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Tor Yepéhlar pac mpoomdidetag mov emoTEYALETOL YE TNV ToEo Vo0 SITAWUOTIXT EQY ATl

Oa Hledo axdun va evyaploThow Tov xonynth wou x. Kupdxo [oavvixoyhlou yia
TO YPOVO TOL APIEPWOE Gt BLOPUMOELS X0l UTOOEIEELS Xa Tavew o’ OAaL Yiol TNV EUTL-
01000V ToU €3ELEE GTO TPOOWTO UOU, BIVOVTAC YOV T BUVATOTNTU Vo EXTOVACL T
OLmhwpaTid| wou gpyacio oty awtoxwvnToBlounyavia. Tov euyaploTd axdun yatl we
xordnyNTAC otar oau@LI€aTeo UE €XAVE VoL aYamNow TO avTIXE(UEVO epyaciog TOu xaL va
Vehw va acyolnie ye autd ot peyahitepo Badoc.
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urogrigo Awdxtopa Kwvotavtivo I'napayxolvn, yio tn Borideio mou pou mapetyay xo-
Td TNV EXTOVNOT TOL UTOAOYLGTIXOU VEUATOC EVOL YPOVO TEWV, XoTd T VEWENTIXT You
TpoeToyocio 6TNY Evapdn TNS OIMAWUATIXAC EPYUCIUC XOU Yol T1) CUVEYT UTOCTARIEN
TOUG UEYPL TNV OROXATPKGT TNG. Toug euyaEIGTH VLot TNV UTOUOVY| XUk TNV TOVTOTIVA
mpovupio Toug va Bondricouv Topd Tov auEnuévo PoETO EpYACTAS TOUC.
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Toftounyavia.
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Abstract

This thesis presents the use of the continuous adjoint method for the shape opti-
mization of HVAC (Heating, Ventilation and Air Conditioning) ducts of a passen-
ger vehicle and the main part of the presented work was carried out at the BMW
premises in Munich. The flow and the continuous adjoint solver used for this purpose
have been developed by the Parallel CED & Optimization Unit (PCOpt) of NTUA
in the OpenFOAM environment. This software computes the sensitivity derivatives
of the objective function chosen by the engineer, with respect to the surface nodes
coordinates of the geometry being optimized. Using these derivatives, the surface
nodes move in order to improve the objective function value as computed by the
BMW optimization software ‘ShapeModule’, whose operation is based on the node-
based optimization method known as Vertex Morphing. As part of this thesis, the
communication software between the flow and adjoint solver of PCOpt/NTUA and
ShapeModule was reimplemented, basing its functionality on reading and writing
of the necessary files (File-IO coupling) rather than on the previously used MPI
communication protocol. Furthermore, the communication software was expanded
to support the separate use of the sensitivity derivatives computed by each adjoint
solver. After the successful coupling of the two softwares, an HVAC duct was de-
signed and optimized. Given that the initial geometry was a box with one inlet
and three outlets, topology optimization was applied at first, in order to produce a
first shape of the duct that was then optimized further using shape optimization.
Subsequently, the produced geometry was smoothed using the Inspire software and
the ANSA software. At the final stage, the duct was optimized with the coupled
PCOpt/NTUA and ShapeModule software, using two objective functions. The first
one aims at the minimization of the total pressure losses between inlet and outlets,



whereas the second one is a surrogate, noise-related objective function, which aims
at the minimization of the turbulence related noise by minimizing the integral of
the squared turbulent viscosity in specific parts of the duct.

Furthermore, the continuous adjoint method for an objective function that describes
the flow uniformity at the outlet of the domain to be optimized was developed. This
objective function was used on a different HVAC duct with one inlet and one outlet
in a single-objective optimization problem, but also together with the total pressure
losses objective function in a double-objective optimization problem. These simula-
tions were conducted by using exclusively the PCOpt/NTUA software.
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EO9vixd MetodfBio IloAuteyveio

Eyxorh Mryavohoywy Mryavixdy

Touéag Pevotov

Movdda ITapdAAnAne YroloyioTixrc PeuocTtoduvauixng
& Beltiotonoinong

Egappoyr tng Xuveyolg XuluyolLg Medddou o1
BeAtiotonoinon Mopprc Acpaywywny Khpatiopov
EmBatixod Autoxivrtou

Amhwpatiny epyacta
Avdpeag Xtépavog Mapyetng

EmufBiénwy: Kupdxog X. Tavvdxoyiou, Kodnyntic EMII
Adfva, Tobhog 2019

H Simhopatin epyacia aoyoleltar ue TNV eQopuoyn Tng cuveyols ouluyoic uedosou
otn Bektiotomoinom TNe LopPric aywY®V XAWATIoUoD ETBUTIXOU AUTOXWVATOU UE TO
uEYOAUTERO Uépog TNg epyaciag vo Tpayuatonotinxe otic eyxatactdoeic e BMW
oto Mévayo. O emhdtne tng pofic xou o cuveyhc oLlLYHC ETMAVTNG TOU YENOYLOTOL-
AUNxe Yo T0 o%om6 autd Eyel avantuyVel and T Movdda [updhining Troloyiotinhc
Pevotoduvopuntc & Behuotonoinong (MITP&B) tou EMII oe nep3dhhov OpenFO-
AM. To loyiouixd autd vroroyilet Tic Topay@youg evonoinciog Tne EMAEYelcug amod
TOV UNYAVIXO UVTIXELIEVIXTC OUVEQTNONG WG TEOG TIC CUVTETAYUEVES TMV ETLPAVELIXDY
©xOUPwY Tng umo BeltioTonolnor YewueTplag. Me yvwoTég auTég TIC Tapay®Yous, ot
optaol x6ufol YeTavolVToL, BEATIOVOVTUG TNV TN TN AVTIXEWEVIXTS CUVAETNOTG,
epopuoloviag o hoyiouixo Peitiotonolnong wopgric ‘ShapeModule’ e BMW, 1o
omolo Baoileton oty TEYVIXH HoppoToinong twv xOuPwy tou TAéyuatoc (Vertex Mor-
phing). ¥to mhaioto tne dimhopatixic epyooiog npoypoupaticOnxe Aoytopxd yio Ty
emxovwvior Tou emAUTN Tou evdéoc xau ouluyolc tpoBifuatoc tne MIITP&B/EMII
ue To ShapeModule, To omolo mepthouBdver TNV EYYEAUPH XU AVEYVWOT TWV ATAEO-
v apyceiov emxowwviog (File-IO coupling) avtixathotdvag to mpdtepa yenot-
pomotoVUevo Tewtoxohho emxowvnviog MPL Yuyyedvwe, enextdinxe to hoylopxod
emxovwviag HoTe vo uropel Vo utooTneilel To LEYWPLOTO YELOIOUO TWV TOQY WY WY
evatodnotac xdde ouluyolc emhltn. Metd Ty emtuyt cUCELEn TwV BUO XWBXWY,
oYEBEo TNXE %ot BEATIOTOTOWINNUE oy WwYOS XAWATIONOL TN xoumivag emBatixo) ou-
toxwhtou (HVAC, Heating, Ventilation and Air Conditioning). AeBopévou 6t 7
opy W) YEwUETElo fitay €var xoutl ue pla elcodo xou Teelc e€6doue, TpaypaToTolinXe
apywd BehtioTonoinor Tonoloyiag mpoxewévou vo mapoydel Evog apynde aywyog o
orofo¢ Yo unopoloe va yenowonotniel otn BehtioTonolnon Uop@hc. XN CUVEYEL
n mapoydeion yewpetpio EOUUAOVINXE YENOWOTOIOVTUS XUTd Geld Tor hoyiouxd In-
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spire tn¢ etanpelag Altair xan ANSA 1ne etanpeiagc BETA CAE Systems. ¥to tehixd
oTédlo, 0 oy wyoc Bertiotonoinxe ye to ouleuyuévo Aoytopixé tne MIITP&B/EMII
xow ShapeModule ypnowomnowwvtac 800 avtixeuevixéc ouvapthoes. H mpdtn €€ au-
TOV 0TOYEVEL OTNY ENAYICTOTOMNOT TWV ATWAEWDY OMXAC Tieong PeTaD €lGOBOL %ot
e£00wY, ev® 1) 6e0TERN 0NV Ay Lo TOTOINGOT Tou Taparydpevou Yoplfou oTig e€bdoug
TOU oY WYoU PECW TNE UElwong TNG TUPBMBOUS CUVEXTIXOTNTIC OF ETAEYUEVO TUAUATH
TOU.

Hapdhhnha, ovantOydnxe 1 cuveyric oculuyhc uéDodOC Yol AVTIXEWEVIXT) CUVEETNOT
Tou ex@edlel TNV ouotouop@la TNg poric otny €€080 TNE UTO BEATICTOTOINGTY) YEWUE-
tolog. H avtixewevix| auty| cuvdptnon yenowonotiinxe o €vo SLaQopeETIXd oywYO
xhatiopol emPotinod autoxivitou Ue uia glcodo xau pio é€08o T6C0 Yiol TNV HOVo-
xpLrnetoy| BEATIOTOTOINGY| TOU OGO XUl GE GUVOUAOUOS UE TNV AVTIXEWEVIXY| GUVAQTNOT
TV ATWAELWY oA ieong oe dupttnploxy fehtioTonolnor ue o tédduion Bapdy xa ue
TEPLOPLOUOUC. LTIC TPOCOUOLOOELS AUTES YENOWOTONINXE ATOXAEIGTIXS TO AOYLOUIXO
e MIITP&B/EMIL.
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Chapter 1

Introduction

The improvement of computational methods through years of research and develop-
ment in conjunction with the ever increasing performance of the modern computer
systems has led to a widespread use of computational fluid dynamics (CFD) in a
significant range of industrial applications. The availability of CFD codes that can
simulate the flow field around or inside the shape under consideration and the trust-
worthy results that they can produce nowadays has led to their integration in the
shape optimization procedure. As a result, the necessary experiments that have to
be conducted to evaluate new engineering designs have been limited in comparison
to the past, leading to a significant cost reduction.

1.1 Shape Optimization

According to the control theory adapted for the needs of CFD-based optimization,
the shape to be optimized is controlled by a number of variables, referred to as design
or optimization variables. For instance, these could be the control point coordinates
of volumetric B-splines polynomials parameterizing the shape under consideration.
The quality of the shape to be optimized is evaluated by computing a usually inte-
gral quantity, known as the objective function. The objective function can be defined
either on the boundaries, such as the total pressure losses which is defined at the
inlet and outlet of the geometry, or in a volume inside the geometry, such as the
noise induced by the turbulent viscosity. Goal of the optimization is to compute the
values of the design variables that minimize or maximize the objective function.

CFD-based optimization methods can be classified into two main categories, ac-
cording to the way the optimal set of design variables is computed: stochastic and



deterministic. This diploma thesis focuses exclusively on the second category. The
deterministic optimization algorithms improve a given geometry by computing the
gradient of the objective function in question w.r.t. the design variables, also known
as the sensitivity derivatives (SD). A shape update is thereafter computed based on
the direction dictated by the sensitivity derivatives. Subsequently, the flow field, the
objective function value and the new SD field are computed based on the updated
geometry. This process is repeated until either the objective function has converged
to its minimum value or the user-defined maximum number of optimization cycles
is reached. Since the values of the sensitivity derivatives tend to be zeroed in areas
of local minima, the entrapment to a local optimum solution is highly possible. As
a result, the user of the algorithm will get an optimized rather than an optimal
solution, which is the main disadvantage of a gradient-based method (GBM).

The efficiency of GBMs is highly dependent on how the sensitivity derivatives are
computed. The most straightforward method of computing the SDs is by using finite
differences (FD). According to FD, each of the design variables b,,n € [1, N|, where
N is the total number of them, is perturbated by an infinitesimally small quantity,
€, and the objective function is re-evaluated using the perturbated design. For a
second-order FD scheme, we have

SF  F(biy ey by £ €,y by) = F(by, oo by — €00, by)
5b, 2¢

(1.1)

Despite its simple implementation, since it requires only the re-computation of the
value of the objective function, this method poses great concerns because of its two
main drawbacks. First and foremost, the cost of the FD method scales linearly with
the number of the design variables, N, as it requires 2N evaluations of F' by solving
the flow equations, making it infeasible for large scale optimization problems. The
second downside is the dependence of the computed derivatives from €, the value
of which cannot be determined a priori. The use of a too "small” value is not al-
ways the answer to the aforementioned problem as it can introduce round-off errors.
Moreover, the flow equations must be fully converged as the subtraction performed
in eq. is between two very close values of F'.

An alternative method for the computation of the sensitivity derivatives is the
complex variable (CV) method according to which the sensitivity derivatives are
computed by

oF . Im[F(bl, ceey bn + Z.E, PN bN)]

o = : (1.2)

where I'm is the imaginary part of the complex function F and i =v/—1. As reflected
in eq. the round-off errors cease to exist, since there is no subtraction of two
very close values as in the case of FD. Subsequently, the method is e-independent
and there is no need for the flow equations to be fully converged. Nevertheless,



the cost of the complex variable method still scales linearly with N and in fact it
requires N evaluations of the objective function.

Another alternative to FDs is the direct differentiation (DD) method, according
to which the flow equations are differentiated w.r.t. b and the /N linear systems that
arise are solved to define the derivatives of the flow variables w.r.t. to the design
variables. Given that the SDs are expressed in terms of these fields, their final com-
putation is straightforward. DD is harder to implement than FD (since a new flow
solver has to be written) and its cost still scales with N, making it inadequate for
large scale simulations.

1.2 The Adjoint Method

The adjoint method of computing the sensitivity derivatives required by GBMs is
the alternative that has a cost practically independent from the number of the design
variables N. As a result, this method is a perfect choice for large industrial opti-
mization problems. In order to achieve this independence, an augmented objective
function is defined, by adding the volume integrals of the residuals of the flow equa-
tion (also referred to as the primal or state equations), multiplied by the adjoint (or
co-state or dual) variable fields, to F'. Considering that the residuals of the primal
equations must be zero, F' = Fj,,. After differentiating the augmented objective
function and re-arranging the resulting terms, the system of adjoint equations and
adjoint boundary conditions is formulated, the numerical solution of which leads to
a N-independent computation of the SDs.

