation in single-
discipline models. Consider a vector valued function F of size nF and vector X
of size nX . F represents all the objectives and constraints of the system, and X
the design variables vector. The (matrix) quantity that must be computed is the
Jacobian matrix of F w.r.t X, namely:

dF

dX
=

dF1

dX1

dF1

dX2
. . . dF1

dXnX
dF2

dX1

dF2

dX2
. . . dF2

dXnX
...

... . . .
...

dFnF

dX1

dFnF

dX2
. . .

dFnF

dXnX

 (2.9)

In engineering applications it is more common for F to be directly computed
from the state variables of the corresponding model, rather than from X directly.

26

In general, the dependence of F on X can be both direct and indirect. For a
single-discipline model with state vector Y , of size nY , and through the chain-rule
of differentiation, it follows that:

dF

dX
=
∂F

∂X
+
∂F

∂Y

dY

dX
(2.10)

For a given design variable vector X and a state vector Y that satisfies the
model equations, the residuals become zero, namely R(X, Y) = 0, where R is the
residual vector of the system. Again, through the chain-rule of differentiation and
noting that dR

dX
= 0, since R = 0, it follows that:

∂R

∂Y

dY

dX
= − ∂R

∂X
(2.11)

By solving eq. 2.11 for dY
dX

and substituting the result in eq. 2.10, the total
sensitivity of F w.r.t X is computed. Eqs. 2.10 and 2.11 constitute the direct
differentiation method. In order to compute dF

dX
, this method requires the solu-

tion of nX linear systems (of size nY ×nY each), i.e. its cost scales with the number
of design variables. Through substitution and clever rearrangement of operations,
a second method can be derived. By substituting eq. 2.11 in eq. 2.10 the following
is obtained:

dF

dX
=
∂F

∂X
− ∂F

∂Y
(
∂R

∂Y

−1 ∂R

∂X
) (2.12)

The order of operations in the last term of eq. 2.12 is slightly modified such
that:

dF

dX
=
∂F

∂X
− (

∂F

∂Y

∂R

∂Y

−1

)
∂R

∂X
=⇒

dF

dX
=
∂F

∂X
− ψ⊤ ∂R

∂X

Term ψ⊤ = ∂F
∂Y

∂R
∂Y

−1
is the vector of adjoint variables. It can be computed by

solving ∂R
∂Y

⊤
ψ = ∂F

∂Y

⊤
. This yields the adjoint method:

dF

dX
=
∂F

∂X
− ψ⊤ ∂R

∂X
∂R

∂Y

⊤
ψ =

∂F

∂Y

⊤ (2.13)

This approach requires the solution of nF linear systems (also of size nY × nY

each), meaning that it scales with the number of objectives and constraints. The
adjoint method is often preferred in engineering design optimization, since often

27

nX >> nF , meaning that the number of design variables is far greater than the
number of constraints and objectives.

Another approach of obtaining the total sensitivities dF
dX

is through approxima-
tion. Perhaps the most common approximation technique is finite-differences.
A first-order, forward, finite-difference approximation of dF

dX
is computed as:

dF

dXi

=
F (X + hêi)− F (X)

h
(2.14)

In the above equation êi is a unit vector of size nX , pointing in the i-th direction,
and h is the approximation step-size. The step-size has to be small relative to
the magnitude of Xi. The presented finite-difference scheme is only first order
accurate, and other more precise schemes exist. A much more accurate variant
of the finite-difference approximation, is the complex-step method [27]. As the
name suggests, instead of taking a real step in the i-th direction, the complex-step
method perturbs the function in the imaginary plane, i.e.:

dF

dXi

=
Imag(F (X + ĵhêi))

h
(2.15)

Although the complex-step method is much more accurate than any finite-
difference scheme, it requires that the underlying numerical model supports complex-
number arithmetic. Accuracy notwithstanding, all approximation methods suffer
from the fact that they scale linearly with the number of design variables nx,
similar to the direct differentiation approach of eqs. 2.10 and 2.11.

2.2.2 Derivatives of multidisciplinary models

The methods presented in the previous section can also be applied to compute the
(coupled) derivatives of multidisciplinary models with some adjustments. Consider
again a vector valued function F , of size nF , containing the objectives and con-
straints, and a design variables vector X, of size nX . In the context of MDAO, the
derivatives of F w.r.t X are referred to as coupled derivatives, or coupled sensitiv-
ities. Likewise, the direct differentiation and adjoint methods for both the residual
and functions forms of the multidisciplinary model are referred to as the coupled
direct differentiation and coupled adjoint method respectively. The cou-
pled direct differentiation and adjoint methods were first presented by Sobieski in
[34]. Martins [25] used the coupled adjoint method for a two-discipline, aerostruc-
tural system (expressed in the residual form), and compared its performance and
accuracy with that of complex-step approximation.

For a model ofm disciplines expressed in the residual form (eq. 1.3), the residual
vector Ri of a discipline i is a function of all discipline state variables and the design
variables, namely: Ri(X, Y1, . . . , Ym). Differentiating Ri w.r.t X yields:

28

dRi

dX
=
∂Ri

∂X
+

m∑
j=1

∂Ri

∂Yj

dYj
dX

= 0 (2.16)

By rearranging, and writing the above for every discipline residual vector, the
following linear system of equations is produced:

∂R1

∂Y1

∂R1

∂Y2
. . . ∂R1

∂Ym
∂R2

∂Y1

∂R2

∂Y2
. . . ∂R2

∂Ym
...

... . . .
...

∂Rm

∂Y1

∂Rm

∂Y2
. . . ∂Rm

∂Ym

dY1

dX
dY2

dX
...

dYm

dX

 = −

∂R1

∂X
∂R2

∂X
...

∂Rm

∂X

 (2.17)

The objectives and constraints vector F can now be differentiated w.r.t to X:

dF

dX
=
∂F

∂X
+
[
∂F
∂Y1

∂F
∂Y2

. . . ∂F
∂Ym

]

dY1

dX
dY2

dX
...

dYm

dX

 (2.18)

Eqs. 2.17 and 2.18 are the equivalent of the direct differentiation method
(eqs. 2.10 and 2.11) for the residual form of multidisciplinary models. The adjoint
approach is also obtainable, and is expressed as follows:

dF

dX
=
∂F

∂X
−

[
Ψ⊤

1 Ψ⊤
2 . . . Ψ⊤

m

]

∂R1

∂X
∂R2

∂X
...

∂Rm

∂X

 (2.19)

The vector of the adjoint variables
[
Ψ⊤

1 Ψ⊤
2 . . . Ψ⊤

m

]
is computed from the

solution of the following linear system:
∂R1

∂Y1

⊤ ∂R1

∂Y2

⊤
. . . ∂R1

∂Ym

⊤

∂R2

∂Y1

⊤ ∂R2

∂Y2

⊤
. . . ∂R2

∂Ym

⊤

...
... . . .

...
∂Rm

∂Y1

⊤ ∂Rm

∂Y2

⊤
. . . ∂Rm

∂Ym

⊤

Ψ1

Ψ2
...

Ψm

 =

∂F
∂Y1

⊤

∂F
∂Y2

⊤

...
∂F
∂Ym

⊤

 (2.20)

Eqs. 2.19 and 2.20 are the analogous to the adjoint method (eq. 2.13) for
the residual form of multidisciplinary models. For residual form models, the size
of each linear system that has to be solved, both for the coupled direction differ-
entiation and coupled adjoint methods, is of size nY × nY , where nY =

∑
nYi

m
i=1.

Both the direct differentiation and the adjoint approaches can also be obtained
for models expressed in the functional form. For a model of m disciplines, the

29

output of discipline i is computed as Ŷi = Ŷi(X, Ŷj ̸=i), being a function of all

discipline outputs and the design variables. Differentiating the Ŷi w.r.t X yields:

dŶi
dX

−
m∑

j=1,j ̸=i

∂Ŷi

∂Ŷj

dŶi

dX̂
=
∂Ŷi
∂X

(2.21)

Writing the above equation for all m disciplines, the following linear system is
obtained:

I −∂Ŷ1

∂Ŷ2
. . . − ∂Ŷ1

∂Ŷm

−∂Ŷ2

∂Ŷ1
I . . . − ∂Ŷ2

∂Ŷm
...

... . . .
...

−∂Ŷm

∂Ŷ1
−∂Ŷm

∂Ŷ2
. . . I

dŶ1

dX
dŶ2

dX
...

dŶm

dX

 =

∂Ŷ1

∂X
∂Ŷ2

∂X
...

∂Ŷm

∂X

 (2.22)

Differentiating the objective and constraints vector F w.r.t the design variables
vector X yields:

dF

dX
=
∂F

∂X
+
[

∂F

∂Ŷ1

∂F

∂Ŷ2
. . . ∂F

∂Ŷm

]
dŶ1

dX
dŶ2

dX
...

dŶm

dX

 (2.23)

Eqs. 2.22 and 2.23 represent the direct differentiation method for mul-
tidisciplinary systems in functional form. Again, by rearrangement, the adjoint
method can be obtained:

dF

dX
=
∂F

∂X
−

[
Φ⊤

1 Φ⊤
2 . . . Φ⊤

m

]

∂Ŷ1

∂X
∂Ŷ2

∂X
...

∂Ŷm

∂X

 (2.24)

The vector of adjoint variables is now denoted by Φ, to distinguish it from its
residual form counterpart. It is obtained from the solution of the following linear
system:

I −∂Ŷ1

∂Ŷ2

⊤
. . . − ∂Ŷ1

∂Ŷm

⊤

−∂Ŷ2

∂Ŷ1

⊤
I . . . − ∂Ŷ2

∂Ŷm

⊤

...
... . . .

...

−∂Ŷm

∂Ŷ1

⊤
−∂Ŷm

∂Ŷ2

⊤
. . . I

Φ1

Φ2
...

Φm

 =

∂F

∂Ŷ1

⊤

∂F

∂Ŷ2

⊤

...
∂F

∂Ŷm

⊤

 (2.25)

30

Eqs. 2.24 and 2.25 represent the adjoint method for multidisciplinary models
in the functional form. For functional form models, the size of each linear system
that has to be solved, both for the coupled direction differentiation and coupled
adjoint methods, is of size nŶ × nŶ , where nŶ =

∑
nŶi

m
i=1

.

The Jacobian matrices
[
∂Yi

∂Yj

]
and

[
∂Ŷi

∂Ŷj

]
, present in the linear systems for both

the coupled direct differentiation and adjoint approaches, are equivalent to the
matrices in the left-hand-side of Newton’s method for the residual (eq. 2.5) and
functional (eq. 2.8) forms respectively. As it was noted when comparing the resid-
ual and functional Newton forms, the system arising from the functional form is
typically significantly smaller in size, since for every discipline nYi

≥ nŶi
. However,

obtaining the partial derivatives required in the functional direct differentiation
and adjoint methods can be much more costly than the residual form counter-

parts. The terms ∂Ŷi

∂Ŷj
and ∂Ŷi

∂X
are partial derivatives at the multidisciplinary level,

but are total derivatives at the discipline level. Both ∂Ŷi

∂Ŷj
and ∂Ŷi

∂X
are matrices of size

nŶi
× nŶj

and nŶi
× nX respectively. Therefore, each discipline has to provide the

derivatives of nŶi
objectives w.r.t

∑m
j=1,j ̸=i nŶj

+nX design variables. If a discipline
uses the direct differentiation or adjoint methods presented in the previous section,
providing these derivatives requires the solution of either

∑m
j=1,j ̸=i nŶj

+ nX direct
differentiation or nŶi

adjoint linear systems. This becomes intractable even for

moderately sized applications. The partial derivative terms ∂Ri

∂Yj
and ∂Ri

∂X
appearing

in the direct and adjoint methods for the residual form of the multidisciplinary
model are often available or cheaply computed at the discipline level, and more
importantly do not require any linear system solutions. Hence, in large multidisci-
plinary models, with computationally demanding disciplinary solvers, the residual
form is better suited, at least for the computation of the coupled derivatives.

It should be noted that both finite-difference and complex-step approximations
can also be used for evaluating the coupled derivatives in multidisciplinary mod-
els. Their poor scaling is much more pronounced here, since approximating the
sensitivity to each design variable requires a separate MDA to be performed.

2.3 Multidisciplinary Design Optimization (MDO)

Multidisciplinary Design Optimization or MDO differs from single-discipline design
optimization in that MDO has to take the interactions between the disciplines of
the multidisciplinary model into account. The compatibility of discipline states
is often referred to as multidisciplinary feasibility in the context of MDAO, and
should not be confused with the notion of feasibility in classical optimization, which
describes whether a certain design vector satisfies all constraints. Feasibility is a

31

requirement of any MDO formulation or architecture, and different formulations
achieve it in different ways. These architectures can be placed into two broad
categories: monolithic and distributed. Monolithic architectures formulate the
MDO problem so that it can be solved as a single optimization problem. On the
other hand, distributed architectures decompose the original problem into smaller
optimization problems, with the hope of reducing the total computational cost,
by exploiting the structure of the problem. In the following sections, examples of
each category are presented.

2.3.1 Monolithic architectures

Multidisciplinary Feasible (MDF)

All monolithic architectures formulate and solve a single optimization problem.
Perhaps the most straight forward monolithic architecture is the Multidisci-
plinary Feasible (MDF) architecture [24]. MDF constructs an optimization
problem most similar to classic single-discipline optimization. Each MDF cycle
begins by solving the multidisciplinary model’s equations through an MDA. Af-
ter all discipline states are compatible, namely after the MDA has converged, the
objective and the constraints can be evaluated. Then, the coupled derivatives are
computed, through the methods described in chapter 2.2.2. The values of the
objective, the constraints and the derivatives are passed to the optimizer, which
updates the design variables vector. For a model of m disciplines in functional
form, the MDF architecture is expressed mathematically as:

minimize f(X, Ŷ)

with respect to X

subject to G(X, Ŷ)) ≤ 0

H(X, Ŷ)) = 0

while solving R̂(X, Ŷ) = 0, for Ŷ

(2.26)

In the above expression f is the objective function, G and H are the vectors of

all inequality and equality constraints respectively, and R̂ =
[
R̂1, R̂2, ..., R̂m

]⊤
and

Ŷ =
[
Ŷ1, Ŷ2, ..., Ŷm

]⊤
are the concatenation of residual and output vectors of all

disciplines. Specifically, R̂i is the functional form residual for discipline i, defined
as follows:

R̂i = Ŷi − Ŷi(Ŷj ̸=i) (2.27)

32

One major advantage of the MDF formulation is that feasibility is ensured at
every optimization cycle, so even if optimization stops prematurely, the discipline
states are compatible and the optimization result is meaningful. The disadvantage
of MDF is that, at each cycle, a fully converged MDA solution is required, which
can be costly. However, the MDF architecture is often the choice for large, PDE-
constrained optimization problems, since it is the most effective architecture for
systems with a large number of coupling variables and computationally expensive
disciplinary solvers. This is because MDF can handle multidisciplinary models
expressed both in the residual and functional forms, and leverage the efficiency of
the coupled adjoint method (in the residual form). It is therefore commonly used
in high-fidelity aerostructural optimization [16, 17], but is also used effectively
in other MDO problems, such as the design and trajectory optimization of small
satellite [15]. The architecture is described in algorithm 5.

Algorithm 5 Multidisciplinary Feasible (MDF)

1: Initialize X, Ŷ
2: repeat
3: Solve R̂(X, Ŷ)) = 0, for Ŷ (MDA)
4: Compute f(X, Ŷ), G(X, Ŷ), H(X, Ŷ)
5: Compute df

dX
, dG
dX
, dH
dX

(Coupled derivatives, see Chapter 2.2.2)

6: Update X using f,G,H, df
dX
, dG
dX
, dH
dX

7: until Optimization has converged

Individual Discipline Feasible (IDF)

Another popular monolithic formulation is the Individual Discipline Feasible
or (IDF) [24]. Instead of an MDA, the IDF architecture achieves feasibility
by using target variables. The target variables, denoted by Ŷ t

i , are estimates
of the coupling variables Ŷi which are entirely controlled by the optimizer and
should match Ŷi upon convergence. Each discipline i computes its outputs using
as input not the outputs of other disciplines Ŷj ̸=i, but the target variables Ŷ t

j ̸=i =[
Ŷ t
1 . . . Ŷ t

i−1 Ŷ t
i+1 Ŷ t

m

]⊤
. This effectively decouples the disciplines, allowing

the disciplinary solvers to execute independently. For every target variable vector
Ŷ t
i an equality constraint H t

Ŷi
(Ŷ t

i , Ŷi) = Ŷ t
i − Ŷi = 0 is added. Through these

constraints, the optimizer drives the value of Ŷ t
i to equal that of Ŷi. At optimization

convergence and through satisfaction of the these constraints, multidisciplinary
feasibility is ensured, since then Ŷ t

i = Ŷi. Due to this, they are appropriately
named feasibility constraints. For a multidisciplinary model of m disciplines in
the functional form, IDF is expressed mathematically as:

33

minimize f(X, Ŷ t)

with respect to X, Ŷ t

subject to G(X, Ŷ t) ≤ 0

H(X, Ŷ t) = 0

H t
i (Ŷ

t
i , Ŷi) = Ŷ t

i − Ŷi = 0, for ∈ (1,m)

while solving R̂i(X, Ŷi, Ŷ
t
j ̸=i) = 0, for Ŷi, i ∈ (1,m)

(2.28)

The main advantage of IDF is that all disciplines can evaluate their outputs
independently and in parallel. However, unlike MDF, the IDF formulation does not
guarantee multidisciplinary feasibility at all optimization cycles. Therefore, if the
optimization has to be stopped early, the discipline states might not be compatible
and the optimization result might not be meaningful. A further disadvantage of
IDF is that the optimizer most solve a much larger system. The introduction of the
target variables forces the optimizer to handle

∑m
i=1 nŶi

more ”design” variables
and constraints, since for the optimizer handles the target variables as if they were
regular design/decision variables. This creates the need for efficient optimizers
designed for large problems, when using this architecture. IDF is described in
algorithm 6.

