
National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

Machine Learning-based Surrogate models for Uncertainty
Quantification in CFD

Diploma Thesis

Dionysios Bakis

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2024

ii

Acknowledgments

I want to express my deepest gratitude to Professor Kyriakos Giannakoglou for his
constant guidance and support throughout my Diploma Thesis. His deep knowledge,
thoughtful advice, and genuine encouragement have made a massive difference in
my work and overall learning experience. I feel lucky to have had the chance to learn
from him, and I have grown a lot thanks to his mentorship and the invaluable insights
he has shared with me. He has been a continuously inspiring figure throughout my
studies.

Secondly, I want to express my sincere appreciation to Dr. Marina Kontou and Dr.
Varvara Asouti, who provided me with invaluable knowledge and support whenever
I needed it. Moreover, I want to thank every member of the PCOpt/NTUA I met,
as everyone was very respectful and helpful regarding any interaction I had there.

I am deeply grateful to my family for their tireless support and belief in me.

I’m thankful to all my friends who have accompanied me on the journey until today,
creating unforgettable memories and being there for me. Lastly, I have to give
special thanks my dear friend Theodoros Papaiakovou who always believed in me
and provided me with essential inspiration in the fields of Engineering and Artificial
Intelligence.

iv

National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

Machine Learning-based Surrogate models for Uncertainty
Quantification in CFD

Diploma Thesis

Dionysios Bakis

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2024

Abstract

This Diploma Thesis is in the area of Aerodynamic Shape Optimization under Un-
certainties, and, in particular, it explores the adequacy of Feedforward Fully Con-
nected Deep Neural Networks as surrogates of the high-fidelity, yet very expensive,
Computational Fluid Dynamics solver for the task of quantifying the effects of un-
certainty (Uncertainty Quantification, UQ). This is the key process in search for a
well performing design that is less sensitive to the presence of uncertainties (Robust
Design), instead of just the best-performing design point.

Uncertainties must be taken into account whenever optimization is carried out. For
example, in Mechanical Engineering, minor fluctuations in model parameters can
yield sub-optimal performances. In conjunction with the evolution of computing
systems, the use of methods that take uncertainties into account increases the reli-
ability of the outcome of an optimization process.

In most cases, UQ requires the computation of a stochastic model’s mean and vari-
ance. Here, UQ is carried out using Monte Carlo and Polynomial Chaos Expansion
coupled with the fluid solver or a surrogate model for two aerodynamic problems
involving transitional flows: an isolated airfoil and an isolated wing. The flows
are simulated with the in-house PUMA software of the Parallel CFD & Optimiza-
tion Unit solving the Reynolds-Averaged Navier-Stokes equations along with the
Spalart-Allmaras turbulence model, and the γ − R̃eθ transition model. Cases with
uncertainties related to coefficients that appear in the γ − R̃eθ transition model are
studied. The UQ methods, in general, require repetitive calls to the analysis code,
which renders them prohibitively expensive, especially, whenever CFD software is
involved. For this reason, the development of surrogate models aims to accelerate the
optimization process by greatly reducing the computational cost. On the other side,

surrogate models perform computations of lower fidelity than those obtained from
the expensive CFD tool. This trade-off is being investigated in the two aerodynamic
problems.

The DNNs’ hyperparameters are tuned manually and also, by using evolutionary
algorithms. Lastly, the involvement of two very promising techniques (Stacking
Ensemble and Feature Selection) is examined, aiming to check how the prediction
accuracy can further be improved as well as how surrogate models with fewer input
features perform compared to those used so far.

vi

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Τομέας Ρευστών

Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής

& Βελτιστοποίησης

Υποκατάστατα Μοντέλα βασισμένα στη Μηχανική

Μάθηση για Ποσοτικοποίηση Αβεβαιοτήτων στην

Υπολογιστική Ρευστοδυναμική

Διπλωματική Εργασία

Διονύσιος Μπακής

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2024

Περίληψη

Αυτή η Διπλωματική Εργασία υλοποιείται στην περιοχή της βελτιστοποίησης μορφής

σωμάτων με αεροδυναμικά κριτήρια, λαμβάνοντας υπόψη αβεβαιότητες. Ειδικότερα,
διερευνά την επάρκεια των πλήρως συνδεδεμένων βαθιών νευρωνικών δικτύων πρόσθιας

τροφοδότησης ως υποκατάστατων του υψηλής πιστότητας, αλλά πολύ ακριβού, επιλύτη
Υπολογιστικής Ρευστοδυναμικής για την ποσοτικοποίηση των επιπτώσεων της αβεβαιό-
τητας (Ποσοτικοποίηση Αβεβαιότητας). Αυτή είναι η βασική διαδικασία στην αναζήτηση
της βέλτιστης αεροδυναμικής μορφής που μπορεί να θεωρηθεί λιγότερο ευαίσθητη στην

επίδραση αβεβαιοτήτων (Στιβαρός Σχεδιασμός ή UQ). Aντί για το σημείο σχεδιασμού
με τις καλύτερες επιδόσεις, ο Στιβαρός Σχεδιασμός επικεντρώνεται στον εντοπισμό
μιας λύσης η οποία ελαχιστοποιεί τις ανεπιθύμητες συνέπειες των αβεβαιοτήτων.

Οι αβεβαιότητες πρέπει να λαμβάνονται υπόψη κάθε φορά που πραγματοποιείται βελτι-
στοποίηση. Για παράδειγμα, στη Μηχανολογία, μικρές διακυμάνσεις στις παραμέτρους
ενός μοντέλου μπορούν να αποδώσουν επιδόσεις που απέχουν από τη βέλτιστη. Σε
συνδυασμό με την εξέλιξη των υπολογιστικών συστημάτων, η χρήση μεθόδων που
λαμβάνουν υπόψη αβεβαιότητες, αυξάνει την αξιοπιστία του αποτελέσματος μιας δι-
αδικασίας βελτιστοποίησης.

Στις περισσότερες περιπτώσεις, η UQ απαιτεί τον υπολογισμό του μέσου όρου και της
διακύμανσης ενός στοχαστικού μοντέλου. Εδώ, η UQ πραγματοποιείται με τη χρήση
Monte Carlo και της μεθόδου του αναπτύγματος πολυωνυμικού χάους σε συνδυασμό
με τον επιλύτη της Υπολογιστικής Ρευστοδυναμικής (CFD) ή ένα υποκατάστατο μον-
τέλο για δύο αεροδυναμικά προβλήματα που αφορούν μεταβατικές ροές: μια μεμον-
ωμένη αεροτομή και μία μεμονωμένη πτέρυγα. Οι ροές προσομοιώνονται με το οικείο

λογισμικό PUMA της Μονάδας Παράλληλης Ρευστοδυναμικής & Βελτιστοποίησης
του ΕΜΠ, επιλύοντας τις Reynolds-Averaged Navier-Stokes εξισώσεις μαζί με το
Spalart-Allmaras μοντέλο τύρβης και το μοντέλο μετάβασης γ − R̃eθ. Μελετώνται
περιπτώσεις με αβεβαιότητες που σχετίζονται με συντελεστές που εμφανίζονται στο

μοντέλο μετάβασης γ − R̃eθ. Οι μέθοδοι UQ, γενικά, απαιτούν επαναλαμβανόμενες
κλήσεις στον κώδικα ανάλυσης, γεγονός που τις καθιστά απαγορευτικά ακριβές, ει-
δικά, όταν εμπλέκεται λογισμικό CFD. Για το λόγο αυτό, η ανάπτυξη υποκατάστατων
μοντέλων αποσκοπεί στην επιτάχυνση της διαδικασίας βελτιστοποίησης, μειώνοντας
σημαντικά το υπολογιστικό κόστος. Από την άλλη πλευρά, τα υποκατάστατα μον-
τέλα πραγματοποιούν υπολογισμούς χαμηλότερης πιστότητας από εκείνους που πραγ-

ματοποιούνται με το ακριβό εργαλείο CFD. Αυτό το αντιστάθμισμα διερευνάται στα
δύο αεροδυναμικά προβλήματα.

Η ρύθμιση των υπερπαραμέτρων των DNN πραγματοποιείται χειροκίνητα καθώς επίσης,
και με τη χρήση εξελικτικών αλγορίθμων. Τέλος, διερευνάται η εμπλοκή δύο πολύ
υποσχόμενων τεχνικών (Stacking Ensemble και Feature Selection), με στόχο να ελε-
χθεί πώς μπορεί να βελτιωθεί περαιτέρω η ακρίβεια πρόβλεψης, καθώς και απόδοση
υποκατάστατων μοντέλων με λιγότερες μεταβλητές εισόδου.

viii

Nomenclature

CFD Computational Fluid Dynamics

NTUA National Technical University of Athens

PCOpt Parallel CFD & Optimization unit

GBM Gradient Based Method

SOO Single Objective Optimization

MOO MultiO bjective Optimization

RDO Robust Design Optimization

UQ Uncertainty Quantification

MC Monte Carlo

PCE Polynomial Chaos Expansion

niPCE Non-Intrusive PCE

GPU Graphical Processing Unit

RANS Reynolds-Averaged Navier-Stokes

ASO Aerodynamic Shape Optimization

AoA Angle of Attack

LHS Latin Hypercube Sampling

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

LR Linear Regression

ANN Artificial Neural Network

RBFN Radial Basis Function Network

DNN Deep Neural Network

DFSS Design for Six Sigma

TP Training Patterns

SA Spalart Allmaras

PDF Probability Density Function

i

Contents

Contents ii

1 Fundamentals of Optimization Under Uncertainties 1
1.1 Introduction to Optimization . 1
1.2 Optimization Methods and Costs . 2
1.3 Optimization Under Uncertainties . 3
1.4 AI Integration to CFD and UQ . 6
1.5 Thesis Outline . 7

2 Artificial Intelligence 8
2.1 Introduction to Artificial Intelligence 8
2.2 Machine Learning . 9
2.3 Supervised ML Models for Regression 11

2.3.1 Linear Regression . 12
2.3.2 K-Nearest Neighbors . 12
2.3.3 Support Vector Regression . 12
2.3.4 Deep Neural Networks . 14
2.3.5 Learning Curves and Model Checkpoint 19

2.4 Ensemble Learning . 20

3 The CFD Solver 22
3.1 Mean Flow Equations . 22
3.2 Turbulence Model . 23
3.3 Transition Model . 23
3.4 The flow solver - PUMA . 24

4 UQ Methods 25
4.1 Introduction to UQ . 25
4.2 Monte Carlo Simulation . 26
4.3 Non-Intrusive Polynomial Chaos Expansion 27

4.3.1 Orthogonal Polynomials . 28
4.3.2 Mean and Variance . 30
4.3.3 PCE Coefficients and Generalization to Multiple Dimensions . 32
4.3.4 Integration using Gaussian Quadrature 33
4.3.5 PCE Coefficients with Regression Approach 34

ii

5 UQ in an Airfoil Case 35
5.1 The NLF(1)-0416 Airfoil . 36

5.1.1 Computational Mesh and Aerodynamic Polar Diagram 36
5.1.2 Case Description . 38

5.2 The Low Cost Surrogates . 41
5.2.1 Datasets and Preprocessing 41
5.2.2 DNN Configuration and Metrics 44
5.2.3 DNN and RBFN Test Metrics Across Different DBs 49

5.3 UQ with DNN . 50
5.3.1 Monte Carlo with DNN . 51
5.3.2 UQ using PCE . 52

5.4 Aggregated Results . 54
5.5 Additional Studies on the Surrogate Model 56

5.5.1 Stacking Ensemble . 56
5.5.2 Feature Selection . 57
5.5.3 Conclusions . 59

6 UQ in a Wing Case 60
6.1 The ONERA M6 Wing . 60

6.1.1 Case Description . 60
6.2 UQ with DNN . 63

6.2.1 DNN configuration used in Case I 63
6.2.2 Configurations found by EASY 64
6.2.3 Conclusions . 66

6.3 Predicting capabilities of KNN and SVR 67

7 Conclusions 70
7.1 Overview . 70
7.2 Conclusions . 71
7.3 Future Work Proposals . 72

A Appendix 73
A.1 Statistics and Data Transformation 73

A.1.1 Fundamentals . 73
A.1.2 Transforming Data with Normalization and Standardization . 74
A.1.3 The Pearson Corellation Coefficient 75

A.2 Backpropagation . 76
A.3 Radial Basis Networks . 79

Bibliography 80

iii

iv

Chapter 1

Fundamentals of Optimization

Under Uncertainties

As technology evolution continues its accelerating ascent and computers become
more and more powerful, there is an increasingly growing interest in how existing
real-world solutions can be optimized or improved. Moreover, due to this availability
of computational power, incorporating sources of uncertainty in optimization prob-
lems has also become feasible. The latter has led to establishing the well-known
Robust Design Optimization methods. The introductory chapter assesses the core
principles of optimization that lay the groundwork for this thesis, along with the
main obstacles and turnarounds that emerge when considering sources of uncer-
tainty.

1.1 Introduction to Optimization

The term ”optimization” is closely associated with the word ”objective” and refers
to a process used across various fields and industries to track the best solution to a
specific problem. On the other hand, ”improvement” refers to the process of finding
a solution that is simply better than the current one. Since both processes aim to
enhance outcomes, the latter also falls under the umbrella of optimization. More
precisely, optimization can be applied to any outcome influenced by N, the num-
ber of controlled causes, the so-called optimization or design variables (⃗b ∈ RN).
Therefore, since every cause-and-effect relationship can be explicitly or approxi-
mately described by a mathematical formulation, the term ”objective function” is
introduced. This function effectively describes the correlation between a Quantity
of Interest (QoI) and some inputs in any problem. In terms of seeking the ”best

1

solution”, the optimization process aims to find the global maximum or minimum
of the objective function. (The critical distinction with improvement is that the last
does not necessarily seek the global extrema; instead, the process concludes upon
reaching some local extremum). For example, in a car optimization problem, the
goal could be the minimization of the aerodynamic drag force, the minimization of
the total cost of the car, or the maximization in sales. These objectives can coex-
ist in the optimization process, leading to a problem of many objective functions.
This distinction leads to the two optimization subclasses: single and multi-objective
optimization (SOO and MOO) [1, 2].

Every optimization algorithm iterates until it converges. The process begins with
the initialization of the optimization variables. Then, the computation of the ob-
jective function takes place. Based on this information and the use of a selected
optimization method, adjustments are made to the design variables’ values for the
next iteration. This cycle repeats until there is no further improvement in the objec-
tive function, according to the user-defined termination criterion. Eventually, the
optimal design vector is known. It’s worth noting that the optimization process
becomes ”constrained” when there are limitations related to the problem at hand.
For example, limitations will possibly exist in the design variables’ search spaces.

1.2 Optimization Methods and Costs

In the preceding process, the total computational cost is strongly tied to the choice
of the optimization method. This choice is significant as it determines the cost for
each cycle, which is then multiplied by the total number of cycles needed. Therefore,
the choice of the optimization method directly impacts the overall computational
cost.

Optimization methods pertain to the adjustments of the design variables, utilizing
the objective function’s calculation. They can be stochastic (gradient-free), deter-
ministic (gradient-based) or a combination of the two.

Stochastic methods treat the objective function as a black box and use only its value.
Hence, the cost of every cycle is determined by the price of the objective function’s
calculation multiplied by the times it needs to be evaluated. They employ stochastic
searching techniques in the hunt for the best solution and can be applied to any
problem, even when the formulation of the objective function is not accessible. Due
to their inherent stochasticity, they don’t get trapped into local extrema, if the
search algorithm is free to run as much as needed. Their main disadvantage is that
they demand a considerable number of objective function evaluations to converge,
compared to deterministic optimization methods [1, 3]. A stochastic optimization
method example is the evolutionary algorithms, where the choice of the best design
vector occurs based on bio-inspired procedures that emulate natural selection. The
latter is the optimization method utilized in this thesis through the Evolutionary

2

Algorithms SYstem - EASY software [4], developed by the PCOpt/NTUA.

On the other hand, deterministic methods aim at a faster convergence, thanks to
the gradient information, but this speed comes with a trade-off. There is a risk of
getting trapped in a local extremum. An example is the steepest descent method.

b⃗new = b⃗old − η
∂F (⃗b)

∂b⃗
(1.1)

where F is the objective function and η is a user-defined tuning parameter, called
learning rate. The computation of the sensitivity derivatives, corresponds to part of
the cost in each optimization cycle.

Objective
Fuction

Evaluation
b⃗ini

Update of the
design vector

(⃗bnew)

Termination
Criterion b⃗opt

Yes

No

Figure 1.1: Conventional Optimization flowchart. First, the design variables are
initialized. Next, the objective function is computed by the primal solver as many times
as the selected optimization method indicates, and the values of the design variables
are updated. When the termination criteria is met, the process stops and the optimal
design vector is obtained. Figure adapted from [5].

1.3 Optimization Under Uncertainties

Almost all real-world problems, such as shape optimization, are subjected to some
level of uncertainty. It can be related to stochastic perturbations that influence
the environment, the design parameters, or the evaluation of the system [6]. These
uncertainties involved in the optimization procedure can lead to results that deviate
significantly from the ”optimal” ones. For example, as stated in [6] ”even if one
were able to map the model optimum to the true optimum, one might not be able to
build the true optimum either because of manufacturing uncertainties or because the
required precision during this manufacturing stage would be too costly”.

As a result, ”Optimization Under Uncertainties” or ”Robust Design Optimization”
is introduced. Within this thesis, the focus is on uncertainties related to the system’s
environment parameters. Thus, a classification between the system’s input variables
is conducted. As mentioned above, there are the N design variables (⃗b ∈ RN),
which are under the designer’s control. There are also the M environmental, robust,
or uncertain variables (c⃗ ∈ RM), which affect the system’s environment and are
subjected to some degree of stochasticity. The environmental variables are out of
the designer’s control. So, the objective function takes the form F = F (⃗b, c⃗).

3

In cases uncertainties coincide with some of the design variables, they can be handled
as in the following example. In real-world manufacturing, achieving the ”optimal”
length bκ of a mechanical component is often challenged by geometric tolerances,
which introduce inherent uncertainties into the design dimensions. If this source of
uncertainty is decided to be taken into account, the length will be expressed as bκ+
∆bκ. The stochastic length’s perturbation will be processed as a new environmental
variable and will be added to the c⃗ vector.

Following an RDO statistical approach [7], it must be highlighted that, in order to
model the uncertain variables, the user has to assume that each one of them follows
a known probability density function (PDF). In this Diploma Thesis, an approach
based on the well-known Design for Six Sigma (DFSS) was employed [8, 9]. While
this is not obligatory, all uncertain variables were assumed to be normally distributed
around their mean values within the interval [µi − 3σi, µi +3σi], (three sigma). The
latter inherits from the fact that when a stochastic quantity follows the normal
distribution, 99.73% of the time will fall inside a ”six sigma” interval around its
mean value.

The goal of RDO is to achieve a solution that is not only optimal but also remains
insensitive to variations in its input uncertain variables. In figure 7.4, the maximiza-
tion of a QoI named F is aimed. The difference between true optimal and robust
optimal solution can be observed.

Figure 1.2: True optimal vs robust optimal solution. If the design is conducted
for the true optimal, meaning the function’s global maximum, slight uncertainties in
the input variables can lead to highly undesirable outcomes. Hence, identifying the
robust optimal means finding a valley-like region within the output space. In this case,
variations in the inputs result in negligible changes in the output value of F, making
the design far more reliable. Figure adapted from [10]

4

Aiming to find the robust optimal, a new objective function must be defined. Con-
sidering as QoI the F function of figure 7.4, the interest passes to the maximization
of the F’s mean value µF . Besides µF , a second commonly added criterion is also the
minimization of F’s variance or standard deviation σF . Thus, a common approach
that takes into account the trade-off between the mean and the standard deviation
is to optimize their weighted sum:

FR = w0µF + w1σF

This new objective function is known as the Robustness Metric. The user-defined
weight values dictate the priority of the aforementioned quantities in the optimiza-
tion process.

During the optimization under uncertainties, for each candidate design vector b⃗, the
F’s mean and variance must be computed. This process is referred to as Uncertainty
Quantification (UQ), and there are various UQ methods, stochastic and determin-
istic, that can be utilized for it. For example, a deterministic one is the Method
of Moments [11] which computes the µF and σF by firstly computing the first and
second derivatives of F w.r.t the uncertain variables. The UQ methods assessed
in this Thesis, in the two aerodynamic cases, are the simplest yet most expensive
Monte Carlo (MC) method and the Polynomial Chaos Expansion (PCE). MC and
PCE are presented in chapter 4.

Quantity of
Interest (F)

Evaluation for
UQ

b⃗ini, c⃗

Evaluation of
Robustness
Metric FR

Update of the
design vector

(⃗bnew)

Termination
Criterion

b⃗opt, c⃗
µF

σF

Yes

No

Figure 1.3: Robust Design Optimization Flowchart. First, the design variables are
initialized. Next, depending on the chosen UQ method µF and σF are being computed
and their weighted sum is obtained (FR). The latter is the only difference between RDO
and conventional optimization. After UQ, the problem is the same as conventional
optimization, but instead of F, the chosen optimization method is dealing with FR.
Thus, the design variables are updated, and the process continues until the termination
criterion is met. Figure adapted from [5].

5

1.4 AI Integration to CFD and UQ

Using AI to predict flows or flow quantities, the concept of surrogate modeling for
CFD has seen significant development over the recent years, offering substantial
computational savings and improvements in simulation time [12, 13].

Overall, these advancements signify a shift towards more data-driven approaches
in engineering simulations. AI enhances traditional methods by reducing computa-
tional overhead and enabling more frequent simulations without the associated high
costs. Chapter 2 delves into AI theory and presents AI algorithms used herein.

The term Time Unit (TU) which is often used in the Thesis is defined as follows:
one TU corresponds to the computational cost of simulating the flow solution, using
the high-fidelity CFD tool.

Regarding the use of AI in the present study, the key difference between a con-
ventional optimization and an RDO algorithm must be highlighted: in RDO, the
UQ must be carried out for each candidate solution, namely for each candidate de-
sign vector. All UQ methods require some, let’s say X, evaluations of the QoI to
compute μ and σ. The latter translates to X TUs only for the UQ. Thus, in Aerody-
namic Shape Optimization (ASO) problems, where uncertainties are considered, X
additional calls to the CFD for every candidate solution are needed. Therefore, for
performing optimization under uncertainties, the total optimization cost (the cost of
the same problem when optimized conventionally) is multiplied by X. Monte Carlo,
for example, usually requires more than 1000 samples. The latter makes the use of
MC, coupled with the CFD, prohibited for UQ in general ASO problems.

