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Abstract

This thesis explores the implementation of porosity-based topology optimiza-
tion in the design of forced convection microchannel heat sinks for electron-
ics cooling applications. A 2.5D conjugate heat transfer model is employed
which simplifies the solution of the state/primal problem, by reducing the
full 3D governing equations to 2.5D ones. In addition to the momentum
conservation equations containing porosity-dependent velocity penalization
terms, the thermal conductivity is also formulated as a function of the real-
valued porosity field, to model the difference in thermal properties between
fluid and solid material. Efficient thermal dissipation from densely packed
circuits, heavily contributes to the reliability and longevity of modern elec-
tronic systems and hence it is desired to keep temperature levels under control
during their operation. Considering this, the maximum temperature appear-
ing in the substrate of the heat sink, which is in direct contact with the
electronic components, is chosen as the objective function to be minimized
by the topology optimization algorithm. The sensitivity derivatives of the
objective function required by the employed gradient-based method used to
update the design variables, are computed through the continuous adjoint
method.

A heat sink with different fin layouts was considered and the state problem
was solved for different pressure drops, using the 2.5D model. The results
were compared against full 3D simulations, showing that the low computa-
tional cost 2.5D model resolves the heat transfer process quite satisfactorily
for low pressure drops across the heat sink. Furthermore, the 2.5D model
agrees with the 3D results as to which fin layout is more thermally efficient at
a certain operating point (prescribed pressure drop) of the heat sink. Finally,
topology optimization was performed using the 2.5D model, for heat sinks



with different inlet-outlet configurations where the substrate was considered
uniformly or locally heated. The resulting heat sink geometries, reveal that
the algorithm tends to place as many fins as possible in strategic locations
in the design space to maximize convective surface area, while keeping the
hydraulic resistance at low levels to allow relatively considerable mass flow
rates through the heat sink. Hence, a higher number of fins is observed
for the heat sinks designed to work at greater pressure drops. The thermal
performance of the optimized heat sinks was evaluated and discussed.
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EO9vixd MetodfBio IloAuteyveio
Eyxorh Mryavohoywy Mryavixdy
Touéag Pevotov

& Beltiotonoinong

Egapuoyéc BeAtiotonoinong Toroloyiag oo
Yixeotocnd Yuxtpwy ue Mixpoxavdiio

Awmhopoticd Epyaoia
Anunterog Nuxoholdng
EmuBiénewv: Kupdxoc X. TMNavvéxoyiou, Kadnyntic EMII

Hepidngn

Avtixeipevo autig tng Simlwpatixig epyaciag sivan 1 yeron Peitiotonoinong
Tonoloylog, 010 oyedloud Yuxtendy (eEavoryxaouévng cuVaYWYNS) UE UXPO-
HOVEALDL, Yl EQUPUOYES (POENG NAEXTEOVIXOY XUXAOUATOY. Kdvovtac yerion
evog 2.5A povtéhou ouluyolc petagopds YepuotnTag, ol 3A eLlGMOOELS EXPU-
Aovtan og 2.5A amhomol)dvTog oNUavTiXd To TeewTeLoy TedBAnua. Ol ello®oelg
drathienong opunic TepLEyouy Gpouc TNYNS (6poug Tonc ToydtnTac) Tou eZop-
TOVTOL a6 TO TEDID TOL ToPWOOUS, UNBEVICOVTAS TNV ToyUTNTA GTIC GTEPEOTOL-
NUEVES TEQLOYES TOLU UTIOAOYLOTIXOL ywplou. Emmhéov n Yepuinr| ayoyydtnTa
HovTEhOTOlELTOL Xou QUTY) WE GUVAETNOT TOU TOPMOOUCS, WOTE Vo Angiel utodn
1 Spopd oTic Yepuxég WLoTNTES PETOEL pevoTol xan otepeol. H amotehe-
ouaT| amary Y VepuOTNTIC omd NAEXTEOVIXG GToLyEl GUUBAHAAEL onuavTIXd
oTNV a€loTo Tla ot TNV Paxeoleio TWV UOVTERVMY NAEXTOOVIXGOY GUG TNUTOV.
Yuvenwg ebvan avoryxofo vo dtatneeiton 1 Yeppoxpacio oe eheyydueva enineda
xotd T Aertoupyion Toug.  AopPdvoviag autéd unodn, 1 uéylotn deppoxpacia
oL eUPaVI(ETOL GTO UTOOTRWHO TG PUXTEOC, TOU EQYETAL OE QUECT| ETUPT| UE
TO NAEXTEE HUXADUATA, ATOTEAEL T1) CUVARTNOT GTOYO TTOU ATOOXOTEL VoL ENo-
ylotomooel o aAyopriuog Bedtiotonoinong. Ot mapdywyol evacdnolag Tou
amoUTOUVTOL O TNV uTloXEo T HEYOB0 avavEWSNE TwY PETUPANTGY Gyedla-
ouov, unoloyilovtar péow tng cuveyols culuyois pedodou.

Mehethtnxe por POxTEa, HE BLIPORETIXES DLOUHOPPMOELS TTEQUYIWY Xl TO TEw-
TeVOV TEOBANUN ETAVINXE Y10 OLUPORETIXEG TTWOELS TECTS, YEYOUOTOLWVTIG
70 2.5A povtého. LuyxplvovTog T ATOTEAEGUATO UE QUTE TTOU TEOEXUPOY Omd
3A mpooouowoel, gaiveton 6Tt 10 2.5A YoVTELD ETLAUEL LXAVOTONTIXG YO, XU-
olwe, OLXOVOUIXE T YAULVOUEVO. UETOPORAS VEQUOTNTIS YIo UXEEC TTWOELS TiiEaTC
xotd urixog tne Poxtpac. Emmiéov, 1o 2.5A povtého cuugwvel ye to 3A ano-

Movdda ITapdAAnAne YroloyioTixrc PeuocTtoduvauixng
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TEAEOUATOL WC TTPOG T TTOLaL OLdTad N TTEEUYWY €lva 1) o amodoTxr| Yepuixd, oe
ouyxexptuévo anuelo Aettovpyiog (dedopévn xhion mieang) tne Poxtpac. Téloc,
mpayuatono|dnxe BehtioTonolnon tomohoylag yenowonoiwvTog o 2.5A uo-
VTEAO Yia PUXTEES UE DLOPOPETIXES DLATALELS EL0OBOU-EEHB0L OTIOL TO UTOG TP~
o Yewprinxe ouotduopa 1 Tomxd Yepponvouevo. O yewuetpieg Twv Yuxteny
Tou poéxuay, Belyvouv 6Tl o akydprduog Exel TV TdoT vo TotoveTel 660 To
OLVATOV TEPLOCOTERU TTEQUYLO OE GTRUTNYXES VEGELS OTO YWOEO OYEBLIOUOU,
(OOTE Vo JEYIGTOTOLAGEL TNV ETUPAVELNL CUVAYWY NS, YWEIC OUmS vor auéoeL TNV
LBPALAXT| avTioTaon T6o0 (OoTE Vo dBuoxorépel Tn BiEREUCT) TNG POTC. LUVe-
TOG, UEYaAOTEROG apLiudg TTepuYiwy Tapatnesiton oTig PixTeee ToL oY EdLEL0-
VIOl VoL AELToupYolV ot uPnhotepeg TTwoelg nieone. H depur| amddoon twv
Behtio tomomuévey Yuxte®y aflohoytnxe xou culnTRvnXe.
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Chapter 1

Introduction

In early engineering practice, long before modern computers, designers and
engineers relied on analytical methods, hand calculations, and trial-and-error
experiments to solve optimization problems, often using graphical techniques
and simplified models to balance competing design criteria. This manual and
painstaking process was primarily based on the intuition and experience of
engineers and was limited by the available mathematical tools. The land-
scape changed dramatically with the advent of digital computers in the mid-
20th century, which enabled the development of robust numerical methods
and eventually more sophisticated approaches to optimization problems like
evolutionary and deterministic algorithms. The increase in computational
power, allowed the simulation of complex flows enabling engineers to ex-
plore vast design spaces and tackle complex, high-dimensional optimization
problems.

1.1 Optimization Methods

The goal of modern optimization techniques is to minimize or maximize ob-
jective functions, while satisfying a set of constraints. In computational fluid
dynamics (CFD) applications, the objective functions that interest engineers
usually indicate the performance of a system or a specific geometry configura-
tion. Such objective functions include total pressure losses, heat dissipation,
or lift to drag ratio for aerodynamic design. Optimization methods are di-
vided into two main categories:

Deterministic or Gradient-Based Optimization Methods rely on the
calculation of the derivatives of the objective function to search over the



design space, where numerical methods like steepest descent, conjugate gra-
dient, and quasi-Newton algorithms iteratively converge to the optimal so-
lution. Gradient-based approaches offer high precision and strong, efficient
convergence for smooth and differentiable objective functions, while they
may struggle with noisy or discontinuous functions. Furthermore, their per-
formance can be sensitive to initial guesses or step size parameters, which can
cause such methods to become trapped in local minima/maxima especially
when dealing with non-convex design spaces [1], [2], [3].

Stochastic Optimization Methods which are based on natural evolution
or swarm behavior, incorporate randomness into the search process allow-
ing them to explore the design space more broadly and avoid getting stuck
in local optima. Techniques like simulated annealing or genetic algorithms
do not require gradient information, making them versatile and applicable
to a wide range of complex, high-dimensional problems with noisy objective
functions or rugged landscapes, where gradient-based methods may be unre-
liable. On the downside, stochastic techniques typically require many more
function evaluations, leading to slower convergence rates and higher compu-
tational costs. The inherent randomness leads to more erratic convergence
and sensitivity to parameters like mutation rates, making their performance
less predictable compared to deterministic methods [1], [4], [5].

1.2 Topology Optimization: an Overview

The concept of topology optimization (TopO) was first introduced in struc-
tural mechanics in [6] in the late 1980s, where a continuous, real-valued
density design variable field was used to find the optimal layout of material
in structures. The idea was to identify the optimal shape of a geometric
structure, that would have the best structural performance under specific
loads, by determining the optimal topology of the design space. Areas of
the design space with unitary density values corresponded to solid regions,
while zero density values indicated the no-material zones. The goal of the
algorithm was to find the optimal density distribution, determining which
areas should be filled with material and which should remain hollow. Since
then, the concept was widely adopted in the field of structural menchanics
[7, [8], [9] as well as multidisciplinary optimization problems involving both
structural and heat transfer analysis [10], [11].

Over time, this powerful framework has been extended into the realm of CFD,
initially proposed for Stokes flows in [12], where the momentum conservation
equations were augmented with the Brinkman velocity penalization terms,
that were functions of a continuous real-valued porosity field. Areas of the
design space with zero (or almost zero) porosity values indicated fluid re-



gions, while areas with very high local porosity values corresponded to solid
regions. The target was to identify the optimal porosity distribution that
would produce the optimal shape the geometry should have for the required
flow patterns to emerge, in order to minimize/maximize certain objective
functions.

TopO is a method employed in the early design stages, where no information
about the geometry configuration is known a priori. Since the method does
not rely on a parameterization scheme to describe the surface of the geometry
and modify its boundary every optimization cycle, like in shape optimization
(ShpO), it has the freedom to explore almost the entirety of the design space,
giving rise to unconventional and non-intuitive solutions. On the other hand,
the selection of the parameterization scheme in ShpO restricts the possible
solutions that the algorithm can produce, and thus it is used to enhance/fine-
tune the shape of the geometry after an initial design has been determined.

Finally, in TopO methods that are based on the porosity (or density) ap-
proach, gray areas not belonging to neither region, appear in the design
space. These intermediate zones emerge because the optimization relaxes
a binary decision (fluid-solid or material-hollow) into a continuous design
variable field, which inevitably results in intermediate porosity/density val-
ues that do not fully represent a certain region. Hence, the extraction of
the interface between two regions is subjective and depends on a certain set
tolerance.

1.3 Subject of the Thesis

The main matter of this thesis involves the study and assessment of imple-
menting porosity-based TopO in the design of forced convection microchannel
heat sinks, for the cooling of electrical components. Efficient heat dissipa-
tion from densely packed circuits is essential for the reliability and longevity
of modern electronic systems, preventing thermal overload and minimizing
performance degradation.

In addition to the momentum conservation equations containing porosity-
dependent velocity penalization terms, the thermal conductivity is also for-
mulated as a function of the real-valued porosity field [13], [14], to accom-
modate the difference in thermal properties between fluid and solid material.
The state problem constitutes a conjugate heat transfer (CHT) problem be-
tween solid and fluid regions, with the latter being the design space of the
optimization. The goal is to find the optimal material distribution in the
fluid region (and hence the optimal flow path) in order to maximize heat
dissipation through conduction and convection.



Because of the nature of the geometries that are present when studying mi-
crochannel flows, the 2.5D model proposed in [I3], for heat sinks with a
plate-like geometric structure, is implemented. Following the 2.5D analysis,
the 3D governing equations of each region can be reduced to 2.5D ones. In
the context of an optimization process, in which the state problem is being
solved iteratively, the ability to avoid solving the full 3D problem signifi-
cantly reduces the computational cost of each run and, subsequently, of each
optimization cycle.

The sensitivity derivatives of the objective function required by the Se-
quential Quadratic Programming (SQP) method [3], which is the employed
gradient-based update method for the design variables, are computed with
the continuous adjoint method [23], [24], [15], [I6]. The main characteristic
of the adjoint method, to be able to compute these sensitivities at a cost
independent of the number of design variables, plays a key role in reducing
the overall computational cost of the optimization method.

1.4 OpenFOAM: an Open Source Software

OpenFOAM is a free, open-source CFD toolbox written in C++ that pro-
vides a highly flexible framework for simulating a wide array of physical
phenomena: from incompressible and compressible flows to multiphase pro-
cesses, combustion and heat transfer. It stands out for its extensive collec-
tion of solver models, numerous turbulence formulations and a versatile set
of boundary conditions that can be easily customized to suit complex appli-
cations. At its core, OpenFOAM employs the finite volume method (FVM)
to discretize partial differential equations (PDEs), ensuring conservation of
fluxes across arbitrary, often unstructured control volumes. These features
make it both robust and adaptable for academic research and industrial ap-
plications alike. The Parallel CFD and Optimization Unit (PCOpt/NTUA)
has developed ”adjointOptimisationFoam”, an OpenFOAM-based optimiza-
tion tool that computes the sensitivity derivatives of the objective function,
using the continuous adjoint method. The tool can handle a wide range
of objective functions and includes both TopO and ShpO problems. The
algorithm that solves the 2.5D primal and adjoint problems has also been
developed by the PCOpt/NTUA inside the OpenFOAM software; however,
this is not publicly available yet. All numerical simulations presented in this
thesis were carried out using OpenFOAM.



Chapter 2

Topology Optimization (TopO)

2.1 The State/Primal Problem

In many CFD applications, thin-walled structures are studied, where the
thickness or height of the geometry under consideration is extremely small
compared to its other dimensions. In such cases, considering that the fluid
momentum in the height direction is almost negligible, a reasonable approach
would be to completely ignore the minuscule height direction and solve a clas-
sic 2D flow problem. However, a viable alternative one can follow to simplify
the 3D problem, is to assume that the behavior of the flow is predictable
across the height direction. In other words, supposing the flow is fully de-
veloped, the velocity and temperature variations across the height direction
can be derived under certain simplifications.

Implementing the derived velocity and temperature profiles into the full 3D
governing equations and integrating across the height direction gives rise
to averaged or 2.5D governing equations [12], [I3]. Through this averaging
process extra source terms and certain constants in front of already existing
terms appear in the resulting equations, that encapsulate part of the informa-
tion as to how the neglected dimension influences the flow and heat transfer
process. The term 2.5D originates from the fact that, although these equa-
tions do not provide a fully resolved 3D solution, they give a more accurate
representation of the underlying physics than a purely 2D model, where all
information about the effect of the third dimension is disregarded.

This type of modeling provides a balanced compromise - it captures certain
aspects of the 3D effects, without incurring the high computational cost
associated with full 3D simulations. For the study of microchannel flows,



where geometries with small hydraulic diameters and high surface-area-to-
volume ratios are present, the use of a 2.5D model is extremely suitable.

2.1.1 Primal Field Equations

The problems analyzed in this thesis involve incompressible and laminar
flows, where both the flow and heat transfer process are considered to be
steady. Additionally, the fluid and solid properties are assumed to remain
constant. The 2.5D CHT model proposed in [I3] concerns microchannel
heat sinks that have the geometric structure depicted in fig. 2.1} where the
height of both the fluid and solid substrate regions is considered relatively
small compared to the heat sink’s length and width, and thus 2.5D governing
equations can be formulated for each region. The heat flux applied to the
bottom surface of the substrate is considered uniform.

