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!  
	 The aim of this Diploma Thesis is the application of aerodynamic analysis and 
optimization tools to the design of a racing underfloor for the DrivAer car model. The 
underfloor modifications were made in accordance to the Le Mans Grand Touring Endurance 
regulations, that limit, among others, the underfloor geometry. The goal was to increase the 
downforce. Although the DrivAer model does not suit for direct use in motorsport, it was 
chosen for this analysis since it is a very refined, available car geometry and very few studies 
for the increase of downforce have been performed on this model. An additional objective is 
to investigate whether a simple passenger vehicle is able to satisfy motorsport requirements 
was desirable. 
	 Initially, the new underfloor geometry was designed using in a CAD software. The 
underfloor was designed in concordance with the original geometry, following existing curves 
on the surface of the DrivAer model. A flat front splitter and a finless rear diffuser were added 
to the model, along with a flat underfloor. 
	 Since the CAD software failed to recognise the merging points of the discrete parts 
that create the total vehicle geometry, the exported total model was not continuous, having 
non-manifold edges. A covering of the non manifold edges was attempted using in various 
ways, however the geometry was far too complex and non-manageable. The adopted 
solution was the import of the original geometry parts in the mesh generation software, along 
with a part containing solely the new underfloor, so that the recognition of the merging points 
was done by the more accurate mesh generator. 
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	 After the geometry had been inserted in the mesh generation software, the mesh was 
generated using primarily the snappyHexMesh tool in the OpenFOAM environment. Two 
refinement spaces were defined, one solely for the vehicle geometry and one for both the 
vehicle geometry and the vehicle wake. The space in close proximity to the road was also 
refined. The resulting unstructured mesh was comprised of approximately 5 million cells for 
the half of the vehicle, profiting from the symmetry of the case. 
	 After the mesh generation, the air flow around the vehicle was simulated. The 
algorithm chosen for this simulation is the SIMPLE, in the OpenFOAM environment. The 
turbulence model selected was the Spalart—Allmaras. The wheels were non rotating, and the 
Reynolds number was 6.7 million. In order to compare the results with the performance of the 
original geometry, the original DrivAer model was also aerodynamically simulated for the same 
conditions. In this Diploma Thesis, the results of the modified DrivAer simulations are 
presented, along with comparisons with the original DrivAer. 
	 In addition, the continuous adjoint problem was solved, in order to compute the 
sensitivity derivatives of the objective function, that is the downforce, again in the OpenFOAM 
environment. The sensitivity derivatives are presented the sensitivity map on the vehicle 
surface, which indicates possible modifications of the surface to improve the objective 
function. The adjoint optimization software incorporated in OpenFOAM was developed by the 
PCOpt Unit of the NTUA. 
	 With the information of the sensitivity map, the geometry of the underfloor was 
parameterized using volumetric b-splines and was modified accordingly. It is noted that here, 
the sensitivity derivatives are computed with respect to the displacement of each control 
point of the volumetric b-splines. The software for the optimization was also developed by the 
PCOpt Unit of the NTUA. 
	 Results the original and modified geometries are compared. The proposed 
modifications improved the aerodynamic performance of the vehicle, with a relatively slight 
further improvement coming from the adjoint-based optimization loop. 
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!  
	 Στόχος της διπλωματικής εργασίας εργασίας είναι η εφαρμογή εργαλείων 
αεροδυναμικής ανάλυσης, σχεδιασμού και βελτιστοποίησης στον σχεδιασμό ενός 
αγωνιστικού πατώματος για το μοντέλο αυτοκινήτου DrivAer. Οι αλλαγές στο πάτωμα έγιναν 
σύμφωνα με τους κανονισμούς Le Mans Grand Touring Endurance, που οριοθετούν, μεταξύ 
άλλων, και τη γεωμετρία του πατώματος. Στόχος είναι η αύξηση της κάθετης 
αεροδυναμικής δύναμης που δημιουργείται από το σώμα του οχήματος. Παρά το γεγονός 
πως το μοντέλο DrivAer δεν ενδείκνυται για απ’ ευθείας χρήση στον μηχανοκίνητο 
αθλητισμό, επιλέχθηκε για την εν λόγω ανάλυση καθώς πρόκειται για μία εξαιρετικά 
λεπτομερή διαθέσιμη γεωμετρία αυτοκινήτου στην οποία έχουν γίνει ελάχιστες μελέτες για 
την αύξηση της κάθετης δύναμης. Επίσης, ήταν επιθυμητή η εξέταση του κατά πόσο ένα 
απλό επιβατηγό όχημα δύναται να πληροί αγωνιστικές προδιαγραφές. 
	 Αρχικά, δημιουργήθηκε η νέα γεωμετρία του πατώματος σε λογισμικό CAD. Το 
πάτωμα δημιουργήθηκε σε συμφωνία με την αρχική γεωμετρία ακολουθώντας υπάρχουσες 
καμπύλες στο μοντέλο DrivAer, το οποίο αποτελείται από αρχεία επιφανειακής γεωμετρίας. 
Στο μοντέλο προστέθηκαν ένας εμπρός επίπεδος splitter, ένας διάχυτης στο πίσω μέρος 
και ένα τελείως επίπεδο (πλην της περιοχής του διαχύτη) πάτωμα. 
	 Καθώς το λογισμικό CAD δεν αναγνώριζε τα σημεία επαφής μεταξύ των διαφόρων 
τμημάτων που απαρτίζουν τη συνολική γεωμετρία του αυτοκινήτου, το εξαγόμενο από το 
λογισμικό CAD συνολικό μοντέλο δεν ήταν συνεχές, αλλά είχε οπές. Έγινε απόπειρα 
κάλυψης των οπών με τη βοήθεια των λογισμικών MeshLab και Blender, αλλά η γεωμετρία 
ήταν υπερβολικά περίπλοκη και μη-διαχειρίσιμη. Η λύση που υιοθετήθηκε ήταν να 
εισαχθούν στον πλεγματοποιητή τα πρωτότυπα τμήματα του μοντέλου, μαζί με ένα νέο 
αρχείο που περιείχε μόνο τις νέες διαμορφώσεις, έτσι ώστε να αναγνωρίσει ο 
πλεγματοποιητής τα σημεία επαφής μεταξύ των διαφόρων τμημάτων. 
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	 Στη συνέχεια, δημιουργήθηκε το πλέγμα, κυρίως με το εργαλείο snappyHexMesh στο 
OpenFOAM. Δημιουργήθηκαν επίσης δύο περιοχές αυξημένης ανάλυσης πλέγματος, μία 
μόνο για τη γεωμετρία του οχήματος και μία για τη γεωμετρία του οχήματος μαζί με τον 
ομόρρου. Επίσης, δημιουργήθηκε περιοχή αυξημένης ανάλυσης πλησίον του δρόμου. Το 
τελικό μη-δομημένο πλέγμα αποτελείται από περίπου 5 εκατομμύρια κελιά για το ήμισυ 
όχημα μιας και, λόγω συμμετρίας, το πλέγμα δημιουργήθηκε γύρω από το δεξί ήμισυ του 
οχήματος. 
	 Μετά τη δημιουργία του πλέγματος, προσομοιώθηκε η αεροδυναμική ροή γύρω από 
το όχημα. Ο αλγόριθμος που επιλέχθηκε για την επίλυση είναι ο SIMPLE στο περιβάλλον 
OpenFOAM. Ως μοντέλο τύρβης επιλέχθηκε το Spalart-Allmaras. Επιλέχθηκε οι τροχοί και ο 
δρόμος να είναι ακίνητοι, και ο αριθμός Reynolds της ροής είναι 6.7 εκατομμύρια. Για 
λόγους σύγκρισης, προσομοιώθηκε και η αρχική γεωμετρία του DrivAer. Στην εργασία 
παρουσιάζονται τα αποτελέσματα της προσομοίωσης αυτής καθώς και η σύγκρισή τους με 
την προσομοίωση του αρχικού DrivAer. 
	 Επιπρόσθετα, επιλύθηκαν οι συζυγείς εξισώσεις ροής προς υπολογισμό των 
παραγώγων ευαισθησίας της αντικειμενικής συνάρτησης, δηλαδή της κάθετης δύναμης, 
ξανά σε περιβάλλον OpenFOAM. Οι παράγωγοι ευαισθησίας δημιουργούν τον χάρτη 
ευαισθησίας στην επιφάνεια του αυτοκινήτου, ο οποίος υποδεικνύει τις πρέπουσες 
μετακινήσεις της επιφάνειας για βελτίωση της τιμής της αντικειμενικής συνάρτησης. Το 
λογισμικό της βελτιστοποίησης με τη συνεχή συζυγή μέθοδο στο περιβάλλον του 
OpenFOAM αναπτύχθηκε στη ΜΠΥΡ&Β του ΕΜΠ. 
	 Με την πληροφορία του χάρτη ευαισθησίας, τροποποιήθηκε η γεωμετρία του 
πατώματος, αφού πρώτα περιγράφηκε παραμετρικά με χρήση ογκομετρικών καμπύλων b-
splines. Σημειώνεται πως εδώ, ο χάρτης ευαισθησίας υπολογίσθηκε συναρτήσει της 
μετατόπισης των σημείων ελέγχου των b-splines που την παραμετροποιούν. Το λογισμικό 
που τροποποιεί την γεωμετρία αναπτύχθηκε και αυτό στη ΜΠΥΡ&Β του ΕΜΠ. 
	 Τα αποτελέσματα συγκρίθηκαν με την αρχική και τροποποιημένη γεωμετρία. Οι 
μετατροπές στο πάτωμα βελτίωσαν την αεροδυναμική απόδοση του οχήματος, με επιπλέον 
μικρότερες βελτιώσεις να απορρέουν από τη βελτιστοποίησή τους μέσω της συνεχούς 
συζυγούς μεθόδου. 
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1. Introduction 

1.1.The Front Splitter And The Rear Diffuser In Motorsport 
1.1.1. A General Brief Introduction 
	 In motorsports, the winner is in general determined on the shorter race time in the race 
classification. In order to achieve higher speeds, racing car engineers design the vehicles with maximum 
grip in mind. Apart from increasing the so-called mechanical grip, which is primarily resultant from the 
suspension and chassis characteristics, the grip is also increased by increasing the aerodynamic grip. 
Engineers design the vehicle bodywork aerodynamically, with the main aims of minimising the drag and 
maximising the downforce. The downforce pushes the vehicle towards the road, improving tyre grip. This 
lessens the risk of wheel spin at high speeds and raises cornering speeds, resulting in overall shorter lap 
times. Two aerodynamic components that are often used are the splitter at the front and the diffuser at the 
rear.

	 These two components will be incorporated to the original car geometry and will be optimized. In 
figure 1.1, the original geometry with the aerodynamic additions is depicted.


!  
Figure 1.1: The assembly of original geometry and the aerodynamic additions modifications, 

resulting to the modified geometry.  

=
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1.1.2. Front Splitter 
	 Front splitters are aerodynamic components that primarily create front-end downforce and balance 
the front-to-rear distribution of downforce. The splitter is typically found at the front of a race car, appearing 
as a flat extension to the very bottom of the front bumper. This splitter extends out, mostly parallel to the 
ground. While it is attached to the bottom of the front bumper it may also be supported by two or more 
support rods at some distance forward of the bumper mounting points. These support rods ensure minimal 
or regulated deformation to the splitter under high aerodynamic loads. 
1

	 In figure 1.2 an explanation of the splitter function is given.


!  
Figure 1.2: Airflow in the front of a car without a splitter (top) and with a splitter (bottom).  2

	 The splitter serves the following main purposes:

• Increases downforce, by stagnating airflow on the top and accelerating air flow from below, 

increasing the difference in static pressure between its top and bottom surfaces, yielding an 
overall pressure effect of downforce,


• Balances the front-to-rear downforce distribution, since the downforce effect of the splitter is 
significant compared to the rear wing, 
3

• Regulates the amount of underfloor airflow, according to underfloor brake cooling ducts, power 
unit cooling ducts and rear diffuser specifications.
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1.1.3. Rear Diffuser 
	 The rear diffuser is also used to increase underfloor downforce. The main aim of the diffuser is to 
allow more air to flow at a greater velocity under the vehicle. The diffuser itself does not function in the 
same way a racing car wing does, nor in the way a diffuser does in a closed duct. 
4

	 The diffuser itself decelerates the airflow inside itself. However, if it is designed appropriately, it 
ensures a smooth mixing with the airflow around the rest of the vehicle. This results in reduced flow losses, 
allowing a greater overall airflow rate through the underbody. By increasing the underbody flow velocity, the 
static pressure decreases, increasing overall downforce created by the vehicle. This is the basic function of 
a diffuser as explained schematically in figure 1.3.


