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Abstract

In modern computational science and engineering, Uncertainty Quantification (UQ)
plays a pivotal role in enabling reliable and robust simulations by accounting for
variabilities in input parameters. This diploma thesis investigates efficient UQ
methodologies, with a particular focus on the implementation and enhancement
of regression-based non-intrusive Polynomial Chaos Expansion (PCE), as well as
its extension to adjoint-assisted as well as arbitrary PCE (aPCE) frameworks. The
aim is to significantly reduce the computational cost of UQ in complex engineering
systems, such as those governed by Computational Fluid Dynamics (CFD), without
compromising accuracy.

Initially, the thesis revisits and implements the foundational non-intrusive PCE (ni-
PCE) method, which circumvents intrusive reformulations of governing equations
and treats the computational solver as a black box. To improve the regression pro-
cess in ni-PCE, the adjoint method is incorporated to exploit gradient information
of the Quantity of Interest (QoI) with respect to uncertain inputs. This adjoint-
assisted regression-based PCE technique forms an overdetermined system using both
QoI evaluations and their sensitivities, effectively reducing the number of required
CFD simulations and accelerating convergence, especially for high-dimensional prob-
lems.

Recognizing the limitations of classical PCE in handling non-standard input dis-
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tributions, the thesis further develops the arbitrary Polynomial Chaos Expansion
(aPCE) framework. This data-driven approach constructs a custom orthogonal poly-
nomial basis tailored to empirical input distributions, leveraging the Mysovskikh
theorem and moment-based orthogonalization to build robust bases from limited
statistical information. Both 1-D and multi-dimensional aPCE formulations are
explored and rigorously verified.

To model geometric variability, particularly shape imperfections in aerodynamic
applications, the Karhunen-Loève Expansion (KLE) is employed. The KLE offers
a compact and accurate representation of random fields such as shape deviations,
enabling their integration into the UQ framework in a mathematically consistent
manner.

The developed methods are systematically verified through a series of test cases,
including canonical benchmark problems like the Borehole function, and real-world
engineering applications such as uncertainty analysis in airfoil performance, shape
imperfections, and Supersonic Business Jet (SBJ) design metrics. Results demon-
strate that the adjoint-assisted and arbitrary PCE techniques yield accurate esti-
mates of stochastic moments (mean and variance) with drastically fewer samples
than traditional approaches, such as Monte Carlo Simulation.

Overall, this diploma thesis provides a comprehensive and scalable methodology
for efficient and accurate UQ in engineering systems. The integration of adjoint
information and empirical distribution handling extends the frontiers of polynomial
chaos expansion methods, making them suitable for a broader range of real-world
CFD problems.
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Περίληψη

Στη σύγχρονη υπολογιστική μηχανική, η Ποσοτικοποίηση Αβεβαιότητας (Uncertainty
Quantification - UQ) διαδραματίζει καθοριστικό ρόλο στη δημιουργία αξιόπιστων προ-
σομοιώσεων, λαμβάνοντας υπόψη τη στοχαστικότητα των παραμέτρων εισόδου. Η

διπλωματική εργασία εστιάζει στην ανάπτυξη και βελτίωση αποδοτικών μεθόδων UQ,
με έμφαση στο μη-επεμβατικό Πολυωνυμικό Ανάπτυγμα Χάους (Polynomial Chaos
Expansion - PCE) βασισμένο σε γραμμική παλινδρόμηση, καθώς και στην επέκτασή
του με τη χρήση παραγώγων και την προσαρμοσμένη έκδοση για αυθαίρετες κατανο-

μές (arbitrary PCE - aPCE). Στόχος είναι η σημαντική μείωση του υπολογιστικού
κόστους της UQ σε συστήματα με πολλές αβέβαιες μεταβλητές, χωρίς να επηρεάζεται
η ακρίβεια των αποτελεσμάτων.

Αρχικά, η εργασία αναπτύσσει και υλοποιεί το βασικό σχήμα της μη-επεμβατικής PCE
(ni-PCE), το οποίο αποφεύγει την επεμβατική αναδιατύπωση των εξισώσεων του μο-
ντέλου και αντιμετωπίζει τον υπολογιστικό επιλυτή ως «μαύρο κουτί». Για τη βελτίωση

της διαδικασίας παλινδρόμησης (regression) στην ni-PCE, ενσωματώνεται η συζυγής
μέθοδος (adjoint), ώστε να αξιοποιηθούν οι, με οικονομικό τρόπο, αποκτούμενες πα-
ράγωγοι της Ποσότητας Ενδιαφέροντος (Quantity of Interest - QoI) ως προς τις
αβέβαιες μεταβλητές. Αυτή η τεχνική διαμορφώνει ένα υπερκαθορισμένο σύστημα ε-

ξισώσεων, μειώνοντας δραστικά τον αριθμό των απαιτούμενων προσομοιώσεων CFD
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και επιταχύνοντας τη σύγκλιση, ιδιαίτερα σε προβλήματα υψηλής διάστασης.

Αναγνωρίζοντας τους περιορισμούς του κλασικού PCE στην ανάλυση μη-τυπικών κα-
τανομών εισόδου, η εργασία αναπτύσσει περαιτέρω το πλαίσιο του αυθαίρετου Πολυω-

νυμικού Αναπτύγματος Χάους (aPCE). Αυτή η προσέγγιση, βασισμένη σε δεδομένα,
κατασκευάζει μια προσαρμοσμένη ορθοκανονική πολυωνυμική βάση για εμπειρικές κα-

τανομές εισόδου, αξιοποιώντας το θεώρημα του Mysovskikh και τεχνικές ορθογωνιο-
ποίησης βασισμένες στις στοχαστικές ροπές. Αναπτύσσονται τόσο μονοδιάστατες όσο

και πολυδιάστατες εκδοχές της aPCE και ελέγχονται με αυστηρά κριτήρια.

Για την περιγραφή γεωμετρικών μεταβολών, ιδιαίτερα κατασκευαστικών ατελειών σε

αεροδυναμικές εφαρμογές, χρησιμοποιείται το Ανάπτυγμα Karhunen-Loève (KLE). Το
KLE παρέχει μια συνοπτική και ακριβή αναπαράσταση τυχαίων πεδίων, όπως οι μορ-
φολογικές αποκλίσεις, επιτρέποντας την ενσωμάτωσή τους στο πλαίσιο της UQ με
μαθηματική συνέπεια.

Οι παραπάνω μέθοδοι αξιολογούνται συστηματικά μέσω μιας σειράς προβλημάτων, συ-

μπεριλαμβανομένου του απλού μαθηματικού προβλήματος Borehole, καθώς και πραγ-
ματικών εφαρμογών, όπως η ποσοτικοποίηση αβεβαιοτήτων σε ροή γύρω από αεροτο-

μή, ατέλειες σχήματος και μετρήσεις αεροδυναμικής απόδοσης σε Υπερηχητικό Αερο-

σκάφος (Supersonic Business Jet - SBJ). Τα αποτελέσματα δείχνουν αυτές οι τεχνικές
παρέχουν ακριβείς εκτιμήσεις στατιστικών μεγεθών (μέση τιμή, διακύμανση) με πολύ

λιγότερα δείγματα σε σύγκριση με τις κλασικές μεθόδους, όπως η μέθοδος Monte
Carlo.

Συνοπτικά, η εργασία αυτή προσφέρει μια ολοκληρωμένη και επεκτάσιμη μεθοδολογία

για αποτελεσματική και ακριβή ποσοτικοποίηση αβεβαιότητας σε μηχανικά συστήματα.

Η ενσωμάτωση πληροφορίας παραγώγων και η διαχείριση εμπειρικών κατανομών διευ-

ρύνουν το πεδίο εφαρμογής των μεθόδων PCE, καθιστώντας τις κατάλληλες για ένα
ευρύτερο φάσμα προβλημάτων CFD του πραγματικού κόσμου.
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Nomenclature

aPCE Arbitrary Polynomial Chaos Expansion

CFD Computational Fluid Dynamics

CPU Central Processing Unit

CU Cost Unit

EFS Equivalent Flow Solution

GQ Gauss Quadrature

KDE Kernel Density Estimation

KLE Karhunen-Loève Expansion

LHS Latin Hypercube Sampling

MCS Monte Carlo Simulation

MDA Multidisciplinary Analysis

MDO Multidisciplinary Design Optimization

ni-PCE Non-Intrusive Polynomial Chaos Expansion

NTUA National Technical University of Athens

PCOpt Parallel CFD & Optimization Unit

PCE Polynomial Chaos Expansion

QoI Quantity of Interest

RANS Reynolds-Averaged Navier-Stokes

RHS Right-Hand Side

SBJ Supersonic Business Jet

SVD Singular Value Decomposition

UQ Uncertainty Quantification
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Chapter 1

Introduction

1.1 Uncertainty Quantification

Uncertainty Quantification (UQ) is an essential discipline within computational me-
chanics that focuses on propagating existing input uncertainties through nonlinear
systems to assess how they influence the uncertainties in the system’s responses.
These uncertainties can arise from various sources, including inherent variability,
measurement errors, and model approximations. The system’s outputs or responses
are typically referred to as the Quantities of Interest (QoIs).

The practice of UQ involves a systematic approach to identifying, quantifying, and
propagating uncertainties through a model. One of the fundamental techniques
employed in UQ is Monte Carlo Simulation (MCS) [17]. MCS is a statistical method
that relies on random sampling to compute the probabilistic distribution of the
QoI. By performing a large number of simulations with varying inputs, MCS can
provide an empirical approximation to the response distribution, allowing for the
estimation of statistical moments such as the mean, variance, skewness, and kurtosis
of uncertain responses.

Another prominent technique used in UQ is Polynomial Chaos Expansion (PCE)
[12]. PCE is a spectral method that represents the QoI as a series of orthogonal
polynomials in terms of the input uncertainties [6]. This method is particularly
advantageous for its efficiency in capturing the behavior of complex models with
fewer simulations compared to traditional MCS. The coefficients of the expansion
can be determined by either projecting the QoI onto the orthogonal polynomials
(Galerkin Projection) that are numerically integrated or using regression methods.

The application of UQ spans numerous fields, including engineering, finance and
environmental science. In this diploma thesis, the focus is on the application of UQ
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to Computational Fluid Dynamics (CFD) simulations and optimization problems.
Overall, UQ serves as a critical tool for advancing the accuracy and credibility of
computational models, ultimately leading to more informed and confident decisions
in the presence of uncertainty.

1.1.1 Non - Intrusive PCE

Non-Intrusive PCE (ni-PCE) [5] is a variant of PCE that does not require modifica-
tions to the existing computational model. Unlike intrusive methods that necessitate
direct integration of the PCE framework into the model equations, ni-PCE treats
the model as a black box within the UQ framework. This flexibility makes ni-PCE
particularly appealing for complex systems where modifying the model is impracti-
cal.

Typical methods for ni-PCE include the use of quadrature, collocation, and regres-
sion techniques to determine the coefficients of the polynomial expansion. Quadra-
ture methods involve evaluating the model at specific input points and integrating
numerically, while collocation methods use a predefined set of sample points to con-
struct the polynomial basis.

A prominent approach within the ni-PCE is regression-based PCE, which leverages
regression techniques to estimate the coefficients of the polynomial expansion. More
specifically, the QoI is evaluated at a number of sampling points, where the coeffi-
cients are computed by solving a linear system of equations, effectively fitting the
polynomial chaos model to the observed data. Except from the typical regression-
based PCE, the Adjoint-Assisted Regression-based PCE method has been proposed
in [15]. This method requires not only the values of the QoI but also the sensitivity
derivatives of the QoI with respect to the uncertain parameters. These sensitivity
derivatives are computed using the adjoint method. The QoI values, along with the
sensitivity derivatives, are then utilized to construct an overdetermined system of
linear equations, which can be solved using methods, such as Least Squares or the
Singular Value Decomposition (SVD) technique [7]. The adjoint-assisted regression-
based PCE method reduces the cost of UQ by reducing the number of sampling
points required to compute the coefficients of the PCE [15].

Overall, the ni-PCE with regression, especially when augmented with adjoint-assisted
pieces of information, provides a robust and scalable framework for UQ in various
complex systems.

1.1.2 Arbitrary PCE

Arbitrary PCE (aPCE), also known as Data-Driven PCE [14], is an advanced PCE
variant that adapts the polynomial basis to the actual data distribution. Unlike tra-
ditional PCE, which relies on predefined orthogonal polynomials tailored to stan-
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dard distributions (e.g., Gaussian, uniform), aPCE constructs a polynomial basis
that best fits the empirical distribution of the input data.

The aPCE methodology involves the following steps: first, the probability distribu-
tion of the input data is analyzed to determine its key statistical properties, such
as mean, variance, and higher-order moments. Next, an appropriate set of orthog-
onal polynomials is constructed to match this distribution. This adaptive approach
allows the aPCE to handle non-standard and complex distributions that are often
encountered in real-world applications.

One of the primary methods used in aPCE is the construction of orthogonal poly-
nomials through the Mysovskikh process [13], applied to the input data set. This
ensures that the resulting polynomials are orthogonal with respect to the empirical
measure of the data. Regression techniques are then employed to determine the
coefficients of the polynomial expansion, as in ni-PCE. By fitting the polynomial
chaos model to the observed data, the aPCE can capture the underlying uncertainty
more accurately.