Algorithm 6 Individual Discipline Feasible (IDF)

1: Initialize X, Ŷ t

2: repeat
3: for i = 1, m do
4: Ŷi = Ŷi(X, Ŷ

t
j ̸=i))

5: H t
Ŷi
(Ŷ t

i , Ŷi) = Ŷ t
i − Ŷi

6: end for
7: Compute f(X, Ŷ t), G(X, Ŷ t), H(X, Ŷ t), H(X, Ŷ t)
8: Compute df

dX
, dG
dX
, dH
dX
, dH

t

dX
, df

dŶ t
, dG

dŶ t
, dH

dŶ t
, dH

t

dŶ t

9: Update X, Ŷ t using f,G,H,H t, df
dX
, dG
dX
, dH
dX
, dH

t

dX
, df

dŶ t
, dG

dŶ t
, dH

dŶ t
, dH

t

dŶ t

10: until Optimization has converged

2.3.2 Distributed architectures

The second broad category of MDO architectures are distributed ones. Instead
of solving a single optimization problem, they solve multiple smaller problems.
Based on how they achieve feasibility, distributed architectures can be classified

34

as variants of the MDF and IDF (monolithic) architectures. Distributed MDF
architectures use an MDA to ensure the compatibility of discipline states (similar
to MDF), whereas distributed IDF architectures use target variables and feasibility
constraints (similar to IDF). The Collaborative Optimization (CO) architecture is
presented below, which is the only distributed architecture implemented in mSense.

Collaborative Optimization (CO)

Collaborative Optimization (CO) is a popular distributed architecture intro-
duced by Braun [5]. CO decomposes the optimization problem into a system-level
optimization problem and a separate optimization subproblem for each discipline.
To decouple both the execution of the disciplinary solvers and the solution of
the discipline subproblems, CO introduces target variables not only for the disci-
pline outputs, but also for the shared and local design variables. Specifically, the
system-level problem controls the shared design variables Z and target variables
for the local design variables Xi and outputs Ŷi of each discipline, denoted by X t

i

and Ŷ t
i respectively. The discipline i subproblem controls target variables for the

shared design variables Z, denoted by Zt
i , and its local design variables Xi. The

mathematical formulation of the system-level problem is as follows:

minimize f(Z,X t, Ŷ t)

with respect to Z,X t, Ŷ t

subject to G0(Z,X
t, Ŷ t) ≤ 0

H0(Z,X
t, Ŷ t) = 0

and J∗
i = 0, i ∈ (1,m)

(2.29)

In the above expression, X t is a concatenation of the target variables for

all local design variables, namely X t =
[
X t

1 X t
2 . . . X t

m

]⊤
, similar to Ŷ ⊤ =[

Ŷ ⊤
1 Ŷ ⊤

2 . . . Ŷ ⊤
m

]⊤
which includes the target variables for all discipline out-

puts. A set of equality constraints J∗
i is added, which enforce multidisciplinary

feasibility at the optimum. These are feasibility constraints, similar in function
to those used by IDF. The term J∗

i corresponds to the optimized solution of the
discipline i subproblem, which is stated as follows:

35

minimize Ji(Z
t
i , Xi, Ŷi) = ∥X t

i −Xi∥2

+ ∥Zt
i − Z∥2

+ ∥Ŷ t
i − Ŷi∥2

with respect to Zt
i , Xi

subject to Gi(Z
t
i , Xi, Ŷi) ≤ 0

Hi(Z
t
i , Xi, Ŷi) = 0

while solving R̂i(Z
t
i , Xi, Ŷ

t
j ̸=i) for Ŷi

(2.30)

The derivatives of the optimized discipline-level objectives Ji, denoted by J∗
i ,

are required by the system-level optimizer optimizer. Braun [6] showed that these
post-optimality sensitivities can be computed as:

dJ∗
i

dX t
i

= 2(X t
i −X∗

i)

dJ∗
i

dZ
= −2((Zt

i)
∗ − Z)

dJ∗
i

dY t
i

= 2(Y t
i − Y ∗

i)

(2.31)

where X∗
i , (Z

t
i)

∗ and Y ∗
i are the optimized values of Xi, Z

t
i and Yi, namely their

values at the end of the i-th discipline-level optimization.
In essence, the concept behind CO is that the system-level problem minimizes

the objective function, while the discipline subproblems minimize the interdisci-
plinary inconsistency. Since J∗

i = 0 at the optimum, the values of all targets
match the values of the variables they are trying to estimate, namely (X t

i)
∗ = X∗

i ,
(Y t

i)
∗ = Y ∗

i and (Zt
i)

∗ = Z∗.
CO has the obvious advantage that all disciplinary analyses and optimizations

are completely separated. However, the formulation faces major convergence is-
sues, especially when gradient-based optimizers are used [1]. This is because,
at the optimum both the feasibility constraints J∗

i and their gradients are zero,
which is a violation of the Karush-Khan-Tucker optimality conditions, significantly
hindering convergence. Despite these drawbacks, the architecture has been used
extensively in a wide range of MDO problems, including the design of flight tra-
jectories [23], satellite constellations [7] and even a scanning optical microscope
[29]. The architecture is described in algorithm 7.

36

Algorithm 7 Collaborative Optimization (CO)

1: Initialize Z,Zt
i , Xi, X

t
i , Ŷi, Ŷ

t
i for i ∈ (1,m)

2: repeat
3: for i = 1, m do
4: repeat
5: Solve R̂i(Z

t
i , Xi, Ŷ

t
i ̸=j) = 0 for Ŷi

6: Compute Ji(Z
t
i , Xi, Ŷi), Gi(Z

t
i , Xi, Ŷi), Hi(Z

t
i , Xi, Ŷi)

7: Compute dJi
dZt

i
, dGi

dZt
i
, dHi

dZt
i
, dJi
dXi

, dGi

dXi
, dHi

dXI
,

8: Update Zt
i , Xi using Ji, gi,

dJi
dZt

i
, dGi

dZt
i
, dJi
dXi

, dGi

dXi

9: until Discipline-level optimization has converged
10: end for
11: Compute f(Z,X t, Ŷ t), G0(Z,X

t, Ŷ t), H0(Z,X
t, Ŷ t)

12: Compute df
dZ
, dG0

dZ
, dH0

dZ
, dJ

∗

dZ
, df

dX̂t
, dG0

dX̂t
, dH0

dX̂t
, dJ∗

dXt ,
df

dŶ t
, dG0

dŶ t
, dH0

dŶ t
, dJ

∗

dŶ t

13: Update Z,X t, Ŷ t using f,G0, J
∗, df

dZ
, . . .

14: until System-level optimization has converged

37

Chapter 3

Benchmarking different MDO
architectures

In chapter 2.3 various MDO architectures were presented. The question that
naturally arises is which architecture to use for a given problem. The ultimate
goal of any architecture is to find the optimum of the MDO problem, without
violating the constraints or multidisciplinary feasibility. However, when comparing
architectures, it is not enough that an architecture can successfully arrive at the
optimum. It is also necessary that it does so in a reasonable amount of time, or for
a reasonable number of disciplinary evaluations. Many benchmark problems have
been proposed, with the earliest example of such work perhaps being the NASA
MDO test suite released in 1996 [28]. In this chapter, several MDO benchmark
problems are presented and solved, with the goal of comparing the performance of
the MDO architectures available in mSense.

3.1 Sellar’s problem

Sellar’s problem [32] is a simple mathematical problem comprised of two disci-
plines. It considers the minimization of a scalar function f w.r.t three design
variables x1, z1, z2. The problem is constrained by two inequality constraints g1
and g2. Design variable x1 and both constraints are local, while z1 and z2 are
shared. The outputs of the two disciplines are y1 and y2 respectively. The math-
ematical formulation of the problem follows, while the problem’s XDSM is shown
in fig. 3.1.

38

x1, z1, z2 z1, z2 x1, z1

y1, g1 Discipline1 y1 y1

y2, g2 y2 Discipline2 y2

f Objective

Figure 3.1: Sellar’s problem: XDSM

minimize f = x21 + z21 + y21 + e−y2

with respect to x1, z1, z2

subject to g1 = 3.16− y21 ≤ 0

g2 = y2 − 24 ≤ 0

while satisfying R1 = y1 −
√
x21 + z2 + x1 − 0.2 ∗ y2 = 0

R2 = y2 − |y1| − z1 − z2 = 0

(3.1)

The three MDO architectures implemented in mSense are tested: MDF, IDF,
and CO. For MDF, the Gauss-Seidel MDA is used and its termination tolerance
is set to 10−4. The coupled derivatives are computed using the coupled adjoint
approach of eqs. 2.24 and 2.25. To make the application of the coupled adjoint
method clear, eq. 2.25 yields:[

1 −∂y1
∂y2

−∂y2
∂y1

1

][
Φ1

Φ2

]
=

[
∂F
∂y1

⊤

∂F
∂y2

⊤

]

where F =
[
f g1 g2

]⊤
. Since nF = 3, the above 2 × 2 linear system has to be

solved three times, before the coupled derivatives can be computed. For clarity’s
sake, by substituting F the above equation is written as:[

1 −∂y1
∂y2

−∂y2
∂y1

1

][
Φ⊤

1

Φ⊤
2

]
=

[
∂f
∂y1

∂g1
∂y1

∂g2
∂y1

∂f
∂y2

∂g1
∂y2

∂g2
∂y2

]
Each column of the matrix on the right corresponds to the solution of a different

linear system. Similarly, eq. 2.24 yields:

39

dF

dX
=
∂F

∂X
−
[
Φ⊤

1 Φ⊤
2

] [∂y1
∂X
∂y2
∂X

]
where X =

[
z1 z2 x1

]⊤
. By substituting X and F , the equation is written as:

df
dz1

df
dz2

df
dx1

dg1
dz1

dg1
dz2

dg1
dx1

dg2
dz1

dg2
dz2

dg2
dx1

 =

∂f
∂z1

∂f
∂z2

∂f
∂x1

∂g1
∂z1

∂g1
∂z2

∂g1
∂x1

∂g2
∂z1

∂g2
∂z2

∂g2
∂x1

−
[
Φ⊤

1 Φ⊤
2

] [∂y1
∂z1

∂y1
∂z2

∂y1
∂x1

∂y1
∂z1

∂y1
∂z2

∂y1
∂x1

]

IDF solves a slightly larger optimization problem, as the optimizer is respon-
sible not only for the design variables x1, z1, z2, but also the target variables
yt1 and yt2. There is also the addition of the feasibility constraints, which are
ht1 = yt1 − y1 = 0 and ht2 = yt2 − y2 = 0. Using these constraints the optimizer will
drive the values of yt1 and yt2 to match the values of y1 and y2 at the optimum,
namely (yt1)

∗ = y∗1 and (yt2)
∗ = y∗2, effectively enforcing multidisciplinary feasibility.

For the sake of clarity, the optimization problem that IDF solves is the following:

minimize f = x21 + z21 + (yt1)
2 + e−yt2

with respect to x1, z1, z2, y
t
1, y

t
2

subject to g1 = 3.16− (yt1)
2 ≤ 0

g2 = (yt2)− 24 ≤ 0

ht1 = yt1 − y1 = 0

ht2 = yt2 − y2 = 0

while satisfying R1 = y1 −
√
x21 + z2 + x1 − 0.2 ∗ yt2 = 0

R2 = y2 − |yt1| − z1 − z2 = 0

CO formulates and solves a system-level problem and two discipline subprob-
lems. The system level problem handles the shared design variables z1 and z2, and
target variables for the local design variable x1 and disciplinary outputs y1 and y2,
denoted by xt1, y

t
1 and yt2 respectively. It is written as:

minimize f = (xt1)
2 + z21 + (yt1)

2 + e−yt2

with respect to xt1, z1, z2, y
t
1, y

t
2

subject to J∗
1 = 0

J∗
2 = 0

where J∗
1 and J∗

2 are the optimized feasibility constraints of each subproblem. The
subproblem for the first discipline handles x1 and target variables for the shared
design variables zt1,1 and zt2,1. It is formulated as follows:

40

minimize J1 = (xt1 − x1)
2

+ (zt1,1 − z1)
2

+ (zt2,1 − z2)
2

+ (yt1 − y1)
2

with respect to x1, z
t
1,1, z

t
2,1

subject to g1 = 3.16− (yt1)
2 ≤ 0

while satisfying R1 = y1 −
√
x21 + zt2,1 + x1 − 0.2 ∗ yt2 = 0

The second discipline subproblem handles only target variables for the shared
design variables zt1,2 and zt2,2. It is written as:

minimize J2 = (zt1,2 − z1)
2

+ (zt2,2 − z2)
2

+ (yt2 − y2)
2

with respect to zt1,2, z
t
2,2

subject to g2 = (yt2)− 24 ≤ 0

while satisfying R2 = y2 − |yt1| − z1,2 − z2,2 = 0

The system-level problem minimizes the objective function f , while respecting
the J∗

1 = 0 and J∗
2 = 0 feasibility constraints. The discipline subproblems minimize

Ji, while respecting gi. The feasibility constraints J∗
1 = 0 and J∗

2 = 0 guarantee
that at the optimum the values of all target variables match the value of their
corresponding variable, for example (xt1)

∗ = x∗1. The XDSMs for MDF, IDF, and
CO are shown in figures 3.2,3.3 and 3.4 respectively.

The three architectures are compared in their ability to reach the optimum
and the number of function calls required. In order to compute the disciplinary
derivatives, for example ∂y1

∂x1
, ∂y1

∂y2
or ∂f

∂x1
, finite-differences with a step size of 10−4

are used for all architectures. The resulting MDO problems are solved using a
Sequential Quadratic Programming (SQP) algorithm, namely SLSQP [20]. In
the case of CO, SLSQP is used not only for the system-level problem, but also
for the discipline-level subproblems. The termination tolerance for SLSQP is set
to 10−8 and the maximum amount of cycles to be performed is set to 30. The
starting and optimal values for the problem are shown in table 3.1. Reference
optimal values are obtained from Sellar’s original paper [32]. The evolution of
the relative error for each architecture is shown in fig. 3.5. The relative error is
defined as ϵRelative =

f−f∗

f∗ , where f ∗ is the reference optimal objective value. The

41

x01, z
0
1 , z

0
2 y01, y

0
2

x∗1, z
∗
1 , z

∗
2 Optimizer x1, z1, z2 z1, z2 x1, z2

MDA y2

y∗1 g1 y1 Discipline1 y1 y1

y∗2 g2 y2 Discipline2 y2

f Objective

Figure 3.2: Sellar’s problem: XDSM for the solution of the problem using MDF.

x01, z
0
1 , z

0
2 , (y

t
1)

0, (yt2)
0

x∗1, z
∗
1 , z

∗
2 Optimizer x1, z1, z2, y

t
2 z1, z2, y

t
1 x1, z2, y

t
1, y

t
2

y∗1 g1, h
t
1 Discipline1

y∗2 g2, h
t
2 Discipline2

f Objective

Figure 3.3: Sellar’s problem: XDSM for the solution of the problem using IDF.

42

(x
t 1
)0
,z

0 1
,z

0 2
,(
y
t 1
)0
,(
y
t 2
)0

z∗ 1
,z

∗ 2
S
y
st
em

O
pt
im
iz
er

x
t 1
,z

1
,z

2
,y

t 1
,y

t 2
x
t 1
,z

1
,z

2
,y

t 1
,y

t 2
z 1
,z

2
,y

t 1
,y

t 2

f
O
bj
ec
ti
v
e

S
u
bp
ro
bl
em

1O
pt
im
iz
er

x
1
,z

t 1
,1
,z

t 2
,1

y
∗ 1
,x

∗ 1
J
∗ 1

J
1
,g

1
D
is
ci
pl
in
e1

S
u
bp
ro
bl
em

2O
pt
im
iz
er

zt 1
,2
,z

t 2
,2

y
∗ 2

J
∗ 2

J
2
,g

2
D
is
ci
pl
in
e2

Figure 3.4: Sellar’s problem: XDSM for the solution of the problem using CO.

43

Variable Starting value Optimal value
z1 4 1.978
z2 3 0
x 1.0 0
y1 0.8 1.776
y2 0.9 3.775
f 5.0465 3.1834

Table 3.1: Sellar’s problem: Starting and reference optimal values, obtained from
[32].

Architecture MDF IDF CO
Discipline 1 evaluations 61 30 1210
Discipline 2 evaluations 53 24 601
Objective evaluations 61 30 168
Optimization cycles 9 7 30

Optimized objective value 3.18339 3.18339 3.1828

Table 3.2: Sellar’s problem: Performance comparison between MDO architectures
for. The number of evaluations also includes evaluations required for computing
disciplinary derivatives through finite-differences.

number of evaluations for each discipline and the objective, as well as the number
of optimization cycles required by each architecture are shown in table 3.2.

By observing the results, it is clear that IDF achieves the best performance,
while CO performs worse than the two monolithic architectures. Because the
selected starting values do not satisfy multidisciplinary feasibility, IDF and CO
have to gradually drive the values of their respective feasibility constraints to
zero. Both architectures are able to guide the solution to feasibility, although IDF
does this in much fewer cycles, as seen when comparing figures 3.6 and 3.7. The
performance of MDF is comparable to that of IDF, but the MDA solved at each
iteration increases the disciplinary evaluations substantially. The poor convergence
properties of CO are evident, even for this small mathematical problem. CO
requires two orders of magnitude more disciplinary evaluations than IDF and MDF,
many more optimizer iterations, and is still unable to precisely reach the optimum.
The results are in agreement with those present in [12].

44

Figure 3.5: Sellar’s problem: Evolution of the relative error. Comparison of the
MDF, IDF and CO architectures. The relative error is defined as ϵRelative =

f−f∗

f∗ ,
where f ∗ is the reference optimal objective value.

Figure 3.6: Sellar’s problem: Evolution of IDF’s feasibility constraints.

45

Figure 3.7: Sellar’s problem: Evolution of CO’s feasibility constraints.

3.2 Martins’ scalable problem

This MDO problem has the particular feature that its dimensionality can be se-
lected arbitrarily. Many of its parameters can be varied, resulting essentially in
unique problems. These are:

• The number of disciplines, m

• The number of global design variables, nZ

• The number of local design variables for discipline, i nXi

• The number of output variables for discipline, i nYi

The problem is formulated mathematically as follows:

46

minimize f = λf (Z
⊤Z +

m∑
i=0

Y ⊤
i Yi)

with respect to Z,Xi, i ∈ (1,m)

subject to Gi = Yi − 1 ≤ 0

while satisfying Ri = CYi
Yi − λY (CZi

Z + CXi
Xi −

j=m∑
j=0,j ̸=i

CYj
Yj) = 0, ∈ (1,m)

(3.2)

In the above expression Z is the vector of global design variables (size nZ), Xi

is the vector of local design variables for discipline i (size nXi
) and Yi is the vector

of output variables for discipline i (size nYi
). The constraints Gi are local for each

discipline. Coefficients λf and λY are used so that the values of f and Yi are scaled
to around unity, and are computed as: λf = (

∑m
i=0 nYi

)−1 and λY = (m + 1)−1.
Matrices CYi

, CZi
and CXi

can also be chosen arbitrarily, provided that all of the
CYi

are non-singular. In the original paper [36], Martins chooses these matrices as
follows:

• CYi
is an nYi

× nYi
identity matrix

• CZ is a nYi
× nZ matrix of ones

• CXi
is anYi

× nXi
matrix of ones

Obviously, the inversion of the identity matrices CYi
is trivial, which makes

solving the equation Ri = 0 very cheap. Although Martins uses finite-differences
for computing the disciplinary partial derivatives ∂Yi

∂Z
, ∂Yi

∂Xi
and ∂Yi

∂Yj
, here the differ-

entiation is performed analytically as:

∂Yi
∂Z

= C−1
Yi
CZ

∂Yi
∂Xi

= C−1
Yi
CXi

∂Yi
∂Yj

= C−1
Yi
CYj

(3.3)

Again, in the general case this requires inverting the matrix CYi
for each dif-

ferentiation (or solving m+ 1 linear systems), but if CYi
is an identity matrix the

cost is negligible. The XDSM for the scalable problem with m = 3 is shown in fig.
3.8.