!  
Figure 1.3: Airflow at the rear of a car with a diffuser.  5

	 The rear diffuser may also direct airflow upwards at its tip. This means that the equal and opposite 
force effect of the airflow to the diffuser results in additional downward force. This is often described with 
the term “underbody upsweep”. 
6

	 In addition, the rear diffuser creates longitudinal vortices in the airflow. These vortices assist in 
channelling high energy airflow from around the side of the vehicle to the diffuser, allowing for more airflow 
rate and, thus, greater downforce.
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1.2.The Adjoint Method In Optimization 
	 The adjoint method was firstly used in control theory and it is used in optimization in a plethora of 
phenomena that are governed by partial differential equations.  In this case, the air flow, which is governed 7

by the Navier—Stokes equations and a turbulence model. The adjoint method is a mathematical 
computational tool for computing the sensitivity derivatives of an objective function with respect to the 
design variables of a model. These derivatives can be utilized in a gradient based optimization method.

	 The adjoint method is divided into two major subcategories, the discrete and the continuous. In the 
discrete adjoint method, the objective function and the state equations are firstly linearized and discretized 
and then, from the discretized equations, the adjoint equations emerge. In the discrete adjoint method the 
resulting adjoint equations are directly in matrix form and are able to be solved numerically. In the 
continuous adjoint method, the adjoint equations are firstly expressed mathematically using the continuous 
state equations. The adjoint equations are in the partial differential equations form. They are then discretized 
and solved numerically.

	 The adjoint equations are derived by adding the volume integral of the product of the adjoint 
variables with the state equations to the objective function. By formulating and using the Green—Gauss 
theorem, the final expression of the adjoint flow equations and the boundary conditions are determined.

	 The state equations are often called primal equations. Their solution is often expressed as the 
“primal problem”, while the solution of the adjoint equation is often called the “adjoint problem”.

	 The main advantage of the adjoint method is its low computational cost. Due to the nature of its 
equations and the procedure of their formulation, the computational cost of the adjoint method is 
independent to the number of design variables. This enables the optimization of complex geometries 
described parametrically using parametric analytic geometries such as volumetric b-splines and Bézier 
surfaces. The time required for the solution of the adjoint equations is about the same to the time required 
for the solution of the primal equations. The total time required for the computation of the sensitivity 
derivatives is primarily the time needed to solve the primal and the adjoint problems.

	 On the other hand, the main disadvantage of the continuous adjoint method is the extra time and 
effort required to reform the adjoint problem for new objective functions. The new resulting equations have 
to be discretized and programmed for numerical solution. In a multi-objective optimization case, the total 
time required for the computation of the sensitivity derivatives is primarily the time needed to solve the 
primal and, in most cases, each of the adjoint problems.

	 In comparison with the direct differentiation method, the adjoint method is superior in cases with 
more design variables than objectives but inferior in cares with more objectives that design variables. The 
engineer is called to evaluate and decide on the optimization tools according to each case characteristics.
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1.3.The OpenFOAM Software 
	 OpenFOAM is an open source CFD software. OpenFOAM was created by Henry Weller in 1989 
under the name “FOAM” and was released open source as “OpenFOAM” by Henry Weller, Chris 
Greenshields and Mattijs Janssens in December 2004.  It has a large user base across most areas of 8

engineering and science, from both commercial and academic organizations. It has numerous tools and 
features for simulating cases in many scientific fields.  In this Thesis, the tools used for mesh generation 9

and for simulation of steady incompressible turbulent air flows are used, along with the tools for the 
continuous adjoint simulation and free form deformation using volumetric b-splines, both developed by the 
PCOpt Unit of the NTUA.

	 OpenFOAM is wholly programmed in C++. In combination with the fact that it is an open source 
software, users are potentially able to develop additional tools for their respective needs and their demands, 
in order to satisfy certain specifications. Additionally, it is also relatively easy for the independently 
developed tools to be distributed and utilized by others with similar demands or to be developed further by 
other researchers.

	 Such an example of third party developed tools are the continuous adjoint tools and free form 
deformation tools used in this thesis, both developed by the PCOpt Unit of the NTUA.

	 The aid in development by independent users has accelerated the overall development of the 
software and its is generally technologically equivalent to commercial alternatives, while at the same time it 
is free to use.  Another consequence of the open source attribute is the large OpenFOAM user community, 10

which has created many useful threads in forums, enabling quick solution findings to most common 
problems.
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1.4.Aim & Structure Of This Diploma Thesis 
	 The main aim of this Diploma Thesis is the shape optimization of racing underfloor modifications on 
the DrivAer passenger car model. This is achieved via the solution of the primal problem, the continuous 
adjoint problem and by implementing a free form deformation method on the vehicle geometry. The 
optimization aim is downforce maximization. The continuous adjoint method is utilized to compute the 
sensitivity derivatives, through which a next solution closer to the optimal is indicated. This repeats on each 
cycle, allowing to eventually reach or approximate the optimum.

	 The structure of the Diploma Thesis is as follows:


• In chapter 2, the original DrivAer model and the relative parts of the LMGTE regulations and the 
modified DrivAer vehicle geometry are presented.


• In chapter 3, the mesh generation procedure is explained and presented.


• In chapter 4, the primal problem is described: its flow equations, the turbulence model 
equations and the boundary conditions. The results from the simulation of the modified vehicle 
as well as the original DrivAer is presented.


• In chapter 5, the adjoint problem is described: its partial differential equations and the 
boundary conditions. The results from the simulation of the modified vehicle are presented, 
along with the sensitivity map on the surface of the vehicle. This is a single step in the whole 
optimization process.


• In chapter 6, a free form deformation method is presented, using volumetric b-splines in order 
to parameterize and modify parts of the vehicle geometry. The results of the full optimization 
procedure are presented.


• In chapter 7, a summation is done, the conclusions of this Diploma Thesis are expressed and 
suggestions for future work are made.


Page !  from !6 91



2. Vehicle Model 

2.1.DrivAer Model 
	 The DrivAer vehicle model is a realistic generic car geometry proposed by the TUM, Audi AG and 
BMW Group. The geometry is based upon two medium-sized passenger cars, the third generation Audi A4 
(B7) and the fifth generation BMW 3 Series (E90). The purpose of this model is to popularize a realistic 
passenger car geometry for computer simulations.  In figure 2.1, the side view of the geometry of a BMW 11

E90 3 Series coupé and an Audi B7 A4 saloon is shown individually and combined.


!  
Figure 2.1: Side view of the geometries of the individual vehicles and a combined view, which 
is the base for the DrivAer geometry. On top is the coupé version of the E90 BMW 3 Series, 

on the bottom is the saloon version of the B7 Audi A4 and in the middle is a combined 
view.  12

	 The DrivAer geometry is modular. The main body is common for all configurations. There are 
multiple choices for the body type, regarding the roof line, where saloon, estate and fastback configurations 
are available. There are also two versions of the underfloor, a smooth and a detailed one. Additionally, here 
is the option to include wheels and wing mirrors. In figures 2.2 to 2.5, different alternatives for the 
configurations are shown.
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!  
Figure 2.2: The alternatives for the roof line. Top to bottom: Fastback [F], Saloon (Notchback) 

[N] and Estate Back [E]. 

!  
Figure 2.3: The alternatives for the underfloor: Top to bottom: Detailed [D] and Smooth [S]. 
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!  
Figure 2.4: The alternatives for the wing mirrors. Top to bottom: With mirrors [wM] and 

Without mirrors [woM]. 

!  
Figure 2.5: The alternatives for the wheels. Top to bottom: With wheels [wW] and Without 

wheels [woW]. 
	 The configuration used in this Diploma Thesis is a fastback with smooth underfloor, with closed 
wheels and mirrors. 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2.2.Le Mans Grand Touring Endurance Cars 
2.2.1. In General 
	 The Le Mans Grand Touring Endurance (LMGTE) is a category of race cars in the FIA World 
Endurance Championship (WEC), racing alongside LMP1 and LMP2 (Le Mans Prototype 1 and 2, 
respectively). The cars are racing versions of road legal production models, available for public purchase by 
an Endurance Committee recognized dealer network. The category is split into two distinct sub-categories, 
the LMGTE Pro and the LMGTE Am, designed for professional and amateur racing drivers, respectively.

	 The vehicles are two door, 2 or 2+2 seats, open or closed cars. The engine capacity is limited to 5.5 
litres and 4.0 litres for naturally aspirated and forced induction power units, respectively. The minimum dry 
weight of the cars is 1245 kg, subject to Balance of Performance alterations.  Further technical regulations 13

are described in the official technical regulations document.

	 The cars are heavily modified from their road legal versions, sharing few to no parts. However, the 
design of the original vehicle is dominant and the respective road legal model is easily recognizable.

	 The models that are competed in 2019 24 hours of Le Mans, the second round of the 2019 
championship, in the LMGTE categories are:


• Aston Martin Vantage,


• Aston Martin Vantage AMR,


• BMW M8 GTE,

• Chevrolet Corvette C7.R,


• Ferrari 488 GTE,


• Ferrari 488 GTE EVO,

• Ford GT,


• Porsche 911 RSR.  
14 15

	 The winners of the 2019 Le Mans was the Ferrari 488 GTE EVO in the LMGTE Pro class and the 
Porsche 911 RSR in the LMGTE Am class.  
16 17

	 Among these vehicles, different design solutions have been implemented regarding the front splitter 
and the rear diffuser. These solutions are presented in the next sections.  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	 In figure 2.6 an LMP1, an LMP2, an LMGTE Pro and an LMGTE Am car renders are shown.


!  

!  

!  

!  
Figure 2.6: Top to bottom: An LMP1 car (Toyota TS050), an LMP2 car (Oreca 07), an LMGTE 

Pro car (Porsche 911 RSR) and an LMGTE Am car (Ferrari 488), all subjected to the 2017 
technical regulations. Images not to scale. 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2.2.2. Front Splitter 
	 According to the 2019 technical regulations, the front splitter must be included in a free volume 
named V4. This free volume allows for a maximum front overhang of 1150 mm and a maximum protrusion 
from the vehicle front bumper of 100 mm. The volume is also bounded at the bottom by a horizontal plane 
at the lowest height of the bodywork (also named as reference surface) and by a horizontal plane 150 mm 
above it.

	 The original description by the regulations is as follows:


Main front aerodynamic device (Splitter) 
One lower aerodynamic device may be added within Volume V4. 
Material: Composite permitted. 
Dimensions: Its overall length must not exceed 1150 mm, measured from the front axle centreline. Its 
overall width must not be greater than that of the front fenders.  
Maximum protrusion from the perimeter of the original bodywork (def7): 100 mm. 

Shape: Wing profile forbidden. 
Continuous lower and upper surfaces. (through-flow air openings not permitted)  
Leading and side edges radius = 5 mm minimum. 
Le Mans aerodynamic Kit: 
The shape of the lower surface of the homologated device may be modified by the addition of in-fill 
parts. 

	 In figure 2.7 the schematic from the regulations explaining the volume V4 is shown.


!  
Figure 2.7: The free volume V4 concerning the front splitter, as in the 2019 Technical 

Regulations For Grand Touring Cars. The volume position is explained in the left picture, with 
the front of the car facing to the left and with yellow lines representing the outlines of the 

wheels. The maximum protrusion is explained in the top right corner and the maximum height 
in the bottom right corner.  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	 The solutions implemented on current race cars is either a flat or a curved splitter. The curved 
splitter is raised towards the centreline of the car. In figure 2.8 different front splitter solutions are shown.


!  

!  
Figure 2.8: Different solutions for the front splitter. A flat splinter on the Chevrolet Corvette 

C7.R  (top) and a curved splitter on the Ferrari 488 GTE EVO  (bottom). 18 19

	 It is expected that the optimization results will modify the splitter into a solution resembling one of 
the above. 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2.2.3. Rear Diffuser 
	 According to the 2019 technical regulations, the rear must be included in a free volume named V7. 
This free volume allows for a maximum rear overhang of 1050 mm and a maximum protrusion from the 
vehicle rear bumper (dictated by a reference free volume named V5) of 100 mm. The volume is also 
bounded at the bottom by the reference surface and by a horizontal plane at 260 mm above it.

	 The original description by the regulations is as follows:


Rear diffuser  
One lower aerodynamic device may be added within Volume V7.  
Material: Composite permitted. 
Dimensions: The overall length must not exceed 1050 mm, measured from the rear axle centreline.  
At the car longitudinal centreline, the protrusion from the perimeter of the bodywork situated above 
Volume V5 must not be greater than 100 mm. 

Shape: Wing profile forbidden. 
The leading edge must be on the Reference Surface. 
Fins: Permitted. 

	 In figure 2.9 the schematic from the regulations explaining the volume V7 is shown.


!  
Figure 2.9: The free volume V7 concerning the rear diffuser, as in the 2019 Technical 

Regulations For Grand Touring Cars. The volume position is explained in the left picture, with 
the front of the car facing to the left and with yellow lines representing the outlines of the 

wheels. The maximum protrusion and maximum width are explained in the top right corner 
and the maximum height in the bottom right corner.  20
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	 There are also multiple solutions implemented for the rear diffuser. The rear diffuser perimeter, in a 
vertical transverse section may have rectangular shape, stepped rectangular shape or a free symmetrical 
curve. The rear diffuser may also have vertical longitudinal fins. The design of the BMW M8 GTE’s diffuser is 
particularly interesting, since it is the only solution with open sidewalls. In figure 2.10, different solutions for 
the rear diffuser are shown.