The aPCE is particularly valuable in scenarios where the input data does not follow
conventional probability distributions and by leveraging data-driven techniques, it
enhances the flexibility and applicability of the PCEmethods, providing more precise
uncertainty quantification for complex and irregular data sets.

1.2 Thesis Objectives and Layout

The primary objective of this diploma thesis is to implement and enhance advanced
methods for UQ within CFD frameworks using adjoint-assisted regression-based
PCE, as well as arbitrary PCE. More specifically, it aims to develop and validate
an efficient approach for quantifying uncertainty in engineering systems by com-
bining non-intrusive PCE methods augmented with adjoint sensitivity information.
The approach intends to significantly reduce computational expenses by decreasing
the number of required simulations while maintaining high accuracy in predicting
statistical moments of the QoI. To summarize, the implemented methods include
regression-based generalized non-intrusive PCE, adjoint-assisted regression-based
generalized non-intrusive PCE, regression-based arbitrary PCE, and quadrature-
based arbitrary PCE.

To achieve these objectives, this thesis systematically addresses several key aspects:

Implementation and validation of generalized ni-PCE

The study will begin with implementing the generalized ni-PCE framework, exam-
ining its performance, and validating it through benchmark problems. Generalized
ni-PCE refers to the ni-PCE method that can handle any type of conventional

3



probability distribution. This serves as a foundational step for understanding the
complexities involved in UQ.

Integration of adjoint-assisted regression

Following the establishment of ni-PCE, this diploma thesis incorporates adjoint-
assisted pieces of information to augment the regression process. The adjoint method
provides sensitivity derivatives of the QoI, allowing for fewer model evaluations and
subsequently reducing computational resources significantly compared to traditional
regression methods.

Development of aPCE

This diploma thesis will also thoroughly develop the aPCE framework and explain
its mathematical formulation, with the aim of tackling problems in which some or
all uncertain variables do not follow conventional probability distributions.

Modeling of Shape Imperfections

The thesis incorporates the Karhunen-Loève Expansion (KLE) to effectively model
and quantify the impact of geometric shape imperfections on aerodynamic perfor-
mance. This approach accurately captures the variability arising from such imper-
fections, ensuring robust predictions in practical CFD applications.

Application to Engineering Cases

Finally, the methodologies developed in the thesis are applied and evaluated through
several engineering test cases. These include assessing uncertainties in airfoil flow
conditions, shape imperfections, and the performance metrics of a Supersonic Busi-
ness Jet. Each case demonstrates the practical benefits and computational advan-
tages of the adjoint-assisted regression-based PCE approach.

Chapter 2 presents the theoretical foundations and numerical implementations of
ni-PCE and aPCE, emphasizing adjoint-assisted regression techniques. Chapter
3 introduces the mathematical formulation of the Karhunen-Loève Expansion and
elaborates on its application to modeling shape imperfections. Chapter 4 provides
detailed analyses and results from the implementation of the proposed UQ methods
in selected engineering scenarios, focusing on computational efficiency and accuracy.

The four variations of PCE implemented in this thesis are compared in Table 1.1,
highlighting their key characteristics.
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PCE

Method

Basis

Construction

Coefficient

Computation

Regression-Based

Generalized PCE

Wiener-Askey

polynomials
Least-Squares

Adjoint-Assisted

Generalized PCE

Wiener-Askey

polynomials
Least-Squares

Regression-Based

aPCE

Data-driven orthogonal

polynomials
Least-Squares

Quadrature-Based

aPCE

Data-driven orthogonal

polynomials

Numerical

integration

Table 1.1: Implemented PCE methodologies
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Chapter 2

Uncertainty Quantification

2.1 Non-Intrusive PCE

2.1.1 Formulation and Chaos Order

In the ni-PCE, the QoI which is dependent on the vector of uncertain variables
ci, i ∈ [1,M ] , is approximated as

J(c⃗) ≈
Q−1∑
i=0

αiHi(c⃗), (2.1)

where M is the number of uncertain variables, Q is the total number of expansion
terms, Hi(c⃗) the multi-dimensional orthogonal polynomials, and αi the correspond-
ing weights.

The upper bound of this expansion is referred as the chaos order (k) and corre-
sponds to the highest degree of polynomial used in the series. This chaos order
essentially controls the level of detail and the complexity of the model. A higher
chaos order can capture more intricate interactions between the uncertain variables
but at the cost of increased computational burden and the potential for overfitting if
not managed correctly. Conversely, a lower chaos order simplifies the model, which
may be beneficial for computational efficiency but might not adequately represent
the underlying stochastic behavior, if the complexity of the true system is high.
Selecting an appropriate chaos order is crucial for balancing accuracy and efficiency
in stochastic modeling.

The multi-dimensional orthogonal polynomials Hi(c⃗) are constructed using a tensor
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product expansion of the univariate orthogonal polynomials hi(c). The tensor prod-
uct expansion involves taking the product of univariate polynomials hi(c) defined
for each uncertain variable, thereby constructing multi-dimensional polynomials that
preserve orthogonality across all input dimensions.

The total number of expansion terms Q can be determined using two different meth-
ods. In the first method, the expansion terms are limited by the one-dimensional
polynomial order bounds pj for the j-th uncertain parameter. This can be consid-
ered as the chaos order for a single uncertain variable within the entire set and is
given by [3]:

Q =
M∏
j=1

(pj + 1) (2.2)

The second approach allows the chaos order k to be directly specified through the
field of Combinatorics [23]. More specifically, the number of combinations of M
integers with a sum lower than or equal to k is given by the following formula:

Q =

(
M

k

)
=

(k +M)!

k!M !
=

(M + 1)(M + 2) · · · (M + k)

k!
(2.3)

The distinction between the two methods lies in the way the chaos order is defined.
In the second method, the user specifies the total chaos order k of the expansion,
which represents a single value corresponding to the highest degree of the multivari-
ate polynomial. Conversely, in the first method, the user specifies a set of values
{pj}, where each pj denotes the highest degree of the univariate polynomial for each
uncertain parameter, and the sum of these values equals the total chaos order k.

The first method has the advantage of allowing greater control over the maximum
univariate polynomial order pj for each uncertain parameter, enabling different max-
imum polynomial orders for individual variables. This characteristic is known as
anisotropy. However, due to the frequent lack of such specific information, the sec-
ond method is more commonly used. For the purposes of this work, the second
method is utilized.

As shown in Table 2.1, the number of PCE coefficients (Q) to be computed increases
exponentially with the chaos order and the number of uncertain variables. So, as
this diploma thesis focuses on regression techniques for computing these coefficient
computational cost increases dramatically with the complexity of the model. Later
in this chapter, the adjoint-assisted regression technique that significantly reduces
the computational cost of the PCE coefficients calculation.

The general form of each multi-dimensional orthogonal polynomial Hi(c⃗) is
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Uncertain Variables (M) PCE Coefficients Q
Chaos Order k = 1

1 2
4 5
7 8
10 11
13 14
16 17
19 20
22 23

Chaos Order k = 2
1 3
4 15
7 36
10 66
13 105
16 153
19 210
22 276

Chaos Order k = 3
1 4
4 35
7 120
10 286
13 560
16 969
19 1540
22 2300

Table 2.1: Number of PCE Coefficients for Different Numbers of Uncertain Variables
and Chaos Orders.

Hi(c⃗) =
M∏
l=1

hil(cl),
M∑
l=1

il ≤ k, (2.4)

So, the index of the multi-dimensional orthogonal polynomial Hi(c⃗) scales with the
chaos order k as

0 ≤ i ≤ Q− 1 (2.5)

It should be noted that the input uncertain variables ci must be standardized (mean
value µ = 0 and standard deviation σ = 1) and uncorrelated [6]. This ensures the
orthogonality of the polynomials and homogeneity of the uncertain variables. In
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case two or more variables are correlated with a known correlation coefficient, they
should be decorrelated through an appropriate transformation to yield independent
variables [6]. Methods that can spot the correlation between two or more variables
include the Pearson correlation coefficient, the Spearman rank correlation coefficient,
or the Kendall tau rank correlation coefficient [18].

The type of the 1D orthogonal polynomials used in equation 2.4 depends on the
probability distribution of each uncertain parameter. The used polynomial type for
the most common probability distributions is shown [24] in Table 2.2.

Distribution PDF Polynomial Support range

Normal 1√
2π
e−ξ2/2 Hermite (−∞,∞)

Uniform 1
2

Legendre [−1, 1]

Beta (1−ξ)α(1+ξ)β

2α+β+1B(α+1,β+1)
Jacobi [−1, 1]

Exponential e−ξ Laguerre [0,∞)

Gamma ξαe−ξ

Γ(α+1)

Generalized

Laguerre
[0,∞)

Table 2.2: Polynomial types for common probability distributions.

For a better understanding of the construction of the multivariate orthogonal poly-
nomials, a case with M = 2 uncertain variables and a general chaos order of k = 2
is assumed. The first variable is normally distributed and the second follows a beta
distribution, so the Hermite and Jacobi polynomials are used, respectively. The
total number of expansion terms is 6, as calculated by equation 2.3. The multi-
dimensional orthogonal polynomials are constructed as follows:

H0(c1, c2) = He0(c1)P0(c2), (2.6)

H1(c1, c2) = He1(c1)P0(c2), (2.7)

H2(c1, c2) = He0(c1)P1(c2), (2.8)

H3(c1, c2) = He2(c1)P0(c2), (2.9)

H4(c1, c2) = He1(c1)P1(c2), (2.10)

H5(c1, c2) = He0(c1)P2(c2). (2.11)

9



2.1.2 Orthogonal Polynomials

This section details the expressions of the orthogonal polynomials listed in Table
2.2 and their corresponding derivatives, which are essential for the adjoint-assisted
PCE.

Hermite Polynomials

We commence with the Hermite polynomials which are used to model the normal
distribution. Hermite polynomials manifest in two distinct forms: the probabilistic
Hen (which are used to model the normal distribution) and the physicist’s Hn.
Each variant is employed in different scientific domains, and their interrelation is
explicated through the ensuing equation [1]:

Hen(x) = 2−n/2Hn

(
x√
2

)
(2.12)

The recursive definition for the probabilistic Hermite polynomial is as follows:

Hen+1(x) = xHen(x)− nHen−1(x), He0(x) = 1, (2.13)

where He0(x) = 1 and He1(x) = x constitute the initial terms of the probabilistic
Hermite polynomials.

The norm of these polynomials within the weighted space w, which adheres to the
standard normal distribution parameters µ = 0 and σ = 1, is computed as follows
[1]:

∥Hek∥2w = γk = ⟨Hek(x), Hek(x)⟩w =

∫ ∞

−∞
H2

ek
(x)w(x) dx = k! (2.14)

and hence,
∥Hek∥w =

√
k! (2.15)

The standardized probabilistic Hermite polynomials are defined as follows:

H̃ek(x) :=
Hek(x)

∥Hek∥w
=

Hek(x)√
k!

=⇒ ∥H̃ek(x)∥2 = γk = 1, ∀k = 0, 1, 2, . . . (2.16)

As per the derivative of the probabilistic Hermite polynomials, it can be proven that

H̃ ′
k+1(x) =

d(H̃k+1)

dx
=
√
k + 1 · H̃k(x) (2.17)
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Jacobi Polynomials

To model the beta distribution, the Jacobi polynomials are employed. These, de-
noted by P

(α,β)
n (x), are a class of orthogonal polynomials that are solutions to the

Jacobi ODE:

(1− x2)y′′ + [β − α− (α + β + 2)x]y′ + n(n+ α + β + 1)y = 0 (2.18)

These polynomials are defined with a weight function (1− x)α(1 + x)β on the inter-
val [−1, 1], which matches the transformed form of the beta distribution’s density
function. This congruence allows the Jacobi polynomials to naturally accommodate
the variety of shapes the beta distribution can assume, depending on the values α
and β take on.

The recursive definition for the Jacobi polynomial P
(α,β)
n (x) is as follows:

P
(α,β)
n+1 (x) = (Anx+Bn)P

(α,β)
n (x)− CnP

(α,β)
n−1 (x), (2.19)

where:

An =
(2n+ α + β + 1)(2n+ α + β + 2)

2(n+ 1)(n+ α + β + 1)
, (2.20)

Bn =
(α2 − β2)(2n+ α + β + 1)

2(n+ 1)(n+ α + β + 1)(2n+ α + β)
, (2.21)

Cn =
(n+ α)(n+ β)(2n+ α + β + 2)

(n+ 1)(n+ α + β + 1)(2n+ α + β)
(2.22)

The first two polynomials of the family are:

P
(α,β)
0 (x) = 1, (2.23)

P
(α,β)
1 (x) =

1

2
(α + β + 2)x+

1

2
(α− β) (2.24)

In order to standardize the Jacobi polynomials (i.e, mean value µ = 0 and standard
deviation σ = 1), the following expression can be used to divide the polynomial
obtained by the recursive definition.

∥P (α,β)
n ∥2 =

∫ 1

−1

(
P (α,β)
n (x)

)2
(1− x)α(1 + x)β dx (2.25)
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This integral can be computed analytically and the result is

∥P (α,β)
n ∥2 = 2α+β+1

2n+ α + β + 1

Γ(n+ α + 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ α + β + 1)
(2.26)

and ,hence,

∥P (α,β)
n ∥ =

√
2α+β+1

2n+ α + β + 1

Γ(n+ α + 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ α + β + 1)
(2.27)

The k-th derivative of these polynomials is given by

dk

dzk
P (α,β)
n (z) =

Γ(α + β + n+ 1 + k)

2kΓ(α + β + n+ 1)
P

(α+k,β+k)
n−k (z), (2.28)

where the Gamma Function Γ(z) for a complex number z with Re(z) > 0, is defined
by the integral

Γ(z) =

∫ ∞

0

tz−1e−t dt. (2.29)

This function extends the factorial to the complex plane, satisfying Γ(n + 1) = n!
for all positive integers n.