47

X1, Z X2, Z X3, Z Z

G1 Discipline1 Y1 Y1 Y1

G2 Y2 Discipline2 Y2 Y2

G3 Y3 Y3 Discipline3 Y3

f Objective

Figure 3.8: Martins’ scalable problem: XDSM for three disciplines

The MDO problem is solved using the MDF, IDF and CO architectures. For
MDF, the Gauss-Seidel MDA is used, with a termination tolerance of 10−4 and no
relaxation. The coupled derivatives are again computed using the coupled adjoint
method, similar to Sellar’s problem. For m = 3, eq. 2.25 yields: I −∂Y1

∂Y2

⊤ −∂Y1

∂Y3

⊤

−∂Y2

∂Y1

⊤
I −∂Y2

∂Y3

⊤

−∂Y3

∂Y1

⊤ −∂Y3

∂Y2

⊤
I

Φ1

Φ2

Φ3

 =

∂f
∂Y1

⊤ ∂G1

∂Y1

⊤ ∂G2

∂Y1

⊤ ∂G3

∂Y1

⊤

∂f
∂Y2

⊤ ∂G1

∂Y2

⊤ ∂G2

∂Y2

⊤ ∂G3

∂Y2

⊤

∂f
∂Y3

⊤ ∂G1

∂Y3

⊤ ∂G2

∂Y3

⊤ ∂G3

∂Y3

⊤

Therefore, computation of the coupled derivatives requires solving a nY ×nY lin-

ear system (where nY =
∑3

i=1 nYi
) a total of nF times, where nF = 1+

∑3
i=1 nGi

=
1 +

∑3
i=1 nYi

. After solution of the linear systems, the coupled derivatives are
computed using eq. 2.24:

df
dZ

df
dX1

df
dX2

df
dX3

dG1

dZ
dG1

dX1

dG1

dX2

dG1

dX3
dG2

dZ
dG2

dX1

dG2

dX2

dG2

dX3
dG3

dZ
dG3

dX1

dG3

dX2

dG3

dX3

 =

∂f
∂Z

∂f
∂X1

∂f
∂X2

∂f
∂X3

∂G1

∂Z
∂G1

∂X1

∂G1

∂X2

∂G1

∂X3
∂G2

∂Z
∂G2

∂X1

∂G2

∂X2

∂G2

∂X3
∂G3

∂Z
∂G3

∂X1

∂G3

∂X2

∂G3

∂X3

−[
Φ⊤

1 Φ⊤
2 Φ⊤

3

] ∂Y1

∂Z
∂Y1

∂X1

∂Y1

∂X2

∂Y1

∂X3
∂Y2

∂Z
∂Y2

∂X1

∂Y2

∂X2

∂Y2

∂X3
∂Y3

∂Z
∂Y3

∂X1

∂Y3

∂X2

∂Y3

∂X3

IDF solves a larger optimization problem, introducing target variables Y t

i and
feasibility constraints H t

i = Y t
i − Yi = 0. This means that the optimizer used by

IDF has to handle
∑m

i=0 nYi
extra design variables and constraints. For the sake

of clarity, the optimization problem that IDF solves (for m = 3) is the following:

48

minimize f = λf (Z
⊤Z + (Y t

1)
⊤(Y t

1) + (Y t
2)

⊤(Y t
2) + (Y t

3)
⊤(Y t

3))

with respect to Z,X1, X2, X3, Y
t
1 , Y

t
2 , Y

t
3

subject to G1 = Y1 − 1 ≤ 0

G2 = Y2 − 1 ≤ 0

G3 = Y3 − 1 ≤ 0

H t
1 = Y t

1 − Y1 = 0

H t
2 = Y t

2 − Y2 = 0

H t
3 = Y t

3 − Y3 = 0

while satisfying R1 = CY1Y1 − λY (CZ1Z + CX1X1 − CY1Y1 − CY2Y2 − CY3Y3) = 0

R2 = CY2Y2 − λY (CZ2Z + CX2X2 − CY1Y1 − CY2Y2 − CY3Y3) = 0

R3 = CY3Y3 − λY (CZ3Z + CX3X3 − CY1Y1 − CY2Y2 − CY3Y3) = 0

Finally, CO solves a system-level problem and three discipline subproblems.
The system-level problem handles the global design variables Z and copies of the
local design variables X t

i and the coupling variables Y t
i . The system-level problem

is defined as follows (m = 3):

minimize f = λf (Z
⊤Z + (Y t

1)
⊤(Y t

1) + (Y t
2)

⊤(Y t
2) + (Y t

3)
⊤(Y t

3))

with respect to Z,X t
1, X

t
2, X

t
3, Y

t
1 , Y

t
2 , Y

t
3

subject to J∗
1 = 0

J∗
2 = 0

J∗
3 = 0

Each discipline subproblem handles its local design variables Xi and copies of
the global design variables Zt

i . The three discipline subproblems are defined as
follows:

minimize J1 = ∥X t
1 −X1∥2 + ∥Zt

1 − Z∥2 + ∥Y t
1 − Y1∥2

with respect to Zt
1, X1

subject to G1 = Y1 − 1 ≤ 0

while satisfying R1 = CY1Y1 − λY (CZ1Z + CX1X1 − CY1Y1 − CY2Y2 − CY3Y3) = 0

minimize J2 = ∥X t
2 −X2∥2 + ∥Zt

2 − Z∥2 + ∥Y t
2 − Y2∥2

with respect to Zt
2, X2

subject to G2 = Y2 − 1 ≤ 0

while satisfying R2 = CY2Y2 − λY (CZ2Z + CX2X2 − CY1Y1 − CY2Y2 − CY3Y3) = 0

49

Z,X0
1 , X

0
2 , X

0
3 Y 0

1 , Y
0
2 , Y

3
0

Z∗, X∗
1 , X

∗
2 , X

∗
3 Optimizer Z,X1 Z,X2 Z,X3 Z

MDA Y2, Y3 Y3

Y ∗
1 G1 Y1 Discipline1 Y1 Y1 Y1

Y ∗
2 G2 Y1 Discipline2 Y2 Y2

Y ∗
3 G3 Y3 Discipline3 Y3

f Objective

Figure 3.9: Martins’ scalable problem: XDSM for the solution of the problem
using MDF.

Z,X0
1 , X

0
2 , X

0
3 , (Y

t
1)

0, (Y t
2)

0, (Y t
3)

0

Z∗, X∗
1 , X

∗
2 , X

∗
3 Optimizer Z,X1, Y

t
2 , Y

t
3 Z,X2, Y

t
1 , Y

t
3 Z,X3, Y

t
1 , Y

t
2 Z, Y t

1 , Y
t
2 , Y

t
3

Y ∗
1 H t

1, G1 Discipline1

Y ∗
2 H t

2, G2 Discipline2

Y ∗
3 H t

3, G3 Discipline3

f Objective

Figure 3.10: Martins’ scalable problem: XDSM for the solution of the problem
using IDF.

minimize J3 = ∥X t
3 −X3∥2 + ∥Zt

3 − Z∥2 + ∥Y t
3 − Y3∥2

with respect to Zt
3, X3

subject to G3 = Y3 − 1 ≤ 0

while satisfying R3 = CY3Y3 − λY (CZ3Z + CX3X3 − CY1Y1 − CY2Y2 − CY3Y3) = 0

The system-level problem minimizes f , while the discipline subproblems min-
imize the disciplinary inconsistencies J1, J2 and J3. The XDSMs for MDF, IDF
and CO are shown in figures 3.9, 3.10 and 3.11 respectively.

The three architectures are compared in their ability to reach the optimum and
the number of function calls required. Again, SLSQP is used as the optimizer. The
termination tolerance is set to 10−8 and the maximum allowed number of cycles
is 10. The problem is solved for m = nZ = nXi

= nYi
= 3, and the matrices CYi

,
CZi

and CXi
are chosen as above. The starting and reference optimal values for

the problem are shown in table 3.3. The configuration of the problem and the

50

Z
,(
X

t 1
)0
,(
X

t 2
)0
,(
X

t 3
)0
,(
Y

t 1
)0
,(
Y

t 2
)0
,(
Y

t 3
)0

Z
∗

S
y
st
em

O
pt
im
iz
er

Z
,X

t 1
,Y

t 1
,Y

t 2
,Y

t 3
Z
,X

t 2
,Y

t 1
,Y

t 2
,Y

t 3
Z
,X

t 3
,Y

t 1
,Y

t 2
,Y

t 3
Z
,Y

t 1
,Y

t 2
,Y

t 3

Y
∗ 1
,X

∗ 1
J
∗ 1

D
is
ci
pl
in
e1

J
1
,G

1

S
u
bp
ro
bl
em

1O
pt
im
iz
er

Y
∗ 2
,X

∗ 2
J
∗ 2

D
is
ci
pl
in
e2

J
2
,G

2

S
u
bp
ro
bl
em

2O
pt
im
iz
er

Y
∗ 3
,X

∗ 3
J
∗ 3

D
is
ci
pl
in
e3

J
3
,G

3

S
u
bp
ro
bl
em

3O
pt
im
iz
er

f
O
bj
ec
ti
v
e

Figure 3.11: Martins’ scalable problem: XDSM for the solution of the problem
using CO.

51

Variable Starting value Optimal value
Z -1 0
Xi -1 -0.667
Yi 0 1
f 9.334 1

Table 3.3: Martins’ scalable problem: Starting and reference optimal values, ob-
tained from [36]. Since Z, Xi and Yi are vectors in general, the values provided
are used for all their entries.

Architecture MDF IDF CO
Total discipline evaluations 236 24 5396

Total discipline differentiations 16 20 2127
Optimization cycles 5 5 11

Optimized objective value 1 1 1.0003

Table 3.4: Martins’ scalable problem: Performance comparison between the MDF,
IDF and CO architectures.

starting and reference optimal values are the same as the ones used in the original
paper by Martins [36]. The evolution of the relative error for each architecture is
shown in fig. 3.12. The relative error is defined as ϵRelative =

f−f∗

f∗ , where f ∗ is the
reference optimal objective value. The number of evaluations for each discipline
and the objective, as well as the number of optimization cycles required by each
architecture are shown in table 3.4.

Similar to Sellar’s problem, IDF performs the best and CO performs the worst
out of the three architectures. MDF requires the same number of optimization
cycles as IDF, but many more disciplinary evaluations because of the MDA it solves
at every iteration. CO again requires two orders of magnitude more disciplinary
evaluations and differentiations, compared to the other architectures. However,
all three architectures are able to accurately reach the optimum. Furthermore,
despite the starting point being infeasible (in the multidisciplinary sense), both
the IDF and CO architectures are able to achieve feasibility, by driving their
respective feasibility constraints close to zero. Similar to Sellar’s problem, IDF
converges to a feasible solution much faster than CO, as shown in figures 3.13 and
3.14. Interestingly, the evolution of all feasibility constraints for both disciplines
is nearly identical, possibly because the disciplinary functions are the same.

3.2.1 Scalability study

By exploiting the fact that the size of Martin’s problem can be selected arbitrarily,
a study can be performed about the scaling characteristics of the used MDO archi-

52

Figure 3.12: Martins’ scalable problem: Evolution of the relative error. Com-
parison of the MDF, IDF and CO architectures. The relative error is defined as
ϵRelative =

f−f∗

f∗ , where f ∗ is the reference optimal objective value.

Figure 3.13: Martins’ scalable problem: Evolution of IDF’s feasibility constraints.

53

Figure 3.14: Martins’ scalable problem: Evolution of CO’s feasibility constraints.

tectures. Three disciplines are used (m = 3), and the number of design (nXi
and

nZ) and coupling (nYi
) variables can vary. Only the MDF and IDF architectures

are included in this study, since CO performed significantly worse for the baseline
configuration of the problem. All studies are performed on laptop with a quad
core 11th generation Intel i7 processor.

First, the performance of the two architectures is tested for an increasing num-
ber of design variables. The number of local design variables for each discipline
(nXi

) and the number of shared design variables (nZ) are set equal (nXi
= nZ),

and range from 10 to 130 with increments of 10. The number of coupling variables
is set to 30 (nYi

= 30). Both the MDF and IDF architectures use SLSQP as the
optimizer, with the termination tolerance set to 10−8 and a maximum of 10 cycles
allowed. Figure 3.15 shows the solution time as a function of the total number
of design variables. It is clear that the solution time for both architectures scales
nonlinearly with the number of design variables. Interestingly, the number of op-
timization cycles, the number of total disciplinary evaluations and the number of
total disciplinary differentiations do not change significantly with the number of
design variables (figures 3.16, 3.17 and 3.18 respectively). Since the cost per disci-
plinary evaluation/differentiation is not heavily influenced by the number of design
variables (eqs. 3.2 and 3.3), the increase in solution time comes mainly from the
linear system that SLSQP has to solve at each cycle. The size of this system scales

54

Figure 3.15: Martins’ scalable problem: CPU time as a function of the number of
design variables (local and shared, nXi

= nZ)).

directly with the number of variables the optimizer is responsible for. However,
this is not an inherent drawback of the architectures, but rather, it is relevant to
the choice of optimizer.

A second study is performed where the number of coupling variables per disci-
pline nYi

is increased from 10 to 130 with increments of 10. The number of design
variables is set to 30 (nXi

= nZ = 30). Again, SLSQP is used as the optimizer
with settings identical to before. The solution time increases nonlinearly with in-
creasing nYi

(fig. 3.19), but for IDF it seems to increase more rapidly, especially at
nYi

≥ 90. Increasing nYi
directly impacts the time per disciplinary evaluation/dif-

ferentiation, since the size of the linear system that each discipline solves is equal
to nYi

× nYi
. Furthermore, for the IDF architecture increasing the number of cou-

pling variables essentially increases the number of design variables (since for each
coupling a target variable is assigned), and, consequently, the size of the linear
system that SLSQP solves at each cycle. MDF faces a similar problem, in that
increasing the number of design variables increases the size of the linear system
required for coupled derivative computation (either via the coupled direct eq. 2.22
or the coupled adjoint eq. 2.25 methods). Despite this and requiring many more
disciplinary evaluations due to the MDA it solves at each cycle (fig. 3.21), MDF
seems to handle the increasing number of design variables noticeably better than

55

Figure 3.16: Martins’ scalable problem: Number of optimization cycles as a func-
tion of the number of design variables (local and shared, nXi

= nZ)).

Figure 3.17: Martins’ scalable problem: Number of total disciplinary evaluations
as a function of the number of design variables (local and shared, nXi

= nZ)).

56

Figure 3.18: Martins’ scalable problem: Number of total disciplinary differentia-
tions as a function of the number of design variables (local and shared, nXi

= nZ)).

IDF for this problem, at least with respect to solution time. It should also be
noted that besides the difference in disciplinary evaluations, the two architectures
require about the same number of the more costly disciplinary differentiations (fig.
3.22) and optimization cycles. It can therefore be concluded that the performance
of IDF with respect to the number of coupling heavily relies on the optimizer used.
Due to this, MDF is perhaps the better choice for problems with many coupling
variables, especially if no efficient, large-scale optimizer is available.

57

Figure 3.19: Martins’ scalable problem: CPU time as a function of the number of
coupling variables.

Figure 3.20: Martins’ scalable problem: Number of optimization cycles as a func-
tion of the number of coupling variables.

58

Figure 3.21: Martins’ scalable problem: Number of total disciplinary evaluations
as a function of the number of coupling variables.

Figure 3.22: Martins’ scalable problem: Number of total disciplinary differentia-
tions as a function of the number of coupling variables.

59

Chapter 4

The airfoil-spring system

4.1 Problem description

A symmetric NACA-0012 airfoil is placed inside of a two-dimensional inviscid
flow field. The airfoil is able to rotate about an axis normal to the flow plane,
and passing through its quarter chord, where a torsional spring of stiffness J is
attached. The freestream is horizontal, and has a magnitude of U∞. The angle of
attack α of the flow relative to the airfoil is:

α = α∞ + θ = θ (4.1)

where α∞ = 0 is aforementioned freestream angle and θ is the structural angle,
namely the angle between the airfoil chord and the horizontal axis. The flow
produces a momentMaero about the quarter chord which, at equilibrium, is equal to
the spring moment, Mspring = Jθ. By equating the two moments, the equilibrium
angle θ for the airfoil-spring system can be computed:

Maero = Jθ (4.2)

The moment produced by the flow is, in general, a non-linear function of α∞,

U∞
J

θ

Figure 4.1: Airfoil-spring system: Schematic.

60

Figure 4.2: Airfoil-spring system: The unstructured mesh around the isolated
NACA 0012 airfoil. The mesh is relatively coarse, since the flow is considered
inviscid and the Euler equations are used.

or θ, namely: Maero = Maero(θ). Therefore, the above equation is a nonlinear
equation in θ:

Maero(θ)− Jθ = 0 (4.3)

The roots of this equation correspond to the equilibrium points of the aerostruc-
tural system. The inviscid flow around the airfoil is modelled using the Euler equa-
tions. They are discretized through the vertex-centered, finite-volume method and
solved by the in-house, GPU-enabled, CFD solver PUMA [3]. An unstructured,
triangular mesh is generated around the airfoil, consisting of 7870 nodes and 15489
cells. A close-view of the mesh around the airfoil is seen in fig. 4.2.

The aerostructural system includes two disciplines, namely aerodynamics and
structures, where the latter is nothing else but the spring model. The input of
aerodynamics is the structural angle θ, used to compute the aerodynamic moment
M . The spring model computes the structural angle for a given moment, therefore
its input is M and its output is θ. The two disciplines are hence strongly coupled,
with the coupling variables being θ andM . The XDSM of the airfoil-spring system
is shown in fig. 4.3.