Except from developing more efficient UQ methods like PCE, a process far less
costly than the MC, this significant increase in computational cost has led to the
employment of surrogate AI models instead of the CFD, for UQ, as evaluation tools.
In general, these models are trained to predict the outputs of the CFD simulations.
They are of a much lower total cost, yet with the expense of reduced accuracy. The
CFD is used to produce a DB containing the system inputs and outputs, the so-
called Training Patterns (TP). The created DB is then used to train the AI model.
Considering the usage and training costs of the currently developed AI models as
negligible, the total cost of building the surrogate is predominantly determined by
the creation of the DB, which is far less than the cost of the CFD evaluations
needed for the optimization. Related research topics can be found in [14, 15, 16, 17]
where surrogate ML models such as Artificial Neural Networks (ANNs) were used
as CFD-surrogates, specifically for UQ.

6

1.5 Thesis Outline

The structure of this Diploma Thesis is presented:

• Chapter 2: An introduction to the field of Artificial Intelligence (AI) with a
focus on function approximation. Fundamental Machine Learning (ML) algo-
rithms are presented, and a brief explanation of how they can be combined to
form ensemble models is provided. Significant emphasis is placed on the con-
cept of Artificial Neural Networks (ANNs) and Deep Neural Networks (DNNs)
along with how they can be tuned and trained for optimal performance.

• Chapter 3: The equations solved by the Computational Fluid Dynamics
(CFD) code regarding the assessed aerodynamic problems. More precisely,
the mean flow equations, turbulence, and transition models are presented in
brief.

• Chapter 4: The presentation of the UQ methods employed in this work,
mainly focused on the mathematics behind Non-Intrusive PCE (niPCE) cou-
pled with either Gauss Quadrature Integration or Regression, methods for the
computation of the PCE coefficients.

• Chapter 5: The DNN surrogate models are investigated and employed for
the task of UQ in the case of NLF(1)-0416 isolated airfoil. Utilizing the same
testing Database (DB), a comparison between DNNs and Radial Basis Func-
tion Networks (RBFNs) is made. A combination of the two is also checked
through the stacking ensemble technique, aiming to improve the accuracy fur-
ther. Last, DNNs are trained using feature selection to retain only the most
relevant features as inputs, and their performance is discussed.

• Chapter 6: The development of surrogate DNN models, primarily using
EASY for hyperparameter tuning, in order to perform UQ in the case of the
flow around the ONERA M6. In this case, different DNNs are directly em-
ployed for UQ, and their performance is checked using solely the UQ results.
Additionally, a brief study on the predicting abilities of DNNs, KNNs, and
SVRs is conducted.

7

Chapter 2

Artificial Intelligence

2.1 Introduction to Artificial Intelligence

The visible impact of AI in the day to day life provided much inspiration for this
thesis. Nowadays, large-scale and ”free-to-use” virtual assistants can browse the
internet and provide the user with specific information of any type, such as creating
pictures, programs, and even videos based on single prompts [18, 19, 20, 21, 22].
Medical AI tools can perform diagnostic imaging evaluations [23]. Personalized
recommendation systems capitalize on all types of preferences of every social media
user, based on the actions he takes every second he uses the corresponding platforms.
The applications above are a potential everyday interaction with AI for many people
in almost every country. AI tools are becoming increasingly versatile and integrated
to some degree in almost every industry. However, AI is a relatively hard term
to be explicitly defined. For example, what exactly is ”Intelligence”? A simple
answer stated in [24] is that: ”Intelligence is the ability to process information such
as we can use it to inform a future decision or action that we take”. Yet, AI can be
defined as systems that can perform tasks that require Human Intelligence. These
tasks include problem-solving, perception, learning, understanding natural language,
and the ability to move and manipulate objects. This thesis focuses on two well-
known subfields of AI: Machine Learning (ML) and Deep Learning (DL). In
particular, DL is also a subfield of ML. These categories are visualized in figure 2.1.

8

Figure 2.1: AI subfields, ML and DL. Figure from [25]

2.2 Machine Learning

ML is the subfield of AI where algorithms can learn from data and, thus, improve
their performance. Going through the age of Big Data, it is clear why ML can be
very powerful. It is worth noting that once a model is trained, it can execute its
task numerous times with relatively low additional costs regarding computational
resources. There are three main learning categories.

• Supervised Learning is a process where the model is given some labeled
inputs i.e inputs with their corresponding outputs. It is similar to when a
child is under the supervision of a teacher. At the end of the training process,
the model can give correct answers to unseen data. There are two main tasks
underlying this form of learning. Classification is the first one, where the out-
put is one of a finite set of values, and the goal is to categorize the inputs
into classes. The second one is called regression, which refers to when a model
outputs numbers. In fact, in classification, there is always an underlying re-
gression taking place internally to calculate the probability of each sample to
belong to each class.

• Unsupervised Learning is the category where the model tries to identify un-
derlying patterns in unlabelled data received as inputs. In this one, no explicit

9

feedback is provided to the model. The most common task of this category is
called clustering, which is about the definition of clusters that include inputs
similar to each other. In recommendation systems, e.g., clustering is used to
group customers based on the data they have provided to identify segments of
users with similar tastes or needs.

• Reinforcement Learning is inspired by learning methods based on reward
and punishment. It involves an agent who interacts with an environment,
takes actions, and is rewarded or punished at some point. Over time, the
agent aims to develop a policy that maximizes the cumulative reward. A
typical example of this category is when computers are trained to master a
video game autonomously.

Figure 2.2: Categories of ML. Figure from [26]

This study uses supervised learning algorithms to create models that predict a func-
tion’s outputs based on its corresponding inputs. A fundamental term must be
defined before delving deeper into the theory of supervised ML models that were
assessed.

A hyperparameter is a parameter whose value is set before the learning process
begins and controls the behavior and performance of an algorithm, model, or sys-
tem. Unlike model parameters, which are learned from the data during training,
hyperparameters are specified by the user and remain fixed during the learning pro-
cess. Most hyperparameters involved in this thesis are mentioned in the following
section.

10

2.3 Supervised ML Models for Regression

First, the importance of DB management has to be highlighted. A common ap-
proach, mostly in deep learning, is to split the DB into training and validation data.
The training DB is used to train the model, and the predictions on the validation
DB indicate how well the model can generalize unseen data. A typical data-split
is 80% for training and 20% for validation. To achieve maximum generalization
capability, overcoming two issues during the learning phase is essential. The first
one, called underfitting, is when the model hasn’t extracted sufficient information
from the training DB to map the function of interest. In other words, a model that
underfits can be considered undertrained, and it is simpler to think that an under-
trained model will perform poorly on both training and unseen data. On the other
hand, there is the exact opposite and more tricky situation, known as overfitting.
In this scenario, the model is overtrained. Having learned the training DB almost
perfectly, a model that overfits has also learned complex random patterns present
in training DB that do not represent the mapping function of interest at all (noise).
Hence, the model that overfits will perform nearly perfectly on the training DB but
poorly on unseen data. Therefore, both situations lead to insufficient generaliza-
tion capability. The challenge is to find the golden mean where the model fits best.
Namely, it performs sufficiently on both training and unseen data. While overfitting
and underfitting are common issues of supervised ML algorithms, their handling
differs from algorithm to algorithm, as each model type has unique characteristics
and techniques that are most effective in mitigating them.

Figure 2.3: Overfitting, right fit and underfitting. Figure adapted from [27]

11

2.3.1 Linear Regression

Linear Regression (LR) is a fundamental supervised learning algorithm used to pre-
dict a continuous outcome. In order to map the relationship between the target
and the features, it fits a linear equation to the training data. The objective of LR
is to find the best-fitting line (in the case of a single input feature) or hyperplane
(for multiple input features) that minimizes the error between the predicted and
the actual values. The latter is commonly achieved using the ordinary least squares
method [28].

2.3.2 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a simple distance-based supervised learning algo-
rithm for classification and regression. It identifies the K closest data points (neigh-
bors) in the training dataset to a given input based on a specific distance metric
(commonly Euclidean distance). For regression tasks, the predictions are the av-
erages of the values of the K nearest neighbors. The only tuning parameter is the
value of K, which, as it increases, makes the model more prone to underfitting, while
decreasing K makes it prone to overfitting.

Figure 2.4: KNN. Figure from [29]

2.3.3 Support Vector Regression

Support Vector Regression (SVR), is another supervised learning ML algorithm
utilized for regression tasks, and it is an extension of Support Vector Machines,
which are algorithms used for classification. Thus, its goal is to approximate the
relationship between the input features and a continuous target variable, and it does

12

so by finding a hyperplane that best fits the data points. To do so, it minimizes
the prediction error while allowing a certain tolerance (epsilon margin) around the
hyperplane. This is achieved by mapping the input variables to a higher-dimensional
feature space and finding the hyperplane that minimizes the prediction error while
implicitly maximizing the number of data points inside the epsilon margin. Hence,
the training of SVR can be viewed as a double-objective optimization: balancing
model complexity and prediction error. The points inside the epsilon margin do
not contribute to the model’s prediction error. SVR has been widely used in CFD
applications such as [30, 31]

Regarding SVR’s hyperparameters, only three of them, thought to be the most im-
portant ones, are being explained. The first two: epsilon (ε) and regularization
parameter (C) are the ones controlling the margin of tolerance. Epsilon (ε) de-
termines the margin of tolerance, while C controls the trade-off between minimizing
prediction error and keeping the model simple to generalize better. The third one is
the kernel function choice. To manage non-linear relationships, SVR applies the
kernel function mapping the data into a higher-dimensional space and making linear
separation feasible. Commonly utilized kernel functions include linear, polynomial,
radial basis functions (RBF), and sigmoid.

Figure 2.5: SVR transforms non-linear data from the original input space (left) into
a higher-dimensional feature space (right) by applying a kernel function, enabling the
model to fit a linear hyperplane within the epsilon margin that captures the underlying
data structure. The slack variable ξi represents the prediction error for each data point
that falls outside the epsilon margin. Figure from [32]

13

2.3.4 Deep Neural Networks

Artificial Neural Networks (ANNs) are computing systems designed to mimic the
human brain’s function and are considered a part of the wider field of machine
learning. They are precisely on the dividing line between ML and DL. This is
because, in simple terms, Deep Neural Networks (DNNs) are bigger ANNs. They
can perform classification and regression but, as mentioned above, this study focuses
solely on regression.

The fundamental building block of Deep Learning and Neural Networks is a simple
processing unit called perceptron or neuron. Its analogy in the real world is a
biological neuron in the human brain. The biological neuron is constructed by three
main parts: the Dendrites responsible for receiving information from other neurons;
the Soma, which processes this information and produces an output; and the axon,
which transmits the output toward other neurons. The biological-artificial neuron
analogy is illustrated in figure 2.6. Just like in the brain where billions of these small
processing units are interacting and working together, the concept of ANNs is more
or less the same. Neurons, that are stacked in layers communicate and exchange
information in non-linear ways.

Figure 2.6: Artificial Neuron: Forward Propagation. Figure from [33]

Regarding the artificial neuron, the input vector x ∈ Rn is first multiplied by a
weight vector w ∈ Rn. The latter, contains learnable parameters, the weights,
which the network adjusts accordingly to the problem at hand during the training
process. In particular, each connection has a corresponding weight parameter the
value of which, after the training has ended, represents the strength of the con-
nection. Next, the yielding product

∑
xiwi is added to the bias b ∈ R, the last

14

learnable parameter of each perceptron. Finally, the resulting linear combination∑
xiwi + b is passed through the so-called activation function (f), whose role is

to introduce nonlinearity into the network. Each neuron’s output (y) is a scalar
and reads:

y = f(
∑

xiwi + b) (2.1)

For the k-est neuron of a particular layer eq. 2.1 reads:

yk = f(
∑

xkiwki + bk) (2.2)

In figure 2.7, one can see artificial neurons stacked in layers and their interaction.
The type of network illustrated is known as feedforward fully connected neural
network. Note that each layer consists of neurons that do not communicate. In this
type of network, each neuron of a hidden layer is connected to all neurons of the
previous layer as well as with the ones of the subsequent layer. This way, information
taken as input is propagated forward towards the exit of the network (output layer).
Conventionally, every layer besides the input and the output layers is known as
hidden layer. The distinction between simple (swallow) ANNs and DNNs is often
vague and related to the number of hidden layers. In this work, models with more
than one hidden layer are considered as DNNs, while the ones with one hidden layer
as swallow ANNs. Last, the number of nodes in the input and output layers is
equivalent to the mapping function’s input and output features (dimensions).

Figure 2.7: Feedforward fully connected DNN[34]

A neural network, with a sufficient number of neurons and appropriate activation
functions, can approximate any function [35]. The most important user-defined
parameters (hyperparameters) are presented along with brief explanations in the
following lines.

15

Hyperparameters

Model Architecture Hyperparameters

1. Number of layers: Defines the depth of the network. Additionally, in the
context of the aforementioned type of ANN, all fully connected hidden layers
are known as dense layers. (In deep learning, there are numerous hidden layer
types such as convolutional, pooling, and dropout, among others.)

2. Number of neurons per layer: Defines the number of neurons in each
hidden layer. As this number increases, the model parameters increase too
and the neural network becomes capable to map more complex functions.

3. Activation functions: They introduce nonlinearity into the model. Only
hidden and output layer neurons possess activation functions. The input layer
neurons do not, as they are just responsible for receiving the input features.
There are several types of activation functions, some of them presented in
figure 2.8.

Figure 2.8: Four common activation functions. Figure from [36]

• Sigmoid:

σ(x) =
1

1 + e−x
(2.3)

• Tanh:

tanh(x) =
ex − e−x

ex + e−x
(2.4)

• ReLU:
ReLU(x) = max(0, x) (2.5)

16

• GELU:

GELU(x) = x · Φ(x) = x · 1
2

(
1 + erf

(
x√
2

))
(2.6)

where Φ(x) denotes the cumulative distribution function of the Gaussian
distribution and erf the error function.

4. Initialization Methods: Methods to initialize the weights and biases of the
network before the training process. The Xavier initialization method [37] was
utilized in this thesis as this is the default in the Tensorflow library.

Training Hyperparameters

When the training of a neural network begins, after the network is initialized,
it is provided some input data and produces some outputs that are commonly
very far from the target outputs. Thus, an error metric representing the model
can be calculated, knowing the target outputs and the model’s predictions.
The learning phase is a gradient-based optimization problem in which the ob-
jective function (to be minimized) is the model’s error. At the same time, the
design variables are all the weights and biases (a.k.a, all learnable parameters).
In every optimization cycle, the model produces a new error value. Next, the
gradients of the objective function concerning the design variables (weights and
biases) are calculated through a process named Back Error Propagation or
just Backpropagation (presented in appendix A.2). Last, an optimization
algorithm exploits the calculated gradients and iteratively updates the design
variables, minimizing the model’s error solely regarding the training DB. In
the following lines, the most crucial training hyperparameters are presented.

5. Loss Function: Namely, the training’s objective function, also known as
cost function is the average of the errors of each output neuron. Assuming
yt the target values and yp the model’s predictions, the loss function can be
thought of as L(yt,yp) and provides an understanding of the distance between
the predictions and target outputs. It can be one out of many well-known mean
error metrics, yet in this thesis two loss functions, commonly used for regression
tasks, were employed: Mean Absolute Error (MAE) and Mean Squared Error
(MSE). The last two, along with a third error metric, the Mean Absolute
Percentage Error (MAPE), which was only used as a final quality metric for
trained models later on, are presented.

• Mean Absolute Error (MAE):

MAE =
1

N

N∑
i=1

|yti − ypi| (2.7)

17

• Mean Squared Error (MSE):

MSE =
1

N

N∑
i=1

(yti − ypi)
2 (2.8)

• Mean Absolute Percentage Error (MAPE):

MAPE =
1

N

N∑
i=1

|yti − ypi
yti

| (2.9)

where N is the number of outputs.

6. Learning Rate: The learning rate, denoted as η, is the user-defined pa-
rameter illustrated in eq. 1.1. A relatively small η typically leads to slower
but smoother convergence, yet with the risk of becoming trapped in a local
extremum. Conversely, a larger η enables quicker progress by taking larger
steps towards the optimal, reducing the risk of getting stuck in local extrema.
However, as η increases, there is a trade-off: beyond a certain point, the opti-
mization may fail to converge at all, due to the excessively large steps, causing
the algorithm to overshoot the optimal point.

7. Optimizer: An algorithm responsible for the design variable updates during
training must be selected. There are numerous optimizers [38]. In this work,
Adaptive Moment Estimation (Adam) was utilized. Adam was created by the
combination of two older optimizers (Momentum and RMSprop). Given an
initial learning rate value, Adam can adjust its learning rate during optimiza-
tion.

8. Validation Split: This is a value between 0 and 1 which determines what
percentages of the available data will be used for training and validation.

9. Number of Epochs: An epoch refers to one complete pass of the entire train-
ing dataset through the model. The number of epochs indicates how many
times the model has processed all the data, and it is used as a termination cri-
terion for training. Setting the number of epochs is crucial because it impacts
the yielding model. If the number of epochs is too low, the trained model
might not have captured the key patterns in the data, leading to underfitting.
On the other hand, if the number is too high, the model will probably learn
the noise in the training data, resulting in overfitting and poor generalization
capability.

10. Batch Size: This hyperparameter represents the number of samples used
before each update of the model parameters and can influence whether the
optimization algorithm behaves more stochastically or deterministically as the

18

batch size decreases or increases, respectively. In this work, most models
appeared insensitive to changes in batch size, likely due to the small size of
the training dataset. As a result, the batch size was always set equal to the
size of the training DB.

2.3.5 Learning Curves and Model Checkpoint

The average error computed from predictions on the training DB is known as train
loss. Additionally, validation data is used to evaluate the model’s performance on
unseen data during training, providing a new metric known as validation loss,
which indicates the model’s generalization capability. Validation loss is inspected
by the user during the training process, usually providing essential information on
whether the training must end. The latter is more straightforward to understand by
assessing the learning curves (figure 2.9). These line plots are simply the evolution
of train and validation losses as the number of epochs increases. One may easily see
that initially, both curves drop together. At some point, if the number of epochs
is large enough, the validation loss starts to increase, indicating a generalization
capability that gets worse after each epoch. The latter is a sign that the model
has begun overfitting, and the general rule is that the best-fit model is obtained
right before the validation loss starts increasing. Hence, it is assumed that the user
should obtain the model created on the epoch with the lowest validation loss. This
can be done by stopping the training at that particular epoch, being left with the
desired model, or, more conveniently, by using the Model Checkpoint Callback to do
something equivalent automatically. Model Checkpoint is a Python tool, configured
before the training begins, to monitor the training process, and to save models with
the desired characteristics. For example, the Model Checkpoint was used throughout
this work to save the model with the lowest validation loss that appeared during
training.

19

Figure 2.9: Learning curves. As train and validation losses evolve during training,
underfitting and overfitting regions are evident, and one should obtain a model as close
to the best-fit line as possible. Figure adapted from [27]

Finally, it must be noted that many ML algorithms especially DNNs must be pro-
vided with non-dimensionalized data. The two most known non-dimensionalization
techniques are presented in appendix A.1.2.

2.4 Ensemble Learning

Ensemble learning combines two or more individual learners aiming to improve pre-
dicting performance. The most widely used techniques are Bagging, Boosting, and
Stacking. While Bagging and Boosting are homogenous ensembles, meaning all com-
bined models must be of the same type, with Stacking, this is not the case. Stacking
is a heterogeneous ensemble method, making it possible to combine completely dif-
ferent base learners.

• Bagging or Bootstrap Aggregating is an ensemble method that combines
a model’s multiple instances, trained, in parallel, on different subsets of the
training data through bootstrapping (randomly selecting data and allowing
for duplicates). The base learners’ prediction is combined by averaging (for
regression) or voting (for classification).

• Boosting is a sequential ensemble technique where each model is trained to
correct the predictions of the previous one.

• Stacking or Stacked Generalization is the ensemble method employed in
this work to combine two models of different types. Instead of simply av-
eraging or voting, stacking involves training a meta-learner who receives the

20

predictions of the base learners as inputs and is responsible for best combining
them to make the final prediction. Stacking flowchart is illustrated in figure
2.10.

Figure 2.10: Stacking ensemble method. Multiple models of different types provide
their predictions as training data to the meta-learner, which is responsible for gener-
ating the final predictions. Figure adapted from [39].

21

Chapter 3

The CFD Solver

3.1 Mean Flow Equations

The CFD tool utilized in this work is the GPU-accelerated code PUMA, developed
by PcOpt/NTUA [40]. It solves the Reynolds Averaged Navier-Stokes (RANS)
equations for steady flows of compressible fluids. The mean-flow equations are:

∂Un

∂τ
+

∂f inv
nk

∂xk

− ∂fvis
nk

∂xk

= 0 (3.1)

and 3.1 is solved for the conservative flow variables U = [ρ ρv1 ρv2 ρv3 ρE]T ,
where ρ stands for the fluid’s density, vk are the Cartesian velocity components, E
the total energy per unit mass and p the pressure. τ is the pseudo-time step and
xk the Cartesian coordinates. f inv

nk and fvis
nk are the inviscid and the viscous fluxes,

respectively. The term fvis
nk involves the stresses which are given by the following

formula:

τkm = (µ+ µt)

(
∂vk
∂xm

+
∂vm
∂xk

− 2

3
δkm

∂ve
∂xe

)
(3.2)

where μ and µt represent the dynamic and turbulent viscosity. δkm is the Kronecker
delta.

22

3.2 Turbulence Model

The turbulence is modeled using the one equation Spalart-Allmaras model. It solves
the equation 3.3 presented swiftly for the sake of completeness. For more information
about the equation terms, one must see [41].

∂(ρν̃)

∂τ
+

∂(ρν̃vk)

∂xk

− ∂

∂xk

[
ρ (ν + ν̃)

∂ν̃

∂xk

+ cb2
∂ν̃

∂xk

∂ν̃

∂xk

]
− P̃ν̃ +Dν̃ = 0 (3.3)

It is solved by computing the ν̃, which is then used to obtain the turbulent viscosity
µt using

µt = ρν̃fυ1 (3.4)

where the term fυ1 can also be found in [41].