The 2.5D CHT model solves the fluid
region on a plane with the fields of

[ | state variables u,, u;, T, p
2H, Fluid Region L | | ! ]
(Design Space)
- — - - - - Fluid-Solid Interface
2Hy, | Substrate Region l

The 2.5D CHT model solves the substrate
region on a plane with the field of state
variable Ty,

Uniform heat flux g,

Figure 2.1: Geometric structure of microchannel heat sinks considered in
this thesis, consisting of a bottom substrate solid region and a top adiabatic
plate. As the optimization algorithm progresses, parts of the fluid region begin
to solidify, i.e. fins appear in the fluid region which is the design space of the
optimization. Heat generated by electrical components at the bottom surface
of the substrate is conducted through the substrate’s material to the fins and
fluid. The cooling flow then removes heat from both the substrate and fins via
convection, ensuring efficient thermal management.

The 3D governing continuity, momentum and energy conservation equations
for the fluid region are expressed as follows:
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where p, p, C, and ky are the fluid’s density, dynamic viscosity, thermal
capacity under constant pressure and thermal conductivity respectively. The
3D pressure field is denoted with p (1, za, z3), while wu; (x1, 5, x3) with i =
1,2,3 are the components of the full 3D velocity field and T" (21, 29, 23) the
full 3D temperature field of the fluid region. The above equations follow the
Einstein convention, where repeated indices imply summation, which will be
used from this point forward in the thesis.

The 3D governing heat transfer equation for the solid substrate region can
be written as:

[ (k:b%):o (2.4)

B 6_1’] al‘j

where kj, is the substrate’s thermal conductivity and Té (21, T2, x3) the full 3D
temperature field of the substrate region. In this chapter, the 2.5D equations
of each region will be directly presented and appropriately modified to fit
into a TopO process. Details about the formulation of the 2.5D problem and
the derivation of the 2.5D equations from the full 3D ones can be found in

Appendix [A]

Assuming fully developed flow, the full 3D velocity field can be expressed with
the help of the non-dimensional velocity profile f, (x3) which is parabolic and
invariant in flow directions x1, 9 as shown below:

fules) =1 75 (2.5)
uj (1, T3, 3) fu (23) uy (21, 22)
u (21, Lo, T3) = |y (21, T2, 23) | = | fu (23) Uz (21, 72) (2.6)



where w = [u; up]” is the velocity seen by the 2.5D model and corresponds
to the velocity on the mid-plane of the fluid region while H; is the half height
of the design space.

Using the non-dimensional velocity profile f, (x3) as a basis the resulting
2.5D continuity and momentum equations can be written as:

_ Oy

RY =
81‘]‘

=0 (2.7)

R 6 Ou; 50p 9 (aui 3%’)_5“%:0 i=1,2 (2.8)

C TP, T 1on  Mor, \or, T ox, ) T 2HZ

where the pressure field p solved by the 2.5D model is now only a function
of T1,T2.

As previously mentioned, during a TopO process, solid areas begin to form or
to be suppressed inside the computational domain. In order for the equations
to be able to resolve both the fluid and solid parts of the design space they are
augmented with the Brinkman penalization source terms [12], [17], [I§] of the
form G (a)w;, where a € [0, 1] is the real-valued porosity field. By default,
the 2.5D momentum equation already includes a similar source term,
namely (—5u/2H?)u;, which represents the averaged stresses u (0%u;/0x3)
across the height of the fluid region and has emerged as a result of the 2.5D
analysis. The 2.5D momentum equation is thus modified as follows:

Ru 6 Ou; 50p 19, (87,% Ju;

A ~Ga)u; =0 i=1,2 (29
¢ 7PUJ 83:j + 48.’171 M@x] (996]- + (9.1'1> (a) Y ! ( )

Zero (or almost zero) a values of the porosity field correspond to the fluid
part of the design space and thus G' must be equal to the value (5u/2H?), in
order for equation to return to its original form, given by equation [2.8]
expressing the 2.5D momentum conservation. On the other hand, unitary
(or almost unitary) a values indicate the presence of solid material and G
should be high enough to drive the solution of the flow equation towards zero
in the solidified parts of the design space. The goal of the TopO algorithm
is to compute the optimal a distribution, i.e. the optimal fin layout, in order
to minimize a given objective function.

Since the flow is also thermally fully developed, the non-dimensional tem-
perature profile fr (z3) [I3] defined below for the fluid region can also be



considered invariant in directions x1, zo:

T, - T 35 T3 4 T3 2
= =—||=] - — | + +1 2.1
fr(x3) i 116 [( t) 6( t) 8 t 3 (2.10)

where T; (x1, z2) is the temperature at the interface between fluid and sub-
strate regions and T (xq,13) = f+Ht| T das/ f+Ht [u'| dxs is the bulk
mean temperature of the fluid across zs.

Based on the non-dimensional temperature profile fr (x3), the 2.5D energy
equation for the fluid region can be derived [13]:

RT =

AH, oT  49H, 0 { 3T} _ 35kesy (T,—T)=0 (2.11)

O w2 .
3 P ar, T 26 0w, | M ow;| T 26H,

where k.sf (a) is the effective thermal conductivity which is used instead of
just the fluid’s thermal conductivity k; to account for the presence of fins
inside the fluid region. Similar to the velocity penalization terms in the
momentum equation [2.9, in order to perform a TopO process, the effective
thermal conductivity is also formulated as a function of the real-valued poros-
ity field and should be equal to k.fs = &y in the fluid part of the design space
or kesr = kp in the solid fin areas. Here, the fins are chosen to be made of
the same highly conductive solid material as the substrate. This is a design
choice rather than a strict requirement.

In a similar manner, the non-dimensional temperature profile fr, (z3) [13]
defined below for the substrate is invariant in x, 5 directions:

T, - T, x3
=1-—= 2.12
T, =T, H, (2.12)

fTb (1‘3) =

where Ty, (21, z2) f +H Tl; dx3/2H, stands for the mean temperature of the
substrate across xj and H,, the half height of the substrate region.

Based on the temperature profile fr, (x3), the 2.5D energy equation for the
substrate region is obtained [13]:

o ([ OT k
RT = 2f,—— o (k;b ax) 0 (T, —T)) + G, =0 (2.13)



where ¢, is the heat flux applied to the bottom surface of the substrate.

The 2.5D energy equations of the fluid and substrate regions are coupled
through the common temperature 7; which can be computed according to
the heat flux continuity at the interface boundary:

35keff (a) o k‘b
TO6H, (T: -T) = o, (Ty = T3) (2.14)

The system of the 2.5D energy equations for the entire heat sink can then
be written as:

4H oTr  49H; 0 aT
T _ 2t , — i | - —-T) =
R" = 3 pC'puJ@xj % oz, {k‘eff (a) 3%} h(a)(Ty —T) =0 (2.15)
0 T, .
Ty _ — — =
R = 2Hyg (kb axj) h(a) (Ty—T) +do =0 (2.16)

with h (a) = 35kykesys (a) / [26Hyky + 35Hykesys (a)]. Equations 2.7 [2.9]

and comprise the state or primal field equations of the 2.5D problem.

2.1.2 Primal Boundary Conditions

Boundary conditions for the primal variables u;, p,T" and T, are required for
the numerical solution of the primal equations. All cases explored in this
thesis are pressure-driven flows, i.e. the static pressure difference between
the inlet and outlet boundaries is prescribed and the solver calculates the
inlet velocity and inlet mass flow rate. By setting the pressure at the outlet
zero, the inlet pressure value p; is actually the prescribed pressure difference
between the two boundaries.

Inlet Boundaries S

For the velocity and temperature Ty, a zero Neumann condition is imposed at
the inlet boundaries. Dirichlet boundary conditions are set for the pressure
and temperature 7"

n; =0, p=pr=const, T =T = const, b

Outlet Boundaries So

10



A zero Dirichlet condition is imposed on pressure while zero Neumann con-
ditions are set for the velocity components and temperatures 7', Ty:

orT T,

8uz~
n; =0, p=0=const,

Wall Boundaries Svw

A zero value Dirichlet condition is imposed on the velocity, which expresses
the no-slip condition for viscous fluids, and zero Neumann conditions are set
for pressure and temperatures T, T:

8]) oT 8Tb

U; = 0, a_xjnj = 0, a—xjnj = O, —‘?”Lj =0 (219)

The 2.5D model solves both the fluid and substrate regions on a single uni-
form Cartesian 2D mesh, and perceives the fins as areas where cells have a
unitary porosity value. In other words, in the context of the 2.5D model,
the fin outlines are not strictly considered as solid wall boundaries (see sec-
tion . Here, the wall boundaries Sy, refer to all other boundaries besides
the inlet and outlet that enclose the 2D computational domain {2 upon which
the 2.5D model solves the primal equations.

2.2 Porosity Field

The modeling of the porosity-dependent terms appearing in the primal equa-
tions influences the solution of not only said equations but also their adjoint
counterparts and the computation of the sensitivity derivatives as described
in section In the following, the filtering and projection of the porosity
field, that are employed to prevent noisy geometries and eliminate the gray
areas that arise during TopO problems as much as possible, are presented.

2.2.1 Porosity-Dependent Terms

The Brinkman penalization terms G (a) u; and effective thermal conductivity

kegs (a) appearing in primal equations [2.9] respectively are given by the
following expressions [19]:

| S 5uM? S
G(a)u; = [QHE + 1 (a) ( TR, w; (2.20)

11



kery (@) = kg + 1 (a) (hy — ky) (2.21)

I (a) is an interpolation function implemented to compute the aforementioned
terms for intermediate a values of the porosity field and M is a constant non-
dimensional scalar quantity that is used to ensure the Brinkman penalization
terms dominate over the other terms appearing in the primal momentum
equation, in areas where a = 1 (or practically a — 1). Because all other
terms become negligible, the only remaining term G (a) u; produces a locally
zero velocity field to satisfy equation [2.9in the solidified parts of the fluid
region/design space. Consequently M should be considerably large. As far as
the interpolation function I (a) is concerned there is a wide range of choices
that can be found in the literature, however the Borrvall-Petersson function
[12] shown in equation:

a

1= 10w (2.22)

is used in this thesis. The control parameter b adjusts the steepness of the
function, with increasing b values more strictly suppressing intermediate val-
ues of the porosity field as shown in fig. In other words, bigger values
of the control parameter b means a clearer distinction between the fluid and
solid parts of the design space. It should also be mentioned that the source
terms G (a) u; in the primal momentum equation [2.9| are smaller for interme-
diate a values as the control parameter b increases. This aids the creation of
fluid areas in more parts of the design space.

Iia)

b v lé’ljl'usit_\'”(!el h a
Figure 2.2: Graphical representation of the Borrvall-Petersson interpolation
function I (a) for increasing values of the control parameter b in equation .
Gray areas with intermediate properties between fluid and solid material appear
increasingly with lower b values.
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2.2.2 Regularization and Projection of the Porosity
Field

In TopO problems, using the porosity field a to directly compute the porosity-
dependent terms can lead to rough or checkerboard geometries with the re-
sulting optimal solution depending on the mesh resolution as well as the
discretization schemes used to solve the primal and adjoint equations. To
avoid such scenarios the density-filtering technique or regularization of the
porosity field is employed. Many types of filters have been proposed in the
literature, one of them being a Helmholtz-type filter [20] that is based on
solving the PDE:

R \* 0 oa —\1/2
— a = = 2.2
(2\/§) oz, (8xj) +a=a, R=mp (V) (2.23)

to compute a regularized porosity field a based on the known porosity field a.
The regularization radius R is calculated [19] as a multiple of the average cell
volume V. For the numerical solution of equation [2.23] a unitary Dirichlet
boundary condition is imposed on a at all wall boundaries belonging in the
design space of the computational domain, namely:

jo )
I
—_

(2.24)

Even though the regularization process smoothens the porosity field, it ex-
acerbates the inherent gray area issue in TopO problems, where areas not
belonging to neither the fluid nor the solidified part of the design space ap-
pear. This effect becomes greater the bigger the regularization radius used in
equation [2.23] To remedy this, a projection step of the regularized porosity
a field is implemented. Many types of projection methods can be found in
the literature, nevertheless the sigmoidal-type [20] projection function shown
below is chosen here:

_ tanh (0.5)\) + tanh [A (@ — 0.5)]

p 2 tanh (0.5))

(2.25)

The behavior of the projection function for increasing values of the projec-
tion parameter A is depicted in fig. 2.3] Bigger \ values greater highlight
the "boundaries” between the solidified and fluid parts of the design space,
resulting in a (3 field that is close to binary.

After the regularization and projection of the porosity field, the computed S
field is the one used in equations [2.20] [2.21] and [2.22] to derive the porosity-
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dependent terms. From this point forward in the thesis any reference to the
primal equations implies that the Brinkman penalization terms, the effective
thermal conductivity and of course h = h (k.sy) that appear in them, are
calculated based on 8 and not directly on the porosity field a.

I:Rt:uula.lrizenl Pur:_;sih' t-l.l
Figure 2.3: Graphical representation of the projection function with increas-
ing values of the projection parameter X in equation |2.25

2.3 The Adjoint Problem

Deterministic or gradient-based optimization algorithms require the compu-
tation of derivatives of the objective function F' with respect to (w.r.t.) the
design variables in order to proceed to the next optimization cycle. Generally
the objective function F' depends on the vector of primal or state variables
U = [u; p T Ty]7 and the vector of design variables b, whose elements, in
TopO problems, are the porosity values a at each grid cell. It is important to
note that F may contain the porosity field a in its definition, constituting a
direct dependency on the vector of design variables, or/and it can include the
primal variables U which in turn depend on the design ones, establishing an
indirect dependency on b. The latter can be understood, since any change in
the design variables vector b, i.e. any changes in the porosity field, leads to
variations in the primal variables U, in order to satisfy the primal equations.
From the above it becomes clear that F' = F' (U (b), b)

One of the greatest factors that influence the computational cost of the opti-
mization algorithm is the method used to compute these gradients or sensitiv-
ity derivatives 0 F'/db,, with n € [1, N] and N the number of design variables.
One way to derive d F'/db,, is through the finite differences (FD) method. The
basis of the FD method is that an infinitely small variation € is considered
in each of the design variables, and the value of the objective function is
calculated again for the new set of design variables b. For instance, a first
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order scheme to compute the derivatives of the objective function F' w.r.t
the design variables, is expressed below:

oF o F(bl, bg, bg, bn+€, ceey bN) —F(bl, bQ, bg, bn, ceey bN)
5b, €

n € [1, N]

The primal problem must be solved each time the value of F' needs to be
re-evaluated, which for this example would be (N + 1) times, and so even
though the FD method is mathematically simple, the computational cost is
proportional to the number of design variables N and to the order of the
scheme used. Another method to compute dF/db,, is direct differentiation
(DD), where the primal equations are differentiated w.r.t b and N systems
of equations, similar to the primal equations, are solved to derive the deriva-
tives of the primal variables U w.r.t the design ones. Through dU /§b,, the
much needed sensitivity derivatives 6 F'/db,, are computed. Consequently, the
computational cost of the DD method also scales with the number of design
variables N.

According to the adjoint method, by solving a dual problem, the primal and
its similar in nature adjoint counterpart, the sensitivity derivatives can be
derived in such a way, that the computation cost becomes independent of
N. For TopO problems where the number of design variables is the same as
the number of mesh cells, meaning the optimization has tens of thousands of
design variables, the adjoint method is a perfect candidate. Two variations
of the adjoint method can be found in the bibliography. The discrete
adjoint method [21], [22], where the primal equations are first discretized
and then used in the definition of the augmented objective function to be
differentiated. As a result the system of the adjoint equations is extracted
directly in its discrete form. Secondly, the continuous adjoint method
[23], [24], which will be employed in this thesis, where the primal equations
are used in their continuous form in the definition of the augmented objective
function to be differentiated. The resulting adjoint equations are PDEs that
need to be discretized in order to be numerically solved.

2.3.1 Augmented Objective Function

Following the mathematical formulation found in [I5], [16], the augmented
objective function is defined by adding the volume integrals of the residuals
of the primal equations, multiplied by the adjoint variables, to F"
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Foug = F + / v R} dQ) + / qRP dQ + / T,R" dQ + / TwR™ dQ (2.26)
Q Q Q Q

where v;, q, T,, T, is the adjoint velocity, the adjoint pressure, the adjoint
temperatures for the fluid and substrate regions respectively and €2 the 2D
computational domain, upon which the 2.5D model solves the primal equa-
tions. Taking into consideration that, in TopO problems, all boundaries of 2
are fixed and independent of the design variables, the differentiation of F,,,
w.r.t. the porosity field yields:

Fpy  OF OR! OR? ORT
5a —E‘i‘/gvz a dQ + QQE dQ‘f‘/ﬂTa% df (227)

Ty
—i—/Tabai d)
Q (9@

Since the residuals of the primal equations must always be equal to zero it is
evident that F,,, = F and 0F,,,/da = dF/éa.