Technically, before every call to the aerodynamics solver, the mesh should be
rotated by θ. In order to avoid the extra computational cost, the flow velocity is
simply turned by -θ, effectively achieving the same effect.

61

bi

Aerodynamics M

θ Spring

Figure 4.3: Airfoil-spring system: XDSM.

M0, θ0 bi

GaussSeidelMDA θ

M M Aerodynamics M

θ θ Spring

Figure 4.4: Airfoil-spring system: XDSM for the Gauss-Seidel MDA.

4.2 MDA

In order to determine the equilibrium point of the airfoil-spring system, a MDA
is performed. The problem is first solved using the Gauss-Seidel approach, the
procedure for which is described in algorithm 2. The XDSM for the solution
process using the Gauss-Seidel MDA is shown in fig. 4.4.

The spring stiffness J is set to 0.05N.m/◦ and the inflow velocity U∞ to 90m/s.
The starting point is θ = 9.1◦ and M = 0.1N.m/◦, and no relaxation is used. The
termination tolerance of the MDA is set to 10−4. The evolution of the residual
metric and the coupling variables during the MDA iterations can be seen in figures
4.5 and 4.6. In total, the MDA requires 8 iterations to reach the specified tolerance,
requiring 8 calls to the disciplinary solvers. It converges to the point θ = 6.45◦

and M = 0.322N.m/◦.
The problem is also solved using the Newton’s method (in the functional form),

as described in algorithm 4. At each MDA iteration each discipline has to be
evaluated and differentiated. The aerodynamics discipline has to provide ∂M

∂θ
,

while spring must provide ∂θ
∂M

. The former is computed using first-order finite-

62

Figure 4.5: Airfoil-spring system: Residual metric evolution for the Gauss-Seidel
MDA.

Figure 4.6: Airfoil-spring system: Coupling variables evolution for the Gauss-
Seidel MDA.

63

M0, θ0 bi

NewtonMDA θ M

M M, ∂M
∂θ

Aerodynamics

θ θ, ∂θ
∂M

Spring

Figure 4.7: Airfoil-spring system: XDSM for the Newton MDA.

Method Gauss-Seidel Newton
Iterations 8 5

Aerodynamics evaluations 8 10
Spring evaluations 8 10

Table 4.1: Airfoil-spring system: Performance comparison between Gauss-Seidel
MDA and Newton MDA.

differences, while the latter is computed analytically. At the k-th Newton-MDA
iteration, the following linear system is solved:

[
1 −∂M

∂θ
(θ(k−1))

− ∂θ
∂M

(M (k−1)) 1

] [
∆Mk

∆θk

]
=

[
M (k−1) −M(θ(k−1)

θ(k−1) − θ(M (k−1))

]
(4.4)

The XDSM for the solution process using the Newton MDA is shown in fig.
4.7.

The values of the spring stiffness and the inflow velocity, the starting point and
the termination tolerance remain the same. The evolution of the residual metric
and the coupling variables during the MDA iterations can be seen in figures 4.8
and 4.9. The MDA converges in 5 iterations, requiring 10 calls to each disciplinary
solver, or 20 total disciplinary evaluations. The increased cost of the Newton MDA
(per iteration) is directly caused by the need to assemble the Jacobian matrix of
eq. 4.4, which apart from evaluation, requires differentiation of the disciplines. The
MDA converges to the same point as the Gauss-Seidel MDA, namely θ = 6.45◦

and M = 0.322N.m/◦. A brief performance comparison between the two MDA
methods used can be seen in table 4.1.

The results computed by the MDAs are verified by a graphical solution to
the system. The curve of the aerodynamic moment Maero as a function of the

64

Figure 4.8: Airfoil-spring system: Residual metric evolution for the Newton MDA.

Figure 4.9: Airfoil-spring system: Coupling variables evolution for the Newton
MDA.

65

Figure 4.10: Airfoil-spring system: Operating characteristic curves. The points of
intersection correspond to equilibrium points, or MDA solutions.

structural angle θ is produced by executing the aerodynamics solver for various
values of θ in a range from −10◦ to 10◦. Similarly, the curve of the spring moment
Mspring as a function of θ is produced by computing Mspring = Jθ for the same
θ range. Intersections of the two curves correspond to solutions of eq. 4.2. The
curves are shown in fig. 4.10. There exist three solutions, namely (−6.45,−0.322),
(0, 0) and (6.45, 0.322). The MDAs converge to the last of the three solutions, to
which their starting point is the closest.

4.3 Shape optimization (MDO)

Shape optimization is performed in order to achieve a desired lift value for the
airfoil. The objective function is simply:

f = 0.5(L− L∗)2 (4.5)

where L and L∗ are the actual and desired lift values respectively.
The entire airfoil-spring system is considered, rendering the optimization prob-

lem multidisciplinary. The MDF and IDF architectures, implemented in mSense,
are used to solve the MDO problem.

66

Figure 4.11: Airfoil-spring system: Parameterization of the NACA-0012 airfoil
section using volumetric NURBS. The control points, highlighted in red, can move
along the y-axis.

Design variable Size Lower bound Baseline Value Upper bound
b1 6 -0.1125 -0.075 -0.0375
b2 4 -0.0375 0.0 0.0375
b3 6 0.0375 0.075 0.1125

Table 4.2: Airfoil-spring system: Design variables for the airfoil shape optimization
problem, along with their dimension, lower and upper bound, and baseline value.

4.3.1 Setup

The airfoil shape is parameterized using volumetric NURBS. The shape is con-
trolled by a 10× 7 morphing box. Only 16 out of the 70 points are actually used
to manipulate the airfoil’s shape. These are the control points of the NURBS,
and can move along the y-axis. The parameterization is shown in fig 4.11. The
y-coordinates of the 16 control points constitute the design variables of the opti-
mization problem. They are divided into 3 groups, corresponding to the top (b1),
middle (b2) and bottom (b3) rows of red points shown in fig 4.11. The points in
each group have the same lower and upper bound, and baseline value (fig. 4.2).

For the aerodynamics discipline b1, b2 and b3 are now also inputs. Before each
flow analysis (primal solver) the computational mesh has to be adapted to match

67

the parameterized airfoil. This procedure is performed by PUMA, using Inverse
Distance Weighting (IDW). Sensitivities with respect to the design variables bi are
computed by PUMA’s continuous adjoint solver. The sensitivity of any output
of the aerodynamics discipline with respect to θ is computed using first-order,
finite-differences, similar to section 4.2.

The XDSM for optimizing the airfoil-spring system using MDF is shown in
fig. 3.2. At each MDF iteration the disciplines are guided to feasibility through
the Gauss-Seidel MDA, which is chosen instead of the Newton variant due to the
smaller number of disciplinary evaluations required. The termination tolerance is
set to 10−4 and no relaxation is used. After the MDA is converged, the computation
of the coupled derivatives follows.

Aerodynamics has to provide the derivatives ofM and f with respect to bi and
θ, namely ∂M

∂bi
, ∂f
∂bi
, ∂M

∂θ
and ∂f

∂θ
. The spring model only provides the derivative of θ

with respect to M , i.e. ∂θ
∂M

. The coupled derivatives of the objective with respect

to the design variables, namely df
dbi

, are computed using the provided disciplinary
sensitivity information and the coupled adjoint equations of 2.24 and 2.25. For
the sake of clarity, the coupled adjoint method for the airfoil-spring system yields:

df

db
=
∂f

∂b
−
[
ϕ1 ϕ2

] [∂M
∂b
∂θ
∂b

]
[

1 −∂M
∂θ

− ∂θ
∂M

1

] [
ϕ1

ϕ2

]
=

[
∂f
∂M
∂f
∂θ

]
where b is the concatenated vector of bi, i.e. b =

[
b1 b2 b3

]⊤
. Therefore,

the computation of the coupled derivatives requires the solution of a 2 × 2 linear
system at each optimization cycle.

IDF adds target variables and feasibility constraints for θ and M . The target
variables are denoted by θt and M t, while the feasibility constraints are htθ =
θt − θ = 0 and htM = M t −M = 0. Aerodynamics must provide the sensitivities

of f and htM with respect to bi and θ, which are df
bi
, df

θ
and

dht
M

dbi
,
dht

M

dθ
, while the

spring model has to provide
dht

θ

dMt . The derivative of any feasibility constraint can

be computed easily through the chain rule. For example,
dht

M

dbi
is computed as

dht
M

dbi
= −dM

dbi
, where dM

dbi
is computed by the adjoint solver of PUMA. The XDSM

for IDF is shown in fig. 4.13.

4.3.2 Results

For both the MDF and IDF architectures SLSQP is chosen as the optimizer, with
the termination tolerance set to 10−6. The spring stiffness J is set to 0.7N.m/◦

and the freestream velocity U∞ to 90m/s. The initial values of b1, b2 and b3 are

68

b0i M0, θ0

b∗i Optimizer bi

MDA θ

M∗ f M Aerodynamics M

θ∗ θ Spring

Figure 4.12: Airfoil-spring system: XDSM for the solution of the shape optimiza-
tion problem using MDF.

b0i , (M
t)0, (θt)0

b∗i Optimizer bi, θ
t M t

M∗ f, htM Aerodynamics

θ∗ htθ Spring

Figure 4.13: Airfoil-spring system: XDSM for the solution of the shape optimiza-
tion problem using IDF.

69

Figure 4.14: Airfoil-spring system: Evolution of the objective function value for
the shape optimization problem. Comparison between the MDF and IDF archi-
tectures.

found in table 4.2. The starting point of the coupling variables is θ = 6.45◦ and
M = 0.322N.m/◦, which is no longer a feasible point, since the stiffness value J
has changed. The evolution of the objective function value for both architectures
is shown in fig. 4.14, while the evolution of IDF’s htθ and h

t
M feasibility constraints

is shown in fig. 4.15. Despite the starting point being infeasible, IDF manages to
converge the solution to multidisciplinary feasibility. The number of calls to the
aerodynamics primal and adjoint solvers, as well as the number of total SLSQP
iterations for each architecture are found in table 4.3. Both architectures are able
to converge to the solution. In order to reach the same level of convergence, IDF
requires 3 less calls to the primal solver than MDF, but 4 more calls to the adjoint
solver and 4 more optimizer iterations. Therefore, MDF performs better for this
problem, requiring a lower computational cost overall. This contrasts the results
obtained from the simpler benchmark problems of chapter 3, which can perhaps
be attributed to the more numerically complicated nature of the problem itself,
combined with the fact that, in aerodynamics, derivatives w.r.t θ (∂M

∂θ
and ∂f

∂θ
) are

approximated using finite-differences. The inaccuracies caused by this might be
handled better by MDF than IDF, leading to the performance difference.

70

Figure 4.15: Airfoil-spring system: Evolution of IDF’s feasibility constraints.

Architecture MDF IDF
Primal calls 30 27
Adjoint calls 5 9

Optimization cycles 5 9

Table 4.3: Airfoil-spring system: Performance comparison between the MDF and
IDF architectures for the shape optimization problem. MDF requires more primal
solver calls than IDF, but less adjoint solver calls and less optimization cycles.

71

Figure 4.16: Airfoil-spring system: Comparison of the Mach number field around
the baseline (left) and optimized (right) airfoils. Instead of rotating the airfoil, the
angle of attack α is adjusted, so that the same (aerodynamic) effect is achieved.

72

Chapter 5

Elastic Tube FSI

5.1 Problem description

Fluid flows through an elastic tube of internal and external radius Ri = 0.2m and
Ro = 0.3m respectively, and length L = 0.6m. The flow is considered laminar,
the fluid density is ρf = 103 kg

m3 and its kinematic viscosity νf = 0.07m2

s
. The

solid outer wall of the tube is modelled as an linear-elastic material with Young’s
modulus E = 106Pa and a Poisson’s ratio of ν = 0.2. The fluid enters with an
inlet static pressure of Pinlet = 11500Pa and exits with Poutlet = 10000Pa. The
lower and upper ends of the elastic wall are fixed in all directions, while the left
end is under the fluid’s pressure and the right end is free to deform. The problem
is symmetric along the tube’s center-line, therefore only the right-half is modelled.
The domain is visualized in fig. 5.1.

The flow analysis is performed using PUMA, which was introduced in chapter
4. The incompressible Navier-Stokes equations are solved. At the inlet and outlet
static pressure boundary conditions are imposed. At the FSI interface the no-slip
condition is enforced, while the left-most boundary is considered symmetric. The
linear-elastic, plane-stress problem is solved using SFEM, which is an MPI-enabled
finite-element code developed by the author. As previously described, the upper
and lower ends of the elastic domain are fixed in all directions, the right end is
free to deform and at the interface the solid is subjected to the fluid’s pressure. A
structured, quadrilateral mesh is used for the fluid domain, with inflation layers
used normal to the fluid-solid interface, in order to resolve the laminar boundary
layer. The solid domain is meshed using triangular elements. The mesh is matching
at the interface, meaning that the fluid and solid nodes match one-to-one. The
fluid mesh consists of 7200 nodes and 7433 quadrilaterals, while the solid mesh is
comprised of 6690 nodes and 13378 triangles. The mesh is visualized in fig. 5.2.

The FSI model includes two disciplines, these being the flow and structural

73

Fluid Solid

Outlet

Inlet

Fixed

Fixed

S
y
m
m
et
ry

In
te
rf
ac
e

F
re
e

Figure 5.1: Elastic tube FSI: The 2-dimensional FSI domain.

Figure 5.2: Elastic tube FSI: A close view of the mesh at the fluid-solid interface.

74

Fluid P

U Solid

Figure 5.3: Elastic tube FSI: XDSM.

U0, P 0

MDA U

P Fluid P

U U Solid

Figure 5.4: Elastic tube FSI: XDSM for the Gauss-Seidel MDA.

solvers. The solvers are coupled through the fluid-solid interface, at which the
fluid’s pressure causes the solid to deform. The coupling variables are hence the
fluid pressure P and the elastic displacements U =

[
ux uy

]
at the interface. Since

the fluid and solid meshes are matching at the interface, no mapping is required to
transfer the pressure loads or the displacements from one mesh to the other. For a
given U , the fluid solver (PUMA) first deforms its mesh accordingly, then solves the
flow equations, and finally outputs the pressure P at the interface. Similarly, the
solid solver (SFEM) solves the linear-elastic equations for a given P , and produces
U at the interface. The XDSM for the FSI model is shown in fig. 5.3.

5.2 MDA

The FSI model reaches equilibrium by means of the Gauss-Seidel MDA (presented
in chapter 2.1.1. The MDA termination tolerance is set to 10−4 and no relaxation
is used. The corresponding XDSM is shown in fig. 5.4.

The MDA converges in 3 iterations, and the residual history is shown in fig.
5.5. The final, deformed FSI domain is visualized in fig. 5.6. The fluid domain
is coloured by the vertical velocity magnitude, while the solid domain is colored
by the horizontal displacement. The maximum horizontal displacement is about

75

Figure 5.5: Elastic tube FSI: Residual metric evolution for the Gauss-Seidel MDA.

Ux,max = 0.057m, while the maximum vertical velocity is about Vy,max = 0.98m
s
.

5.3 Material Property optimization (MDO)

It is possible to control the maximum horizontal displacement Ux,max of the elastic
tube wall by changing the value of the Young’s modulus E of the solid. Increas-
ing E increases the stiffness of the solid wall, therefore reducing the maximum
displacement. For a desired value of the displacement U∗

x,max, this process can be
formulated as a minimization problem where the objective function is:

f = 0.5(Ux,max − U∗
x,max)

2 (5.1)

The solid domain is divided into 4 equally-sized regions lengthwise, each one
having a separate value of E. The regions are visualized in fig. 5.7.

The resulting optimization problem is solved using the MDF approach. At each
iteration feasibility is ensured through the Gauss-Seidel MDA, for which the termi-
nation tolerance is set to 10−3 and no relaxation is used. The coupled sensitivities
of the objective f w.r.t the design variables Ei are obtained using finite-differences
on the MDA level, meaning that for each perturbed design variable a separate
MDA is needed. This brings the cost of each optimization cycle to nX + 1 MDAs,
where nX is the number of design variables (here nX = 4). Although this approach

76

Figure 5.6: Elastic tube FSI: The deformed FSI domain, resulting from the MDA.
The fluid domain is colored by the fluid’s vertical velocity, while the solid domain
is colored by horizontal displacement.

Fluid

E1

E2

E3

E4

Solid

Figure 5.7: Elastic tube FSI: The solid domain is divided into 4 equal-sized regions.

77

E0
i U0, P 0

E∗
i Optimizer Ei

MDA U

P ∗ Fluid P

U∗ f U Solid

Figure 5.8: Elastic tube FSI: XDSM for the solution of the elastic tube’s material
property optimization problem using MDF.

Region Baseline Optimized
1 106 1897544
2 106 1898094
3 106 1900584
4 106 1907181

Table 5.1: Elastic tube FSI: Baseline and optimized values for the Young’s modulus
(in Pa) for each region.

suffers in both accuracy and computational cost, it is chosen here due to ease of
implementation. SLSQP is chosen as the optimizer, and its termination tolerance
is set to 10−6. The XDSM for MDF for the FSI system is shown in fig. 5.8.

The baseline value for all Ei is 106Pa. The desired value of the maximum
horizontal displacement is U∗

x,max = 0.03m. The optimization converges in 4 cycles.
The evolution of Ux,max during the MDF optimization cycles is shown in fig. 5.9.
The final values of Ei are shown in table 5.1. All Ei converge to about 190000Pa.

78

Figure 5.9: Elastic tube FSI: Evolution of the maximum horizontal displacement
during the MDF cycles, for the elastic tube’s material property optimization prob-
lem. The desired value is U∗

x,max = 0.03m.

79

Chapter 6

Aerostructural optimization of
the ONERA M6 wing

The aerostructural optimization of aircraft wings is one of the most common use
cases of MDAO. Here, the ONERA M6 wing is considered, which is a popular
benchmark for CFD codes. Because no standard structural model exists, a simple
finite element model is constructed, consisting of beam elements along the span
of the wing. First, using an MDA the equilibrium of the aerostructural system is
computed. Then, using MDO, certain characteristics of the wing, such as the drag
it produces, are improved.

6.1 Problem description

The ONERA M6 wing is placed inside of a three-dimensional, inviscid flow field.
At flow conditions of Mach M = 0.84 and an angle of attack equal to 0 (α = 0◦),
the flow is transonic, producing a shock-wave near the leading-edge of the wing.
The wing is not rigid, and deforms due to the forces acting on it. These are the
aerodynamic forces, computed by integration of the pressure on the surface of the
wing, and the wing’s own weight. The wing is cantilevered, meaning that it is
fixed at the root but free to move in any direction at the tip. In order to make the
MDAO problem meaningful, it is considered that the wing is a part of an aircraft
configuration, and therefore has to carry the weight of the aircraft. This is used
when setting up the optimization problem.