It should be mentioned that the PDF of the beta distribution is not an exact match
with the weight function of the Jacobi polynomials. So, a different normalization
constant is needed to model accurately the beta distribution. Its PDF is given by

f(x;α, β) =
xα−1(1− x)β−1

B(α, β)
, for x ∈ [0, 1], (2.30)

where B(α, β) is the Beta function, defined as

B(α, β) =

∫ 1

0

tα−1(1− t)β−1 dt. (2.31)

Alternatively, it can be expressed in terms of the Gamma function:

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
. (2.32)

From the above equation and in order to match the weight function of the Jacobi
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polynomials, it is clear that it should be chosen α = β − 1 , β = α − 1 and carry
out a change of variable x = t+1

2
. Thus, t = 2x− 1.

So, from equation 2.25, we obtain

∫ 1

0

Pα,β−1
n (2x− 1; β − 1, α− 1)(1− (2x− 1))β−1(1 + 2x− 1)α−1d(2x− 1) =

− 2α+β−1B(α, β)

∫ 1

0

Pα,β−1
n (2x− 1; β − 1, α− 1)

xα−1(1− x)β−1

B(α, β)
dx =

2α+β−1

2n+ α + β − 1

Γ(n+ α)Γ(n+ β)

Γ(n+ α + β − 1)n!

∫ 1

0

Pα,β−1
n (2x− 1; β − 1, α− 1)f(x;α, β)dx

Combining this equation with equation 2.26, we get

∫ 1

0

P 2
n(2x− 1; β − 1, α− 1) f(x;α, β) dx =

Γ(n+ α)Γ(n+ β)

(2n+ α + β − 1)Γ(n+ α + β − 1)n!B(α, β)

The equation above means that the L2 norm of Pn(2x− 1; β− 1, α− 1) with respect
to the weight function f(x;α, β) is

∥Pn(2x−1; β−1, α−1)∥2 =

√
Γ(n+ α)Γ(n+ β)

(2n+ α + β − 1)Γ(n+ α + β − 1)n!B(α, β)
(2.33)

Legendre Polynomials

The Legendre polynomials are used to model the uniform distribution. The Legen-
dre polynomials, denoted by Pn(x), are a class of orthogonal polynomials that are
solutions to the Legendre ODE:

d

dx

[
(1− x2)

dPn

dx

]
+ n(n+ 1)Pn = 0 (2.34)

The Legendre polynomials are defined with a weight function w(x) = 1 on the
interval [−1, 1], which matches the transformed form of the uniform distribution’s
density function. They are a special case of the Jacobi polynomials with parameters

13



α = β = 0 and their recursive definition is as follows:

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x) (2.35)

The first two polynomials of the family are:

P0(x) = 1, (2.36)

P1(x) = x (2.37)

The norm of these polynomials within the weighted space w, which adheres to the
standard uniform distribution parameters µ = 0 and σ = 1, is computed as follows:

∥Pn∥2w = γn = ⟨Pn(x), Pn(x)⟩w =

∫ 1

−1

P 2
n(x)w(x) dx =

2

2n+ 1
(2.38)

and hence,

∥Pn∥w =

√
2

2n+ 1
(2.39)

Laguerre Polynomials

The exponential distribution is modeled using the Laguerre polynomials. The La-
guerre polynomials, denoted by Ln(x), are a class of orthogonal polynomials that
are solutions to the Laguerre ODE:

x
d2Ln

dx2
+ (1− x)

dLn

dx
+ nLn = 0 (2.40)

The Laguerre polynomials are defined with a weight function w(x) = e−x on the
interval [0,∞), which matches the transformed form of the exponential distribution’s
density function. The recursive definition for the Laguerre polynomial Ln+1(x) is as
follows:

Ln+1(x) =
2n+ 1− x

n+ 1
Ln(x)−

n

n+ 1
Ln−1(x) (2.41)

The first two polynomials of this family are:

L0(x) = 1, (2.42)

L1(x) = 1− x (2.43)
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The norm of these polynomials within the weighted space w, which adheres to the
standard exponential distribution parameters µ = 0 and σ = 1, is computed as
follows:

∥Ln∥2w = γn = ⟨Ln(x), Ln(x)⟩w =

∫ ∞

0

L2
n(x)w(x) dx =

Γ(n+ 1)

n!
(2.44)

and, hence,

∥Ln∥w =

√
Γ(n+ 1)

n!
(2.45)

The derivative of the Laguerre polynomials is given by the following recursive for-
mula:

xL′
n(x) = nLn(x)− nLn−1(x) (2.46)

Generalized Laguerre Polynomials

Finally, the Gamma distribution is modeled using the Generalized Laguerre poly-
nomials. Denoted by L

(α)
n (x), these are a class of orthogonal polynomials that are

solutions to the Generalized Laguerre differential equation:

xL′′
n(x) + (α + 1− x)L′

n(x) + nLn(x) = 0 (2.47)

The Generalized Laguerre polynomials are defined with a weight function w(x) =
xαe−x on the interval [0,∞), which matches the transformed form of the gamma
distribution’s density function. The recursive definition for the Generalized Laguerre
polynomial L

(α)
n+1(x) is as follows:

L
(α)
n+1(x) =

(2n+ 1 + α− x)

n+ 1
L(α)
n (x)− (n+ α)

n+ 1
L
(α)
n−1(x) (2.48)

The first two polynomials of the family are:

L
(α)
0 (x) = 1, (2.49)

L
(α)
1 (x) = 1 + α− x (2.50)

The norm of these polynomials within the weighted space w, which adheres to the
standard gamma distribution parameters µ = 0 and σ = 1, is computed as follows:

∥L(α)
n ∥2w = γn = ⟨L(α)

n (x), L(α)
n (x)⟩w =

∫ ∞

0

L(α)2
n (x)w(x) dx =

Γ(n+ α + 1)

n!
(2.51)
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and hence,

∥L(α)
n ∥w =

√
Γ(n+ α + 1)

n!
(2.52)

The k-th derivative of the Generalized Laguerre polynomials is given by the following
formula:

dk

dxk
L(α)
n (x) =

{
(−1)kL(α+k)

n−k (x) if k ≤ n

0 otherwise
(2.53)

Table 2.3 summarizes the expressions of the orthogonal polynomials for the most
common probability distributions.

Polynomial Typical Expression

Hermite Hen+1(x) = xHen(x)− nHen−1(x)

Jacobi P
(α,β)
n+1 (x) = (Anx+Bn)P

(α,β)
n (x)− CnP

(α,β)
n−1 (x)

Legendre (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

Laguerre Ln+1(x) =
2n+1−x
n+1 Ln(x)− n

n+1Ln−1(x)

Generalized Laguerre L
(α)
n+1(x) =

2n+1+α−x
n+1 L

(α)
n (x)− n+α

n+1L
(α)
n−1(x)

Table 2.3: Typical expressions of various orthogonal polynomials.

Polynomial Derivative Expression

Hermite H̃ ′
k+1(x) =

d(H̃k+1)
dx =

√
k + 1 · H̃k(x)

Jacobi dk

dzk
P

(α,β)
n (z) = Γ(α+β+n+1+k)

2kΓ(α+β+n+1)
P

(α+k,β+k)
n−k (z)

Legendre d
dxPn+1(x) = (n+ 1)Pn(x) + x d

dxPn(x)

Laguerre xL′
n(x) = nLn(x)− nLn−1(x)

Generalized Laguerre dk

dxkL
(α)
n (x) = (−1)kL(α+k)

n−k (x), if k ≤ n

Table 2.4: Derivative expressions of various orthogonal polynomials.

2.1.3 Galerkin Projection

The Galerkin projection method involves projecting the response onto each basis
function (a set of orthogonal polynomials or other predefined functions used to
construct the approximation). Projection decomposes the response into indepen-
dent modes, isolating each uncertain parameter’s contribution. This projection is
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performed in order to compute the coefficients of the polynomial expansion that
approximates the system’s response. It utilizes the orthogonal properties of poly-
nomials to determine each coefficient. From equation 2.1, the Galerkin projection
method can be expressed as [3]

αi =
⟨J(c), Hi(c)⟩
⟨Hi(c)2⟩

=

∫
Ω
J(c)Hi(c)ρ(ξ) dξ∫
Ω
Hi(c)2ρ(ξ) dξ

, (2.54)

where ρ(ξ) =
∏M

i=1 ρi(ξi) is the joint probability density function of the uncertain
variables and Ω = Ω1 ⊗ · · · ⊗ ΩM is the uncertain input parameter space.

The denominator in equation 2.54 is the norm squared of the multivariate orthog-
onal polynomial, which can be computed analytically and will be presented later
in this chapter. The numerator is the inner product of the QoI and the multivari-
ate orthogonal polynomial which cannot be computed analytically and requires the
use of Gauss Quadrature. Gauss Quadrature with k points integrates exactly all
polynomials of degree 2k − 1 or less. Since J and Hi(c) are multiplied in equation
2.54, the highest order of the integrand is 2pj in the j-th parameter dimension. This
requires pj + 1 quadrature points for exact integration in each dimension.

2.1.4 Regression

Instead of numerically integrating the inner product in equation 2.54, an alternative
method can be used to approximate the coefficients αi by means of regression [15].
In this approach, the QoI (J) is evaluated at L different c values and with equation
2.1, a linear system can be formed as H0(c1) · · · HQ−1(c1)

...
. . .

...
H0(cL) · · · HQ−1(cL)


 α0

...
αQ−1

 =

 J(c1)
...

J(cL)

 (2.55)

with L equations and P unknowns. If L = P , then the system is determined and
the coefficients αi can be computed easily by inverting the matrix and multiplying
it with the right-hand-side vector. To increase the accuracy of the regression, the
number of samples L should be greater than the number of expansion terms P and,
then, equation 2.55 corresponds to a least squares problem. Based on the literature,
the number of samples should be at least three times the number of expansion terms
(oversampling factor r = 3 , L = 3P ) [4].

The described overdetermined system with m equations and n unknowns can be
solved with various methods, such as typical Least Squares or Singular Value De-
composition (SVD) method [21]. SVD is a powerful numerical method used to solve
both overdetermined or underdetermined linear systems, perform matrix rank re-
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duction, and compute pseudo-inverses. It provides a robust solution by decomposing
the matrix into its singular values and corresponding singular vectors.

The SVD of a matrix A ∈ Rm×n is given by:

A = UΣV T , (2.56)

where U (with dimensions m×m) and V (with dimensions n× n) are the left and
right singular vector matrices, respectively, and Σ (with dimensions m × n) is a
diagonal matrix containing the singular values of A. For the system Ax = b, the
solution that minimizes the least squares error ∥Ax− b∥2 is given by:

x = V Σ+UTb, (2.57)

where Σ+ (with dimensions n×m) is the pseudo-inverse of Σ.

In practical terms, SVD provides a robust framework for solving linear systems,
even when the matrix A is ill-conditioned or singular. By decomposing A into its
singular values and vectors, SVD enables the stable computation of the coefficients
αi. This stability is especially valuable in uncertainty quantification, where the
accurate determination of these coefficients is critical for reliable model predictions.

The only thing that remains is to decide the L different c values on which the QoI is
to be evaluated. The most common approach is to use a Latin Hypercube Sampling
(LHS) method. LHS is a stratified sampling technique that ensures a more uniform
distribution of samples across the input parameter space. It divides the input space
into intervals and selects one sample from each interval. This results in a more
representative set of samples that captures the variability of the input parameters
more effectively than random sampling.

2.1.5 Adjoint - assisted Regression

As it was previous mentioned, each row of the matrix of equation 2.55 corresponds to
an evaluation of the QoI, which in certain cases can be computationally expensive.
So, adding more lines in the matrix for each evaluation could accelerate the UQ
process. This can be achieved by using the adjoint method to compute the sensitivity
derivatives of the QoI with respect to the uncertain parameters. The computation
of all the sensitivity derivatives δJ

δci
, i ∈ [1,M ] is of cost equivalent to that of a single

QoI evaluation. The result is that with fewer sampling points (QoI evaluations), a
satisfactory oversampling factor can be achieved and, thus, the UQ process can be
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accelerated. The system of linear equations [15] that needs to be solved is now



H0(c1) · · · HQ−1(c1)
∂H0

∂c1
(c1) · · · ∂HQ−1

∂c1
(c1)

...
. . .

...
∂H0

∂cM
(c1) · · · ∂HQ−1

∂cM
(c1)

...
. . .

...
H0(cL) · · · HQ−1(cL)
∂H0

∂c1
(cL) · · · ∂HQ−1

∂c1
(cL)

...
. . .

...
∂H0

∂cM
(cL) · · · ∂HQ−1

∂cM
(cL)



 α0
...

αQ−1

 =



J(c1)
δJ
δc1

(c1)
...

δJ
δcM

(c1)
...

J(cL)
δJ
δc1

(cL)
...

δJ
δcM

(cL)


(2.58)

and can be solved with the SVD method as described in the previous section.