3.3 Transition Model

The transition point, where the laminar flow becomes turbulent and vice-versa, is
critical in ASO. The model used to simulate this phenomenon is the γ− R̃eθ transi-
tional model [42], which solves the following two equations: the one of intermittency
γ, and the one of the transition momentum thickness Reynolds number R̃eθ.

∂(ργ)

∂τ
+

∂(ρvkγ)

∂xk

− ∂

∂xk

[(
µ+

µt

σf

)
∂γ

∂xk

]
− Pγ +Dγ = 0 (3.5)

∂(ρR̃eθt)

∂τ
+

∂(ρvkR̃eθt)

∂xk

− ∂

∂xk

(
σθ,t(µ+ µt)

∂R̃eθt

∂xk

)
− Pθ,t −DSCF = 0 (3.6)

where the production and destruction terms are the following:

Pγ = ρcα1FlengthFonset

[
ϕ−300

(
ζ,

M
√
MRe

20

)]
√
γ(1− cϵ1γ) (3.7)

Dγ = ρcα2Fturb

[
ϕ−300

(
ζ,

M
√
MRe

20

)]
γ(cϵ2γ − 1) (3.8)

23

Pθ,t = ρ
cθ,t
T

(
Reeqθt − R̃eθt

)
(1− Fθt) (3.9)

DSCF = cθ,t
ρ

T
ccrossflow min

(
ReSCF − R̃eθt, 0

)
Fθt (3.10)

ReSCF = −35.088 ln

(
hrms

θt

)
+ 319.51 + f(DHCF+)− f(DHCF−) (3.11)

The model closure constants are ca1 = 2 , ca2 = 0.06, cε1 = 1, cε2 = 50, cθ,t = 0.03,
ccrossflow = 0.6, σθ,t = 2, σf = 1. The γ field, after being computed, is being
used inside the Spalart-Allmaras model equation, and, in particular, by affecting
the production term P̃ν̃ as shown in

P̃ν̃ = γρcb1S̃ν̃. (3.12)

3.4 The flow solver - PUMA

In this Diploma Thesis, the flow field around an airfoil and a wing is simulated, as
stated above, using the compressible, GPU-accelerated flow solver PUMA. First the
eqs. 3.1 3.3 3.5 and 3.6 are discretized using the finite volume method, and then,
the discretized equations are solved using a pseudo-time marching algorithm, specif-
ically a multi-stage Runge-Kutta. The computations are performed on unstructured
meshes that consist of elements such as tetrahedra, pyramids, prisms, and hexahe-
dra. The integration is carried out over vertex-centered finite volumes. Figure 3.1 is
a flowchart respresenting the order that PUMA solves the primal equations on each
iteration.

Figure 3.1: Solution of the Primal equations in every iteration. The 5 Mean Flow
equations are solved producing 5 flow quantities. Next, after Spallart-Allmaras is solved
for ρν̃, the new value for µt is obtrained. Last, the two equations of γ− R̃eθ are solved
for ργ and ρR̃eθ.

24

Chapter 4

UQ Methods

4.1 Introduction to UQ

UQ is a field that utilizes math, statistics, and probability theory to estimate, propa-
gate, and limit uncertainty in system representations, a.k.a. models [43]. Mathemat-
ical models in engineering, healthcare, economics, and many other fields provide the
fundamental information that leads to decision-making [44]. The latter highlights
the importance and need for model reliability and, e.g., in ASO, solution robustness
[45]. Uncertainty can be divided into two types: aleatoric and epistemic. The
word ”aleator” in Latin refers to someone who rolls the dice, and thus, aleatoric
uncertainty is related to the inherently random nature of the system under study.
The word ”ἐπιστήμη” from Greek means knowledge. Hence, epistemic uncertainty is
associated with a lack of knowledge. Aleatoric uncertainty is a type of uncertainty
that cannot be minimized but can be recognized and measured. By contrast, epis-
temic uncertainty can be reduced by improving the data or the information about
the system [46]. UQ, while the heart of RDO, usually increases the computational
cost by orders of magnitude, especially when the optimization is to be carried out
with evolutionary algorithms. This thesis strives to develop surrogate models to
be used as low-cost evaluation tools in quantifying the end-to-end propagation of
uncertainty (UQ) within an objective function F (the output of the CFD model).
To do so, it is necessary to quantify the model’s output fluctuations, as noted in
chapter 1, usually computing their first two statistical moments: the mean (μ) and
the variance (σ2). The two methods employed for the task of UQ are described in
the following.

25

4.2 Monte Carlo Simulation

The Monte Carlo method is a computational technique used to estimate an uncer-
tain event’s possible outcomes or approximate solutions to mathematical problems
that include random variables. It’s named after the famous gambling location in
Monaco and was invented in the late 1940s by Stanislaw Ulam while he was work-
ing on nuclear weapon projects at the Los Alamos National Laboratory [47, 48].
First, the predictive model is defined along with its inputs and outputs. Next, the
user has to model the uncertain input variables, each with a probability distribution
that describes it better. Additionally, random sampling is applied to the input vari-
able space, and random samples of every uncertain variable w.r.t. its corresponding
probability distribution are obtained. Finally, the model evaluates the samples, to
compute the outputs for each sample; upon these, statistical conclusions can be
drawn. Due to the law of large numbers, it is evident that the bigger the sample
size, the more accurate the results of the Monte Carlo. However, the large number
of model evaluations demands a lot of computational power and often makes the
method prohibitively expensive. The problems studied in this thesis, in which com-
putationally expensive CFD codes hold the role of the high-fidelity model, fall under
the last category, and so the MC method is mainly used with surrogate models.

Figure 4.1: Monte Carlo Simulation example. Early stage of the simulation (left),
final stage of the simulation (right). The goal is to calculate the value of π. The
square’s side length is 1 for simplicity. The area of the quarter circle is π

4 = π
4 · 12.

Points are uniformly distributed within the square, and the model checks if each point
falls inside the quarter circle. Let r be the number of points inside the quarter circle
and n be the total number of points. The fraction r

n approximates the actual area ratio
π
4
1 as n increases. Figure adapted from [49]

In this work, the use of MC for UQ, assuming a problem of M uncertain variables,

26

goes as follows. Initially, a number of random vectors (N) must be drawn from
their joint distribution D1 ⊗ · · · ⊗ DM . To do so, N random numbers are sampled
from each distribution Di, leading to the creation of the following uncertain sample
vectors:

x⃗(1) =
(
x
(1)
1 · · · x

(1)
M

)
,

x⃗(2) =
(
x
(2)
1 · · · x

(2)
M

)
,

...

x⃗(N) =
(
x
(N)
1 · · · x

(N)
M

)
Subsequently, some model, e.g., the RANS solver, has to compute their correspond-
ing responses (QoIs):

y⃗(j) = F (x⃗(j)) , j ∈ 1, . . . , N

Hence, a DB is created upon which the well-known statistical formulas discussed in
A.1.1 are assessed to obtain the mean and standard deviation of each QoI.

4.3 Non-Intrusive Polynomial Chaos Expansion

PCE originates from Norbert Wiener’s publication ”The Homogeneous Chaos” [50]
in 1938. It is about the orthogonal decomposition of a random variable into a suit-
able series, aiming to determine analytically the statistical moments of the truncated
expansion. The maximum degree of the expansion is known as ”chaos order”. PCE
is divided into two categories: the intrusive (iPCE) and the non-intrusive (niPCE).
Their names are related to whether the user needs to modify the primal solver or not.
The iPCE generally performs better in terms of cost, yet its use is more complex,
and one must have access to the source code. This thesis focuses only on niPCE; in
particular, two variants of the latter are utilized for UQ. In the niPCE, the objective
function (QoI) is handled as a ”black box” and expanded as a linear combination of a
family of orthogonal polynomials. At first, PCE could only work with random vari-
ables that followed the Gaussian distribution, employing the Hermite polynomials,
but nowadays, it can be applied to uncertain variables of any distribution. This gen-
eralization of PCE states that for each Probability Density Function (PDF) used to
model the uncertain variables, there is a specific corresponding family of orthogonal
polynomials appropriate for expanding the QoI. However, throughout the present
work, they are all assumed to be normally distributed by assessing the Three Sigma
rule for modeling the uncertain variables. The two niPCE variants (that are being
explained later on in the present chapter) are related to the mathematical approach
of some calculations required by the method and are known as Gauss Quadrature
niPCE (gPCE) and Regression assisted niPCE (rPCE).

27

Considering a problem with only one uncertain variable x ∈ R which follows a PDF
defined as w(x) and P = {p0(x), p1(x), . . . , pk(x), . . . } a family of polynomials pi,
with i being the maximum rank of each polynomial and k the chaos order. In accor-
dance with the PC theory, F (x) can be approximated by a different function f(x)
with the same stochastic input x, defined as a linear combination of the polynomials
belonging in P :

F (x) ≈ f(x) =
∞∑
i=0

aipi(x) (4.1)

where ai ∈ R and f : R → Y ⊆ R. As things stand, the cut-off point of the
expansion or chaos order (k) must be selected. It’s obvious that k represents the
accuracy level of the truncated expansion, and a bigger k corresponds to better
accuracy yet with increased computational cost.

The n-th statistical moment of the set Y can be computed as:

⟨yn⟩ =
∫
D

(f(x))nw(x)dx =

∫
D

(
k∑

i=0

aipi(x)

)n

w(x)dx

⇒ ⟨yn⟩ =
∫
D

(
k∑

i1=0

ai1pi1(x)

)
· · ·

(
k∑

in=0

ainpin(x)

)
w(x) dx

⇒ ⟨yn⟩ =
k∑

i1=0

· · ·
k∑

in=0

ai1 . . . ain

∫
D

pi1(x) . . . pin(x)w(x)dx (4.2)

Due to its polynomial nature, the integral in eq. 4.2 can be solved analytically.
Thus, any statistical moment of the function F can be computed. Moreover, the
equation becomes even simpler by making P a family of orthogonal polynomials.

4.3.1 Orthogonal Polynomials

As mentioned above, the most important realization is that for every PDF, w(x),
there is a corresponding family P of orthogonal polynomials. This type of polyno-
mials is characterized by the property that their inner product (Galerkin projection)
w.r.t w(x) reads:

⟨pi(x), pj(x)⟩w =

∫
D

pi(x)pj(x)w(x) dx = ⟨pi(x), pi(x)⟩wδji (4.3)

where δji is the Kronecker delta:

28

δji =

{
0, for i ̸= j

1, for i = j

For i = j, eq.4.3 becomes:

⟨pi(x), pj(x)⟩w =

∫
D

P 2
i (x)w(x) dx = ∥pi∥2w = γi (4.4)

In this case, the Galerkin projection is equal to the w-norm, and the normalization
metric

√
γi of the pi polynomial is defined. The

√
γi is named after the fact that it’s

utilized to normalize the polynomials by creating the following condition.

When ∥pi∥2w = 1, then, the orthogonal polynomials are also normalized and so, are
now called ”orthonormal”.

It is highlighted once more that each stochastic distribution corresponds to a specific
family of orthogonal polynomials in a particular domain and with a specific PDF,
w(x). The most common ones are in table 4.1.

Distribution Probability
Density

Orthogonal
Polynomials

Support Range

Normal 1√
2π
e−x2/2 Hermite Hn(x) [−∞,+∞]

Uniform 1
2

Legendre Pn(x) [−1,+1]

Beta (1−x)α(1+x)β

2α+β+1B(α+1,β+1)
Jacobi P

(α,β)
n (x) [−1,+1]

Exponential e−x Laguerre Ln(x) [0,+∞)

Gamma xke−x

Γ(k+1)
Generalized La-
guerre L

(k)
n (x)

[0,+∞)

Table 4.1: Distributions, their densities, orthogonal polynomials, and support ranges.

The last useful feature is that all of the aforementioned polynomial families P share
the following characteristic: their first polynomial of zero degree is always

p0(x) = 1 (4.5)

In the case of normally distributed random variables, the Hermite polynomials are
utilized, and this scenario is illustrated for a 1D Hermite polynomial. The weight
function (PDF) of a single random variable that follows the Gaussian distribution
is given by:

29

N(µ, σ) : w(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ)

2

(4.6)

where μ and σ are the variable’s mean and standard deviation, respectively. The
”probabilistic” Hermite polynomials [5] are presented:

H0(x) = 1,

H1(x) = x,

H2(x) = x2 − 1,

H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3,

H5(x) = x5 − 10x3 + 15x,

...

The recurrence relation is given by:

Hk+1(x) = xHk(x)− kHk−1(x) (4.7)

Their w-norm is:

∥Hk∥2w = γk = ⟨Hk(x), Hk(x)⟩w =

∫ ∞

−∞
H2

k(x)w(x) dx = k! (4.8)

Finally, this scenario can also be further simplified by dividing every polynomial with
the appropriate normality metric, obtaining the orthonormal Hermite polynomials:

H̃k(x) :=
Hk(x)

∥Hk∥w
=

Hk(x)√
k!

⇒ ∥H̃k(x)∥2 = γk = 1, ∀k = 0, 1, 2, . . . (4.9)

4.3.2 Mean and Variance

Although this thesis does not discuss the categories of statistical moments in detail,
it should be clarified that equation 4.2 calculates the m-th raw statistical moment.
The first raw statistical moment is the mean. However, the second raw statistical
moment is not the variance. Its quantity is used along with the mean to produce

30

the second central statistical moment, known as variance [51]. This clarification
is crucial as the terms ”first” and ”second” statistical moments are normally used
to describe the mean and variance. Thus, the mean and variance of a set Y are
connected with the following formula:

σ2
Y = ⟨y2⟩ − µ2

Y (4.10)

where ⟨y2⟩ is the second raw statistical moment.

The first statistical moment derived from eq. 4.2 is the following:

µY = ⟨y⟩ =
∫
D

(f(x))1w(x) dx =

∫
D

f(x)w(x) dx

=

∫
D

(
k∑

i=0

aiPi(x)

)
w(x) dx =

k∑
i=0

ai

∫
D

Pi(x)w(x) dx (4.11)

Therefore, since
∫
D
w(x) dx = 1, and P0(x) = 1, there is:

∫
D

pi(x)w(x) dx =

∫
D

pi(x) · 1 · w(x) dx =

∫
D

pi(x)p0(x)w(x) dx = δ0i

and so, equation 4.11 becomes: µY = a0.

The second statistical moment, derived also from eq.4.2, is:

⟨y2⟩ =
∫
D

(f(x))2w(x) dx =

∫
D

(
∞∑
i=0

aipi(x)

)2

w(x) dx

=
∞∑

i1=0

∞∑
i2=0

ai1ai2

∫
D

pi1(x)pi2(x)w(x) dx

which due to the orthogonality property, eq.4.3, becomes:

⟨y2⟩ =
∞∑
i=0

a2i

∫
D

pi(x)
2w(x) dx =

∞∑
i=0

a2i ∥pi(x)∥2w

and by exploiting the orthonormal polynomials, eq.4.3.1, this equation is further
simplified as:

31

⟨y2⟩ =
∞∑
i=0

a2i (4.12)

The standard deviation is computed by eq. 4.10 as follows:

σY =
√

⟨y2⟩ − µ2
Y =

√√√√ ∞∑
i=0

a2i − a20 =⇒ σY =

√√√√ k∑
i=1

a2i (4.13)

4.3.3 PCE Coefficients and Generalization to Multiple Di-

mensions

The first approach in calculating the k+1 coefficients ai, i = 0, 1, ..., k uses the
polynomials’ inner product along with the orthogonality and normality properties.

⟨f(x), p̃i(x)⟩w =

∫
D

f(x)pi(x)w(x) dx ≈
∫
D

F (x)pi(x)w(x) dx (4.14)

⟨f(x), p̂i(x)⟩w =

〈
k∑

λ=0

aλp̂λ(x), p̂i(x)

〉
w

= ai∥p̂i(x)∥2w = ai (4.15)

and from eqs. 4.14 and 4.15, it is:

ai =

∫
D

F (x)p̂i(x)w(x) dx (4.16)

Hence, by solving the integral, one can obtain the PCE coefficients.

So far, all discussions refer to 1Dimensional functions approximated by univariate
orthonormal polynomials. It is proven [5] that PCE’s governing equations generalize
to multiple dimensions as follows:

Let F be the function that depends on the uncertain variables ci ∈ [1,M]. F can be
approximated by niPCE as:

F (c⃗) ≈
Q−1∑
i=0

JiPi(c⃗) (4.17)

where Q = (M+k)!
M !k!

is the largest degree of the multivariate orthonormal polynomials

32

Pi(c⃗), and Ji are their corresponding weights. The multivariate polynomials Pi(c⃗)
are constructed through the products of univariate orthogonal polynomials of the
same family. The mean and standard deviation are computed as follows:

µF = J0, σF =

√√√√Q−1∑
i=1

J2
i (4.18)

and eq.4.16 becomes:

Ji =

∫
· · ·
∫

F (c⃗)Pi(c⃗)W (c⃗) (4.19)

where W (c⃗) is the product of the PDFs wi, i ∈ [1,M] of all uncertain variables.

4.3.4 Integration using Gaussian Quadrature

The focus is on how integrals 4.16, 4.19 can be calculated with the less F’s evalua-
tions. A reminder that in ASO problems, F refers to the primal problem, and one
evaluation of F corresponds to 1 TU. Therefore, the aim is to compute the integral
most efficiently. The numerical method employed for this task, taking advantage
of the fact that the integral of interest is a weighted polynomial, is the Gaussian
Quadrature (GQ). Hence, this first niPCE variant can be found in the name of
gPCE throughout this thesis.

In simple terms, the GQ method requires the calculation of F at several zj points
(known as gauss nodes), which are the pk+1(x) polynomial’s roots and their popula-
tion (n) is equal to the degree of that polynomial. Every F (zj) is multiplied with a
corresponding weight ωj, where both gauss nodes and weights are selected in a way
aiming to minimize the GQ method’s error, and the sum of all products, represents
the integral’s result. For example, if the function of interest is g(x)= w(x)f(x), where
w(x) is the previous weight function and f(x) is the polynomial approximation of
F(x), the method stands as follows:

∫
D

g(x) dx =

∫
D

w(x)f(x) dx =
n∑

j=1

ωjf(zj) (4.20)

Gauss Quadrature is divided into slightly different variations, depending on the
polynomial family Pi(c⃗) utilized to expand F (Hermite, Legendre, Jacobi, etc.). For
the currently discussed scenarios concerning only normal distributions, the integra-
tion method is known as Gauss-Hermite Quadrature(GHQ). Last, the GQ method
is accurate, yet it has a significant disadvantage. In order to compute Ji, eq.4.19,
(k + 1)M evaluations of F are required. This exponential relationship between the

33

cost and the number M of the uncertain variables showcases the so-called ”curse
of dimensionality” involved in the method. The latter makes the gPCE method
prohibitively expensive for problems with even a moderate number of uncertain
variables.

4.3.5 PCE Coefficients with Regression Approach

The second way to compute the Ji, namely the second niPCE variant, denoted
as rPCE, is a method based on linear regression [52, 53, 54]. It does not require
numerical integration, and it practically uses the eq. 7.21 directly to calculate the
coefficients. In particular, F is being computed at L different c⃗ (uncertain variable
vectors samples). Having done so, equation 7.21 is utilized to form a system of L
equations and Q unknowns.

P0(c1) P1(c1) · · · PQ(c1)

P0(c2) P1(c2) · · · PQ(c2)
...

...
. . .

...

P0(cL) P1(cL) · · · PQ(cL)

J0

J1
...

JQ

 =

F (c1)

F (c2)
...

F (cL)

 (4.21)

L can not be lower than Q (Q = (M+k)!
M !k!

). If L=Q, the system can be solved directly.
One may observe that rPCE is not subjected to the ”curse of dimensionality” like
gPCE as the number of F evaluations is not exponentially related to M. Aiming for
more accuracy, F is usually oversampled by some oversampling ratio, e.g., L=3Q, and
the system becomes overdetermined. Then the system’s solution must be obtained
with regression, commonly using the least squares method. The arising question
is how these collocation points must be selected ? In the present work, rPCE
utilizes the output of F evaluated on GQ nodes or on nodes obtained with the Latin
Hypercube Sampling (LHS) method.

34

Chapter 5

UQ in an Airfoil Case

This chapter assesses the use of DNNs for UQ in the case of a flow problem around
an isolated airfoil. The DNNs are compared with the CFD and the surrogate RBFN
used in [54] for the same purpose. By extending the work of [54], the DNNs are
trained and presented next to the RBFNs. Four uncertainties associated with four
(M=4) constants (ca1, ca2, cε2, cθ,t) of the γ − R̃eθ transition model are considered.
The latter were selected as the sources of uncertainty in the model, as they were
calibrated based on empirical information and, thus, might not be best-suited for
some other cases. The aim is to quantify their impact on the lift and drag coefficients
(CL and CD) of the airfoil. In specific, all uncertain variables are assumed to be
normally distributed around their nominal values (mean values) with arbitrarily
chosen (10% of their mean values) standard deviations (figure 5.1).

ca1 ∼ N (2.0, 0.2)

ca2 ∼ N (0.06, 0.006)

cε2 ∼ N (50.0, 5.0)

cθ,t ∼ N (0.03, 0.003)

Figure 5.1: NLF(1)-0416 Airfoil Case. Uncertain variables

The models, are trained to receive the uncertain variable vectors as inputs, and
predict the, otherwise computed by running an expensive CFD code, desired QoIs.
Moreover, utilizing the surrogates, a sensitivity analysis is conducted for the three
UQ methods under consideration, as this is much cheaper (nearly free with a trained
surrogate) than doing this with the CFD code.

35

5.1 The NLF(1)-0416 Airfoil

5.1.1 Computational Mesh and Aerodynamic Polar Diagram

Initially, a C-type structured mesh of 705x97 nodes, formed by quadrilaterals, (figure
5.2) is used, which was found in [55], a transition modeling workshop. PCOpt’s in-
house GPU-accelerated PUMA software works only with unstructured mesh, so the
aforementioned structured mesh is handled as an unstructured one by the CFD
code.