6.1.1 Aerodynamic model

The ONERA M6 is wing is a swept, semi-span wing with no twist. It uses the
symmetric ONERA D airfoil section. The wing has a span of 1.1963 meters, a

80

Figure 6.1: ONERA M6: CAD model of the wing.

mean aerodynamic chord of 0.64607 meters, an aspect ratio of 3.8, a taper ratio
of 0.562, a leading-edge sweep angle of 30◦ and a trailing-edge sweep angle of 18◦.
The geometry of the wing is shown in fig. 6.1. Wind tunnel tests concerned with
the flow over the ONERA M6 were conducted by Schmitt and Charpin [31]. The
tests were performed for various transonic Mach numbers and angles of attack.
The results of [31] are widely used to validate CFD codes.

The flow around the wing is modelled using the Euler equations. The in-
house, GPU enabled CFD solver PUMA, introduced in chapter 4, is used on an
unstructured mesh of 72791 nodes and 341797 cells. The surface mesh of the wing
is shown in fig 6.2.

The wing’s surface is parameterized using volumetric NURBS. There exist 280
control points in total, of which only 18 are updated during optimization, while
the rest remain unchanged. In fig. 6.3, the points in blue correspond to the fixed
control points, while the red points are free to move in the span-wise and flap-wise
directions. Since the 18 control points can move in two directions, this results in
36 shape parameters or design variables for optimization.

81

Figure 6.2: ONERA M6: Mesh around the wing.

Figure 6.3: ONERA M6: The (baseline) volumetric NURBS parameterization of
the wing. The points in blue are the control points for the NURBS. The points in
red are the active control points, and they are able to move in the span-wise and
flap-wise directions.

82

6.1.2 Structural model

In order to use the ONERA M6 wing for aerostructural MDAO, a structural model
must first be developed. A simple but effective approach of modelling the elastic
behaviour of the wing under aerodynamic loading, is to consider a beam model
which captures the bending of the wing in the span-wise direction. The model
is constructed from one-dimensional beam finite elements. Each element has 2
nodes and 2 DoF per node. For a node i its two DoF correspond to the vertical
displacement vi and rotation ωi. A single beam element is shown in fig. 6.4. The
FEM model is implemented in SFEM, which is finite-element code developed by
the author and introduced in chapter 5.

v1, ω1 v2, ω2

Figure 6.4: ONERA M6 structural model: Schematic of a single beam element.

The total deflection inside each element is interpolated as follows:

v(s) =
[
N1(s) N2(s) N3(s) N4(s)

] [
v1 ω1 v2 ω2

]T
(6.1)

In the above equation, Ni are the element shape functions, which are formulated
as:

N1(s) = 1− 3s2 + 2s3

N2(s) = L(s− 2s2 + s3)

N3(s) = 3s2 − 2s3

N4(s) = L(−s2 + s3)

(6.2)

where L is the length of each element. The normalized coordinate s is simply x
L
,

where x is a coordinate along the element’s length. The element stiffness matrix
is:

Ke =
EI

L3

12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
−6L −4L2 6L −2L2

 (6.3)

where E is Young’s modulus and I is the moment of inertia of each element. The
bending moment inside each element is computed as:

83

Symbol Description Value Units
E Young’s modulus 3.5 ∗ 107 Pa

σyield Yield stress 4 ∗ 106 Pa
N Safety factor 2 -
σd Design stress 2 ∗ 106 Pa
ρ Density 2710 kg/m3

Ri Outer radius 0.2 m
t0i Initial thickness 0.03 m

Table 6.1: ONERA M6 structural model: Material and geometrical properties of
the beam elements.

Mb(s) = EI
d2ν

dx2
(6.4)

From the bending moment, the bending stress is easily calculated as:

σb(s) =
c

I
Mb(s) (6.5)

where c is the distance between the furthest point on the elements cross-section
and its bending-axis. Each element i has a hollow, cylindrical cross-section, of
outer radius Ri and thickness ti. Therefore, c = Ri. The material properties and
geometric properties of the elements are found in table 6.1. Although the radius
of each element is fixed, its thickness is allowed to change during optimization.

In total, 5 elements with 6 nodes total are used, resulting in 12 DoF. The DoF
corresponding to the node closest to the root of the wing are fixed, i.e. they cannot
move in any direction, so the total number of DoF is reduced to 10. The structural
model is visualized in fig. 6.5.

v1, ω1v2, ω2v3, ω3v4, ω4v5, ω5v6 = ω6=0

Figure 6.5: ONERA M6 structural model: Schematic of the structural model. The
leftmost (closest to the wing’s root) node and its corresponding DoF are fixed. The
model computes the bending of the wing.

Unlike the displacements νi and rotations ωi which are computed for each
node, the stresses σb,i are computed for each element. It is important that, for

84

each element, the stress σb,i does not exceed the allowed limit, or design stress σd.
The design stress is equal to the yield stress σyield, divided with a safety factor
N , i.e. σd =

σyield

N
. For optimization, this corresponds to the set of inequality

constraints σb,i ≤ σd. In order to reduce the dimensionality of the constraint, the
discrete Kreisselmeier-Steinhauser (KS) function [21] is used:

σDKS =
1

ρ
log(

nElements∑
i=0

eρσb,i) (6.6)

The constraint now becomes σDKS ≤ σd. Hence, by using the KS function only
a single structural constraint is required, instead of having one constraint for each
element.

Each element is subject to an aerodynamic force and its own weight. The
aerodynamic force is computed by integrating the surface pressure. In order to
assign an aerodynamic force value to each element, the integration is done in
patches. The patches are equally spaced along the span of the wing, each one
roughly corresponding to each element. This is showcased in fig. 6.6.

Patch 1

Patch 2

Patch 3

Patch 4

Patch 5

Figure 6.6: ONERA M6 structural model: The patches used for integration of the
surface pressure on the wing. The number of patches is equal to the number of
beam elements. Each patch computes the aerodynamic force for its corresponding
element.

85

6.1.3 Aircraft configuration

As it was previously mentioned, it is considered that the ONERA M6 wing is part
of a theoretical aircraft configuration, and must therefore carry its weight. This is
done with the aim of making the MDAO problem more realistic, without further
increasing the computational cost by analysing a whole aircraft.

The total weight of the theoretical aircraftWtotal is the sum of its empty weight
Wempty, its payload weight Wpaylod and its fuel weight Wfuel. The empty weight
of the aircraft is taken to be almost equal to its structural weight, which is made
up from the weight of the wing Wwing, the fuselage Wfuselage and the tail Wtail. In
short, the weight of the aircraft can be computed from the following expressions:

Wtotal = Wempty +Wpaylod +Wfuel

Wempty = Wwing +Wfuselage +Wtail

(6.7)

During optimization only the weight of the wing is allowed to vary. Hence, it is
convenient to express the Wtotal as the sum of a fixed weight Wfixed and the wing
weight:

Wtotal = Wfixed +Wwing

Wfixed = Wfuselage +Wtail +Wpaylod +Wfuel

(6.8)

For the baseline configuration, it is considered that the wing weight is around
10% of the total weight. Given the material and geometrical properties of the
structural model presented in table 6.1, the initial wing weight is W 0

wing = 2218N .

Therefore, the initial total weight is W 0
total =

W 0
wing

0.1
= 22180N . The fixed weight,

which does not change during optimization, is computed as Wfixed = W 0
total −

W 0
wing = 19962N .
Similar to the weight, the total lift Ltotal and drag Dtotal can be expressed as

sums of components:

Ltotal = Lwing + Lfuselage + Ltail

Dtotal = Dwing +Dfuselage +Dtail

(6.9)

Since only the lift and drag of the wing is known, the values of the other
components have to be estimated. For the lift, it is considered that the wing and
the fuselage produce 90% and 14% of the total amount respectively, while the tail
reduces it by 4%. The baseline ONERA M6, for the conditions described in the
previous section, produces a lift of about 104N . Therefore, the total baseline lift
is estimated as follows:

L0
total =

2 ∗ 104

0.9
= 22222N (6.10)

86

Quantity Baseline Value (N) Constant
Wwing 2218 No
Wfixed 19962 Yes
Wtotal 22180 No
Lwing 20000 No
Lfuselage 3111 Yes
Ltail -888 Yes
Ltotal 22222 No
Dwing 950 No
Dfuselage 950 Yes
Dtail 211 Yes
Dtotal 2111 No

Table 6.2: ONERA M6 aerostructural model: Baseline values of the aircraft’s
weight, lift and drag values. The last column states whether the quantity remains
constant during optimization.

The fuselage and tail lift contributions can now be calculated as:

Lfuselage = L0
fuselage = 0.14 ∗ L0

total

Ltail = L0
tail = −0.04 ∗ L0

total

(6.11)

The values of Lfuselage and Ltail remain constant during optimization, since the
geometry of the fuselage and the tail are not changed. A similar process is followed
for the drag. It is considered that both the wing and the fuselage contributed each
about 45% of the total aircraft drag, while the tail adds the remaining 10%. The
baseline drag value for the ONERA M6 is about 475N . Since the Euler equations
are used, this corresponds only to wave drag. The value of the total baseline drag
can be calculated as:

D0
total =

2 ∗ 475
0.45

= 2111N (6.12)

The fuselage and tail drag contributions are now easily computed:

Dfuselage = D0
fuselage = 0.45 ∗D0

total

Dtail = D0
tail = 0.1 ∗D0

total

(6.13)

Similar to Lfuselage and Ltail, the values of Dfuselage and Dtail remain constant
during optimization. The values of all weight, lift and drag components presented
above can be found in table 6.2.

87

F 0
Aero, U

0 b t

MDA U

FAero, L,D FAero Aerodynamics FAero

U,W, g U Structures

Figure 6.7: ONERA M6 aerostructural MDA: XDSM for the Gauss-Seidel MDA.

6.2 MDA

By performing an MDA for the baseline configuration it is possible to determine
the deformation of the wing and the stresses it undergoes while flying. Further-
more, considering that the wing deforms during flight, the drag and lift values
also change. The MDA loop begins by executing the aerodynamics solver, PUMA.
Before each flow solution, the CFD mesh has to be modified to account for the
structural displacements, produced by the FEM solver. After modifying the mesh,
the flow equations are solved, and the surface pressure values are obtained. By
integrating these, the aerodynamic forces per element, denoted by FAero, are com-
puted. The FEM solver uses these forces to compute the nodal displacements U .
The FEM nodal displacements are then interpolated to the CFD mesh, and the
process repeats. The coupling variables are the element aerodynamic forces FAero

(of size nElements = 5) and the nodal displacements U (of size nNodes = 6). FAero is
the output of aerodynamics, while U is the output of the structural solver. This
is also shown in the XDSM for the aerostructural MDA (fig. 6.7).

The Gauss-Seidel MDA is used, the procedure for which is described in algo-
rithm 2. The termination tolerance is set to 10−4 and no relaxation is used. The
evolution of the residual during the MDA iterations is shown in fig. 6.8. The
MDA converges in 4 iterations. The total lift Ltotal and drag Dtotal, as well as the
aggregated stress σDKS for the undeformed and deformed baseline wing are listed
in table 6.3. Finally, the undeformed and deformed configurations are shown in
fig. 6.9.

88

Figure 6.8: ONERA M6 aerostructural MDA: Residual metric evolution for the
Gauss-Seidel MDA.

Quantity Value (undeformed) Value (deformed) Unit
Ltotal 22715 23367 N
Dtotal 2112 2136N N
σDKS 0 1941346 Pa

Table 6.3: ONERA M6 aerostructural MDA: Values of the lift, drag and the KS
aggregated stress for the baseline aerostructural model. Comparison between the
undeformed and deformed (obtained by the MDA) configurations.

89

Figure 6.9: ONERA M6 aerostructural MDA: Comparison of the undeformed
(left) and deformed (obtained by the MDA, right) configurations for the baseline
aerostructural model. The pressure field contours are shown.

6.3 Shape and structural optimization (MDO)

Shape and structural optimization is performed in order to improve certain per-
formance metrics of the wing. The choice of performance metric, namely the
objective function, as well as the set of constraints used can significantly affect
the result of the optimization. For all cases however, the set of design variables
remain the same. These are the shape parameters of the wing, namely the active
control points of the volumetric NURBS, denoted by b, and the thickness of each
structural element t. In total, there exist nX = 42 design variables, 36 of which
correspond to b and 6 of which correspond to t.

A constraint imposed regardless of the choice of objective function is that the
stress does not exceed the maximum allowed amount or design stress σd. This
constraint, denoted by g, is expressed as:

g =
σDKS

σd
≤ 1 (6.14)

Again, the discrete KS stress aggregate is used, resulting in a single structural
constraint. A second constraint imposed in all cases is that the total produced lift
Ltotal is equal or greater than the total weightWtotal of the aircraft. This constraint

90

b0, t0 F 0
Aero, U

0

b∗, t∗ Optimizer b t

MDA U

F ∗
Aero, L

∗, D∗ FAero Aerodynamics FAero L,D

U∗,W ∗ g U Structures W

f, h Performance

Figure 6.10: ONERA M6 aerostructural MDO: XDSM for the aerostructural
MDO, using the MDF architecture.

is denoted by h, and is expressed as:

h = Ltotal −Wtotal ≥ 0 (6.15)

Regardless of the objective function f used, the optimization process is the
same. The Multidisciplinary Feasible (MDF) architecture is used. MDF requires
an MDA at each optimization cycle. The Gauss-Seidel MDA is used, with a ter-
mination tolerance of 10−4 and no relaxation. Each optimization cycle begins
by adapting the CFD mesh to the current shape parameters b. Then, the MDA
process converges the system to equilibrium, as described in the previous section.
Each MDA iteration begins by modifying the CFD mesh to account for the struc-
tural displacements, then the aerodynamics solver is executed, solving the flow
equations and computing FAero, the (single) wing lift L and drag D. Afterwards,
the structural solver computes U and evaluates the structural weight of the (sin-
gle) wing W and the constraint g. After the MDA converges successfully, a new
discipline, called performance, uses L, D and W to evaluate the constraint h and
the objective f . The process is showcased in the relevant XDSM (fig. 6.10).

For the computation of the coupled derivatives, the coupled adjoint method
is used. There exist nX = 42 design variables in total, while the size of the
objective f and the constraints g and h is nF = 3. The disciplinary partial

91

derivatives of aerodynamics are computed using the adjoint solver of PUMA. For
each differentiation a total of 2 + nElements calls to the adjoint solver are required.
This is because aerodynamics has to provide the derivatives of its outputs, which
are L, D and FAero, w.r.t its inputs U and b. The structural discipline has to
provide the derivatives of U , g and W w.r.t FAero and t. The newly added third
discipline, performance, has to provide the derivatives of the objective f and the
constraint h w.r.t the lift L, the drag D and the weight W . The disciplinary
derivatives of both the structural and performance disciplines are computed using
finite-differences with a step-size of 10−6. For all cases, the SLSQP optimizer is
used. The termination tolerance is set to 10−6 and a maximum of 10 cycles are
allowed.

6.3.1 Results

Two objective functions are used. The first is the weighted sum of the aircraft’s
drag and structural weight. Reducing the drag has the obvious benefit of improving
aerodynamic efficiency. Reducing the structural weight means that either less
stress is placed on the wing (due to requiring less lift), or that the aircraft can
carry more payload or fuel (for the same lift value). The objective function is
mathematically expressed as:

f =
D

D0

+
W

W0

(6.16)

The values D0 and W0 are used to scale D and W , so that both D
D0

W
W0

have
a value near 1. Here, D and W correspond to the drag and weight of the wing,
while D0 and W0 are the initial wing drag and weight values, found in table 6.2.

The optimization is performed as described previously and summarized in fig.
6.10. The evolution of the wing drag, lift, weight and lift-to-drag ratio is shown in
fig. 6.11. Similarly, the evolution of the total aircraft lift and weight, and the stress
constraint g is shown in fig. 6.12. The optimized stress and thickness distributions
for the wing are shown in fig. 6.13. The optimizer is able to successfully reduce
both the drag and weight, by almost 10% and 50% respectively (compared to the
initial value). Although the lift is decreased, the lift-to-drag ratio increases, since
the drag is reduced by a higher percentage. The reason the lift decreases is due to
the weight reduction. In order to reduce the weight, the optimizer had to reduce
the thickness of the structural elements, meaning that the stress increased. As a
result, the lift also decreases to prevent the stress from exceeding the design limit.
However, the difference of total lift and weight, or Ltotal − Wtotal also decreases
(fig. 6.12), meaning that at the end of optimization the aircraft is able to carry
less extra weight. Obviously, this is a drawback of this objective function.

92

Figure 6.11: ONERA M6 aerostructural MDO: Evolution of the wing drag (upper
left), lift (upper right), weight (lower left) and lift-to-drag ratio (lower right). The
weighted sum of the drag and weight is used as the objective.

93

Figure 6.12: ONERA M6 aerostructural MDO: Evolution of the total aircraft lift
and weight, and the stress constraint. The weighted sum of the drag and weight
is used as the objective.

94

Figure 6.13: ONERA M6 aerostructural MDO: Stress (upper) and thickness
(lower) distributions along the wing’s span. Element number 0 corresponds to
the element closest to the wing’s root and 4 to the tip. The weighted sum of the
drag and weight is used as the objective.

95

Figure 6.14: ONERA M6 aerostructural MDO: Comparison of the deformed con-
figurations for the baseline (left) and optimized (right) wings. The pressure field
contours are shown. The optimized wing is less stiff than the baseline, and bends
more. The weighted sum of the drag and weight is used as the objective.

96

Figure 6.15: ONERA M6 aerostructural MDO: Evolution of the wing drag (upper
left), lift (upper right), weight (lower left) and lift-to-drag ratio (lower right). The
lift-to-drag ratio is used as the objective.

The second objective function used is the lift-to-drag ratio or L
D
. Here L and D

are the lift and drag values of the wing. Maximizing this function is mainly done
with the aim of improving aerodynamic performance, namely reducing drag and
increasing lift. Again, the optimization is performed using MDF. The evolution of
the wing drag, lift, weight and lift-to-drag ratio is shown in fig. 6.15. Similarly,
the evolution of the total aircraft lift and weight, and the stress constraint g is
shown in fig. 6.16. The optimized stress and thickness distributions for the wing
are shown in fig. 6.17.