!  

!  

Page !  from !15 91



!  

!  
Figure 2.10: Top to bottom: Different solutions for the rear diffuser. A rectangular diffuser on 
the Aston Martin Vantage , a stepped rectangular diffuser on the Porsche 911 RSR  and a 21 22

curved diffuser on the Ford GT . The diffuser of the BMW M8 GTE , which has open 23 24

sidewalls is also shown at the very bottom. 
	 Again, it is expected that the optimization results will modify the rear diffuser into a solution 
resembling one of the above. 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2.3.Modified DrivAer Model 
	 The modified DrivAer model was created by adding and modifying the original DrivAer geometry as 
distributed by the Technical University of Munich into a Computer Aided Design (CAD) software. The CAD 
software used was SolidWorks by Dassault Systèmes (using the license of the School of Mechanical 
Engineering of the NTUA). All added geometry was created in full accordance to the technical regulations. 
However, it must be stated that the original DrivAer model does not comply with all technical regulations, 
since it was not designed for the FIA World Endurance Championship. It is also noted that the aerodynamic 
additions were created solely by the writer of this Thesis.

	 A simple, flat splitter was chosen and a stepped rectangular design without fins for the diffuser was 
implemented. Furthermore, a flat underfloor was created under most of the body and around the diffuser. 
This geometry will be inserted in the optimization software and it will be compared with the results.

	 The exported model format was stl (stereolithography).

	 In figures 2.11 to 2.15, renders of the modified DrivAer geometry are shown.


!  
Figure 2.11: Front 3/4 view of the modified DrivAer model. With blue colour is depicted the 

original body geometry, with green is the floor additions and with grey are the wheels. 
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!  
Figure 2.12: Rear 3/4 high elevation view of the modified DrivAer model. With blue colour is 
depicted the original body geometry, with green is the floor additions and with grey are the 

wheels. 

!  
Figure 2.13: Rear 3/4 low elevation view of the modified DrivAer model. With blue colour is 
depicted the original body geometry, with green is the floor additions and with grey are the 

wheels. 
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!  
Figure 2.14: Front 3/4 view of the modified DrivAer model. With grey lines the stl geometry 

triangle edges are depicted. 

!  
Figure 2.15: Rear 3/4 high elevation view of the modified DrivAer model. With grey lines the 

stl geometry triangle edges are depicted. 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3. Mesh Generation 

3.1.In General 
3.1.1. General Procedure 
	 The differential equations that describe the airflow around or inside an object, in most complex 
cases, do not have an analytical solution. A solution is reached via numerical methods solving the equations 
of the fluid flow. This computational domain is composed of many small simple quanta where the 
discretized equations are solved. These quanta are called cells and usually have a simple shape, namely 
tetrahedra, hexahedra, prisms, e.t.c. The total of the cells is the computational mesh. In this simulation, the 
mesh is hybrid, with the layers added on the vehicle and road surfaces being structured and the rest of the 
mesh being unstructured.

	 Since, in our case, the geometry is symmetrical, the computational mesh encloses half of the 
vehicle. The symmetry plane of the mesh is the longitudinal symmetry plane of the vehicle.

	 The mesh is generated by tools provided by the OpenFOAM software. The mesh generation was 
initialized by a structured mesh using cells with an aspect ratio close to unity created by the blockMesh 
tool. The vehicle geometry was then inserted in stl format and the mesh generation is executed using the 
following tools:


• The tool surfaceFeatureExctract helps in recognising particular geometry characteristics and 
improves their interpretation by the meshing software.


• The tool snappyHexMesh did the final detailing, which creates the cells in close proximity to 
the model geometry in an appropriate manner, so as to approximate the model geometry and 
to result in adequate thin layering for satisfactorily boundary layer computations.


	 Close to the far field a less fine mesh was generated, in order to save on computational costs. The 
flow in these points can be adequately approximated by such a sparser mesh, while the flow close to the 
model needs to be computed with greater precision, in order to obtain realistic values on the aerodynamic 
forces acting upon the vehicle.  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3.1.2. Mesh Generation With The snappyHexMesh Tool 
	 The snappyHexMeshTool is a meshing tool in the OpenFOAM software. It creates computational 
meshes using hexahedral cells around geometry in triangulated formats, such as stl, which is used in this 
case. It is also able to create computational meshes with respect to analytically defined geometry, such as 
planes, spheres and others. The tool can run in parallel, allowing for faster mesh generation.

	 Before the snappyHexMesh tool is run, it is necessary to create a background mesh using a tool 
named blockMesh. The blockMesh tool also creates the boundaries of the computational domain.

	 The meshing process executed by the snappyHexMesh is comprised by three basic procedures:


• Castellation, where the background cells are divided into smaller cells in close proximity to 
defined geometries.


• Snapping, where through an interactive process, the castellated mesh is projected and 
morphed in order to adapt to the input geometry.


• Adding layers, where prismatic cell layers are inserted in the void created by shrinking the 
mesh around user defined areas of the input geometry. 
25

	 In figure 3.1, the meshing process is depicted in an example model.


!  

!  

!  
Figure 3.1: The meshing process using snappyHexMesh in an example car model geometry. 
On top, the castellated mesh is shown, in the middle is the mesh after snapping and at the 

bottom the final mesh after layers have been added on the car bonnet is depicted.  26
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3.2.Computational Space 
3.2.1. In General 
	 The computational domain in which the primal and adjoint flow equations are solved is defined 
using the blockMesh tool as a rectangular parallelepiped and its dimensions were allocated as such:


Total length: 70 m, 
Total width: 5 m, 
Total height: 8.3 m. 

	 The dimensions above allow for adequate free space in front, on top, behind and beside the 
vehicle. The dimensions of this free space are presented in table 3.1.


	 In order to monitor the mesh quality, the maximum aspect ratio, maximum and average cell 
skewness and maximum non-orthogonality were checked:


Maximum aspect ratio = 33.62. 
Mesh non-orthogonality: Maximum: 64.73, Average: 7.59. 
Maximum skewness = 5.83. 

	 These indicate a mesh with no geometry flaws.

The mesh was composed of 4,846,058 cells. 

	 In figure 3.2, the full computational domain with the model inside is shown.


!  
Figure 3.2: The computational domain with the vehicle model inside.  

Table 3.1: The dimensions of the free space around the vehicle.

Free Space Total Size (m) Length/Height Percentage

Front 19 4 times the car length

Top 6.9 4.9 times the car height

Behind 46 9.6 times the car length

Beside 5 5.6 times the car halfwidth
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3.2.2. Refinement Spaces 
	 Two refinement spaces are created, one with high refinement levels for the model and one with 
medium refinement levels for the model and its wake. The space in close proximity to and above the road is 
also refined.

	 Those two refinement space are shown in figure 3.3 in side view and in figure 3.4 in front view, with 
respect to the model.


!  
Figure 3.3: The refinement areas for the vehicle (a) and its wake (b), in side view. 

!  
Figure 3.4: The refinement areas for the vehicle (a) and its wake (b), in front view. 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3.2.3. Mesh Details 
	 In the following figures, selected details of the mesh are presented.


!  
Figure 3.5: Mesh detail at the rear. 

!  
Figure 3.6: Mesh detail at the rear diffuser.  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!  
Figure 3.7: Mesh detail at the front splitter. 

!  
Figure 3.8: Mesh detail at the wing mirrors.  

Page !  from !26 91



!  
Figure 3.9: Mesh detail at the rear spoiler. 
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4.

4. The Primal Flow Problem 

4.1.Flow Equations 
4.1.1. Theoretical Background 
4.1.1.A. The Navier—Stokes Equations

	 Before the flow equations are introduced, it is noted that the simulation Mach number is relatively 
low, below 0.3. Thus, the effect of the air compressibility is almost negligible and the following equations 
concern the incompressible fluid flow.

	 The Navier—Stokes equations concerning incompressible Newtonian fluids are the following: 
27

4.1. !  

4.2. !  

where:

• Indices i and j: Indicate directions x, y and z; A twice repeated index implies summation 

according to Einstein’s convention.

• ui: Velocity component at direction i,


• xi: Cartesian coordinate of space at direction i,


• t: Time,


• p: Static pressure divided by the constant density ρ,


• ν: Kinematic viscosity of the fluid.


	 Equation (4.1) is the continuity equation and equation (4.2) is the momentum conservation equation. 
These equations are integrated over every finite volume of the cells and are solved numerically using 
appropriate methods.

	 An alternative notation for the two equations is Rp and Ruj, respectively, ignoring the time derivative 
for steady flows, since steady simulations are performed, is:


4.3. !  

4.4. !  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4.1.1.B. Turbulence

4.1.1.B.a. About Turbulence 
	 A summarized description of the phenomenon of turbulence, as stated by Lewis Richardson, is as 
follows:


Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to 
viscosity.  28

	 The nature of a turbulent flow is chaotic. The exact computation of the flow behaviour is almost 
impossible. For this reason, turbulence models have been created using statistical and experimental data of 
turbulent flows.

	 For the majority of turbulent flow cases, the simplest models are derived from the application of 
time averaging on the original Navier—Stokes equations. The resulting equations are named Reynolds 
Averaged Navier—Stokes equations, or RANS for short. Time averaging means discretizing a quantity 
between its mean value across a large time duration and its time-dependent oscillation around this value. 
For example, a velocity component u is time averaged as such:


4.5. !  

where:

• ū: The mean value of the velocity component over a time duration,


• u’: The velocity component oscillation around the mean value.


	 In figure 4.1 the distinction between ū and u’ is demonstrated.


!  
Figure 4.1: The distinction between the mean value of the velocity component u over a time 

duration (blue dashed line) and the time dependent velocity component oscillation around the 
mean value (green continuous line). 
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	 The time averaged momentum equation is:


4.6. !  

where:

• δij: The Kronecker’s delta, which is equal to 0, when i≠j and equal to 1 when i=j,


• The Reynolds stresses  are modelled using the Boussinesq hypothesis as: 
29

4.7. !  

	 where:

• k is the turbulence kinetic energy, defined as:


4.8. !  

• νt: The turbulent kinematic viscosity.
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4.1.1.B.b. The Spalart—Allmaras Turbulence Model 
	 The Spalart—Allmaras model is a one equation turbulence model turbulence model. It was 
developed primarily for external air flows. The model introduces a new variable, ṽ, which is defined by the 
following equation: 
30

4.9. !  

where:

• fu1: A quantity defined as:


4.10. !  

	 where:

• X: The ratio of ṽ to kinematic viscosity:


4.11. !  

	 The partial differential equation of the Spalart—Allmaras turbulence model is the following:


4.12. !  

where:

• d: The distance of each point to the nearest wall,


• The following quantities are constants of the model:


• σ = 2/3,

• Cb1 = 0.1355,


• Cb2 = 0.622,


• κ = 0.41,


• Cw1 = 3.239,


• Cw2 = 0.3,


• Cw3 = 2,


• Cu1 = 7.1,


• Ct3 = 1.2,


• Ct4 = 0.5,


• The following equations are used for computation of the rest of the model quantities: 
31

4.13. !  

4.14. !  
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4.15. !  

4.16. !  

4.17. !  

4.18. !  

4.19. !  

4.20. !  

	 The production P and dissipation D terms are given by:


4.21. !  

4.22. !  

where:


4.23. !  

	 where Y is the vorticity magnitude:


4.24. !  
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4.1.2. Boundary Conditions 
4.1.2.A. On The Boundaries Of The Computational Domain

4.1.2.A.a. Inlet 
	 At the inlet of the computational domain, the following boundary conditions are set:


• The velocity components (ux, uy, uz) are set as (36, 0, 0) m/s on the inlet, as a Dirichlet 
boundary condition. The resulting inlet velocity magnitude of 36 m/s defines the Reynolds 
number, by implementing the following equation:


4.25. !  

where Lref, a reference length of the geometry, which, in this Diploma Thesis, is the vehicle 
wheelbase, which is 2.786 m.

	 The flow Reynolds number is:


Re = 6.7×106 
• The gradient of the pressure at the direction normal to the inlet is set to zero, as a Neumann 

boundary condition.


• The value of ṽ is set to 2.38×10-3 m2/s, about five times the kinematic viscosity of air. 
32

• The value of the turbulent kinematic viscosity is set to 2.38×10-3 m2/s.


4.1.2.A.b. Outlet 
	 At the outlet of the computational domain, the following boundary conditions are set:


• The gradient of the velocity components in the direction normal to the outlet is set to zero.


• The pressure at the outlet is set to zero.


• The gradient of ṽ at the direction normal to the outlet is set to zero.


• The gradient of the turbulent kinematic viscosity in the direction normal to the outlet is set to 
zero.