There are two different approaches [I] on how the aforementioned adjoint method
can be applied, that differ from each other in the sequence that the differentiation
of the objective function and the discretization of the flow equations happen. In the
discrete adjoint approach, the residuals of the primal equations that are added to the
objective function are in their discrete form and the resulting system of adjoint equa-
tions and adjoint boundary conditions after the differentiation is already discretized
and ready to be numerically solved. On the other hand, in the continuous adjoint
approach, the residuals of the primal equations that are added to the objective
function are in their continuous form and the resulting system of adjoint equations
and the boundary conditions have to be discretized, in order to be numerically solved

There is a general consensus, that both discrete and continuous adjoint methods
can produce sensitivity derivatives with sufficient accuracy to be used in common
optimization problems. Nevertheless, the discrete approach is more accurate in com-
puting the SD especially on coarse meshes, since it takes the primal discretization
schemes into consideration, although its implementation can become cumbersome
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when higher discretization schemes are used. On the other hand, the continuous ad-
joint outweighs the discrete one in terms of CPU cost and memory requirements per
iteration. Continuous approach also leads to better physical understanding of the
adjoint system, since closed-form expressions exist for the field adjoint equations,
their boundary conditions and the sensitivity derivatives expression.

This diploma thesis focuses on the applications of the continuous adjoint method in
industrial internal-aerodynamics automotive applications. The mathematical formu-
lation and software programming of the adjoint solver for incompressible fluid flows
has been performed by the PCOpt/NTUA within the OpenFOAM©environment.



Chapter 2

CFD Analysis and Optimization

Process

In this chapter, the mathematical formulation of the optimization procedure for a
steady state incompressible flow over a given domain is presented.

2.1 Formulation of the Primal Problem

2.1.1 Flow Modelling

This thesis is concerned with flows that are highly turbulent, as this is the case in
most industrial applications. A turbulent flow is characterized by unsteady fluc-
tuations of the pressure and velocity, which are not completely random but they
develop coherent structures, called eddies. In order to take into account the whole
range of spatial and temporal scales of the turbulence an unbearably small cell size is
necessary, as well as an infinitesimally small discretization of the time domain. The
cost of such simulations, known as direct numerical simulations (DNS), in which the
Navier-Stokes equations are numerically solved without any turbulence modelling, is
practically unacceptable with the computational resources available in the industry
today, especially when the flow simulation is part of a larger optimization problem.

The most widely used approach for calculating industrial flows is by the Reynolds-

Averaged Navier-Stokes models (RANS). The equations that are solved are the
ensemble (or time or Reynolds) averaged Navier-Stokes and turbulence models are

5



used to take the random fluctuations of the flow into account. The idea that was
suggested by Reynolds, already since 1895, and in its core is still valid today, is the
decomposition of the flow variables into the mean and the fluctuating components
[2, 3].

The system of the RANS equations for an incompressible fluid flow in Cartesian
coordinates is shown below, where repeated indices denote summation, according to
the Einstein’s convention.

The conservation of mass or continuity equation is

ov;
8_:cj_0 (2.1)

and the conservation of momentum equation in non-conservative form is

~0v  Op 9 dv; | 0v; 0 — .
A Oy ~ o )= =1,2 2.2
N 3:Bj+0xi O {V <8$j+893i):| oz; ( vlv]> 0, ! 2,3 (2.2)

where v; are the velocity components, p is the static pressure divided by the constant
fluid density. The >~ symbol is used to denote the mean value of a variable, whereas
"' 7 symbol to denote the fluctuation of a variable. The new term appearing in eq.
is the turbulent shear stress or Reynolds stress tensor TZ-/j /p= —U;"U;-. To obtain
equations containing only the mean velocity and pressure, the Reynolds stresses
term needs to be modelled as a function of the mean flow quantities, removing
any reference to the fluctuating part of the velocity. In this thesis, this is achieved
through the Boussinesq hypothesis, proposed by Boussinesq in 1877 [3], 4].

- 0v; 8@» 2 y
v = — k¢ 2.
VU=V (8xj + 8@-) 3/«5z (2.3)

where 5{ is the Kronecker delta, & is the turbulent kinetic energy (TKE)

1——
k= Uil (2.4)

and v is the kinematic turbulent -or eddy- viscosity. v; has the same units as the
kinematic viscosity of the fluid, m?/s.
Taking these into consideration, eq. becomes

v 81}1 0 8% an 8p . -
Ri—vjaxj o, |:(I/+I/t) <8a:j+8xi)}+8xi_0 ,  1=1,2,3 (2.5)




where the "7’ symbol is omitted for simplicity since all flow variable correspond to
the mean flow. This convection is followed for the rest of this thesis.

The introduction of the 14 field into the RANS equations yields a new complica-
tion for the solution of the problem, since the necessity of more equations to close
the system arises. This issue, also referred to as the ’closure problem’; is overcome
with the introduction of the turbulence models, which attempt to predict the turbu-
lence evolution using extensive experimental data and analysis of the past decades.
Turbulence models that are using the Boussinesq hypothesis are known as eddy vis-
cosity models or EVM’s. In this category belongs the Spalart-Allmaras turbulence
model [5], which is used in the analysis performed within this diploma thesis and is
discussed below.

2.1.2 The Spalart-Allmaras Turbulence Model

Spalart-Allmaras [5] is a low-cost one equation mixing-length turbulence model for
incompressible flows. It was initially designed for aerospace applications involving
wall-bounded flows and has been shown to give good results for boundary layers
subjected to adverse pressure gradients. It uses the following single transport PDE
for a modified eddy viscosity, known as the Spalart-Allmaras variable, or v.

;o0 N ] e (N ~
S A LGEL Rl ) LU

Eddy viscosity 14 relates to v with the following expression.
Vy = ;fvl (27)

The production and dissipation terms are given by

~ > ~ ~. U
P(”):Cbly ) D(V):Cwlfw(Y>P (28)
where Y is computed through
U v (%k
Y:vag-FAQ—Kvag ’ Y= eijka_xj (2.9)

with Y standing for the vorticity magnitude and A being the distance of cell-centres
from the wall boundaries (since OpenFOAM uses a finite volume cell-centered dis-

7



cretization of the domain [6]). The model functions read

3
_ X _
fo = X3+ad s <1+L>3
Cug
(1+va1)

foo = —————

(2.10)

The constants of the model are ¢y = 0.1355, ¢ = 0.622, k =0.41, 0 =2/3, ¢y =

oL+ (H;—b"’), Cw2 =0.3, cyp3 =2, ¢,y =7.1 and ¢,2 =5. The Levi-Civita symbol, e;jp,

used in the vorticity magnitude Y, is

+1 (i,5,k) € (1,2,3), (2,3,1), (3,1,2)
€ijk = -1 <i7j> k) € (17372)7 <3a271)7 (27173> (211>
0 t=y4, j=k, k=1

2.1.3 Wall Treatment

The turbulence model as defined till this point is valid only in the area where tur-
bulence is fully developed and does not perform well in the area close to the wall.

In order to deal with the near-wall, viscosity-affected flow region, two strategies can
be followed.

According to Low Reynolds number of Turbulence modelling [3], the viscous sub-
layer shown in figure [2.1] is resolved numerically and viscous effects are included
in the turbulence model, often by including 'near-wall damping’ terms and other
source terms in the model transport equation Since very steep gradients of
velocity (and turbulence statistics) occur across the viscous sublayer, very fine grids
are needed to provide adequate numerical resolution. Typically, this requires ensur-
ing that the first cell center lies inside the viscous sublayer, at a non-dimensional
distance of around y* < 1. y* is defined as y* = =¥, where v, = /7, is the friction
velocity, 7, the wall friction and y the distance of the cell center from the wall. In
large 3D simulations, employing such fine grids demands significant computational
resources that are not always available in the industry. This leads to the alternative
that is outlined below.

According to High Reynolds number of Turbulence modelling, the viscous sublayer
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Figure 2.1: Velocity profile in the characteristic regions of a developed turbulent
boundary layer.

is not resolved, but approximations are introduced to account for the flow behaviour
across it. By using empirical information, analytical expressions for the mean veloc-
ity distribution across the near-wall region of the flow are developed, the so called
Wall Functions. In High-Re models, the first cell center form the wall lies in the
log-law region with the maximum accepted value for y™ to be about 100 without
to compromise the accuracy of the simulation. Since the viscous sublayer is not
numerically resolved, a much smaller mesh size can be used, making wall functions
the preferred choice for the industry. For this reason, in the scope of this thesis the
wall functions approach is used.

In the Spalart-Allmaras model, wall functions are used to approximate the value
of v; at the cell closest to the wall. v; is computed according to v, = %, where
u, is computed based on the y* value. The formulation for the computation of
y*, as programmed in OpenFOAM®), follows Spalding’s Law [7]. Spalding’s Law
models the inner sublayer and the logarithmic region of the boundary layer with one

equation
+2 +13
yt=vT e P e 1 — kot — (m; S (mg ) (2.12)

where x is the von-Karman constant equal to 0.41 and B ~ 5.5.

This equation came as a result of best fit between the curve of y* = u™ which
is valid in the viscous sublayer and u* = Ey*/k which is valid in the logarithmic
region. F is an empirical constant equal to 9.793 = (e‘“B )



2.1.4 Primal Equations and Primal Boundary Conditions

According to the previous analysis, the primal problem for steady-state flow of an
incompressible fluid consists of the following set of partial differential equations.

_Ov

RP =
81’]'

(2.13a)

v 8vi E) (%i an (9p . -
Riiv]@:cj o, [(V—i—l/t) (8xj+8xl-)1+8xio ., 1=1,2,3 (2.13b)

;oD P\ 00 e (OVN'
v () )~ (o) TP@D@=0 e

o) Oz, o

The set of the boundary conditions needed to close the primal problem are the fol-
lowing.

o Inlet

At the inlet of the computational domain, a Dirichlet boundary condition is im-
posed on v; and a zero Neumann on p. For the Spalart-Allmaras variable v, a
Dirichlet boundary condition is used with the exact value depending on the value
of the kinematic viscosity v of the fluid.

e Outlet

At the outlet of the computational domain, a zero Neumann boundary condition is
imposed on v; and v and a zero Dirichlet on p.

e Wall Boundaries
At the wall boundaries of the computational domain, a no-slip, i.e. zero Dirich-

let, boundary condition is imposed on v; and a zero Neumann on p. A zero Dirichlet
boundary condition is imposed on v.

10



2.2 Formulation of the Adjoint Problem

As described in the introduction, in order to compute the sensitivity derivatives of
the objective function F' w.r.t. the design variables at a cost that does not depend
on N, where N is the number of the design variables, an augmented objective func-
tion, Fj,,, must be defined. This is done by adding to /" the volume integrals of the
state PDEs, multiplied by the adjoint variable fields. At this point of the analysis,
it is common in the literature of continuous adjoint to neglect variations in the tur-
bulence viscosity by assuming that changes in the shape of the aerodynamic body
affect only the mean flow quantities. This is referred to as the ”frozen turbulence”
assumption and leads to a system of adjoint equations which doesn’t include the
adjoint to the turbulence model PDE(s). As stated in [§] and [9], the so-computed
sensitivities are occasionally even wrongly signed and this may seriously affect the
optimization process. A much more rigorous approach includes the differentiation
of the turbulence model equation(s) w.r.t. the design variables and requires the for-
mulation and solution of the adjoint to the turbulence model PDE(s). This is one
of the key feautures of the adjoint solver developed by PCOpt/NTUA.

2.2.1 Three Continuous Adjoint Formulations: FI - SI - ESI

Based on the literature, the continuous adjoint method can be formulated in three
different ways. All three formulations result in the same field adjoint equations and
the same adjoint boundary conditions. What distinguishes them from one another
is the final expression for the sensitivity derivatives (SD) of the objective function
w.r.t. the design variables. The first chronologically formulation results in SD expres-
sions including both boundary and field integrals (FI approach). The FI approach is
characterised by high accuracy, but increased computational cost, due to integrating
over the entire domain and the need of computing dxy/db,, the so-called grid, or
mesh, sensitivities. The second formulation leads to SD expressions containing only
boundary, i.e. surface integrals (SI approach). It, thus, has low computational cost
but can lack accuracy especially when used with coarse grids. Finally, the Enhanced
ST (E-SI) approach, which also leads to SD expressions depending only on surface
integrals, combines the advantages of the aforementioned methods, being as fast as
the standard SI and as accurate as the FI one [10].

Next, follows a brief presentation of the three methods, with a more thorough

analysis to be found in [II]. In order to make the following analysis valid for all
formulations and keep the resulting expressions as simple as possible, we define a

11



generalised augmented objective function,
Faug:F_'_/ \IJZRZdQ (214)
Q

where F' is the objective function, R; = 0 are the residuals of the state equations,
i =1,...,F (E is the number of the state equations), ¥, are the adjoint variables
and € the computational domain. Differentiation of eq. w.r.t. b, yields

0Fqy OF 4

= T ) Vil (2.15)
The different formulations of FI and SI (standard or enhanced) result from the dif-
ferent ways the §/db,, integral of eq. is expanded.

According to the FI approach the term is developed as follows

) OR; 5(dS?)
U, R;dQ) = ; U, 2.1
5b, / s /Q 56, 0t / LT (2.16)
Using the relation 55%5:) = % (%’:) dQ2, whose proof can be found in [§], eq. [2.15
becomes OF, OF OR o (¢
w0 4 [ a0+ |, k) a0 2.1
Sbn  0bn /Q 5, T / Ry (5b ) (2.17)

By utilising equation % (%) = % ((%) — %a%j (?g—:) (proof also in [§]) and
the Green-Gauss theorem, the final FT sensitivity derivatives expression containing
the field variations of z; is received. This is the basis of the so-called FI adjoint

formulation.
The appearance of the grid-sensitivities can be circumvented by using the SI ap-

proach. In this case, the Leibniz theorem for the differentiation of volume integrals
with variable boundaries is used. Leibniz theorem yields

/ 6= / 750+ / qu%w (2.18)

where @ is an arbitrary quantity and S = S(b) = 09Q.
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Eq. becomes

5Fuy OF OR Sy
0 [l a0 4 [ wirm 2 21
Sby b, /Q o, /S it ~dS (2.19)
LB‘tgrm

which is the origin of the so-called SI formulation. The last integral on the RHS of
eq. is the so-called Leibniz term (LBterm in short). In literature, the LBterm
is usually ignored [IT] under the assumption that the flow equations are satisfied not
only inside the flow domain but also along the boundaries. Indeed, on very fine grids,
where the flow PDEs are satisfied very close to the wall and their residuals along
S are for this reason very small, neglecting LBterm does not affect the accuracy of
SD computed by SI. However, depending on the case and the grid coarseness, the
residuals of the primal equations might not be negligible along the boundary, mak-
ing LBterm very important for the accurate computation of the SD. Nevertheless,
its straightforward inclusion in the SD expression in not the appropriate treatment,
because of the numerical difficulties related with the computation of the residuals
of the primal PDEs along the boundary.