As mentioned in section 2.1.1, the input uncertain variables ci should be standard-
ized, meaning that they have zero mean and unit variance. In many cases though,
the uncertain parameters ξi of the analysis are not standardized, thus the RHS of
equation 2.58 should be adjusted accordingly (see below).

Apart from the sensitivity derivatives of the QoI, the derivatives of the multivariate
orthogonal polynomials with respect to the uncertain parameters are also needed.
These can be computed analytically, see table 2.4 .

The standardized uncertain variables ci have the following properties:

µci = 0, σci = 1, cmin
i = −3, cmax

i = 3. (2.59)

For the input unstandardized uncertain variables ξi:

ξmin
i = µξi − 3σξi , ξmax

i = µξi + 3σξi . (2.60)

To standardize ξi, we use:

ξ̄i =
ξi − ξmin

i

ξmax
i − ξmin

i

∈ [0, 1]. (2.61)

The relation between ξi and ci is given by:

ci = cmin
i + ξ̄i

(
cmax
i − cmin

i

)
= cmin

i +
ξi − ξmin

i

σξi

, (2.62)
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which implies:
ξi = ξmin

i +
(
ci − cmin

i

)
σξi . (2.63)

Finally, the derivative of ξi with respect to ci is:

δξi
δci

= σξi . (2.64)

So, by using the chain rule, each element of the RHS of equation 2.58 can be adjusted
to:

δJ

δci
==

∂J

∂ξi

∂ξi
∂ci

=
∂J

∂ξi
σξi . (2.65)

The final form of the adjoint-assisted regression system is:



H0(c1) · · · HQ−1(c1)
∂H0

∂c1
(c1) · · · ∂HQ−1

∂c1
(c1)

...
. . .

...
∂H0

∂cM
(c1) · · · ∂HQ−1

∂cM
(c1)

...
. . .

...
H0(cL) · · · HQ−1(cL)
∂H0

∂c1
(cL) · · · ∂HQ−1

∂c1
(cL)

...
. . .

...
∂H0

∂cM
(cL) · · · ∂HQ−1

∂cM
(cL)



 α0
...

αQ−1

 =



J(c1)
∂J
∂ξ1

(c1)σξ1
...

∂J
∂ξM

(c1)σξM
...

J(cL)
∂J
∂ξ1

(cL)σξ1
...

∂J
∂ξM

(cL)σξM


(2.66)

2.1.6 Stochastic Moments Calculation

Having computed the coefficients αi, the stochastic moments of the QoI can be
calculated. The mean value and the variance of the QoI is given by [23]

µ ≈
P−1∑
i=0

αi⟨Hi(c)⟩ = α0, (2.67)

σ2 ≈
P−1∑
i=0

α2
i ⟨Hi(c)

2⟩. (2.68)

What remains is to compute the inner product of the multivariate orthogonal poly-
nomials ⟨Hi(c)

2⟩.
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As described previously in this chapter, the multivariate orthogonal polynomials are
constructed using a tensor product expansion of the univariate orthogonal polyno-
mials. The Galerkin Projection of any two multivariate polynomials that belong to
the same family and have orders i and j is given by

⟨Hi(x⃗), Hj(x⃗)⟩W =

∫
Ω

Hi(x⃗)Hj(x⃗)W (x⃗) dx⃗

=

∫
· · ·
∫ ( M∏

l=1

hi(xl)

)(
M∏
l=1

hj(xl)

)(
M∏
l=1

wl(xl)

)
dx1 · · · dxM

= δij

M∏
l=1

∫
Ωl

h2
i (xl)wl(xl) dxl = δij

∫
Ω

(Hi(x⃗))
2W (x⃗) dx⃗

The above expression concludes to the simplified form

⟨Hi(x⃗), Hj(x⃗)⟩W =

∫
Ω

Hi(x⃗)Hj(x⃗)W (x⃗) dx⃗ = ⟨Hi(x⃗), Hi(x⃗)⟩W δij (2.69)

and by performing the same calculations as in equation 2.54, the final form of the
inner product is

⟨Hi(x⃗), Hi(x⃗)⟩W =

∫
Ω

H2
i (x⃗)W (x⃗) dx⃗

=
M∏
l=1

(∫
Ωl

h2
i (xl)wl(xl) dxl

)
=

(
M∏
l=1

∥hi(xl)∥wl

)2

= ∥Hi(x⃗)∥2W = γn,

which is simplified [23] to

⟨Hi(x⃗), Hi(x⃗)⟩W = ∥Hi(x⃗)∥2W , (2.70)

where ∥Hi(x⃗)∥W =
∏M

l=1 ∥hi(xl)∥wl
is the norm of the multivariate orthogonal poly-

nomial.

The norms of the univariate orthogonal polynomials ∥hi(xl)∥wl
are computed ana-

lytically and are given in table 2.5 for the most common probability distributions,
see subsection 2.1.2.
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Distribution Norm of Polynomial Polynomial

Normal n! Hermite (Probabilistic)

Uniform 1
2n+1 Legendre

Beta 2α+β+1Γ(n+α+1)Γ(n+β+1)
(2n+α+β+1)Γ(n+α+β+1)Γ(n+1) Jacobi

Exponential Γ(n+1)
n! Laguerre

Gamma Γ(n+α+1)
n! Generalized Laguerre

Table 2.5: Norms of polynomial types for common probability distributions.

So, from equation 2.68, the variance of the QoI can be computed as

σ2 =
∞∑
i=0

α2
i

∫
Ω

H2
i (x⃗)W (x⃗) dx =

∞∑
i=0

α2
i ∥Hi(x⃗)∥2W =

∞∑
i=0

α2
i γi (2.71)

2.1.7 A Mathematical Test Problem

In this section, the proposed methodology is applied to a benchmark problem,
the Borehole function. The stochastic moments of the QoI are computed using
the methodology outlined previously and the results are compared with the values
obtained from Monte Carlo simulations, to validate the accuracy of the proposed
methodology.

Borehole Function

The Borehole function [20] is a common benchmark problem used in the field of
UQ. It is a mathematical model that describes the flow of water through a borehole
[m3/year]. The function is defined as follows:

F (x⃗) =
2πTu(Hu −Hl)

ln(r/rw)
[
1 + 2LTu

ln(r/rw)+(rW )2Kw
+ Tu

Tl

] , (2.72)

The input variables x⃗ ∈ R8 and their usual input ranges are given in table 2.6, while
an illustration of the borehole is shown in figure 2.2.
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Variable Range Description

rw ∈ [0.05, 0.15] Radius of borehole (m)

r ∈ [100, 50 000] Radius of influence (m)

Tu ∈ [63 070, 115 600] Transmissivity of upper aquifer (m2/yr)

Hu ∈ [990, 1110] Potentiometric head of upper aquifer (m)

Tl ∈ [63.1, 116] Transmissivity of lower aquifer (m2/yr)

Hl ∈ [700, 820] Potentiometric head of lower aquifer (m)

L ∈ [1120, 1680] Length of borehole (m)

Kw ∈ [9855, 12 045] Hydraulic conductivity of borehole (m/yr)

Table 2.6: Input variables x⃗ and their ranges for the Borehole function.

Figure 2.1: Illustration for the water flow through the borehole

For the purposes of UQ, the distributions of the input random variables are defined
in Table 2.7.

Input Variable Distributions

rw ∼ N(µ = 0.10, σ = 0.0161812)
r ∼ Lognormal(µ = 7.71, σ = 1.0056)
Tu ∼ Uniform[63 070, 115 600]
Hu ∼ Uniform[990, 1110]
Tl ∼ Uniform[63.1, 116]
Hl ∼ Uniform[700, 820]
L ∼ Uniform[1120, 1680]
Kw ∼ Uniform[9855, 12 045]

Table 2.7: Distributions of input variables for the Borehole function.
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Above, N( µ , σ2) denotes a normal distribution with mean µ and standard deviation
σ2, while Uniform[a, b] denotes a uniform distribution with lower bound a and upper
bound b. Longnormal(µ, σ2) denotes a lognormal distribution with mean µ and
standard deviation σ2. In order to handle the Lognormal distribution, it is first
transformed into a normal distribution by applying the natural logarithm to the
random variable,

ξ = ln(x)

A set of samples is generated using LHS from the input distributions. The QoI is
then evaluated at each sample point using the Borehole function and the proposed
methodology is applied to compute the stochastic moments of the QoI. ,Figure 2.2
illustrates the asymptotic convergence of the stochastic moments with increasing
sample size, comparing the outcomes of Monte Carlo and the PCE.

Figure 2.2: Convergence of the Stochastic Moments for the Borehole Function using
MC and the PCE with increasing sample size

In the PCE approach, a chaos order of 2 was employed, resulting in a total of 45
terms in the expansion. The results indicate that the PCE method yields accurate
estimates of the stochastic moments. Moreover, both the mean and standard devia-
tion converge to their final values with a considerably smaller sample size than that
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required by MC simulations. Specifically, with a sample size of 100 (an oversam-
pling factor of 2.22), the PCE method accurately captures the stochastic moments,
whereas the MC approach requires at least 100 times more samples to achieve com-
parable accuracy.

2.2 Arbitrary PCE

In many practical applications, input data do not adhere to standard probability
distributions, making the conventional PCE method inapplicable. To overcome these
limitations, the arbitrary PCE (aPCE) employs data-driven techniques to construct
an orthogonal polynomial basis tailored to the observed data. This section provides
an overview of the aPCE approach, discussing its theoretical foundations and its
application in UQ.

2.2.1 Formulation of 1D aPCE

We consider a stochastic process defined on a probability space (Ω, A,Γ), where Ω
represents the set of events, and Γ is the probability measure [9]. For a stochastic
model J = f(ξ), with the input ξ ∈ Ω and output J , the function f(ξ) can be
expanded using the PCE theory as:

J(ξ) ≈
Q∑
i=0

ciP
(i)(ξ), (2.73)

where in case of 1D PCE, Q = k, k being the order of expansion, ci are the expan-
sion coefficients that can be determined by the methods presented in the previous
sections, and P (i)(ξ) are the polynomials forming the basis {P (0), . . . , P (k)} that are
orthogonal with respect to the measure Γ.

The distinction between aPCE and other PCE methods is that the measure Γ can
have an arbitrary form, and thus the polynomial basis has to be found specifically
for the probability measure Γ appearing in the respective application.

Once the polynomial basis is found and the expansion coefficients are determined
using the aforementioned regression methods, the stochastic moments of the QoI
can be computed using the expressions in subsection 2.1.6.

2.2.2 Formulation of multi-dimensional aPCE

If the model input ξ⃗, i.e. ξ⃗ = {ξ1, ξ2, . . . , ξN} is multi-dimensional and the total
number of stochastic parameters is equal to N , the expansion is formulated using
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the multi-dimensional orthogonal polynomial basis:

J(ξ⃗) = J(ξ1, ξ2, . . . , ξN) ≈
Q∑

i=O

ciΦi(ξ1, ξ2, . . . , ξN), (2.74)

where Φi is the multi-dimensional orthogonal polynomial basis and ci are the expan-
sion coefficients. The chaos order k of a multi-dimensional expansion was presented
in detail in subsection 2.1.1. Finally, the stochastic moments of the QoI are com-
puted in the same manner as in the 1D case, using the expressions in subsection
2.1.6.

To summarize, the distinctive and noteworthy aspect of the arbitrary Polynomial
Chaos Expansion (aPCE) is not the formulation of the 1D and multi-dimensional
expansions, but rather the construction of the orthogonal polynomial basis for the
arbitrary probability measure Γ. In Section 2.2.3, the construction of the orthogonal
polynomial basis for aPCE is presented in detail.

It should be noted that the current scientific understanding of polynomial chaos ex-
pansions requires that the random variables must either be statistically independent
or exhibit only linear correlation. Linear correlations can be eliminated through ap-
propriate linear transformations, such as the Karhunen-Loève (KL) expansion [10],
also known as proper orthogonal decomposition [11] in some fields, or principal
component analysis [16].

2.2.3 Construction of the Orthogonal Polynomial Basis for

the aPCE

For the construction of the orthogonal polynomial basis for the aPCE the Mysovskikh
theorem [13] is used. Firstly, let us define the polynomial P (k)(ξ) of degree k in the
random variable ξ ∈ Ω:

P (k)(ξ) =
k∑

i=0

p
(k)
i ξi, (2.75)

where p
(k)
i are coefficients in P (k)(ξ).

The objective is to construct the polynomials in equation 2.75 to form an orthonor-
mal basis for arbitrary distributions, using only the statistical moments obtained
from the sample of the random variable ξ. With this methodology any given proba-
bility distribution defined solely by the statistical moments of ξ can be handled. This
approach enables us to work with arbitrary probability measures that are implicitly
and incompletely defined by a finite number of moments.
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The orthonormality property for polynomials P (k) of degree k and P (l) of degree l
is defined as:

∫
ξ∈Ω

P (k)(ξ)P (l)(ξ)dΓ(ξ) = δkl, ∀k, l = 0, . . . , d (2.76)

where δkl is the Kronecker delta.