4.1.2.A.c. Road 
	 The road is considered fixed, thus, the following boundary conditions are set:


• The velocity components are set to 0 m/s, as a Dirichlet boundary condition.


• The gradient of the pressure on the road in the direction normal to it is set to zero.


• The value of ṽ is set to zero.


• The boundary condition of the turbulent kinematic viscosity is set to a condition based on 
turbulent kinetic energy, using a wall function, defined by the following equation:


4.26. !  
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where:


• uτ: Friction velocity, defined by:


4.27. !  

• n: The normal to the surface unit vector. 
33

4.1.2.A.d. Side & Top 
	 At the side and top of the computational domain, the following boundary conditions are set:


• The boundary condition for the velocity provides a slip constraint.


• The gradient of the pressure on the side and top of the computational domain in the direction 
normal to each of them is set to zero.


• The gradient of ṽ at the direction normal to the surface is set to zero.


• The gradient of the turbulent kinematic viscosity in the direction normal to the surface is set to 
zero.


4.1.2.A.e. Symmetry Plane 
	 At the symmetry plane, a boundary condition named symmetryPlane is implemented for all 
quantities, modelling the symmetry of the simulation.


4.1.2.B. On The Vehicle

	 On the vehicle, the following boundary conditions were set:


• The velocity is set to zero on the body of the car.


• The gradient of the pressure in the direction normal to the surface is set to zero.


• The value of ṽ is set to zero.


• The boundary condition of the turbulent kinematic viscosity is set to a condition based on 
turbulent kinetic energy, using a wall function, the same one used on the road.


uτ =
τW
ρ
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4.1.3. Forces 
4.1.3.A.
	 The aerodynamic forces on a body in a stream of fluid are due to pressure and shear distribution 
over the body surface.  The two forces that are of interest are drag D and lift L. These are components of 34

the total force F that is exerted from a fluid to a body, that is computed by the following equation: 
35

4.28. !  

where:

• n: The normal to the surface unit vector,


• t: The tangent to the surface unit vector,


• τij: The shear stress components on the body surface.


	 The drag D is the component of F parallel to the free stream flow and the lift L is the component 
perpendicular to it.

	 The aerodynamic performance of a body concerning drag and lift are often stated using the 
respective drag and lift coefficients, defined as:


4.29. !  

4.30. !  

where:

• ρ∞: The fluid free stream density,


• Aref: A reference area for the body. In this case, this is the frontal area of the car,

• U∞: The fluid free stream velocity. 
36

F
!"
= pni ds

S
#∫∫ − τ ijn j ds

S
!∫∫

CD =
D

1
2
ρ∞ArefU∞

CL =
L

1
2
ρ∞ArefU∞
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4.2.Numerical Solution Using OpenFOAM 
	 The steady-state simulation is carried out using the SIMPLE algorithm, according to the following 
procedure:


• The discretized momentum equation is solved and an intermediate velocity field u* is 
computed, using an initial estimation or previous iteration data for the pressure gradient:


4.31. !  

where:


• P: The cell index in which the momentum equations are discretized,


• NB(P): Its adjacent cells,


• b: A vector referring to explicitly considered source terms that might be present in the 
momentum equations,


• aP and aN: Coefficients that result from the discretization of the convection and 
diffusion terms in equation (4.4) It should be noted that the diagonal coefficient aP is 
the same for all the components of the momentum equations,


• p*: Initial estimation or previous iteration pressure data,


• The following equation for the pressure is formed and solved, determining the new pressure 
field that satisfies the continuity equation:


4.32. !  

where:


4.33. !  

4.34. !  

• Relaxation is applied to certain flow quantities,


• The fluid volume flux at the mesh faces mf is updated, using the following equation:


4.35. !  
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where:


• S: The normal to the surface vector dimensionalized with the surface area,


• � : The normal to the surface pressure gradient,


• The velocities are corrected according to the new pressure field, using the following equation:


4.36. !  

• The boundary values of the flow quantities are renewed,


• The cycle repeats until adequate convergence has been achieved. 
37

	 This algorithm is set by creating the necessary OpenFOAM case documents. The desired initial and 
boundary conditions are set, along with numerous other parameters concerning the computational 
processes. An initialization is computed by solving the potential flow, using the potentialFoam tool. Then, 
the steady-state Navier—Stokes equations and the turbulence model equations are solved according to the 
aforementioned SIMPLE algorithm, using the simpleFoam tool.

	 The discretization of the equations is second order accurate. In table 4.1, the discretization 
schemes used are listed. 
38

	 Consequently, the flow model is second order accurate. The relaxation factors are set to 0.2 for the 
pressure, the velocity and the ṽ variable.


∂p
∂x j

Sj
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
f

uP,i = ûP,i −
1
aP

∂p
∂xi

Table 4.1: The discretisation schemes used in the simulation.

Operation
Discretization Scheme

Name Meaning

∇ cellLimited Gauss linear Cell Limited, Second Order, Gaussian Integration

∇⋅ bounded Gauss linearUpwind Second Order, Bounded

∇2 Gauss linear corrected Second Order, Unbounded
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4.3.Results 
4.3.1. Convergence 
4.3.1.A. Flow Quantities

	 The residuals of the flow equations for the modified car model during the simulation are presented 
in figure 4.2.


!  
Figure 4.2: Convergence of the residuals of the flow equations during the simulation of the 

modified model. 
	 It is clearly shown that the mean value of the residuals has been converged. The residuals are 
oscillating around this mean value.

	 In the following, the last iteration is considered as the solution.
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4.3.1.B. Forces

	 The convergence of the force coefficients during the simulation of the modified model is presented 
in figure 4.3.


!  
Figure 4.3: The convergence of the force coefficients during the simulation of the modified 

model. 
	 Again, the mean values of the force coefficients have been stabilized.

	 The car body produces a negative overall effect of lift, meaning it produces downforce.

	 The mean value of the coefficients of the last 1000 iterations are considered the results. These 
mean values with their corresponding standard deviations σ are:


μCD = 0.326, 
σCD = 0.003, 
μCL = -0.046, 
σCL = 0.014. 
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4.3.2. Comparison With The Original Geometry 
4.3.2.A. Forces

	 In table 4.2 a comparison between the force coefficient of the original DrivAer geometry and the 
modified model is presented.


	 It is clear that the overall aerodynamic performance is improved. There is a 11% decrease on drag 
and a 140% decrease on lift, meaning that the vehicle is creating negative lift, that is net downforce.

	 The reduction in the lift gives way to more aggressive aerodynamic solutions, such as the 
introduction of a rear wing, the increase in the vehicle rake, the increase in the diffuser tip angle, an increase 
in the spoiler size and the introduction of winglets at certain places such as the front bumpers.

	 It is also noted that the final optimized solution is expected to give better results for the lift, however 
there may be an increase of drag, since the optimization process may automatically tend to implement 
some of the aforementioned more aggressive solutions.


Table 4.2: Aerodynamic coefficients of the original models and the modified DrivAer model.

Model
Coefficient

Drag Lift

Original DrivAer 0.365 0.116

Modified DrivAer 0.326 -0.046

Difference To Original (%) -10.68% -139.66%
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4.3.2.B. Flow Field

4.3.2.B.a. Velocity Magnitude 
	 In figure 4.4, the computed fields for the velocity magnitude are shown, for the original DrivAer 
geometry and the modified one.


!  

!  
Figure 4.4: Velocity magnitude field for the original geometry (top) and for the geometry with 
the LM GTE modifications (bottom). The colour scale is the same for the two fields and the 

units are m/s. 
	 The following remarks can be made:


• There are clear differences in the wake of the car. The wake is slightly shorter in the modified 
geometry.


• The airflow is faster under the floor of the modified geometry, thus pressure is less and 
downforce is created.


• The underbody upsweep is also visible right behind the diffuser.


• On both models the magnitude of the velocity is maximum on the roof of the car, decreasing 
the pressure and inducing lift.  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4.3.2.B.b. Pressure 
4.3.2.B.b.I. Symmetry Plane 
	 In figure 4.5, the resultant fields for the pressure are shown, for the original DrivAer geometry and 
the modified one at the symmetry plane.


!  

!  
Figure 4.5: Pressure field for the original geometry (top) and for the geometry with the LM 

GTE modifications (bottom). The colour scale is the same for the two fields and the units are 
Pa, with the zero set to the ambient pressure 

The following are noted:

• The pressure on the upper side of the splitter is relatively high, while on the bottom side it is 

relatively low, creating downforce at the front of the car.


• The pressure seems relatively smaller under the underfloor of the modified car.


• There is a low pressure zone on the roof of both cars, which combined with the moderate 
underfloor pressure induces lift. 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4.3.2.B.b.II. Car Body Distribution 
	 In figures 4.6 to 4.9, a comparison of the pressure distribution on the car body is presented. Half of 
the car is the original geometry and half of the car is the geometry with the modifications.


!  
Figure 4.6: Comparison of the pressure distribution on the car body, between the original car 

geometry (port side) and the modified geometry (starboard side), in front view. The colour 
scale is the same for the two fields and the zero is set to the ambient pressure. 

!  
Figure 4.7: Comparison of the pressure distribution on the car body, between the original car 

geometry (port side) and the modified geometry (starboard side), in rear view. The colour 
scale is the same for the two fields and the zero is set to the ambient pressure. 
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!  
Figure 4.8: Comparison of the pressure distribution on the car body, between the original car 
geometry (bottom) and the modified geometry (top), in top view. The colour scale is the same 

for the two fields and the zero is set to the ambient pressure. 

!  
Figure 4.9: Comparison of the pressure distribution on the car body, between the original car 
geometry (top) and the modified geometry (bottom), in bottom view. The colour scale is the 

same for the two fields and the zero is set to the ambient pressure. 
	 In addition to the previous points, it is noted that the pressure distribution at the underfloor is more 
uniform with the modified floor. However, the pressure distribution is relatively similar between the two 
models.


Page !  from !45 91



4.3.2.B.c. Variable ṽ 
	 In figure 4.10, the variable ṽ field is shown for the original DrivAer geometry and the modified one, 
at their symmetry plane.


!  

!  
Figure 4.10: The variable ṽ field for the original geometry (top) and for the geometry with the 
LM GTE modifications (bottom) at their symmetry plane. The colour scale is the same for the 

two fields and the units are m2/s. 
	 The variable ṽ is again mostly zero, apart from the wake of the vehicle. The two fields are very 
similar, apart from the area directly behind the vehicle, where the variable ṽ is slightly larger for the original 
geometry.
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5. . 

5. The Adjoint Flow Problem 

5.1.The Optimization Cycle 
	 In gradient-based optimization methods, numerous candidate optimal solutions are simulated 
sequentially. After the initial solution, which is directly or indirectly set by the user, a next candidate solution 
has to be reached. This is done by computing the direction in which the objective function is reduced (for 
minimization problems) or increased (for maximization problems). The quantities that indicate this direction 
are the sensitivity derivatives, which are the derivatives of the objective function with respect to the design 
variables.

	 In the adjoint method, the sensitivity derivatives are computed after solving the adjoint flow field. 
This field is computed by solving the adjoint field equations and their boundary conditions. These equations 
are relatively similar to the Navier—Stokes Equations and their boundary conditions.

	 The solution of the adjoint flow field requires full knowledge of the primal flow field, which is the 
solution of the Navier—Stokes equations. Consequently, in the adjoint-assisted optimization algorithm, the 
adjoint flow equations must be solved and also the Navier—Stokes equations at each cycle and their 
solution must be stored until the cycle is complete.

	 One of the advantages of the adjoint method, is that the computational cost is independent of the 
number of design variables. In contrast to other methods of computing sensitivity derivatives, such as direct 
differentiation, where the computational cost is directly proportional to the number of the design variables, 
the adjoint method is a valuable tool for shape optimization problems with complex geometries, as is the 
optimization of a car surface. The optimization costs of the adjoint method, on the other hand, are 
proportional to the number of objective functions. As a result, this optimization tool may not be the most 
suitable solution for all optimization problems. The engineer is called to evaluate and decide on the 
optimization tools according to each problem characteristics.

	 It has to be noted that the design variables are not always the variables of the CAD software that 
describe the model geometry. If the CAD software cannot be incorporated into the optimization cycle for 
automatic generation of the next solution, the geometry is described by an analytical, parametrically 
described geometry type, such as spline or Bézier surfaces. The design variables then become the 
parameters that describe the analytical geometry. After the termination of the optimization, the geometry 
may then be reconstructed in the CAD software. It is noted that not only the model geometry is 
parameterized, but also every CFD point in the parameterized space. This means that, in every geometry 
deformation, there is usually no need for remeshing and that the cells keep their previous flow quantities’ 
values as the next initialization.

	 The optimization algorithm is depicted in figure 5.1. 
39
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!  
Figure 5.1: The optimization algorithm using the adjoint method with a free form deformation 

method. Purple boxes indicate processes with high computational cost.  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5.2.Continuous Adjoint 
5.2.1. Introduction To Continuous Adjoint 
	 With the continuous adjoint method the adjoint flow equations and the adjoint boundary conditions 
are derived, solved and then, the sensitivity derivatives of the objective function are computed. 