The optimizer is able to both increase the lift and reduce the drag of the
wing. Interestingly, the optimizer is able to reduce the drag by a larger amount
than with the previous objective (D

D0
+ W

W0
). The lift value is also significantly

increased. Figure 6.17 reveals that the optimized thickness distribution is constant,
with all structural elements having the same thickness, equal to the allowed upper
bound. By observing the evolution of the stress constraint g, it is revealed that
for all iterations the value of g is near, or marginally exceeding, the allowed limit.
Therefore, the optimizer moves the thickness values close to the upper bound, to
satisfy the constraint, and ,unlike before, there is no reason to decrease any of
them. Hence, the distribution is constant with a value equal to the upper bound.

97

Figure 6.16: ONERA M6 aerostructural MDO: Evolution of the total aircraft lift
and weight, and the stress constraint. The lift-to-drag ratio is used as the objective.

This means that the structural weight of the wing increases, as shown in fig. 6.15.
However, the increase in lift more than makes up for it, as the optimized wing is
able to carry more extra weight than the baseline (fig. 6.16). Thus, this objective
function (L

D
) performs better for this problem and setup than the weighed sum

of the wing’s drag and weight (D
D0

+ W
W0

). Regardless of the objective function
used, the MDF architecture is able to improve the design and converge towards
the optimum.

98

Figure 6.17: ONERA M6 aerostructural MDO: Stress (upper) and thickness
(lower) distributions along the wing’s span. Element number 0 corresponds to
the element closest to the wing’s root and 4 to the tip. The lift-to-drag ratio is
used as the objective.

99

Figure 6.18: ONERA M6 aerostructural MDO: Comparison of the deformed con-
figurations for the baseline (left) and optimized (right) wings. The pressure field
contours are shown. The optimized wing is stiffer than the baseline, therefore it
bends less. The lift-to-drag ratio is used as the objective.

100

Chapter 7

Conclusions and
recommendations for future work

7.1 Summary and conclusions

The aim of this thesis was to showcase and implement MDAO, and then apply
it to different problems. The theory behind MDAO was detailed, explaining the
difference between single-discipline and multidisciplinary numerical models, and
presenting different MDA methods, MDO architectures and ways to compute the
coupled derivatives. A Python framework, named mSense, was developed to fa-
cilitate easy setup and solution of multidisciplinary problems. The theory was
first applied to standard MDO benchmark problems, which were used compare
the performance of three MDO architectures. Then, an FSI problem was solved,
which was concerned with the analysis and optimization of an airfoil-spring sys-
tem. The resulting multidisciplinary shape optimization problem was solved using
two monolithic architectures, MDF and IDF. The solution of a more computation-
ally expensive FSI problem, simulating flow inside of an elastic, deformable tube
followed. Finally, the methodology is applied to the aerostructural analysis and
optimization of an aircraft wing.

MDAO is a very valuable tool. It provides a robust mathematical framework
for the analysis and design of complex, coupled systems. However, not all meth-
ods are applicable or suitable to all problems. For example, for the problems
tested, it was concluded that the monolithic MDF and IDF architectures tend
to perform overall better than the distributed CO architecture. Furthermore, al-
though IDF performed better than MDF for the simpler benchmark problems, in
the airfoil-spring FSI problem the opposite held true. Overall, drawing from the
results obtained in this thesis, MDF seems to be the most generally applicable and
performant architecture.

101

7.2 Recommendations for future work

Some recommendations for future work are:

• Formulate MDAO problems using the residual form. The main benefit of
the residual form is that the computation of coupled derivatives (via the
coupled adjoint method) can become significantly more efficient, especially
in problems with many coupling variables and computationally demanding
disciplinary solvers. However, due to the invasive nature of the residual form,
this requires not only changes to existing MDAO software, but also to the
physics solvers, as they must provide extensive access to their internals.

• Investigation of other MDO architectures. The architectures presented in
this thesis are well-established and have been studied quite extensively. Newer
architectures may provide better performance, especially for specific prob-
lems. For example, Asymmetric Subspace Optimization (ASO), developed
for aerostructural optimization problems, has been shown to outperform
MDF under certain conditions [8].

• Use of high-fidelity solvers for aerostructural optimization. In the aerostruc-
tural wing analysis and optimization application presented in this thesis, the
fluid analysis was performed using the Euler equations and the structural be-
haviour was simulated using simple beam elements. The use of a viscous fluid
analysis and a more detailed structural model, such as a shell finite element
model, provides the opportunity for better and more realistic designs.

102

Bibliography

[1] N. Alexandrov and R. Lewis. Analytical and computational aspects of collab-
orative optimization for multidisciplinary design. AIAA, 40:301–309, 2002.

[2] E. Arian. Convergence Estimates for Multidisciplinary Analysis and Opti-
mization. ICASE Report No. 97-57. NASA Langley Research Center. Institute
for Computer Applications in Science and Engineering [ICASE], 1997.

[3] V. G. Asouti, X. S. Trompoukis, I. C. Kampolis, and K. C. Giannakoglou.
Unsteady CFD computations using vertex-centered finite volumes for unstruc-
tured grids on graphics processing units. International Journal for Numerical
Methods in Fluids, 67(2):232–246, 2011.

[4] V. Balabanov, C. Charpentier, D. Ghosh, G. Quinn, G. Vanderplaats, and
G. Venter. Visualdoc: A software system for general purpose integration and
design optimization. AIAA 2002-5513, 2002.

[5] R. Braun. Collaborative optimization: an architecture for large-scale dis-
tributed design. PhD thesis, Standford University, 1996.

[6] R. Braun, I. Kroo, and P. Gage. Post-optimality analysis in aerospace vehicle
design. AIAA 93-3932, 1993.

[7] I. Budianto and J. Olds. Design and deployment of a satellite constella-
tion using collaborative optimization. Journal of Spacecraft and Rockets,
41(6):p.956–963, 2004.

[8] I. Chittick and J. Martins. An asymmetric suboptimization approach to
aerostructural optimization. Optimization and Engineering, 10:133–152, 03
2009.

[9] F. Gallard, C. Vanaret, D. Guénot, V. Gachelin, R. Lafage, B. Pauwels, P.-J.
Barjhoux, and A. Gazaix. Gems: A python library for automation of multidis-
ciplinary design optimization process generation. In 2018 AIAA/ASCE/AH-
S/ASC Structures, Structural Dynamics, and Materials Conference, 2018.

103

[10] K. Giannakoglou and D. Papadimitriou. Adjoint Methods for Shape Opti-
mization, pages 79–108. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[11] J. Gray, J. Hwang, J. Martins, K. Moore, and B. Naylor. Openmdao: An
open-source framework for multidisciplinary design, analysis, and optimiza-
tion. Structural and Multidisciplinary Optimization, 2019.

[12] Justin Gray, Kenneth Moore, Tristan Hearn, and Bret Naylor. Standard
platform for benchmarking multidisciplinary design analysis and optimization
architectures. AIAA Journal, 51:2380–2394, 10 2013.

[13] R. Haftka. Automated procedure for design of wing structures to satisfy
strength and flutter requirements. Technical report, NASA Langley research
center, 1973.

[14] R. Haftka. Simultaneous analysis and design. AIAA Journal 1099-1103, 1985.

[15] J. Hwang, D. Lee, J. Cutler, and J. Martins. Large-scale multidisciplinary
optimization of a small satellite’s design and operation. Journal of Spacecraft
and Rockets, 51, 09 2014.

[16] G. Kennedy and J. Martins. Parallel solution methods for aerostructural anal-
ysis and design optimization. 13th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference 2010, 09 2010.

[17] G. Kenway, G. Kennedy, and J. Martins. Scalable parallel approach for high-
fidelity steady-state aeroelastic analysis and adjoint derivative computations.
AIAA Journal, 52:935–951, 2014.

[18] G. Kenway and J. Martins. Buffet-onset constraint formulation for aerody-
namic shape optimization. AIAA Journal, 55:1–18, 2017.

[19] P. Koch, B. Wujek, O. Golovidov, and T. Simpson. Facilitating probabilis-
tic multidisciplinary design optimization using kriging approximation models.
AIAA 2002-5415, 2002.

[20] D. Kraft. A Software Package for Sequential Quadratic Programming.
Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln:
Forschungsbericht. Wiss. Berichtswesen d. DFVLR, 1988.

[21] A. Lambe, G. Kennedy, and J. Martins. An evaluation of constraint aggre-
gation strategies for wing box mass minimization. Structural and Multidisci-
plinary Optimization, 55, 2017.

104

[22] A. Lambe and J. Martins. Extensions to the design structure matrix for the
description of multidisciplinary design, analysis, and optimization processes.
Structural and Multidisciplinary Optimization, 46(2):273–284, 2012.

[23] L. Ledsinger. Solutions to decomposed branching trajectories with powered
flyback using multidisciplinary design optimization. 2000.

[24] R. Lewis, G. Shubin, E. Cramer, J. Dennis, P. Frank, R. Michael, L. Gregory,
and R. Shubin. Problem formulation for multidisciplinary optimization. SIAM
Journal on Optimization, 4, 02 1997.

[25] J. Martins, J. Alonso, and J. Reuther. A coupled-adjoint sensitivity analysis
method for high-fidelity aero-structural design. Optimization and Engineer-
ing, 6(1):33–62, 2005.

[26] J. Martins and A. Ning. Engineering Design Optimization. Cambridge Uni-
versity Press, Cambridge, UK, 2022.

[27] J. Martins, P. Sturdza, and J. Alonso. The complex-step derivative approxi-
mation. ACM Trans. Math. Softw., 29:245–262, 2003.

[28] S. Padula, N. Alex, L. Green, and N. Alexandrov. MDO test suite at nasa
langley research center. 10 1996.

[29] B. Potsaid, Y. Bellouard, J. Ting, and J.T. Wen. A multidisciplinary design
and optimization methodology for the adaptive scanning optical microscope
(ASOM) - art. no. 62890l. Proceedings of SPIE - The International Society
for Optical Engineering, 6289, 09 2006.

[30] M. J. D. Powell. A Direct Search Optimization Method That Models the Objec-
tive and Constraint Functions by Linear Interpolation, pages 51–67. Springer
Netherlands, Dordrecht, 1994.

[31] V. Schmitt and C. Françoise. Pressure distributions on the onera m6 wing at
transonic mach numbers. Technical report, AGARD, 1979.

[32] R. Sellar, S.M. Batill, and J. Renaud. Response surface based, concurrent
subspace optimization for multidisciplinary system design. 1996.

[33] J. Sobieski. Recent Experiences in Multidisciplinary Analysis and Optimiza-
tion, Part 1. 1984.

[34] J. Sobieski. Sensitivity of complex, internally coupled systems. AIAA Journal,
28(1):153–160, 1990.

105

[35] J. Sobieski, T. Altus, M. Phillips, and R. Sandusky. Bilevel integrated sys-
tem synthesis for concurrent and distributed processing. AIAA Journal,
41(10):1996–2003, 2003.

[36] N. Tedford and J. Martins. Benchmarking multidisciplinary design optimiza-
tion algorithms. Optimization and Engineering, 11:159–183, 02 2010.

[37] K. Tsiakas, X. Trompoukis, V. Asouti, K. Giannakoglou, G. Rogé, S. Julisson,
L. Martin, and S. Kleinveld. Discrete and continuous adjoint-based aerostruc-
tural wing shape optimization of a business jet. Fluids, 9(4), 2024.

[38] P. Virtanen, R. Gommers, T. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. van der Walt,
M. Brett, J. Wilson, K. Millman, N. Mayorov, A. Nelson, E. Jones, R. Kern,
E. Larson, C. Carey, I. Polat, Y. Feng, E. Moore, J. VanderPlas, D. Lax-
alde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. Harris,
A. Archibald, A. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Con-
tributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272, 2020.

[39] A. Wächter and L. Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical
Programming, 106(1):25–57, Mar 2006.

106

Appendix A

MSense basic user guide

MSense is a Python package developed for MDAO. It allows the user to quickly
setup and solve MDAO problems, and makes it easy to switch between various
MDA methods and MDO architectures. MSense is written with an object-oriented
approach and can be used through its Python Application Programming Interface
(API). In order to demonstrate the use of mSense, the code for setup and solution
of Sellar’s problem (from chapter 3) is presented.

Sellar’s problem is an analytic MDO problem which consists of two disciplines
and an objective. The variables present in the problem are the shared design
variables z1 and z2, the local design variable x1, the coupling variables y1 and
y2, the local constraints g1 and g2 and the objective f . For Sellar’s problem, the
variables are defined in code as follows:

1 # Import everything from the API

2 from msense.api import *

3

4 # Design variables

5 z1 = Variable(name="z1", lb=-10, ub=10)

6 z2 = Variable(name="z2", lb=0, ub=10)

7 x1 = Variable(name="x1", lb=0, ub=10)

8

9 # Couplings

10 y1 = Variable(name="y1)

11 y2 = Variable(name="y2")

12

13 # Constraints and objective

14 g1 = Variable ("g1", lb=-np.inf , ub=0, keep_feasible=False)

15 g2 = Variable ("g2", lb=-np.inf , ub=0, keep_feasible=False)

16 f = Variable ("f")

The first step to using mSense is always to import the functions and classes
defined in the API module (line 2). All variables present in a problem are defined
in mSense using the Variable class. In order to define a Variable, the user

107

must specify its unique name and optionally its size, which defaults to 1. If the
Variable corresponds to a design variable, the user can also specify its lower lb
and upper ub bounds, which if not specified default to −∞ and ∞ respectively.
Variables which correspond to constraints should have at least one of lb and lb

set to a finite value. This is because in mSense constraints are specified through
variable bounds as follows:

lb ≤ g ≤ ub (A.1)

If lb=ub, the constraint is treated as an equality constraint. The user can
also specify whether the constraint should remain inside the feasible region during
optimization, by setting the option keep_feasible to True (lines 14 and 15).

The next step after defining all variables is to define the disciplines. In mSense,
the evaluation and differentiation of a discipline is wrapped inside the Discipline
class, which is a Python Abstract Base Class (ABC). When defining a Discipline,
the user must first specify its unique name along with its input and output
Variables. Two of Discipline’s methods are not implemented, and have to
be overridden by the user. These are the _eval() and _differentiate() meth-
ods, which specify how the discipline evaluates its outputs and its disciplinary
derivatives. In the code snippet below, the first discipline in Sellar’s problem is
defined:

1 from msense.api import *

2 import numpy as np

3

4 class SellarDiscipline1(Discipline):

5 def __init__(self , z1: Variable , z2: Variable ,

6 x1: Variable , y2: Variable ,

7 y1: Variable , g1: Variable):

8

9 # Initialize the base object

10 super().__init__(name=" SellarDiscipline1",

11 input_vars =[z1, z2, x1, y2],

12 output_vars =[y1, g1])

13

14 def _eval(self) -> None:

15 # Get the input variable values

16 _z1 = self._values ["z1"]

17 _z2 = self._values ["z2"]

18 _x1 = self._values ["x1"]

19 _y2 = self._values ["y2"]

20

21 # Compute y1 and g1

22 self._values ["y1"] = np.sqrt(_z1 **2 + _z2 + _x1 - 0.2 *

_y2)

23 self._values ["g1"] = 3.16 - self._values ["y1 "]**2

108

24

25 def _differentiate(self) -> None:

26 # Get the input variable values

27 _z1 = self._values ["z1"]

28 _z2 = self._values ["z2"]

29 _x1 = self._values ["x1"]

30 _y2 = self._values ["y2"]

31 _y1 = self._values ["y1"]

32

33 # Compute the derivatives of y1

34 self._jac["y1"] = {"z1": _z1/_y1 ,

35 "z2": 1 / (2*_y1),

36 "x1": 1/(2* _y1),

37 "y2": -0.2/(2* _y1)}

38

39 # Compute the derivatives of y1

40 self._jac["g1"] = {"z1": -2*_y1*self._jac["y1"]["z1"],

41 "z2": -2*_y1*self._jac["y1"]["z2"],

42 "x1": -2*_y1*self._jac["y1"]["x1"],

43 "y2": -2*_y1*self._jac["y1"]["y2"]}

Apart from importing the mSense API, numpy is also imported. The class
SellarDiscipline1 is derived from the Discipline base class, as seen on line
4. Inside the __init__() function, the instance of the base class must also be
initialized. This is done on line 10, using the super().__init__() method. The
name of the discipline, and its input and output variables are passed as argu-
ments to this method. The only necessary step left to fully define the discipline
is to override the _eval() method, which specifies how the discipline evaluates
its outputs. As seen on lines 15-19, the user can access a discipline’s current in-
put variable values through the _values dictionary. Then, using these values,
the outputs are computed and their values must be placed inside the _values

dictionary (lines 22-23). Although not required, the user can also override the
_differentiate() method to specify how the discipline computes its derivatives.
Similar to _eval(), the user can access the discipline’s current input and out-
put values using the _values dictionary. Using these, the user should update
the _jac dictionary, which stores the disciplinary derivatives (lines 34-43). _jac

consists of one dictionary per output variable, which in turn stores the value of
the derivatives of the output variable w.r.t each input variable. This is demon-
strated in lines 32-41. If the _differentiate() method is not overridden, the
disciplinary derivatives can also be approximated. This can be achieved by calling
the set_jacobian_approximation() method on the instance of the derived class,
for example:

1 sellar_disc_1 = SellarDiscipline1(z1, z2, x1, y2, y1, g1)

2 sellar_disc_1.set_jacobian_approximation ()

109

When calling the set_jacobian_approximation() method the user can op-
tionally specify the method use for approximation (either "finite_difference"
or "complex_step") and the step-size. By default the finite-differences are used,
with a step-size of 1−4. If the user wishes to evaluate or differentiate the discipline,
the eval() and differentiate() methods should be called. For example:

1 sellar_disc_1 = SellarDiscipline1(z1, z2, x1, y2, y1, g1)

2 input_values = {"x1": 1.0, "z1": 4, "z2": 3, "y2": 0.9}

3 output_values = sellar_disc_1.eval(input_values)

4 jacobian = sellar_disc_1.differentiate(input_values)

Here, input_values is dictionary holding the input variable values with which
the user wishes to evaluate the disciplinary outputs. By calling the eval()method,
mSense first checks that no input variables values are missing and that the sizes of
all passed variable values are correct, then calls _eval(), and returns the output
variable values as a dictionary named output_values. The validity of the output
values is also checked. It should be mentioned here that mSense has the capability
to cache discipline evaluations, which avoids re-evaluating or re-differentiating a
discipline with the same input values. By default, only the values of the latest suc-
cessful evaluation/differentiation are cached. The user can change this by setting
the value of cache_policy inside the base class initializer (super().__init()).
Accepted values are "latest" (cache only the latest evaluation, default), "all"
(cache all evaluations) and None (do not cache). differentiate() works simi-
lar to eval(). By default, a Discipline has to be first evaluated for a set of
input values before it is differentiated. This can be changed by setting the field
_diff_policy from True to False.