For the continuation of the analysis, only the orthogonality condition will be utilized.
Also, the leading coefficients of all polynomials will be set to 1. The orthonormality
condition will be taken into account in the next step of the analysis. The orthogo-
nality condition is given by:

∫
ξ∈Ω

P (k)(ξ)P (l)(ξ)dΓ(ξ) = 0, ∀k ̸= l. (2.77)

With the help of equations 2.75 and 2.77, the generalized conditions of orthogonality
for any polynomial P (k) of degree k with all lower-order polynomials can be written
in the following form:

∫
ξ∈Ω

[
p
(0)
0

k∑
i=0

p
(k)
i ξi

]
dΓ(ξ) = 0, (2.78)

∫
ξ∈Ω

[
1∑

l=0

P
(1)
l ξl

][
k∑

i=0

P
(k)
i ξi

]
dΓ(ξ) = 0, (2.79)

...

∫
ξ∈Ω

[
k−1∑
l=0

P
(k−1)
l ξl

][
k∑

i=0

P
(k)
i ξi

]
dΓ(ξ) = 0, (2.80)

p
(k)
k = 1. (2.81)

The above system of equations is self-contained and determines the unknown poly-
nomial coefficients p

(k)
i (where i = 0, . . . , k) for the desired basis. Notably, defining

the orthogonal polynomial of degree k inherently relies on the definitions of all
polynomials of preceding degrees 0, . . . , k − 1. So, the system can by simplified by
sequentially substituting each preceding equation into the subsequent one, starting
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with the first equation into the second, then the first and second into the third, and
continuing in this manner.

∫
ξ∈Ω

[
k∑

i=0

p
(k)
i ξi

]
dΓ(ξ) = 0, (2.82)

∫
ξ∈Ω

[
k∑

i=0

p
(k)
i ξi+1

]
dΓ(ξ) = 0, (2.83)

...

∫
ξ∈Ω

[
k∑

i=0

p
(k)
i ξk−1

]
dΓ(ξ) = 0, (2.84)

p
(k)
k = 1.

With this rearrangement, the kth orthogonal polynomial is defined independent of
all other polynomials from the orthogonal basis. As mentioned before, the analysis
relies solely on the statistical moments of the random variable ξ. The kth raw
moment of the random variable ξ is defined as:

µk =

∫
ξ∈Ω

ξkdΓ(ξ) =
1

N

N∑
i=1

ξki , (2.85)

where N is the number of samples and ξi is the i
th sample of the random variable ξ.

So, equations 2.82 to 2.84 can be rewritten based only on the raw moments of ξ:

k∑
i=0

p
(k)
i µi = 0 (2.86)

k∑
i=0

p
(k)
i µi+1 = 0 (2.87)

...

k∑
i=0

p
(k)
i µi+k−1 = 0 (2.88)
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p
(k)
k = 1

or, in matrix form:


µ0 µ1 · · · µk

µ1 µ2 · · · µk+1
...

...
. . .

...
µk−1 µk · · · µ2k−1

0 0 · · · 1




p
(k)
0

p
(k)
1
...

p
(k)
k−1

p
(k)
k

 =


0
0
...
0
1

 . (2.89)

The next step is to normalize the aforementioned orthogonal polynomial basis in
order to obtain an orthonormal basis and match the properties of the polynomials
used in the previous sections. The normalization is performed using the norm of the
polynomial P (k):

∥∥P (k)
∥∥2 = ∫

ξ∈Ω

[
P (k)(ξ)

]2
dΓ(ξ). (2.90)

Thus, an orthonormal polynomial basis is:

Ψ(k)(ξ) =
1

∥P (k)∥

k∑
i=0

p
(k)
i ξi. (2.91)

Following a similar procedure as the one presented earlier, the matrix form of the
orthonormal basis can be constructed:


µ0 µ1 · · · µk

µ1 µ2 · · · µk+1
...

...
. . .

...
µk µk+1 · · · µ2k



p
(κ)
0

p
(κ)
1
...

p
(κ)
k

 =


0
0
...
1

p
(κ)
k

 (2.92)

where the left-hand side matrix is the Hankel Kernel matrix and is denoted with M
[22].

As a consequence, an orthonormal polynomial basis up to order d can be constructed
for any arbitrary probability measure Γ. if and only if the square matrix in the left-
hand side of equation 2.92 is not singular.

The system of equations 2.92 can be solved using many different methods. One
of the most fast and elegant ways is to perform Cholesky decomposition, i.e. by
factoring a symmetric, Hermitian, positive-definite matrix into the product of a
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lower triangular matrix and its conjugate transpose. In the context of the aPCE,
the Cholesky decomposition is used, as the elements of the inverse of the upper
triangular matrix are the coefficients of the orthonormal polynomial basis.

The Cholesky decomposition of the Hankel Kernel matrix in equation 2.92 is given
by:

M = RTR ⇒
µ0 µ1 · · · µk

µ1 µ2 · · · µk+1
...

...
. . .

...
µk µk+1 · · · µ2k

 =


r11 r12 · · · r1,k+1

0 r22 · · · r2,k+1
...

...
. . .

...
0 0 · · · rk+1,k+1


T 

r11 r12 · · · r1,k+1

0 r22 · · · r2,k+1
...

...
. . .

...
0 0 · · · rk+1,k+1


Once the matrix R is obtained, a property from the Mysovskikh theorem [13] can
be used to find the coefficients of the orthonormal polynomial basis from the inverse
of the upper triangular matrix R.

The property states that:

R−1 =


p
(0)
0 p

(1)
0 p

(2)
0 · · · p

(k)
0

∅ p
(1)
1 p

(2)
1 · · · p

(k)
1

∅ ∅ p
(2)
2 · · · p

(k)
2

...
...

...
. . .

...

∅ ∅ ∅ · · · p
(k)
k

 (2.93)

As a result, the coefficients of the orthonormal polynomial are computed and the
orthonormal polynomial basis is constructed. In practice, the coefficient p

(k)
i is

obtained from the (i+1, k+1) entry of R−1, so that the kth orthonormal polynomial
can be expressed as

Ψ(k)(ξ) =
1

∥P (k)∥

k∑
i=0

p
(k)
i ξi.

This expression offers a streamlined computational pathway, where the steps are:
(i) assemble the Hankel Kernel matrix M from the moments of ξ, (ii) compute its
Cholesky factorization M = RTR, (iii) compute R−1, and (iv) extract the polyno-
mial coefficients directly from R−1 for constructing the orthonormal basis.
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2.2.4 The aPCE using Regression

Once the orthonormal polynomials for the arbitrary probability measure Γ are con-
structed, the only step that remains is to compute the expansion coefficients. As
mentioned in the previous sections, the expansion coefficients can be computed in
a variety of ways, such as numerically integrating the inner product in equation
2.54 or using Regression methods. The same theory presented in subsection 2.1.4
can be applied to aPCE without any modifications. The only difference is on the
left-hand-side matrix, where the polynomials are now the orthonormal polynomials
constructed for the arbitrary probability measure Γ. It should be noted that in cases
where some of the uncertain variables follow conventional probability distributions
that were analyzed previously and others follow arbitrary probability distributions,
the construction of the multivariate orthonormal polynomials is performed as pre-
sented in subsection 2.1.1 without any modifications. To put it differently, the
multivariate polynomial of equation 2.4 is constructed from both the conventional
and arbitrary polynomials.

In case regression is adjoint-assisted, as presented in subsection 2.1.5, and some or all
of the uncertain variables follow arbitrary probability distributions, the derivatives
of the multivariate orthogonal polynomials with respect to the uncertain parameters
are needed. These can be computed analytically by differentiating the orthonormal
polynomials constructed for the arbitrary probability measure Γ. The polynomials
are given by equation 2.91:

Ψ(k)(ξ) =
1

∥P (k)∥

k∑
i=0

p
(k)
i ξi.

The derivatives of the orthonormal polynomials with respect to the uncertain pa-
rameters are given by:

∂Ψ(k)(ξ)

∂ξ
=

1

∥P (k)∥

k∑
i=1

p
(k)
i iξi−1. (2.94)

So, the left-hand-side matrix of the adjoint system in equation 2.58 is constructed
and the system can be solved using the SVD method as presented in subsection
2.1.5.

2.2.5 aPCE via Projection-Based Quadrature

In this approach, the expansion coefficients are computed by projecting the QoI onto
the aPCE basis using an optimal quadrature rule. Specifically, if the orthonormal
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basis {Ψ(i)(ξ)}ki=0 has already been constructed for the arbitrary measure Γ (see
Section 2.2.3), then the ith coefficient is given by

ci =
⟨F,Ψ(i)⟩
⟨Ψ(i),Ψ(i)⟩

≈
∑Nq

j=1 wj F (ξj)Ψ
(i)(ξj)∑Nq

j=1wj [Ψ(i)(ξj)]
2

, (2.95)

where Nq is the number of quadrature nodes, F (ξ) is the QoI, and {wj, ξj} are
the quadrature weights and nodes, respectively. The basis is constructed to be
orthonormal, hence ⟨Ψ(i),Ψ(i)⟩ = 1, so the coefficient simplifies to

ci ≈
Nq∑
j=1

wj F (ξj)Ψ
(i)(ξj). (2.96)

A key aspect of the projection-based strategy is the generation of the quadrature
rule. This is accomplished by leveraging the eigen-decomposition of the Jacobi
matrix associated with the recurrence relation for the orthonormal polynomials.
Although the construction of the orthonormal basis is presented in Section 2.2.3,
here we explain how its optimal quadrature is obtained.

The three-term recurrence relation for the orthonormal polynomials can be written
in compact form, and its coefficients are collected in the symmetric tridiagonal
Jacobian matrix J :

J =


a0 b0

b0 a1
. . .

. . . . . . bk−1

bk−1 ak

 . (2.97)

where ai and bi are the recurrence coefficients.

The eigenvalues of J are the optimal quadrature nodes (or collocation points) for
integrating functions against Γ. The corresponding normalized eigenvectors provide
the quadrature weights; specifically, if v(j) is the eigenvector corresponding to the
node ξj, then the quadrature weight is computed as

wj = µ0

[
v
(j)
1

]2
, (2.98)

with µ0 the zeroth moment of the measure (typically equal to one for a normalized

probability measure) and v
(j)
1 the first component of v(j).

Once the univariate quadrature rules are available for each uncertain variable, the
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multidimensional quadrature rule is obtained by forming a tensor product. For
example, with p + 1 nodes per variable and N independent variables, the overall
quadrature rule contains (p + 1)N nodes, with each multidimensional weight given
by the product of the corresponding univariate weights. Thus, the full projection
for the aPCE coefficient in the multidimensional setting becomes

ck ≈
Nq∑
j=1

wj F (ξ⃗j) Φk(ξ⃗j), (2.99)

where Φk is constructed as the tensor product of the univariate orthonormal poly-
nomials.

2.2.6 Demonstration: Projection-Based Quadrature PCE

In this section, the projection-based quadrature procedure for an aPCE in a case in
which the input variables are normally distributed is verified. A sampling size of 106

samples is used for each variable to safely estimate the required moments. Consider
two random variables

ξ1 ∼ N (2, 1), ξ2 ∼ N (3, 0.5),

and the QoI
F (ξ1, ξ2) = 4 ξ1 + 2 ξ2.

For this linear function the theoretical mean and standard deviation are

µF = 4× 2 + 2× 3 = 14, σF =
√

42 × 12 + 22 × (0.5)2 ≈ 4.1231.

The objective of this verification is to confirm that the computed quadrature nodes,
weights, and statistical moments match the classical Gauss–Hermite counterparts
for normally distributed inputs. In our procedure, the aPCE method first constructs
the univariate orthonormal polynomial bases from the input data. The quadrature
nodes are then obtained as the eigenvalues of the corresponding Jacobi matrices,
and the quadrature weights are determined as the square of the first component of
the normalized eigenvectors. For normally distributed data, these nodes and weights
should coincide with those from standard Gauss–Hermite quadrature after applying
the affine transformation

x = µ+ σ ξ,

where ξ denotes a standard Gauss–Hermite node. The computations are performed
for chaos order 3.

The values in Table 2.8 confirm that the quadrature-based evaluation recovers the
mean and standard deviation of the QoI with high accuracy.
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Quantity Analytical Value Computed Value

Mean 14.0000 13.997736
Std. Dev. 4.1231 4.120973

Table 2.8: Statistical Moments of F (ξ1, ξ2) = 4 ξ1 + 2 ξ2

Variable Computed Nodes Expected Gauss–Hermite Nodes

ξ1 [-0.3323, 1.2600, 2.7421, 4.3351] [-0.3344, 1.2580, 2.7420, 4.3344]
ξ2 [1.8312, 2.6295, 3.3733, 4.1733] [1.8328, 2.6290, 3.3710, 4.1672]

Table 2.9: Collocation Points (Nodes) for Each Variable

Variable Computed Weights Expected Weights

ξ1 [0.0461, 0.4547, 0.4535, 0.0457] [0.0459, 0.4541, 0.4541, 0.0459]
ξ2 [0.0456, 0.4553, 0.4540, 0.0452] [0.0459, 0.4541, 0.4541, 0.0459]

Table 2.10: Quadrature Weights for Each Variable

Table 2.9 shows that the computed collocation points for each variable align with
the expected Gauss–Hermite nodes and Table 2.10 reports the quadrature weights
computed for each variable.

Regarding the arbitrary polynomial basis, it is observed to closely approximate the
Hermite polynomial basis, as expected. This outcome is justified by the fact that, al-
though the aPCE methodology is employed, the underlying probability distributions
of the uncertain variables are Gaussian. Figure 2.3 presents the first four orthonor-
mal polynomials constructed via aPCE alongside the corresponding probabilist’s
Hermite polynomials for the first uncertain variable. The polynomial basis for the
second uncertain variable exhibits similarly close agreement, as both variables follow
a normal distribution.