As proved in [I1], LBterm can be replaced by a volume integral containing the
grid sensitivities, which is much more easily computable.

/\PiRink%dsz—/ 0 { Ovi Op _ 7@ dv; Oy 4 avj}5$k59
S

Sb, 00x; \ "on,  Yomy V0w 0w, | lom, ? |
2.20

) is the adjoint stress

Covs\ .
g”% %) is the stress tensor and 7% =v (
z; Ox; J

Qu; Ouj
Ox; Ox;

where 7;; =v <
tensor.

However, the cost of computing this field integral scales linearly with the num-
ber of design variables, because of the requirement for dxy/db, in € for all design
variables. This leads to a computational cost similar to that of the FI approach.
The Enhanced SI (E-SI) formulation aims at the elimination of the field integrals of
dxy /b, in the SD expression by solving the adjoint to a hypothetical grid displace-
ment PDE. The grid displacement PDE (gdPDE) used in this thesis is a Laplace

equation, which reads
0?m;
pr=2"Mi_, (2.21)

¢ 8x?

where m; are the Cartesian displacements of the grid nodes. Along the boundary,
m,; represents the displacement of the boundary points.

Following the adjoint methodology, to derive the adjoint gdPDE, a new term is
added to the augmented function of eq. [2.14] containing the field integral of the
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laplacian grid displacement PDE multiplied by the adjoint to m; variable. The re-
sulting §/6b,, field integrals are expanded using the Leibniz theorem. A thorough
analysis for the E-SI approach that is used in this thesis is done in the following
subsection.

2.2.2 The E-SI Continuous Adjoint Method

The generalised augmented objective function, eq. [2.14] is specified based on the
primal problem described in section The extra field integral of the laplacian grid
displacement PDE is also included since the analysis is based on the E-SI continuous
adjoint approach.

Frug=F+ / u; RV A+ / gRPAQ+ / Do R7d)+ / miRMQ  (2.22)
Q Q Q Q

where €2 is the computational domain, u; the adjoint velocity, ¢ the adjoint pressure,
v, the adjoint turbulence (or adjoint Spalart-Allmaras) variable and m¢ the adjoint
to m; variable. It should be noted that the third integral of eq. would be ex-
cluded if the ’frozen turbulence’ assumption were made, whereas the fourth integral
would be eliminated if the FI or the SI approach was adopted.

By employing the Leibniz and the Green-Gauss theorem we receive

0Fuy OF 6

=— 4+ — RY P 4+ . RY a ppm
5. b + 5 (quz + qR” + U, R + m{R") d (2.23)
5F 8R§’ ORP R
gy, B | 4y, Va gy, 4
dx; om¢ 5:@ *>me dx;
L 250
/m”fa ( )ds /SW oz, gy BT /Q 07 5,0
5
+ / (w;R? + qR” + 7, R + mIR!") nk§d5’ (2.24)
S

where S is the boundary of the computational domain, S = S;USoU Sy USw,. The
boundaries Sy, So, Sw and Sy, refer to the inlet, outlet, fixed and controlled (thus
parameterized) wall boundaries of the domain, respectively. Also, ny stands for the
components of the unit outward vector which is normal to the surface. Since the only
parameterized boundary is Sy, and for the non-controlled boundaries dxy/db,, = 0,
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we have

6Faug_5F+ DR o [ O O
Sby by | Jo 0D, “on, Y Oby

o 0 [0z 8m ox; 9?m¢ 5x2
s, mi”ja_xj <5b )dS /SW o, "5, / 922 5,
(SIk

+/ (uZR“ + qR? + U,R” + m“Rm) np—dS (2.25)
Swp ob,,

—df2

Since the residuals of the prlmal equations must be zero over the whole domain,

Fau
Fuug = F' and consequently =4 = (?TI;.

A sharp distinction between symbols §()/db,, and 9()/0b, must be made. 6®/db,
denotes the total (or material) derivative of an arbitrary quantity ® and represents
the total change in ® by varying b,, whereas 0®/0b,, denotes the partial derivative
of ® and represents the variation in  due to changes in the flow variables excluding
the contributions from the space deformation. §®/db,, and 9 /0b,, are related with
the following expression depending if they are computed on the interior of €2 or on
the boundary of 2.

Interior of €2

5 _ 0%, 0% iny

— = 2.2
ob,  0Oby 8:ck by, (2.26)

Surface - Boundary of €2

0, 0P 0P 6a:m
el e

Nn (2.27)

Before proceeding with analysing the integrals appearing on the RHS of eq.
the following observation must be made. Since J()/0b, takes into account only
changes in the flow variables and excludes changes in the shape/volume of the flow
domain, spatial differentiation and partial differentiation w.r.t. the design variables
can commute, i.e.

0 (0¢ o (09
— (=2 )= = (=ZZ 2.2
In general, this is not valid for the total derivative, i.e.
o [ 09 9 (o
— | = — | = 2.2
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2.2.3 Differentiation of the Objective Function

In the present study three different objective functions are used that are defined
either on a volume of the computational domain or on specific surfaces of it. A
general objective function that comprises both surface and volume integrals can be
expressed as

S Q

where Fg, and F are the integrands on the boundary and the volume of the com-
putational domain, respectively. Differentiation of F’ w.r.t. b, gives

5F 0 )

The detailed derivation of the expressions for the surface and volume integral on the
RHS of eq. can be found in [§]. The surface integral is written as

) aFS 8vk 8F5 /an aTkg
| Fynids= . dS 2ds
5b, /S STt /S do, LT

6F5 8u GFS 51'1:

<o Mo T —axm 3, "4

on; 5(dS)
Fo Fen, 2.32
+/5 Swsbnd“/s S5, 22

The volume integral, after applying the Leibniz theorem for the differentiation of
volume integrals with moving boundaries, becomes

Eq. can be expanded if the dependency of F' on the flow variables is taken
into account. In general, F may contain the flow variables as well as differential
operators of these quantities. Considering these, eq. becomes

) ov; op ~ v ov;
F dQ= | EY ds) FP 2240 EY ds) Jag d
s, |1 / g +/ 9y, +/ 25, +/ sigp, 49
op ov 0xy
FP— F F —_— 2.34
/Sade/ Sade/ o g dS (2.34)

where Fg includes the partial derivatives 0Fq/0® plus any term that might result

from the use of the Green-Gauss theorem for integrals of the form fQ 8§n ( MJ) dsd.
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By substituting the above expressions in eq. the final expression of 6 F/db,, is
reached

oF o0v; op ov , 0Fg ov;
F o+ [ Fr g0 [ 7 aaq [ (4255
3bn /f“abd+/ Qabd+/ Q&bd+/(s” Du: ”)abds

’ 8F5 8p ,~ 8Fs 81/
P . L v . -
+/S<FS+8 >ab dS+/( 5 )ab s

0Fg 37’,] 0xy OFs,, , Sz
ko Fon—F oWt TR
+ g 8723 8b dS+/ QN 55, dS—i—/SW oz, N, 5bnnkd5
on; 6(dS)
+/9MF,;SW vi 5D, dS‘i‘/FSWp,inz 5b, (2.35)

The above equation includes the partial derivatives of the flow variables w.r.t. the
design variables, the computation of which requires the solution of N systems of
equations similar to the Navier-Stokes equations. Aim of the adjoint method is to
circumvent this expensive computation by solving the adjoint equations.

The previous analysis can be specified for each of the three objective functions
used in this thesis.

Total Pressure Losses

The objective function used to minimize the total pressure losses between the inlet
and outlet boundaries of the fluid domain is given by

1
Fp=— / (p + —vf) vjn;dS (2.36)
S1,0 2

where n; are the components of the outwards pointing unit normal vector. S;o
denotes the inlet and outlet boundaries of the domain. As defined in eq. the
units of Fp, are m®/s3, i.e. power losses per unit of density.

Differentiation of the above objective function yields

5Fp 1 1 Ov;
- — - ds — ~v?2 ) —ZLn,dS
5bn /S‘IO ( 2 >anj SIO <p+ QUZ) 5bnn]

( 1 > n]dS
- P+ zv;
S1,0 2"
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Because the integrals of eq. [2.37 are defined over the domain inlet and outlet bound-
aries, which are fixed during the optimization, the third integral of eq. [2.37]is zero,

since 5(1;,2d5) 0 over non-controlled patches.

Therefore, we have

0Fp, ) 1 1 5\ dv;
Sbn /SI,O 5o (p v ) vngdS = | <p N UZ) 55, "1
op o (1
=— d d
/SI,O 5, —v;n;dS — /S,O 5, < )v]n] S
1 ov;
— D+ Vi ) —n.dS
IRGET

5 1 2 (51)1'
— . . — Ry . 9.
/SLO( vin;) 5, ds+[91,o { V;UjN; (p+ 22)1) nl} 5bndS (2.38)

Noise

In order to minimise the noise received by an observer at the outlet of the domain, a
surrogate noise function is defined. Based on industrial experience, an appropriate
objective function for this purpose depends exclusively on the turbulence viscosity
and is given by the following formula [12].

F, = / 24) (2.39)
o

where 14 is the turbulent viscosity and Q' is a volume area, where it is desired to
minimize the turbulence viscosity. Since the noise reduction is achieved by a flow
solver without any coupling with an acoustic one, the selection of the appropriate
volume area ' is crucial, so that the minimization of the objective function leads
also to minimization of the produced noise.

It should be noted that obtaining adjoint-based sensitivities for this function would

not have been possible without differentiating the turbulence model since the ac-
quired sensitivities would have zero values irrespective of the body shape.
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Differentiation of the above objective function yields

oF, 9 ov? oy,
5. 5h. / cdS) = / dQ—i—/ Utnkébnds

B vy Ov 5 O0Tp
—/ 2V — a5 O, —dQ + / thkEdS (2.40)

where the Leibniz theorem is used.
The volume integral of eq. contributes to the Field Adjoint Equations and

more specifically to the adjoint turbulence model equation, whereas the surface in-
tegral to the Sensitivity Derivatives.

Flow Uniformity

The flow uniformity objective is used to drive the velocity at an outlet patch of
the domain to the mean value over the same patch, by minimizing the standard
deviation of each velocity component over the outlet patch. The objective function
that has to be minimized in order to achieve that is

Jo / (v — )2 dS (2.41)
2 So

where 7; is the mean value of the velocity component v; over the outlet of the domain
So.

Differentiation of eq. yields
OF, 1 ) .9 1 2 0(dS)
oo [ S (= 0)%dS + = ) 2.42
- Q/SO%”@Z %) s+2/50<m 0 (2.42)

3(ds) _

Since the outlet of the domain is non- controlled, 5

eq. [2.42]is zero.

Therefore, we have

OF, ov; 0
0 5 2 4s 5y o 9 4
5bn /S‘o (UZ UZ) 6bn d5 /5"0 (vl UZ) 6bn ds ( 3)

=0 and the second integral of

19



Since term v; is constant in Sp, eq. becomes

So So

5b, 5b, b,

where the second surface integral is by default equal to zero. Hence, the above
equation is simplified to the following one.

5ny 5Ui
ofy _ o) Lig 2.4
5b, /SO (vi = 05) =S (2.45)

A more intuitive scale of the outlet flow uniformity is provided by the uniformity
indez, defined as:

B fso |[v] = [o]| dS
2’?_]‘50

=1 (2.46)

The uniformity index is a dimensionless quantity and has a value that varies between
0 and 1, with 1 indicating perfect uniformity.

2.2.4 Differentiation of the Primal Equations

In order to obtain the final expression of 0F,,,/db, from eq. [2.25] the partial deriva-
tives of the primal equations w.r.t. the design variables have to be analysed, i.e.

ORP/0b,, ORY/Ob, and OR”/Ob,,.
Differentiation of the continuity and momentum equations, eqs and

respectively, yield
ORP 0 (0v;
- = 2.4

ob, Oz <8bn> (247)

and

OR; _0u0v 0 (0w) 0 (0

0 g (0v;  Ovj o [ov, (v v
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where v, /0b,, can be computed as follows

Ovp _On 00 8fv1

3031X2
8_bn_$8_bn ,wit = fo + . a2

(*+c,)"

= fut+

Differentiation of the turbulence model equation, eq. yields

SR _0v oy 0 (0v\ 0 [(, v\ 00
ob,, 8;1;] ob,, ]830] ob,, 0z o) Ox; ob,
10 (09 0v w0 (07
o Oz, ab 8:1;] o Ox; 0x; \ Ob,
- oP 0D ov
+I/<_8T+37) (P+D)8:EJ

The differentiation of the production and dissipation terms, eq. 2.8} yields

Co—+Ca—-— +CY Bz,

B 8_P +8_D ov 0A vy, d [ Ov;
ob,  ob, "’ 0Ob, ob,, Y "% 9z, 9,

where

CY: <_Cb1 Cw1 )fvs

CA:—% {cwer (A2 Vlvs

K2Y

> +Cw1 fwy Cbl f'U2 ~:|
Ii

CDZ(_CI: —CcuCz )(af”3Y+ Joo y Oy _V )+cw1€§+cw1fw

ov K2A2  Ov K2A?
Cop D2 o 148 \YO
C= wlz [1+ cu, (6r° — 1)] 6 % ( 6 123)
A g + Cw3 g + CH)3

—4
Ofen 3 (1+ l)
ov Ve,

Cos
s 1 (fo, O
v cv2 X 0

ov v

2 -3

(e 2+ () | ()

Cvz Cv2 Cvg

-3

(1+va1)(3+2 X) 2 <1+1>
cvz CUQ

2 —4
e | 0)
Cuy Cuy Coy

_|_

(14X for)
2

V2

-3

A?