	 In this analysis, the hypothesis of “frozen turbulence” is not made and the adjoint equations to the 
Spalart—Allmaras model are also solved.

	 Let F be the objective function and bn the design variables, where n = 1, 2, …, Np. The results of the 
primal problem, the pressure distribution p and the velocity distribution u are stored in a vector U. Naturally, 
the pressure and velocity distribution and, consequently, vector U, are dependent on the model geometry, 
which is described by the design variables, stored in vector b. So, symbolically:


5.1. !  

	 The value of the objective function is dependent on the design variables, but also dependent on the 
pressure and velocity distribution U. Symbolically:


5.2. !  

taking into account the dependence of F and U from the grid coordinates x as well, equation (5.II) extends 
to:


5.3. !  

	 Let v be the adjoint velocity, q the adjoint pressure and ṽa the adjoint variable ṽ.

	 The augmented objective function is defined, by adding to the objective function two volume 
integrals of the product of the adjoint velocity and the residual Rui and the adjoint pressure and the residual 
Rp, respectively:


5.4. !  

where �  is the computational domain.

	 It is noted that since equations (4.3) and (4.4) are true, Faug ≡ F.

	 Using the Lebniz theorem, by differentiating with bn, equation (5.4) becomes:


!  

5.5. !  
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• n: A vector containing all the vertical vectors to the surface S,


• xk: Points describing the surface S,


• S is the boundary of the computational domain. This boundary can be divided into the 
following boundary surfaces:


• SI: The inlet surface,


• SO: The outlet surface,


• SE: The side and top surfaces,


• SS: The symmetry plane,


• SR: The road,


• SMb: The surface of the vehicle model.

	 It is true that S = SI ∪ SO ∪ SE ∪ SS ∪ SR ∪ SMb.

	 In addition, the SMb is the only surface dependent by the design variables, hence the index b, while 
the geometry of the rest surfaces if fixed and independent of the design variables bn, which means that the 
xk derivatives with respect to bn is zero in S ∖ SMb. Consequently, equation (5.V) can be written as:


5.6. !  

	 It is also noted that for any quantity Q, the notation δQ/δbn means the total variation in Q, due to a 
variation in bn. Additionally, the notation ∂Q/∂bn the variation in Q caused due to changes in the flow 
variables, not including direct contributions due to geometry alterations caused by bn variations. The 
following is true: 
40

5.7. !  

	 If the quantity Q is computed on a surface, the following is true:


5.8. !  
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5.2.2. The Objective Function & Its Differentiation 
	 In cases such as the present, where the objective function, such as the downforce, is a surface 
integrated quantity, the following expression is valid:


5.9. !  

	 By differentiating the above equation:


5.10. !  

	 The differential of the surface integral in equation (5.10) can be developed as:


5.11. !  

	 By taking into account equation (5.8), equation (5.11) becomes:


5.12. !  

 	 By implementing the chain rule, the partial derivative of F is:


5.13. !  

where τkj is the stress tensor.

	 After substitution, the resultant equation is:


5.14. !  

	 The derivatives of the geometrical quantities are developed using the following identities from 
differential geometry: 
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5.15. !  

5.16. !  
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• ∂τ/∂xi: The tangental derivative,


• κ: The mean curvature of the surface.

	 After substitution:


5.17. !  

	 Substituting in equation (5.10), the final expression of δF/δbn becomes:


5.18. !  
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5.2.3. The Adjoint Field Equations 
5.2.3.A. Adjoint Mean Flow Equations

	 In equation (5.6), the partial derivatives of the Navier—Stokes equations with respect to the design 
variables bn are included. These can be developed by differentiating the Navier—Stokes equations with 
respect to the design variables bn. It is noted that, due to the nature of the ∂/∂bn and the δ/δbn operators 
applied to a quantity Q, the following statements are generally true:


5.19. !  

	 The resultant differentiated equations are:


5.20. !  

5.21. !  

5.22. !  

	 The differentiation of production and dissipation terms yield: 
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5.23. !  
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5.28. !  

5.29. !  

	 Using the Green—Gauss theorem and by substituting equation (5.10), the volume integral 

�  in equation (5.6) is developed as:


5.30. !  

	 Similarly, concerning the volume integral �  in equation (5.6), the inviscid terms are 

developed as:


5.31. !  

and:


5.32. !  

	 The viscous terms are developed as:


!  

5.33. !  
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	 The two resultant volume integrals can further be developed as:


5.34. !  

and: 


!  

5.35. !  

	 Similarly for the terms concerning the adjoint variable ṽ, using the Green—Gauss theorem and by 
substituting equation (5.10), the first volume integral is developed as:

	 The final term in equation (5.21) is developed as:


5.36. !  

where ∂νt/∂ṽ is given by: 


5.37. !  

	 Similarly for the terms concerning the adjoint variable ṽ, using the Green—Gauss theorem and by 
substituting equation (5.10), a term by term analysis follows:


5.38. !  

and:


5.39. !  

and:


5.40. !  
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5.41. !  
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and, finally:


5.42. !  

	 By substituting equations (5.30) to (5.36) and (5.38) to (5.42) into equation (5.6), and utilizing 
equation (5.18) the following expression of the augmented objective function is formed.


5.43. !  

	 In order to avoid computing the partial derivatives of U, the multipliers of ∂ui/∂bn, ∂p/∂bn and ∂ṽ/∂bn 

in the final two volume integrals are set to zero. This determines the adjoint mean flow equations, which are 
the following: 
43

5.44. !  

5.45. !  

5.46. !  
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	 Equation (5.44) is the adjoint continuity equation, equation (5.45) is the adjoint momentum equation 
and equation (5.45) is the adjoint turbulence model equation. Note the similarity between the adjoint mean 
flow equations and the primal mean flow equations, (4.3), (4.4) and (4.12). Also note that, in contrast to the 
primal momentum equation, the adjoint momentum equation is linear.

	 It should also be noted that equation 5.43 is the sensitivity expression of the SI approach.  In this 44

Diploma Thesis, the E-SI method has been used, which introduces an extra adjoint variable and equation in 
order to avoid the computation of the ∂xk/∂bn terms. This is achieved by assuming a Laplacian model for the 
grid node displacements:


5.47. !  

where mi: are the Cartesian displacements of the grid nodes.

	 By incorporating equation (5.47) into equation (5.4), equation (5.4) becomes:


5.48. !  

where mai: are the adjoint Cartesian displacements of the grid nodes.

	 Similarly to the aforementioned developments, using the Leibniz theorem the new term is 
developed as:


5.49. !  

	 Since the extra term added to the objective function includes only variations in grid coordinates 
with respect to bn, the adjoint flow field equations and their boundary conditions are the same. The 
sensitivity derivatives expression is the same, with the addition of some new terms resulting from equation 
(5.49). By zeroing the coefficient of ∂xk/∂bn in the field integrals, the adjoint equation for the mai becomes:


5.50. !  
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5.2.3.B. Adjoint Boundary Conditions

5.2.3.B.a. Resultant Equation 
	 After satisfying the adjoint mean flow equations, equation (5.43) becomes:


5.51. !  

	 Using equation (5.51) and the primal boundary conditions, the adjoint boundary conditions will be 
determined.


5.2.3.B.b. On The Boundaries Of The Computational Domain 
5.2.3.B.b.I. Inlet 
	 At the inlet of the computational domain, since SI is fixed, δxk/δbn=0 and from the primal boundary 
conditions, the following is true:


5.52. !  

	 As a result, the first integral of equation (5.51) is zero. In order to set the remaining integrals equal to 
zero, the following boundary conditions are set:


5.53. !  

5.54. !  
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5.55. !  

where:

• tIi, tIIi: The components of the tangent to the surface unit vectors,


• vI⟨i⟩, vII⟨i⟩: The components of the adjoint velocity, parallel to the surface unit vectors tIi and tIIi, 
respectively.


	 Since for the adjoint pressure no condition results from equation (5.51), its boundary condition is set 
as a zero Neumann condition.


	 In order to make equation (5.51) independent of the term � , a zero Dirichlet boundary 

condition is imposed on ṽa:


5.56. !  

	 In order to make equation (5.51) independent of the term � , a zero Dirichlet boundary 

condition is imposed on mak:


5.57. !  

	 Note that the area integrals of equation (5.51) are zero on any other surface than SMb,


5.2.3.B.b.II. Outlet 
	 At the outlet, since SO is fixed, δxk/δbn=0 and from the primal boundary conditions, the following is 
true:


5.58. !  

	 As a result, the second integral in equation (5.51) is zero. In order to eliminate the first term, the 
integrant must be set equal to zero:


5.59. !  

	 In the case of 3D flows, equation (5.59) includes four unknown quantities (the three components of 
the adjoint velocity and the adjoint pressure). Therefore, one of them must be extrapolated from the interior 
of the domain. This is chosen to be the normal component of the adjoint velocity vn. By multiplying equation 
(5.59) with the normal to the surface vector ni the adjoint pressure can be determined as:


5.60. !  
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	 The tangential adjoint velocity components can be obtained by multiplying equation (5.59) with the 
tangent to the surface vectors tIi, tIIi, as following, and solving the resultant Robin boundary condition:


5.61. !  

	 After zeroing the coefficient of ∂ṽ/∂bn, a Robin boundary condition is imposed on ṽa:	 


5.62. !  

	 A zero Dirichlet boundary condition is imposed on mak.


5.2.3.B.b.III. Road, Side & Top 
	 At the road, side and top, namely the fixed walls of the domain, the primal boundary conditions are 
similar to those imposed at the inlet. The resultant adjoint boundary conditions are the following:


5.63. !  

5.64. !  

5.65. !  

along with a zero Dirichlet condition for ṽa, mak and a zero Neumann condition for the adjoint pressure.


5.2.3.B.b.IV.Symmetry Plane 
	 On the symmetry plane, the objective function is not defined. In order to set the remaining terms of 
equation (5.51) equal to zero, the following boundary conditions are set:


5.66. !  

5.67. !  

	 A symmetry plane boundary condition is imposed on ṽa.

	 Again, a zero Dirichlet condition for mak and a zero Neumann condition for the adjoint pressure are 
imposed.


5.2.3.B.c. On The Vehicle 
	 The vehicle surface is the parameterized geometry of the simulation, that may vary through the 
simulation cycles. While δui/δbn=0, in general it is δxk/δbn≠0. As a result, taking equation (5.8) into account, 
the following is true:
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5.68. !  

	 The first integral of equation (5.51) is analyzed as:


5.69. !  

	 The resultant integral contains terms only from the primal and the adjoint fields and from the surface 
displacement, as a result it can be computed and added to the sensitivity derivatives expression.

	 The second and third integrals can be also set equal to zero, by imposing the following conditions:


5.70. !  

5.71. !  

5.72. !  

	 A zero Dirichlet condition for ṽa, mak and a zero Neumann condition for the adjoint pressure are 
imposed.  45
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5.2.3.C. Final Expression Of The Sensitivity Derivatives

	 After satisfying the adjoint mean flow equations, the adjoint turbulence model equations and the 
adjoint boundary conditions, the final expression of the sensitivity derivatives formulated by the E-SI 
approach is: 
46

5.73. !  
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	 It is noted that for the optimization with the FFD method, the FI approach for the sensitivity 
derivatives is used, which results in the following expression:


5.74. !  

	 The computation of the sensitivity derivatives are finally used in determining the next set of design 
variables, for the next optimization cycle, using the steepest descent method:


5.75. !  

where η is a weighing factor.
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5.3.Results 
5.3.1. Convergence 
	 The residuals of the adjoint equations during the simulation are presented in figure 5.2.


!  
Figure 5.2: Convergence of the residuals of the adjoint flow equations during the simulation. 
	 It is clearly shown that the mean value of the residuals has been reduced significantly and 
noticeably faster that the primal residuals.

	 The fields presented onwards concern the last iteration of the solution.


Re
sid

ua
l

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

Iteration
0 1000 2000 3000 4000 5000 6000 7000

Vax
Vay
Vaz
pa
nuaTilda

Page !  from !64 91



5.3.2. Adjoint Flow Field 
5.3.2.A. Adjoint Velocity

	 In figure 5.3, the adjoint velocity magnitude at the car symmetry plane is shown.


!  
Figure 5.3: Adjoint velocity magnitude at the modified car symmetry plane. 

	 It is noted that most of the field is apparently very small on magnitude, however there are high 
velocity areas at the front of the splitter, the tip of the spoiler and the tip of the diffuser.

	 In figures 5.4 to 5.7, the adjoint velocity magnitude distribution on the car body is shown. It is noted 
that no boundary condition sets the adjoint velocity to zero on the vehicle body, as in the primal velocity.