Figure 5.2: NLF(1)-0416 Airfoil Case. Left: computational mesh around the Airfoil.
Right: close-up view of the mesh near the Airfoil.

The turbulence was modelled with the one equation Spalart-Allmaras turbulence
model, and the transition effect with γ − R̃eθ transition model. The turbulence
viscosity (illustrated, for 4 AoA, in figure 5.5) has very small values in areas with
laminar flow and its magnitude gets higher in the turbulent flow part.

To validate the results of the CFD code in the case of a 2D airfoil, one should
generate the aerodynamic polar diagram and compare it with experimental data.
An aerodynamic polar is a graphical representation that illustrates the aerodynamic
characteristics of an airfoil or wing section at various Angles of Attack (a). This
plot typically displays the three key aerodynamic coefficients: lift coefficient (CL),
drag coefficient (CD), and moment coefficient (CM).
Experimental data for the NLF(1)-0416 at flow conditions M∞ = 0.3 and Rec =
6 ·106 can be found in [56]. CFD runs took place for the extracted angles, having the
turbulence and transition models enabled, and the CL-a is plotted and compared
with experimental data (figure 5.3).

36

Figure 5.3: NLF(1)-0416 Airfoil Case. CL across a range of angles of attack. The
present results accurately match the experimental data before the stall effect occurs. At
the so-called critical angle of attack, the flow becomes massively separated and, after
that, there is a noticeable decrease in CL. One can observe some differences between
experimental and present data in this area.

As regards the CD and CM , they were also computed for the same angles and are
presented on top of experimental data (figure 5.4).

Figure 5.4: NLF(1)-0416 Airfoil Case. CD (left) and CM (right) across a range of
angles of attack. On the left, the data also fit very well with each other before the stall
effect. On the right, where the CM about the quarter chord point is plotted, a relatively
small difference can be seen.

37

Figure 5.5: NLF(1)-0416 Airfoil Case. Turbulent viscosity (µt) fields at four angles
of attack for M∞ = 0.3 and Rec = 6 · 106. The µt fields show where the transition
from laminar to turbulent flow occurs. By increasing the AoA, especially from 5◦ to
16◦, the µt increases at the rear half of the Airfoil and the turbulent zone becomes
wider.

5.1.2 Case Description

The following studies are dealing with the NLF(1)-0416 airfoil for two different flow
conditions, as in Table 7.3. F1 stands for ”Flow 1” and F2 for ”Flow 2”. The two
subcases are presented and discussed simultaneously.

38

Table 5.1: NLF(1)-0416 Airfoil Case. Flow conditions

Flows M∞ a∞ Rec

F1 0.1 2.03o 4× 106

F2 0.3 4.07o 6× 106

The turbulence intensity is Tu=0.15% and the maximum dimensionless wall distance
y+ = 0.74, in both cases.

Initially, aiming to create the training DB, for each flow condition, the Latin Hyper-
cube Sampling (LHS) method was used to sample 40 vectors (with 4 entries each)
from the uncertain variable’s space. Next, the RANS solver computed the flow and
two training DBs were created. The normalized input features are visualized in a
parallel coordinates plot (figure 5.6). The latter provides a qualitative understanding
of the relationships between all datapoints.

Figure 5.6: NLF(1)-0416 Airfoil Case. The effectiveness of Latin Hypercube Sam-
pling method in covering the input space can be observed.

From the 40 Training Patterns in both flow conditions, CL and CD are plotted
together and presented in figure 5.7.

39

Figure 5.7: NLF(1)-0416 Airfoil Case. CL vs CD plots for F1(left) and F2(right).
One may observe that the two quantities vary inversely.

Figure 7.7 illustrates the skin friction coefficient (Cf) distributions, plotted for the
nominal values of the uncertain variables along with the ones produced by the 40
additional samples. The steep lines in this plot correspond to transition points
from laminar to turbulent flow. One may easily see that small changes in the
uncertain variables shift the transition onset considerably. The latter highlights the
great sensitivity of the computed results depending on the aforementioned empirical
constants to be used in the γ − R̃eθ transition model.

Figure 5.8: NLF(1)-0416 Airfoil Case. Cf distributions for both flow conditions.
Rather small changes in the uncertain variables pose a great impact on the transition
point. In the second case a greater turbulent region around the Airfoil section can be
observed. The latter primarily occurs due to the higher angle of attack.

40

5.2 The Low Cost Surrogates

DNNs were trained separately for the two flow conditions, and their performance
was checked on a sizeable unseen dataset. The aim was, for each case, to obtain
DNNs that could predict the CL and CD of the airfoil, receiving as inputs the
aforementioned four uncertain variables.

5.2.1 Datasets and Preprocessing

The following lines further analyze the data used for the training, retrieve additional
insights, and present how the testing phase was carried out.

Training

Along with the first DB of 40 TP, on which every model of this chapter was finetuned
(selection of architecture and hyperparameters), four more DBs of different sizes
were also generated using LHS. This step was taken to examine the generalization
capabilities of model configurations optimized for a specific DB, when trained on
different (size-wise) ones. This process was carried out for both flow conditions.
The additional DBs were all independent of each other (meaning that the smaller
ones were not subsets of the larger ones) and were composed by 20, 30, 50, and 60
TP, respectively. It is underlined that all models were finetuned in the DB of 40TP,
solely for F1, and that all the additional DBs were used to train the predetermined
DNN configurations, and check their performance. Regarding the RBFN surrogates,
from each different DB, one two-output RBFN was trained. Concerning the DNN
models, the following dilemma arises for each DB: making one DNN predict the two
QoIs or two separate DNNs for the same task. In this chapter, two separate DNNs
were created for the same task.

First, to better understand the data, a check for correlations among them was carried
out. The DBs of 40, 50, and 60TP were selected arbitrarily out of all the DBs,
and only for them, correlation matrices were generated, illustrating the Pearson
Correlation Coefficient (PCC) (explained in appendix A.1.3)) between all features
in each DB. Even though PCC assumes only linear relationships, it is presented as
a tool that could indicate some less relevant features or possible noise in the data.
These features could be dropped to make the model(s) less expensive or even more
accurate. For simplicity, the matrices are visualized as colored heatmaps (figure
5.9), where colors are in complete accordance with the PCC values.

41

Figure 5.9: NLF(1)-0416 Airfoil Case. PCCs in heatmaps for the DBs of 40, 50,
and 60TP. F1 on the right and F2 on the left. A consistent pattern was observed.
The most substantial linear influence in the QoIs was provided by the cε2 and ca2
constants, and this is true because of the higher absolute PCC values one may easily
see by looking at the output columns across all heatmaps (except the value of 1.00 that
displays the PCC between the outputs themselves). Ca1 and Cθ,t displayed minimal
PCC values regarding the QoIs and, thus, no linear correlations. This observation
might be related to ”Generally, cε2 and ca2 are the key parameters of the γ − R̃eθ
model.” stated in [17].

Lastly, it must be noted that after the DBs were non-dimensionalized, the fitted
scaling models (known as scalers in Python) employed for the latter were saved for
later use, coupled with DNNs trained on the DB where the scaler was fitted. Each
scaler is used every time the trained DNN is called to scale every data point before
it gets fed into the model and, also, to unscale back the model’s predictions, using
information derived from the initially available DBs, used for training.

42

Testing

As done in [54], another 300 value-sets of the 4 uncertain variables, were randomly
generated (following the normal distribution) and evaluated using both the surro-
gates and the high-fidelity RANS solver (figures 5.10 and 5.11), aiming to assess the
performance of each trained model on this larger unseen dataset.

Figure 5.10: NLF(1)-0416 Airfoil Case. Sampled out of the normal distribution,
the 300 uncertain vectors, computed by the CFD, provided the CL and CD results
for both flow conditions. In F1, both QoIs appear to display a downward and upward
trend, respectively. Additionally, only 2 out of the 300 data points were observed to fall
outside the interval of [μ-3σ,μ+3σ] in F1 and, despite the more significant variance
of the data, in F2, all data points fell inside the interval under consideration.

43

Figure 5.11: NLF(1)-0416 Airfoil Case. The 300 CFD-computed CL and CD dis-
tributions for both subcases. The broader distribution of F2 results is evident here as
well. The QoIs of F2 display a distribution resembling more to the normal one com-
pared to F1 results, which seem to be right and left-skewed distributions, respectively.

5.2.2 DNN Configuration and Metrics

Initially, through trial and error, many DNN configurations were manually created.
The objective behind this approach was to rapidly test such a model’s capabilities,
aiming to, later on, deliver the task of finding even better configurations to the
optimization software EASY. All models were trained in TensorFlow using the model
checkpoint callback to save the model that produced the lowest validation loss across
all epochs. Every DNN configuration was fine-tuned regarding the F1 and then was,
also trained in F2. The training phase was carried out for 1500 epochs, and, as
regards the computational cost, every model was trained on a GPU RTX3060 for
less than a minute. Thus, the computational cost for training the two models is
less than two minutes. Considering the cost of creating the DB that is equal to
40TP, using the RANS solver, is about 10 hours, in this particular scenario, the
DNNs’ training costs can be viewed as trivial. Moreover, the validation split was
selected at 0.1, meaning that 90% of each DB was used for training and 10% for
validation. Lastly, the batch size was set to match the entire dataset, as changes
in this parameter were observed to have minimal impact on the model’s accuracy;

44

rather, this was due to the small DB sizes. The first best-performing configuration
was the following:

Table 5.2: NLF(1)-0416 Airfoil Case. Manually-found DNN configuration

Layers Neurons Activation Function Batch Size Loss

7 (4, 128, 64, 32, 64, 1) ReLU/tanh Training Patterns MAE

This architecture proved to work well in predicting both CL and CD. Overall, four
models were trained separately, with two models for each flow condition (F1 and
F2). Their corresponding learning curves are presented in figure 5.12 and their error
metrics in tables 5.3 and 5.4.

Figure 5.12: NLF(1)-0416 Airfoil Case. Learning curves of the first well-performing
manually created DNNs. The upper plots concern F1 and the lower ones F2. Models
for: CL on the left and CD on the right.

45

Table 5.3: NLF(1)-0416 Airfoil Case. DNN training phase error metrics

DNN Train Loss (MAE) Validation Loss (MAE)

F1-CL 0.0132 0.0176

F1-CD 0.00613 0.01786

F2-CL 0.0199 0.0189

F2-CD 0.00645 0.07023

Table 5.4: NLF(1)-0416 Airfoil Case. DNN testing error metric

DNN Test Loss (MAPE)

F1-CL 0.059%

F1-CD 0.38%

F2-CL 0.085%

F2-CD 0.89%

It is evident (at least for most of the models in figure 5.12) that, around 200 epochs,
the validation loss stopped decreasing. This means that if the training had stopped
at about that point, the results would still be of the same order of magnitude.
Additionally, as regards the testing dataset, it was decided to display the MAPE
error metric, aiming for a more interpretable model measure. The CL coefficient
indicated a more accurate approximation by roughly ten times, compared to the CD

across both flow conditions. This observation was also consistent with the RBFNs
in [54]. However, for both QoIs, the testing error metric seems very satisfactory.

Next, the optimization software was exploited by being provided with the previous
well-performing architecture as an initial candidate solution. The aim was to find,
across the same amount of epochs, DNN architectures that would produce minimum
validation losses. Hence, the validation loss metric (monitored by model checkpoint)
was set as the objective function of this hyperparameter optimization.

The design variables were: the activation function types, one for every hidden
layer and one for the output layer, the number of hidden layers, and the number
of neurons per layer as a power of 2.

The DNN architecture presented in table 5.5 was found by setting EASY to search
for the best model CD. However, this resulting architecture also proved to perform
well in predicting both QoIs, so it is illustrated. As regards the search for the best
model CL, EASY produced some, only slightly better than the latter, architectures,
which, though, displayed significantly lower performance in predicting CD. Thus,

46

they were not considered worthy of inclusion in this thesis. It’s important to point
out that manual and EASY-found DNN architecture results were of the same order
of magnitude and not very far from each other. Nevertheless, the architecture found
by EASY was better than the manually created one in every error metric (44-82%
better). The final statement is confirmed by observing their test losses (tables 5.4
and 5.7) along with their learning curves, where in the ones in figure 5.13 (represent-
ing the EASY-found DNNs), the validation losses delay noticeably in reaching the
plateau. Last, regarding the optimization cost, it must be noted that to optimize a
single configuration, EASY needs around 6 hours, which was paid only once for F1,
as stated above.

Table 5.5: NLF(1)-0416 Airfoil Case. Easy-found DNN configuration

Layers Neurons Activation Function Batch Size Loss

8 (4, 256, 512, 4096, 64, 32, 512, 1) GELU/RelU Training Patterns MAE

Figure 5.13: NLF(1)-0416 Airfoil Case. Learning curves of the architecture that
EASY found. The upper plots are for F1 and the lower ones for F2. Models for: CL

on the left and CD on the right.

47

Table 5.6: NLF(1)-0416 Airfoil Case. DNN training phase error metrics

DNN Train Loss (MAE) Validation Loss (MAE)

F1-CL 0.00517 0.00438

F1-CD 0.00647 0.00195

F2-CL 0.00519 0.00315

F2-CD 0.01433 0.00269

In table 5.6, it can be seen that some of the models displayed a lower validation loss
than the train loss. The latter can be considered a totally random event, probably
due to the limited validation data. As regards the testing metrics of table 5.7, a
complete consistency with the ones in the previous manual architecture (table 5.4)
can be noticed.

Table 5.7: NLF(1)-0416 Airfoil Case. DNN testing error metric

DNN Test Loss (MAPE)

F1-CL 0.021%

F1-CD 0.2%

F2-CL 0.015%

F2-CD 0.5%

Additionally, aiming to compare the above (EASY-found) best-performing DNNs
with the existing RBFNs trained with an identical DB of 40 TP, it was decided to
present their corresponding prediction vs actual value plots, one on top of the other.
The DNNs seem superior across all QoIs. (figure 5.14).

48

Figure 5.14: NLF(1)-0416 Airfoil Case. Prediction vs. actual value plots for DNNs
and RBFNs. The upper plots concern F1 while the lower ones F2 (namely the two flow
conditions). The plots showcase the divergence of each model’s predictions from the
perfect predictions. The two one-output DNNs are placed on top of the corresponding
RBFN for both cases. The DNNs outperform the RBFNs consistently across every
QoI.

5.2.3 DNN and RBFN Test Metrics Across Different DBs

Next, DNN and RBFN configurations are utilized to train models across all the
aforementioned DBs. The models are also checked in DB-300. To clearly understand
each model’s performance and compare it to each other, it was decided to present
their testing error metric (MAPE) side by side.

49

Figure 5.15: NLF(1)-0416 Airfoil Case. DNN vs. RBFN testing error metric. All
models of each subcase were trained in the five aforementioned DBs and tested on the
same DB of 300 samples. Upper plots concern F1 and lower ones F2. The superiority
of the DNN predictions is obvious.

In figure 5.15, the models generally display a decreasing tendency in their test error
metric as the number of TPs increases, as expected. This observation is not univer-
sal, though, as regards the smaller DBs. More precisely, the DB of 30TP is noticed
to produce by far the worst DNN model CD. These two DNNs are the only ones to
get outperformed by the RBFN’s CD predictions. The rest of the DNNs, especially
the ones trained on the larger DBs, demonstrate excellent performance, placed next
to the RBFNs. For the DBs of 40, 50, and 60TPs, the DNN’s results are about one
order of magnitude better than those produced by the RBFNs.

5.3 UQ with DNN

By employing the DNNs trained on the DB of 40TP as surrogates, all UQ methods
described in chapter 4 are carried out. The total cost of the surrogates is 40 TU,
which is paid upfront (DB creation). The usage of these models is essentially free,
which allows the UQ-DNN methods to be conducted for several samples without
concern for the cost. Due to its large demands in computations, the Monte Carlo

50

method is only carried out with the surrogate and for the previously CFD-computed
testing DBs of 300 samples (a generally insufficient number of samples for such a
method). The UQ-DNN and UQ-CFD comparison is mainly focused on the non-
intrusive, Gauss Quadrature, and Regression-Based PCE methods.

5.3.1 Monte Carlo with DNN

Starting from 103 random samples w.r.t normal distribution, the MC method’s sen-
sitivity to sample size is checked. In tables 5.8 and 5.9, it is presented that for
both subcases, increasing the sample size provides no accuracy improvement since
the results for sample sizes up to 105 are almost identical. Thus, the method is
additionally conducted for significantly smaller sample sizes to manifest the sample
size that would be considered insufficient.

Table 5.8: NLF(1)-0416 Airfoil Case. MC method for F1:

Method/Tool Time Units µCL σCL µCD σCD

MC-DNN(105) 40 0.7210 0.004965 0.006164 0.0004531

MC-DNN(104) 40 0.7210 0.004924 0.006161 0.000449

MC-DNN(103) 40 0.7210 0.005054 0.006164 0.0004628

MC-DNN(500) 40 0.7208 0.004933 0.006179 0.0004484

MC-DNN(250) 40 0.7205 0.004991 0.006203 0.0004537

MC-DNN(125) 40 0.7210 0.005277 0.006158 0.0004826

MC-CFD(300) 300 0.7208 0.004904 0.006185 0.0004792

51

Table 5.9: NLF(1)-0416 Airfoil Case. MC method for F2:

Method/Tool Time Units µCL σCL µCD σCD

MC-DNN(105) 40 1.0210 0.007038 0.007638 0.0005671

MC-DNN(104) 40 1.0211 0.007035 0.007634 0.0005668

MC-DNN(103) 40 1.0211 0.007163 0.007632 0.0005768

MC-DNN(500) 40 1.0206 0.006888 0.007669 0.0005546

MC-DNN(250) 40 1.0203 0.006968 0.007696 0.000563

MC-DNN(125) 40 1.0213 0.007276 0.007614 0.0005903

MC-CFD(300) 300 1.0206 0.00705 0.007632 0.0005473

Only tiny fluctuations are evident in both flows across all QoIs, even for the 250
samples. Thus, it’s concluded that the present problem doesn’t require considerable
datasets to quantify its uncertainties using the MC method and that the MC-DNN
provides very close results as the MC-CFD. As regards the MC conducted for the
125 samples, the standard deviation values start to diverge noticeably.

5.3.2 UQ using PCE

Gauss Quadrature PCE

First, gPCE-CFD for k = 2 is conducted, and its results are used as a reference.
Next, gPCE-DNN is carried out for chaos orders of k = 2, 3, and 4. This PCE-cost
expression (k + 1)M , which provides the number of objective function evaluations
needed according to chaos order and the number of uncertain variables, is the reason
why gPCE-CFD is avoided for higher chaos orders and these were performed only
with the surrogate.

Table 5.10: NLF(1)-0416 Airfoil Case. gPCE method for F1

Method/Tool Time Units µCL σCL µCD σCD

gPCE-CFD(k = 2, 81) 81 0.7210 0.004923 0.006153 0.0004477

gPCE-DNN(k = 2, 81) 40 0.7210 0.005002 0.006161 0.0004573

gPCE-DNN(k = 3, 256) 40 0.7210 0.004939 0.006163 0.0004511

gPCE-DNN(k = 4, 625) 40 0.7210 0.004973 0.006163 0.0004534

52

Table 5.11: NLF(1)-0416 Airfoil Case. gPCE method for F2

Method/Tool Time Units µCL σCL µCD σCD

gPCE-CFD(k = 2, 81) 81 1.0210 0.006955 0.007603 0.0005399

gPCE-DNN(k = 2, 81) 40 1.0211 0.006978 0.007634 0.0005648

gPCE-DNN(k = 3, 256) 40 1.0210 0.007055 0.007636 0.0005682

gPCE-DNN(k = 4, 625) 40 1.0210 0.007052 0.007636 0.0005683

In tables 5.10 and 5.11, it is evident that gPCE-DNN approximate the gPCE-CFD
results across all QoIs excellently. The increase of chaos order for the gPCE-DNN
present roughly the same results as k=2. The σCD

approximations deviate slightly.
These deviations are negligible but highlighted due to the superior quality level in
the rest of the predictions.

Regression-Based PCE

Next, rPCE is carried out with a chaos order of k = 2. For this method, the 81 CFD-
evaluated GQ nodes are assessed for generating the method’s high-fidelity results.
Using the LHS method, three additional datasets of 70, 140, and 280 samples are
generated and evaluated with the DNNs. The rPCE-DNN is conducted for these
datasets. It is reminded that, for the rPCE with k = 2 and M = 4, the minimum
number of samples needed for the method to be feasible is equal to the number of
PCE coefficients that need to be evaluated. Namely, (3+4)!

3!·4! = 35.

Table 5.12: NLF(1)-0416 Airfoil Case. rPCE method for F1

Method/Tool Time Units µCL σCL µCD σCD

rPCE-CFD(k = 2, 81) 81 0.7208 0.004584 0.006174 0.0004199

rPCE-DNN(k = 2, 70) 40 0.7207 0.004574 0.006231 0.0004271

rPCE-DNN(k = 2, 140) 40 0.7204 0.0044 0.006236 0.0004196

rPCE-DNN(k = 2, 280) 40 0.7205 0.004415 0.006194 0.0004227

53

Table 5.13: NLF(1)-0416 Airfoil Case. rPCE for F2

Method/Tool Time Units µCL σCL µCD σCD

rPCE-CFD(k = 2, 81) 81 1.0209 0.00634 0.007608 0.0004929

rPCE-DNN(k = 2, 70) 40 1.0198 0.005464 0.007685 0.0004631

rPCE-DNN(k = 2, 140) 40 1.0207 0.005712 0.007649 0.0004329

rPCE-DNN(k = 2, 280) 40 1.0207 0.005519 0.007653 0.0004521

The results of rPCE-DNN (tables 5.12 and 5.13) are acceptable but not quite as good
as the ones of the gPCE-DNN. The standard deviation values of the rPCE-DNN,
in F2, are deviating noticeably from the rPCE-CFD ones. Lastly, the rPCE-DNN
proves insensitive to the increase in the oversampling ratio, and mild changes over
the different sampling sizes occur primarily due to the stochasticity of the LHS.

5.4 Aggregated Results

To summarize the present study, the most valuable insights from the conducted UQ
methods are chosen to be presented side by side in tables 5.14 and 5.15. By doing
so, one may observe a more comprehensive comparison between the different UQ
methods.