The second discipline and the objective in Sellar’s problem are similar are
defined similar to the first discipline:

1 class SellarDiscipline2(Discipline):

2 def __init__(self , z1: Variable , z2: Variable ,

3 y1: Variable , y2: Variable ,

4 g2: Variable):

5

6 # Initialize the base object

7 super().__init__(name=" Disc2",

8 input_vars =[z1, z2, y1],

9 output_vars =[y2, g2])

10

11 def _eval(self) -> None:

12 # Get the input variable values

13 _z1 = self._values ["z1"]

14 _z2 = self._values ["z2"]

15 _y1 = self._values ["y1"]

16

17 # Compute y2 and g2

110

18 self._values ["y2"] = np.abs(_y1) + _z1 + _z2

19 self._values ["g2"] = self._values ["y2"] - 24

20

21 def _differentiate(self) -> None:

22 # Get the input variable values

23 _z1 = self._values ["z1"]

24 _z2 = self._values ["z2"]

25 _y1 = self._values ["y1"]

26

27 # Compute the derivatives of y2 and g2

28 self._jac["y2"] = {"y1": np.sign(_y1), "z1": 1.0, "z2":

1.0}

29 self._jac["g2"] = {"y1": np.sign(_y1), "z1": 1.0, "z2":

1.0}

30

31

32 class SellarObjective(Discipline):

33 def __init__(self , x1: Variable , z2: Variable ,

34 y1: Variable , y2: Variable ,

35 f: Variable):

36

37 # Initialize the base object

38 super().__init__ (" Objective", [x1, z2, y1, y2], [f])

39

40 def _eval(self) -> None:

41 # Get the input variable values

42 _x1 = self._values ["x1"]

43 _z2 = self._values ["z2"]

44 _y1 = self._values ["y1"]

45 _y2 = self._values ["y2"]

46

47 # Compute f

48 self._values ["f"] = _x1 **2 + _z2 + _y1 **2 + np.exp(-_y2)

49

50 def _differentiate(self) -> None:

51 # Get the input variable values

52 _x1 = self._values ["x1"]

53 _z2 = self._values ["z2"]

54 _y1 = self._values ["y1"]

55 _y2 = self._values ["y2"]

56

57 # Compute the derivatives of f

58 self._jac["f"]["x1"] = 2*_x1

59 self._jac["f"]["z2"] = 1.0

60 self._jac["f"]["y1"] = 2 * _y1

61 self._jac["f"]["y2"] = -np.exp(-_y2)

The user can now perform an MDA as follows:

1 # Instantiate discipline objects

111

2 sellar_disc_1 = SellarDiscipline1(z1, z2, x1, y2, y1, g1)

3 sellar_disc_2 = SellarDiscipline2(z1, z2, y1, y2, g2)

4 sellar_objective = SellarObjective(x1 , z2 , y1 , y2 , f)

5

6 # Create the MDA solver

7 gs_solver = create_solver(type=SolverType.NONLINEAR_GS ,

8 n_iter_max =10,

9 relax_fact =1,

10 tol=1e-4,

11 disciplines =[sellar_disc_1 ,

12 sellar_disc_2 ,

13 sellar_objective])

14

15 # Set starting values

16 starting_values = {"x1": 1.0, "z1": 4, "z2": 3, "y1": 0.8, "y2":

0.9}

17

18 # Solve the MDA problem

19 coupling_values = gs_solver.solve(starting_values)

After instantiating the three Discipline derived objects (lines 2-4), the user
creates a Solver object, through the create_solver() function. This function
returns a Solver object after specifying which disciplines are involved in the
MDA. The user can also optionally specify the type of solver, the maximum it-
erations allowed, the tolerance and the relaxation factor. The default solver type
is "nonlinear_gs", which corresponds to the nonlinear Gauss-Seidel MDA. The
nonlinear Jacobi and Newton methods are also available by setting the type to
"nonlinear_jacobi" and "newton_raphson respectively. By calling the solve()
method with the specified starting values, the solver solves the MDA and returns
the converged values of (only) the coupling variables.

In order to solve an MDO problem, the user must first create it using the
create_opt_problem() function, which returns an OptProblem object. The de-
sign variables, objective, constraints and involved disciplines have to be defined
when creating the problem. The user can also choose if the underlying optimizer
(called a Driver in mSense) should use normalization, by setting the use_norm

argument to either True or False. Normalization can only be used if all design
variables have finite bounds. By setting maximize_objective to True, the prob-
lem is solved as a maximization problem. Bu default, use_norm is set to True and
maximize_objective to False. The user can also set the type of OptProblem.
This corresponds to which MDO architecture should be used to formulate and
solve the problem. The default option is the MDF architecture (type="mdf"), but
the IDF (type="idf") and CO (type="co") architectures are also available. If the
MDF architecture is used, the user is also required to specify the accompanying
MDA solver, as seen in the snippet below:

112

1 # Create the MDO problem

2 prob = create_opt_problem(type=OptProblemType.MDF ,

3 design_vars =[x1, z1, z2],

4 objective=f,

5 constraints =[g1, g2],

6 maximize_objective=False ,

7 use_norm=True

8 disciplines =[sellar_disc_1 ,

9 sellar_disc_2 ,

10 sellar_objective],

11 solver=gs_solver)

After creating the MDO problem, the user has to set the initial values of
the design vector, and call the solve() method of the OptProblem object. This
method returns the optimized values of the design variables. The user can see
the evolution of the objective function by calling the plot_objective_history()
method of the OptProblem object.

1 # Set initial design vector values

2 initial_values = {"x1": 1.0, "z1": 4, "z2": 3}

3

4 # Solve the problem

5 optimized_values = prob.solve(initial_values)

6

7 # Plot the objective ’s evolution

8 prob.plot_objective_history ()

The complete code for Sellar’s problem, as well as other examples can be
found in the GitHub repository (https://github.com/dlmpal/mSense), under the
examples folder. In the examples therein more advanced features of mSense are
shown, such as how to set the Driver of an OptProblem.

113

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Τομέας Ρευστών

Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής

& Βελτιστοποίησης

Πολυτομεακή Ανάλυση και Βελτιστοποίηση: Θεωρία,

Υλοποίηση και Εφαρμογές

Διπλωματική Εργασία

Δημήτριος Πάλλας

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2024

1

Εισαγωγή

Τα περισσότερα σύγχρονα προβλήματα στη μηχανολογία είναι πολυτομεακά-πολυεπιστημονικά,

καθώς ασχολούνται με συστήματα τα οποία αποτελούνται από διαφορετικές συνιστώσες-

πεδία, και συχνά εξετάζεται η αλληλεπίδρασή τους με πολλαπλά φυσικά φαινόμενα.

Η ανάγκη σχεδιασμού τέτοιων συστημάτων ώθησε την ανάπτυξη της θεωρίας της

Πολυτομεακής Ανάλυσης και Βελτιστοποίησης (Multidisciplinary Analysis and Op-
timization, MDAO), η οποία παρέχει το μαθηματικό υπόβαθρο για την ανάλυση
ή/και τη βελτιστοποίηση των συστημάτων αυτών. Το κύριο όφελος της μεθοδο-

λογίας MDAO είναι ότι μπορεί να εκμεταλλευτεί τις αλληλεπιδράσεις μεταξύ των
διαφορετικών συνιστωσών-πεδίων του συστήματος, με αποτέλεσμα να οδηγεί στο

βέλτιστο σχεδιασμό. Αυτό είναι αδύνατο αν δεν ληφθούν υπόψη οι αλληλεπιδράσεις,

ή εάν γίνεται η υπόθεση ότι η σύζευξη είναι μονόδρομη.

Η θεωρία MDAO έχει τις ρίζες της στην αεροναυπηγική [2]. Κλασικά πολυ-
τομεακά πρόβληματα είναι τα προβλήματα αλληλεπίδρασης ρευστού-στερεού (Fluid-
Structure Interaction, FSI), όπως η αεροδομική ανάλυση και βελτιστοποίηση πτέρυ-
γας αεροσκάφους. Η κλασική προσέγγιση επίλυσης του προβλήματος αυτού, όσον

αφορά την ανάλυση, είναι ο υπολογισμός των αεροδυναμικών φορτίων, η μεταφορά

τους στη δομική ανάλυση και, τέλος, ο υπολογισμός των τάσεων και παραμορφώσεων

της πτέρυγας. Προφανώς όμως, η μετατόπιση της πτέρυγας οδηγεί σε αλλαγή της

ροής γύρω από αυτήν, άρα και σε αλλαγή των φορτίων. Προβλήματα όπως αυτό,

όπου η αμφίδρομη σύζευξη μεταξύ πεδίων δεν μπορεί να αγνοηθεί, αποτελούν το

κύριο αντικείμενο μελέτης της θεωρίας MDAO.

Ορολογία και μαθηματική περιγραφή

Τα συστήματα στη μηχανολογία και στη μηχανική γενικότερα μοντελοποιούνται α-

ριθμητικά μέσω ενός συστήματος εξισώσεων, με τη λύση των οποίων προσεγγίζεται

η κατάσταση του συστήματος. Για ένα μοντέλο με n μεταβλητές κατάστασης, οι
εξισώσεις αυτές γράφονται ως:

ri(y1, y2, . . . , yn) = 0, i ∈ (1, n) (1)

2

Στην παραπάνω έκφραση, ri είναι το υπόλοιπο της i-οστής εξίσωσης και yi η i-
οστή μεταβλητή κατάστασης. Γράφοντας τις μεταβλητές κατάστασης και τα υπόλοιπα

σε διανυσματική μορφή, δηλαδή Y =
[
y1 y2 . . . yn

]⊤
καιR =

[
r1 r2 . . . rn

]⊤
,

η παραπάνω έκφραση γράφεται σύντομα ως:

R(Y) = 0 (2)

Η λογική αυτή επεκτείνεται σε πολυτομεακά συστήματα, αν θεωρηθεί ότι κάθε

υποσύστημα-πεδίο διαθέτει το δικό του διάνυσμα μεταβλητών κατάστασης Yi και σετ
εξισώσεων Ri. Για ένα σύστημα m πεδίων, και λαμβάνοντας υπόψη τις αλληλεπι-
δράσεις μεταξύ των πεδίων, ισχύει ότι:

Ri(Y1, Y2, . . . , Ym) = 0, i ∈ (1,m) (3)

Η παραπάνω εκδοχή του μοντέλου του πολυτομεακού συστήματος ονομάζεται υ-

πολειμματική. Η εναλλακτική εκδοχή αυτής είναι η συναρτησιακή, όπου αντί των

μεταβλητών κατάστασης Yi κάθε πεδίου, θεωρούνται μόνο οι μεταβλητές εξόδου Ŷi.

Οι Ŷi είναι είτε υποσύνολο των Yi ή υπολογίζονται άμεσα από αυτές. Οι είσοδοι ενός
πεδίου i συμβολίζονται με Yj ̸=i και είναι υποσύνολο των εξόδων όλων των άλλων πε-

δίων, άρα στη γενική περίπτωση ισχύει ότι Ŷj ̸=i =
[
Ŷ1 . . . Ŷi−1 Ŷi+1 . . . Ŷm

]⊤
.

΄Ετσι, για την συναρτησιακή μορφή του πολυτομεακού μοντέλου, το σύνολο εξισώσε-

ων που το περιγράφει είναι:

Ŷi = Ŷi(Ŷj ̸=i), i ∈ (1,m) (4)

Κάθε εκδοχή έχει διαφορετικά πλεονεκτήματα και μειονεκτήματα. Εδώ αναφέρεται

μόνο η προφανής διαφορά ότι η υπολειμματική μορφή διαχειρίζεται πολύ μεγαλύτερο

αριθμό μεταβλητών από την συναρτησιακή, καθώς το μέγεθος των εξόδων Ŷi είναι
συχνά πολύ μικρότερο του μεγέθους των μεταβλητών κατάστασης Yi.
Η θεωρία MDAO ασχολείται με την ανάλυση και βελτιστοποίηση πολυτομεακών

μοντέλων. Η πολυτομεακή ανάλυση (Multidisciplinary Analysis, MDA) είναι η δια-
δικασία ταυτόχρονης επίλυσης των εξισώσεων όλων των υποσυστημάτων/πεδίων. Η

πολυτομεακή βελτιστοποίηση (Multidisciplinary Optimization, MDO) είναι η διαδι-
κασία βελτιστοποίησης ενός πολυτομεακού συστήματος, η οποία παράλληλα σέβεται

την συμβατότητα μεταξύ των πεδίων, δηλαδή λαμβάνει υπόψη τις αλληλεπιδράσεις

τους. ΄Ενα πρόβλημα MDO μπορεί να επιλυθεί με περισσότερους από έναν τρόπους,
ή αρχιτεκτονικές. Οι αρχιτεκτονικές MDO χωρίζονται σε δύο ευρείες κατηγορίες,
μονολιθικές και κατανεμημένες. Οι πρώτες επιλύουν ένα πρόβλημα βελτιστοποίησης,

ενώ οι δεύτερες πολλαπλά. Παραδείγματα της πρώτης κατηγορίας είναι οι αρχιτεκτο-

νικέςMultidisciplinary Feasible (MDF) [3] και Individual Discipline Feasible (IDF)
[3], ενώ παραδείγματα της δεύτερης είναι οι Bi-Level Integrated System Synthesis
(BLISS) [6] και Collaborative Optimization (CO) [1].

3

Τα περισσότερα προβλήματα MDO, ασχέτως αρχιτεκτονικής, επιλύονται μέσω
αιτιοκρατικών αλγορίθμων βελτιστοποίησης, λόγω της γενικά καλύτερης επίδοσής

τους. Οι αλγόριθμοι αυτοί απαιτούν τις παραγώγους της συνάρτησης-στόχου και

των περιορισμών ως προς τις μεταβλητές σχεδιασμού. Στην πολυτομεακή βελτιστο-

ποίηση, ο υπολογισμός των παραγώγων αυτών πρέπει να λαμβάνει υπόψη την αλλη-

λεπίδραση των πεδίων, και για αυτό ονομάζονται και πεπλεγμένες παράγωγοι. Για

τον αποδοτικό υπολογισμό των πεπλεγμένων παραγώγων έχουν αναπτυχθεί πεπλεγ-

μένα ή πολυτομεακά ανάλογα των μεθόδων της ευθείας διαφόρισης και της συζυγούς

μεθόδου [5].

Το λογισμικό mSense

Για τη διαχείριση της πολυπλοκότητας που σχετίζεται με το MDAO αναπτύσσεται
ένα πακέτο λογισμικού στη γλώσσα Python. Το πάκετο ονομάζεται mSense (Multi-
disciplinary + Sensitivity), και χρησιμοποιείται για της εφαρμογές της διπλωματικής
εργασίας. Σκοπός του πακέτου είναι η διευκόλυνση της ανάπτυξης πολυτομεακών α-

ριθμητικών μοντέλων, μέσω σύζευξης εξειδικευμένων λογισμικών ανάλυσης για κάθε

πεδίο. Το mSense διαθέτει εργαλεία τόσο για την ανάλυση , όσο και για την βελ-
τιστοποίηση τέτοιων μοντέλων. ΄Οσον αφορά τη βελτιστοποίηση, στο πακέτο είναι

προγραμματισμένες τρεις αρχιτεκτονικές MDO, οι MDF, IDF και CO, και παρέχεται
η δυνατότητα υπολογισμού των πεπλεγμένων παραγώγων τόσο μέσω των πεπλεγ-

μένων εκδοχών της μεθόδου ευθείας διαφόρισης και της συζυγούς μεθόδου, αλλά

και μέσω προσέγγισης (πεπερασμένες διαφορές). Ο πηγαίος κώδικας, καθώς και

παραδείγματα χρήσης, είναι διαθέσιμα εδώ: https://github.com/dlmpal/mSense.

Θεωρία MDAO

Πολυτομεακή ανάλυση

Σκοπός της πολυτομεακής ανάλυσης (Multidisciplinary Analysis, MDA) είναι η ε-
πίλυση του συστήματος εξισώσεων του πολυτομεακού μοντέλου. Πρακτικά αυτό

ισοδυναμεί με ταυτόχρονη ικανοποίηση των εξισώσεων κατάστασης κάθε πεδίου. Οι

μέθοδοι MDA χωρίζονται πρακτικά σε δύο κατηγορίες. Η πρώτη κατηγορία απο-
τελείται από γενικευμένες μεθόδους σταθερού σημείο, όπως η μη-γραμμική, block

4

μέθοδος Gauss-Seidel και η μη-γραμμική, block μέθοδος Jacobi. Η δεύτερη κατη-
γορία αποτελείται από μεθόδους βασισμένες στη μέθοδο Newton για μη-γραμμικά
συστήματα.

Υπολογισμός πεπλεγμένων παραγώγων

Για την εφαρμογή αιτιοκρατικής βελτιστοποίησης απαραίτητος είναι ο υπολογισμός

των παραγώγων της συνάρτησης-στόχου και των περιορισμών ως προς τις μεταβλη-

τές σχεδιασμού. Σε μονοτομεακά συστήματα ή συστήματα ενός πεδίου για τον σκοπό

αυτό χρησιμοποιούνται ή μέθοδος ευθείας διαφόρισης και η συζυγής μέθοδος. Αν

με F συμβολίζεται το διάνυσμα που περιέχει την συνάρτηση-στόχο και όλους του
περιορισμούς, με X το διάνυσμα μεταβλητών σχεδιασμού και με Y και R τα δια-
νύσματα μεταβλητών κατάστασης και υπολοίπων αντίστοιχα, τότε η μέθοδος ευθείας

διαφόρισης γράφεται:

dF

dX
=
∂F

∂X
− ∂F

∂Y
(
∂R

∂Y

−1 ∂R

∂X
) (5)

Ομοίως, η συζυγής μέθοδος γράφεται:

dF

dX
=
∂F

∂X
− ψ⊤ ∂R

∂X
∂R

∂Y

⊤
ψ =

∂F

∂Y

⊤ (6)

όπου ψ είναι το διάνυσμα των συζυγών μεταβλητών. Για πολυτομεακά συστήματα
έχουν αναπτυχθεί αντίστοιχες μέθοδοι, που ονομάζονται πεπλεγμένη μέθοδος ευ-

θείας διαφόρισης και πεπλεγμένη συζυγής μέθοδος. Για ένα σύστημα m πεδίων,
εκφρασμένο στη συναρτησιακή μορφή, η πεπλεγμένη μέθοδος ευθείας διαφόρισης

γράφεται:
I −∂Ŷ1

∂Ŷ2
. . . − ∂Ŷ1

∂Ŷm

−∂Ŷ2

∂Ŷ1
I . . . − ∂Ŷ2

∂Ŷm
...