(2.49)

(2.50)

(2.51)

(2.52)
(2.53)

(2.54)

(2.55)

(2.56)

(2.57)
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The continuous adjoint to the Spalart-Allmaras model can be found in much greater
detail in [§, [13].

2.2.5 Field Adjoint Equations and Adjoint Boundary Con-
ditions

By substituting eqs. [2.47], [2.48 and [2.50] into eq. we receive the final expression
of the material derivative of the augmented objective function w.r.t. the design
variables.

0 Faug /Bcua“ds+ / Ber P a5 / B % g5y / Beme 2. (5%)@9

by, ' Ob db,, oby, dx; \ b
8ng aTw v 0 ov
+/( win; + Ire )8b ds— /S (1/—1— ) (8 )n]dS

/ . de+/ R”a—dQ+/ R™ "0k 1)
ab 0

5b

a Wp,i 5 5 7 6 d
+/ni . nmﬂnkds /FSW O g8+ /FSW 1, 25)
Sw, "oby, Sw,

omé bz, oy,
— d CA——dS) eRM d 2.
/SW 6%”351) S/VIJCA —i—/mR nkébns (2.58)
where
ou; Ou Cy vy,
BC“: iU T4 ! ) ) a m mlt
: uv]n3+(1/+ut)(axj 83:) nj—qn;+v,v Ye Jkax]e 1N
OF
—_— 2.59
+ avz k+ S ( )
OF%s, ,
BCp:ujnj—i—a—;’ni—l—Fg (2.60)
= aya U, v O0Fs,
BC ”:yavjnj—l—(y—l— ) 8% ;(1+2cb2) oz, nj+-—=" 5 n,+F7 (2.61)
BC™* =mjin; (2.62)

After setting the multipliers of dv;/0b,,, Op/0b,,, Ov/0b,, and dx}, /b, in the volume
integrals of eq. to zero, the field adjoint equations are derived.
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8uj
Ox;

dv;  O(vju;) 0O Ju;  Ouj Jq
O R e e VN ] £v.
B ™ "o, am; |\ g, T o )| T o T

Ri=—7 4 Fb=0 (2.63)

- 85 8 ~~CY 8?% .
o —— | U——emir—emi | =0, i=1,2,3 2.64
+v, &L’i @xl (uuye ]kaxje 1) 7 ( )

— 0(vjv,) 0 v\ Org, 10v, ov cpp O (. Ov
I/a:_ o _ _ 2__ .
R 8:1:]- Ba:j |:(V+O') ax]} +O’8.Tj ax]’ + g 8:1:j (Uaa$j)

~ o~ 8Vt 8ul 81)1' (%j - ,~
7T == —P+D)v, + F5= 2.
+5,0C +auaxj(axj+axi)+( +D) o, + F5=0 (2.65)
mo 82mz 0 0Ui ap a 8UZ aTi]’ 8Uj
R = 890? + oz, {uwj B, +u; Dy +7;5 9z, —U; B, _qﬁxk } =0 (2.66)

After satisfying the field adjoint equations, the remaining terms in eq. are

‘“‘9 /BczggzdS /BCp—dSJr/BC”“ Y as+ /ch (5“") ds

ank E)Tw /
+/S( win; + o7 )819 ds— . (I/+ )(% (axj)anS
OF,
+/nZ SWplnm%nde—*—/FSW zanzds—i_/stp,lnz(S(dS)
S

0w, b 5b o 3b,
om¢  ox; wrm. 0Tk
_ /S i 9% gs+ / WacA dQ+ / m{ B!y dS (2.67)

The system of the field adjoint PDEs is closed with the adjoint boundary condi-
tions. The adjoint boundary conditions (ABC) are imposed aiming to eliminate the
surface integrals that contain the partial derivatives of the state variables w.r.t. the
design variables, namely the first six and the last integral of eq. which contain
the surface integrals of dv;/db,,, Op/db,,, Ov;/0by,, OV /db,,,0(dx;/0b,)/0x;, OT;j/Oby,
0(0v/0x;)/0b,, and dx;/db,. For the sake of completeness these terms are rewritten
as follows.
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/ Ber 9V gs (2.68)

s ' Ob,
dp
L= (R 2.
) /S BC 8bnds (2.69)
Iy= / Be= 9 4s (2.70)
T T o, ‘
0 [ox;
Ii= ma : 2.71
4 /SBC 5 (%)ds (2.71)
8FS OTi;
L= (—un. k) 2 2.72
o= [[(cuins + ) Sas 272
v\ 0 ov
Is= 2.
; / (y+ )ab (a%)n]ds (2.73)
h—/m“Rmnk%dS (2.74)

At this point, the final expressions of the adjoint boundary conditions are presented,
whereas their detailed deriviation can be found in [§]. The adjoint boundary condi-
tion of the adjoint gdPDEs is the same for all boundaries, namely m{ = 0, so that
integral I, is eliminated. Also, since m§ = 0 along all boundaries, integral /7, which
is the equivalent of LBterm discussed in [2.2.1] also vanishes in all boundaries.

Inlet Boundaries S;

At the inlet boundaries since Dirichlet boundary conditions are imposed on v; and
v, 6v;/0b, = 0 and dv/db, = 0. Since S; in a non-controlled boundary, dz/db, = 0
and taking into consideration eq. [2.27, dv;/0b, = 0 and Jv/0b, = 0. This means
that Il = [3 = 0.

Integrals I, and [5 are eliminated by demanding

Uiy = ag;, I, (2.75a)

= 8§’Tg;k thn; + %‘anktﬁnz (2.75b)

Z> agj;k ngt!'n; + %nkﬁlm (2.75¢)

where ¢!t/ are the components of the tangent to the surface unit vectors. The first

tangent vector ¢! can be defined as an arbitrary unit vector parallel to S7, whereas
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tIT forms an orthogonal system with n and #/. Quantities u{t> and ug> are the com-
ponents of the adjoint velocity in the ¢!, /I directions respectively. It should be
noted that if F' is not defined at the inlet of the computational domain, the adjoint
velocity components are zero along S;. Integral I is zeroed by imposing a zero
Dirichlet condition to v, i.e. v, = 0.

Finally, since no boundary condition for ¢ results from the elimination of any of
the seven boundary integrals already discussed, a zero Neumann boundary condi-
tion is employed.

Outlet Boundaries Sp

At the outlet boundaries since a Dirichlet boundary condition is imposed on p,
dp/db, = 0. Since Sp is fixed, dz1/db, = 0 and taking into consideration eq. [2.27]
Op/0b, = 0. As a result, integral I, vanishes automatically. Due to the distance of
the outlet boundary from the controlled area, an almost uniform velocity profile can
be assumed along Sp, meaning that d7;;/0b, = 0 along So. Hence, integral I5 can
be neglected.

In order to eliminate [y, its integrand quantity is set equal to zero, i.e.

ou;  Ou; _.C ov
BC} =uvjn;+(v + 1) (axj + 81’Z) nj—qni—i-uau?Yemjk—axj emliTi
OF. .
+5 e+ FY, =0 (2.76)
Vi ’

Eq. [2.76, which can be analysed in three scalar equations, i = 1,2, 3, includes four
unknown quantities (the adjoint pressure ¢ and the three components of the adjoint
velocity w;). Therefore, one of them may take on an arbitrary value. This is chosen
to be the normal component of the adjoint velocity u,y, on which a zero Neumann
boundary condition is imposed. By multiplying equation [2.76] with n; a Dirichlet
condition for the adjoint pressure is derived

Ouyy OF ,
q=tgnyVny+2(v + 1) 87<1> + aiOk ning+Eg, n
_C 0
—i—VaV?Yemjk@LJ:;emlmmi—O (2.77)
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The outlet adjoint tangential velocity is computed by multiplying eq. with the
tangent to the surface vectors t! | [=1,2.

oub,, 9 OF
_ ! {t) | 9Un) Sok 4l w4l
O=vyugy+ (v + 1) ( o + o >+ 9o, it +Fs, b
_C ov
—VaV?Yemjka—x];emzmzté ,1=1,2 (2.78)

Finally, a Robin-type boundary condition is imposed on 7, in order to eliminate
integral I3.

v\ 07,  OF ,~
”) Y S0k 4+ FZ =0 (2.79)

BC” = Du;n; = e
z/vjnj+<u+0 axjnj—l— Bh

It must be noted that term % (1+ 2¢,) a‘%nj has been eliminated from eq. [2.79

with regards to eq. where BC" was originally defined, because of the zero
Neumann boundary condition imposed on v for the outlet boundaries.

Unparameterized /Fixed Wall Boundaries Sy,

Since v is equal to zero on the wall boundaries, integral I3 vanishes. However,
this is not the case for the gradient of 7 and in order to eliminate integral I a zero
Dirichlet boundary condition imposed on v,. The boundary conditions imposed on
the adjoint velocity conditions are derived following the same procedure presented
for the inlet boundaries. For the sake of completeness these boundary conditions
are

0Fs,, ;
an k 81 Sw .k
u{w = 8TZ ngting + a—gnktjlnz (2.80Db)
8F5 k aFS k
ulpy = arZ gty g + TZWJUW (2.80c)

Finally, a zero Neumann boundary condition is imposed on q.
Parameterized/Controlled Wall Boundaries Sy,
The main difference between parameterized and non-parameterized wall boundaries

is the fact that the parameterized boundaries may change during the optimization.
Thus, dzx/db, # 0 and the total and partial derivatives of the flow quantities are
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different and are linked through eq. [2.27] In addition, the total variations in the
normal and tangent surface vectors are not zero, contributing extra terms during
the formulation of the adjoint boundary conditions [§].

2.2.6 Adjoint to the Distance Equation

After satisfying the field adjoint equations along with their adjoint boundary con-
ditions, eq. takes the form of eq. 2.8} To this equation are included some
extra terms that arise from the derivation of the adjoint boundary conditions at the
controlled boundaries [8, [@].

0 F qug WE / otij 1 0T / d(njt!) dxy
=TVF_ [SD —k D7y — 0k
ob, °P S‘j LDy, S f Y5, b, ds

ot/ dv; 0
+ / SDs vy —dS— / SDs i nnp ot dS
- 5b

SWp 5bn al’m n
v\ 0, 0Fg ov Oy,
_ -z z I Tk
/SW{(V%—0> 6x]n]+ 5 n,+ s} oz, nmnkdb s

(5(’/%71]) 87’@‘ 5[)’]k
—/(_u<n>+¢(n>(n)> (TZ']' (5bn +axmnmmnknmj dsS

Sw,

S(tHhY  orm;  omy
iithtI) (Tij (Sbn] +8Ijnm67 ktltl dsS

0(t't])  Om; Sy
_/S(vf/zig<t11><t1>+¢<t1><t11>) <TianJ+a J 5b tz‘Hth‘ ds

Ot]) omy;  duy,
s (Tij 35+, p, | 49

OFs, .  6m 5ni 5(dS)
P _r d F d F n,———2
+ /SZ 9z, " op, AT / Swpa gp 40T /SWSWP»Z”Z 5b,

om¢ oz, WF@AP
_/SW 0z, " 5b, 5, T /AA b,

A
+/Q D’ﬁ;lCAgTdQ (2.81)
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where

SD, = —Uft>+¢<t1><n>+¢><n><t1> (2.82)
8UZ’ ou; 8FSWP,1€ 2
SDy;=(v+uy) (axj + 3xj> nj =gt —p et Fg, (2.83)
0Fs,, .
ij= 2.84
J aTZ'j 1tk ( )

TS, | Swy AXE %ds and | S AXE %ds summarize the contribution of the wall

functions differentiation to the sensitivity derivatives [14]. As can be seen, all but
the last term of eq. [2.81] are surface integrals, which can be computed at a cost that
is, practically, negligible when compared to the solution of the primal or the adjoint
equations. However, this is not the case for the last field integral which contains the
distance variation for the entire domain w.r.t. the design variables. The simplest
way to compute this variation is through finite differences, i.e. by perturbating each
of the design variables by an infinitesimally small quantity e in the positive and
negative directions and re-computing nodal distances for the entire domain. Then,
the total distance variation would be

%_ A(b, +€) — A(b, —€)
ob, 2¢

(2.85)

Having computed the total distance variation, the partial variation of A appearing
in the last field integral of can be calculated through eq. as follows

O _ 9N _ OA by
ob, 6b, Oxy db,

Nevertheless, the finite differences method has the same issues as the ones described
in the introduction of this diploma thesis, namely the requirement to make 2N com-
putations of the distance field (for instance by an exhaustive search of all cell centers
with all boundary faces) and the sensitivity of the result from the value of .

An alternative and more cost-effective way to deal with dA/0b, is to apply the
adjoint methodology in order to eliminate the term containing this variation. There
are various PDEs that can be used to compute the distances field A. Hamilton-
Jacobi equation has shown to produce a very good approximation to the Euclidean
distance field and to be numerically robust [8, [15]. Hamilton-Jacobi equation reads

d(c;A) O2A

RA = —A—— —-1=0 (2.86)
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where ¢; = 0A/0z;. The boundary conditions of eq. m 2.86| consist of a zero Dirichlet
condition for the solid wall boundaries and ‘M Sa i = 1 for the rest of the domain
boundaries. This equation can be viewed as an addltlonal primal PDE to be solved,
meaning that it should be added to the augmented objective function, eq. -
which now becomes

Fpg=F+ / w RV O+ / qRP A+ / 7, R A+ / m? R A+ / A R2AQ (2.87)
Q Q Q Q Q

v~ v~

Ty Ty

where A, is the adjoint to the distance field variable. The differentiation of F,,,
follows the same methodology presented in section We have

iy 0Ty 0Ty
§b, &b, &b,

(2.88)

The development of 77 /db, led to eq. 0T5/db,, is developed using the Leibniz
theorem, as follows

A
@ 5 / A RAdQ= / A28 S+ /A RAnk%dS (2.89)

After differentiating the Hamilton-Jacobi equation and substituting the result in eq.

2.89] we receive

0Ty 8A 0A A 5xk 0A

By integrating eq. into the expression where the multiplier of 9A/0b,, in
the resulting volume integrals should be set to zero, is derived. Thus, the adjoint to
the distance field equation is derived

0 0A
Ao — 92— [ A = 2.91
R=e o, ( 8%) +v1,Ch =0 (2.91)

where the first of the terms in the RHS of eq. is contributed by the differ-
entiation of the Hamilton-Jacobi equation [2.86 whereas the second one from the

differentiation of the Spalart-Allmaras equation.