Table 5.14: NLF(1)-0416 Airfoil Case. UQ methods for F1

Method/Tool Time Units µCL σCL µCD σCD

MC-DNN(500) 40 0.7208 0.004933 0.006179 0.0004484

gPCE-DNN(k = 2, 81) 40 0.7210 0.005002 0.006161 0.0004573

rPCE-DNN(k = 2, 140) 40 0.7204 0.004310 0.006236 0.0004196

MC-CFD(300) 300 0.7208 0.004904 0.006185 0.0004792

gPCE-CFD(k = 2, 81) 81 0.7210 0.004923 0.006153 0.0004477

rPCE-CFD(k = 2, 81) 81 0.7208 0.004584 0.006174 0.0004199

54

Table 5.15: NLF(1)-0416 Airfoil Case. UQ methods for F2

Method/Tool Time Units µCL σCL µCD σCD

MC-DNN(500) 40 1.0206 0.006888 0.007669 0.0005546

gPCE-DNN(k = 2, 81) 40 1.0211 0.006978 0.007634 0.0005648

rPCE-DNN(k = 2, 140) 40 1.0207 0.005712 0.007649 0.0004329

MC-CFD(300) 300 1.0206 0.00705 0.007632 0.0005473

gPCE-CFD(k = 2, 81) 40 1.0210 0.006955 0.007603 0.0005399

rPCE-CFD(k = 2, 81) 81 1.0209 0.00634 0.007608 0.0004929

As mentioned above, all UQ methods carried out with the surrogates produce very
satisfactory results. However, the key conclusions regarding the NLF(1)-0416 case
are drawn and presented in the following points.

• One DNN-training costs less than 1/15 TU, considering that a single CFD run
needs around 15 minutes on the GPU RTX3060, while the training of a single
DNN requires less than 1 minute on the same GPU.

• Taking into account the 300 CFD evaluated samples provide an accurate MC
prediction, this method is the closest to what could be called ”ground truth”.
Nevertheless, these 300 CFD evaluations may not be feasible in a real-life,
more computationally expensive problem.

• The gPCE method outperformed the rPCE with CFD and DNN as evaluation
tools.

• After the MC, the next best choice is the gPCE method (for k=2), which,
coupled with the CFD solver, costs 81 TU. By employing the surrogate DNNs
for UQ, instead of performing the gPCE-CFD(81), the computational cost is
cut down to more than 50%, recalling that the DNN prediction errors can be
considered negligible.

• Considering a RDO scenario using evolutionary algorithms (which usually de-
mand large numbers of objective function evaluations), this 50% cost reduction
in the task of UQ, namely in every iteration, can drastically reduce computa-
tional cost.

• Lastly, it is essential to highlight that the present two separate surrogate mod-
els (CL and CD DNNs), compared with the previously described RBFN for the
same task, have shown to reduce the prediction error for both QoIs by approx-
imately ten times; the price to pay for this is complexity and higher training
time (considering the training time of RBFNs is less than 5 seconds).

55

5.5 Additional Studies on the Surrogate Model

As discussed earlier, the present DNNs performed sufficiently for predicting CL and
CD. Their accuracy proved much better than that of RBFNs, yet with the cost of an
even increase in training time. Two additional studies regarding the surrogate model
are conducted. The first is to combine the DNN with RBFN through the stacking
ensemble technique, and the second is to train the DNN by dropping (leaving out)
the possibly less important input features (according to the PCC indications).

5.5.1 Stacking Ensemble

As described in chapter 2, stacking is an ensemble technique that allows the combi-
nation of different types of models, leveraging each model’s strengths and weaknesses
in a way that aims to create a new, more accurate, from every base learner, model.
The pre-trained DNNs and RBFNs are stacked using a linear regression ML model
as the meta-learner. In order to do so, the new model (Linear Regression) receives
the predictions of the base models regarding the training DBs as inputs and, iden-
tically to the base models, the QoIs as target outputs. The simple linear regression
ML model (meta-learner) is trained, and its performance is visualized in figure 5.16.
It is highlighted that, as in figure 5.15, the models are trained on the DBs of 20,
30, 40, 50, and 60TP for the two different flow conditions (F1 and F2). Their per-
formance is presented through their MAPE error metric (figure 5.16) computed by
their predictions on the large unseen DB of 300 random samples.

56

Figure 5.16: NLF(1)-0416 Airfoil Case. DNN vs. RBFN vs. Metamodel(LR) testing
error metric. All models were trained on the five DBs above and tested on the same
DB of 300 samples. Upper plots concern F1 and lower ones F2. In most cases (around
3 out of 5), the ensemble provided improved accuracy. However, in some other cases,
it performed worse than the DNN.

The ensemble’s underperformance is observed only in the DBs of 20 and 60TP. Re-
garding the ”middle” DBs (30, 40, and 50TP), the ensemble’s performance is equal
to, or better than the most accurate base model (DNN). Regarding the computa-
tional cost, it is evident that since stacking requires training multiple models, the
training cost must be increased. However, in the present case, the cost of all sur-
rogates is very low compared to the cost of a CFD run (1TU). By comparing the
surrogates solely with each other (all trained on the RTX3060 GPU), as mentioned
above, each DNN training cost is around 20-60 seconds, while the costs of the RBFN
and LR are less than 5 seconds each. These numbers can lead to the assumption
that the costs of RBFN and LR are completely trivial and that the cost of the DNN
determines the total cost of training the ensemble.

5.5.2 Feature Selection

According to the indications shown by the PCC values in figure 5.9, the best per-
forming DNN configuration (table 5.5) was trained, having removed from the input

57

features the possibly ”irrelevant ones”. The study was carried out for F1 and F2
using solely the DB of 40TP for training, and the DB of 300 samples for testing.
Three scenarios were checked. Either leaving out from the input feature space: Ca1

or Cθ,t and by leaving out both Ca1 and Cθ,t.

For reference purposes these three scenarios were named as follows:

• Test1: DNN training leaving out ca1

• Test2: DNN training leaving out cθ,t

• Test3: DNN training leaving out ca1 and cθ,t

Figure 5.17: NLF(1)-0416 Airfoil Case. The original DNN test metric is compared
with the ones of Test1, Test2 and Test3 for F1 (upper plots) and F2 (lower plots).

One may easily see (figure 5.17) that the DNNs trained with fewer features generally
performed worse than the original DNN. However, the performance of these smaller
models seems very close to the original one. Test2 provided, by far, the best results
across the three tests. Moreover, in the CD models, Test2 provided equal and
superior accuracy metrics from the original DNN regarding F1 and F2, respectively.
The training times of the smaller models were obviously lower (Test3 had around
20% faster training time than the original DNN). Despite the trivial training times
of the surrogates, involved in this thesis, the latter could become very useful in larger
applications where models can be extremely large and training times very costly.

58

5.5.3 Conclusions

• It seems that the best surrogate (DNN) prediction accuracy is further im-
proved, even up to 50%, by combining it with the RBFN through the stack-
ing ensemble technique. The only limit to how many models can be stacked
together is the computational cost of training the base models and the meta-
model, which are determined by the problem at hand.

• It is demonstrated that using PCC indications to reduce the features of a DNN
(feature selection) achieved smaller and up to 20% faster trainable models
whose performance is close to the original model, and also, one model that
appeared even better (60%) than the original in predicting the CD. In cases
where training DNNs becomes costly, this approach can be very handful.

59

Chapter 6

UQ in a Wing Case

This chapter deals with using DNNs for UQ in the case of a 3D flow around an
isolated wing. Over and above the transition model’s four constants, the surface
roughness, hrms ∼ N (5 ·10−6, 1.6 ·10−6), was included as the fifth uncertain variable
(M=5). This quantity can be characterized of questionable fidelity as well, mainly
due to measurement limitations. The aim was to quantify the impact of uncertainties
on the CL and the CD, using DNNs.

6.1 The ONERA M6 Wing

6.1.1 Case Description

The primal problem concerns a flow around the ONERA M6 wing at M∞ = 0.262,
Re = 3.5 · 106, angle of attack and yaw angle both set to 0o. Spalart-Allmaras and
the γ − R̃eθ model were used for turbulence and transition modeling, respectively.
The inlet turbulence intensity is Tu=0.2%. The available evaluated 120 uncertain
vectors are obtained from the LHS. The data is organized in two DBs: one with 80
TP and the second with all the available TP, namely 120.

Initially, the normalized features of the DBs are presented in parallel coordinates
plots, figure 6.1. It’s highlighted that the smaller DB is a subpart of the larger one.

60

Figure 6.1: Isolated Wing Case. Parallel coordinate plots for: DB 80 (Left) and DB
120 (Right). As in case I, the effectiveness of the LHS method in covering the input
space is noticeable.

Next, the statistical moments of the Cf for both suction and pressure sides are
computed with the rPCE-CFD and illustrated in figures 6.2 and 6.3. In these plots,
one may observe the average transition onset, alongside how sensitive it is to the
uncertainties under consideration.

Figure 6.2: Isolated Wing Case. Statistical moments of Cf , pressure side. Mean
(Left) and standard deviation (Right).

61

Figure 6.3: Isolated Wing Case. Statistical moments of Cf , suction side. Mean
(Left) and standard deviation (Right).

Cf is distributed similarly in both the suction and pressure sides. The flow is
turbulent in the beginning; then, it becomes laminar for a very thin zone near the
leading edge, followed by a turbulent flow region that covers most of the wing’s
surface. The standard deviation of Cf indicates that the first transition point near
the leading edge is sensitive to the uncertainties involved. In particular, it can
”move” inside the darker zone near the leading edge, where Cf ’s standard deviation
displays the highest values.

The PCC is produced and illustrated in figure 6.4. The importance of each input
seems more balanced than in case I.

Figure 6.4: Isolated Wing Case. By observing the CL, one can see that all input
features pose, more or less, correlations of the same strength. Regarding the CD, it is
linearly related mainly to the first three uncertain variables (ca1, ca2, cε2) in an equal
manner.

62

6.2 UQ with DNN

The high-fidelity UQ results are obtained from rPCE-CFD(80) and rPCE-CFD(120).
It was decided to train models on both DB-80 and DB-120. For each DB, 90% of the
data is used for training and 10% for validation. Every DNN is employed for UQ,
and the results are compared with the high-fidelity UQ results. In particular, MC-
DNN is conducted for 20000 and 50000 random samples, gPCE-DNN is conducted
for k=2 (243 nodes), rPCE-DNN (also k=2) for the 243 GQ nodes as well as for 80
and 120 samples obtained by the LHS.

Two approaches are carried out. Considering the CD/CL as the QoI, the first ap-
proach involves one single-output DNN, which predicts directly the QoI. The second
approach suggests, like in the previous case, the use of two single-output DNNs. One
to predict the CL and the other the CD. Considering that the two approaches involve
3 models in total, and that the aim is to check the performances of models trained
on the two DBs, 6 is the number of models that should be trained and employed for
UQ.

Table 6.1: ONERA M6 Wing Case. UQ with CFD.

Method/Tool Time Units µCD/CL
σCD/CL

rPCE-CFD(120) 120 6.8571 0.3278

rPCE-CFD(80) 80 6.8636 0.3180

6.2.1 DNN configuration used in Case I

First, the manually created configuration from case I (table 5.2) is assessed for the
creation of the 6 DNNs. For each of DB-80 and DB-120, there are three models:
one for CL, one for CD, and one for CL and CD. Each of these models is used for
UQ and the results can be seen in table 6.2.

63

Table 6.2: ONERA M6 Wing Case. DNN configuration from case I.

1 model 2 models

Method/Tool Time Units µCD/CL
σCD/CL

µCD/CL
σCD/CL

MC-DNN(504) 80 6.95092 0.3762 6.9012 0.3215

MC-DNN(204) 80 6.9524 0.3737 6.9029 0.3187

gPCE-DNN(243) 80 6.9543 0.3673 6.9005 0.3222

rPCE-DNN(243) 80 6.9384 0.3350 6.9079 0.3174

rPCE-DNN(120) 80 6.9209 0.2908 6.9199 0.2856

rPCE-DNN(80) 80 6.8838 0.2869 6.9129 0.3013

MC-DNN(504) 120 6.8792 0.43093 6.9023 0.4244

MC-DNN(204) 120 6.8803 0.4294 6.9023 0.4230

gPCE-DNN(243) 120 6.8810 0.4234 6.8965 0.4163

rPCE-DNN(243) 120 6.8666 0.3737 6.8934 0.3773

rPCE-DNN(120) 120 6.9121 0.3093 6.8686 0.3279

rPCE-DNN(80) 120 6.8295 0.3234 6.8614 0.3354

6.2.2 Configurations found by EASY

Then, EASY is used to find the ”best” configuration for every model, and, as in case
I, validation loss is selected, for the hyperparameter optimization, as the quantity
to be minimized. The UQ results are presented in table 6.5. Overall, 6 different
hyperparameter tunings are carried out, yielding 6 DNN configurations. Each op-
timization, as in case I, took EASY roughly 6 hours of computational time. The
resulting models are presented in table 6.3. The validation split is selected to be
equal to 0.1 and all batch sizes are equal to the DB sizes and for loss function, MAE
is selected everywhere. All models have 5 inputs and 1 output.

64

Table 6.3: ONERA M6 Wing Case. DNN configurations found by EASY

DNN target-DB Neurons/Hidden Layer Activation Function

CD/CL-80 (256, 1024, 256, 64) tanh/Sigmoid

CD/CL-120 (32, 1024, 64, 4096, 4096, 256, 512, 32, 512) GELU/ReLU

CL-80 (4096, 4096, 512, 1024, 1024, 32, 1024, 32, 32) tanh/Sigmoid

CL-120 (32, 512, 32, 4096, 4096) ReLU/tanh

CD-80 (32, 2048, 128, 1024, 64, 64) GELU/tanh

CD-120 (1024, 32, 256, 512, 32, 4096, 128, 64, 64, 512) GELU/Sigmoid

Regarding the different DNN configurations, EASY produced a wide variety of them.
In addition, 5 of the 6 configurations have tanh or Sigmoid as activations of their
output layer, which both have a maximum of 1. The validation losses of the total
12 models are presented in table 6.4. The second column refers to the 6 models
created from the 5.2 configuration (case I). In comparison, the third one refers to
the 6 models created, each on its own, optimized by EASY configuration.

Table 6.4: ONERA M6 Wing Case. DNN validation loss comparison

DNN 5.2 configuration from Case I Easy-founded configurations

CD/CL-80 0.04194 0.01552

CD/CL-120 0.04547 0.01026

CL-80 0.06252 0.01914

CL-120 0.05560 0.01819

CD-80 0.01476 0.00171

CD-120 0.01154 0.00158

65

Table 6.5: ONERA M6 Wing Case. DNN configuration found by EASY:

1 model 2 models

Method/Tool Time Units µCD/CL
σCD/CL

µCD/CL
σCD/CL

MC-DNN(504) 80 6.9583 0.3838 6.9528 0.4020

MC-DNN(204) 80 6.9601 0.3799 6.9543 0.4022

gPCE-DNN(243) 80 6.9488 0.3742 6.9523 0.3908

rPCE-DNN(243) 80 6.9449 0.3386 6.9264 0.3523

rPCE-DNN(120) 80 6.9212 0.2738 6.8803 0.3238

rPCE-DNN(80) 80 6.8954 0.3139 6.8620 0.3100

MC-DNN(504) 120 6.9252 0.4419 6.9187 0.3920

MC-DNN(204) 120 6.9265 0.4418 6.9180 0.3918

gPCE-DNN(243) 120 6.9208 0.4256 6.9167 0.3879

rPCE-DNN(243) 120 6.8927 0.3684 6.9087 0.3581

rPCE-DNN(120) 120 6.8866 0.3072 6.8950 0.3407

rPCE-DNN(80) 120 6.9477 0.2976 6.8463 0.3447

6.2.3 Conclusions

Despite the excessive hyperparameter optimization, the UQ results of tables 6.4 and
6.5 are not that far apart, with the ones found by EASY to be, rather, slightly
better. Despite the similar generalization performance, one may see that in table
6.3 EASY-found models produced significantly smaller validation losses than their
counterparts. The latter, possibly highlights that the chosen validation DB is very
small and does not represent sufficiently the model’s generalization capability. Ad-
ditionally, the configuration 5.2 that was fine-tuned for a quite different problem,
provides models with satisfactory performances, in the present one as well.

Considering rPCE-CFD (80 and 120) as reference, the finest surrogate-UQ results
are obtained from rPCE-DNN(80 and 120) in the 2 DNN approach. The latter is
valid for training on DB-80 and DB-120, showcasing the superiority of using 2 DNNs
instead of 1 in predicting the CL and CD. The UQ results conducted with the EASY
found DNNs (2 model approach) are presented next to the references, for DB-80 and
DB-120, in tables 6.6 and 6.7, respectively.

66

Table 6.6: ONERA M6 Wing Case. Aggregated UQ results using DB-80:

Method/Tool Time Units µCD/CL
σCD/CL

rPCE-CFD(80) 80 6.8636 0.3180

rPCE-DNN(80) 80 6.8620 0.3100

rPCE-DNN(120) 80 6.8803 0.3238

MC-DNN(504) 80 6.9528 0.4020

gPCE-DNN(243) 80 6.9523 0.3908

Table 6.7: ONERA M6 Wing Case. Aggregated UQ results using DB-120:

Method/Tool Time Units µCD/CL
σCD/CL

rPCE-CFD(120) 120 6.8571 0.3278

rPCE-DNN(80) 120 6.8463 0.3447

rPCE-DNN(120) 120 6.8950 0.3407

MC-DNN(504) 120 6.9187 0.3920

gPCE-DNN(243) 120 6.9167 0.3879

The rest of the UQ methods conducted with the surrogates deviate noticeably from
the rPCE-CFD results. The reason is either the error propagation of the DNN, the
error of the rPCE method, or the stochastisity of LHS.

6.3 Predicting capabilities of KNN and SVR

40 out of the 120TP, are used to test the predicting performance of two additional
ML models: K-Nearest Neighbors and Support Vector Regression next to the DNNs
created by 5.2, the manually-found configuration, as well as the CL-80 and CD-80
DNNs, found by EASY. Thus, DB-80 is used to train the models, and DB-40 is
used solely for testing them. The models are trained to predict either the CL or the
CD. They are compared using their MAPE metric, computed on the testing DB.
Regarding the training costs, KNNs are SVRs that are simpler models, with training
times of sub-5 seconds, while DNNs require sub-1 minute, on the RTX3060 GPU.
The KNNs and SVRs are created using Scikit-Learn, python’s ML library. Their
hyperparameter tuning is carried out by employing GridSearchCV, a Scikit-Learn
function that performs the tuning by training and evaluating a machine learning
model using different combinations of hyperparameters. The configurations of the

67

present models can be found in tables 6.8, 6.9 and 6.10.

Table 6.8: ONERA M6 Wing Case. DNN manually created configuration.

Neurons Activation Function

(128, 64, 32, 64, 1) ReLU/tanh

Table 6.9: ONERA M6 Wing Case. DNN EASY-founded configurations.

DNN Neurons Activation Function

CL-80 (4096, 4096, 512, 1024, 1024, 32, 1024, 32, 32) tanh/Sigmoid

CD-80 (32, 2048, 128, 1024, 64, 64) GELU/tanh

Table 6.10: ONERA M6 Wing Case. Configurations of KNNs and SVRs.

KNN-CL KNN-CD

k : 2 k : 3

SVR-CL SVR-CD

C : 0.1 C : 10

ϵ : 0.01 ϵ : 0.01

kernel: polynomial kernel: RBF

where polynomial and RBF kernels are the Scikit’s default ones, specifically, for the
polynomial kernel, a 3rd-degree polynomial is used, and for the RBF kernel, the
Gaussian RBF.

The performance metrics of all models are presented in figure 6.5.

68

Figure 6.5: ONERA M6 Wing Case. The EASY-founded models are denoted as
”E-DNN”. Both KNN and SVR predict the QoIs very satisfactorily. In particular,
SVR outperforms the DNN in predicting CL and CD, while KNN-CL outperforms
the DNN-CL. E-DNNs are superior and equal to the SVR in predicting CL and CD,
respectively.

The two simpler ML algorithms (KNN and SVR) produce equal and even better-
predicting performances than DNNs obtained by the manually created configuration.
However, the DNNs found by EASY seem to be superior. It is noted that the
Gridsearch function that trained several KNNs and SVRs, aiming to find the best
ones, took at most 30 seconds on the RTX3060 GPU.

69

Chapter 7

Conclusions

7.1 Overview

In this Diploma Thesis, Uncertainty Quantification, the most critical process behind
Optimization Under Uncertainties (or Robust Design Optimization) was carried out
using three methods: Monte Carlo and two variants of the Non-Intrusive Polyno-
mial Chaos Expansion, gPCE and rPCE. Two aerodynamic problems were studied:
the NLF(1)-0416 isolated Airfoil and the ONERA M6 isolated Wing. Since UQ
is responsible for the skyrocketed costs of RDO, compared to conventional Opti-
mization, the main objective was the development of Machine Learning models, and
mostly DNNs, as surrogates for the expensive Computational Fluid Dynamics code
(PUMA software), especially for the task of UQ. All flows were simulated using
the RANS solver coupled with Spalart–Allmaras turbulence model and the γ − R̃eθ
transitional model. UQ was focused on how fluctuations on coefficients that appear
in the γ − R̃eθ model would impact the transition point, and thus, CL and CD. For
the training DB creation, Latin Hypercube Sampling was used to obtain samples
of the uncertain vectors and PUMA was utilized to evaluate them. The surrogates
were trained to predict CL and CD, separately or simultaneously, given as inputs
the uncertain vectors.

The NLF(1)-0416 was studied for two operating points (F1 and F2), in parallel. An
initial DB of 40TP was used to finetune DNN configurations in F1 and afterwards
these configurations were trained in 5 different DBs (20, 30, 40, 50, 60 TPs), for F1
and F2. Using these DBs, RBFNs were also trained and both DNNs and RBFNs
performance metrics were evaluated in a large unseen DB of 300 samples obtained
from the normal distribution. The DNN configurations were found through trial and
error manually as well as by employing EASY for hyperameter optimization. The
models trained using the configuration found by EASY were the ones who provided

70

the most accurate test results outperforming the RBFNs for almost every training
DB in F1 and F2. Next, UQ was carried out using solely the DNNs trained on the
DB-40 and the results were placed next to the ones computed by using the CFD.
Then, RBFNs and DNNs trained on every DB were combined through stacking
ensemble technique and the resulting model, in most cases, illustrated superior ac-
curacy than the DNN and the RBFN. Last, it is shown that when training a DNN
by leaving out the possibly less important input features (feature selection) one can
obtain simpler models that are close to the initial one as well as, that it is also
possible to end up with a more accurate model.