... . . .
...

−∂Ŷm

∂Ŷ1
−∂Ŷm

∂Ŷ2
. . . I

dŶ1

dX
dŶ2

dX
...

dŶm

dX

 =

∂Ŷ1

∂X
∂Ŷ2

∂X
...

∂Ŷm

∂X

dF

dX
=
∂F

∂X
+
[

∂F

∂Ŷ1

∂F

∂Ŷ2
. . . ∂F

∂Ŷm

]
dŶ1

dX
dŶ2

dX
...

dŶm

dX

(7)

5

Για το ίδιο σύστημα η πεπλεγμένη συζυγής μέθοδος γράφεται:

dF

dX
=
∂F

∂X
−

[
Φ⊤

1 Φ⊤
2 . . . Φ⊤

m

]

∂Ŷ1

∂X
∂Ŷ2

∂X
...

∂Ŷm

∂X

I −∂Ŷ1

∂Ŷ2

⊤
. . . − ∂Ŷ1

∂Ŷm

⊤

−∂Ŷ2

∂Ŷ1

⊤
I . . . − ∂Ŷ2

∂Ŷm

⊤

...
... . . .

...

−∂Ŷm

∂Ŷ1

⊤
−∂Ŷm

∂Ŷ2

⊤
. . . I

Φ1

Φ2
...

Φm

 =

∂F

∂Ŷ1

⊤

∂F

∂Ŷ2

⊤

...

∂F

∂Ŷm

⊤

(8)

όπου
[
ϕ1 ϕ2 . . . ϕm

]
είναι το διάνυσμα των συζυγών μεταβλητών.

Πολυτομεακή βελτιστοποίηση

Η κύρια διαφορά της Πολυτομεακής Βελτιστοποίησης (Multidisciplinary Optimiza-
tion, MDO) σε σχέση με την Μονοτομεακή Βελτιστοποίηση είναι ότι η πρώτη πρέπει
να λάβει υπόψιν τις αλληλεπιδράσεις των διαφόρων πεδίων του συστήματος. ΄Ενα

πρόβλημαMDO μπορεί να διατυπωθεί και να επιλυθεί με διάφορους τρόπους, καθένας
από τους οποίος συνιστά μία διαφορετική αρχιτεκτονικήMDO. Οι αρχιτεκτονικές χω-
ρίζονται βάσει δύο κυρίως κριτηρίων. Το πρώτο είναι το πως επιτυγχάνουν τη συμ-

βατότητα των μεταβλητών κατάστασης των πεδίων. Μερικές χρησιμοποιούν MDA,
ενώ άλλες περιορισμούς συμβατότητας. Το δεύτερο κριτήριο είναι εάν επιλύουν ένα ή

περισσότερα προβλήματα βελτιστοποίησης. Οι λεγόμενες μονολιθικές αρχιτεκτονικές

επιλύουν ένα μεγάλο ενιαίο πρόβλημα, ενώ οι κατανεμημένες επιλύουν περισσότερα

μικρά προβλήματα. Μία συχνά χρησιμοποιούμενη μονολιθική μέθοδος είναι η MDF,
η οποία χρησιμοποιεί MDA για την εξασφάλιση της συμβατότητας των πεδίων. Η
μέθοδος IDF είναι επίσης μονολιθική, αλλά χρησιμοποιεί περιορισμούς συμβατότητας
για να επιτύχει τη συμβατότητα των πεδίων. Οι περισσότερες κατανεμημένες αρχι-

τεκτονικές μπορούν να κατηγοριοποιηθούν ως κατανεμημένες παραλλαγές της MDF

6

x1, z1, z2 z1, z2 x1, z1

y1, g1 Discipline1 y1 y1

y2, g2 y2 Discipline2 y2

f Objective

Σχήμα 1: Πρόβλημα του Sellar: Διάγραμμα XDSM.

και της IDF, ανάλογα με το πως εξασφαλίζουν τη συμβατότητα.

Σύγκριση επίδοσης διαφόρων

αρχιτεκτονικών MDO

Η ύπαρξη διαφορετικών αρχιτεκτονικών MDO δημιουργεί το ερώτημα για το ποια
μέθοδος είναι περισσότερο αποδοτική και αξιόπιστη. Ο σκοπός κάθε αρχιτεκτονι-

κής είναι να καταλήξει στο βέλτιστο, ικανοποιώντας τόσο τους περιορισμούς του

προβλήματος όσο και τη συμβατότητα μεταξύ των πεδίων. Σημαντική είναι επίσης

η ικανότητα της αρχιτεκτονικής να λύσει το πρόβλημα σε αποδεκτό υπολογιστικό

χρόνο. Για τη σύγκριση των διαφόρων αρχιτεκτονικών έχουν προταθεί ορισμένα

προβλήματα, μεταξύ των οποίων είναι το πρόβλημα του Sellar [4]. Ενδεικτικά, το
XDSM του προβλήματος φαίνεται στο σχήμα 1. Συγκρίνεται η επίδοση των αρχιτε-
κτονικών Multidisciplinary Feasible (MDF), Individual Discipline Feasible (IDF)
και Collaborative Optimization (CO). Οι αρχιτεκτονικές συγκρίνονται ως προς τον
αριθμό υπολογισμού κάθε πεδίου που απαιτούν. Τα αποτελέσματα φαίνονται στον

πίνακα 1.

7

Αρχιτεκτονική MDF IDF CO
Υπολογισμοί πεδίου 1 61 30 1210

Υπολογισμοί πεδίου 2 53 24 601

Υπολογισμοί συνάρτησης-στόχου 61 30 168

Επαναλήψεις βελτιστοποιητή 9 7 30

Βελτιστοποιημένη τιμή συνάρτησης-στόχου 3.18339 3.18339 3.1828

Πίνακας 1: Πρόβλημα του Sellar: Σύγκριση διαφόρων αρχιτεκτονικών.

U∞
J

θ

Σχήμα 2: Σύστημα αεροτομής-ελατηρίου: Σχηματική αναπαράσταση.

Σύστημα αεροτομής-ελατηρίου

Μία αεροτομή NACA-0012 τοποθετείται εντός ενός ατριβούς πεδίου ροής, ενώ είναι
τοποθετημένο σε στρεπτικό ελατήριο στο

1
4
της χορδής του. Λόγω της ροής ανα-

πτύσσεται ροπή που τείνει να στρέψει την αεροτομή. Το σύστημα αεροτομή-ελατήριο

απεικονίζεται στο σχήμα 2.

Υπάρχουν δύο πεδία, αυτό της αεροδυναμικής και αυτό της δομικής. Η αεροδυ-

ναμική περιγράφεται από τις εξισώσεις Euler που επιλύονται από τον οικείο επιλύτη
PUMA. Η δομική περιγράφεται από την αναλυτική εξίσωση του ελατηρίου. Το σημείο
ισορροπίας του συστήματος, δηλαδή η γωνία θ και η ροπή M στην οποία ισορροπεί,
μπορεί να βρεθεί μέσω MDA. Ενδεικτικά, το διάγραμμα XDSM για MDA μέσω της
γενικευμένης μεθόδου Gauss-Seidel φαίνεται στην εικόνα 3.
Προκειμένου η αεροτομή να παράγει μία επιθυμητή τιμή άνωσης L∗

, χρησιμο-

ποιείται βελτιστοποίηση μορφής. Η συνάρτηση-στόχος που χρησιμοποιείται είναι

η f = 0.5(L − L∗)2. Η αεροτομή παραμετροποιείται μέσω κουτιού μορφοποίησης

8

M0, θ0 bi

GaussSeidelMDA θ

M M Aerodynamics M

θ θ Spring

Σχήμα 3: Σύστημα αεροτομής-ελατηρίου: Διάγραμμα XDSM για την πολυτομεακή
ανάλυση του συστήματος μέσω της γενικευμένης μεθόδου Gauss-Seidel.

NURBS. Το πρόβλημα βελτιστοποίησης είναι πολυτομεακό, εφόσον πρέπει να συμπε-
ριληφθεί και η επίδραση του ελατηρίου. Χρησιμοποιούνται οι αρχιτεκτονικές MDF
και IDF, και συγκρίνονται τα αποτελέσματά τους. Στο σχήμα 4 φαίνεται η πορεία
σύγκλισης της τιμής της συνάρτησης-στόχου για τις δύο αρχιτεκτονικές.

Αλληλεπίδραση ρευστού-στερεού

σε ελαστικό αγωγό

Ρευστό ρέει εντός διδιάστατου ελαστικού αγωγού, παραμορφώνοντάς τον. Η ροή

θεωρείται στρωτή, και η πίεση εισόδου και εξόδου θεωρούνται γνωστές. Ο αγωγός

είναι πακτωμένος στα δύο άκρα. Το πρόβλημα είναι συμμετρικό ως προς τον κεντρικό

άξονα του αγωγού, και άρα μόνο το μισό μοντελοποιείται, όπως φαίνεται στο σχήμα

5. Για το ρευστό χρησιμοποιούνται οι εξισώσεις Navier-Stokes, οι οποίες επιλύονται
μέσω του οικείου επιλύτη PUMA, χωρίς μοντέλο τύρβης (αφού η ροή είναι στρωτή).
Για το στερεό τμήμα χρησιμοποιούνται οι εξισώσεις επίπεδης ελαστικότητας, οι οποίες

επιλύονται μέσω κώδικα πεπερασμένων στοιχείων, ονόματι SFEM, που αναπτύχθηκε
για τις ανάγκες της διπλωματικής εργασίας.

Καθώς το ρευστό ρέει, παραμορφώνει τον αγωγό, με αποτέλεσμα να αλλάζει η

ροή. Προκειμένου να βρεθεί η κατάσταση ισορροπίας, χρησιμοποιείται πολυτομεακή

9

Σχήμα 4: Σύστημα αεροτομής-ελατηρίου: Πορεία σύγκλισης της τιμής της

συνάρτησης-στόχου για τις αρχιτεκτονικές MDF και IDF, για το πρόβλημα βελ-
τιστοποίησης μορφής της αεροτομής.

ανάλυση. Ο παραμορφωμένος αγωγός φαίνεται στο σχήμα 6.

Προκειμένου να ελεγχθεί η μέγιστη οριζόντια μετατόπιση του αγωγού εφαρμόζε-

ται βελτιστοποίηση των φυσικών ιδιοτήτων του υλικού του. Το πρόβλημα επιλύεται

μέσω της αρχιτεκτονικής MDF. Η σύγκλιση της μεθόδου φαίνεται στο σχήμα 7.

Αεροδομική βελτιστοποίηση της

πτέρυγας ONERA M6

Η αεροδομική βελτιστοποίηση πτερύγων αεροσκαφών αποτελεί μία από τις συνη-

θέστερες εφαρμογές MDAO. Επιλέγεται η πτέρυγα ONERA M6, καθώς χρησι-
μοποιείται συχνά για την επικύρωση κωδίκων υπολογιστικής ρευστοδυναμικής. Η

πτέρυγα τοποθετείται εντός τριδιάστατου, ατριβούς, διηχητικού ροϊκού πεδίου. Χρη-

σιμοποιούνται οι εξισώσεις Euler, που επιλύονται από τον οικείο επιλύτη PUMA.
Λόγω των αεροδυναμικών δυνάμεων που δέχεται, η πτέρυγα κάμπτεται κατά το μήκος

10

Fluid Solid

Outlet

Inlet

Fixed

Fixed

S
y
m
m
et
ry

In
te
rf
ac
e

F
re
e

Figure 5: FSI ελαστικού αγωγού: Αναπαράσταση του υπολογιστικού χωρίου.

Σχήμα 6: FSI ελαστικού αγωγού: Ο παραμορφωμένος αγωγός, όπως προκύπτει από
την πολυτομεακή ανάλυση. Το ρευστό χρωματίζεται από την κάθετή του ταχύτητα,

ενώ το στερεό από την οριζόντια παραμόρφωση.

11

Σχήμα 7: FSI ελαστικού αγωγόυ: Πορεία σύγκλισης της τιμής της μέγιστης ορι-
ζόντιας μετατόπισης Ux,max για την αρχιτεκτονική MDF, για το πρόβλημα βελτιστο-
ποίησης των φυσικών ιδιοτήτων του αγωγού.

v1, ω1v2, ω2v3, ω3v4, ω4v5, ω5v6 = ω6=0

Figure 8: ONERA M6: Δομικό μοντέλο της πτέρυγας

της. Για να μοντελοποιηθεί λοιπόν η δομική της συμπεριφορά, αναπτύσσεται μοντέλο

πεπερασμένων στοιχείων με δοκούς. Το μοντέλο οπτικοποιείται στο σχήμα 8. Υ-

πάρχουν δύο βαθμοί ελευθερίας ανά κόμβο, ένας για τη μετατόπιση και ένας για την

στροφή του κόμβου.

Θεωρείται πως η πτέρυγα δεν είναι μεμονωμένη, αλλά ανήκει σε αεροσκάφος του

οποίου το βάρος πρέπει να σηκώσει. Αυτό γίνεται ώστε το πρόβλημα να είναι πε-

ρισσότερο ρεαλιστικό, χωρίς να αυξηθεί το υπολογιστικό κόστος λόγω αεροδομικής

μελέτης ολόκληρου αεροσκάφους. Μέσω πολυτομεακής ανάλυσης υπολογίζονται η

παραμόρφωση της πτέρυγας κατά την πτήση, καθώς και τα φορτία που δέχεται. Τα

δύο πεδία είναι η αεροδυναμική, και η δομική. Σύγκριση μεταξύ της απαραμόρφωτης

και παραμορφωμένης πτέρυγας φαίνεται στο σχήμα 9.

Προκειμένου να βελτιωθεί η επίδοση της πτέρυγας εφαρμόζεται βελτιστοποίηση.

12

Σχήμα 9: ONERA M6: Σύγκριση μεταξύ της απαραμόρφωτης (αριστερά) και παρα-
μορφωμένης (δεξιά) πτέρυγας.

Μεταβάλλεται τόσο το σχήμα της πτέρυγας, όσο και η δομή της, μέσω αλλαγής του

πάχους των δομικών στοιχείων. Εξετάζονται δύο συναρτήσεις-στόχου. Η πρώτη είναι

ένα ζυγισμένο άθροισμά του βάρους και της οπισθέλκουσας, ενώ η δεύτερη είναι ο

λόγος άνωσης προς οπισθέλκουσα. Για την επίλυση του προβλήματος γίνεται χρήση

της αρχιτεκτονικής MDF, για την οποία το διάγραμμα XDSM φαίνεται στο σχήμα
10. Ενδεικτικά, στο σχήμα 11 παρουσιάζεται η πορεία σύγκλισης της οπισθέλκουσας,

της άνωσης, του δομικού βάρους και του λόγου άνωσης προς οπισθέλκουσα της

πτέρυγας, για την πρώτη συνάρτηση-στόχο. Η αρχιτεκτονική MDF καταφέρνει να
βελτιώσει την επίδοση της πτέρυγας και με τις δύο συναρτήσεις-στόχου, ωστόσο η

δεύτερη συνάρτηση-στόχος (δηλαδή ο λόγος άνωσης προς οπισθέλκουσας) οδηγεί

σε καλύτερα αποτελέσματα.

13

b0, t0 F 0
Aero, U

0

b∗, t∗ Optimizer b t

MDA U

F ∗
Aero, L

∗, D∗ FAero Aerodynamics FAero L,D

U∗,W ∗ g U Structures W

f, h Performance

Σχήμα 10: ONERA M6: Διάγραμμα XDSM για το πρόβλημα της αεροδομικής βελ-
τιστοποίησης της πτέρυγας μέσω της αρχιτεκτονικής MDF.

Σχήμα 11: ONERA M6: Πορεία σύγκλισης της οπισθέλκουσας (πάνω αριστερά),
της άνωσης (πάνω δεξιά), του δομικού βάρους (κάτω αριστερά) και του λόγου άνω-

σης προς οπισθέλκουσα (κάτω δεξιά) της πτέρυγας. Η συνάρτηση-στόχος είναι το

ζυγισμένο άθροισμα βάρους και οπισθέλκουσας.

14

Ανακεφαλαίωση και προτάσεις

για μελλοντική μελέτη

Ο σκοπός αυτής της διπλωματικής εργασίας ήταν να υλοποιήσει τη μεθοδολογία

MDAO και να την εφαρμόσει σε διάφορα προβλήματα. Μετά την παρουσίαση της
θεωρίας, έγινε σύγκριση της επίδοσης τριών αρχιτεκτονικών MDO σε δύο αναλυτικά
προβλήματα. ΄Επειτα, επιλύθηκαν δύο προβλήματα αλληλεπίδρασης ρευστού-στερεού

και το πρόβλημα αεροδομικής βελτιστοποίησης πτέρυγας αεροσκάφους. Συνολικά, η

μεθοδολογία MDAO παρέχει έναν αξιόπιστο και αποτελεσματικό τρόπο διαχείρισης
πεπλεγμένων συστημάτων. Ωστόσο, το πεδίο είναι σχετικά νέο και υπάρχουν περι-

θώρια για βελτίωση και μελέτη, όπως η υλοποίηση και εφαρμογή της υπολειμματικής

μορφής για πολυτομεακά μοντέλα.

15

Βιβλιογραφία

[1] R. Braun. Collaborative optimization: an architecture for large-scale distributed
design. PhD thesis, Standford University, 1996.

[2] R. Haftka. Automated procedure for design of wing structures to satisfy
strength and flutter requirements. Technical report, NASA Langley research
center, 1973.

[3] R. Lewis, G. Shubin, E. Cramer, J. Dennis, P. Frank, R. Michael, L. Gregory,
and R. Shubin. Problem formulation for multidisciplinary optimization. SIAM
Journal on Optimization, 4, 02 1997.

[4] R. Sellar, S.M. Batill, and J. Renaud. Response surface based, concurrent
subspace optimization for multidisciplinary system design. 1996.

[5] J. Sobieski. Sensitivity of complex, internally coupled systems. AIAA Journal,
28(1):153–160, 1990.

[6] J. Sobieski, T. Altus, M. Phillips, and R. Sandusky. Bilevel integrated sys-
tem synthesis for concurrent and distributed processing. AIAA Journal,
41(10):1996–2003, 2003.

16