Having satisfied the field adjoint distance equation along with the proper boundary
condition [9], the terms that should be added to the sensitivity derivatives expression
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replacing the last field integral [, A b, 2 1) of equation are

/ i OB a0 - /AGRAnk Eds — / 27, 8An] 08 o onThas  (2.92)
0 b, .y D™ 50,

2.2.7 Final Expression of the Sensitivity Derivatives

Taking everything into consideration, the final expression for the sensitivity deriva-
tives reads

0 l 5 1)
- ngg]VJF_/Spl OTij A xde /spmj Onsty) O

aVa 8F5 | Ov 5xk
_ Ol's, po| 9V dp

o(n;n;)  Om;  Ox
- Jmrtn) (T“ (5an) + 9z, gb, " nj) "

Swp

¢<t1><t1) (TZJW‘{‘ammnmmnktz tj ds

Swp,

(tt])  Omy; Sy
_/<¢(tU><tI>+¢<t1><tll>) <Tij 5bn] +6 ‘n ﬁ ktﬂt dsS

Sw,

Sty or. S
¢<tﬂ><tﬂ) (Tz‘j ( * )—|— Tij nmﬁnktlﬂtf as

S Sby | Oz " Ob,

OF,
+/ni Sanm%nde+/F5W 15”1d5+/FSW PG
Swy,

0T, b b by,
_/ omy &BZdS /AWFOA /AWFGA

S
dxy, 0A  0A dxy,

a7 o0, oL
A R%n;,—= 20, 2.
+/SWZR N 5, dS — /SWP . nJa Ny e —— 5, ds (2.93)
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2.3 Grid Displacement Strategy

The sensitivity derivatives of the objective function w.r.t. the design variables can
be utilised to produce an improved geometry, i.e. a shape update of the design sur-
face, which leads to an improved objective function value. This can be implemented
by importing the sensitivities into an automated morphing tool. The tool needs to
have the ability to morph the geometry according to the direction suggested by the
sensitivities, from which point the grid can either be regenerated according to the
newly suggested shape or be deformed without the need for remeshing the geometry.
Since the former highly increases the computational cost of each shape deformation,
the latter option is utilized.

In this diploma thesis, two different grid morphing techniques are employed. At
the simulations conducted with the BMW shape optimization software, the Ver-
tex Morphing method for node-based shape optimization is utilised, whereas at the
simulations that are executed with the complete PCOpt/NTUA software, the com-
putational grid is parameterized using volumetric B-splines.

In the following subsections the basic features of the two aforementioned morph-
ing methods are presented.

2.3.1 Vertex Morphing

Vertex Morphing [16, [I7] is a shape control method for node-based shape optimiza-
tion, which assumes the location of each surface point, as a control parameter (design
variable). In other words, unlike ”morphing box” techniques, Vertex Morphing uses
the design surface node positions as the design variables of the optimization prob-
lem. Since all available degrees of freedom are used as design variables, node-based
methods lead to the richest design space possible for optimization of a discrete ge-
ometry, which means that they can lead to any non-intuitive shape.

A disadvantage of node-based methods is the possible shape update irregularities.
This problem is prevented by applying a distance-dependent smoothing filter on the
resulting sensitivities and displacements of each node, which weighs the sensitivities
and displacements of the node with those of its neighbours.
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2.3.2 Volumetric B-Splines

On the contrary to node-based shape optimization, a Free Form Deformation (FFD)
method can be used instead to parameterize and move the mesh of the geometry in
question. To this category belongs the parameterization based upon B—splines de-
fined in 3D space, the so-called volumetric B-Splines. The method, as implemented
by the PCOpt/NTUA [18] and coupled with the corresponding adjoint solver, uses
a set of control points in 3D space, in the form of a structured control grid. Since
the displacement of the B-Splines control points leads to a reallocation of the CFD
mesh points residing inside the boundaries of the control grid, the Cartesian X,Y
and Z coordinates of the B-Splines control points can be used as the design variables
of the optimization problem.

The theoretical background of the volumetric B-Splines representation and mor-
phing method is briefly discussed below.

Let b%% m € [1,3],i € [0,1],7 € [0,J],k € [0, K] be the Cartesian coordinates of
the 75k — th control point of the 3D structured control grid, where I, J and K are
the number of control points per control grid direction. The Cartesian coordinates
X = |11, 29, 23]7 = [2,y,2]" of a CFD mesh point residing within the boundaries
defined by the control grid are related to the parametric ones with the following
expression.

T (U, 0, 0) = U pu(0) Vo (V)W o (0)EF 1 m =1,2,3 (2.94)

where u = [uy,uz,u3]’ = [u,v,w]’ are the mesh point parametric coordinates,
U,V,W are the B-splines polynomial basis functions in each of the 3 directions and

pu, pv, pw their respective degrees.

In order to compute the mesh parametric coordinates, a mapping from R3(z,y, z) —
R3(u, v, w) is required. Given the control points position, the knot vectors and the
basis functions degrees, the parametric coordinates (u,v,w) of a point with Carte-
sian coordinates 7 = [z, ¥, 2|7 can be computed by demanding the volumetric
B-splines to be able to reproduce its actual Cartesian coordinates, i.e. by solving
the system of equations

z(u,v,w) —z, =0
R(u,v,w) = y(“v v, w) —Yr = 0 (295>
z(u,v,w) — 2, =0

where z,,,(u,v,w), m =1,2,3 are computed through eq. based on the given b
values. The 3 x 3 system of eq. can be solved independently for each parame-

terized mesh point using for example the Newton-Raphson method, after computing
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and inverting the Jacobian 0x,,/0u; , m,j € [1,3]. The Jacobian matrix is com-
puted analytically through a closed form expression resulting by differentiating eq.
2.94] w.r.t. the components of u. Since the evaluation of the parametric coordinates
of each point is independent from the rest of the grid points, this phase may run in
parallel.

The aforementioned mapping process has to be done only once at the beginning
of the optimization and thereafter eq. can be used to compute the CFD mesh
coordinates according to the values of the parametric ones at a negligible compu-
tational cost. In addition, since x,, depends only on (u,v,w) and b, the deformed
meshes are step-independent. This means that, for a given final control points po-
sition, the same mesh quality will be obtained independent of the number of steps
taken to reach that position.

2.4 Design Variables Update Methods

There are various methods to update the design variables according to the computed
sensitivity derivatives. In this thesis two of these methods are utilised in the applica-
tions presented in chapter [3|, steepest descent and BFGS method. Both methods are
briefly described in this section, whereas more detailed analysis can be found in [19).

In both approaches the design variables b,,n€[1, N] are updated according to the
following expression.
b =07 + 1pn (2.96)

What distinguishes them from one another is the calculation of p,. The n value
defines the step length of the descent and is computed through eq. [2.97]

B Abmam

= 2.97
n /A bact ( )
where Ab™** is the maximum allowed displacement of the control points b, as de-
fined by the user and Ab** is the maximum displacement of the control points as
calculated from the optimization for n=1.

It must be noted that for the simulations that are ran exclusively with the PCOpt/
NTUA software the n value is computed once at the end of the first optimization
cycle and kept constant for the rest of the optimization. On the contrary, for the sim-
ulations that are ran with the PCOpt/NTUA code coupled with the ShapeModule
software from BMW, n is reevaluated at the end of each optimization cycle to en-
sure that the displacement of the surface mesh nodes does not exceed the maximum
value determined by the user.

33



2.4.1 Steepest Descent

Steepest descent is a simple gradient method with a straightforward implementation.
Although it is often not the most efficient method, it is an absolutely essential tool
to prototype optimization algorithms and for preliminary testing of models. Once
the model formulation is stable, one might want to invest more in considering im-
proved optimization methods, especially 2nd order ones such as the BFGS method.
The gradient (?T‘i at location % points towards a direction where the function in-
creases. Since the adjoint code, that has been developed by PCOpt/NTUA, incor-
porates optimization problems as minimization ones, the so-called steepest descent
direction is p, =—0.J/db,. Eventually, equation takes the form,

0J
bzew — bzld —

2.
5, (2.98)

2.4.2 BFGS

Newton methods utilise the second derivatives of the objective function w.r.t. design
variables, also known as the Hessian matrix V} J, to define the search direction p,,.

2F \ ' OF
(5bn5bm) 0bp,
However, the exact computation of the inverse of the hessian matrix can become
challenging and this is what quasi-Newton methods try to address. The most pop-
ular quasi-Newton algorithm is the BFGS method [19], named after its discoverers
Broyden - Fletcher - Golfsrb - Shanno. It belongs to the second-derivative line search
family method and is considered to be one of the most powerful methods to solve
unconstrained optimization problems. BFGS method poses superlinear convergence
but tends to get more affected by inexact sensitivities in comparison to simple gra-
dient methods. Like other quasi-Newton methods, BFGS approximates the Hessian

matrix VgnF with a B,,,, matrix, based on the gradient only. In this case, the search
direction becomes

old

Pn=— (2.99)

6F old
Pn=— {B;,L W} (2.100)
Eventually, equation becomes
SF old
brew =pod —p {Bn,}lﬁ] (2.101)
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Approximation matrix By, (the nm index is omitted for simplicity) can be updated in
each iteration k with equation [2.102| which takes the Sherman—Morrison—Woodbury
formula into consideration.

BisksiBr iyt

Byi1 = By, — (2.102)

T T
sy, Bisy, Yy Sk
where s, = xp1 — o and y, = VFE 1 — VF}.

The implementation of eq. [2.102] is computationally expensive, because it requires
the system Byp, = VF} to be solved for the step p,. A solution to this problem

comes through eq. [2.103

Bily = (I—prsivi) Byt (I = pryit si) + prsisi, (2.103)

_ 1
where Pk = W

The appropriate initial approximation By depends on the case. The most simple
solution is to set it to be the identity matrix, or a multiple of the identity matrix,
where the multiple is chosen to reflect the scaling of the variables. In the case that

By =1, eq. 2.101] is simplified to eq. [2.98|

The 7n value can be computed through line search methods or using the procedure
that includes the maximum allowed displacement as previously described.
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Chapter 3

Applications

In the first part of this chapter the integration of PCOpt/NTUA solvers into the
BMW optimization software "'ShapeModule’ is presented. Thereafter various simula-
tions concerning the shape optimization of two different HVAC ducts are presented.

3.1 Integration of the PCOpt Solvers into Shape-
Module

ShapeModule is the BMW shape optimization framework based on Vertex Morph-
ing Method, into which the PCOpt/NTUA primal and adjoint solvers are
integrated. ShapeModule provides an interface that allows the user to connect to
various tools or solvers like the one developed by PCOpt/NTUA. These solvers are
responsible for computing the primal and adjoint solution and the sensitivity deriva-
tives of the objective function w.r.t. the surface nodes coordinates of the geometry
being optimized. The necessary geometry, i.e. the controlled wall boundaries, and
the SDs are, then, communicated to ShapeModule, where the necessary geometry
updates for the optimization are computed. Subsequently, the solver receives the
geometry update, according to which it deforms the volume mesh of the domain and
proceeds to the next optimization cycle.
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ShapeModule is functionally divided into three different sections:

e Core: It includes the database and Vertex Morphing implementation and is de-
veloped in C++ programming language.

e Algorithmic: It includes the optimization algorithms, such as steepest descent,
and is developed in Python programming language.

e Interface: It is responsible for receiving the geometry and the sensitivities and
returning the shape update to the solver to which ShapeModule is coupled. This
part is developed both with C++ and Python languages.

The shape optimization simulation is configured by setting up a .json (JavaScript
Object Notation) file to control the shape optimization technique and, also, by pro-
viding the relevant primal and adjoint solvers with the proper configuration settings.
More specifically, the most important settings in the .json file are the optimization
algorithm to be used, the list of the objectives with their corresponding weights, the
constraints, the maximum allowed displacement per optimization cycle (step size),
the file path from where shapeModule will read the geometry and the sensitivities
and write the displacements file, the filtering type and radius used on the sensitivi-
ties and displacements and the distance from the edges of the design surface to which
the vertex morphing methodology will not be implemented (damping distance).

As part of this thesis the communication software between the flow and adjoint
solver of PCOpt/NTUA and ShapeModule was reimplemented, basing its function-
ality on reading and writing of the necessary data files (File-IO coupling) rather than
on the previously used MPI communication protocol. Furthermore, the communi-
cation software was expanded to support the separate use of the SDs computed by
each adjoint solver defined by the user, making it capable of communicating multiple
sensitivity files from the PCOpt/NTUA software into ShapeModule. As a result,
some of the objective functions may be used as constraints, which would not be
feasible if a single sensitivity vector list, i.e. a single sensitivity file, was computed.
An additional benefit of the new implementation is that the weighting between the
objective functions may be done now, if necessary, inside shapeModule according to
the settings defined in .json file.

The simplified optimization workflow is shown in figure [3.2] whereas the simpli-
fied coupling diagram is presented in figure (3.1}
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geometry file
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o sensitivity file(s)
PCOpt/NTUA Adjoint Interface "| Interface
Solver (C++) (Python) ShapeModule
{OpenFOAM)

displacement file

o

Figure 3.1: The coupling of PCOpt/NTUA software with ShapeModule. Each soft-
ware has an interface, through which the communication between them is achieved.

PCOpt/NTUA Adjoint Solver (OpenFOAM) ‘ ‘ ShapeModule

Update the volume mesh by
solvingthe Laplacian gdPDEs

Write the design surface [
in file ¥
! Read the geometryfile

Solve the set of primal 5
equations

Solve the set of the adjoint equations and

. e . Repeat
compute the corresponding sensitivities P
i forall

e th . adjoint ?epei?t
ert_e the sensﬂnﬂtfe? in separate solvers oral
files for each adjoint solver : adjoint

¥
T . |
Read the objective function SOIvers

value and the sensitivity file(s)

¥

Smooth the sensitivities, compute the
surface-node displacements and
write them infile

Read the displacements
file
|

Figure 3.2: The simplified diagram of the optimization procedure implemented in
BMW.