Regarding the ONERA M6 wing, 120 CFD-evaluated samples were exploited. From
this DB, the first 80 TP were extracted, forming a second DB. DNNs were trained
on DB-80 and DB-120: a single model to predict CD/CL as well as two separate
models to predict CD and CL individually, and were directly used for UQ. To do so,
a well-performing, manually created DNN configuration, from Case I, was employed
to create a total of 6 models. Moreover, EASY was set to optimize 6 different
configurations, one for each desired model, aiming to obtain 6 better predicting
models. It is shown that the two model approach was better than the single model
approach for predicting CD/CL, and that configurations found by EASY, provided
similar results to the manually created configuration. Last, a small study was carried
out to explore the ability of KNNs and SVRs to predict the QoI.

7.2 Conclusions

After conducting all the studies above, the following conclusions are drawn:

• Fluctuations in the uncertain variables regarding both applications are ob-
served to shift the transition point considerably, highlighting the severe impact
of the uncertainties involved.

• The DNNs could predict CL and CD of the assessed transitional flows with
sufficient accuracy. As shown in the airfoil case, their use can cut the UQ
computational cost more than 50% per candidate solution.

• Using evolutionary algorithms for hyperparameter optimization of the DNNs
is a practice that significantly increased the predicting accuracy (up to 82%
improvement).

• In the airfoil case, the DNNs proved up to 10 times more accurate than the
RBFNs, yet they were more complex and roughly 10 times more expensive
to train. Moreover, combining the last two through the stacking ensemble
technique provided models that were up to 50% more accurate than the DNNs.
The trade-off is that the ensemble model includes the cost of every combined
model, which in the present case was trivial.

71

• Training DNNs using feature selection (airfoil case) yielded simpler models
(of up to 20% faster training time) that performed closely to the initial one,
and also, one out of the twelve DNNs with reduced inputs, proved 60% more
accurate than the initial one in predicting CD (Test2).

• gPCE proved more accurate than rPCE, which is reasonable since it is sub-
jected to the curse of dimensionality, while rPCE is not. Additionally, as seen
in the wing case, when a UQ method requires more calls to the surrogate, its
accuracy can decrease due to the enlarged error propagation of the surrogate.

• KNNs and SVRs were also capable of being used as surrogates (wing case),
providing results up to 51% better than the ones of DNNs obtained by the
manually created DB. Their training was at least 5 times faster than that of
DNNs’, and they are worth testing before using evolutionary algorithms for
DNN hyperparameter tuning.

7.3 Future Work Proposals

Based on the findings of this study, the following future works are proposed:

• ML surrogates can be tested in computationally expensive RDO problems.

• Numerous DNNs and ML models can be developed and stacked through the
stacking ensemble. This way, strengths from various models will be leveraged
further, and the final accuracy will be the highest possible. Moreover, research
can be carried out by testing different models for the role of the meta-learner
in the stacking ensemble.

• EASY can be exploited for more complex DNN hyperparameter tunings, in-
cluding more design variables. It is rather certain that despite the additional
cost, the model’s accuracy will further improve.

• SVR and RBFN can be investigated further. For example, the performance of
the RBFN can be checked by adding hidden layers to its structure.

72

Appendix A

Appendix

A.1 Statistics and Data Transformation

A.1.1 Fundamentals

A population refers to an entire group being studied, while a sample is a subset
of that population used for analysis. The mean, also known as the expectation
or average of a set, is the summation of the set’s values divided by the number of
values. Standard deviation and variance can be considered as the averages of
the error and squared error of the set’s values calculated w.r.t its mean. In table
A.1, xi stands for the datapoint under consideration and N, n for the number of
items of the population and the sample, respectively. For simplicity, only symbol
(n) will be used from now on.

Table A.1: Mean and Standard Deviation

Parameter

Type of dataset
Population Sample

Mean µ =

∑N
i=1 xi

N
X =

∑n
i=1 xi

n

Standard Deviation σ =

√∑N
i=1(xi − µ)2

N
s =

√∑n
i=1(xi − x)2

n− 1

Given the above, a new quantity is introduced, which describes the association
between two variables (if there is any) in a simple way. Similarly to the definition

73

of the variance (the average of a single variable’s variations from the mean), the
covariance represents how variations from the mean in the first variable affect the
variations from the mean in the second variable. Assuming yi and y the observation
and the mean of the second variable the covariance is given by the formula A.1.

covxy =

∑n
i=1(xi − x)(yi − y)

n− 1
(A.1)

A.1.2 Transforming Data with Normalization and Standard-

ization

Scaling or non-dimensionalization is a standard procedure in many fields, such as
fluid dynamics, used to reduce complexity and create more general solutions that
can apply to groups of related problems. In this thesis, two scaling techniques were
involved: normalization and standardization.

Normalization is the transformation of a dataset to fit into the [0,1] interval while
keeping its inherent structure identical to the one before scaling. This procedure
requires the formula displayed in table A.2 to be applied separately to each feature.
In the context of the present ML algorithms, normalization, if skipped, features
with larger magnitudes will disproportionately influence the training phase and lead
to bad-performing models. In the scripting environment there are scaling models
that can be fitted into the data for this particular task. The so-called scalers learn
the extrema of each feature of the training DB and are used to scale new data or
unscale an ML model’s predictions back to their corresponding magnitudes, using
information derived from the initially available data.

Passing on to the second scaling technique, standardization. As stated above, the
standard deviation measures the average deviation from the mean. We select a ran-
dom value (xi) out of a sample. If any distance from the mean (xi−µ) is divided by
the standard deviation, the result will be that distance in standard deviation units.
Namely, the new standardized value translates to ”how many standard deviations
from the mean”, and its sign dictates the direction.

The critical difference between the aforementioned two techniques is that normal-
ization fits the data inside the interval [0, 1] without transforming their internal
analogies, while standardization centers the data around 0 with a standard devia-
tion of 1.

74

Table A.2: Scaling formulas

Normalization Standardization

xn =
xi−xmin

xmax−xmin
xs =

xi−µ
σ

A.1.3 The Pearson Corellation Coefficient

The Pearson product-moment correlation coefficient, or PCC with the symbol r,
measures the strength of a relationship between two variables [57]. It is defined as
their standardized covariance. It can be seen in A.2 that to standardize the covxy,
one has to divide it by the multiplication of the variable’s standard deviations sx
and sy.

r =
covxy
sxsy

(A.2)

It can take values that fall inside the interval [-1,+1], where -1 indicates a perfect
negative relationship and +1 a perfect positive one. A negative relationship occurs
when one variable increases and the other decreases. The opposite is valid for a
positive relationship. The strength of a relationship increases as the absolute value
of r increases. A r=0 displays a situation with no relationship between the two
variables. In Figure A.1, some different cases are illustrated to provide a better
understanding of PCC.

Figure A.1: PCC example. Figure from [58].

However, some assumptions - cons accompany the use of PCC. First, PCC is sen-
sitive to outliers, and the correlations that can be detected are only linear ones.
Moreover, the variables must be continuous and measured at an interval (must be

75

evenly spaced) or ratio level (must be evenly spaced and have a natural 0). Last,
the data from both variables should follow normal distributions.

A.2 Backpropagation

Backpropagation is the core algorithm behind ANNs. It is performed after every
update on the weights and biases of the ANN, and its task is to compute the gradients
of the cost function (C) with respect to the weights and biases. Aiming to present
how Backpropagation works, it will be explained on the simplest neural network,
consided of layers with only one neuron (figure A.2).

a(L−1) a(L)

Figure A.2: Simplest neural network with layers consisted of one neuron

The cost function C(w1, b1..., wL, bL), for the kth Training Pattern’s target (yk) is

written equal to
(
a(L) − yk

)2
, for simplicity (eq. A.5). Eqs. A.3 and A.4 illustrate

the summation, on the Lth layer-neuron, before and after the application of the
activation function (σ), respectively.

z(L) = w(L)a(L−1) + b(L) (A.3)

a(L) = σ(z(L)) (A.4)

C0 =
(
a(L) − y0

)2
(A.5)

As stated earlier, the goal of Backpropagation is the computation of the gradients
of the cost function with respect on all weights and biases.

∇C =

∂C
∂w(1)

∂C
∂b(1)

...

∂C
∂w(L)

∂C
∂b(L)

76

The eqs. A.3, A.4 and A.5 illustrate how the weights and biases influence the cost
function, and thus, the chain rule is applied as follows:

∂C0

∂w(L)
=

∂z(L)

∂w(L)
· ∂a

(L)

∂z(L)
· ∂C0

∂a(L)
(A.6)

∂C0

∂b(L)
=

∂z(L)

∂b(L)
· ∂a

(L)

∂z(L)
· ∂C0

∂a(L)
(A.7)

The terms of eqs. A.6 and A.7 read:

∂C0

∂a(L)
= 2(a(L) − y0) (A.8)

∂a(L)

∂z(L)
= σ′(z(L)) (A.9)

∂z(L)

∂w(L)
= a(L−1) (A.10)

∂z(L)

∂b(L)
= 1 (A.11)

It is highlighted that since this calculation is solely for the 0th TP, one must take
the averages of all TP:

∂C

∂w(L)
=

1

k

k−1∑
i=0

∂Ci

∂w(L)
(A.12)

and

∂C

∂b(L)
=

1

k

k−1∑
i=0

∂Ci

∂b(L)
(A.13)

Eqs. A.12 and A.13 present the calculation of the last two components of the
gradient vector. At this point, one is able to compute the gradient of the cost
function with respect to a(L−1), and ”here is the idea of propagating backwards
comes in” as said in [59]:

77

∂C0

∂a(L−1)
=

∂z(L)

∂a(L−1)
· ∂a

(L)

∂z(L)
· ∂C0

∂a(L)
(A.14)

where from eq. A.3 there is

∂z(L)

∂a(L−1)
= w(L) (A.15)

Now by iterating backwards this chain rule method, all components of the gradient
vector can be computed.
The arising question at this point is what happens when the ANN has mutliple
neurons on every layer and not just one.
In an ANN where every layer has multiple neurons, every layer must have its own
neuron counter, an additional symbol (regarding every layer) that will be inserted
to the equations as subscript. Assuming that layer L neurons are indexed by the
letter n, and the ones of layer (L-1) are indexed by the letter m.

Figure A.3: Two-layer neural network with 3 neurons in the first layer and 2 neurons
in the output layer.

The cost function this time is the average of the errors of the output neurons, but
for simplicity only their sum is considered:

C0 =
1∑

n=0

(
a(L)n − y0n

)2
(A.16)

Eqs. A.6 and A.7 will stay practically the same, by only adding the appropriate
subscripts:

∂C0

∂w
(L)
mn

=
∂z

(L)
n

∂w
(L)
mn

· ∂a
(L)
n

∂z
(L)
n

· ∂C0

∂a
(L)
n

(A.17)

78

∂C0

∂b
(L)
mn

=
∂z

(L)
n

∂b
(L)
mn

· ∂a
(L)
n

∂z
(L)
n

· ∂C0

∂a
(L)
n

(A.18)

However, this time each neuron in layer (L-1) affects the cost function through

several distinct pathways. Thus, the gradient of the cost function w.r.t. a
(L)
n (eq.

A.14) must change. Εssentially, the influences of a
(L−1)
n to the cost function must

be summed over layer L.

∂C0

∂a
(L−1)
m

=
1∑

n=0

∂z
(L)
n

∂a
(L−1)
m

· ∂a
(L)
n

∂z
(L)
n

· ∂C0

∂a
(L)
n

(A.19)

A.3 Radial Basis Networks

The general concept of Radial Basis Function Networks is that they are simple three-
layer feedforward fully connected neural networks in which the role of the activation
function is held by a specific group of functions known as Radial Basis. This type
of network is commonly used for function approximation in regression tasks. It is
highlighted that RBFNs assessed in this work are not trained using backpropagation.
The approach followed for this type of network can be found at [60].

The Gaussian RBF

RBF is a function whose output is highly influenced by the Euclidean distance
between some input x and a fixed center ci, the center of the RBF. This is how its
name came about. There are many types of RBF functions, out of which the most
known and utilized in this thesis is the Gaussian RBF

Φi = e
− (x−ci)

2

σ2
i

where σi is the variance around the center, also known as radius, which can be
considered as a hyperparameter of the model when training an RBFN.

79

Bibliography

[1] K. Giannakoglou. Optimization methods. Lectures, School of Mechanical En-
gineering, NTUA, 2022.

[2] K. Giannakoglou. Optimization methods in aerodynamics, 2006.

[3] M. Cavazzuti. Optimization Methods: From Theory to Design Scientific and
Technological Aspects in Mechanics, pages 77–102. Springer Berlin Heidelberg,
2013.

[4] Easy - the evolutionary algorithms system home. http://velos0.ltt.mech.
ntua.gr/EASY/.

[5] G. Pampalis. Implementation of polynomial chaos expansion in aerodynamic ro-
bust design - optimization with evolutionary algorithms under stochastic inputs.
Diploma thesis, NTUA, 2015. Supervised by Prof. Kyriakos Giannakoglou.

[6] H. Beyer and B. Sendhoff. Robust optimization – a comprehensive survey.
Computer Methods in Applied Mechanics and Engineering, 196(33):3190–3218,
2007.

[7] M. Vasile. Optimization Under Uncertainty with Applications to Aerospace
Engineering. Springer, 2021. Chapter 13.

[8] B. El-Haik and R. Al-Aomar. Simulation-based Lean Six-Sigma and Design for
Six-Sigma. John Wiley & Sons, 2006.

[9] K. Shimoyama, A. Oyama, and K. Fujii. Development of multi-objective six
sigma approach for robust design optimization. Journal of Aerospace Comput-
ing, Information, and Communication, 5(8):215–233, 2008.

[10] Y. Nomaguchi, K. Fujita, Y. Kishita, M. Uwasu, et al. Robust design of system
of systems using uncertainty assessment based on lattice point approach: Case
study of distributed generation system design in a japanese dormitory town.
International Journal of Automation Technology, September 2016.

[11] K. Fragkos, E. Papoutsis-Kiachagias, and K. Giannakoglou. Pfosm: An effi-
cient algorithm for aerodynamic robust design based on continuous adjoint and
matrix-vector products. Computers & Fluids, 2019.

80

http://velos0.ltt.mech.ntua.gr/EASY/
http://velos0.ltt.mech.ntua.gr/EASY/

[12] N. Morozova, F. Trias, R. Capdevila, E. Schillaci, and A. Oliva. A CFD-based
surrogate model for predicting flow parameters in a ventilated room using sensor
readings. Energy and Buildings, 2022.

[13] T. Zhang, B. Dey, K. Veeraraghavan, H. Kulkarni, and A. Chakraborty. De-
mystifying the data need of ML-surrogates for CFD simulations. arXiv preprint
arXiv:2205.08355, 2022.

[14] M. Martinelli and D. Duvigneau. Comparison of second-order derivatives and
metamodel-based monte-carlo approaches to estimate statistics for robust de-
sign of a transonic wing. In Proceedings of the 49th AIAA/ASME/ASCE/AH-
S/ASC Structures, Structural Dynamics, and Materials Conference, 2008.

[15] Z. Song, Z. Liu, J. Lu, and C. Yan. Quantification of parametric uncertainty
in γ − R̃eθ model for typical flat plate and airfoil transitional flows. Chinese
Journal of Aeronautics, 2023.

[16] K. Duraisamy, Z. Zhang, and A. P. Singh. New approaches in turbulence and
transition modeling using data-driven techniques. In Proceedings of the 53rd
AIAA Aerospace Sciences Meeting, 2015.

[17] Y. Liu, D. Wang, X. Sun, Y. Liu, N. Dinh, and R. Hu. Uncertainty quantifica-
tion for multiphase-CFD simulations of bubbly flows: a machine learning-based
bayesian approach supported by high-resolution experiments. Reliability Engi-
neering & System Safety, 2021.

[18] OpenAI. Introducing chatgpt. https://openai.com/index/chatgpt/, 2023.

[19] OpenAI et al. Gpt-4 technical report, 2024.

[20] OpenAI. Sora: Creating video from text. Technical report, 2024.

[21] Andreas B., Tim D., Sumith K., Daniel M., Maciej K., Dominik L., Yam L.,
Zion E., Vikram V., Adam L., Varun J., and Robin R. Stable video diffusion:
Scaling latent video diffusion models to large datasets, 2023.

[22] L. Yixin, Z. Kai, L. Yuan, Y. Zhiling, G. Chujie, C. Ruoxi, Y. Zhengqing,
H. Yue, S. Hanchi, G. Jianfeng, H. Lifang, and Lichao S. Sora: A review on
background, technology, limitations, and opportunities of large vision models,
2024.

[23] X. Tang. The role of artificial intelligence in medical imaging research.
BJR—Open, 2020.

[24] A. Amini and A. Soleimany. 6.s191: Introduction to deep learning, 2023.

[25] A. Balodi. Application of introduction artificial intelligence machine learning
in real life, 04 2020.

[26] J. Peng, E. Jury, P. Dönnes, and C. Ciurtin. Machine learning techniques for
personalised medicine approaches in immune-mediated chronic inflammatory

81

https://openai.com/index/chatgpt/

diseases: applications and challenges. Frontiers in pharmacology, 12:720694,
2021.

[27] Overfitting. https://www.mathworks.com/discovery/overfitting.html.

[28] Simon Fraser University. Chapter 2: Ordinary least squares. https://www.sf
u.ca/~dsignori/buec333/lecture%208.pdf.

[29] P. Rishith. A simple approach to classification and regression. https://pub.
towardsai.net/understanding-k-nearest-neighbors-a-simple-approac

h-to-classification-and-regression-e4b30b37f151.

[30] A. Moradzadeh, A. Mansour-Saatloo, B. Mohammadi-Ivatloo, and A. Anvari-
Moghaddam. Performance evaluation of two machine learning techniques in
heating and cooling loads forecasting of residential buildings. Applied Sciences,
10(11), 2020.

[31] C. Yan, Z. Yin, X. Shen, D. Mi, F. Guo, and D. Long. Surrogate-based opti-
mization with improved support vector regression for non-circular vent hole on
aero-engine turbine disk. Aerospace Science and Technology, 96:105332, 2020.

[32] JacobSoft. Support vector regression (svr). https://www.jacobsoft.com.mx
/en/support-vector-regression/.

[33] Deep Learning (DL) — s.mriquestions.com. https://s.mriquestions.com/w
hat-is-a-neural-network.html#.

[34] D. Abueidda, Q. Lu, and S. Koric. Deep learning collocation method for solid
mechanics: Linear elasticity, hyperelasticity, and plasticity as examples, 12
2020.

[35] Understanding the universal approximation theorem. https://medium.com/@
ML-STATS/understanding-the-universal-approximation-theorem-8bd55

c619e30.

[36] X. Qi, J. Wang, Y. Chen, Y. Shi, and L. Zhang. Lipsformer: Introducing
lipschitz continuity to vision transformers, 04 2023.

[37] Papers with Code. Xavier initialization explained. https://paperswithcode
.com/method/xavier-initialization.

[38] R. Zaheer and H. Shaziya. A study of the optimization algorithms in deep
learning. In 2019 Third International Conference on Inventive Systems and
Control (ICISC), pages 536–539, 2019.

[39] A. Azri, C. Favre, N. Harbi, J. Darmont, and C. Noûs. Rumor classification
through a multimodal fusion framework and ensemble learning. Information
Systems Frontiers, pages 1 – 16, 2022.

[40] V. Asouti, Xenofon Trompoukis, I. Kampolis, and K. Giannakoglou. Unsteady
cfd computations using vertex-centered finite volumes for unstructured grids

82

https://www.mathworks.com/discovery/overfitting.html
https://www.sfu.ca/~dsignori/buec333/lecture%208.pdf
https://www.sfu.ca/~dsignori/buec333/lecture%208.pdf
https://pub.towardsai.net/understanding-k-nearest-neighbors-a-simple-approach-to-classification-and-regression-e4b30b37f151
https://pub.towardsai.net/understanding-k-nearest-neighbors-a-simple-approach-to-classification-and-regression-e4b30b37f151
https://pub.towardsai.net/understanding-k-nearest-neighbors-a-simple-approach-to-classification-and-regression-e4b30b37f151
https://www.jacobsoft.com.mx/en/support-vector-regression/
https://www.jacobsoft.com.mx/en/support-vector-regression/
https://s.mriquestions.com/what-is-a-neural-network.html#
https://s.mriquestions.com/what-is-a-neural-network.html#
https://medium.com/@ML-STATS/understanding-the-universal-approximation-theorem-8bd55c619e30
https://medium.com/@ML-STATS/understanding-the-universal-approximation-theorem-8bd55c619e30
https://medium.com/@ML-STATS/understanding-the-universal-approximation-theorem-8bd55c619e30
https://paperswithcode.com/method/xavier-initialization
https://paperswithcode.com/method/xavier-initialization

on graphics processing units. International Journal for Numerical Methods in
Fluids, 67:232 – 246, 09 2011.

[41] P. Spalart and S. Allmaras. A one-equation turbulence model for aerodynamic
flows. In 30th aerospace sciences meeting and exhibit, page 439, 1992.

[42] M. Piotrowski and D. Zingg. Smooth local correlation-based transition model
for the spalart–allmaras turbulence model. AIAA Journal, 59(2):474–492, 2021.

[43] T. Sullivan. Introduction to uncertainty quantification, volume 63. Springer,
2015.

[44] A. Quarteroni. Mathematical models in science and engineering. Notices of the
AMS, 2009.

[45] National Research Council, Division on Engineering, Physical Sciences, Board
on Mathematical Sciences, Their Applications, Committee on Mathematical
Foundations of Verification, and Uncertainty Quantification. Assessing the re-
liability of complex models: mathematical and statistical foundations of verifi-
cation, validation, and uncertainty quantification. National Academies Press,
2012.