2.3.2 TopO Objective Function

The goal of the TopO process is to identify the optimal heat sink geometry,
i.e. the optimal fin layout in the fluid region, that has the best thermal per-
formance. Consequently, the (normalized) maximum temperature appearing
in the substrate region, which is in direct contact with the electronic com-
ponents, is chosen as the objective function to be minimized by the TopO.

This is given by equation:
o\ 7
F= U( b) dQ} (2.28)
Q Tref

where p > 1 the norm parameter and 7. a constant normalization reference
temperature (usually the fluid inlet temperature 77 is selected). As p — oo
the aggregation function approaches the (normalized) maximum tem-
perature of the substrate [25]. Differentiating F' w.r.t the porosity variables,
yields:
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1-p

SF 1 T\ 17 0T,
— ds? TP ——2 dQ 2.2
5a ~ pT7, U (Tref) } /Qp” Ja (2:29)

7

-~

Fy

By substituting equation to the final expression of the derivative
of Fuug w.r.t the design variables is obtained:

5Fau i P
g = / Forr 2 o 4 / IR g0+ qai ds) (2.30)
Q Q

da Oa " da Oa
%,1 T2
ORT ORTe
T,—— dS2 dS)
/ da /+ /Q ""Oa )
T Ty

2.3.3 Adjoint Field Equations

For the computation of the derivatives of the primal equation residuals w.r.t
the design variables, appearing in volume integrals T}, T5, T3 and T} in
equation the relation:

0 (0P 0 (0P

is used. This equation holds true because the partial derivative d/0a of a
quantity ® shows the change in ® w.r.t the design variables, by including
only the contribution from the variations in the primal variables U and not
any changes in the shape of the computational domain’s boundaries.

Computation of volume integral T}

Differentiating the momentum equation w.r.t. the porosity variables re-
sults in:
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OR} _§ Ou; Ou; s 0 % B i g ou; n Ou,
Oa —7p da Ox; Jaxj Oa ué?:vj Oa \ Oz;  Ox;

509 (0p B B

The viscous terms in the volume integral 77 are:

/Q'M}Z@_xj {% (ij + 8:701)] dt = /S'm}znjﬁa (8@- + &vi) d5

ov; 0 (Ou; Ou
g Q
" ), "oz, 9a (axj e ) d

- M — d — dQ
/S,uv,n] da (8;1:j * 8332-) 5 Q 'uaxj oz, ( da )

+ uavi 0 <%) dQ)
Q

Oz 0x; \ Oa
0 (0Ou;  Ouy ov;  Ouy
a [ 0v;\ Ou; 61} ou;
_ _ K3 1 dQ K3 j d
/“amj <8x]~> da How " 5

8 81)7; au]
- Q
/Quﬁxi (8:6]-) Oa 4

The convection terms are written as:

6  Ouy 8u] 6 0 [ 0Ou
/ Vi oz, da dQ*/Q?’”’Z“Jaxj (aa) ae
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= [ —pvi=——=2dQ — (viu;) — dQ (2.34
/Q7pw8xj 5 d +/S Z PV~ 8 LdS— /97 8xj (viuy) 5 dQ (2.34)

Following with the pressure terms in 77:

5 0 (0p 5 dp 5 Ov; 8p
/5;11},58—% <aa) dQ) = /SZL’UZHZ% dsS / 463371 aa ds? (235)

Finally, the porosity-dependent terms in 7} are:

0 oG ou;
— ) dS) = Q— Q 2.
Vi (Gu;) d /Q%Uz 9 d /Q G— 9 d (2.36)

Computation of volume integral T,

Differentiating the continuity equation w.r.t the design variables gives:

OR? 0 (Ou;\
da  Ox; (8(1) B (237)
so that:
0 (0u; Ou, 0q Ou,
— | =) dQ = - - 2.
/Qqaxj (8(1) d / o' 45 = / Oz, 8@ (2.38)

Computation of volume integral 73

The derivative of the fluid region’s energy equation [2.15| w.r.t. the porosity
is:

T )
8 s 8 10 ()] [ )
J

da da Oz; 7 Ox; \ Oa 26 Ox; | Oa
oT, oT\ 0Oh -
“h (% - %) - ST~ T) =0 (2.39)

The diffusion (or conduction) terms in the volume integral T3 are:

19



49H, . 0 |0 aT 49H; . O orT
— | —T,— | — — Q=— | —T,— — | n;
/Q 26 "0z, {8@ (keffaxj)] d /5 26 “Oa (keffaxj) n; d3

49H, 0T, 0 or
— | kepf=— ) dQ
+/Q 26 8xj6a( ff@xj)

49H, 0 or 0T, Okeyy OT
* 26 [ /s “Oa <k€ff(9xj> ny 45+ o O0r; Oa Ox; d

oT, & (oT
5oz () 0]
19H, 9 OT, Ok.s; OT
- [ Q
26 [ /S“a (k‘fffa >"1ds /axj a0z, "

oT,  OT 9 T\ OT
ap d 9 (k22 2L a0 2.4
s 0z, g 5= /anj ( effag;j) da ] (2.40)

The convection terms are analyzed as follows:

4H, Ou; OT / 4H, o (oT
/Q 3pCT8a8xde+ g SpC’TuJa (8@) dQ (2.41)

4H, . Oy T oT
R [/ “Ba o, LT /T“””fa 45 = /axj (1) 5, dQ]

The source terms in 73 are written as:

oT, OT oh oT,
—/QTah<%—%) dQ—/ﬂaaT(Tb T) dQ) = /Thaa dQ

oT oh
4 /Q TGy d0 = | ST (1= T) de (2.42)
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Computation of volume integral 7}

Differentiating the energy equation for the substrate w.r.t the design
variables yields:

ORT o [ o (0T, T, OT\ oh
= 2Hb7j [k;b% (ax]ﬂ —h (% - %) — o (T = T) =0 (2.43)

The conduction terms in the volume integral T, are:

o [ 0 (0T, B o (0T,
/ 2HbTaba |:kbaa, (a—%):| dQ) = / 2HbTabkba (axj) n; dsS
oy, 0 (0T,
B /Q 2Hy 0z, kb@xj < da ) ds

- / 2H, Tk, aa (gT"> - dS — / 217, 2Ta0 @Tbn] ds (2.44)
S

Z; Oz
0 o\ OTp
2H, Q
+/Q b@a:j (kb ('%j) da d

The source terms in T} are:

oT, oT oh B oT,
/QTabh(aa aa) aQ — /Q g (T = T) d2 =~ /QTabh% dQ

T oh
+ /Q Th d - /Q Tuot (T~ T) 0 (2.45)

By taking equations 2.33} 2-34], 2.35] 2-36] 2.38] .40, .41 P42 P.44] .45

into consideration and grouping terms together (the indices ¢,j may need to
be exchanged for some terms) the expression for § Fuy/d0a becomes:




dFy, Ou; [ 6 ov;  0v;
-9 :/ ¢ {?pviujnj + p ( Yy ZJ) n; + qni] ds (2.46)
; .

T (4H, 49H T,
+/ 8_< pC Taujn; + 0 tkeffa > as
i 26 "/ B,
8T 8Tab (9 ajjb
—_— 2H 2H kT,
‘|—/S 94 ( vky—— o7 z; ) dS—l—/ vk “ba (al‘j) n; dS

- /5—26 Te5a (’“effa—xj) nj 5+ / da {%p [ oz

0 8?]2‘ 81]]' 8q 4Ht or
— — (v g — _ I T —
ij (UzUJ):| M@:c] <8:1:J + &cl) 8:131 + 3 pcp aal'l'

dp 5 0v; or | 4H,

0 49H; 0 oT,
a_;L‘j (UjTa) — 78—1‘] <keffa—$]) + h (Ta + Tab):| dQ

T
+/Q% {F i 1+2Hbaa (kb%zab> —h(Ta+Tab)} dS2
J

oG 49H, 0T, OT Ok.ss
/QUZUZ% dQ+/Q 26 Oz 0zr; Oa s

Oh

8@ (Ty = T) (To + Tyop) dS2

By zeroing the multipliers of du; /0a, Op/da, 0T /Oa and 0T}/ da in the volume
integrals of expression [2.46, the adjoint field equations are derived:



Ri=—-_1=0 (2.47)

v _6 an 0 0 (%,- (%j 4Ht oT
i = p axz ﬁxj (vlu])] 'uc‘?xj (3xj + 8xi> + 3 pCpTaaxi
dq
_ _ - 2.4
B, Gv; =0 (2.48)
4H, 0 49H, 0 oT,
T, ¢ t
a — _ T — T, + 1T,
R pCpa ( a) % axj <k€ff(9 ) + h( -+ ab) 0
(2.49)
T.
BT = Fpryt v o, 0 (22 n(T s Ty =0 (250)
Ox; Oz,

Equations 2.47] 2.48| 2.49] and [2.50] comprise the adjoint continuity, momen-
tum and adjoint energy equations for the fluid and substrate regions respec-
tively. The adjoint equations are Simﬂar in nature to the primal ones, with
the adjoint momentum equation [2.48| and adjoint energy equations - 2.50]
both containing porosity- dependent terms just like their primal counterparts.
Consequently, the way G (8) and k.sf (5) are formulated influences the solu-
tion of both the primal and adjoint field equations. The appearance of the
term G () v; in the adjoint momentum equation signifies that in the solidi-
fied areas of the design space where porosity values a — 1 and hence g — 1,
a zero adjoint velocity field is produced.

In an incompressible fluid flow, the solution of the primal momentum equa-
tion is independent of the primal temperature field 7. However, T is influ-
enced by the primal velocity field wu;, as evident from equations and 2.15]
Notably, the exact opposite holds true for the adjoint field equations, mean-
ing the adjoint temperature field 7T, does not depend on the adjoint velocity
field v; (T, is convected by the primal velocity), whereas v; is affected by T,.
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2.3.4 Adjoint Boundary Conditions

To numerically solve the adjoint equations, boundary conditions for the ad-
joint variables v;, ¢, T, and T, are required. For each boundary of the
computational domain {2, and depending on the specific primal boundary
conditions set for that boundary, the adjoint boundary conditions are de-
rived such as all surface integrals of equation [2.46| are always equal to zero.

Inlet boundaries S

For the inlet boundaries of €2, Dirichlet boundary conditions are imposed on
p, T and zero Neumann conditions are set for the velocity components u; and
temperature Tj,. This means that dp/da and 9T /0a are equal to zero and
thus the second and fourth surface integrals in equation [2.46 are eliminated.

Considering equation:
o (0P o (0P
= )n. == (=-—n, 2.51
da (035]-) "= Ba (8xjn]) (2.51)

which holds true because all boundaries of €2 are fixed and independent of the
design variables, the sixth boundary integral in equation [2.46] also vanishes.
Zeroing the contents of the first and third surface integrals in equation [2.46
leads to the boundary conditions for the adjoint velocity and pressure:

6 8?% ov;
7Pl +u <8x- + 8;) n; +qn; =0 (2.52)
i %

The boundary conditions for T, and T, that arise in order for the fifth and
seventh boundary integrals in equation to vanish are pretty straightfor-
ward:

aCrab
—n; =0 2.54
axj n] ( )

Outlet boundaries S

Zero Neumann conditions are imposed on the velocity and temperatures T
and T, and a Dirichlet condition is set for pressure along Sp. As a result
Op/da and hence the second surface integral in equation are equal to
zero. The equations that lead to the derivation of the adjoint boundary con-
ditions for v; and ¢ are equations and [2.53], the same as for the inlet
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boundaries. Considering the zero Neumann conditions set for 7" and 7T; and
equation the sixth and seventh surface integrals in expression van-
ish. The fourth and fifth boundary integrals lead to the following equations
that define the adjoint boundary conditions for T, and T,;:

AH, A9H, 0T,

TpCpTaujnj + 2—6keffa_xjnj =0 (255)
0Ty,
—n; =0 2.56
amj n] ( )

Wall boundaries Sw

For the wall boundaries of €2 a zero Dirichlet condition is set for the velocity
components and zero Neumann conditions are employed for p, T" and T,,.
Since Ou;/0a is zero the first surface integral of equation vanishes on
its own. The second and third boundary integrals in the same equation give
rise to equations:

that define the adjoint boundary conditions for the adjoint velocity. The
adjoint boundary conditions imposed on the adjoint temperatures 7, and
T, are identical with the ones for the outlet boundaries of €2 and are given
by equations [2.55 and [2.56] Because no boundary condition was derived for
q with no more surface integrals remaining in equation [2.46| a zero Neumann
condition is imposed on ¢:

2.3.5 Sensitivity Derivatives

With the adjoint equations and their corresponding boundary conditions de-
rived, expression that gives the sensitivity derivatives of the augmented
objective function F,,, w.r.t the design variables, is simplified to:
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O Fqug oG (B) / 49H, 0T, OT Ok.ss (B)
_Caug s dQ ds? 2.
da /Qvlul da * o 26 0z;0x; Oa (2.60)

_ [ on(B)

5 (Ty = T) (To + Typp) dS2
Q

Using the chain rule, the differentiation of the porosity-dependent terms

G (B) and k.rs () w.r.t the porosity field is shown below:

0G (5) _ 9G (5) 05 i
da OB 0a Oa

(2.61)

Okeys (B) _ Okegy (B) OB a
da 98 da Oda

(2.62)

Taking the formulations|2.20], into consideration, equations and

become:

oG (8) (5uM2 ~ p ) 01 (6) 9 da (2.63)
da  \ 2H2 2H?) 03 0a da '
Okerr (B) _ (., (OL(B) 9B da
a0 k) 755" 5 Ba e

Since h is a function of the porosity-dependent effective thermal conductivity
kers (), its derivative w.r.t. the porosity field is easily obtained:

8k8ff

da 26 H ke, + 35Hykegs)”

Okey
eff
da_ (2.65)

[26 Hyky + 35 Hyke ] — 1225 Hykyk

The computation of the da/0da field can be achieved by differentiating the
regularization PDE [2.23| w.r.t a and with the help of expression [2.31} To
numerically solve the resulting equation:

(EEEE e
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da

— =0 2.67
% (2.67)
a zero Dirichlet condition is imposed on 0a/da, at all wall boundaries of
the design space. It is noted that the computational cost for solving the

regularization PDE as well as equation is negligible compared to
the solution of the primal and adjoint problems.

Finally, it is interesting to mention that the first volume integral in equa-
tion includes the dot product of the primal and adjoint velocity vector
fields. Considering that all multipliers of w;v; are positive (because of the
nature of equation , the value of 0a/da will be positive across the en-
tirety of the computational domain), when the two vectors form an acute
angle the local areas of the design space tend to solidify and on the contrary
when they form an obtuse angle the local porosity values tend to decrease.
The same holds true for the dot product of the gradients of the primal and
adjoint temperatures 7" and 7T, appearing in the second volume integral of
equation [2.60] This time, when the two gradients form an acute angle the
local porosity values decrease and when they form an obtuse angle the local
areas of the design space begin to solidify.

2.4 The SQP Update Method

The sequential quadratic programming (SQP) [3] is the employed gradient-
based method used to update the design variables during the TopO process
and is a technique particularly suited for solving large-scale nonlinear con-
strained optimization problems. In the TopO problems studied in this thesis,
no constraint functions will be used, and thus a simplified version of SQP
will be presented here with only bound constraints for the design variables.
In the discrete space, the continuous real-valued porosity field a € [0, 1] is
represented by the vector b formed by the porosity values at each mesh cell.
The Quadratic Problem (QP) can be written as:

1
min <§piHi,jpj + Glpl) (268&)
pi

b; +pi —u < 0 (268C)

where p; is the update of the design variables b; with i € [1, N|, G; = §F/db;



is the derivative of the objective function F' w.r.t the design variables and
H; ; an approximation to its Hessian matrix. In addition /; = 0,u; = 1 are
the bound constrains of the design variables written as [; < b; < u;. The
Lagrangian of the above QP is:

1 ~ -~
L= §PiHi,ij + Gipi — Li(bi +pi — i) — wi(w; — b; — p;) (2.69)

where Z; and u; are positive Lagrange multipliers. Taking complementary
slackness into consideration, the KKT conditions are expressed as follows:

oL

oy, = Hiabi +Gi - Li+a=0 (2.70a)
—bi —pi+1; <0 (2.70D)
bi+pi—u; <0 (2.70¢)
Lils; =0 Vi (2.70d)
wus; =0 Vi (2.70e)

where [s; > 0,us; > 0 the slack variables. The above non-linear system
of equations is solved iteratively using a Newton method to compute the
correction pf, where x is the optimization cycle counter, to update the design
variables as:

bt = bF + py (2.71)

| Initialize the porosity fleld |

—+ ‘ Regularize and project the porosity field ‘

|

‘ Soive the primal problem |

] Solve the adjoint problam ‘

|
|

‘ Compute sensitivities §F /§h; ‘

b I Update the porosity field ‘

Figure 2.4: Workflow of the TopO algorithm.