2.2.7 Comparisson of quadrature-based and regression-based

aPCE

In this section, the aaPCE methodology is applied to a mathematical function to
demonstrate the accuracy of the regression-based aPCE, as well as the projection-
based quadrature aPCE. For this purpose, the following function is considered:

J(X, Y ) = 2X + 3Y, (2.100)
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Figure 2.3: Comparison of the aPCE and Hermite Polynomial Bases

where X ∼ N(3, 0.2) and Y ∼ N(6, 0.4).

The above function has two uncertain parameters, X and Y , that follow normal
distributions. The analytical mean value and variance of the QoI are given by:

µJ = 2µX + 3µY = 2 · 3 + 3 · 6 = 24, (2.101)

σ2
J = 22σ2

X + 32σ2
Y = 22 · 0.22 + 32 · 0.42 = 1.26491. (2.102)

To validate the accuracy of the aPCE, a comparison is made between the ni-PCE
with the distribution types of the input variables known and the aPCE with one
or both of the distributions considered as arbitrary and the rest as known. In
that case, the aPCE is used to construct the orthogonal polynomial basis for these
distributions. The results are presented in table 2.11.

In conclusion, the results show that the aPCE method is able to accurately compute
the stochastic moments of the QoI, even when the input variables are assumed to
follow arbitrary probability distributions. As expected, the projection-based quadra-
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Method Distribution Type Mean Value STD

Analytical X ∼ Gaussian, Y ∼ Gaussian 24 1.26491
ni-PCE – Regression X ∼ Gaussian, Y ∼ Gaussian 24.0000 1.26491
aPCE – Regression X ∼ Arbitrary, Y ∼ Gaussian 23.9766 1.25884
aPCE – Regression X ∼ Gaussian, Y ∼ Arbitrary 24.0935 1.24375
aPCE – Regression X ∼ Arbitrary, Y ∼ Arbitrary 24.0701 1.23758
aPCE – Quadrature X ∼ Arbitrary, Y ∼ Arbitrary 23.997969 1.263522

Table 2.11: Comparison of the Stochastic Moments for the QoI using ni-PCE and
aPCE.

ture aPCE method yields the best results among all the aPCE variations, with val-
ues that are nearly identical to the analytical ones. The aPCE is valuable when the
distribution type is unknown or unconventional, making it an essential tool in UQ.

2.2.8 Application of the aPCE to Unknown Probability Dis-

tributions

This section demonstrates the application of the aPCE methodology to input un-
certain variables governed by non-standard probability distributions. The aim is
to evaluate the accuracy of aPCE-based quadrature in estimating the statistical
moments of model compared to high-fidelity Monte Carlo simulations.

Problem Setup

Two uncertain input variables are constructed with distinctly non-Gaussian behav-
ior. The first variable, denoted ξ1, is a right-skewed Gaussian mixture, defined as
a weighted combination of two normal distributions: 70% from N (3, 0.22) and 30%
from N (3.5, 0.152). The second variable, ξ2, follows a truncated normal distribution
N (6, 0.42) restricted to the interval [5.5, 6.5], and is further perturbed by a sinusoidal
modulation to introduce oscillatory nonlinearity. The distributions are visualized in
Figure 2.4, which presents both the empirical histograms and their corresponding
Kernel Density Estimates (KDE) [19], overlaid with the quadrature nodes derived
from aPCE.

The model under consideration is a simple linear combination of the input variables:

F (ξ1, ξ2) = 2ξ1 + 3ξ2, (2.103)

which serves as the QoI for moment evaluation.
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Methodology

The aPCE method is employed to construct the orthonormal polynomial basis for
the two uncertain variables. The polynomial basis is then used to compute the
expansion coefficients via a projection-based quadrature approach. The quadrature
nodes and weights are derived from the eigenvalues and eigenvectors of the Jacobi
matrix associated with the orthonormal polynomials. The statistical moments of
the QoI are estimated using the aPCE expansion coefficients, and the results are
compared against MC simulation with 108 samples, which serves as the benchmark
for accuracy. The MC is performed by generating random samples from the defined
distributions and evaluating the QoI at each sample point. The mean and standard
deviation are then computed from the resulting sample set.

Numerical Results

The aPCE method yielded moment estimates in excellent agreement with the MC.
For the MC simulation, a sample size of 108 was used, while the sample size for the
aPCE quadrature was set to 104. Table 2.12 summarizes the computed mean and
standard deviation using both approaches.

Method Mean Standard Deviation

Monte Carlo (Benchmark) 24.310578 1.006289
aPCE Quadrature 24.309736 1.006813

Table 2.12: Comparison of statistical moments computed using MC and the aPCE-
based quadrature

The absolute errors were found to be O(10−4), confirming the capability of the aPCE
to provide accurate estimates for arbitrarily shaped distributions.

Figure 2.4 illustrates the empirical PDFs for both input variables, while figure 2.5
presents the convergence behavior of the mean and standard deviation computed
via Monte Carlo simulation as a function of increasing sample size. The horizontal
lines represent the corresponding aPCE predictions, confirming convergence toward
the quadrature-based values.
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Figure 2.4: Empirical PDFs of ξ1 (left) and ξ2 (right), shown with both histograms
and kernel density estimates. Red markers indicate the locations of aPCE quadrature
nodes.

Figure 2.5: Convergence of the Monte Carlo estimate of the mean (top) and stan-
dard deviation (bottom) as the number of samples increases. Horizontal dashed lines
indicate the aPCE quadrature values.
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Chapter 3

Shape Imperfections

This chapter introduces the mathematical framework for stochastic processes used
to model inevitable shape imperfections that arise during manufacturing. In the field
of UQ, the term shape imperfections refers to the deviations of the manufactured
part from the intended design. These deviations can be caused by a variety of
factors, such as the manufacturing process, the material properties, and the tooling
used. Although these deviations from the nominal geometry are often small, they
can have a significant impact on the performance of the part. For example, in the
case of a turbine blade, small deviations in the geometry can lead to changes in the
aerodynamic performance of the blade, which can result in a decrease in efficiency.
So, it is important to be able to quantify the impact of these shape imperfections
on the performance of the part. A method that is widely used for this purpose is
the Karhunen-Loève Expansion (KLE) [8], which is a mathematical framework for
representing random fields. In this chapter, we will introduce the KLE and show
how it can be used to model manufacturing imperfections.

3.1 Karhunen-Loève Expansion - Mathematical

Formulation

The KLE is a mathematical framework for representing random fields. It is based
on the idea that a random field can be decomposed into a sum of orthogonal modes,
each of which has a certain variance. It offers a structured approach to representing
random processes, addressing the challenge of dealing with abstract measure spaces
that lack physical intuition. Unlike MC simulation, which requires a large number
of random samples to approximate functions defined in these spaces, the KLE de-
composes these functions into a series of orthogonal eigenfunctions. This approach
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provides a systematic and efficient representation of the random field, capturing the
essential characteristics of the process with fewer terms.

Based on the above, a random process w(x, θ) can be represented as:

w(x, θ) =
∞∑
n=0

√
λnξn(θ)fn(x) (3.1)

where x denotes the position vector over the domain D, θ belongs to the space
of random events Ω, {ξn(θ)} are random variables that need to be determined, λn

are constants, and {fn(x)} are orthonormal deterministic functions. Also, w̄(x)
represents the expected value across all realizations of the process.

The covariance function, C(x1, x2), of the process is given by:

C(x1, x2) =
∞∑

m=0

λmfm(x1)fm(x2) (3.2)

where λm and fm(x) are eigenvalues and eigenfunctions of the covariance kernel,
respectively. These are solutions to the integral equation:

∫
D

C(x1, x2)fn(x) dx1 = λnfn(x2). (3.3)

The eigenfunctions fn(x) form an orthonormal basis satisfy the normalization con-
dition:

∫
D

fn(x)fm(x) dx = δnm (3.4)

So, w(x, θ) in terms of its mean w̄(x) and a zero-mean random process α(x, θ) can
be expressed as following:

w(x, θ) = w̄(x) + α(x, θ) (3.5)

where α(x, θ) can be expanded in terms of the eigenfunctions as:

α(x, θ) =
∞∑
n=0

ξn(θ)
√
λnfn(x). (3.6)

The covariance function C(x1, x2) can then be defined in terms of α(x, θ) by taking
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the expectation over θ:

C(x1, x2) = E[α(x1, θ)α(x2, θ)]. (3.7)

Expanding the expectation yields:

=
∞∑
n=0

∞∑
m=0

⟨ξn(θ)ξm(θ)⟩
√

λnλmfn(x1)fm(x2). (3.8)

By orthogonality, each eigenfunction can be isolated through the equation:

∫
D

C(x1, x2)fk(x2) dx2 = λkfk(x1). (3.9)

Further integration gives:

λk

∫
D

fk(x1)fl(x1) dx1 =
∞∑
n=0

E[ξn(θ)ξk(θ)]
√

λnλkδnl (3.10)

where λk and δkl relate through the expectation ⟨ξk(θ)ξl(θ)⟩:

λkδkl =
√

λkλl⟨ξk(θ)ξl(θ)⟩. (3.11)

This can be rearranged to confirm orthonormality of ξn(θ):

⟨ξk(θ)ξl(θ)⟩ = δkl. (3.12)

Thus, the random process w(x, θ) is represented as:

w(x, θ) = w̄(x) +
∞∑
n=0

ξn(θ)
√
λnfn(x) (3.13)

where the random variables ξn(θ) have zero mean and unit variance:

⟨ξn(θ)⟩ = 0, ⟨ξn(θ)ξm(θ)⟩ = δnm (3.14)

By truncating the series in equation (3.13) past the Mth term, we obtain an ap-
proximation to w(x, θ) as follows:

41



w(x, θ) = w̄(x) +
M∑
n=0

ξn(θ)
√
λnfn(x). (3.15)

The random variables ξn(θ) will later serve as the uncertain input variables in the
test cases. So, what’s left is to determine the eigenvalues λn and eigenfunctions
fn(x), which can be obtained by solving the integral equation (3.3).

3.2 Eigenvalues and Eigenfunctions

As mentioned in the previous section, the eigenvalues λn and eigenfunctions fn(x)
can be obtained by solving the integral equation (3.3). This equation can be rewrit-
ten as:

∫
D

C(x1, x2)f(x2) dx2 = λf(x1). (3.16)

Due to the properties of C(x1, x2) (being bounded, symmetric, and positive definite),
the eigenfunctions fi(x) and eigenvalues have specific properties:

- The set fi(x) is orthogonal and complete.

- Each eigenvalue λk has a finite number of linearly independent eigenfunctions.

- The eigenvalues form a countably infinite set.

- All eigenvalues are positive real numbers.

- The kernel C(x1, x2) has the uniformly convergent expansion:

C(x1, x2) =
∞∑
k=1

λkfk(x1)fk(x2). (3.17)

The KLE thus leverages the properties of the covariance function, making it suit-
able for a variety of processes, including nonstationary and multidimensional ones.
Suppose the process α(x, θ) has a known rational spectrum of the form:

S(ω) =
N(ω2)

D(ω2)
(3.18)

where N(·) and D(·) are polynomials of order n and d, respectively. This struc-
ture implies the process has finite memory, suitable for processes with Markovian
properties.
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For stationary processes, equation (3.16) simplifies to:

∫
D

C(x1 − x2)f(x2) dx2 = λf(x1) (3.19)

which, for a 1D domain, can be expressed as:

f(x2)

∫ ∞

−∞
eiω|x1−x2|N(ω2)

D(ω2)
dω = λf(x1). (3.20)

Differentiating with respect to x1 leads to:

λD

(
d2

dx2
1

)
f(x1) =

∫
D

N

(
d2

dx2
2

)
f(x2)δ(x1 − x2) dx2 (3.21)

where δ(·) is the Dirac delta function.

The preceding treatment is applied to the exponential kernel, which for a 1D domain,
is given by:

C(x1, x2) = σ2e−|x1−x2|/l (3.22)

where l represents the correlation length, a parameter controlling the frequency
of disturbances. At this point it is necessary to introduce the variable s, where
s ∈ [0, smax], with smax representing the entire length of the contour of the shape
being analyzed (in the case of this work, an airfoil). So, each point on the airfoil, with
coordinates (x, y), corresponds to a specific value of s within the interval [0, smax].
From now on, s will be used instead of x to represent the position along the airfoil
contour.

The parameter σ signifies the standard deviation of these disturbances and acts as
a scaling factor for their magnitude. Although σ is not tied to a physical quantity,
it standardizes the amplitude of the fluctuations. Therefore, for simplicity in this
context, σ is set to 1 as the specific variation in imperfections is not quantified,
making it effectively negligible.

So, with the use of the exponential kernel in equation (3.19), the integral solu-
tions over a non-symmetric interval D = [a, b], where a, b ∈ R and s1, s2 ∈ D, are
expressed as:

∫ b

a

σ2e−|s1−s2|/lf(s2) ds2 = λf(s1). (3.23)

The correlation length l is often not precisely known, even to manufacturers. Thus,
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in shape imperfection modeling, it is standard to assume l = |a − b| = b − a.
For aerodynamic structures, where the interval D typically spans from a = 0 to
b = smax, the correlation length is thus defined as l = smax, aligning with the earlier
assumption.

Equation (3.23) can be rewritten as:

∫ s

a

e−c|s1−s2|f(s2) ds2 +

∫ b

s

e−c|s1−s2|f(s2) ds2 = λf(s1) (3.24)

where c = 1
l
= 1

b−a
.