[46] T. Dowell. Understanding uncertainty quantification: The different types, 2023.
Available at https://www.digilab.co.uk/news/understanding-uncerta

inty-quantification-different-types-of-uncertainty [Accessed March
2023].

[47] A. Owen. Monte Carlo Theory, Methods and Examples. Stanford University,
2013.

[48] N. Metropolis and S. Ulam. The monte carlo method. Journal of the American
Statistical Association, 44(247):335–341, 1949.

[49] Monte carlo method. https://en.wikipedia.org/wiki/Monte_Carlo_meth

od.

[50] N. Wiener. The homogeneous chaos. American Journal of Mathematics, pages
897–936, 1938.

[51] Notepub’s official team. Descriptive statistics - raw and central moments, Aug
2021.

[52] E. Papoutsis-Kiachagias, V. Asouti, and K. Giannakoglou. Assessment of vari-
ants of the method of moments and polynomial chaos approaches to aero-
dynamic uncertainty quantification. In 4th International Conference on Un-
certainty Quantification in Computational Sciences and Engineering, Athens,
2021. Institute of Research and Development for Computational Methods in
Engineering Sciences (ICMES).

83

https://www.digilab.co.uk/news/understanding-uncertainty-quantification-different-types-of-uncertainty
https://www.digilab.co.uk/news/understanding-uncertainty-quantification-different-types-of-uncertainty
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Monte_Carlo_method

[53] C. Blum, U. Steinseifer, and M. Neidlin. Systematic analysis of non-intrusive
polynomial chaos expansion to determine rotary blood pump performance over
the entire operating range. Computers in Biology and Medicine, 168:107772,
2024.

[54] M. Kontou V. Asouti and K. Giannakoglou. Rbf surrogates for uncertainty
quantification and aerodynamic shape optimization under uncertainties. MPDI,
2023.

[55] AIAA Transition Modeling Workshop-I — Transition Modeling and CFD Vi-
sion 2030 — transitionmodeling.larc.nasa.gov. https://transitionmodeling
.larc.nasa.gov/workshop_i/?doing_wp_cron=1719498266.254785060882

5683593750.

[56] D. Somers. Design and experimental results for a natural-laminar-flow airfoil
for general aviation applications. Technical report, NASA, 1981.

[57] A. Field. Discovering Statistics Using SPSS. SAGE, London, 2009.

[58] Pearson product-moment correlation. https://statistics.laerd.com/sta

tistical-guides/pearson-correlation-coefficient-statistical-gui

de.php.

[59] 3Blue1Brown. Backpropagation calculus — chapter 4, deep learning. YouTube
Video, 2017. https://www.youtube.com/watch?v=tIeHLnjs5U8.

[60] K. C. Giannakoglou, V. Asouti, and D. Kapsoulis. Low-cost optimization using
evolutionary algorithms for engineering applications, 2023.

84

https://transitionmodeling.larc.nasa.gov/workshop_i/?doing_wp_cron=1719498266.2547850608825683593750
https://transitionmodeling.larc.nasa.gov/workshop_i/?doing_wp_cron=1719498266.2547850608825683593750
https://transitionmodeling.larc.nasa.gov/workshop_i/?doing_wp_cron=1719498266.2547850608825683593750
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
https://www.youtube.com/watch?v=tIeHLnjs5U8

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Τομέας Ρευστών

Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής

& Βελτιστοποίησης

Υποκατάστατα Μοντέλα βασισμένα στη Μηχανική

Μάθηση για Ποσοτικοποίηση Αβεβαιοτήτων στην

Υπολογιστική Ρευστοδυναμική

Διπλωματική Εργασία - Εκτενής Περίληψη στα Ελληνικά

Διονύσιος Μπακής

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2024

Εισαγωγή

Η Διπλωματική αυτή Εργασία υλοποιείται στην περιοχή της βελτιστοποίησης μορφής

σωμάτων με αεροδυναμικά κριτήρια, λαμβάνοντας υπόψη αβεβαιότητες. Ειδικότερα,
διερευνά την επάρκεια των πλήρως συνδεδεμένων βαθιών νευρωνικών δικτύων πρόσθιας

τροφοδότησης ως υποκατάστατων του υψηλής πιστότητας αλλά πολύ ακριβού, επιλύτη
Υπολογιστικής Ρευστοδυναμικής για την Ποσοτικοποίηση Αβεβαιότητας (UQ). Αυτή
είναι η βασική διαδικασία στην αναζήτηση της βέλτιστης αεροδυναμικής μορφής που

μπορεί να θεωρηθεί λιγότερο ευαίσθητη στην επίδραση αβεβαιοτήτων (Στιβαρός Σχε-
διασμός ή UQ).

Η UQ πραγματοποιείται με τη χρήση Monte Carlo (MC) και της μεθόδου του μη-
επεμβατικού αναπτύγματος του πολυωνυμικού χάους (niPCE) σε συνδυασμό με τον
επιλύτη Υπολογιστικής Ρευστοδυναμικής (CFD) ή ένα υποκατάστατο μοντέλο για
δύο αεροδυναμικά προβλήματα που αφορούν μεταβατικές ροές: την NLF(1)-0416 μεμ-
ονωμένη αεροτομή και την ONERA M6 μεμονωμένη πτέρυγα. Οι ροές προσωμοιώνον-
ται με το οικείο λογισμικό PUMA της Μονάδας Παράλληλης Ρευστοδυναμικής &
Βελτιστοποίησης του ΕΜΠ, επιλύοντας τις Reynolds-Averaged Navier-Stokes εξισώ-
σεις μαζί με το Spalart-Allmaras μοντέλο τύρβης και το μοντέλο μετάβασης γ − R̃eθ.
Μελετώνται περιπτώσεις με αβεβαιότητες που σχετίζονται με συντελεστές που εμφανί-

ζονται στο μοντέλο μετάβασης γ − R̃eθ.

Βελτιστοποίηση υπό Αβεβαιότητες

Σχεδόν όλα τα προβλήματα του πραγματικού κόσμου, όπως η βελτιστοποίηση σχήμα-
τος, υπόκεινται σε κάποιο βαθμό αβεβαιότητας. Μπορεί να σχετίζεται με στοχαστικές
διαταραχές που επηρεάζουν το περιβάλλον, τις παραμέτρους σχεδιασμού ή την αξι-
ολόγηση του συστήματος.

Ως αποτέλεσμα, εισάγεται η ≪Βελτιστοποίηση υπό Αβεβαιότητες≫ ή ≪Στιβαρός Σχε-

διασμός≫. Στο πλαίσιο αυτής της εργασίας, η έμφαση δίνεται στις αβεβαιότητες
που σχετίζονται με τις περιβαλλοντικές παραμέτρους του συστήματος. ΄Ετσι, πραγ-
ματοποιείται μια ταξινόμηση μεταξύ των μεταβλητών εισόδου του συστήματος. Καταρ-

χάς, υπάρχουν οι Ν μεταβλητές σχεδιασμού (⃗b ∈ RN), οι οποίες βρίσκονται υπό τον
έλεγχο του σχεδιαστή. Υπάρχουν επίσης οι Μ περιβαλλοντικές, στιβαρές ή αβέβαιες
μεταβλητές (c⃗ ∈ RM), οι οποίες είναι παράμετροι που αποτελούν μέρος του περιβάλ-
λοντος του συστήματος αλλά υπόκεινται σε κάποιο βαθμό στοχαστικότητας. Οι περιβ-
αλλοντικές μεταβλητές είναι εκτός του ελέγχου του σχεδιαστή.

Για τη μοντελοποίηση των αβέβαιων μεταβλητών, ο χρήστης πρέπει να υποθέσει ότι
κάθε μία από αυτές ακολουθεί μια γνωστή συνάρτηση πυκνότητας πιθανότητας (PDF).
Στην παρούσα μελέτη, όλες οι αβέβαιες μεταβλητές θεωρήθηκαν κανονικά κατανεμη-
μένες γύρω από τις μέσες τιμές τους εντός του διαστήματος [µi − 3σi, µi + 3σi], (τρία
σίγμα).

2

Figure 7.4: Καθολική βέλτιστη έναντι στιβαρής βέλτιστης λύσης. Εάν ο σχεδι-
ασμός γίνεται για την πραγματική βέλτιστη λύση, δηλαδή το καθολικό μέγιστο της
συνάρτησης, μικρές αβεβαιότητες στις μεταβλητές εισόδου μπορούν να οδηγήσουν σε εξ-
αιρετικά ανεπιθύμητα αποτελέσματα. Ως εκ τούτου, ο εντοπισμός της στιβαρής βέλτιστης
λύσης σημαίνει την εύρεση μιας περιοχής που μοιάζει με κοιλάδα εντός του πεδίου

τιμών. Στην περίπτωση αυτή, οι μεταβολές στις εισόδους οδηγούν σε αμελητέες
μεταβολές στην τιμή εξόδου της F, καθιστώντας τον σχεδιασμό πολύ πιο αξιόπιστο.
Σχήμα από [10]

Μηχανική Μάθηση και Βαθιά Νευρωνικά δίκτυα

Η Mηχανική Mάθηση (ML) και το υποπεδίο της, η Bαθιά Mάθηση (DL), είναι δύο
ολοένα και πιο δημοφιλείς τομείς όπου αλγόριθμοι μπορούν να εκπαιδευτούν σε έναν

συγκεκριμένο όγκο δεδομένων και στη συνέχεια να εκτελέσουν προβλέψεις σε νέα

αθέατα δεδομένα. ΄Οσον αφορά τα υποκατάστατα μοντέλα για CFD, οι αλγόριθμοι
που χρησιμοποιούνται για την, χαμηλού κόστους, προσέγγιση συναρτήσεων ανήκουν
στην κατηγορία ML που είναι γνωστή ως μάθηση με επίβλεψη (supervised learning).
΄Ενας επιλεγμένος αριθμός διανυσμάτων εισόδου αξιολογείται με τη χρήση του CFD
και τα ζεύγη εισόδου-εξόδου στοιβάζονται, σχηματίζοντας τη λεγόμενη Βάση Δε-
δομένων (DB) εκπαίδευσης. Τα Τεχνητά Νευρωνικά Δίκτυα (ANNs), που απεικονί-
ζονται στο σχήμα 7.5, είναι ο κύριος τύπος μοντέλου που διερευνάται στην παρούσα
εργασία. Είναι υπολογιστικά συστήματα σχεδιασμένα να μιμούνται τη λειτουργία του
ανθρώπινου εγκεφάλου και θεωρούνται μέρος του ευρύτερου πεδίου της μηχανικής

μάθησης. Βρίσκονται ακριβώς στη διαχωριστική γραμμή μεταξύ ML και DL. Αυτό
ισχύει διότι, με απλά λόγια, τα Βαθιά Νευρωνικά Δίκτυα (DNNs) είναι ANNs με
περισσότερα από ένα κρυφά στρώματα. Υπάρχουν δύο κατηγορίες παραμέτρων που
εμπλέκονται στα ANNs. Πρώτον, οι δύο τύποι εκπαιδεύσιμων παραμέτρων, δηλαδή
τα βάρη και οι όροι bias, των οποίων οι τιμές προσαρμόζονται κατά τη διάρκεια
της εκπαίδευσης. Δεύτερον, οι πολυάριθμες υπερπαραμέτροι, όπως ο αριθμός των
στρωμάτων, οι νευρώνες ανά στρώμα και οι τύποι συναρτήσεων ενεργοποίησης, οι
οποίες είναι παράμετροι που καθορίζονται από τον χρήστη πριν από την έναρξη της

3

εκπαίδευσης.

Figure 7.5: Πλήρως συνδεδεμένο DNN πρόσθιας τροφοδότησης. Σχήμα από [34]

Κάθε νευρώνας, εκτός από εκείνους του στρώματος εισόδου, λαμβάνει πληροφορίες
από τους νευρώνες του προηγούμενου στρώματος και στη συνέχεια μεταβιβάζει τις

επεξεργασμένες, μέσω της εξίσωσης 7.20, πληροφορίες στους νευρώνες του επόμενου
στρώματος. Ο τύπος υπολογισμού της εξόδου του νευρώνα έχει ως εξής:

y = f(
∑

xiwi + b) (7.20)

όπου y είναι η έξοδος του νευρώνα,
∑

xiwi είναι το άθροισμα των έξοδων κάθε νευρώνα

του προηγούμενου επιπέδου πολλαπλασιασμένες με τα αντίστοιχα βάρη, b είναι ο όρος
bias και f είναι η μη γραμμική συνάρτηση ενεργοποίησης.

Μέθοδοι Ποσοτικοποίησης Αβεβαιότητας

Η μέθοδος Monte Carlo είναι μια υπολογιστική τεχνική που χρησιμοποιείται για την
εκτίμηση των πιθανών αποτελεσμάτων ενός αβέβαιου γεγονότος ή για την προσέγγιση

λύσεων σε μαθηματικά προβλήματα που περιλαμβάνουν τυχαίες μεταβλητές. Υποθέ-
τοντας ένα πρόβλημα με Μ αβέβαιες μεταβλητές, η χρήση της MC για UQ έχει ως
εξής. Αρχικά, ένας επιθυμητός αριθμός τυχαίων διανυσμάτων (Ν) πρέπει να αντληθεί
από την κοινή κατανομή τους D1⊗· · ·⊗DM . Για να γίνει αυτό, λαμβάνονται Ν τυχαίοι
αριθμοί από κάθε κατανομή Di, δημιουργώντας τα αβέβαια δειγματικά διανύσματα. Στη
συνέχεια, αφού κάποιο μοντέλο υπολογίσει τις εξόδους τους, εξάγονται οι στατιστικές
ροπές των Ποσοτήτων Ενδιαφέροντος (QoIs).

Η μέθοδος niPCE αφορά την ορθογώνια διάσπαση μιας στοχαστικής QoI σε μια
κατάλληλη σειρά, με στόχο τον αναλυτικό προσδιορισμό των στατιστικών ροπών του
αποκομμένου αναπτύγματος. Ο μέγιστος βαθμός του αναπτύγματος είναι γνωστός
ως ≪τάξη χάους≫ (k). Στο niPCE, η αντικειμενική συνάρτηση F (c⃗) αντιμετωπίζε-
ται ως ≪μαύρο κουτί≫ και αναπτύσσεται ως γραμμικός συνδυασμός μιας οικογένειας

4

πολυδιάστατων ορθοκανονικών πολυωνύμων ως εξής:

F (c⃗) ≈
Q−1∑
i=0

JiPi(c⃗) (7.21)

όπου Q = (M+k)!
M !k!

είναι ο μεγαλύτερος βαθμός των ορθοκανονικών πολυδιάστατων

πολυωνύμων Pi(c⃗), και Ji είναι τα αντίστοιχα βάρη τους.

Ο μέσος όρος και η τυπική απόκλιση υπολογίζονται ως εξής:

µF = J0, σF =

√√√√Q−1∑
i=1

J2
i (7.22)

Ο υπολογισμός του Ji πραγματοποιείται είτε με χρήση Gauss Hermite Quadrature
είτε με χρήση μιας προσέγγισης που βασίζεται στη γραμμική παλινδρόμηση, οπότε
προκύπτουν οι δύο παραλλαγές του niPCE, που αξιοποιήθηκαν: Gauss Quadrature
PCE (gPCE) και Regression PCE (rPCE).

Ποσοτικοποίηση Αβεβαιότητας στην μεμονωμένη αεροτομή NLF(1)-
0416
Αξιολογείται η χρήση των DNN για UQ στην περίπτωση ενός προβλήματος ροής γύρω
από μια μεμονωμένη αεροτομή. Τα DNN συγκρίνονται με το CFD και το υποκατάσ-
τατο RBFN που χρησιμοποιείται στο [54] για τον ίδιο σκοπό. Εξετάζονται τέσσερις
αβεβαιότητες που σχετίζονται με τέσσερις (M=4) σταθερές (ca1, ca2, cε2, cθ,t) του μον-
τέλου μετάβασης γ − R̃eθ. Οι τελευταίες επιλέχθηκαν ως πηγές αβεβαιότητας του
μοντέλου, καθώς βαθμονομήθηκαν με βάση εμπειρικές πληροφορίες που προέρχονται
από πειράματα. Ως εκ τούτου, είναι εύλογο ότι οι τιμές τους ενδέχεται να μην είναι
οι πλέον κατάλληλες για ορισμένες άλλες περιπτώσεις. Στόχος ήταν να ποσοτικοποι-
ηθεί η επίδρασή τους στους συντελεστές ΄Ανωσης και Οπισθέλκουσας (CL και CD)
της αεροτομής. Συγκεκριμένα, όλες οι αβέβαιες μεταβλητές θεωρήθηκαν κανονικά
κατανεμημένες γύρω από τις ονομαστικές τους τιμές (μέσες τιμές) με αυθαίρετα επι-
λεγμένες (10% των μέσων τιμών τους) τυπικές αποκλίσεις (σχήμα 7.6).

ca1 ∼ N (2.0, 0.2)

ca2 ∼ N (0.06, 0.006)

cε2 ∼ N (50.0, 5.0)

cθ,t ∼ N (0.03, 0.003)

Figure 7.6: NLF(1)-0416 αεροτομή. Αβέβαιες μεταβλητές

Τα μοντέλα εκπαιδεύτηκαν ώστε να λαμβάνουν τα αβέβαια διανύσματα μεταβλητών ως

είσοδους και να προβλέπουν τις επιθυμητές Ποσότητες Ενδιαφέροντος (QoIs), που
διαφορετικά υπολογίζονταν με την εκτέλεση ενός ακριβού κώδικα CFD. Επιπλέον,

5

χρησιμοποιώντας τα υποκατάστατα, πραγματοποιήθηκε ανάλυση ευαισθησίας για τις
τρεις εξεταζόμενες μεθόδους UQ, καθώς αυτό ήταν πολύ φθηνότερο (σχεδόν δωρεάν
με ένα εκπαιδευμένο υποκατάστατο) από ό,τι με τον κώδικα CFD.

Χρησιμοποιήθηκε ένα δομημένο πλέγμα τύπου C 705x97 κόμβων με μέγιστο y+ =
0, 74, σχηματιζόμενο από τετράπλευρα, το οποίο βρέθηκε στο [55].

Οι ακόλουθες μελέτες ασχολούνται με την αεροτομή NLF(1)-0416 για δύο διαφορε-
τικές συνθήκες ροής, όπως στον πίνακα 7.3.

Table 7.3: NLF(1)-0416 αεροτομή. Συνθήκες ροής

Flows M∞ a∞ Rec

F1 0.1 2.03o 4× 106

F2 0.3 4.07o 6× 106

Η ένταση της τύρβης της ελεύθερης ροής είναι Tu=0,15% και στις δύο περιπτώσεις.

Με στόχο τη δημιουργία τηςDB εκπαίδευσης, για κάθε συνθήκη ροής, χρησιμοποιήθηκε
η μέθοδος δειγματοληψίας λατινικού υπερκύβου (LHS) για τη δειγματοληψία 40 δι-
ανυσμάτων (με 4 καταχωρήσεις το καθένα) από το χώρο των αβέβαιων μεταβλητών.
Στη συνέχεια, ο επιλύτης RANS υπολόγισε τη ροή και δημιουργήθηκαν δύο DB εκ-
παίδευσης.

Στο Σχήμα 7.7 παρουσιάζονται οι κατανομές του συντελεστή τριβής (Cf), οι οποίες
απεικονίζονται για τις ονομαστικές τιμές των αβέβαιων μεταβλητών μαζί με αυτές που

παράγονται από τα 39 πρόσθετα δείγματα. Το F1 συμβολίζει τη ≪Ροή 1≫ και το

F2 τη ≪Ροή 2≫ Οι απότομες γραμμές σε αυτό το διάγραμμα αντιστοιχούν σε σημεία

μετάβασης από στρωτή σε τυρβώδη ροή.

6

Figure 7.7: NLF(1)-0416 αεροτομή. Κατανομές Cf και για τις δύο συνθήκες ροής.
Μάλλον μικρές αλλαγές στις αβέβαιες μεταβλητές έχουν μεγάλο αντίκτυπο στο σημείο

μετάβασης. Στη δεύτερη περίπτωση παρατηρείται μεγαλύτερη τυρβώδης περιοχή γύρω
από το τμήμα της αεροτομής. Το τελευταίο συμβαίνει κυρίως λόγω της υψηλότερης
γωνίας προσβολής.

Μαζί με την πρώτη DB των 40 TP, στην οποία τελειοποιήθηκε κάθε μοντέλο αυτού
του κεφαλαίου (επιλογή της αρχιτεκτονικής και των υπερπαραμέτρων), δημιουργήθηκαν
επίσης τέσσερις ακόμη DBs διαφορετικών μεγεθών με τη χρήση δειγματοληψίας LHS.
Αυτό το βήμα έγινε για να ελεγχθούν οι δυνατότητες γενίκευσης των διαμορφώσεων

των μοντέλων που βελτιστοποιήθηκαν για μια συγκεκριμένη DB, όταν εκπαιδεύον-
ται σε διαφορετικές (κατά μέγεθος). Η διαδικασία πραγματοποιήθηκε και για τις δύο
συνθήκες ροής. Οι πρόσθετες DB ήταν όλες ανεξάρτητες μεταξύ τους (δηλαδή οι
μικρότερες δεν αποτελούσαν υποσύνολα των μεγαλύτερων) και αποτελούνταν από 20,
30, 50 και 60 πρότυπα εκπαίδευσης (TP), αντίστοιχα. Υπογραμμίζεται ότι όλα τα μον-
τέλα τελειοποιήθηκαν στη ΒΔ των 40 TP, αποκλειστικά για την F1, και ότι όλες οι
πρόσθετες DBs χρησιμοποιήθηκαν για την εκπαίδευση των προκαθορισμένων διαμορ-
φώσεων DNN και τον έλεγχο της απόδοσής τους. ΄Οσον αφορά τα υποκατάστατα
RBFN, από κάθε διαφορετική DB εκπαιδεύτηκε ένα RBFN δύο εξόδων.

Επιπλέον, άλλα 300 δείγματα, από τις 4 αβέβαιες μεταβλητές, δημιουργήθηκαν τυχαία
(ακολουθώντας την κανονική κατανομή) και αξιολογήθηκαν χρησιμοποιώντας τόσο τα
υποκατάστατα όσο και τον επιλύτη RANS υψηλής πιστότητας, με στόχο να εκτιμηθεί
η απόδοση κάθε εκπαιδευμένου μοντέλου σε αυτή τη μεγαλύτερη αθέατη DB.