Chapter 3

Case Studies

3.1 2.5D vs 3D: Adequacy of the 2.5D Model

A simple and approximate way to test the adequacy of the 2.5D model in
resolving the heat transfer process, is to create random geometries with dif-
ferent substrate-fin configurations and compare the results against full 3D
CHT simulations across different pressure gradients. This step is crucial,
since the 2.5D model is the primal solver of the TopO process, and thus it is
important to ensure it is capable of evaluating the thermal efficiency of the
heat sink with an acceptable degree of accuracy.

For the full 3D simulations, separate 3D body-fitted meshes are generated,
through the snappyHexMesh utility in OpenFOAM, for the fluid domain and
solid domain which includes both the substrate and fins. The girds are un-
structured and made up of hexahedral and split-hexahedral elements. On the
contrary, for the 2.5D simulations, a single, structured, uniform Cartesian 2D
mesh consisting of hexahedral elements is generated, through the blockMesh
utility in OpenFOAM. Using this mesh, both the fluid and substrate solid
regions are solved, but this time the 2.5D model considers the fins part of
the fluid region. Since the geometry and location of the fins is known a pri-
ori, the cells that correspond to fins are given a fixed unitary porosity value,
while the rest of the grid cells are given a fixed porosity value of zero. It is
important to ensure that, for the 2.5D cases, the overall mesh refinement is
enough to appropriately approximate the geometry of the fins and that no
regularization and projection of the porosity field will be performed, so that
the comparison between the 3D and 2.5D results will be valid.

A one inlet-two outlet (1120) microchannel heat sink was selected, with
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water as the cooling fluid and aluminum nitride as the solid material of
the substrate and fins. Water has a high thermal capacity under constant
pressure and is one the most basic cooling fluids, while aluminum nitride is
an electrically insulating ceramic material with high thermal conductivity,
making it well suited for microchannel heat sink substrates in electronics
cooling applications. The two different fin layouts that were tested, were built
at random and are depicted in fig. while visual representation of how the
fin geometry is captured in the Cartesian mesh for the 2.5D cases is provided
in fig. 3.2l The CHT problem was solved for (inlet-to-outlet) pressure drops
of Ap = 50Pa and Ap = 400Pa and the water inlet temperature was set at
300K . The uniform heat flux ¢, was applied to the entire bottom surface of
the substrate. Table contains more case-specific information, like fluid
and solid properties as well as key geometric characteristics.

(a) Fli (b) Fi2

Figure 3.1: 1120: Graphical representation of the microchannel heat sink’s
substrate with fin layouts Fl1 and FI2.

Figure 3.2: 1120-Fl1 (2.5D): Fin geometry approzimation in the 2D struc-
tured Cartesian mesh. This is how the 2.5D model sees the fins - not strictly
as solid bodies, but as areas in the mesh with unitary local porosity values.

Figs. B.4 and [3.8] depict the resulting velocity and temper-

ature fields on the mid-plane of the fluid and substrate regions, from the 3D
and 2.5D simulations. Since the 2.5D model solves for the temperature field
on the middle of the substrate region and the velocity field on the mid-plane
of the fluid region, it is convenient for the comparison against the 3D results
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to be performed on the mid-plane of the substrate and fluid regions. The
temperature field on the mid-plane of the fluid region can be derived from
the computed primal field 7" with the help of equation 2.10] Tables
and respectively show the computed maximum temperature 7} 4, and

average temperature T} 4, appearing on the middle of the substrate as well
as the inlet mass flow rate m; for all cases.

Variable Value
M 100
H,; 0.20 mm Mesh Cell Count
H, 0.075 mm F11 - Fluid Domain (3D) 2586967
do 75000 W/m? F11 - Solid Domain (3D) 1285371
p 998.2 kg/m? F12 - Fluid Domain (3D) 2639033
1 0.001002 P, - s F12 - Solid Domain (3D) 1190718
Cp 4182 J/kg - K F11/F12 Cartesian Mesh (2.5D) 89600
ki | 0.598 W/m - K
Ky, 150 W/m - K

Table 3.1: 1I20-FL1/FL2: Case-specific details for 3D and 2.5D simula-
tions. Solid and fluid properties as well as heat flux ¢, are common between

2.5D and 3D simulations. Variables M, H; and Hy are only used for the 2.5D
stmulations.

(L3

(a) 50Pa (b) 400Pa

Figure 3.3: 1120-Fl1: Temperature field on the mid-plane of the fluid region
from the 2.5D simulation (upper figs.) and the full 3D simulation (lower figs.).
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(a) 50Pa (b) 400Pa

Figure 3.4: 1120-Fl1: Temperature field on the mid-plane of the substrate

region from the 2.5D simulation (upper figs.) and the full 3D simulation (lower
figs.).
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(a) 50Pa (b) 400Pa

Figure 3.5: 1120-Fli: Velocity field on the mid-plane of the fluid region from
the 2.5D simulation (upper figs.) and the full 3D simulation (lower figs.).
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(a) 50Pa (b) 400Pa

Figure 3.6: 1120-FI2: Temperature field on the mid-plane of the fluid region
from the 2.5D simulation (upper figs.) and the full 3D simulation (lower figs.).
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(a) 50Pa (b) 400Pa

Figure 3.7: 1120-Fi2: Temperature field on the mid-plane of the substrate
region from the 2.5D simulation (upper figs.) and the full 3D simulation (lower

figs.).
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Figure 3.8: 1120-FI2: Velocity field on the mid-plane of the fluid region from
the 2.5D simulation (upper figs.) and the full 3D simulation (lower figs.).

Considering figs. [3.3] 3.6], and and tables B.4] the

following conclusions can be reached:

1. Irrespective of the geometry, the 2.5D model predicts more accurately
the temperature fields for low pressure drops and the error becomes
greater as the pressure gradient increases. This is because the assump-
tion of the fully developed flow, fails increasingly as pressure drops get
bigger. Especially, the non-dimensional temperature profile given by
expression [2.10] used to derive the temperature on the mid-plane of
the fluid region from the computed T field, is not valid for a flow that
is still developing. As mentioned in [13], this is the reason that, some-
times, when trying to derive temperature fields on a constant z3 plane,
areas with local temperatures lower that the fluid’s inlet temperature
are observed in the fluid region, which is non physical.

2. The 2.5D model agrees with the 3D results as to which fin layout is more
thermally efficient at a certain operating point of the heat sink. For the
low pressure gradient of 50Pa the fin layout F11 performs worse than
F12, despite the higher number of fins. At such a low pressure drop,
the resulting inlet mass flow rate is so small that convection cannot
benefit from the extra surface area provided by the higher number of
fins. In such conditions even the slightly higher achieved mass flow
rate for the fin layout F12 makes a difference. At the relatively larger



pressure gradient of 400Pa, convection is better utilized and now the
F11 fin configuration is the more thermally efficient one.

Case 1120-F11 1120-FI12
Ap (Pa) 2.5D 3D Relative 2.5D 3D Relative
Tomaz (K) | Tomaz (K) | Error | Thimaz (K) | Thmax (K) | Error
50 421.99 421.32 0.55% 407.46 404.75 2.59%
400 330.70 330.12 1.93% 342.86 334.83 23.05%

Table 3.2: 1120-Fl1/F12: Computed mazimum temperature Tj mqy appearing
on the middle of the substrate.

Case 1120-FI11 1120-F12
Ap (Pa) 2.5D 3D Relative 2.5D 3D Relative
Tyavg () | Thavg (K) | Error | Tpaug (K) | Thavg (K) |  Error
50 377.89 378.43 0.69% 370.78 369.18 2.31%
400 318.57 320.59 9.81% 327.77 324.73 12.29%

Table 3.3: 1120-Fl1/F12: Computed average temperature Ty, o9 appearing on
the middle of the substrate.

Case 1120-F11 1120-F12
Ap (Pa) 2.5D 3D Relative 2.5D 3D Relative
myr(g/s) | my(g/s) | FError | my(g/s) | m;(g/s) | FError
50 0.0369 | 0.0371 0.54% 0.0432 0.0444 2.7%
400 0.299 0.297 0.67% 0.364 0.371 1.89%

Table 3.4: 1120-Fl1/FI2: Computed inlet mass flow rate my of the heat sink.

In the above tables the relative error for the maximum temperature 7 44
appearing on the mid-plane of the substrate was computed as:

|T3D — T2.5D

b,mazx b,mazx
T3D -7 (3 1 )
b,mazx I

with the same equation used for calculating the relative error for the aver-
aged temperature, by replacing T} ;4. With T 4,4. The relative error for the
calculated inlet mass flow rate between the 3D and 2.5D solutions was found
using the formula:

3D 2.5D

— ml
3D

[z

- (3.2)
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Even if the geometry of the fins was exactly captured in the Cartesian mesh
for the 2.5D cases, differences from the 3D results are inevitable since the
2.5D model is made as a primal solver for a TopO algorithm and thus the fins
in the fluid region are not considered as strict solid boundaries. The no-slip
boundary condition for the velocity is set indirectly through the Brinkman
penalization terms and not explicitly imposed during the solution of the flow
problem. Finally even though the 2.5D model retains part of the information
from the neglected height dimension, it of course doesn’t give the same level
of accuracy as fully resolving the flow problem across all three dimensions.
Nevertheless, from the above, it becomes clear that the 2.5D primal solver is
capable of evaluating thermal performance and can thus be used in a TopO
process to gradually lead the algorithm to a heat sink geometry that has
optimal thermal performance at a given operating point.

3.2 Application to TopO Problems

In this section, TopO of microchannel heat sinks will be performed using
the 2.5D model. The (normalized) maximum temperature appearing in the
substrate region is the objective function of the TopO process which is com-
puted using the p-norm aggregation function and is rewritten here in its
discrete form:

P

F—

i (gbf)p (3.3)

i=1

where N is the total number of mesh cells in €2. The optimization runs for
a maximum of 300 cycles or until the relative change in the value of the
objective function between successive optimization cycles becomes less than
a very small number, namely:

rK+1 K
‘FF,—HF < 1076 (34)
In TopO problems, volume constraints, which limit how much from the over-
all domain volume can be occupied by fluid or solid material, are frequently
employed. From a design point of view, such constraints are often imple-
mented to ensure practical, manufacturable and cost efficient designs where
a balance is struck between performance and solid material used. The volume
constraints also help guide the TopO algorithm and prevent trivial solutions
from arising with only fluid or only solid materials filling the entirety of the
design space. In the theoretical study of the TopO applications considered in
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this thesis, however, it is desired to give the algorithm the freedom to decide
how many fins, i.e. how much solid material, to place inside the fluid region
depending on the heat sink’s operating conditions. As a result no volume
constraints will be imposed to any of the TopO problems in the following
subsections.

3.2.1 The 1110 and 1120 CHT TopO Problems

Microchannel heat sinks with a one inlet-one outlet (1110) and 1120 config-
urations are designed with water as the cooling fluid and aluminum nitride
as the solid material for the substrate and fins. The 1110 heat sinks are
designed for pressure drops of 400Pa and 800Pa, while the 1120 ones for
pressure drops of 200Pa and 400Pa. Depending on the pressure gradient
that the heat sink is designed to work at, different optimal geometries are
expected to arise. The computational domains for both problems are de-
picted in fig. while the initialization of the porosity field is shown in

fig. [B-10|

Design Space
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4 Design Space

3; Inlet Zone

(a) 1110-TopO (b) 1120-TopO

Figure 3.9: 1110/1120-TopO: Computational domain with the inlet bound-
ary St, outlet boundary So, wall boundary Sw and design space. For the
1120-TopO case, So = So,1 U S0,2

The inlet and outlet zones are fixed porous zones that are always occupied
by fluid and do not belong to the design space of the optimization. Conse-
quently the cells that correspond to these zones have a fixed porosity value
of zero during the TopO process. The constant uniform heat flux ¢, is ap-
plied to the part of the substrate that corresponds to the design space of
the optimization. The inlet water temperature was set at 300K, while more
case-specific information, including parameter values for the regularization
and projection of the porosity field are presented in table [3.5]
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(a) 1110-TopO (b) 1120-TopO

Figure 3.10: 1110/1120-TopO: Initialization of the porosity field a. Zero
porosity values indicate fluid while unitary porosity values correspond to solid
material.

Variable Value
b 10
mpg 5
A 10
M 100
D 10
Trey 300K
Go 75000 W/m?
H, 0.20 mm
Hy 0.075 mm
p 998.2 kg/m?
1 0.001002 P, - s
Cp 4182 J/kg - K
kg 0.598 W/m - K
ks, 150 W/m - K
Mesh Cell Count (1110-TopO/1120-TopO) | 21600/22000

Table 3.5: 1110/1120-TopO: Case-specific details.

Convergence of the TopO algorithm can be seen in fig. [3.11 The value of
the objective function decreases rapidly in the first cycles and then steadily
declines, indicating consistent progress toward an optimal design. The con-
vergence behavior is similar for both pressure load cases, across both CHT
problems.

Figs. 3.12] and [3.13] show the optimal 1110 and 1120 heat sink geometries
that resulted from the TopO process, respectively. These geometries were
constructed by extracting the interfaces between the fluid and fins, i.e. ex-
tracting the isolines of the (3 field, to produce 3D extruded surfaces. It can be
seen that for lower pressure drops the number of fins that are formed inside
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Figure 3.11: 1110/1120-TopO: Progress of the TopO algorithm.

the fluid region is much smaller, because of the weaker force that drives the
flow. The algorithm tries to utilize conduction and convection, by placing
as many fins as possible in strategic locations to maximize the surface area
without increasing the hydraulic resistance too much and choking the flow.
It is also observed that the algorithm creates solid material around the wall
boundaries belonging in the design space of €2 and smoothens the corners of
the computational domain to further aid the flow.

(a) 400Pa (b) 800Pa

Figure 3.12: 1110-TopO: Optimized heat sink geometries. The substrate
and fins are made of the same solid material, however they are presented with
different colors for visualization purposes.
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(a) 200Pa (b) 400Pa

Figure 3.13: 1120-TopO: Optimized heat sink geometries. The substrate
and fins are made of the same solid material, however they are presented with
different colors for visualization purposes.

Figs. [3.14] [3.15], [3.16] and [3.17] depict the resulting primal velocity and tem-
perature fields of the fluid and substrate regions for the optimized 1110 and
1120 heat sinks, where intriguing flow patterns can be observed. In addition,
figs. and show the corresponding optimal (3 fields. An indicator of
the heat sink’s ability to reject heat is its thermal resistance Ry, which ex-
presses the temperature rise (K) in the substrate relatively to the fluid inlet
temperature per unit of heat input (W) and is given by equation:

(3.5)

where Q is the total heat fed into the heat sink and A the area of the sub-
strate, where the heat flux ¢, is applied. Table [3.6] includes the aforemen-
tioned performance metric and the calculated inlet mass flow rate my, while
table contains the computed Reynolds and Peclet numbers, for the de-
signed microchannel heat sinks. Based on the Reynolds and Peclet values,
the flow is indeed laminar and the designed heat sinks work within the forced
convection regime.

Pressure Drop (Pa) ‘ Thermal Resistance Ry, (K/W) ‘ mr (g/s)
1110-TopO
400 2.02 0.194
800 1.45 0.292
1120-TopO
200 2.05 0.193
400 1.21 0.355

Table 3.6: 1110/1120-TopO: Thermal resistance and inlet mass flow rate
for the designed heat sinks. The lower the value of Ry, the better the thermal
performance of the heat sink. It is observed that for the same operating condi-
tions (e.g., pressure drop of 400Pa) the 1120 configuration is more thermally
efficient.
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Pressure Drop (Pa) ‘ Reynolds Number Re ‘ Peclet Number Pe
1I10-TopO
400 161.42 1129.97
800 242.97 1700.78
1120-TopO
200 160.59 1124.15
400 295.39 2067.73

Table 3.7: 1110/1120-TopO: Computed Reynolds and Peclet numbers for the
designed heat sinks. The average inlet velocity and inlet hydraulic diameter
(which also takes into account the height of the fluid region H;) were used
as characteristic quantities for the computation of the dimensionless numbers.
Generally, for internal flows a R. < 2300 typically indicates laminar flow,
while for P, > 100 heat transfer is dominated by convection. Forced convection
heat sinks often have a Peclet number greater than 1000, depending on cooling
fluid, flow velocity and geometry.
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(a) 400Pa (b) 800Pa

Figure 3.14: 1110-TopO: Primal velocity field of the fluid region for the
designed heat sinks.