Differentiating the above equation with respect to s1 gives:

λf ′(s1) = −c
∫ s

a

e−c(s1−s2)f(s2) ds2 + c

∫ b

s

ec(s1−s2)f(s2) ds2. (3.25)

By differentiating one more time w.r.t s1, the following is obtained:

λf ′′(s) =
(
−2c+ c2λ

)
f(s). (3.26)

Finally, by introducing the following new variable:

ω2 =
2c− c2λ

λ
(3.27)

the differential equation becomes:

f ′′(s) + ω2f(s) = 0, a ≤ s ≤ b (3.28)

So, the integral equation (3.23) is transformed into an Ordinary Differential Equation
(ODE) with the following boundary conditions:

cf(a)− f ′(a) = 0, (3.29)

cf(b) + f ′(b) = 0. (3.30)

It can be shown that ω2 ≥ 0 is the only range of ω for which (3.28) is solvable. The
solution is given by:
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f(s) = α1 cos

[
ω

(
s− a+ b

2

)]
+ α2 sin

[
ω

(
s− a+ b

2

)]
(3.31)

where α1 and α2 are constants to be determined.

By substituting (3.31) into the boundary conditions (3.29) and (3.30), the following
system of equations is obtained:

{
α1

[
1− ωl tan

(
ω b−a

2

)]
− α2

[
tan
(
ω b−a

2

)
+ ωl

]
= 0,

α1

[
1− ωl tan

(
ω b−a

2

)]
+ α2

[
tan
(
ω b−a

2

)
+ ωl

]
= 0.

(3.32)

Non-trivial solutions exist only when the determinant J of the homogeneous system
equals to zero:

J = 2

[
ωl + tan

(
ω
b− a

2

)][
1− ωl tan

(
ω
b− a

2

)]
= 0. (3.33)

This leads to the following transcendental equations:

For odd values of ω : c− ω tan

(
ω
b− a

2

)
= 0. (3.34)

For even values of ω : ω + c tan

(
ω
b− a

2

)
= 0. (3.35)

In conclusion, the eigenfunctions are given by:

f(s) =


cos(ω(s−a+b

2 ))√
b−a
2

+
sin(ω(b−a))

2ω

, for n even

sin(ω(s−a+b
2 ))√

b−a
2

− sin(ω(b−a))
2ω

, for n odd
(3.36)

The corresponding eigenvalues can be obtained through equation (3.27):

λn =
2l

1 + (ωl)2
. (3.37)

45



3.3 Derivative of the KLE w.r.t the Uncertain

Variables

As discussed in section 2.1.5, in order to form the system of linear equations 2.58
for the regression-based PCE, the derivative of the QoI with respect to the random
variables cn is required. In case the uncertainty arises from manufacturing imper-
fections and is modeled using the KLE, it is necessary to calculate the derivative of
the expansion with respect to the uncertain variables ξn.

Using the chain rule, the derivative of the QoI with respect to the random variables
can be expressed as:

∂J

∂cn
=

∂J

∂x

∂x

∂cn
. (3.38)

In the cases that this work focuses on, the first term in equation (3.38) is calculated
directly using the adjoint method in CFD. The second term, which in the case
of shape imperfections, is the derivative of the KLE with respect to the random
variables and is calculated as follows:

∂XKLE(s, c)

∂cn
=

∂

∂cn

(
¯XKLE(s) +

M∑
n=0

cn
√

λnfn(x)

)
=
√

λnfn(s). (3.39)

It’s important to note that equation (3.39) is expressed in terms of the variable s,
which represents the position along the airfoil contour. However, for practical ap-
plications, it’s necessary to transform this expression into the Cartesian coordinates
(x, y). This transformation incorporates scaling factors determined by the geometry
and manufacturing imperfections.

The transformation involves four key scaling parameters:

Hanning Window Coefficient CHann(s)

The Hanning window is applied to taper the perturbations near the boundaries of a
geometry to ensure a smooth geometry transition. This is achieved using a weighted
cosine function. The coefficient CHann(s) is defined as:
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CHann(s) =


1− cos

(
π

2psmax
s
)
, for s < psmax

1, for psmax ≤ s ≤ (1− p)smax

1− cos
(

π
2psmax

(1− s)
)
, for s > (1− p)smax

, (3.40)

where p is the user-defined percentage of the contour length smax where the damping
should occur. For instance, if p = 0.08, damping is applied to 8% of the airfoil
contour near the leading and trailing edges.

After incorporating this coefficient, the updated Karhunen-Loève expansion be-
comes:

XKLE(s, c) = X̄(s) + CHann(s)
M∑
n=1

√
λncnfn(s). (3.41)

The derivative of the Hanning-windowed KLE expansion with respect to cn is:

∂XKLE(s, c)

∂cn
= CHann(s)

√
λnfn(s), (3.42)

assuming CHann(s) is independent of cn.

Maximum Scaling amaxh

This is derived from the maximum deviation of the geometry, normalized to ensure
the contours match the maximum user-defined imperfection height dheight. Mathe-
matically:

amaxh = max
s
|XKLE(s, c)|. (3.43)

The derivative of amaxh with respect to the random variables cn is non-trivial due to
the dependence of XKLE(s, c) on cn.

Imperfection Height Scaling dheight

This is a user-defined maximum imperfection height and acts as a fixed multiplier:

XKLE,scaled(s, c) =
X(s, c)

amaxh

dheight. (3.44)

The derivative of the transformed geometry with respect to cn, considering the chain
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rule, can be expressed as:

∂X(s, c)

∂cn
=

∂XKLE(s, c)

∂cn
· dheight
amaxh

+XKLE(s, c) ·
∂

∂cn

(
dheight
amaxh

)
, (3.45)

where ∂XKLE(s,c)
∂cn

is calculated from equation (3.39).

To compute the derivative of amaxh with respect to cn, the position smax where
amaxh = |X(smax, c)| must be determined. Assuming amaxh = |X(smax, c)|, the
derivative becomes:

∂amaxh

∂cn
= sign(XKLE(smax, c)) ·

∂XKLE(smax, c)

∂cn
. (3.46)

Normal Direction Transformation

The transformation also involves the unit normal to the airfoil contour directions
Nx and Ny, defined as:

Nx =
∂y(s)

∂s
, Ny = −

∂x(s)

∂s
, (3.47)

normalized by their magnitude:

norm =
√

N2
x +N2

y , Nx ←
Nx

norm
, Ny ←

Ny

norm
. (3.48)

The perturbed geometry in Cartesian coordinates is then given by:

xKLE,out = xinitial +Nx ·XKLE,scaled, yKLE,out = yinitial +Ny ·XKLE,scaled. (3.49)

Final Expression Using Chain Rule

Combining all the transformations and scaling factors, the derivative of the per-
turbed geometry in Cartesian coordinates with respect to the uncertain variables cn
can be expressed as:
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∂xKLE,out(s, c)

∂cn
=

∂y(s)

∂s
·

(
CHann(s)

√
λnfn(s) ·

dheight
amaxh

−XKLE(s, c) ·
dheight
a2maxh

· sign(XKLE(smax, c)) · CHann(smax)
√

λnfn(smax)

)
,

(3.50)

∂yKLE,out(s, c)

∂cn
= −∂x(s)

∂s
·

(
CHann(s)

√
λnfn(s) ·

dheight
amaxh

−XKLE(s, c) ·
dheight
a2maxh

· sign(XKLE(smax, c)) · CHann(smax)
√
λnfn(smax)

)
.

(3.51)

Here:

- CHann(s) is the damping coefficient, ensuring smooth transitions at the boundaries,

-
√
λnfn(s) is the contribution of the n-th eigenmode to the geometry perturbation,

-
dheight
amaxh

scales the perturbation to the desired imperfection height.

These final expressions capture the full dependency of the perturbed airfoil geometry
on the uncertain variables cn, incorporating all transformations, damping effects, and
scaling factors.
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Chapter 4

Test Cases in UQ

This chapter presents a systematic evaluation of adjoint-assisted regression-based
PCE and aPCE methods through three test cases of various complexity. The studies
validate the computational framework while assessing performance across different
regimes of stochastic dimensionality in aerospace applications.

Section 4.1 examines a NACA 4415 airfoil with two uncertain flow parameters,
establishing comparisons between traditional and adjoint-enhanced PCE methods.
Results demonstrate sub-0.1% accuracy in moment estimation with computational
savings exceeding 90% compared to conventional regression PCE.

Section 4.2 investigates an n16103 airfoil with 18 geometric uncertainties modeled
through KLE. The adjoint approach provides critical efficiency advantages, achieving
tenfold cost reductions compared to conventional regression PCE.

Section 4.3 evaluates a complete Supersonic Business Jet configuration with 12 cou-
pled design variables. The analysis demonstrates sub-1% errors in performance
metrics versus MC while significantly reducing computational costs.

These case studies form a comprehensive validation hierarchy from fundamental
benchmarks to industrial applications.The consistent methodology enables clear as-
sessment of the adjoint approach’s scalability and robustness.

4.1 Case 1: Airfoil with Uncertain Flow Condi-

tions

The first test case is related to the NACA 4415 airfoil. The objective is to quantify
uncertainties in the Lift and Drag resulting from variations in the free-stream ve-
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locity and angle of attack (AoA). CFD simulations are conducted using the PUMA
software developed by the Parallel CFD & Optimization Unit of the NTUA[2], which
solves the Euler equations using a finite volume method. Because the flow is assumed
inviscid (thus governed by the Euler equations), the presence of a shock wave is re-
quired for drag to be developed. The NACA 4415 airfoil geometry is illustrated in
Figure 4.1.

Figure 4.1: The naca4415 airfoil.

For this case, the aforementioned uncertainties are modeled as follows. The free-
stream velocity is assumed to follow a Normal distribution with a mean value of 240
m/s and a standard deviation of 0.33 m/s, i.e., N (240, 0.332). The AoA is modeled
using a Beta distribution with shape parameters α = 1 and β = 2, bounded between
1.6 and 2.5 degrees.

While the small number of uncertain variables suggests that a GQ-based PCE is the
most suitable approach, this case serves as an introductory example to demonstrate
the application of the adjoint-assisted, regression-based PCE in CFD. A compre-
hensive comparison between the two methods will be provided in Section 4.2, where
the latter approach will be the only feasible option.

Benchmark Analysis: GQ-based PCE

To establish a reference solution for UQ in the Lift and Drag due to input variabil-
ity, a GQ - based PCE approach is adopted. This method is especially effective in
low-dimensional stochastic problems, offering high accuracy at relatively low com-
putational cost.

The quadrature rules are selected according to the type of input distributions.
Specifically, Gauss–Hermite quadrature is used for the free-stream velocity, while
Gauss–Jacobi quadrature is adopted for the AoA, with appropriate scaling to match
the physical bounds. A tensor-product of univariate rules is used to construct the
multivariate quadrature scheme over the joint probability space. The QoIs are eval-
uated at each node, and the associated statistical moments are computed using the
corresponding quadrature weights. This benchmark is performed using a chaos order
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of 2, resulting in a total of 9 quadrature nodes, thus 9 CFD runs for the computation
of the sought statistical moments.

The results of this benchmark analysis are summarized in Table 4.1, providing a
reference for assessing the accuracy of adjoint-assisted regression-based PCE models
introduced later. These values represent the expected behavior of the Lift and Drag
under the specified uncertainties in flow conditions.

QoI Mean Standard Deviation

Lift [N] 336.54131 8.40852
Drag [N] 20.21745 1.42208

Table 4.1: Benchmark statistics for Lift and Drag using GQ-based PCE.

Figure 4.2 displays the pressure distribution around the NACA 4415 airfoil at one
of the GQ nodes. This visualization highlights the shock wave formation induced
by the airfoil’s aerodynamic performance.

Figure 4.2: Pressure field around the NACA 4415 airfoil.

Regression-based ni-PCE

In this subsection, the regression-based ni-PCE method is applied to the NACA
4415 airfoil test case. The objective is to construct stochastic surrogate models
for Lift and Drag and to compute their corresponding statistical moments using a
limited number of CFD simulations. A total of 15 input samples are generated using
Latin Hypercube Sampling (LHS), and the resulting CFD outputs are processed via
least-squares regression, as described in Section 2.1.4.
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The number of PCE coefficients depends on the chosen chaos order k. For a 2-
dimensional input space, the total number of terms is given by:

PCE coefficients =

(
k +M

M

)
=

(k + 2)!

2× k!
(4.1)

Table 4.2 summarizes the number of PCE coefficients, the Oversampling Ratios
(O.R.) (given the 15 CFD runs), and the corresponding results obtained for chaos
orders 1, 2, and 3:

Order Coeffs O.R. Lift Mean Lift Std Drag Mean Drag Std

1 3 5 336.611 8.5645 20.2233 1.44415

2 6 2.5 336.55 8.41011 20.2197 1.42251

3 10 1.5 336.575 8.4331 20.2262 1.43739

Table 4.2: Regression-based ni-PCE results using 20 samples for different chaos
orders.

Order
Lift Mean

Rel. Err (%)

Lift Std

Rel. Err (%)

Drag Mean

Rel. Err (%)

Drag Std

Rel. Err (%)

1 0.0207 1.8569 0.0289 1.5532

2 0.0025 0.0189 0.0111 0.0304

3 0.0100 0.2926 0.0433 1.0788

Table 4.3: Relative error (%) of regression-based ni-PCE results with respect to the
GQ benchmark.