Αρχικά βρέθηκε χειροκίνητα μέσω δοκιμής και σφάλματος μια διαμόρφωση DNN καλής
απόδοσης. Αποφασίστηκε να δημιουργηθούν δύο ξεχωριστά DNN για κάθε συνθήκη
ροής, το ένα για την πρόβλεψη του CL και το άλλο του CD. ΄Ολα τα μοντέλα εκ-
παιδεύτηκαν στο TensorFlow χρησιμοποιώντας τo model checkpoint callback για την
αποθήκευση του μοντέλου που παρήγαγε τη χαμηλότερo σφάλμα επικύρωσης (vali-
dation loss) από όλες τις εποχές, ώστε να αποφευχθεί η υπερπροσαρμογή. Κάθε
διαμόρφωση DNN ρυθμίστηκε λεπτομερώς όσον αφορά το F1 και στη συνέχεια εκ-
παιδεύτηκε και στο F2. Η φάση εκπαίδευσης πραγματοποιήθηκε για 1500 εποχές
και, όσον αφορά το υπολογιστικό κόστος, κάθε μοντέλο εκπαιδεύτηκε σε μια GPU

7

RTX3060 για λιγότερο από ένα λεπτό. ΄Ετσι, το υπολογιστικό κόστος για την εκ-
παίδευση των δύο μοντέλων είναι λιγότερο από δύο λεπτά. Λαμβάνοντας υπόψη ότι το
κόστος δημιουργίας της DB του 40TP, με τη χρήση του επιλυτή RANS, είναι περίπου
10 ώρες, στο συγκεκριμένο σενάριο, το κόστος εκπαίδευσης των DNN μπορεί να θεω-
ρηθεί αμελητέο. Επιπλέον, ο διαχωρισμός επικύρωσης (validation split) επιλέχθηκε
στο 0,1, πράγμα που σημαίνει ότι το 90% κάθε DB χρησιμοποιήθηκε για εκπαίδευση
και το 10% για επικύρωση. Το μέγεθος της παρτίδας (batch size) ρυθμίστηκε πάντοτε
έτσι ώστε να αντιστοιχεί σε ολόκληρη τη DB, καθώς παρατηρήθηκε ότι οι αλλαγές
σε αυτή την παράμετρο είχαν ελάχιστο αντίκτυπο στην ακρίβεια του μοντέλου, όπου
μάλλον, αυτό οφειλόταν στα μικρά μεγέθη των DBs.

Στη συνέχεια, αξιοποιήθηκε το λογισμικό βελτιστοποίησης με την παροχή της διαμόρ-
φωσης που βρέθηκε με το χέρι ως αρχική υποψήφια λύση. Ο στόχος ήταν να βρεθούν,
στον ίδιο αριθμό εποχών, αρχιτεκτονικές DNN που θα παρήγαγαν τo ελάχιστο σφάλμα
επικύρωσης. Ως εκ τούτου, το σφάλμα επικύρωσης (που παρακολουθείται από τοmodel
checkpoint) ορίστηκε ως η αντικειμενική συνάρτηση αυτής της βελτιστοποίησης υπερ-
παραμέτρων.

Οι μεταβλητές σχεδιασμού ήταν: οι τύποι συναρτήσεων ενεργοποίησης, ένας για κάθε
κρυφό στρώμα και ένας για το στρώμα εξόδου, ο αριθμός των κρυφών στρωμάτων και
ο αριθμός των νευρώνων ανά στρώμα ως δύναμη του 2. Η διαμόρφωση που βρέθηκε
χειροκίνητα παρουσιάζεται δίπλα στην EASY-ευρεθείσα στους πίνακες 7.4 και 7.5. Και
οι δύο διαμορφώσεις παρείχαν καλή ικανότητα γενίκευσης. Ωστόσο, η αρχιτεκτονική
που βρέθηκε από τον EASY ήταν καλύτερη από την αρχιτεκτονική που βρέθηκε με
το χέρι σε κάθε μετρική σφάλματος. Αυτό επιβεβαιώνεται παρατηρώντας τα σφάλματα
δοκιμής (test losses) τους στους πίνακες 7.6 και 7.7.

Table 7.4: NLF(1)-0416 αεροτομή. Διαμόρφωση DNN που βρέθηκε χειροκίνητα

Layers Neurons Activation Function Batch Size Loss

7 (4, 128, 64, 32, 64, 1) ReLU/tanh Training Patterns MAE

Table 7.5: NLF(1)-0416 αεροτομή. Διαμόρφωση DNN που βρέθηκε από τον EASY

Layers Neurons Activation Function Batch Size Loss

8 (4, 256, 512, 4096, 64, 32, 512, 1) GELU/RelU Training Patterns MAE

8

Table 7.6: NLF(1)-0416 αεροτομή.
Σφάλμα δοκιμής DNN (διαμόρφωση
που βρέθηκε χειροκίνητα)

DNN Test Loss (MAPE)

F1-CL 0.059%

F1-CD 0.38%

F2-CL 0.085%

F2-CD 0.89%

Table 7.7: NLF(1)-0416 αεροτομή.
Σφάλμαδοκιμής DNN (διαμόρφωση που
βρέθηκε από τον EASY)

DNN Test Loss (MAPE)

F1-CL 0.021%

F1-CD 0.2%

F2-CL 0.015%

F2-CD 0.5%

Επιλέγοντας τη EASY-ευρεθείσα διαμόρφωση για τα επόμενα βήματα, τα DNNs και
RBFNs εκπαιδεύτηκαν σε όλες τις προαναφερθείσες DBs. Η απόδοση των μοντέλων
ελέχθηκε στη DB-300. Τα αποτελέσματα παρουσιάζονται στο σχήμα 7.8.

Figure 7.8: NLF(1)-0416 αεροτομή. Σφάλματα δοκιμής DNN vs. RBFN. ΄Ολα
τα μοντέλα κάθε υποπερίπτωσης εκπαιδεύτηκαν στις πέντε προαναφερθείσες ΒΔ και

δοκιμάστηκαν στην ίδια DB με 300 δείγματα. Τα πάνω διαγράμματα αφορούν το F1
και τα κατώ το F2. Η υπεροχή των προβλέψεων του DNN είναι προφανής.

Στη συνέχεια, χρησιμοποιώντας τα DNN και το CFD, πραγματοποιήθηκε UQ με MC,
gPCE και rPCE για αρκετούς αριθμούς δειγμάτων. Τα πιο σημαντικά στοιχεία από
αυτή τη μελέτη UQ συνοψίζονται στους πίνακες 7.8 και 7.9, για τις F1 και F2.

9

Table 7.8: NLF(1)-0416 αεροτομή. Μέθοδοι UQ για F1

Method/Tool Time Units µCL σCL µCD σCD

MC-DNN(500) 40 0.7208 0.004933 0.006179 0.0004484

gPCE-DNN(k = 2, 81) 40 0.7210 0.005002 0.006161 0.0004573

rPCE-DNN(k = 2, 140) 40 0.7204 0.004310 0.006236 0.0004196

MC-CFD(300) 300 0.7208 0.004904 0.006185 0.0004792

gPCE-CFD(k = 2, 81) 81 0.7210 0.004923 0.006153 0.0004477

rPCE-CFD(k = 2, 81) 81 0.7208 0.004584 0.006174 0.0004199

Table 7.9: NLF(1)-0416 αεροτομή. Μέθοδοι UQ για F2

Method/Tool Time Units µCL σCL µCD σCD

MC-DNN(500) 40 1.0206 0.006888 0.007669 0.0005546

gPCE-DNN(k = 2, 81) 40 1.0211 0.006978 0.007634 0.0005648

rPCE-DNN(k = 2, 140) 40 1.0207 0.005712 0.007649 0.0004329

MC-CFD(300) 300 1.0206 0.00705 0.007632 0.0005473

gPCE-CFD(k = 2, 81) 40 1.0210 0.006955 0.007603 0.0005399

rPCE-CFD(k = 2, 81) 81 1.0209 0.00634 0.007608 0.0004929

Τέλος, πραγματοποιήθηκαν δύο πρόσθετες μελέτες σχετικά με το υποκατάστατο μον-
τέλο. Πρώτον, για την αύξηση της ακρίβειας, τα DNN και τα RBFN συνδυάστηκαν
μέσω της τεχνικής stacking ensemble με τη χρήση ενός μοντέλου γραμμικής παλιν-
δρόμησης (Linear Regression) ως μέτα-μοντέλο (τα αποτελέσματα απεικονίζονται στο
σχήμα 7.9).

10

Figure 7.9: NLF(1)-0416 αεροτομή. Σφάλματα δοκιμής DNN vs. RBFN vs. Meta-
model (LR). ΄Ολα εκπαιδεύτηκαν στις πέντε παραπάνω DBs και δοκιμάστηκαν στην ίδια
ΒΔ 300 δειγμάτων. Τα πάνω διαγράμματα αφορούν το F1 και τα κατώ το F2. Στις
περισσότερες περιπτώσεις (περίπου 3 στις 5), το συνδυαστικό μοντέλο παρείχε βελτι-
ωμένη ακρίβεια. Ωστόσο, σε ορισμένες άλλες περιπτώσεις, είχε χειρότερες επιδόσεις
από το DNN.

Δεύτερον, ακολουθώντας τις υποδείξεις του PCC (που εξηγείται στο Παράρτημα
A.1.3), τα DNN εκπαιδεύτηκαν αποκλειστικά στην DB-40, αφήνοντας εκτός τα πι-
θανώς λιγότερο σημαντικά χαρακτηριστικά εισόδου (σχήμα 7.10. Πραγματοποιήθηκαν
τρεις διαφορετικές δοκιμές:

• Test1: Εκπαίδευση DNN παραλείποντας ca1

• Test2: Εκπαίδευση DNN παραλείποντας cθ,t

• Test3: Εκπαίδευση DNN παραλείποντας ca1 και cθ,t

11

Figure 7.10: NLF(1)-0416 αεροτομή. Το αρχικό σφάλμα δοκιμής DNN συγκρίνεται
με αυτά των Test1, Test2 και Test3 για F1 (άνω διαγράμματα) και F2 (κάτω διαγράμ-
ματα).

Ποσοτικοποίηση Αβεβαιότητας στην μεμονωμένη πτέρυγα ONERA
M6

Αυτή η εφαρμογή ασχολείται με τη χρήση DNNs για UQ στην περίπτωση μιας τριδιάσ-
τατης ροής γύρω από μια μεμονωμένη πτέρυγα. Πέραν των τεσάρων σταθερών του μον-
τέλου μετάβασης, η τραχύτητα της επιφάνειας, hrms ∼ N (5 · 10−6, 1.6 · 10−6), συμπερ-
ιλήφθηκε ως πέμπτη αβέβαιη μεταβλητή (M=5). Αυτή η ποσότητα μπορεί επίσης να
χαρακτηριστεί αμφισβητήσιμης πιστότητας, κυρίως λόγω περιορισμών των μετρήσεων.
Στόχος ήταν να ποσοτικοποιηθεί η επίδραση των αβεβαιοτήτων στην CL και στην CD,
χρησιμοποιώντας DNN.

Το πρωταρχικό πρόβλημα αφορά μια ροή γύρω από την πτέρυγα ONERA M6 μεM∞ =
0.262, Re = 3.5 · 106, γωνία προσβολής και γωνία εκτροπής και οι δύο ρυθμισμένες σε
0o. Η ένταση της τύρβης είναι Tu=0.2%. Τα διαθέσιμα προ-αξιολογημένα 120 αβέβαια
διανύσματα λήφθηκαν με χρήση LHS. Τα δεδομένα οργανώθηκαν σε δύο DBs: η μία
με 80 TP και η δεύτερη με όλα τα διαθέσιμα TP, δηλαδή 120.

Οι στατιστικές ροπές του Cf τόσο για την πλευρά της υποπίεσης όσο και για την

πλευρά της πίεσης υπολογίστηκαν με rPCE-CFD.Και για τις δύο πλευρές της πτέρυγας
τα αποτελέσματα ήταν σχεδόν πανομοιότυπα, και, επομένως, μόνο αυτά της πλευράς
αναρρόφησης απεικονίζονται στα Σχήματα 7.11. Σε αυτά φαίνεται το πού λαμβάνει

12

χώρα κατά μέσο όρο η έναρξη της μετάβασης, παράλληλα με το πόσο ευαίσθητη είναι
στις εξεταζόμενες αβεβαιότητες.

Figure 7.11: ONERA M6 πτέρυγα. Στατιστικές ροπές του Cf , πλευρά πίεσης. Μέση
τιμή (αριστερά) και τυπική απόκλιση (δεξιά).

Η rPCE διεξήχθη για τα DB-80 και DB-120 και τα αποτελέσματα θεωρήθηκαν ως τα
αποτελέσματα UQ υψηλής πιστότητας.

Για κάθε DB, χρησιμοποιήθηκε το 90% των δεδομένων για εκπαίδευση και το 10% για
επικύρωση. Πραγματοποιήθηκαν δύο προσεγγίσεις. Θεωρώντας το CD/CL ως QoI, η
πρώτη προσέγγιση περιελάμβανε ένα DNN μίας εξόδου, το οποίο προέβλεπε απευθείας
την QoI. Η δεύτερη προσέγγιση πρότεινε, όπως και στην προηγούμενη περίπτωση,
τη χρήση δύο DNN μίας εξόδου. Το ένα για την πρόβλεψη του CL και το άλλο

για την πρόβλεψη του CD. Λαμβάνοντας υπόψη ότι οι δύο προσεγγίσεις αφορούσαν
συνολικά τρία μοντέλα και ότι ο στόχος ήταν να ελεγχθούν οι επιδόσεις των μοντέλων

που εκπαιδεύτηκαν στις δύο DBs, 6 είναι ο αριθμός των μοντέλων που θα έπρεπε να
εκπαιδευτούν και να χρησιμοποιηθούν για την UQ. Αυτή τη φορά, δεν αξιοποιήθηκε
κανένα σύνολο δοκιμαστικών δεδομένων. Κάθε DNN χρησιμοποιήθηκε απευθείας για
UQ.

Αρχικά, η χειροκίνητα δημιουργηθείσα διαμόρφωση, 7.4, από την περίπτωση I αξι-
ολογήθηκε για τη δημιουργία των 6 DNN και στη συνέχεια, ο EASY χρησιμοποιήθηκε
για 6 βελτιστοποιήσεις υπερπαραμέτρων, δηλαδή μία για κάθε επιθυμητό μοντέλο. Παρά
την εκτενή βελτιστοποίηση των υπερπαραμέτρων, τα αποτελέσματα UQ των υποκατάσ-
τατων που βρέθηκαν με EASY ήταν, μάλλον, ελάχιστα ανώτερα και παρουσιάζονται
δίπλα στις αναφορές (rPCE-CFD) στους πίνακες 7.10 και 7.11.

13

Table 7.10: ONERA M6 πτέρυγα. Συγκεντρωτικά αποτελέσματα UQ με χρήση DB-
80:

Method/Tool Time Units µCD/CL
σCD/CL

rPCE-CFD(80) 80 6.8636 0.3180

rPCE-DNN(80) 80 6.8620 0.3100

rPCE-DNN(120) 80 6.8803 0.3238

MC-DNN(504) 80 6.9528 0.4020

gPCE-DNN(243) 80 6.9523 0.3908

Table 7.11: ONERA M6 πτέρυγα. Συγκεντρωτικά αποτελέσματα UQ με χρήση DB-
120:

Method/Tool Time Units µCD/CL
σCD/CL

rPCE-CFD(120) 120 6.8571 0.3278

rPCE-DNN(80) 120 6.8463 0.3447

rPCE-DNN(120) 120 6.8950 0.3407

MC-DNN(504) 80 6.9528 0.4020

gPCE-DNN(243) 120 6.9167 0.3879

MC-DNN(204) 120 6.9180 0.39180

Τέλος, 40 από τα 120TP χρησιμοποιήθηκαν για να ελεχθεί η προβλεπτική απόδοση
δύο επιπλέον ML μοντέλων: K-Nearest Neighbors και Support Vector Regression
δίπλα στα DNN (σχήμα 7.12). ΄Ετσι, το DB-80 χρησιμοποιήθηκε για την εκπαίδευση
των μοντέλων και η DB-40 χρησιμοποιήθηκε αποκλειστικά για τη δοκιμή τους.

14

Figure 7.12: ONERA M6 πτέρυγα. Τα μοντέλα που βρέθηκαν με το λογισμικό
EASY συμβολίζονται ως ≪E-DNN≫. Τόσο το KNN όσο και το SVR προβλέπουν πολύ
ικανοποιητικά τις QoIs. Ειδικότερα, το SVR υπερτερεί του DNN στην πρόβλεψη των
CL και CD, ενώ το KNN-CL υπερτερεί του DNN-CL. Τα E-DNN είναι ανώτερα και
ίσα με τα SVR στην πρόβλεψη των CL και CD, αντίστοιχα.

Συμπεράσματα

Οι διακυμάνσεις στις αβέβαιες μεταβλητές όσον αφορά και τις δύο εφαρμογές παρατηρεί-

ται ότι μετατοπίζουν σημαντικά το σημείο μετάβασης, αναδεικνύοντας τον σοβαρό αν-
τίκτυπο των αβεβαιοτήτων που εμπλέκονται. Τα DNN μπορούσαν να προβλέψουν τα
CL και CD των μεταβατικών ροών που αξιολογήθηκαν με επαρκή ακρίβεια. ΄Οπως
αποδείχθηκε στην περίπτωση της αεροτομής, η χρήση τους μπορεί να μειώσει το υπολ-
ογιστικό κόστος, της UQ, πάνω από 50% ανά υποψήφια λύση. Η χρήση εξελικτικών
αλγορίθμων για τη βελτιστοποίηση των υπερπαραμέτρων των DNN είναι μια πρακτική
που μπορεί να αυξήσει σημαντικά την ακρίβεια πρόβλεψης (έως και 82% βελτίωση).

Στην περίπτωση της αεροτομής, τα DNN αποδείχθηκαν έως και 10 φορές πιο ακριβή
από τα RBFN, αλλά ήταν πιο πολύπλοκα και περίπου 10 φορές πιο ακριβά για να
εκπαιδευτούν. Επιπλέον, ο συνδυασμός των δύο τελευταίων μέσω της τεχνικής stack-
ing ensemble παρείχε μοντέλα που ήταν έως και 50% ακριβέστερα από τα DNN. Το
αντιστάθμισμα είναι ότι το συνδυαστικό μοντέλο περιλαμβάνει το κόστος κάθε συνδ-

υαζόμενου μοντέλου, τα οποία στην παρούσα περίπτωση ήταν αμελητέα.

Η εκπαίδευση των DNN χρησιμοποιώντας feature selection (περίπτωση αεροτομής)
δημιούργησε απλούστερα μοντέλα (με έως και 20% ταχύτερο χρόνο εκπαίδευσης) τα
οποία είχαν παρόμοια επίδοση με το αρχικό. Επίσης, ένα από τα δώδεκα DNN με
μειωμένες εισόδους, αποδείχθηκε 60% καλύτερο από το αρχικό στην πρόβλεψη του
CD (Test2).

Η gPCE αποδείχθηκε ακριβέστερη από την rPCE, γεγονός που είναι λογικό αφού
υπόκεται στην κατάρα των πολλαπλών διαστάσεων, ενώ η rPCE όχι. Επιπλέον, όπως
φάνηκε στην περίπτωση της πτέρυγας, όταν μια μέθοδος UQ απαιτεί περισσότερες
κλήσεις στο υποκατάστατο, η ακρίβειά της κινδυνεύει να μειωθεί λόγω της διευρυμένης
διάδοσης των σφαλμάτων του υποκατάστατου.

15

ΤαKNN και SVR ήταν επίσης ικανά να χρησιμοποιηθούν ως υποκατάστατα (περίπτωση
πτέρυγας), παρέχοντας έως και 51% καλύτερες προβλέψεις από κάποια DNN. Η εκ-
παίδευσή τους ήταν κατ’ ελάχιστον 5 φορές ταχύτερη, και αξίζει να δοκιμάζονται πριν
τη χρήση εξελικτικών αλγορίθμων για βελτιστοποίηση υπερπαραμέτρων DNN.

16

	Contents
	Fundamentals of Optimization Under Uncertainties
	Introduction to Optimization
	Optimization Methods and Costs
	Optimization Under Uncertainties
	AI Integration to CFD and UQ
	Thesis Outline

	Artificial Intelligence
	Introduction to Artificial Intelligence
	Machine Learning
	Supervised ML Models for Regression
	Linear Regression
	K-Nearest Neighbors
	Support Vector Regression
	Deep Neural Networks
	Learning Curves and Model Checkpoint

	Ensemble Learning

	The CFD Solver
	Mean Flow Equations
	Turbulence Model
	Transition Model
	The flow solver - PUMA

	UQ Methods
	Introduction to UQ
	Monte Carlo Simulation
	Non-Intrusive Polynomial Chaos Expansion
	Orthogonal Polynomials
	Mean and Variance
	PCE Coefficients and Generalization to Multiple Dimensions
	Integration using Gaussian Quadrature
	PCE Coefficients with Regression Approach

	UQ in an Airfoil Case
	The NLF(1)-0416 Airfoil
	Computational Mesh and Aerodynamic Polar Diagram
	Case Description

	The Low Cost Surrogates
	Datasets and Preprocessing
	DNN Configuration and Metrics
	DNN and RBFN Test Metrics Across Different DBs

	UQ with DNN
	Monte Carlo with DNN
	UQ using PCE

	Aggregated Results
	Additional Studies on the Surrogate Model
	Stacking Ensemble
	Feature Selection
	Conclusions

	UQ in a Wing Case
	The ONERA M6 Wing
	Case Description

	UQ with DNN
	DNN configuration used in Case I
	Configurations found by EASY
	Conclusions

	Predicting capabilities of KNN and SVR

	Conclusions
	Overview
	Conclusions
	Future Work Proposals

	Appendix
	Statistics and Data Transformation
	Fundamentals
	Transforming Data with Normalization and Standardization
	The Pearson Corellation Coefficient

	Backpropagation
	Radial Basis Networks

	Bibliography