(a) 200Pa (b) 400Pa

Figure 3.15: 1120-TopO: Primal velocity field of the fluid region for the
designed heat sinks.
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(a) 400Pa (b) 800Pa

Figure 3.16: 1110-TopO: Primal temperature field of the fluid region (upper

figs.) and substrate region (lower figs.) for the designed heat sinks.
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Figure 3.17: 1120-TopO: Primal temperature field of the fluid region (upper
figs.) and substrate region (lower figs.) for the designed heat sinks.
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(a) 400Pa (b) 800Pa

Figure 3.18: 1110-TopO: Optimal B fields for the designed heat sinks.

(a) 200Pa (b) 400Pa

Figure 3.19: 1120-TopO: Optimal [ fields for the designed heat sinks.

The results from both the 1110 and 1120 CHT TopO problems, clearly
demonstrate the fundamental advantage of microchannel heat sinks: high
thermal performance (low Ry, values) can be achieved even with low in-
let mass flow rates. This highlights the efficiency of microscale convective
cooling, where the high surface area-to-volume ratio enables effective heat
transfer. Such characteristics make microchannel heat sinks highly attrac-
tive for compact, low-power cooling solutions in modern electronics, where
energy efficiency and spatial constraints are critical.

3.2.2 The Varying Heat Flux (VHF) Application

In real world practical applications, the bottom surface of the heat sink’s
substrate is not uniformly heated, but rather, hot spots are observed in
certain areas corresponding to the location of chips on the electronic board.
Therefore it would be interesting to study the case where the heat flux ¢, is
applied locally and not to the entire part of the substrate that corresponds to
the design space. The microchannel heat sink with the 1110 configuration as
presented in subsection is studied, and designed once again for pressure
drops of 400Pa and 800Pa. The case setup and initialization of the porosity
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field are also identical to the ones presented in the previous subsection, with
the exception that ¢, is non-uniform this time.

Inlet Zone = Outlet Zone
[E-NEEEes >< Qo.c
5 El qC.P.A >< | So

4o.8

Sw

Design Space

Figure 3.20: 111O(VHF)-TopO: Computational domain with the inlet bound-
ary Sy, outlet boundary So, wall boundary Sw and design space with locally
heated areas.

Variable Value
o, A 180000 W /m?
do.B 200000 W/m?
Go,c 150000 W/m?

Table 3.8: 1110(VHF)-TopO: Local heat fluzes generated from chipsets A,B
and C on the electronic board.

As evident from the resulting optimal geometries in fig. this time the
fins are less spread out in the entirety of the design space and are instead
concentrated around the areas where heat fluxes are applied. The algorithm
tries to maximize convective surface area at critical hot spots, so as heat is
transferred from these hot spots to the solid fins through conduction and
then carried away by the flow through convection. Similar to the cases with
the uniform heat flux ¢,, a higher number of fins is observed for the heat sink
designed to work at the greater pressure gradient.

The thermal resistance of the heat sinks is again computed using equation 3.5
where the total heat input @ (W) is now calculated as:

Q = qo,aAA + 4o BAB + qocAc (3.6)

with A4, Ag, Ac being the surface areas in the substrate where the corre-
sponding heat fluxes are applied.
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(a) 400Pa

Figure 3.21: 1110(VHF)-TopO:

(a) 400Pa

(b) 800Pa

Optimal B fields for the designed heat sinks.

(b) 800Pa

Figure 3.22: 1110(VHF)-TopO: Optimized heat sink geometries. The fins
form less symmetric layouts and are instead gathered around the hot spots
where heat flux is locally applied.

Pressure Drop (Pa)

Thermal Resistance Ry, (K/W) | my (g/s)

400
800

2.89
2.04

0.182
0.285

Table 3.9: 1[10(VHF)-TopO: Thermal resistance and inlet mass flow rate

for the designed heat sinks.

Pressure Drop (Pa)

Reynolds Number Re

Peclet Number Pe

400
800

151.44
237.14

1060.08
1660.01

Table 3.10: 1110(VHF)-TopO: Reynolds and Peclet numbers for the designed

heat sinks.
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Figure 3.23: 1I11O(VHF)-TopO: Primal temperature field of the fluid region
(upper figs.) and substrate region (lower figs.) for the designed heat sinks.

(a) 400P, (b) 8007,

Figure 3.24: 1110(VHF)-TopO: Primal velocity field of the fluid region for
the designed heat sinks.

3.2.3 Porosity Field Initialization: Sensitivity Analysis

Gradient-based optimization methods heavily depend on the initial guess of
the design variables and thus, in this subsection, a sensitivity analysis of the
resulting optimal solution on the initialization of the porosity field will be
performed. The 1110 and 1120 heat sinks presented in subsection [3.2.1] are
once again selected and designed for pressure drops of 800Pa and 400Pa
respectively. All case-specific details are the same as in subsection In
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figs. and the different initializations of the porosity field as well as
the corresponding optimal solutions are depicted.

This time, instead of initializing the design space (fluid region) with a high
number of small (in volume) solid areas like in subsections [3.2.1| and [3.2.2]
few solid fins, with different layouts, that occupy a considerable part of the
design space are selected. Even in this scenario, the algorithm still favors the
formation of many small (in volume) fins to create as many microchannels
as possible and increase the convective surface area.

Case Tymaz (K) | Ry (/W)
1T1O(I1)-TopO | 323.25 1.55
1110(12)-TopO |  320.57 1.371
1120(I1)-TopO | 319.18 1.279
1120(12)-TopO 318.42 1.228

Table 3.11: 1110(SA)/1120(SA)-TopO: Maximum temperature appearing
in the substrate and calculated thermal resistance for the different optimized

solutions.
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' :J]prin;;xatirl;g (1;19 oo 0 m(']pr‘i?nixa?irun Ig'lj'f]r»”“ o
(a) 1110(11)-TopO (b) 1110(12)-TopO
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(c) 1120(11)-TopO (d) 1120(12)-TopO

Figure 3.25: 1110(SA)/1120(SA)-TopO: Progress of the TopO algorithm.
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(a) 1110(11)-TopO (b) 1110(12)-TopO

Figure 3.26: 1110(SA)-TopO: Different initializations of the porosity field
(upper figs.) and the corresponding optimal 3 fields (lower figs.) which resulted
from the TopO process.

(a) 1120(11)-TopO (b) 1120(12)-TopO

Figure 3.27: 1I120(SA)-TopO: Different initializations of the porosity field
(upper figs.) and the corresponding optimal § fields (lower figs.) which resulted
from the TopO process.
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Although the resulting optimal solution is affected by the initialization of
the porosity field (the optimal fin layouts are not identical), the algorithm’s
trends remain the same. Moreover, based on the initial a field, the algorithm
may require more cycles to reach an optimal design, as seen from fig. [3.25
Consequently, the computational cost of the TopO is also slightly affected.
Finally, because no volume constraints were employed in the TopO cases
studied in this thesis, the solution is even more sensitive to the initialization
of the porosity field. Since there are no constraint functions to restrict the
feasible design space, the algorithm is more prone to getting stuck on the
closest local minimum.

49



50



Chapter 4

Closure-Conclusions

This thesis has explored the application of porosity-based TopO to the design
of forced convection microchannel heat sinks. By integrating the governing
equations across the geometry height while preserving lateral and stream-
wise resolution, the employed 2.5D CHT model [13] achieves a meaningful
balance between computational efficiency and physical fidelity. Although the
2.5D model does not match the full accuracy of 3D simulations, it enables
rapid iteration, parametric studies, and preliminary design evaluation with-
out the prohibitive cost of full 3D computations. This makes it particularly
useful for optimization processes, where hundreds of design evaluations may
be required. In combination with using the continuous adjoint method to
compute the sensitivity derivatives of the objective function at a cost in-
dependent of the number of design variables, the cost of the overall TopO
process is drastically decreased.

However, it must be acknowledged that the accuracy of the 2.5D CHT model
inherently depends on the validity of the assumptions made during the reduc-
tion process. Specifically, the results are more accurate for low pressure drops
across the heat sinks, with the error getting increasingly higher for greater
pressure gradients. This is due to the fully developed flow assumption, which
does not hold true for high pressure drops. Furthermore, although an appli-
cation was studied where the heat sink’s substrate was locally heated, during
the derivation of the temperature profiles the heat flux applied to the bottom
surface of the substrate was assumed uniform. Therefore, the optimized ge-
ometries should always be re-evaluated with full 3D CHT simulations to get
accurate temperature and velocity fields and cross-check the results against
the ones produced from the 2.5D model.

Porosity-based TopO was employed to discover optimal microchannel heat
sink geometries. Depending on the pressure gradient the heat sink was de-
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signed to work at and whether the substrate was uniformly or locally heated,
different optimal geometries were produced. The algorithm tends to place
as many small fins as possible inside the fluid region to maximize convective
surface area while keeping the hydraulic resistance at low levels to allow rela-
tively considerable mass flow rates through the heat sink. Although different
initializations of the porosity field lead to different optimized solutions, the
aforementioned behavior of the algorithm was always observed (the trends
remain the same). Evaluating the thermal performance of the optimized ge-
ometries, shows that efficient thermal dissipation is achieved even at low mass
flow rates which is one of the major characteristics of microchannel heat sinks.
The results also highlight the power of TopO in uncovering non-intuitive fin
layouts that would be difficult or impossible to derive manually. Such out-
comes reinforce the value of computational optimization in guiding modern
engineering design. Nevertheless, porosity-based TopO is not without limi-
tations and has its drawbacks, like the emergence of gray areas—regions of
partial material presence that lack a clear physical interpretation. This can
complicate both the manufacturing and interpretation of the optimized de-
signs. Alternative TopO methods have been introduced in the literature, such
as the level set method, which naturally tends to produce sharp interfaces
and avoids gray regions.

In summary, this thesis demonstrates that the low computational cost 2.5D
model proposed in [13] coupled with the continuous adjoint method, are
highly complementary tools in TopO of microchannel heat sinks. When used
together, they enable the efficient exploration of large design spaces and the
discovery of novel engineering solutions.
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Appendix A

2.5D Problem Formulation

This appendix contains the analytical derivation of the governing equations
of the 2.5D CHT model used in this thesis. Because the geometry’s height
or thickness is much smaller compared to its other dimensions, the idea is to
eliminate the dependency of the full 3D governing equations on said height
dimension. For this purpose, known profiles for the velocity and temperature
across the height direction are required. Keeping in mind the heat transfer
problem under consideration, these profiles can be extracted by taking a cross
section of a heat sink with no fins [13] and studying the resulting simplified
2D CHT problem as depicted in fig.

Cross Section

Thermally Insulated Plate

Fluid Region 2H;

Interface ——

Substrate Region 2Hy

Evenly distributed heat flux ¢,

Figure A.1: Cross Section of heat sink and simplified 2D CHT problem
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A.1 Velocity and Temperature Profiles

Fluid Region - Velocity Profile

The simplified 2D CHT problem depicted in fig. is examined, with z;
denoted as the flow direction and x3 as the extremely small height dimen-
sion. Assuming fully developed flow, the objective is to determine a non-
dimensional velocity profile f, (z3), as defined in equation:

T3 € [—Ht,—f-Ht] (Al)

that remains invariant in the flow direction, where u’l is the xi-component
of the (dimensional) velocity, which for this simplified fully developed flow
is only a function of x3, and u, is the velocity at the middle (x3 = 0) of the
fluid region.

For a fully developed incompressible flow, the momentum equation in the
flow direction can be simplified to:

Jp %u;

—a—xl + Ma—l’% =0 (AZ)

By considering that the fluid’s dynamic viscosity p as well as the pressure
gradient across the flow direction remain constant, equation gives:

Ouy (x3) 1 dp

S =1 A3
3 por, (A.3)

Integrating twice w.r.t. x3 yields:
’LLll (333) = tlﬂfg + 01.173 + 02 (A4)

Constants € and C5 are calculated by applying the following boundary
conditions for the velocity w):

U;(.Q?g:—Ht):O = 0120

Ull (.Tg = +Ht> =0 = Cg == —tlHtZ
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With C; and Cy known, expression [A.4] becomes:

/ t .TQ
(o) = 2 (; _ ) (A.5)
t t

From the above expression, it becomes clear that the velocity u; at the mid-
dle of the fluid region is equal to (—t;/H?) and, thus, the non-dimensional
velocity profile f, (z3) defined in equation is:

Ju (x3) =17 70 x3 € [_Ht7+Ht] (A'6)

Fluid Region - Temperature Profile

Similar procedure is followed to derive a non-dimensional temperature profile
fr (x3), defined in equation:

T; (21) — (331,553)

(o
Jr(@s) = = e = T ()

x5 € [—Hy, +H,] (A.7)

that remains constant along the flow direction, where T" is the temperature
field, 7; is the temperature at the fluid-solid interface (r3 = —H;) and T the
fluid’s bulk mean temperature across the height direction .

Supposing that heat conduction in the flow direction can be neglected, the
steady state energy equation for an incompressible fluid with constant prop-
erties can be written as:

/ 2 /
pC, (ullal) —k o1 =0 (A.8)

8x1 f 8.73?))

where p is the fluid’s density, C), the fluid’s thermal capacity under constant
pressure and ky its thermal conductivity.

The heat flux ¢; at the interface between solid and fluid is expressed using
Fourier’s law:

Gi =~k (A.9)

Computing the partial derivative of 7" w.r.t. z3 using equation which
defines the non-dimensional profile fr(z3) and substituting into the above
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equation gives:

or 9 afr

e, = g, L= Ir(T=T == (T, =T) 5 (A-10)
. dfr
b=k (T-Tg (A-11)

Assuming that heat flux ¢; remains constant along the interface and consid-
ering that ky and 0 fr/0zs at x3 = —H, are constant, equation suggests
that (7; — T') must also be constant and thus:

0 or, oT
— (T, —=T) = L= A.12
8961 ( ) 0= aZL‘l 8x1 ( )
Using relations [A.10] and [A.12] equation is rewritten as follows:
0 & fr
— Li— (i =T T, =T =0
9y { ot g 13 = f (5= D+ k(= 1) G,
2
fr  pCypuy OT [0z, I, (A13)

0x3 kg (T-T))

For a laminar flow that is hydrodynamically and thermally fully developed,
uy which is the velocity at the middle of the fluid region (x3 = 0) and 07" /0x;
can both be considered constant. As a result, the multiplier of f,, in the above
expression is also constant, hence:

82fT ZL’%
20 (1-2) A

Integrating twice w.r.t x3 gives the fourth order polynomial profile:

toxd  tox?
273 L 22T | Curs+ Oy (A.15)

Jr= 12?2

Unknown constants C5 and Cy can be computed using the boundary condi-
tions:
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or’ o) 2
- =0 = ﬁ =0 = (C3=—=tH,
ax?’ z3=+H 81'3 x3=+H; 3
/ 13,
T (ilfg = —Ht) = T'Z = fT (ng = —Ht) =0 = 04 = —EtQHt

With (5 and Cy known, the non-dimensional profile fr becomes:

tgl’% tgl’% 2 13 2
- s Hyay — oty H A.16
oz Ty T 3hts T pht (4.16)

fr=

The value of ¢y is calculated by using the definition of the bulk mean tem-
perature T of the fluid across x3 given by equation:

T j}ff w,T dxs T, A
=5 == (A.17)
_p, W dzs 1

+H; +Hy
T, = / ullT/ drs = / fu(zs) w [T; — (T; = T) fr(z3)] das

Ht Ht
+Hy +Hy
= U1Ti/ fu(zs) does +uy (T —T5) / fu(zs) fr(xs) dxs
_H; _H;
4 to H? 1664
=wuT,—H, — T—T, — Al
Uy z3 t ul( z) 12 105 ( 8)
+Hy , +Hy 4
T = / uy drs = ul/ fulzs) dos = uy=H,y (A.19)
_H, —H, 3

Going back to equation [A.I7] one may write that:

4 4 1o H? 1664
SHT = wToH, — uy (T — ) 2282008
wgHT = mTigHy = ( )2 105
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to H? 1664 105
—_— = tg - ——2
12105 104 H;

= %Ht(T—Ti)——(T—TZ-)

Thus, the non-dimensional temperature profile fr for the fluid region is ex-
tracted:

T3 € [—Ht, +Ht] (A20)

35 T3 4 T3 2 I3
fT_RKE) ~o() +o () +n

Substrate Region - Temperature Profile

Likewise for the substrate, a non-dimensional temperature profile fr, (z3),
defined in equation:

Ti (z1) — T, (21, 23)

i (o) = = St

T3 € [—Hb,+Hb] (A21)

that’s invariant in x; direction is required, where Tz; is the substrate’s tem-
perature field, T; is the temperature at the interface (z3 = +H,) and T} the
mean temperature of the substrate across xs.