The communication files has been chosen to have a .csv format with the following
structure.
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e geometry file:

# nodelD , Cartesian coordinates

nodelD1 | x-coordinate , y-coordinate , z-coordinate
nodelD2 | x-coordinate , y-coordinate , z-coordinate
nodelDN | x-coordinate , y-coordinate , z-coordinate
# faces , nodelDs belonging to the face

faceID1 , nodelD1 , nodelD2 , ...

facelD2 , nodelD1 , nodelD2 , ...

faceIDM , nodeID1 , nodelD2 , ...
# EOF

e sensitivity file:
# nodelD | sensitivity vector
nodelD1 , x-component , y-component , z-component

nodelD2 | x-component , y-component , z-component

nodeIDN | x-component , y-component , z-component

# EOF

e displacements file:

# nodelD , displacements in each direction

nodelD1 , x-displacement , y-displacement , z-displacement

nodelD2 , x-displacement , y-displacement , z-displacement

nodeIDN | x-displacement , y-displacement , z-displacement
# EOF

where N is the total number of nodes and M the total number of faces of the
design surface.

3.2 Simulations conducted with the coupled soft-

ware of PCOpt/NTUA and ShapeModule

The coupling of the PCOpt/NTUA software with ShapeModule was first tested on
an S-Shaped 3D Duct with a circular cross-section, due to its low computational
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cost. The duct was optimized by using the pressure drop and the 'noise’ objectives
separately as well as combined in a multi-objective optimization. Since the afore-
mentioned case was a demo one to make sure that the two softwares cooperate as
expected, the results are not presented in this thesis.

Thereafter, the coupled software was used to design an HVAC duct, i.e. a defrosting
duct. The initial geometry was a 3D box with one inlet and three outlets, as can be
seen in fig. [3.3] The optimization workflow that was adopted is the following:

Figure 3.3: Initial Box at the beginning of the optimization. Wall boundaries (blue),
inlet (red) and the three outlets at the top of the box.

e Step 1: Topology Optimization for total pressure losses minimization.
e Step 2: Smoothing of the geometry produced in Step 1.
e Step 3: Shape Optimization for total pressure losses and noise minimization.

The duct that was generated by applying topology optimization with the mini-
mization of the total pressure losses as objective function, can be seen in fig. [3.4]
The mesh is comprised of 81000 cells and the Reynolds number is Re=15500, based
on the hydraulic diameter of the rectangular inlet patch.

It is apparent from fig. that the surface of the duct resulting from the topology
optimization needs to be preprocessed before it can be inserted in the shape opti-
mization software, in order to fill the appearing surface gaps and smooth the surface,
especially near the inlet and outlets of the duct. This is achieved by using at first
the Inspire CAD software by Altair to smooth the main part of the duct excluding
the surfaces near the inlet and the outlets, and then by using the ANSA software
by BETA CAE Systems to make sure that the inlet and outlet surfaces remain the
same as those appearing in the initial box, fig. close any gaps still appearing
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in the geometry and make the final surface smoothing. The result of this procedure
can be seen in fig. [3.5

Figure 3.4: The duct that was generated through topology optimization based on the
box of fig. @fmm different angles of sight.

Figure 3.5: The duct after the smoothing the surface geometry topology optimization

produced, fig. .

The duct of fig. [3.5 was inserted in the OpenFOAM environment, where the volume
grid was generated using snappyHexMesh utility. The grid is comprised of 600.000
cells and y* ranges from 0.05 to 15 along the duct walls. Reynolds number remains
the same as that chosen for the topology optimization, Re = 5500. Based on the
smoothed geometry, fig. 3.5 the following simulations were conducted.

3.2.1 Minimization of ’Noise’ in the HVAC Duct

The first shape optimization simulation, that was conducted by using the coupled
PCOpt/NTUA and ShapeModule software, had as target the minimization of the
noise produced at the outlets of the duct by minimizing the surrogate "noise” objec-
tive function presented in subsection As initial geometry was taken the duct
that was smoothed after the topology optimization, fig. The design surface is
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the whole solid surface of the duct, excluding apparently the inlet and the outlets
of the domain. The volume where the objective is defined has been chosen to be
near the outlets of the duct, since these are the areas that are most directly related
to the generated noise. This volume consists of all duct cells that reside inside the
boxes of fig. (3.6}

Figure 3.6: The duct geometry before shape optimization and the semi-transparent
bozxes inside of which the objective function is defined.

The optimization ran for 35 cycles after which the simulation stopped due to mesh
worsening. The convergence of the objective function can be seen in fig. [3.7], whereas
the comparison between the initial and optimized shape is presented in fig. As
a more characteristic magnitude, the average value of 1, at the three outlets of the
duct has been computed. The results appear on table

1+ T T T T 3
L _ Noise (_)bjective_—-v-— g

0.1 i ; : : E

0.001

Objective Value

0.0001 | : : : H -

le-05 | B : : ; i E

N : : : : :
5 10 15 20 25 30 35
Optimization Cycle

Figure 3.7: Convergence rate of the "noise” objective function. All values are di-
mensionless, i.e. divided by the objective function value at the beginning of the op-
timization. The objective function reduced over 5 orders of magnitude over the 35
optimization cycles, i.e. over 99.99%.
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Figure 3.8: Defrosting duct, Re = 5500, minimization of ’noise’. Initial (top) and
optimized (bottom) geometry from different angles of sight. The signed cumulative
normal displacement field indicates, also, the direction in which the duct surface points
moved, either outwards (red) or inwards (blue).

It must be noted that at the end of the 35" optimization cycle, the total pressure
losses objective is also reduced by 6.4% compared to its value at the beginning of
the simulation, although it was not set as target of the optimization.

| InitialGeometry | FinalGeometry
7 at the outlets | 3.28x10 7 | 1.47x1077

Table 3.1: Average value of vy at the three outlets of the domain before and after the

‘noise’ optimization. vy has reduced 220 times compared to its value at the beginning
of the optimization.
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3.2.2 Minimization of Total Pressure Losses in the HVAC
Duct

As initial geometry, was considered the duct that was smoothed after the topology
optimization, fig. [3.5] similarly to the case of 'noise’ minimization. The design sur-
face is again the whole solid surface of the duct, excluding the inlet and the outlets
of the domain.

The optimization ran for 13 cycles after which the simulation stopped due to mesh
worsening. The convergence of the objective function can be seen in fig. whereas
the comparison between the initial and optimized shape is presented in fig. |3.10]

T T
Lossgs Obiectiv_e —_—

Objective Value
o
=]
wv
T
i

Optimization Cycle

Figure 3.9: Convergence rate of the total pressure losses objective function. All values
are dimensionless, i.e. divided by the objective function value at the beginning of the
optimization. The objective function has reduced by 9.5% over the 13 optimization
cycles.

It must be noted that at the end of the 13! optimization cycle, the noise related

objective function is also reduced by 80% compared to its value at the beginning of
the simulation, although it was not set as the optimization target.
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Figure 3.10: Defrosting duct, Re = 5500, minimization of total pressure losses.
Initial (top) and optimized (bottom) geometry from different angles of sight. The

signed cumulative normal displacement field indicates, also, the direction in which the
duct surface points moved, either outwards (red) or inwards (blue).

The results of the two previous shape optimizations are summed up in the following
table.

th FPt
'Noise’ minimization —99.99% —6.4%
AP, minimization —80% —-9.5%

Table 3.2: Optimization results using the noise and total pressure losses objective
functions. In bold are the objective function values reduction that was achieved by
setting the corresponding objective functions as the optimization target.
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3.3 Simulations conducted with the complete op-

timization software of PCOpt/NTUA

The geometry that was optimized by using the complete optimization software of
PCOpt/NTUA is that of an HVAC duct. In this case, the grid was parameterized
by using volumetric B-Splines with 300 active control points (in two separate control
boxes with 150 active CPs each). The grid is comprised of 2x10° cells and Reynolds
number is Re = 14600, based on the hydraulic diameter of the inlet patch. The
initial geometry and the two control boxes can be seen in fig. |3.11]

/i
\ |

Figure 3.11: The HVAC duct that is optimized exclusively with the PCOpt/NTUA
software together with the two control boxes used to parameterize the CFD mesh resid-
ing inside them. The inlet is the lower end of the duct, whereas the outlet the upper
end. Active control points (red) and non-active in (purple).

3.3.1 Minimization of the Exit Velocity Profile Non-Uniformity

This optimization aims at minimizing the non-uniformity of the velocity profile at
the outlet of the HVAC duct or, in other words, the standard deviation of each veloc-
ity component over the outlet patch, by using the corresponding objective function
presented in subsection [2.2.3] The design variables were updated using steepest
descent and BFGS. The convergence of the objective function is shown in fig. [3.12
and, as expected, BFGS converges faster. The total reduction in the objective func-
tion is about 22% and with steepest descent it is achieved in 19 optimization cycles,
whereas with BFGS in just 5.
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The comparison between the initial and optimized shape can be seen in fig. |3.14l

1 T T T T T T T
Steepest Descent —+—
BFGS —»—
0.95 —
e : : : : : :
& : : : : :
Q
Z
=
o
= 0.85 - —
[e]
08 - T R .
0.75 T S N S S R S
1 3 5 7 9 11 13 15 17 19

Optimization Cycle

Figure 3.12: HVAC duct, convergence rate of uniformity objective function. All
values are divided by the objective function value at the beginning of the optimiza-
tion. The objective function reduced by 22% over 5 optimization cycles with the BFGS
method.

U Magnitude
0 2 5 8 95
[ -

Figure 3.13: Velocity magnitude at the outlet of the HVAC duct. The initial duct
(left) and the optimized one (right).

duct outlet maximum velocity | average velocity 1—7v
initial duct 9.42m/s 4.98m/s 0.2987
optimized duct 8.14m/s 4.98m/s 0.2729

Table 3.3: Mazimum velocity, average velocity and non-uniformity index 1 —-~ values
compared between the initial and the optimized duct. Awverage velocity remains the
same due to the continuity equation.
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Figure 3.14: HVAC duct, Re=14600, minimization of non-uniformity at the outlet
of the duct (upper end of the duct). Initial (top) and optimized (bottom) geometry from
different angles of sight. The signed cumulative normal displacement field indicates,
also, the direction in which the duct surface points moved, either outwards (red) or
inwards (blue).

3.3.2 Minimization of Total Pressure Losses and the Exit

Velocity Profile Non-Uniformity

The same HVAC duct that was presented at the start of this section, fig. was
optimized by setting the minimization of both the outlet non-uniformity and the
total pressure losses as target of the optimization. These goals are conflicting, as
it can be seen in fig. [3.15] where the only target of the optimization was the AP,

minimization. Although AP, drops by 23%, outlet non-uniformity has increased by
3.5%.
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Figure 3.15: HVAC duct, objective function values evolution, when the total pressure
losses minimization is the target of the optimization. AP, reduced by 23% after 13
optimization cycles, but the uniformity objective has increased by 3.5%.

The case was approached with two methods:
e Minimization using weights

Each objective function was multiplied by a weight, with the uniformity objective
to have a 250:1 advantage over AP; objective function (ratio of the corresponding
weights), due to their different units of measurement.

e Minimization using equality constraint

The minimization of AP, objective was the target of the optimization, subject to
the constraint of 10% reduction in the uniformity objective compared to its value at
the beginning of the optimization. The SQP (Sequential Quadratic Programming)
method for equality constraints was utilised.

The objective functions convergence can be seen in figures [3.16] and [3.17] respec-
tively, whereas a comparison between the optimized geometries produced by each
approach can be seen in fig. [3.18] The results from these simulations are summed
up in table (3.4}
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Figure 3.16: HVAC duct, multi-objective with weighting, convergence rate of the
uniformity and AP; objective functions. All values are divided by the objective function
value at the beginning of the optimization.

0.9

Objective Value

0.85
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Figure 3.17: HVAC duct, single-objective AP; subject to the constraint of 10% reduc-
tion in the uniformity objective, convergence rate of the uniformity and AP; objective
functions. All values are divided by the objective function value at the beginning of the

optimization.
F, Fp,
Non-uniformity minimization 22 % | +5.5 %
Non-uniformity and AP, minimization using weights | -20 % | -24 %
Non-uniformity and AP, minimization with constraint | -8 % | -25 %

Table 3.4: HVAC duct, Re=14600, optimization results comparison.
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Figure 3.18: HVAC duct, Re=14600, optimization using the uniformity and the total
pressure losses objectives. Initial geometry (top), optimized using weights (middle)
and optimized using equality constraint for the uniformity objective (bottom), from
different angles of sight. The signed cumulative normal displacement field indicates,

also, the direction in which the duct surface points moved, either outwards (red) or
inwards (blue).
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Chapter 4

Summary - Conclusions

In this diploma thesis, the continuous adjoint solver developed by PCOpt/NTUA in
the OpenFOAM environment was integrated in the optimization workflow of BMW,
the so-called 'ShapeModule’. The coupling between the two softwares is achieved
with the File-IO communication method, replacing the previously used MPI com-
munication protocol. Furthermore, the communication software was extended to
support the separate use of the sensitivity derivatives computed by each adjoint
solver defined by the user.

The adjoint method, that is developed by PCOpt/NTUA and used in this thesis, is
formulated based on the Enhanced SI (E-SI) approach, which has a low computa-
tional cost as the standard SI method, but without compromising the accuracy of
the computed sensitivities. The Spalart-Allmaras turbulence model was fully differ-
entiated in order to take into account the effect of the design variable value changes
in the flow turbulence, leading to more accurate SDs compared to the 'frozen tur-
bulence’ assumption.

After the integration was completed, the coupled software was used to design a
defrosting duct of the cabin of a passenger car. Since the initial geometry was a box
with specific inlet and outlets, topology optimization and surface smoothing were
implemented as a preliminary stage for the shape optimization which followed. Tar-
gets of the optimization were the minimization of the total pressure losses between
inlet and outlets and the minimization of the noise produced near the outlets of the
duct. The later was achieved by using a surrogate, noise related, objective function.

Furthermore, the continuous adjoint method for an objective function that describes
the flow uniformity at the outlet of the domain to be optimized was developed and
programmed. Based on this formulation, an HVAC duct of a passenger vehicle
was optimized with the uniformity objective as single target, but also in conjunc-
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tion with the total pressure losses objective function in multi-objective optimization
problems. In the second case, two approaches were examined, the weighting between
the objectives and the optimization for AP;, subject to an equality constraint for
the uniformity objective.