!  
Figure 5.4: Adjoint velocity magnitude distribution on the modified car body, in front 3/4 high 

elevation view. Results are presented on the right half of the car. 
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!  
Figure 5.5: Adjoint velocity magnitude distribution on the modified car body, in front 3/4 low 

elevation view. Results are presented on the right half of the car.

!  
Figure 5.6: Adjoint velocity magnitude distribution on the modified car body, in rear 3/4 high 

elevation view. Results are presented on the right half of the car. 
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!  
Figure 5.7: Adjoint velocity magnitude distribution on the modified car body, in rear 3/4 low 

elevation view. Results are presented on the right half of the car. 
	 The main areas where the adjoint velocity is higher is at the rear, the front and rear edges of the 
underfloor and the wheels and wheel arches. The general impression given by the adjoint velocity is like the 
primal velocity when the vehicle is moving on reverse.  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5.3.2.B. Adjoint Pressure

	 In figure 5.8, the adjoint pressure field on the car symmetry plane is shown.


!  
Figure 5.8: Adjoint pressure field at the modified car symmetry plane. 

	 The adjoint pressure field is vastly different from the primal one. The pressure is mostly uniform, 
with the main differences located at the tip of the front splitter and at the tip of the rear spoiler.

	 In figures 5.9 to 5.12, the adjoint pressure distribution on the car body is shown.


!  
Figure 5.9: Adjoint pressure distribution on the modified car body, in front 3/4 high elevation 

view. The results are presented on the right half of the car. 
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!  
Figure 5.10: Adjoint pressure distribution on the modified car body, in front 3/4 low elevation 

view. The results are presented on the right half of the car. 

!  
Figure 5.11: Adjoint pressure distribution on the modified car body, in rear 3/4 high elevation 

view. The results are presented on the right half of the car. 
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!  
Figure 5.12: Adjoint pressure distribution on the modified car body, in rear 3/4 low elevation 

view. The results are presented on the right half of the car. 
	 The adjoint pressure distribution on the vehicle body reveals further adjoint pressure peaks on the 
wheels and wheel arches. The rest of the distribution is again mostly uniform


5.3.2.C. Adjoint Variable ṽ

	 In figure 5.13, the adjoint variable ṽ field at the car symmetry plane is shown.


!  
Figure 5.14: Adjoint variable ṽ field at the modified car symmetry plane. 

	 The field of the adjoint variable ṽ is somewhat similar to this of the adjoint velocity z component, 
with a mostly uniform field with the exception of the rear of the vehicle and an area in front of the vehicle 
and close to the road. 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5.3.3. Sensitivity Map 
	 The sensitivity map is shown in figures 5.15 to 5.18. It is noted that the sensitivity derivatives are not 
computed on the wheels, since their geometry is fixed and a simplified smooth and closed wheel model 
was used.


!  
Figure 5.15: The sensitivity map, as resulted from a single adjoint simulation, in front 3/4 high 
elevation view. Blue colour indicates inwards displacement and red colour indicates outwards 
displacement for improving the objective function. The results are presented on the right half 

of the car. 

!  
Figure 5.16: The sensitivity map, as resulted from a single adjoint simulation, in front 3/4 low 

elevation view. Blue colour indicates inwards displacement and red colour indicates outwards 
displacement for improving the objective function. The results are presented on the right half 

of the car. 
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!  
Figure 5.17: The sensitivity map, as resulted from a single adjoint simulation, in rear 3/4 high 

elevation view. Blue colour indicates inwards displacement red colour indicates outwards 
displacement for improving the objective function. The results are presented on the right half 

of the car. 

!  
Figure 5.18: The sensitivity map, as resulted from a single adjoint simulation, in rear 3/4 low 

elevation view. Blue colour indicates inwards displacement and red colour indicates outwards 
displacement for improving the objective function. The results are presented on the right half 

of the car. 
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	 It is noted that, in order to increase the downforce, the sensitivity map suggests:

• The elongation of the front splitter,


• The elevation of the tip of the front splitter,


• Pushing the area of the headlights and the top of the front windscreen inwards, since this is an 
area where the velocity is accelerated, thus reducing the pressure and creating lift,


• Modifying the profile of the rear diffuser,


• The creation or larger spoilers at the rear of the car and on top of the rear windscreen,


• Morphing the side mirrors into a more wing-like shape,


• Pulling a large area of the front fenders and the front doors outwards,


• Pushing parts of the A-pillar inwards,


• Small alterations of the inside of the wheel arches.
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6.

6. Shape Optimization 

6.1.Theoretical Background 
6.1.1. Introduction - Free Form Deformation Method 
	 The FFD Method uses a set of movable control points in the 3D computational domain, in the form 
of a structured grid, in order to displace CFD mesh points located inside the control grid.

	 The method has been developed and coupled with the adjoint solver by the PCOpt Unit of the 
NTUA.

	 In order for the method to function, the following two procedures must be successfully completed:


• The parameterization of a part of the surface, or the whole of the surface of an aerodynamic 
body by defining the control points in 3D space. The x, y and z components of the control 
points are used as the design variables, meaning that for N control points there will be 3N 
design variables.


• The displacement of the surface and volume nodes of the CFD mesh in each optimization 
iteration, according to the value of the sensitivity derivatives.


	 The method exhibits great potential since the cost of each mesh movement is extremely small, 
when compared to the solution of the mean flow equations, the minimum degree of surface continuity can 
be defined a-priori and the setup of each case is not cumbersome. The main advantages of the FFD 
software under consideration include:


• The relatively expensive part of the algorithm has to be done only once. Fine-grained 
parallelization can be used to reduce as much as possible the corresponding time. The 
computed parametric coordinates are then stored for use in the same (or any subsequent) 
optimization loop.


• Each mesh movement step can be computed very fast, through a closed-form expression, 
which can also be differentiated analytically.


• Local shape deformations can be applied by adding control points and lowering the basis 
functions degree.


• The minimum degree of surface continuity can be determined beforehand.


• Since the displaced meshes are not affected by the number of steps required to achieve the 
final geometries but only from the final coordinates of the control points, very big mesh 
deformations can be achieved even in a single step.


• Mesh elements are guaranteed not to overlap, as long as the control grid edges do not overlap 
either.


• The mesh quality is generally preserved to standards than allow the solution of the primal and, 
the numerically stiffer, adjoint equations.


Page !  from !75 91



6.1.2. B-Splines Curves 
	 Let bi, i ∈ [0, n] be the control points of a parameterized curve x(u). In the case of a B-splines curve, 
x(u) is given by:


6.1. !  

where:

• Ui, p(u) is the i-th basis function with a degree of p,


• u ∈ [0, 1].


	 The Einstein’s convention is also assumed hereafter.

	 By defining additional control points, equation (6.1) can be used to give the y and z coordinates of a 
2D and 3D curve, respectively.

	 The resulting x curve is a piecewise polynomial function, with each polynomial being of a maximum 
degree of p. In order to define the basis function Ui, p(u), a set of knots in ascending order, known as the 
knot vector, ξi, i ∈ [0, m], m = n + p + 1, must first be defined. Knots may be present in the knot vector more 
than once. The following knot vector ξ is used:


6.2. !  

where N = n − p + 1.

	 This knot vector results to closed curves, i.e. curves that pass through the first and last control 
points. The number of control points has to exceed the curve degree by at least one.

	 The knot span is defined by two consecutive knots. The zero order basis function is given by:


6.3. !  

	 And the higher degree basis functions are given by:


6.4. !  

	 If, during the computation of the basis function values, the term 0/0 appears, its value is set to 0.

	 Each basis function and, consequently, each control point, is affecting only the curve points with a 
parametric coordinate residing in the p+1 spans, as defined by [ξi, ξi+p+1). This enables the alteration of a 
certain part of the curve while keeping the rest of it intact. In other words, the B-splines have the property of 
local support. The range of the locality can be controlled by altering the curve degree p. Smaller values of 
the curve degree correspond to more localized support.

	 The continuity of the resultant curve can also be determined beforehand. The B-spline curves are 
continuously differentiable in the interior of the knot span, since they are piecewise polynomial functions. 
The curve continuity is finite only at the knots and is given by Cp-k, where k is the knot multiplicity. 
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6.1.3. Volumetric B-Splines 
	 Let bmijk, m ∈ {1, 2, 3}, i ∈ [0, I], j ∈ [0, J], k ∈ [0, K] be the Cartesian coordinates of the ijk-th control 
points of the 3D structured control grid. I, J, K are the number of control points per control grid direction. In 
the case of volumetric B-splines, the Cartesian coordinates x = [x1, x2, x3]T = [x, y, z]T of a CFD mesh point 
residing within the boundaries defined by the control grid are given by:


6.5. !  

where:

• U, V, W: The B-splines basis functions,


• pu, pv, pw: The B-splines basis functions’ respective degrees, which may differ per control grid 
direction.


	 In this case, u = [u1, u2, u3]T = [u, v, w]T are the mesh point parametric coordinates.

	 The computation of the Cartesian coordinates of any parameterized mesh point is straightforward, 
at a negligible computational cost, as long as its parametric coordinates um are known. Mesh parametric 
coordinatesare computed with accuracy, since a mapping from ℝ3(x, y, z) →  ℝ3(u, v, w) is required. 
Consequently, B-splines can reproduce any input geometry with machine accuracy. Other surface fittings, 
Tsuch as NURBS, fail to achieve such accuracy, since an approximate mapping ℝ3(x, y, z) → ℝ3(u, v, w) is 
performed.

	 Given the control points position, the knot vectors and the basis functions degrees, the parametric 
coordinates (u, v, w) of a point with Cartesian coordinates r = [xr, yr, zr]T are computed by solving the 
following system of equations:


6.6. !  

where the xm are computed with equation (6.5) given tlevalues of b.

	 The 3×3 system of equation (6.6) is independently solved for each parameterized mesh point by 
computing and inverting the Jacobian ∂xm/∂ui, m, j ∈ {1, 2, 3}, and using the Newton—Raphson method. 
The Jacobian matrix is computed analytically through a closed form expression resulting by differentiating 
equation (6.V) with respect to the components of u. This phase may also run in parallel, since the evaluation 
of the parametric coordinates of each point is independent from the rest of the mesh points.

	 In addition, the aforementioned process has to be executed only once. Afterwards, after moving the 
control points b, the Cartesian coordinates of each internal of boundary mesh point that is located within 
the control grid can be easily computed with (6.5) and with minimal computational costs.

	 Furthermore, since xm depends only on (u, v, w) (which remain unchanged whatever the change in 
b) and b, the deformed meshes are step-independent. This means that, for a given final control points 
position, the same mesh quality will be obtained independent of the number of steps taken to reach that 
position. RBF-based or Laplacian-based mesh displacement algorithms, for instance, lack this ability.  

xm u,v,w( ) =Ui, pu u( )Vj , pv v( )Wk , pw w( )bmijk

R
!"
u,v,w( ) =

x u,v,w( )− xr = 0
y u,v,w( )− yr = 0
z u,v,w( )− zr = 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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6.2.Optimization Procedure 
	 The aforementioned software has been coupled with the adjoint solver in the OpenFOAM 
environment. This results in a well-defined iterated optimization procedure that can be executed within the 
OpenFOAM environment.

	 In list form, the following steps are executed by the optimization loop: 
47

1. Define the control grid to enclose the part of the geometry to be optimized. Increasing the 
control points number and decreasing the basis functions degree lead to more localized (but 
less smooth) geometry changes. A basis function degree p ≥ 3 should be used,


2. Find which CFD mesh points reside within the boundaries of the control grid. These are the 
points to be parameterized (i.e. parametric coordinates (u, v, w) should be computed for each 
one of them in step 3) and displaced, following the control points displacement,


3. Compute the parametric coordinates u of the points found in step 2 by solving the system of 
equation (6.VI) for each one of them. The computational cost of this step increases with the 
number of control points and the number of the mesh points to be parameterized. Since each 
system is independent from the rest, the process is amenable to parallelization,


4. Solve the flow equations,


5. Compute the objective function value and apply the termination criterion,

6. Solve the adjoint equations,

7. Compute the objective function gradient with respect to the boundary CFD mesh nodes to be 

displaced, i.e. δF/δxm (surface sensitivities),


8. Project the surface sensitivities to control points in order to compute the control points 
sensitivities, using the following equation:


6.7. !  

where Nb is the number of boundary mesh points to be displaced. Since the degree of the 
surface continuity is determined by the properties of B-splines, no smoothing of the computed 
sensitivities is required. The quantity δxjm/δbi is computed analytically by differentiating the 
linear equation (6.V) with respect to bi,


9. Update the control point positions. The boundary points of the control grid are kept fixed in 
order to prevent an overlapping between the parameterized and non-parameterized (if any) 
areas of the CFD mesh,


10. Compute the new surface and volume mesh points positions through equation (6.5), using the 
already computed parametric coordinates u associated with each one of them,


11. Move to step 4.


δF
δbi

=
δF
δxm

j

δxm
j

δbim=1

3

∑
j=1

Nb

∑
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6.3.Areas To Be Optimized 
	 The areas for optimization were chosen to be the front splitters and a part of the rear diffuser. An 
array of control points for each of those areas was defined, enclosed by an orthogonal parallelepiped. For 
the front splitter, an array of 11 × 18 × 7 movable control points was created, whereas for the rear diffuser 
the array was 13 × 15 × 10.