Assuming that heat conduction dominates in the w3 direction, the steady
state energy equation for a solid body with constant properties can be written
as:

T,

k
e

—0 (A.22)

The heat flux ¢, at the bottom surface of the substrate is assumed uniform
and is expressed using Fourier’s law:

T/
o = _kbb (A.23)

81'3 r3=—Hy

Computing the derivative of 7, w.r.t. x3 using equation which defines
the non-dimensional profile fr, (x3) and substituting into the above equation
gives:
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(A.25)

Observing equation [A.25] a similar conclusion to the one derived when study-
ing the fluid region can be reached, that (7; — T}) is constant and so:

0 oT;  IT,
- n)y=0= %0 A.26
8x1 ( b) Bxl 8x1 ( )
Using relation equation is rewritten as follows:
0 9 [ & fr & fn
— | =k (T; = T} bl ==k (T; = T, =0 =0 (A.27
81’3 ’ ( b) 61’3 b ( b) 8x§ ~ 0x§ ( )

Integrating twice w.r.t. x3 results in the linear profile f7, = Csx3 + Cs where
constants Cs, Cg can be determined using the known boundary conditions
as shown below:

oT,

. afT q.o
q bal’g t3=—Hy b ( b) 8953 r3=—H, b ]{Ib (E - Tb)
Tl; (1‘3 = +Hb) =T, = fT (l’g = —|—Hb> =0 = Cﬁ = —qo—]{b
’ ky (T; — Tp)
With C5 and Cg known, profile fr, becomes:
GoHy T3 T3
=1t (23 =t (21 A28
=7, (T = To) (Hb ) 7 n=t (Hb ) (4.28)

To compute the value of t3 the definition of T;, which is the mean temperature
of the substrate across x3 is employed as shown below:
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+H, | [
L= s T e, T - T, —T,)] d
' /—Hb 2H, s 2H, /—Hb [ I (3) ( b)] dxs

+Hb +Hb

1
=T, = — |:E/ da’:S - (E - Tb)/ fTb<x3) dl‘3:|
2H, —H, —H,

1
=Ty = o [T 20, + (Ti = Ty) 83 2H] = 3= —1
b

Thus the non-dimensional temperature profile fr, for the substrate is ex-
tracted:

fr, =1——= x3 € [—Hy, +H)) (A.29)

A.2 2.5D Equations

Fluid Region

For a steady laminar flow of an incompressible fluid the full 3D continuity and
momentum equations are given by equations and 2.2l The 3D velocity
field can be expressed with the help of the non-dimensional velocity profile
fu (x3), as shown in equation which remains invariant in directions z1, 5.
Because the height of the fluid region is much smaller compared to its other
dimensions, the momentum across the height direction, i.e. the momentum
across the xz direction, can be ignored. After implementing the velocity
profile f, (z3), equations and can be written as follows:

Ou; Ou

— 1 = A.
fuge =0 = 52 =0 (A.30)
Ou; op 0 (Ou; Ou; P?fu .
i A v J Lz Ju —
pfat; o oz, —i—/quaxj (&Uj + 8:171) + pa; 92 i=1,2 (A.31)

The momentum in the x3 direction was considered negligible and hence
Op/0dxs = 0. As a result, after the implementation of the velocity profile,
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the pressure field p is now only a function of xq,x,. By integrating equa-
tions [A.30| and [A.31| w.r.t. z3, using the velocity profile f, (z3) as a weight
function, the 2.5D continuity and momentum equations can be derived:

+H; ) +Hy
/ Ju (%)81 dry =0 = auj/ Ju(zs) dzg =0 = Htau] =0

_H, Oz, Oz, Oz,

Ou;

p— A-2
G =0 (A.32)

+Hy a +Hy o
/ pf3( )u]a drs = / fu(xg)aji dzs

7Ht Ht

L 0 ou,; ou +Hy 2#
2 %
+/Ht Mfu<$3)axj (al'J + o Z) dzs + . H2 fu(l'g)Uz dxs
Ou; [ 9 +H;
:>Puj Oz f3($3> d;z:3 = _ag]j fu(x3> dﬂ?3
J i

0 (0Ou; Ou, +Hi QM +H;
+Ma% (83:] + 891:1-) /_Ht f2(23) dog + —5 H2 /_Ht Ju(zs) das

Uy

32 Ou; 4H op 16 0 (8ui an) N 8 1

= ZHpu ot = gL g SE
35 e, ~ T3 e T 15 Moz, \ oz, T on ) T3 H,

6 Ou; HOp 0 (8ui auj> 5

% .
0, g 2o0p 2 =0 i=1,2 (A33

Equations [A.32] and [A.33] are the resulting 2.5D continuity and momentum
equations, respectively. The source term (—5u/2H?)u; that appears in the
2.5D momentum equation originates from the terms g (OQU; / 83:?,,) and con-
tains a part of the information as to how the third dimension influences the
flow. This term is absent in the 2D formulation of the problem, making the
2.5D model theoretically more accurate while maintaining 2D computational
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cost. Similar procedure is followed to derive the 2.5D energy equation of
the fluid region from the full 3D one which is given by equation 2.3] Keep-
ing in mind that (7; — T) is a constant quantity and by ignoring once more
the velocity component in the x3 direction, equation [2.3] after implementing
profiles f, (z3) and fr (x3), becomes:

oT a( aT 02 fr

. = — T, —T A.34
Cotargy =5 (ke )~k G-TI G (A

Integrating equation w.r.t x3 using the non-dimensional temperature
profile fr (x3) as a weight function results in:

+H; oT +H; 0 oT
/ pCutulies) i (ws)us 5 s — / fri@s) g (’“faxj) s

— H, —H;

+H;
[k (1 ) ) I =

—H,

aT +H: a aT +H:
= pC, uj(? f (x3) fr(zs) des — 8_ (kf(‘?a: ) / fr(xs) dxs
j
+H; 82
—H, T3
AH, . 0T 49H, & (, oT\ 35 B
3 PO T 56 o ( faxj) “ oo, L= T) =0 (A35)

Equation is the resulting 2.5D energy equation for the fluid region.
Substrate Region

Likewise, considering that (7; — T}) is a constant quantity, implementing the
temperature profile fr, (x3) into the full 3D conduction equation of the
substrate region, yields:
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: (kbaTb) @ -1y 2 g (4.36)

dx; \"’ oz o3

Since the profile fr, (x3) of the substrate is linear, simply integrating equa-

tion w.r.t x3 gives:

+Hy o aTb +H, anT
. - T, —Tp) =1L
/—Hb z; (kb8x3> das /—Hb ko (1= To) 520 3 dzs =0

o 8Tb +Hy +H, a2f
— | kp— dxs — ky (T; — T, L oy =
:>8xj < b@xj) /_Hb s b ') /_Hb Oz 73 =0

8 aTb afTb +Hb
= 2Hba (kbaxj> —ky (ﬂ — Tb) 81‘3 " =0
o (,IL\ k .
= 2Hba (kba%> I, (Ty—T;))+ 4o =0 (A.37)

Equation is the 2.5D energy equation for the substrate region. Finally,
it is interesting to mention that the heat fluxes entering and exiting from
each region appear as source terms in the energy equations [A.35] and [A.37]
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Ewcaywyy

H évvoia tne Beltiotonoinone tonohoyioc (TopO) eugavictnxe yio mpwt @o-
Ed OTO YWEO TNG DOUXNG UNYAVLXNG [6], 6mou éva CUVEYES TRUYHATIXO TEDIO
TUXVOTNTAS Yenoomotfunxe Ue oxond va Bpedel 1) BéATio T xatavour otepéou
A0 og xataoxevE. H dga Aoy va avaryvoplo tel 1 BEATIo T Totoloyio Tou
YWEOV OYEBUOUOY, ONAXDY| 1) TO XUTAAANAT xoTAUVOUY| TOU TEBlOL TUXVOTNTAC,
UE 0TOYO 1 Lop@n) TNG xaTooxeUnE Tou Vo Teox el vo TNg TEoGdidEL TNV Xo-
ANOTEQT, CUUTIERLPORA OTOY TNG AOXOUVTOL TEOBLYEYQPUUUEVOL Ny oviXd GopTia.
ITeptoyeg TOU YWEOL GYEBLAGHOL UE LOVAdLOoL THITY TUXVOTNTAS KVTIC TOLY OUCALY
OE TEPLOYES OTEPEOU UAIXOU, EVEM UNBEVIXEG TYEC TUXVOTNTAS LTOBEXVUAY TIg
xevéc meployéc (amovaia otepeol LAxol). H 5o ¢ TopO mpoextdinxe xou
0710 YOEo Tne utoloylo g pevatoduvouxic (CFD), opyixd yio poéc Stokes
[12], 6mou ov ellotoeic drothpnong opuic enaEAln oy UE TOUG AEYOUEVOUC
opoug Brinkman ) époug mowrg tarydtnTog ol omolol anotehoLoaY GUVEETNON
€VOC GLVEYOUC TEAYHATIXOU TEBIOU TOPMOOUS (pn—&anspa‘cé‘qu).

Avtixeipevo tng mopoloag dimhwuatixhc epyasiog ivan 1 eqapuoyt TopO oto
oyedlooud Yuxtedy (e€avoryxaouévng cuvaywyfc) HE uxpoxavALa, yior YO
NAEXTEWOY XUXAWUATOY. ExTdc amo Toug 6poug Tovhg Toy UTnTog Tou TERLEY o-
VoL OTIC €SIGMOOELS BLaTheNnong opunc, 1 Vepuiny| aywYOTnTo LOVIEAOTIOLELTAL
xou auTh w¢ ouvdptnon e un-damepatottag [13], [14] dote va Angdel u-
modn 1 dlapopd oTic Yepunéc 1W16TNTEG PETAC) PEUGTOU o GTEPEOY UALXOV.
To mpwtebov TEdPAnua aroteel éva medBAnuo culuyolc UeTapopds VepuoTn-
to¢ (CHT) peto€d otepeol ywpeiou (vndotpmua Pixteos) xow peuaTtol Yweiou
70 omolo elvon xon 0 YMEOg oyedlaouol Tng BeAtiotomoinone. Mtdyog eivon 1
e0peon NG PEATIOTNG XATAVOUHG GTEEEOL LAXOU GTO Ywplo TOU PEUCTOU (%o
doa 1 eVpeon TN BEATIOTNE BLadpounc Tou TEETEL Vo oxoloulfioel To uxTi-
%0 Y€co) Hote vo emiteuyVel uéytotn amorywyn Vepudnrac Yéow aywyng xou
ouvaywyYNS.

E&auitioc Tng @UoNg TV YEWUETPUOY TOU GUVAVTMOVTAL XAUTE Th HEAETN POV OE
uxpoxavdta, yiveton yenon tou 2.5A CHT povtéhou mou tpotddnxe oto [13],
10 omolo expuAilel Ti¢ 3A ediowoelg oe 2.5A. Aedopévou 6Tt o Lo SLadLxacia
BehtioTonolnong To Tewtelov TEOBATU ETAVETOL ETAUVIANTTIXG, 1) BUVATOTNTA
amo@uYTE ETtAucTg ToL TAYPoUS A TEOLBAAUATOS HELOVEL GNUAVTIXG TO UTOAO-
Yo Tixd x60T0¢ *de xOxAou BedTioTomoinong. Ot mopdywyot evoncinciog Tng
ouvdptnong otéyou Tou amoutolvtor omd TV SQP (Sequential Quadratic Pro-
gramming), n omofa efvon 1 outioxpatixr) u€Yodog avavEMONS TwY PETOBANTOY
oyedlaopon, utohoyilovia Yécw tng ouveyolg oLluYolg UeVEBOoL.

To Ilpwtebov IpoBAnua

Ye mohhéc egapuoyéc CEFD, cuvavtodvton yewpetplee twv omolwy To méyog 1
T0 Uog elvar TOAD UEdTERO OE GYEOT UE TIC UTOAOLTEC DLUCTACELS TOUG. D€
TETOLEG TEQLTTWOELS, OEDOUEVOL OTL 1) OPUT} TOU PEUGTOU X0Td TN OLEC TICY) TOU



Uhoug etvan oyedOVY aeAnTéa, ptar Aoy Tpontixy| Vo fToy vor oryvondel eviehodg
1 Odotoom auth xou va Audel éva xhaooixd 2A medfBinua. Hapdha autd, uia
GAAT evorhoxTint| wote v amhorondel To Thipec 3A medBAnua eltvon vor Yewpn-
Vel 6TL 1 oUUTERLPORPA TNS POTC XTd TN Bidc TacT Tou Udoug etvar TEoBAEQYT.
Me dhhoe Aoyia, Yemp®vTog TANEWS AVETTUYUEVT POT| X0t XAVOVTAS XYTOLES €E-
mrAéov TapadoyEc etvar Suvatov va e€oydolv otalepd Teogih ToydTNTOC Xa
Yepuoxpaciog xotd 1 Bidotoon Tou vipouc.

H ewooywy?) twv mpogil autov otig 3A ediomoeig mou diénouyv 1o CHT mpdfin-
MOl X0l GTT) GUVEYELDL OAOXAHEWOT| TOUC XaTd T SldoTaeT) Tou Uhoug odnyolv
ot dnuovpyia péowy 1 2.5A eliotoeny [12], [13]. Méow autic e dtadixa-
olog epgaviCovrar 6poL TNYHC xou OE60UEVES GTalEREC UTPOGTA Umd TOUC UTde-
YOVTEC OPOUC TV TEAXWY EELOWoEWY. Autol oL bpol TyhHc xou ol oTolepés
exEACOLY EVOL XOPUATL TNG TATNPOPORIS (S TEOS TO TWS 1 BLdo TaGT) Tou Uhoug
Tou €yel ayvonuel, emneedlel TN EOT| XL Tl POUUVOUEVO UETAPORAS VEpUOTNTIC.
O 6pog 2.5A mpoximTeL amd TO YEYOVOC OTL, THEOAO TOU AUTEC OL ECLOMOELS
oev mopEyouv TNy Bl oxplBetar pe o Thene 3A emlivor, aviixatonteiCouv
XONOTERA TN PUOIXY| TOL TEOBAYUaTog ot oyéon ue éva 2A Yovtého, 6Tou O
1N TAneogopia oyetd ue Ty enidpaon tng Teltng ddotaong ayvoeiton. o
TN UEAETN) QOWYV OF UXQOXAVAALY, OTIOU CUVAVTOVIUL YEWUETPIES UE UXEES L-
OpauAES SLaETEoug xon LPNAOUE AOYOUC ETLPAVELIS TIEOS GYXO, 1) XPHOT EVOC
2.5A povtéhou elvon Lo dotohoy NUEVY ETAOY.

To mpofArjuota ToU avaAbOVTOL OE QUTY| TN OLTAWUTIXT EpYACTA APOPOUY aCU-
urleoTeC X0t OTPWTES POEC, OTIOL TOCO TA POIXEL PAUVOUEVO OGO XL TOL PAUVOUEVA
ueTopopdc Yepudtnrac Yewpolvral ypovixd uoviua. Emimiéoy, ol 1didtnTeg Tou
EEUGTOU o Tou o TEPE0 U0V Yewpolvtan otodepéc. To 2.5A CHT povtého
Tou mopouctdletar oto [13] agopd Pixtees Ye uxpoxavdhia Tou €youv Tn Ye-
OUETELXY LOPYPY| TOU OYHUATOS , omou 10 Uog Tou PEVGTOY YWElOL XAl TOU
UTOO TPOUATOS (0 TEREOL Ywplov) Elvan GYETIX UiXxpd OE Y€ UE TIC UTOAOLTES
oluoTdoelg xou €tot 2.0A ellowoelg umopolv va e€aydolv yio o xdde ywplo.
H %8t emgpdveio Tou utootenuatog Yewpeltal olotouop@a Yepuotvouevn).

O 3A ediotoeic cuvEyELg, DlITARNONS OPUNE Xal DITARNIONG EVEQYELXS Lol TO
Ywelo Tou peucToy elvou:

/

ou;

e A

R s 0 (A”.38)
/ ,ou,  Op o [ou, O .

/1:1/ pum . 2 —_— 1 — — 1 2 A/.