Concluding this thesis, the PCOpt/NTUA software has been successfully integrated
in the BMW optimization workflow 'ShapeModule’ and utilised to design a defrost-
ing duct. A new objective function related to the flow uniformity was implemented in
the PCOpt/NTUA code environment and utilised for the optimization of an HVAC
duct.
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AlatOnwor tou Yuluyolg IpoBAjuatog

Agetnpio yio T Slaudppeon Tou culuyolc TEoBAUATOS elvar 1) LardnuoTixy SlaTdnw-
o1 Tou TEWTENOVTOS TPOfBARuaToS, To omolo mepypdpeton and Tic RANS eliodoeig
YLOoL ACLUTEEG TN XAl YEOVIXA UOVIT pOY) CUVOLACUEVES Ue To povTélo TOpPng Spalart-
Allmaras, [5]. O ellodoeic autée, yenotponowdvtag ) ovuBacn tou Einstein yio toug
enavohauBavouevoug Belxtee, Ypdpovtour we eCHC

v,
P _ ) ’
RP = oz, 0 (4.10)
v 8vi (? 81)1» 8vj 8]9 . . ,

;o0 N W] e (N :
® | (45) 5] (o) Pr@p@=0

oToL v; ebva 1) Ty UTNTOL TOL PELUGTOY, I EIVAL 1) XIVAUOTIXY| GUVEXTIXOTNTA TOU PEUG TO-
0, Vg 1) TURBWONG XIVNUATIXT] CUVEXTIXOTNTO Xt P 1) GToTXY) e Olalpeuévn Ue TNy
TuxvoTNTa ToU PevoTol. H aveldptnty wetofAnTy| Yior Ty ontola emAVETOL TO LOVTELO
TOpPNe ebvor 1 7 xou 1 TupPWdNS cuvexTdTTa LTohoyileTton we v = U f,,. P (V) xou
D () ebvon ot dpot maparywyhic xau xotaotpophc (BA. xepdhono [2)).

H ouveytic culuync pédodog umopet va avamtuydel axoroudnviac teelc uedodoroyleg,
ot onoieg xatahyouv 670 (Bto cOo TN SLULLYOY EEIGMCEWY Xl GLLUYMY OPLIXWDY CGUV-
U@V, DLUPOPETIXES OUWS EXPEUOELC TUPAYWOY WY EvatcUnciog, [10]. H ST OLUTUTILOT)
odnyel oe wa éxgpacn Yo Tic SDs 1 omolo nepthouBdver uévo emipaveloxd OhoxAr-
PWUATA, EYEL UXEO UTOAOYLOTIXG xOGTOC GAAS Umopel xotd epintworn va uoTEREl o
axplBeta. H FI Siatimwon odnyel o wa éxgpoon yio tic SDs 1 onola mepthauSdvet
TOO0 ETLPAVELAXT OGO KoL Y WELXd OhoxAnemuaTa, yopaxTnetletar amd vhnir axplBeia,
OAAG o a6 VPG xOOTOC AGYW TNG AVAYHNG UTOAOYLOHO) TWYV TORAY DYV EVALoUT-
oo Tou mAéypartog dxy/db, otov dyxo € Tou unohoyoTixol ywelou. H mpocéyyion
Enhanced SI (E-SI), mou npdogata avortdydnxe anéd tn MIITP&B/EMII, e€aheipet
NV avdryxn utohoytopol tou /b, oTo €2, 0dnydhvTag oe x6oToC avtioTolyo tng SI
xou oxpifelo avtiotowyng tng FI npocéyylone.

Katd v avdntugn tne ouveyole ouluyolc pedodou eivon cuvniouévn otn BiBhlo-
Yeaplo 1 topadoyh g Torywuévng Toelng, e Yempnong dnAadr| 6Tt oL adhayEC 0T
Hop®n TN LT BeATioTonolnon YewueTplag nNEEdCouV H6Vo TIC HECES POIXEC TOCOTY
tec. H moapadoyr) autr) odnyel oc apxeTec TEQITTWOELS O ECQUNIEVO UTOAOYIOUO TWV
ToPUYWYWVY evatodnolag, ol onoleg umopel vo Eyouv axdun xow Aaviaouevo TeoonuUo,
[8, 9]

To Bu6 Baowd yapoxTNEIoTIXG TNS cLVEYOUS GLLUYOUE PEYBoL TTou Yenoloroliin-
XE oTNV TopoLoo epyacia, Onwe éyet avartuyel and t MIITP&B/EMII, eivor 6t 7

uévodog Pacileton otny E-SI Swatinwon xou 61t yivetan mAreng dlapoplon Tou Loviéhou
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T0pPNe, e€aopuAilovTag TOV UTOAOYIOUS TWY TORAYOYWY EuotoUnolag ue aunuévn o-
xp(Bea.

H rapovotaon tng ouluyols pedddou axohovlel pa yevixr| pedodoroyio Poaciouévn
OE L0l AVTIXEWEVIXT] oUVEETNOT F' 1) ool TEQIEYEL TOOO YWEIXE OGO XAl ETUPAVELNXS
oloxhnpouaTa, g e€Ng

P / FonidS + / Fod?) (4.2)
S Q

omou ot 6pol Fg, xou Fo elvon oL ohoxAnewuatinég nocdtnteg 610 oOVOpo xul GTO
E0WTEPIXO TOU UToAOYIoTXOU ywelou, avtiotorya. Ilpoxewévou va eaocpoiiotel 1
avelopTnola TOL XOOTOUC UTOAOYLOUOU TWV TopaydYwY euonoinciag amd to mAfdog
N 7oV yetafAntdv oyediaopol opileton 1 eTAVENUEVT AVTIXEWWEVIXT| CUVARTNOT], OTWS
qotveton 6T oyéon mou axohoulel.

Fog=F+ / w; RV A+ / gRPAQ+ / D R7dS)+ / me R dS) (4.3)
Q Q Q Q

omou 2 elvor T0 UTOAOYIOTING Ywelo, u; 1 oLluyhg TaydTNTA, ¢ 1 oLlUYNG Tieon xou
Vg 1) 0LCUYNG UETOBANTA Tou povtéhou TOpPNe xou my 1 ouluyhc TG PETABANTAC M.
m; elvon ot Kopteotavég petatoniosls twv xOufwy tou mhéyuatog

To Tpito xatd GeLd OAOXAIPLUN TNS OYEOTC oueheiton oTNV TEPITTWOT TOL LIOVE-
Telton 1 Tapadoy Y| TG Toywpévng TupPng’. To tetupTo ohoxApmU, TO OTolo TEPIEYEL

/ ’ 2, .
T0 undlowno e e€icwong Laplace, R = % =
j

TAéypatog, éyel mpootelel Tpoxeuevou vo amogeuydel o unohoylopde Tou Oz /b,
oToV 6YX0 ) Tou UTOAOYIGTXOU Ywelou, Yia Tov (Blo Aéyo Tou Ta 5V0 TEMTH OAOXAT-
EOUOTOL €YOUY TPOGTEVEL TPOXEWWEVOU Vo U YPELCTEL Vo UToAoYtoTtouy ta dv;/db,

xou Op/0b,, oto  avtiotorya [L1]. Aedopévou 6Tt oL poixéc eEIGMOELS XAVOTOLOUVTOL
070 Q, Foug=F xouw 0F,,,/0b,=0F/db,,.

0, mou meprypdpel TN uetaxivnon Tou

Awgpopilovtag Ty e€lowon xaL €V cuveyela YETOVTOC TOUC TOAATAACIUCTES TWY
HETOLBOANDY TV POIXMY TOCOTATWY WG TEOS TI¢ UETUPBANTES OYEDLUCUOU EVTOC TV YW-
ELXOY OAOXANPOUATOY (00UG PE TO UNdEV, TeoxOTTouY ol oLLUYELC TEdlaxés ELOMOELS

ou;
9 _ 70 pp_ 4.4
R oz, + =0 (4.4)
ov; Od(vju;)) 0 Ou; Ou; dq
s _ 2 v
ki Y 9, dzx; Oz (1) 5$j+5$¢ +3$i+ o
_ov 0 [(_..C Ovy, :
+Vaa_l‘i_8_$l (Vay%emjka_xjemli> =0,:1=1,2,3 (45)
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R%:_ﬁ(vjya) R Ku—i—Z) 8l/a}+laua ov +2%i<ﬁ2>
; o

Oz, ox; Oz, o 0x; Oz, o Oz, a@xj
. Oy Ou; ((Ov;  Ov; _ L
7+ == —P4+D FE= 4.
+uaucy+agaxj<a$j+axi)+( +D) U + F5=0 (4.6)

o O0’mg 0 ov; dp Ou; or; Oy
me _ — ey . a = 4,
Rk 8232 * 8q:j {U{Uj a.CCk —|—U] Gsck _'_TZ] 83:k T aCEk qa T } O ( 7>

J

Or ouluyelc oploxéc cuvifixeg TapouctdlovTon 6To XUplnwg XElUEVO GTNY oy YAXT YAWO-
oo xa TopaAslTovTon yior Aoyoug cuvtopioc. Metd tny e€orywyr Twv culuy®y e€lo®os-
OV x0TV GLLUYOY 0pLIXMY CUVITXMY, 1) TEAXT EXPEACT| TWV QXY WYWY EVALCUTN-
otloc elvon

0F g —wr / ot 1 dxy, / §(nith) oy,
—7WF [ D, Ty 4] Dyry; Sati) Ok
5, SD Si 18xm Mo Mo —— 5, dS— | S 17ij Sh 5h ds

5Dyl st /SDQZa ) k‘sxkds
ox )

SW n

F
—/ [(y+—> 81/an]+8 > nz+F5} inmnk%db”
Sw x

o ov

—~ / (— Uiy + Dy m) (Tij%Jr 07y, %nknma‘) ds

SWp axm m 5bn

S(tithy or;  omk
Siﬁt1><t1> (Tian]—f—a J nmﬁnkt t; dS

o(t{'t]) omy;  dmy,
_/S(vf/zi(t11><t1>+¢<tl><t11>) <TijéTnJ+a J 5b tzﬂtjl‘ ds

S(HI+I 0T 5
gb(t”)(t”) (Tij <Z J)_|_ T’Jn ﬁnktiﬂt;] ds

oby, 0x,,  Oby,

Swp

OFs, . oxp o, 5(dS)
Wi Tk Fo 29 F A\B0)
* /SZ gz, map St / Swpagp 99T /SWSW’“ 5b,

om¢  ox; 8AP
_/SW 0z, " 5b, 5, T /AA b, 2 0b,
ox 0A  0A 535
A, 0Tk k
+/SAWZR ny 5, dsS— /SQpA "5 nja NNl —— 5, ds (4.8)
h ATerm 3
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6Tou

8Dy = —ufy+durymy+ Py ery (4.9)
ou;, Ou; OFs,, .
SDy ;= (v+w) (8% + (%Z) nj—qn;+ a0, ”k"‘FSWP,i (4.10)
J0Fs,, ,
s 411
¢J 8Tij N ( )

w, fs AR F o MP dS avd fs AR E2— ‘MP dS ouvodilouv TN GUVEIGPOEE TNE BLapdpEL-

oNg TOV ouvcxp'moaow Tolyou oTIC ncxpow(oyoug suanoinoiog [14].

O 6poc ATerm tne edioworng AVTIXATEGTNOE TOV 0RO fQ DUNGCAgTAndQ TOV TEO-
©0OTTEL am6 TN OlopoELoT) TOoU MOVTEAOU TUEPRNG, TEOXEWEVOU VoL U YeELGTEL 0 UTo-
Aoytou6e v etaBordy e andotoong JA/0b, oto Q (BA. unoxepdloo .
Auté xotéoTn duvaTéy péow NG TEOoVKNG Tou GEoU fQ A, R2dS) OTNV EXPEAOT)
NG EMAUENUEVNC AVTIXEWEVIXAC OUVEETNOTG, 6Tou A, elvan 1 culuyhc andoTaoT Xxou

RA = TJA) A82A 1 =0 pe ¢; = 0A/0x;, n MAE Hamilton-Jacobi, n onoio Sivet

o TohD xahhy Tpocéyyton Tou guxheldetou tediou andotaonc A, [8, [15].

Autd ohoxhnpdyvouy TN Dewpior oyeTNd Ue TN BlaTUTKOT TG cLveEY0UE oLLUYOUC E-
Y680 TOU YENCHLOTOLE(TAL OTIC TPOCOUOWMCELS TOL Yo TUPOUCLAG TOUV GTY) GUVEYELA.

Evowudtwor tou culuyolg emthdty tng MIIYTP&B/EMII cto Aoyt-
opx6 Belticotonolnong woppnsg tne BMW

Yo mhadotor TG SimAwpatixic epyasiog o cuveyrc oculuyrc emidtng tne MIITP&B
J/EMII evonyatainxe oto hoylouxéd Bertiotonoinone poppric ‘ShapeModule” tne

BMW. To ShapeModule eivor @tiaryuévo wote va unopel va cuvepydleton Ue dLdpo-
pouc ouluyelc emAUTES, ot omtolot efvar UTEVYUVOL YLoL TOV UTOAOYIOUS TWYV TOQOY WY WY
euanoInolag TNG AVTIXEWEVIXAS CLUVEETNONG WG TTPOG TIG CUVTETAYUEVES TV ETLPAVELO-
%OV x0uPwy TNg uTo BedtioTonoinon yewueTplag, eV To (Blo unohoyilel Tic xouPixéc
uetatonioelc BAoel TV TopayOYWY auT®y equpuolovtag Ty teyvixr Vertex Mor-
phing. H ypefion twv emgaveionmy xO0uBwyv o¢ HeToafANToY oyedlaouol Tapéyel To
TAOUGLOTERD DUVATO YMOEO CYEDLUCUOY VLol Lot DLoXELTH YEWPETELY, ool Yivetan yerion
OAeV TV dladEoyny Paduny ercuteplag Tng. lotdoo, elvor mdavr 1 dnuovpyia o-
VOUOALOY O VeI YEOUETPLA, TEOBATUA TOU avTIUETOTILETOL UE TNV EQUPUOYY| EVOC
piktpou e€oudhuvong Tavw OTIC ToEaYMdYoUS evalodnciog xow oTIC YETATOTIoE *dde
xouPou. To culeuyuévo hoylouxd mepthopfdver 800 BIETUPES, UE EXEIVY TOU GUVOEE-
Tou Ue To oLCUYT EmAOTH Vo elvon YpopEVn oE YAWooa Tpoypoupatiopol CH+, eved
exelvn mou ouvdeeton e to ShapeModule va etvor ypoupévn oe Python, oyrua .
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To amhonownuévo dudrypouuo Tng dadixaciag BeATioTonolinomng, Omwe auth eopuoleTo
ot BMW gaiveton oto oyfua 4.2

geometry file

sensitivity file(s)

PCOpt/NTUA Adjoint Interface " Interface
Solver (C++) (Python) ShapeModule
{OpenFOAM)

displacement file

o

Syhuo 4.1: H ovlevén tov Aoywopukod tns MIITPEB/EMII ue to ShapeModule.
KdOe Aoyiopuxd éxer pua dieragn (interface), péow tng onolas emrvyydvetal n enikoww-

via e to dAAo.