	 In figure 6.1, the movable control points for the front splitter are shown.


!  
Figure 6.1: The movable control points for the front splitter. Some control points are located 

inside the car geometry and they are not visible. 
	 In figure 6.2, the movable control points for the rear diffuser are shown.


!  
Figure 6.2: The movable control points for the rear diffuser. Some control points are located 

inside the car geometry and they are not visible. 
	 The control points have been placed in such a way that the modified geometry will still comply to 
the regulations. 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6.4.Results 
6.4.1. Downforce 
	 The evolution of the downforce during the optimization cycle is presented in figure 6.3.


!  
Figure 6.3: The objective of downforce at each optimization cycle. 

	 The objective does not perfectly stabilize, due to the fact that the primal solution presents a slight 
oscillation in the value of the objective. After the third cycle, the results are oscillating lightly around a mean 
value, which is considered as the final solution. It is noted that this oscillation is due to the slightly unsteady 
nature of the flow.

	 In table 6.1, the results are shown in comparison to the original and initial geometries.


	 There is further significant downforce increase (-85%) with only marginal drag increase (0.31%).  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Table 6.1: Aerodynamic coefficients of the original models, the modified DrivAer and the 
optimized DrivAer.

Model
Coefficient

Drag Lift

Original DrivAer 0.365 0.116

Modified DrivAer 0.326 -0.046

Optimized Geometry 0.327 -0.085

Difference To Original (%) -10.41% -173.43%

Difference To Initial (%) 0.31% -85.16%
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6.4.2. Optimized Geometry 
6.4.2.A. Front Splitter

	 In figures 6.4 to 6.7, the optimized splitter geometry in comparison to the initial geometry is 
presented.


!  
Figure 6.4: The optimized splitter geometry (right side) and the initial geometry (left side) in 

front view. The colour map represents the magnitude of the displacement. 

!  
Figure 6.5: The optimized splitter geometry (right side) and the initial geometry (left side) in 

bottom view. The colour map represents the magnitude of the displacement. 
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!  
Figure 6.6: The optimized splitter geometry (right side) and the initial geometry (left side) in top 

view. The colour map represents the magnitude of the displacement. 

!  
Figure 6.7: The optimized splitter geometry (right side) and the initial geometry (left side) in 

side view. The colour map represents the magnitude of the displacement. 
	 The displacement is relatively small, only a few millimetres. The main modification is the thickening 
of the bottom side of the splitter.  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6.4.2.B. Rear Diffuser

	 In figures 6.8 to 6.10, the optimized splitter geometry, in comparison to the initial geometry, is 
presented.


!  
Figure 6.8: The optimized diffuser geometry (right side) and the initial geometry (left side) in 

rear view. The colour map represents the magnitude of the displacement. 

!  
Figure 6.9: The optimized diffuser geometry (right side) and the initial geometry (left side) in 

bottom view. The colour map represents the magnitude of the displacement. 
	 Again, the displacement is very small, only less that a millimetre. The main modification is a slight 
thickening of the diffuser walls at certain areas.
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7. Concluding Remarks 

7.1.Summary & Conclusion 
	 In this Diploma Thesis, an optimization method was adapted in the DrivAer passenger car model, 
with the underfloor modified to the Le Mans Grand Tour Endurance racing specifications. The process is 
presented step by step, along with the results at every point. The main aim of the optimization is the 
increase of downforce, which is rarely a design specification in commercial passenger vehicles. The steps 
of this optimization procedure were the following:


• The creation of the modified underfloor. While this is a simple procedure, it set major setbacks 
in the process. The CAD software used failed to meet CFD geometry precision demands and 
special measures needed to be taken. The vehicle body geometry was not imported as a whole 
in the mesh generation software, as planned, but in separate parts, as distributed originally by 
its creators, along with an extra part which contained only the modifications. This procedure 
lasted significantly longer that planned.


• The generation of the computational mesh. After the final model was ready, the computational 
mesh was generated. In every mesh generation, there is a compromise between the quality of 
the results and the computational cost, since a much more detailed mesh yields more accurate 
results, but with higher computational costs, and vice versa. The final unstructured mesh was 
generated using primarily the snappyHexMesh tool in the OpenFOAM environment. During the 
simulations, the mesh quality was determined as acceptable and no re-meshing procedures 
were executed.


• The solution of the primal problem. This is the solution of the Navier—Stokes equations and 
the turbulence model, which was chosen to be the Spalart—Allmaras model. These equations 
are solved and they yield the flow field around the vehicle. Using the flow field, the 
aerodynamic forces acting upon the vehicle are computed. This step was completed both for 
the modified DrivAer model and for the original one. The results were promising, since the 
modifications had not only reversed the direction of the vehicle lift, producing downforce, but 
had also reduced the vehicle overall drag. This step was completed in the OpenFOAM 
environment using the SIMPLE algorithm.


• The solution of the adjoint problem. The adjoint equations are formulated using the primal 
equations and the objective function. The solution of the adjoint equations yield the adjoint 
flow field. Using the adjoint flow field, the sensitivity derivatives of the objective function with 
respect to the design variables are computed. The design variables in this step was the normal 
to the vehicle surface displacement of each surface point. The mapping of this on the car 
creates the sensitivity map, which indicates which areas have the greatest potential to improve 
the objective function. It has chosen to alter certain areas of the modified underfloor only, 
namely the front splitter and the rear diffuser. This step was also completed in the OpenFOAM 
environment using the software developed by the PCOpt Unit of the NTUA.
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• The modification of the geometry using volumetric b-splines and optimization. In this step, the 
geometry and the computational mesh is parameterized using volumetric b-splines. The design 
variables now become Cartesian coordinates of the control points. As a result, in each 
optimization cycle, the geometry is altered by moving the control points, as indicated by the 
sensitivity derivatives computed by solving the adjoint field equations. The solution of the 
adjoint field equations require the solution of the primal equations first. This step was again 
completed in the OpenFOAM environment using software also developed by the PCOpt Unit of 
the NTUA.


	 A special note has to be made at this point, concerning computational costs. In CPU time, the 
following were generally observed:


About 6 hours of mesh generation, 
About 360 hours for 20000 iterations of the primal problem, 
About 150 hours for a solution to the adjoint problem, 
About 1100 hours for the optimization. 

	 It is noted that all the simulations were executed in parallel, in 36 cores of Intel Xeon E5-2630 v2 
CPUs at 2.60GHz.

	 The adjoint problem reached far lower residuals quicker and smoother that the primal problem. 
Also, in the optimization cycles, the primal and adjoint fields are not reset, so the simulation initializes form 
already somewhat low residuals. The optimization also has the extra initial costs of computing the 
parameterized geometry upon initialization of solely the first cycle.

	 The results presented a slightly modified geometry but with significantly enhanced aerodynamic 
performance. The downforce was nearly doubled with negligible drag increases.

	 It is concluded that the optimization method with the b-splines based free form deformation can be 
applied at a passenger car model with motorsport specifications and can yield results of great interest. The 
aerodynamic performance if the vehicle is significantly improve, both in terms of downforce and in terms of 
drag. The modifications are considerable when compared to the original geometry and negligible to the 
naked eye when compared with the finial, not yet optimized geometry. However, it has to be noted that the 
resultant geometry may not be road legal or convenient for everyday use. The aerodynamic performance 
enhancement also comes with high computational costs, that should be taken into consideration for any 
future work.

	 As a result, the LMGTE modifications offer significant downforce increase along with slight drag 
decrease. The optimization with the FFD method using the volumetric b-splines offered further relatively 
small downforce increase at a small cost of drag increase. These improvements are presented in table 7.1.
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7.2.Future Work 
	 It is anticipated that future students may wish to enrich the research on the “LMGTE DrivAer”. 
Some possible topics for consideration are listed below:


• The creation of a curved splitter,


• The creation of differently shaped rear diffuser, such as a purely rectangular or a curved one,


• The creation of openings at the sidewall of the diffuser,


• The insertion of fins in the diffuser and analyses concerning their number, size and shape,


• The analysis of the diffuser while taking into consideration the effect created by the exhaust 
pipes, at a single or at different exhaust positioning,


• The introduction of a rear wing,


• The simulation at a lower ride heigh, which is closer to the ride height of the LMGTE cars,


• The optimization of different areas of the vehicle, such as the spoilers and the fenders,


• The comparison of the results in this Diploma Thesis with a similar analysis, only with 
modifications subject to later or earlier technical regulations,


• Further modifications of the underfloor, so that it is fully road legal and more discreet, while 
maintaining the aerodynamic performance as high as possible,


• The optimization of the underfloor with packaging constrains of the regulations and the 
underbody components, like driveshafts and exhaust pipes.


Table 7.1: Aerodynamic coefficients of the original models, the modified DrivAer and the 
optimized DrivAer.

Model
Coefficient

Drag Lift

Original DrivAer 0.365 0.116

Modified DrivAer 0.326 -0.046

Difference To Original -0.039 -0.162

Optimized Geometry 0.327 -0.085

Difference To Modified 0.001 -0.039
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�  
Εκτενής Περίληψη Στα Ελληνικά 

1. Εισαγωγή 
	 Στον μηχανοκίνητο αθλητισμό, είναι επιθυμητή η αύξηση της πρόσφυσης των ελαστικών με το 
οδόστρωμα. Μία μέθοδος αύξησης είναι η αύξηση της κάθετης αεροδυναμικής δύναμης (στο εξής εννοείται 
με φορά προς το οδόστρωμα). Οι μηχανικοί σχεδιάζουν το αμάξωμα του οχήματος έτσι ώστε να 
επιτυγχάνεται μεγάλη κάθετη αεροδυναμική δύναμη και κατά τον δυνατόν μικρή αεροδυναμική αντίσταση. 
Δύο εξαρτήματα που χρησιμοποιούνται συχνά είναι ο εμπρός splitter και ο πίσω διαχύτης.

	 Σκοπός της εργασίας είναι η μετατροπή του πατώματος του μοντέλου οχήματος DrivAer με 
προσθήκη εμπρός splitter και πίσω διαχύτη, και η βελτιστοποίησή τους με χρήση της συνεχούς συζυγούς 
μεθόδου και ογκομετρικών b-splines. Η μετατροπές έγιναν σύμφωνα με τους κανονισμούς Le Mans Grand 
Touring Endurance. Η γένεση του πλέγματος, η επίλυση του πρωτεύοντος και συζυγούς προβλήματος και η 
βελτιστοποίηση έγιναν όλα σε περιβάλλον OpenFOAM. Το μοντέλο προς βελτιστοποίηση απεικονίζεται στο 
σχήμα 1.1.


! !  
Σχήμα 1.1: Το μοντέλο προς βελτιστοποίηση σε εμπρός 3/4 όψη (αριστερά) και σε πίσω 3/4 

όψη (δεξιά).  

Εθνικό Μετσόβιο Πολυτεχνείο 
Σχολή Μηχανολόγων Μηχανικών 
Τομέας Ρευστών 
Μονάδα Παράλληλης ΥΡΔ & Βελτιστοποίησης

Διπλωματική Εργασία

Επιβλέπων: Καθηγητής Κυριάκος Χ. Γιαννάκογλου
Νικολακόπουλος Αναστάσιος

Αεροδυναμικός Σχεδιασμός Ανάλυση & 
Βελτιστοποίηση Μορφής Με Τη Συζυγή 

Μέθοδο Αγωνιστικού Πατώματος Αυτοκινήτου 
Σε Περιβάλλον OpenFOAM

Σελίδα K  από K1 10



2. Γένεση Πλέγματος 
	 Η γένεση πλέγματος έγινε με χρήση των εργαλείων blockMesh, για την δημιουργία του 
υπολογιστικού χωρίου με δομημένο πλέγμα, του εργαλείου surfaceFeatureExtract, για την αναγνώριση 
χαρακτηριστικών καμπυλών στην γεωμετρία και του εργαλείου snappyHexMesh, για την δημιουργία του 
τελικού υβριδικού πλέγματος και λεπτομερειών. Το πλέγμα δημιουργήθηκε γύρω από το δεξί ήμισυ του 
οχήματος, λόγω συμμετρίας της γεωμετρίας. Επίσης, δημιουργήθηκαν δύο περιοχές αυξημένης ανάλυσης 
πλέγματος, μία μόνο για τη γεωμετρία του οχήματος και μία για τη γεωμετρία του οχήματος μαζί με τον 
ομόρρου και περιοχή αυξημένης ανάλυσης πλησίον του δρόμου. Το τελικό πλέγμα έχει διαστάσεις 11 × 18 × 
7 m και αποτελείται από 4.846.058 κελιά. Στο σχήμα 2.1 φαίνονται περιοχές του πλέγματος.