RZ pu] 391:]- + 81’1 uax] (6:15] + 8371) 0 ’ 73 ( 39)
! ’ 3T, a 8T/
T — 4 — = A4

h pCpuj 3xj (9xj <kf 8%» ) 0 ( 0)



X3

xy /
e
X; =
. Thermally Insulated Plate Th? 2.5D CHT model‘solves t.he fluid
EE = region on a plane with the fields of
nnnmnnmnn 1T 1T ___‘____ [ | state variables uq, u;, T, p
2H, Fluid Region 1 | | ]
(Design Space) ‘
- — - — Fluid-Solid Interface
2Hy, | Substrate Region l

The 2.5D CHT model solves the substrate
region on a plane with the field of state
variable Ty,

Uniform heat flux g,

Exua A'.2: Tewpetpikn) popen twv vné peAétn Puktpor ue pkpokavdia,
anoteAOUUEVES amo éva eminedo kdTw VToTpwua kal pia adiafatikn emitedn ndrvw
mAdka. Katd tnv e£éién tov akyopifuov PeAtiotonoinong, mepioy<és tov pevotol
xwplov apyilovr va otepeomololvtal, dnAadn) TTepUyia dapopewrovTal 0To Xwpio
TOU pevoToU TOU €lval Kai o Xwpos oxedlaool tng PeAtioTonoinoTs.

orov p, p, Cp xou ky ebvan ) TuxvOTNTA, BUVOULXY) CUVEXTIXOTN T, VEQUOYW-
enTwodTNTa UG oTadept| Tleom xon Yepuiny| orywypotnTo 10U peuctol. To 3A
nedlo nieonc oupPorileton pe p (21, 22, T3), EVO g (21, 29, 3) ue i =1,2,3 e-
fvar oL ouvioTioeg Tou 3A Tedlou Tary O TNTAC o T (21,22, x3) TO TAfpec 3A
nedio Yeppoxpaciag Tou peuctol. H 3A elloworn petagpopds Yepudtnroag yia to
unéotpwp (oTeped ywpeio) uropel vo ypogpel oc:

0 oT,
Tb = — k —b = A,41
i anj ( baxj ) 0 ( )

omou Ky elvon 1) Vepuint| aywyoTNTA TOU UTOGTROUATOS Kol T,; (21,29, 23) TO
TAfpec 3A Vepuoxpaotoxd nedio Tou. Axolouddvtog TNV avohuTixr Sladixacio
nou meptypdgetan oto Hopdptnua [A] to adidotato xon apetdBinta xator T
©oTeLDOVOELS T1, T2 TEOPIA ToryOTNTOC Xou Vepuoxpaciag Tou e€dyovToL Yio TO
Ywplo TOU PEUGTOV XL TOU GTEREOY UTOCTEMUATOS efvol Tar oxdhouda:

fu (-TS) =1— 75 (A/42)



E — T, 35 T3 4 T3 3
= = — | —6(— 8| — 13 A’43
Jrws) = 777 = g [(Ht) (Ht) (Ht * (A43)
T,-T, T3
- - A 44
fr, (x3) T, — 1T, H, ( )
6mou w = [uy ug]” ebvor 1 ToyOTNTA 070 PéCO EmINESD TOU PELGTOU Ywpioy,

T; (1, z2) elvon 1 Veppoxpocio otn Semipdveta peta&h peuoTol Yweiou xou uTo-
otpopatoc, eve Ye T' (21, x9) = fjlit u'|T" das/ f_JrIZt [u'| dz3 cupPBohileton n
otaduopévn pe Bdon ™ ToyvTnTo péon Yepuoxpacio Tou PEUGTOY XUTd T3 Ko
Ty (x1,x0) = fjg)” T, dx3/2Hy, 1 péon Yeppoxpucio Tou 0Tepe0l LTOG TEGU-
T0¢ xatd x3. Emniéov, Hy xou Hy elvon Tor mod Odn tou peuotod xon o Tepeol
ywelou avtiotoyo. Me Bdon ta mpopih autd, ot 2.5A e&lo®oE TOU TEO-
xOmtouv (avahutixr datinwon oto Tupdptnue [Al) tpomonooivton xatdhhnia
©oTe Vo emTeéPouv TNV mpayuotonoinoy wag owdixactag TopO, odnymvtug
TEAMXE OTIC TEWTEVOUCES EEIOWOELS TOL TEOPAUTOS PEATIoTOTOMONG:

RP = g—;‘j =0 (A”.45)

R} = gpujg—z;—l—ggi—uaij <§Z; + ZZZ) —G(a)u; =0 i=1,2 (A".46)
R = %popuj SZ - 42? aij [keff (@) g—ﬂ —h(a)(Th—T) =0 (A’47)
R — zﬂba% (kbg—fj) —h(a)(Ty—T) + g, = 0 (A"48)

ue h(a) = 3bkpkesy (@) / [26Hky + 35Hpkess (a)] xou a € [0,1] 1o medlo tou
TopwoouS. Mndevixeg (n OYEDOY wqﬁevtxég) TWEC TOPMOOUS AVTLOTOLYOVUY GE
TEPLOYES TOL YOPEOU GYEBLICUOU TOU XUTOUAUUBAVOVTAL OTb PEVCTO Xl LOVODLL-
lec (ﬁ oyedbY povadlaies) Téc TopMdouC ONAGMVOLY TaEoLGia GTEPEOY UAXOD.
Yt6y0¢ Tou ahyopliuou elvon 1 elpeon Tou BERTIoTOL TEBIOU @, UE OXOTO T
yewpetpla g POxteac (0 Blopdppwon TV TTepLYiwY) Tou VYo TEoxveL Vo
éyel Bértiotn Vepuunry amddoon. Ilpénel va onuewwiel 6Tt To nedio nieone p yia
T0 omofo AOvel To 2.5A povtéro elvor TAEOV GUVEETNOT UOVO TOU Ty XL Ta.
Ou 6pol mowrg tayOtnrag G (@) u; povtehomololvto xaTdAANA L, AopfdvovTog



vt Tov AdN undpyovta dpo tnyhc (—5u/2H?) u; mou undpyetl ot 2.5A €-
Elowomn opurnc xan expedlel Tic uéoeg TAGEL [t (82u; / 81’%) xotd x3. Tavtdypova
yiveTon yeron e Qouvouevng VepUIXAC aYWYLHOTNTAS Kefs (a), avtl yio anhd
™G VepUIXAC oy WYHOTNTOS ki TOU PELGTOU WOTE Vo An@olv undm Ta oTeped
TTepUYL 0TO Ywplou Tou peusToL. Luyxexpuéva [19]:

G(a)u; = [25—}53 + 1 (a) <5§]§? - 25]53)} w; (A”.49)
/{Zeff (CL) = k’f + 1 (CL) (kb — kf) (A/50)

‘Omou M etvor piar otodept| addotaty PoadunTr TOCOTNTA TOU YENOWOTOLE-
frow ©dote oL dpol Brinkman v xuplogyoly Evavtl TV UTOAOITWY 6pwY GTNY
TenTEVOUGY e£I6KOT BlATARNONS TNC OPUHC OTIC CTEPEOTOINUEVES TEQLOYES TOU
YWEoL oYEdLaoUol. 'ETol 0TI TEQLOYEC AUTEC TUPAYETOL EVHL TOTUXY UNOEVIXO
nedlo Toytntag. §2¢ ouvdptnon mapeuBorrc I (a) mou yenotuonoleital MOTE Vo
unoloyilovtat ot opot G (a) u; xou kesr (a) yio eviidueoes Tiwéc Tou mediov Tou
Topwdoue, entAéyetal 1 ouvdptnon Borrvall-Petersson [12]:

a

1@ = 11 =a (A”.51)

ue uPniotepeg TéS NG mopauéTeou b va 0dnyoly TN peiwon Twv yxpel (w-
vov. H onuouvpylo yxpr {wvov eivon and tor yvwotd apvntixd {nTiata Tou
epgaviCovton oe mpoPAfuata TopO Baciopéva 6Ty €vvola ToL TOEMBOUC XAl
ATOTEAOVY TEQLOYES UEPIXTC TEOVGLAC UALXOU, UE EVOLIUETES WOOTNTEG HETULY
eeucTol Xt o TEEE0V LAXOL. e tpofAfuata TopO, 1 arsuvieiog yerorn Tou me-
6lou TOL TOPMBOUC @ YO TOV UTOAOYIOUO TV 6pwY TOU ECURTWVTOL and auTH,
odnyel oe yewueTpleg Hoppric oxoépas pe TNV TeEAxY| BEATIo TN Ao va e€op-
TéTon oo TN TUXVOTNTA TOU TAEYUATOS XAl OO T OY AUATA BLAXELITOTOMO NG TOU
Yenoylomotinxay Yot TNV ETAVCT TV TEOTEVOUCHY Xl GLLLYOY EEICMOEWY.
[ty amoguyn auTdY Twv TEoBANUdTwY TearyUatototeitor guitpdptopa [20]
ToL TEdiOU TOU ToPMOOUE, EMAUOVTIS TNV e€lowaon:

R\> 0 (da —\1/2 ,
_<%@)6%(%)+»_m R=mg (V) (A’52)

Q

i=1 (A"53)

UE OXOTO TOV UTOAOYIGUO EVOC PLATEupLoUEVOU Tiedlou Topmdoug a. H axtiva
puitpapioyatog R uroloyileton [19] we éva moromAdoto Tou uésou dyxou xe-
AoV V. Tlapbdho mou 1 teyvixn gukteapiouatog ouahonolel o medlo Tou To-



ewdoug, EVIoyVEL TO TEOBANUA TwV YxEL LwVmY Xaho TOVTIC BUOXOAO Vo TPOGC-
Oloploel xavelg av UTdEYEL PEUGTO 1| GTEPES OTIC TEPLOYES QUTEC TOU YWEOU
oyedoopo. T to Aéyo autd, mpoypatonoeitar mpoPfory [20] tou @uktpapt-
ouévou medlov a e Bdon T ouvdptnon:

_ tanh (0.5)\) + tanh [A (@ — 0.5)]

p 2tanh (0.5))

(A”.54)

UE ALENUEVES TIES TNG TOROUETEOL A Va VIO UOUV T1) BuaddTNTa ToL TEdiou 3.
‘Eneito and 1o @uitpdploua xou T TpoBoAt| Tou tediou Tou Topwdous, o tedio [
efvon 0wt oL ypenotponoteiton TeAxd otic edlomoetc [A749] [A750] xou [A751] v
TOV UTOAOYIOUO TV 6pwv Brinkman, tng gouvéuevng depuixic aywyuotnTog
xou guotxd tou h = h (kegs) xou Oyt ameudeiog to medio Tou TopMBOUC.

AopBdvovtag unodn 6Tt GAEC 0L POEC TOU UEAETMVTOL GT1) TOEOUCH BITAWUOTL-
x1) elvon poég mou odnyolvTaL amd TEOdLYEYEUUUEVN XAlom Tieong, ol oplaxég
CUVUTXES VLo TIC TEWTEVOUCES UETABANTES BivovTon TopaXdTe:

‘Opla Elo6dou St

; i
%nj =0, p=pr=const, T =1T;=const, g_x:nj =0 (A".55)
‘Opta E€660u So
8—%71]- =0, p=0=const, 3_mjnj =0, 8_xjnj =0 (A”.56)
Yteped Opla Sy
i = y _— - = 3 _— [— 5 _ S A,.
u; =0 P, nj =0 o, nj =0 o, nj =0 (A”.57)

To 2.5A povtého AOvel To ywelo Tou peVcTol Xau T0 Ywpelo Tou cTEEEOy UTO-
OTEWHATOS TEVW GTO (D10 OUOLOUOPYPO XAPTECLOVE 2A TAEYUO xou avTihoBdve-
ToL TOL OTEPES TTEPUYLAL WG TEQLOYES OTO TAEYUN PE Uovadlaba THLY TOPMOOUS.
Me dha Aoyia, 10 2.5A povtélo dev Yewpel TIC TEPIUETEIXES ETUPAVELES TV
TtepLYiy ooy auoTned oTteped Opta. To oteped dplo Sy Tou avapépoval €8¢
apopoLY Oha Tor UTOAOLTTOL OpLa TEEAL TNG ELGOB0U XL €£OB0U TIOL 0PLOVETONY
10 2A UTOAOYIOTING Yweio (2 Tdvw oTo onolo to 2.5A yovtélo emAlEL TIC
TEOTEVOUCES EEIGMOTELC.

Kaddg 0 oxonde tou ahyopliuou Bertiotonoinong etvon var mpox e pia yewmue-
Tplor POxTpC ue BENTIOTN Vepuinr] CUUTERLPOEE, 1) (XAUVOVIXOTIOINUEVT) LEYIOT



Yepuoxpasio nou epgovileton oto uTdoTELUa (0TEPES Ywpeio) Tne PixTpeac, Tou
€QYETAL OF QUECT) ETAPY| UE TA NAEXTEOVIXE G TOLYEl, ETAEYETAL WS 1) GLVAPTNOM
0TOY0¢ TEOG ehaytoTonolnoT xan diveton amd TNy eéicwon:

Fe UQ (Tﬁf)p dQV (A"58)

omou p > 1 xon Thep i otadepy| Vepuoxpaoio avapopds Tou yenotlomoleiton yio

™ xavovixomoinon (ouvidne emiéyeta 1 Yeppoxpacia el0680U TOU EPEUGTOY
Ty).

YOyxpwon 2.5A xou 3A - AZwohoynon 2.5A Moviélouv

‘Evag amhég xou mpoceyyloTinds Teonoc allohdynone tne axpifeloc tou 2.5A
novtérou, ebvan va emaudel To CHT npdAnua, o dlagopeTixég xhicelg ticong,
Yoo PUxTEA UE TUYAES OLOUOPPOOELS TTEQUYIMY Xal T ATOTEAEGUOTO VoL GU-
Yxerdoly ue auTd Tou TEoxUTTOLY and TATeEC 3A Teocouowwsel. o Tig 3A
TPOGOUOLWOELS, YEVVMVTOL BLPORETINE 3A CWUATOBETO Xl UT-O0UNUEVL TAEY-
HOLTOL Yol TO Y Wplo TOU PEVCTOL X0t TO YwElo TOu GTEPEDY, UE TO TEAEUTALO Val
TEPLAOUPBAVEL oL TO UTOCTEWUA XL To OTEPES TTEQUYLX. e avtiteon), yio Tig
2.5A emAloEIE, YEVVATOL £Val HOVAOIXO, OUOLOUORPO, DOUNUEVO XAl XUPTECLOVO
2A mhéyua névew oto omolo to 2.5A povtého emAlel xou To Ywpelo Tou PELCTOU
X0 TOU GTEPEOV, UE T1) BLapopd GUKS OTL ToL OTEPES TTERUYLA VewpolvTaL TMu
u€pog Tou peucTol ywelou. Kadde 1 Uéon oto ytpo xou 1) YEWUETEWXT Lop®Y
TV TTEpLYILY ebval Yoo Téc €€ apyhc, 0To XEALE TOU avTIGTOLY 00V OTOL TTE-
eLYLa diveton o Todepr| LovadLodar THY| UN-OLUTERATOTNTUC XAl OE GAXL TOL UTOAOLTX
XEAG 1) TUY| TOU TopmdouG efvar undevixy|. Eivou onuovtind n cuvohinn mixvwon
TOU TAEYUUTOS Vo elvol ETopxric MoTe va Tpooey Yo tel ue axpiBela 1 yewueTpia
TV GTEPEWY TTEPLYlWY xou emiong vo unv mporypotonondel @uitpdploua xou
TeoPoAY| Tou medlou Tou mopwdoug. Télog avapépetar 6TL OAOXANEY 1 AATW
ETUPAVELN TOU UTOC TEWUATOSC VEQUOLVETOL OUOLOUORQOL.

Yo oyfuoTa A .5|7 A76], [A7 pofveTon OTTIXT| OMOLOTNTA OTa TEDlN Tary UTNTOG
xan Yeppoxpasciac 6To YEco EN{TESO TOU PEUGTOV XUl GTEREOL Ywplou, Tou TEo-

exudav and Tic 2.5A xou 3A TEOGOUOWOCELS Yo TN TERINTWOT TN SldTaEng Tou

goivetar oto oyfua[A730] Hapatnedvrag xau toug mivoxeg [A7T] [A72] xon [A73]

umopoLy va mopatnendoly o e€rc:

1. Aveopthtwe yewuetplog, to 2.5A yovtého umoroyilel ye peyohltepn
oxplBetar Tor Yepuoxpactond medla yior uixpeg xAioelg mleong xotd urxog
e POxTpag, xuplwe BLOTL 1 UTdUEOT TNE TANEKCS AVETTUYHEVNS PONC OEV
oy Vel 6o 1 TTwon nieong avldveton. Ewixd 1o Yepuoxpactaxd mpogih
fr 0ev oyVeEL Yl Uit pOT| TOU BEV €Vl OVOTTUYUEVT 0L CUUGPOVL UE
t0 [13] awtdc givon xon 0 Aéyog mou, MEELXEC (POPEC, XUTA TNV oVAXTNOT
Tou Tedlou VYepuoxpaoiac Tou pevotod ot éva T3 = const eninedo amd



10 TpwTeLoY T' Tedlo, TapaTNEOUVTOL G TOTXEG TiEployES, Veppoxpacieg
UEoTERES amd Tr Yepuoxpacia €Ll06B0L TOL PEUGTOV TOL elvarn aPUCLXO.