‘ PCOpt/NTUA Adjoint Solver (OpenFOAM) ‘ ShapeModule

Update the volume mesh by
solving the Laplacian gdPDEs

Write the design surface [
in file

Y
Read the geometryfile
Solve the set of primal !

equations
Solve the set of the adjoint equationsand R ;
- S epea
compute the corresponding sensitivities £ P I
ora
Write th _ ¢ . adjoint Eepe]?t
r|t_et e sen5|t|V|t_|e_s in separate solvers oral
files for each adjoint solver | adjoint
¥
' R . solvers
Read the objective function
value and the sensitivity file(s)
-------------- v
{idle | Smooth the sensitivities, compute the

surface-node displacements and
write them infile

Read the displacements
file
I

YyAue 4.2: To amdomoinuévo didypaupa tns dadakaoias feAtiotonoinong, 6nws éyel
epappootel otn BMW.
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ITpocopelwoelg TOL TEAYUATOTOLHINKAY UE TO CULELYEVO AOYLOWL-
x6 MIIYP&B/EMII xow ShapeModule

To oulevypévo royiouwd tne MIITP&B/EMII xou tou ShapeModule yenowonot-
AUNXE Yot TO OYEDLIOUO AEEAYWYOL TNG XouTivag ETBAUTIN0) QUTOXIVITOU UE TEAXO
otdyo TNV eluyloTonoinon Tou mopayouevou Yoplfou oTIC £680UC TOU XYoL TWY O-
TWAELOY ONXNAC TEONE TOU TEOXAAEL GTO BlEPYOUEVO PEUGTO. Ol AVTIXEWEVIXEC OU-
VOPTACELC TIOU Yproulomotfinxay Yo To oxornd etvon ol F,, = fQ/ Vi) xan Fp, =
— fsw (p—|— %vf) v;n;dS avtiotorya. AvahutixdTepn mEpypapy| Toug YivETal 0TO U-
TOXEPANOLO ToU oy YAXoU uépouc. AeBouévou OTL 1) apy X! YEWPETElo Ty éval
xoutl ue pio eloodo xan i €€odo, oY. , €npene apywd va mporypotonowniel Bedti-
oTonolnon Tomohoylag UE 0TOYO TN UELWOT TOV ATWAEWWY OAMXTG TEONE TEOXEWWEVOU
vor aporyOel piar apy ] yewuetplor mhvey oty omola Yo umopoloe Vo E@apuooTEL 1)
Behtiotomolnon wop@ric. 2Tn ouvéyeta €yive e opdhuvor g Tapoydeloug emupdvelag
amd Tt Beltiotonoinon tonohoyiog, oy. @4l Eyovtoc we agetnpia ) yewuetplo
oL TPy UNXE UETE TNV ECOUGAUVOT), TeayHaToTOLUNXAY 2 BEATIO TOTOLACELS £Y0VToC
¢ o1dyo elte TNV ehaytoTonoinon tou Yoplfou eite Ty ehayloTonoinon tou AP,
To unoloyiotxd mhéyua anotereiton and 81000 xehd xou o apriudc Reynolds etvou
Re=5500, e Bdon tnv udpauALxr BIdUETEO TNE €L0600L Tou aywyol. H mopeio olyxhi-
O™NG TNG AVTIXEWEVIXNG CUVAPTNONG XL YLOL TIS 2 TEPLTTWOELS QPAVETOL GTO Gy AL . H
TEAXY) YEWUETE(O! TOPOUGLELETON UOVO YIoL TNV TERITTWOT) TOU OVTIXEYEVIXT) GUVAETNOT
Aoy 0 Yépufoc, oy. , EVO TOROAE(TETAL Yo AOYOUS GUVTOULNG TNV TEPITTWST ToU
AVTIXEWEVIXT) CUVAETNOT) HTAY Ol ATWAEIES OAXTC Tieong.

YyAuo 4.3: Apyiko kouti katd tny évapén tng PeAtiotonoinons. Ta oteped dpia
(umhe), n €ivodos (kékkwo) kar o1 tpes €€odor otny mdvek TA€Upd Tou KoUTIOU.
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Iy 4.4: O aywyds onws tpoékue and tn Petiotomoinon tomodoyias tov kouTiol
tov oxApatos [4.3 pe otéyo y edaxiotonoinon twr arwlady okikrs tieongs (dvw) kai
Omws dapoppdinke petd tny eboudAvvon emgareias (kdtw), vné SapopeTikés ywrieg

Oéaong.

1 T

T T
Noise Objective —+—

0.1 -
0.01 i ]

0.001 . - . -

Objective Value

0.0001 . - B

le-05 : -

1e-06 I I I I I I
5 10 15 20 25 30 35

Optimization Cycle

Objective Value

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.92

0.91

0.9

T T
Losses Objective —+—

3 5

7
Optimization Cycle

9

YxAue 4.5: Iopeia ovykhions tng avtikeyuevikiis ovvdptnong tov JoptPou (apiotepd)
ka1 tov AP, (6e6id) oe Eexwprotés nepintdoes PeAtiotonoinong.

F,, Fp,
Elayiotoroinon ‘@opvBov’ —99.99% —6.4%
Elayiororoinon APy —80% -9.5%

ITivaxoag 4.1: Yvykevtpotikd anotedéopata. Me évtovn ypaen mapovoidletar n mo-
oootiala Uelwon TwY avTIKEUEVIKGY ouvapTioewy mov elyav telel w§ atdyos tns Pert-

otononong.
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normal displacement
-0.0172 0 0.0135
- m

YyxAua 4.6: Aepaywyids empBatikod avtokivntou, Re =5500, eAayiotoroinon HopBou.
Apxikry (apotepd) kar BeAtiotonoinuérn yewuetpia (6eid), vnd dapopetikés ywvies
Oéaons. H aOpowotikn kdOetn petatomon eivar mpoonuaouévn kar vrodeikvier tny ka-
tevfluvon katd Ty omola uetakiveltar 1) empdrea Tov aywyol, €ite mpog To e£wTepikod
(kdkKw0) €fte TPOG TO €0WTEPIKS (UTAE).

ITpocouel®oELlg TOL TEAYUATOTOLUNXAY (LE TO TAYPES AOYLOULXO Be-
Twotonoinone tne MIIYP&B/EMII

Emunicov 1oV 600V TEpLYpdpnxay Topandvw, 0To TANCIo TNg dimhwpatixic epyaciog
avantOydnxe 1 ouveyric ouluync PEVOBOC Yo AVTIXEWEVIXT) CUVEETNOT), TOU EXPEALEL
NV opolodopgior TS pofc TNy €080 TnNg UTO BeATIoTOTOMOT YEWUETEIOC, OTO TEPL-
Bérrov tou culuyoic xddxo tng MIITP&B/EMII. Xenowonotdvtag auth Ty ov-
TIXEWWEVIXY| CUVAETNOT ETOWWXETOL 1) EAUYLOTOTOINOT TOU 0POICUATOS TV TUTIXGOVY
amoxhicewy xde ouVioTWoug TG TayTNTOC amd TN Yéon TWr g otny €€0do Tou

Y wplou, dnAadn

J=1 / (v — )2 dS (4.12)
2 So

eV® €va To ontd Yéyevog Yo TNV TEPLYPAUPY| TNG OUOpoppiag TNG eon¢ Elval O o-

s, llv1=olldS
4 /. /7 4 7 ’ Z — O
OwdoTotog OelkTng opotopopylas, o omolog diveton omd ) oyeon ¥ =1 — =5Ee—

xou hoPBdver Tipég petall 0 xou 1, e to 1 var exgppdlel tny TAfen ouotopoppia Tng porg.
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XenowonotwvTog TV avIIXEWEVIXY TN ouotouoppiog BeATioTonot|inxe agpoywyodg
xoumivag emPBatixold auvtoxivitou. Xe avtideon ue o Aoylouixd BeitioTonolnong pop-
¢rc e BMW, 10 Aoyiouxd tng MIITP&B/EMII nopayetponotel to und Behtiotomo-
{nomn TUA Tou Ay YO0V, XN CUYAEXQPUIEVY] TTPOGOUOIWOT), YETCULOTOLAUNXOY OYXOUE-
Towég B-Splines ue 300 evepyd ornuela eréyyou. To unohoyiotind Théyua anoterelton
and 2x10% xehd xou o aprdudc Reynolds etvor Re = 14600 pe Bdomn tnv udpauwixd
OLIUETEO TNG ELGHBOU.

Xenowonotwvtag wg povadixd otdyo tng Pertictonolnong tnv ehaytoTonolnoy Tng
avouololop@log otny €£080 Tou aywYoU, TEOEXUAY Ta ATOTEAEGUITA TMOV OYNUETEVY

T o L8]

T T T T
Steepest Descent —+—
BFGS —»—

0.95

0.9

Objective Value

0.8

Optimization Cycle

YyAuo 4.7: Iopela ovykhiong tng avTuikelpevikng tng opolopopelias. XUykpion tng
pnetooov tng androuns kalodov ka1 tng BFGS. H avuikeipuevikny ovvdptnon pewdvetal
katd 22% o€ 5 kOkAovs BeAtiotonoinons ue tny BFGS 1éodo.

YN ouvéyeta, emolwydnxe o Blog apyds aywyos va Bertiotoroiniel Eyovtag wg
0TOY0 TNV ehayloTonolnon TG0 TG avouolodopdiag oty €000 Tou 6CO XU TKV
ATWAELDOY OAXC Tileomg Tou Tpoxael 6To Blepyduevo peucTto. To mpEdBinuo tpooey-
yiotnxe pe dYo pedodoug. llpohtov, mpayuoatonowwviag Behtiotonolnon pe otdduion
TWY AVTIXEWEVIXGY CUVORTHOEWY 250:1 UTER TNG AVTIXEWWEVIXTS TNG OUOLOUOPPLG, X
0eUTEPOY, TPAYUATOTOLOVTAS BeEATIoTOTOiNOY PE avTxeyevixr To AP, utd Tov Teplo-
OLOUO LOOTNTAC 1) AVTIXEWEVIXT TG avopolopop@lac v petwiel xatd 10%. Xtn Pel-
TloTonoinon Ue neploplopd €ytve eqapuoy e uedodou SQP (Sequential Quadratic
Programming). H cUyxhon tov avTXEEVIXGY CUVIPTACEWY Yior xdie plo and Tig
npooeyyioe guiveton oto oy. 1.9} evd n olyxeion g apyic xou BeltioTomotnué vy
YewUeTpLOY goivetan oo oy. (.10}
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normal displacemen

-001

0

0.03

Exhua 4.8: Aepaywyds emPatikod avtokiviitov, Re = 14600, eAayiotoroinon wng a-
vopolopopgias otny €066 tou (dvw drpo). Apxikn (dve) kar Bedtiotonompérn (kdtw)
yewpetpia Pro didpopes ywvies Oéaons. H alpoiotikn kdOetn petatomon eivar mpoon-
paouévn kair vrodeikvver tny katefuvon katd tny omola MeTakveltal n empdreld Tov
aywyov, €fte Tpos to €€wtepikd (koKkKkvo) €fte TPOS TO €0WTEPIKS (UTAE).

Obijective Value

0.95

0.9

0.85

0.8

0.75

T T T T T
Uniformity Objective —+—
PtLosses Objective —#—

5 6 7 8 9 10
Optimization Cycle

Yyxnue 4.9: Ilopeia ovyrkhiong twy
Kal Twy anwl€wdy olknig mieons, otav mpaypatomoleltar oTdUHION TwY aVTIKEUEVIKOY
ouvaptrioewr (apiotepd) kar dtay otdyos tns PeAtiotonoinons eivar n peiwon tov AP,
Und Tov TEPIoPIo 1) avTikElUEVIKT] ouvdpTnon tns avopolopopglas va peiwdel katd 10%

(6e&ad).

11

Obijective Value

1.05

0.95

0.9

0.85

0.8

T T T
Uniformity Objective —+—
PtLosses Objective —#—

0.75

4 5 6 7 8
Optimization Cycle

AVTIKEIUEVIKWY OUVAPTATEWY TNS OMO0HOPPIas
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F, Fp,

Elayotornolnomn avouotopopgiog -22 % +5.5 %
Elayiotonoinon avopolopopgiog xon AP,
’ ’ -20 -24
pe xpnon Popov 7 7
EX { { AP,
oyYLOTOTONGT| AVOUOLOUORPLaG XaL ) 8% 25 %

AE TEPLOPLOWUO LOOTNTAG

IMivaxag 4.2: Aepaywyds emPatikod avtokivntov, Re = 14600, ovykpion anotele-

oudtwy PeAtiotonoinong

normal displacement
001 0 003
- o

e
T

Yyxnue 4.10: Aepaywyds emPatikov avtokivitov, Re=14600, BeAtiotonoinon ue g
AVTIKEYUEVIKES TUVAPTHOEIS TV ATWAEIDY 0AMKNS TlEoNS Kal Ttns opoopopglas. Apxikn
yewpetpia (dvw), PeAtiotoronuévn pe otddmon Papdy (néon) kar ue mepiopioud ya
TNV AQVTIKEEVIKT] TNS opolopopglas (kdtw). H afpowtikn kddetn petatdmion eivar mpo-
onuaopévn kar vrodeikvvel TNy kateVluvon katd Ttny omola HeTakveltal n emipdvela Tov
aywyov, €fte Tpos to €€wTepikd (koKkKIVo) €lte TPOS TO €0WTEPIKG (UTAE)
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