! !  
Σχήμα 2.1: Τμήμα του υπολογιστικού πλέγματος. Διακρίνονται οι περιοχές αυξημένης 

ανάλυσης για το όχημα (a) και για τον ομόρρου (b) σε πλάγια όψη (αριστερά) και σε εμπρός 
τομή (δεξιά). 

3. Το Πρωτεύον Πρόβλημα 
	 Το πρωτεύον πρόβλημα περιγράφεται από τις Raynold Averaged εξισώσεις Navier—Stokes και το 
μοντέλο τύρβης, που έχει επιλεχθεί το Spalart—Allmaras. Οι εξισώσεις που περιγράφουν την ασυμπίεστη 
και χρονικά σταθερή ροή είναι οι εξής:


1. !  

2. !  

	 Ενώ η βασική εξίσωση του μοντέλου τύρβης είναι η:


3. !  

	 Στις οριακές συνθήκες, ορίστηκε, μεταξύ άλλων η ταχύτητα εισόδου. Επομένως, θεωρώντας ως 
μήκος αναφοράς το μεταξόνιο του οχήματος, το οποίο είναι 2,786 m, προκύπτει ο αριθμός Reynolds της 
ροής ίσος με 6,7×106.

	 Το πρωτεύον πρόβλημα επιλύθηκε και για το πρωτότυπο όχημα, αλλά και για το όχημα με τις 
αεροδυναμικές μετατροπές. Ο αλγόριθμος επίλυσης ήταν ο SIMPLE Τα αποτελέσματα των αεροδυναμικών 
δυνάμεων καταγράφονται στον πίνακα 3.1.
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	 Γίνεται φανερό πως οι μετατροπές βελτιώνουν σημαντικά την πρόσφυση, καθώς το όχημα παράγει 
πλέον αρνητική άνωση. Επίσης, μειώνεται κατά 10% η οπισθέλκουσα.

	 Ορισμένες εικόνες από τα πεδία ροής φαίνονται στα σχήματα 3.1 έως 3.4.


! !  
Σχήμα 3.1: Το πεδίο του μέτρου της ταχύτητας στο επίπεδο συμμετρίας για το πρωτότυπο 

όχημα (αριστερά) και για το όχημα με τις μετατροπές (δεξιά). 

! !  
Σχήμα 3.2: Το πεδίο της πίεσης στο επίπεδο συμμετρίας για το πρωτότυπο όχημα 

(αριστερά) και για το όχημα με τις μετατροπές (δεξιά). 

! !  

Πίνακας 3.1: Οι αεροδυναμικές δυνάμεις όπως προέκυψαν από την επίλυση του 
πρωτεύοντος προβλήματος για το πρωτότυπο και με τις μετατρoπές DrivAer.

Μοντέλο
Συντελεστής

Αντίστασης Άνωσης

Πρωτότυπο DrivAer 0.365 0.116

LM GTE Μετατροπές 0.326 -0.046

Διαφορά (%) -10.68% -139.66%
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Σχήμα 3.3: Το πεδίο της πίεσης επάνω στο όχημα, σε εμπρός όψη (επάνω αριστερά), πίσω 
όψη (κάτω αριστερά), άνω όψη (επάνω δεξιά) κάτοψη (κάτω δεξιά). Το πρωτότυπο όχημα 

βρίσκεται στα δεξιά του οχήματος. 

! !  
Σχήμα 3.4: Τα πεδία της μεταβλητής ṽ στο επίπεδο συμμετρίας για το πρωτότυπο όχημα 

(αριστερά) και για το όχημα με τις μετατροπές (δεξιά). 
	 Παρατηρείται πως ο εμπρός splitter εγκλωβίζει την σχεδόν ακίνητη ροή στο άνω του μέρος ενώ 
επιτρέπει την κίνηση της ταχέως κινούμενης ροής στο κάτω του μέρος. Η διαφορά πίεσης που προκύπτει 
καταλήγει στην δημιουργία κάθετης δύναμης στο εμπρός μέρος. Επίσης, η κατανομή της πίεσης στο 
πάτωμα είναι περισσότερο ομοιόμορφη στο όχημα με τις μετατροπές. Υπάρχουν ακόμη μικρές διαφορές 
στον ομόρρου των δύο οχημάτων.


4. Το Συζυγές Πρόβλημα 
	 Το συζυγές πρόβλημα περιγράφεται από τις συζυγείς εξισώσεις ροής, τις συζυγείς εξισώσεις του 
μοντέλου τύρβης, και την συζυγή εξίσωση για τις μετατοπίσεις του πλέγματος:


4. !  

5. !  

6. !  

7. !  

	 Οι παράγωγοι ευαισθησίας υπολογίζονται με την μέθοδο E-SI ως εξής:
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8. !  

	 Το συζυγές πρόβλημα επιλύθηκε με λογισμικό που έχει αναπτυχθεί στην ΜΠΥΡ&Β του ΕΜΠ στο 
λογισμικό OpenFOAM. Προκύπτουν τα συζυγή πεδία ροής για το όχημα με τις μετατροπές, τα οποία 
φαίνονται στα σχήματα 4.1 έως 4.5.


!  
Σχήμα 4.1: Το μέτρο της συζυγούς ταχύτητας στο επίπεδο συμμετρίας. 
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! !  
Σχήμα 4.2: Το μέτρο της συζυγούς ταχύτητας επάνω στο όχημα, σε εμπρός 3/4 όψη 

(αριστερά) και πίσω 3.4 όψη (δεξιά). 

!  
Σχήμα 4.3: Το πεδίο της συζυγούς πίεσης στο επίπεδο συμμετρίας. 

! !  
Σχήμα 4.4: Το μέτρο της συζυγούς ταχύτητας επάνω στο όχημα, σε εμπρός 3/4 όψη 

(αριστερά) και πίσω 3.4 όψη (δεξιά). 
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!  
Σχήμα 4.5: Το πεδίο της συζυγούς μεταβλητής ṽ στο επίπεδο συμμετρίας. 

	 Ο χάρτη ευαισθησίας φαίνεται στο σχήμα 4.6.


! !  

! !  
Σχήμα 4.6: Ο χάρτης ευαισθησίας, σε εμπρός 3/4 άνω όψη (επάνω αριστερά) και κάτω όψη 

(επάνω δεξιά) και πίσω 3/4 άνω όψη (κάτω αριστερά) και κάτω όψη (κάτω δεξιά). Το μπλε 
χρώμα σημαίνει αύξηση του στόχου με μετατόπιση προς τα μέσα, ενώ το κόκκινο με 

μετατόπιση προς τα έξω. 
	 Από τον χάρτη ευαισθησίας, προκύπτει το συμπέρασμα πως η περαιτέρω αύξηση της κάθετης 
μείωσης θα επιτευχθεί μέσω:
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• Της επιμήκυνσης του εμπρός splitter,


• Την ανύψωσης του χείλους προσβολής του εμπρός splitter,


• Την μετατόπιση προς τα μέσα της περιοχής στο ύψος των εμπρός φωτιστικών και της κορυφής 
του παρμπρίζ προς τα μέσα, καθώς αυτές είναι περιοχές που επιταχύνεται ο αέρας και 
μειώνεται η στατική πίεση, με αποτέλεσμα να δημιουργείται άνωση,


• Της μετατροπής του πίσω διαχύτη,


• Την αύξηση του μεγέθους των spoilers στο επάνω μέρος του επάνω παραθύρου και της 
κορυφής της θύρας των αποσκευών,


• Την τροποποίηση των πλάγιων καθρεπτών, έτσι ώστε να έχουν σχήμα πτέρυγας,


• Την μετατόπισης μέρους των εμπρός φτερών και θυρών προς τα έξω,


• Την μετατόπιση της κολόνας Α προς τα μέσα,


• Των μικρών αλλαγών εντός των θόλων των τροχών.


5. Βελτιστοποίηση Μορφής Με b-Splines 
	 Για την βελτιστοποίηση μορφής με b-splines, επιλέχθηκε να βελτιστοποιηθεί το σχήμα του εμπρός 
splitter και του πίσω διαχύτη. Κατά συνέπεια, ορίστηκαν τα σημεία ελέγχου στις περιοχές αυτές, όπως 
φαίνεται στο σχήμα 5.1.


! !  
Σχήμα 5.1: Τα σημεία ελέγχου στον εμπρός splitter (αριστερά) και στον πίσω διαχύτη (δεξιά). 
	 Τα σημεία ελέγχου ορίσθηκαν με τρόπου τέτοιο, ώστε και η βελτιστοποιημένη γεωμετρία να 
υπακούει στους κανονισμούς.

	 Εν συνεχεία, εκτελέσθηκε ο αλγόριθμος βελτιστοποίησης, με λογισμικό που έχει επίσης αναπτυχθεί 
στην ΜΠΥΡ&Β του ΕΜΠ στο λογισμικό OpenFOAM. Τα αποτελέσματα της βελτιστοποίησης φαίνονται στα 
σχήματα 5.2 και 5.3.


! ! !  
Σχήμα 5.2: Η βελτιστοποιημένη μορφή του εμπρός splitter σε εμπρός όψη (αριστερά), 

κάτοψη (μέση) και πλάγια όψη (δεξιά). 

Σελίδα K  από K8 10



! !  
Σχήμα 5.3: Η βελτιστοποιημένη μορφή του πίσω διαχύτη σε πίσω όψη (αριστερά) και  

κάτοψη (δεξιά). 
	 Στον πίνακα 5.1 καταγράφονται οι αεροδυναμικές δυνάμεις, όπως προέκυψαν από την 
βελτιστοποίηση.


6. Συμπεράσματα 
	 Οι προσθήκες βελτιώνουν πολύ την αεροδυναμική απόδοση. Επιτυγχάνεται μείωση 140% στην 
άνωση, δηλαδή το όχημα παράγει αρνητική άνωση. Παράλληλα, μειώνεται ο συντελεστής αντίστασης κατά 
10%. Με την βελτιστοποίηση, αυξάνεται περαιτέρω η κάθετη δύναμη κατά 85%, ενώ υπάρχει μικρή αύξηση 
της αντίστασης κατά 0.3%.


Πίνακας 5.1: Οι αεροδυναμικοί συντελεστές του πρωτότυπου μοντέλου, του μοντέλου 
με τις μετατροπές και του βελτιστοποιημένου μοντέλου.

Μοντέλο
Συντελεστής

Αντίστασης Άνωσης

Πρωτότυπο DrivAer 0.365 0.116

Μετατροπές LM GTE 0.326 -0.046

Βελτιστοποιημένο 0.327 -0.085

Διαφορά Από Το Πρωτότυπο (%) -10.41% -173.43%

Διαφορά Από Το Αρχικό (%) 0.31% -85.16%

Σελίδα K  από K9 10



7. Προτεινόμενη Βιβλιογραφία 
1.  https://www.fiawec.com/en/classes/32 

2.  FIA WEC, 2019 Technical Regulations For Grand Touring Cars “LMGTE” Homologated From 2016, https://
www.fia.com/fia-wec-2019-technical-regulations-grand-touring-cars-lmgte-homologated-2016 

3.  Spalart, Ph., Allmaras, S.: “A one-equation turbulence model for air flows”, AIAA Paper 1992-439, 30th 
Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, January 6–9 1992 

4.  Giannakoglou, K., Papoutsis Kichagias, E., Kavvadias, I., Gkaragkounis, K., “adjointOptimization, an 
OpenFOAM-based optimization tool”, User Manual, Prepared by the Parallel CFD & Optimization Unit, 
School of Mechanical Engineering, NTUA, Athens, 2018 

5. https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-simple.html 

6.  Giannakoglou, K.C. “Μέθοδοι Βελτιστοποίησης Στην Αεροδυναμική” (Optimization Methods In 
Aerodynamics) 4th Edition, National University Of Athens Press, Athens, 2006 

7.  Papoutsis-Kichagias, E, “Adjoint Methods for Turbulent Flows, Applied to Shape or Topology Optimization 
and Robust Design”, PhD Thesis at Laboratory Of Thermal Turbomachines, National Technical University Of 
Athens, Athens, 2013 

8.  I.S. Kavvadias, E.M. Papoutsis-Kiachagias, K.C. Giannakoglou, “On the proper treatment of grid 
sensitivities in continuous adjoint methods for shape optimization”, J. Comput. Phys. (2015), http://
dx.doi.org/10.1016/j.jcp.2015.08.012 

9.  Papoutsis-Kichagias, E., Giannakoglou, K., “A parameterization and mesh movement strategy based on 
volumetric B-splines. Applications to shape optimization”, Parallel CFD & Optimization Unit, School of 
Mechanical Engineering, NTUA, Athens, January 2015

Σελίδα K  από K10 10

https://www.fiawec.com/en/classes/32
https://www.fia.com/fia-wec-2019-technical-regulations-grand-touring-cars-lmgte-homologated-2016
https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-simple.html
http://dx.doi.org/10.1016/j.jcp.2015.08.012