2. To 2.5A povtého oupgovel ye o 3A amoTeEAEoUUTA (G TEOS TA TOLY
owdTaln mrepuyiwy elvon 1 o anoteAeoyatint| Vepuxd o 6edouévo o
uelo Aettoupyiog (6edouévn xhion nicong) tne Poxteac. Autd to yeyovoc
T0 oo T Weavd va yernowonotniel ooy eTAUTNG TOU TEWTEVOVTOS TPO-
BAAuatog yrog ddixaoiag TopO xou vor 0dnyfoet Tov ahyopriuo ot uia
yvewuetplo Ye TNV xaAbTEEn VEQUIXY| GUUTERLPORT.

Fl2.

() Fl1

(B Fi2
EyApa A’.3: 1120: Tréotpwpa Yiktpas e Owapoppaoes ntepuyiov Fl1 xal

SyAuo A'4: 1120-Fl1 (2.5D): Hpooeyyotikrj avarapdotaon tns yewuetpiag
Twy tTepuyiwy oto 2A kapteoavé mAéyua. To 2.5A povtélo avtilaufdvetar ta
oTeped TTepUYIA, Oyl oav auotnpd oteped owpata, aAAd wS TEPIOYES 0To TAE YA
J€ Tomikd povadiales TiHéS TopwdoUS.

Case 1120-FI1 1120-F12
Ap (Pa) 2.5A 3A Relative 2.5A 3A Relative
Tomaz (K) | Thmaz (K) Error | Tpmaz (K) | Thmaz (K) Error
50 421.99 421.32 0.55% 407.46 404.75 2.59%
400 330.70 330.12 1.93% 342.86 334.83 23.05%

IMivaxag A’.1: 1120-Fl1/F12: Mépotn Oeppokpacia Ty ma, moU epupaviletar

070 €00 €TITEDO TOU UTOTTPWMUATOS.




Case 1120-FI1 1120-F12
Ap (Pa) 2.5A 3A Relative 2.5A 3A Relative
Tp.avg (K) | Thqvg (K) Error | Ty avg (K) | Thavg (K) Error
50 377.89 378.43 0.69% 370.78 369.18 2.31%
400 318.57 320.59 9.81% 327.77 324.73 12.29%

ITivaxag A'.2: 1120-Fl1/FI12: Méon Oepuoxpacia Ty qpg moU €ppaviletar oo
J1é00 €TiTedO TOU UTOOTPWOUATOS.

Case 1120-F11 1I120-FI12
Ap (Pa) .2.5A ' 3A Relative .2.5A . 3A Relative
my(g/s) | mr(g/s) | Error | mjs(g/s) | mr(g/s) | Error
50 0.0369 0.0371 0.54% 0.0432 0.0444 2.7%
400 0.299 0.297 0.67% 0.364 0.371 1.89%

IMivoxag A’.3: 1120-Fi1/FI2: Hapoyn pdlag ewddov miy tng PokTpag.

s}
am
| as
a5
om
k]
am

ain

am

(") 50Pa

(B") 400Pa

ExAuna A’5: 1120-Fl1: Ileblo tayUtntag oo Héoo tou xwplov Tou pevotol and
s 2.5A emAdoes (ndvew oxnuata) ka1 g 3A mpooopoidoes (kdtw oxruata).

10



() 50Pa (B") 400Pa

Yy A’.6: 1120-Fl1: Oeppokpaociaké medio oto (éoo Tov Xwpiov Tou peu-

0t00 ané ts 2.5A emAoes (mdvw oxnuata) ka tg 3A mpooopoidoes (kdtw
oxnpata).

() 50Pa (B") 400Pa

Yy A'7: 1120-Fl1: Oepporpaciaxsd medio 0To Uéoo ToU UTOOTPMUATOS amd
g 2.5A emAloes (ndvw oxnipata) kar s 3A mpooouoidoes (kdtw oxnpata).



Axbuo xon av fitary BUVATH 1) TG TT) AVITIEAOTACT) TNG YEWUETEINS TV CTEREMY
TTepUYiY 0TO xoETECLVO TAEYUA Yo TIC 2.5A TPOCOUOWOOELS, DLPORES UE
o 3A amoteréopota ebvar avamoPeuxTeES, XS To 2.0A povtédo eivan évag
emALUTNEG Tou TpwtedovTog TeolAuatog wog TopO xo étol ta mTeplyla 6To
Ywplo Tou PEUGTOU BEV VewPOUVTOL AUCTNES OTEPES CWUATY, UE TN cLVIAXN
un-ohio9nong va tietan Euueca Yéow tov 6pwv Brinkman. Téhog mapdro mou
10 2.5A povtého dotneet pépog TNE TAnpogoplag and TNy BidcTacT Tou Ujou,
TEOYAVAOS OV elvon Buvatoy vor divel Tor (Btar amoteréopato Ue diot TAREN 3A
enthuon.

Egoppoyég TopO

Ye 6ha T tpofarjuata TopO mou axoroutoly dev Ya yenouyloroinioly xplthpla
TEPLOPLOUOY 6YX0L, BLOTL efvan emduunTté va Sovel 1 ehevdepior oTov ahydpLiuo
va amogooilel méoo oteped UAixd (mteplyta) Yo Tomodetrioel péoa oTo Y-
plo Tou pevaTol ye Pdon to onueio Aertoupyiog (Bedouévn xhion nisong) ™me
boxtpac. H Behtiotomoinon teéyet we xou 300 xdxhoug 1) uéypl:

F/-H—l —_ F®

I < 107%  where & is the cycle counter (A”.59)

Wintpee pe dtdéelc yog eto6dou-ptag e£6dou (1110) xou prog €16660u-600
e€6dwv (1120) oyedidlovtar yio ntdoee nieone 400Pa, 800Pa o 200Pa,
400Pa avtiotorya. O {oveg 10680V xou 600U TWV UTOAOYICTIXMY YwElwY
anoTe A0V LOVES TOU XAUTUAUUBAVOVTOL UOVILA OO PEUCTO Xall £TOL BEV AV XOUV
070 YWeo oyedaouol e Pertictonoinong. To uépog Tou UTOGTEWUATOS TTOU
avTioTolyel 6TO YWEo oyedloUoy Vewpelton opoLoULopPa VEQUUVOUEVO.

Design Space

Intet Zone .““--\__\ S Qutlet Zone Outlet Zone Outlet Zone

e ~_ rr..,f""-.
5, El 2 | 5, Son | So2
- s
Sw E E Sw

Design Space

E----g[-----é Inlet Zone
(") 1110-TopO (B") 1120-TopO

Syhuo A'.8: 1110/1120-TopO: Yrmoloyotiké xwplo e ta dpa ewdédov S,
opia €kéoov Sp, oteped opa Sy kar xwpos oxedaonov. Ina tny 1120-TopO
mepintwon, So = So1 U So 2

To oyfuora [A”10] xou [A” 11| Selyvouv i Tehinéc BéEATIOTES YewueTpleg TV Yu-
ATEWV UE UXPOXAVAALNL TOU TRoéxuay 6To TéAoC TNe dLadixaciog Beitio Tomo-
nonc. Autéc ol yewuetpleg mpoéxuday e€dyoviag TiC looypauuéc Tou mediou 3
xou 0T ouvéyela tapdyoviag 3A empdveieg xo’ Ohog. PatveTon OTL i TIC Y-




() 1I110-TopO (B") 1I20-TopO

Syhuo A’9:  1110/1120-TopO: Apxixonoinon tou mediov Tou ToPHOOUS
a. Mnoeriké§ Tiuég TopwdoUS UTOOEIKVUOUY PEVOTO €V MHovadlaieS TiHéS -
damepatéTnTAS AV TIOTOIYOUY O€ TTEPES UAIKO.

%p0OTERES AAloEl Tieong, 0 apLiog TV GTEPEWY TTEPLYIWY TOU BNULOVEYOUVTIL
070 Ywpelo Tou pEVoTOV Elvar TOAL PXEOTEPOC, eCatTiog TNG UXEOTERNS TTWOOTG
mleong mou odnyel ) por). O odydprduoc mpoomodel vo aloTol\oEL TOUG Un-
YOVIOPOUG Ay WY NS XAl GLVOYWYTS, TOTOVETOVTAS GO TO BUVATOV TEPLOCHTERX
TTEQUYLN OE GTRUTNYXES VETELC OTE VA UEYIC TOTIOLATEL TNV ETLPAVELX CUVILY -
NS, YWPIg OUWS VoL aEACEL TNV LBEAUAIXY AVTIOTIOT) TOCO HOTE Vo BUoKOAEEL
™ Oéhevon tng pong. Iupatnpeiton enlong ot o alydpriuog tonovetel otepe-
6 VAXO YOpw amd Ta OTEPES OPL TOU AVAXOLY GTO YWEO OYEBLAoUOL Tou )
xou ololoTotel TIC amdToUES 0pUEC YWVIEC TOU UTOAOYLOTIXOU Ywplou MoTE Vo
euvorjoel 1N poY). H Vepuuar anddoon wag Poxtpeag xptveton pe Bdon tn dep-
wxr Tne avtictaon, mou 6mwe gaiveta oto mivaxo [A.4] iavoroun i Depuun
amOBOGT) EMUTUYYAVETOL UE UXEEC TapoyEc Udlag, Tou eivon eEGAAOL xou and Ta
©0pPLaL YUPAUXTNELO TIX XU TAEOVEXTHUOTA TV (YUXTEMY UE UXQOXAVIALIL.

o Tb,maa: — 17 - Tb,max — 17

5 S (A”.60)

ue A TNV EMPAVELN TOU UTOCTEMUATOS TNV ontola epopuoleton 1 VepUoEon G-

(o) 400Pa (B") 800Pa

Exhua A’10: 1110-TopO: Béltiotes yewpuetples YpukTpddy.
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(") 200Pa

(B") 400Pa

Exhuna A’ 11: 1120-TopO: Bé\tiotes yewpuetples YPukTpddy.

I<oon Hieone (Pa) | Ocppund Avtiotaon Ry, (K/W) | my (g/s)
1110-TopO
400 2.02 0.194
800 1.45 0.292
1120-TopO
200 2.05 0.193
400 1.21 0.355

IMTivoxag A’.4: 1110/1120-TopO: Oeppukn avtiotaon kar mapoxr pdlag €i-
066ov Y g feAtiotoroinuéves Pixtpes. ‘Ooo pikpdtepn efvar n tiun tov Ry,

T600 KaAUtepn elvar ) Veppikr) amédoon tns PukTpas.

(") 400Pa

k)

als

322
| ans
A

3z

(B") 800Pa

Exhpwa A'.12: 1110-TopO: Ilpwtedor Oeppuoxpaciaksd medio tov pevotol Xw-
plov (mdrw oxnuata) kar tov otepeol ywpiov (kdtw oynuata) ya tg PeAtioto-

ToINUéveS POKTPES.
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(L3 K

k)

38
| a5

312

|:A\6
i

(') 200Pa (B") 400Pa

ExhAuna A'.13: 1120-TopO: Ilpwrtetor Oeppuokpaciakd medio Tov pevotol Xw-
plov (Tdvw oxripate) ka Tov 0Tepeol ywplov (kdtw oxnuata) ya tg feAtioto-

ToINEVES YUKTPES.

LA13
010
|ﬂt\‘:
am

(o) 1110-TopO (400Pa) (B") 1110-TopO (800Pa)

Lo
am

aan
amn

s

am am

(¥") 1120-TopO (200Pa) (8") 1120-TopO (400Pa)

SyAuo A'.14: 1110/1120-TopO: Ilpwredor mebdio taxyUtntag Tov pevotol xw-
plov ya ti§ BeAtiotonomnéves PikTpeg.
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Yie pEaMO TIXES EQUPUOYES PUENC NAEXTOOVIXDY CUOTIUATOY, 1) XATE ETLPAVELX
TOU UTOGTEMHATOS OEV elvol ouotouop@o Yepuonvoueyy, oadid avtideto (eotd
ornuelor TopaTnEoLYTHL Tl oTtola AVTIGTOLYOVY OTIC VECEIC TV TOUT OTNV Nhe-
xtpovixt| mThaxéto. [ o Adyo autd, oyedidletan Cavd n 1110 dixtpa yia Tig
(Bleg mTwoelg tieong Ue T Slapopd 6TL TwEa 1 VEPUOEOT| G, EPUPUOLETOL TOTIXE
o€ TEPLoy €S Tou uToo Tpnuatos. H apyixonolnon tou nediou Tou Topmdoug eltvou

(Bta e auTh Tou gadvetan oTo Gy AU
Me avagopd 1o oyfua [A”16] evxoho unopei xaveic vor mopatneroet btL o Te-

elntwon auty| o TTepUYLaL efvon ALYOTEQO BLUCKOPTIOUEVY OTO Y WEO CYEDLAGHOU
XoL CUYXEVTPOVOVTAL Y0pw and Tot (e0TA OTuEidl UE OXOTO TNV ATOTEAEGUOTIXT
amorywY?) YepuodtnTag and T xplowes auTEg TEPLOYES.

Inlet Zone = Outlet Zone
— >< Jo,c
5 EI ‘?C;.A >< | So

Go.p

Sw

Design Space

Syhuo A'.15: 1110(VHF)-TopO: Trnodoyiotiké xwpilo i€ ta dpia ewodédov S,
opia €€660v So, oteped dpia Sy ka1 Xwpos oxediaool pe tomkd Depuavoueves
TEPIOYES.

(") 400Pa (B") 800Pa

SxAuo A'.16: 1110(VHF)-TopO: Bétiote§ yewpetples YukTpddy, Jue Ta mTe-
puyia va oxnuatilovy AtydTepo OUHUETPIKES OIaLOPPHOEIS Kal VA TUYKEVTPWOVO-
vTal yUpw and ta {eotd onuela.

Téhog pe agopury To YeEYOVOS OTL oL anttoxpatxés uédodol BehtioTonolnong e-
EOETAOVTAL OO TNV 0PYIXOTIOMGT) TV UETAUBANTOY OYESLCUOY, YIVETAL Ui PXEY)
HEAETN oTNV evanoincio Tne BEATIOTNE AVoTC TTOU TEOXVTTEL, Ao TNV APYIXOTO-
tnom oo medlo Tou Topwdouc. AuTy| TN Qopd YivETHL dpyixoTolnoT Tou Yweiou
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ToU PEVGTOU (Y PO OYEdLIOUOV) UE Alyol GTEPES TTEPUYLX TTOU XA TOAOWUBEVOUY
HEYSAO UEQOC TOL YMEOU GYEBLICUOD, Ot avTileoTn e UxEoU OYXOU GTEREES
TEPLOYES OTWE OTIC TEONYOUUEVES TEQITTWOELS. TTopdha awtd, arv xan oL Tehxég
Bértioteg AOOELC DLapépouy (6860péVOU OTL eV yenowonotinxay Teploplouol
oyxou ot TopO, o ahyopriuog elvar axodun mo EMPEETAC GTO VAl TEOGKOA-
AgTon 0TO O XOVTIVO TOTUXO ENEYLOTO), O oOhYOELIUOC Xat GE aUTH TO GEVEELO
TeOTUd TN OnuLovpYiot TOANAOY UXEOY OTEPEWY TTEPUYIWY (Xou Gpar TOAAGY
UIXPOXOVOALY) YLOL VOl UEYLOTOTOLAGEL TNV EMLPAVELY CUVOYWYTC.

(o) 1110(11)-TopO (B') 1110(12)-TopO

YxAuo A'17: 1110(SA)-TopO: Awgopetikés apyikonorjoes oto medio tou
ropadovs (ndvw oxrpata) kar ta avtiotoyya [ media (kdtw oxrpata) ta omoia
tpoéxvpay amo tn owdikacia TopO.

(o) 1120(11)-TopO (B") 1120(12)-TopO

SyAuo A’18: 1120(SA)-TopO: Awgopetikés apxikonorjoes oto medio tou
mopadovs (ndvw oxrpata) kar ta avtiotoya [ media (kdtw oxrpata) ta omoia
rpoéxvpay amo tn dwdikacia TopO.
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