As shown in Tables 4.2 and 4.3, the second-order chaos expansion provides the
best overall accuracy in estimating the statistical moments of both Lift and Drag.
Specifically, the relative errors with respect to the GQ benchmark are below 0.03%
for all quantities, indicating excellent agreement. While order 1 underestimates
the variability, and order 3 yields slightly less accurate estimates—likely due to the
lower oversampling ratio of 1.5 — order 2 strikes the best balance between model
complexity and available data in this case. These results highlight the importance of
selecting an appropriate chaos order and maintaining a sufficient oversampling ratio
to avoid instability in the regression and to ensure accurate moment estimation.
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Adjoint-assisted Regression-based ni-PCE

To further reduce the number of required CFD simulations, the adjoint-assisted
regression-based ni-PCE approach is employed (see Section 2.1.5). By comput-
ing gradients of the QoIs with respect to the uncertain variables using the adjoint
method, each sample yields multiple rows in the regression matrix—one from the
primal solution and one from each derivative.

For this case, only 4 samples were required. Given that each sample provides 1+2 =
3 rows, the total number of regression equations is 4 × 3 = 12. This allows the
construction of a chaos expansion up to order 2, which requires 6 coefficients, and
yields an oversampling factor of 2.0.

The results of this analysis are shown in Table 4.4, along with a comparison to the
GQ-based benchmark.

QoI Mean Rel. Error (%) Std Rel. Error (%)

Lift 336.5515 0.0030 8.41102 0.0297

Drag 20.220 0.0126 1.42282 0.0523

Table 4.4: Adjoint-assisted ni-PCE results using 4 samples (chaos order 2).

The results in Table 4.4 confirm the remarkable accuracy of the adjoint-assisted
ni-PCE method, even when using only 4 CFD simulations. All relative errors re-
main well below 0.06%, with both the mean and standard deviation of Lift and
Drag nearly identical to the high-fidelity GQ-based benchmark. This level of agree-
ment demonstrates the power of incorporating derivative information via the adjoint
method, which enriches the regression system and enables accurate surrogate con-
struction with drastically fewer samples. In the context of high-fidelity CFD, where
each simulation can be computationally expensive, this efficiency gain is highly sig-
nificant.

Cost comparison between typical and adjoint-assisted regression

In cases where the evaluation of the QoI is computationally expensive, the efficiency
of the regression method becomes questionable. With NQ evaluations of the QoI
and an oversampling factor of r, the cost of the adjoint-assisted regression approach
can be expressed as:

CostAdjoint = (NQ + 1)
r(M + k)!

(M + 1)!k!
CU, (4.2)

where M is the number of uncertain variables, k is the chaos order, and CU denotes
the Cost Unit (i.e. the cost for running the CFD code, usually referred to as an
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Equivalent Flow Solution (EFS), if it’s a problem in fluid mechanics) of a single QoI
evaluation.

Neglecting rounding and assuming exact arithmetic, the ratio of the costs between
adjoint-assisted regression and typical regression is approximately:

Cost Ratio =
NQ + 1

M + 1
. (4.3)

This implies that the adjoint-assisted regression method is more cost-effective in
cases where the number of uncertain variables M greater than the number of QoI
evaluations NQ. The inclusion of sensitivity derivatives allows for an increased
oversampling factor without additional QoI evaluations, thus reducing the overall
computational burden.

However, with number of QoI evaluations NQ exceeds the number of uncertain
variables M , typical regression methods become more favorable due to their simpler
implementation and lower computational overhead.

In summary, the adjoint-assisted regression method is advantageous in cases involv-
ing a large number of uncertain variables. Conversely, in cases where NQ > M , the
typical regression method should be preferred for its efficiency and practicality.

4.2 Case 2: Airfoil Shape Imperfections

In order to demonstrate the application of the Karhunen-Loève expansion in mod-
eling shape imperfections, the n16103 airfoil is used as a test case. The stochastic
field representing the imperfections, as mentioned in Section 3.1, is expressed by
Equation (3.41).

For computational efficiency, the series is truncated to N = 18 terms such that

∑18
i=1 λi∑∞
i=1 λi

≈ 0.95. (4.4)

This truncation captures approximately 95% of the total variance, ensuring a balance
between accuracy and efficiency in representing manufacturing imperfections. Thus,
the uncertainty is fully represented by 18 independent random variables c1, c2, . . . , c18
corresponding to the expansion coefficients in Equation (3.41).
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Figure 4.3: The n16103 airfoil.

Regression vs GQ PCE

This case is a great example of the advantages of using a regression-based rather
than a GQ-based PCE. The total number of simulations required for a GQ-based
PCE is given by the following equation:

NGQ = (k + 1)M (4.5)

where K is the maximum polynomial order and M is the number of stochastic
dimensions. This exponential growth in computational cost with increasing dimen-
sionality makes GQ-based PCE infeasible for high-dimensional problems.

In contrast, as already discussed in this thesis, regression-based PCE requires only:

Nreg =

(
k +M

M

)
(4.6)

which grows much slowly with M . For sparse problems, Nreg can be further reduced
using advanced techniques like least-angle regression (LAR) or compressive sensing.

Thus, in cases like this one, where the number of uncertain variables is significantly
larger than the number of QoIs, the regression-based PCE is the only feasible option.

In Figure 4.4, a comparison between the two methods is shown for different chaos
orders and uncertain variables.

It is clear that for 18 uncertain variables, the GQ-based PCE is not feasible, as
it would require 19.531.441 simulations for a chaos order of 2. In contrast, the
regression-based PCE requires only 190 simulations, making it a much more efficient
option.

Simulation Parameters

The flows were still simulated using the PUMA software, which solves the Reynolds-
Averaged Navier-Stokes (RANS) equations with the Spalart-Allmaras turbulence
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Figure 4.4: Comparison between regression-based and GQ-based PCE.

model. A second-order Roe scheme was used for spatial discretization, and time
integration was performed using a multi-stage Runge-Kutta method. The solver
ran for 30,000 iterations with a CFL number of 10.

The freestream conditions were set to a total pressure of 21,662.72 Pa, a velocity of
252.28 m/s, and a density of 0.3483 kg/m³. The dynamic viscosity was 2.39824×10−5

Pa·s.

The pressure field around the baseline n16103 airfoil (without any imperfections) is
shown in Figure 4.5.

The objective of this test case is to quantify the impact of shape imperfections on
the aerodynamic performance of the airfoil, specifically in terms of the generated
lift and drag. Note that the two QoIs in this problem are the lift and drag. For the
18 uncertain variables in the problem and a chaos expansion of order 2, the total
number of PCE coefficients is given by Equation (2.3):

PCE coefficients =
(2 + 18)!

2! · 18!
= 190. (4.7)

Considering a sufficient oversampling ratio of 3.15 for the PCE, the total number of
CFD simulations required is 600. This number can be greatly reduced by using the
adjoint method to calculate the gradients of the QoIs with respect to the uncertain
variables, as discussed in Section 2.1.5.

57



Figure 4.5: Pressure field around the n16103 airfoil.

Below is the flowchart of the operations performed for each CFD simulation:

Figure 4.6: Flowchart of the operations performed for each CFD simulation.

Firstly, using the LHS technique, a set of 18 random variables is generated, each
following a normal distribution with a mean of 0 and a standard deviation of 0.3
(i.e., N (0, 0.32)). These random variables are then used to generate the deformed
airfoil through the KLE process presented in Section 3.1. Finally, an RBF network
is used to adapt the baseline mesh into the deformed airfoil, and the CFD simulation
is performed using PUMA.

Benchmark Analysis: ni-PCE Without the Use of the Adjoint

The first step is to establish a benchmark analysis using the ni-PCE method with-
out employing adjoint derivatives, to later compare the results with those obtained
using the adjoint method. As described earlier, 600 sets of 18 random variables
are generated using the LHS technique, and the corresponding deformed airfoils are
produced using the KLE process. Some representative deformed airfoils are shown
in Figure 4.7.

The CFD simulations are then performed for each deformed airfoil, and the resulting
lift and drag are calculated. The results are processed using the regression-based
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Figure 4.7: Deformed airfoils generated using the KLE process.

ni-PCE method, and the stochastic moments of the two QoIs are shown in Table
4.5.

QoI Mean Standard Deviation

Lift 2,262.21 93.52

Drag 46.58 1.07

Table 4.5: Stochastic moments of the QoIs using the ni-PCE method using only
responses (no use of gradients).

Adjoint-assisted ni-PCE

To address the issue of the excessive number of CFD simulations, the adjoint-assisted
ni-PCE approach is employed, as described in Section 2.1.5. This approach is highly
advantageous, as the number of uncertain variables far exceeds the number of QoIs.
For every deformed airfoil, 19 rows of the regression matrix are obtained (one row
for the solution of the primal problem, and 18 rows corresponding to the derivatives
of the QoIs with respect to the uncertain variables). In this way, the overall com-
putational cost (measured in terms of Equivalent Flow Solutions, EFS) is reduced
significantly. Below is a comparison of the number of EFS required for the ni-PCE
method without the adjoint and the adjoint-assisted ni-PCE:

As shown in Table 4.6, the adjoint-assisted ni-PCE method significantly reduces the
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Method
Deformed
Airfoils

Oversampling
Ratio

EFS

ni-PCE 600 3.15 600

Adjoint-assisted ni-PCE 50 5.0 100

Adjoint-assisted ni-PCE 30 3.0 60

Table 4.6: Comparison of methods in terms of Equivalent Flow Solutions (EFS).

computational cost. Specifically, the number of EFS required for the adjoint-assisted
ni-PCE is no more than 10% of that required for the original ni-PCE method, while
maintaining the same oversampling ratio. The results obtained from the three cases
presented in Table 4.6 are provided in figures 4.7 and 4.8.

Method Lift Mean [N] Lift Std [N]
Drag Mean

[N]
Drag Std [N]

ni-PCE 2,262.21 93.52 46.58 1.07

Adjoint-assisted ni-PCE
(50 airfoils)

2,263.5 91.4 46.52 1.1

Adjoint-assisted ni-PCE
(30 airfoils)

2,264.7 89.1 46.45 1.13

Table 4.7: Stochastic moments of the QoIs (Lift and Drag) for different methods.

Method
Lift Mean Err

(%)
Lift Std Err

(%)
Drag Mean
Err (%)

Drag Std Err
(%)

Adjoint-assisted ni-PCE
(50 airfoils)

0.06 -2.27 -0.13 2.8

Adjoint-assisted ni-PCE
(30 airfoils)

0.11 -4.73 -0.28 5.6

Table 4.8: Relative error of each metric with respect to the ni-PCE baseline.

The results indicate that the adjoint-assisted ni-PCE method closely replicates the
baseline ni-PCE outcomes while significantly reducing the computational cost. As
shown in Table 4.7, the lift and drag mean values for both the 50-airfoil and 30-airfoil
adjoint-assisted cases are nearly identical to the ni-PCE baseline—with relative er-
rors of 0.06% and 0.11% for the lift mean, and -0.13% and -0.28% for the drag mean,
respectively.

As expected, the analysis with 50 airfoils exhibits better performance, as it has a
larger oversampling ratio and also captures more of the stochastic behavior. Inter-
estingly, the analysis with 30 airfoils also proved to be effective in capturing the mean
values of the QoIs very accurately, while struggling a bit more with the standard
deviations.
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Overall, the adjoint-assisted approach yielded very accurate results, with only 10%
of the computational cost of the ni-PCE baseline.

4.3 Case 3: UQ in Supersonic Business Jet Per-

formance Metrics

This section presents a case study on the quantification of uncertainties in the perfor-
mance metrics of a Supersonic Business Jet (SBJ). The SBJ design is characterized
by 12 free variables, encompassing wing parameters, fuel quantity, and geometric
features of both the wing and the tail assembly. These variables are summarized in
Table 4.9.

Symbol Variable Value Units

Mcr Cruise Mach number 1.8 –

Zcr Cruise altitude 15,500 m

Sw Wing area 150 m2

ΛLe Leading-edge sweep (wing) 57.5 deg

ΛTe Trailing-edge sweep (wing) 5 deg

λw Wing taper ratio 0.2750 –

(t/c)w Max. thickness-to-chord (wing) 0.05 –

ΛLe,u Leading-edge sweep (tail) 57.5 deg

ΛTe,u Trailing-edge sweep (tail) 5 deg

λu Tail taper ratio 0.275 –

(t/c)u Max. thickness-to-chord (tail) 0.07 –

Wfuel Fuel weight 22,500 kg

Table 4.9: Design variables for the SBJ.

The three performance metrics considered for the SBJ are its range, takeoff length,
and approach speed. Before introducing uncertainties in the design variables and
performing the UQ analysis, we refer the reader to the mathematical framework for
the design presented in Appendix A. The assumed probability distributions, includ-
ing the mean and standard deviation for each uncertain variable, are summarized
in Table 4.10.
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Uncertain Variable Distribution Type Mean Standard Deviation

Mcr Normal 1.8 0.025

Zcr Normal 15,500 312.5

Sw Normal 150 6.25

ΛLe Normal 57.5 1.5625

ΛTe Normal 5 1.25

λw Normal 0.2750 0.0281

(t/c)w Normal 0.05 0.0012

ΛLe,u Normal 57.5 1.5625

ΛTe,u Normal 5 1.25

λu Normal 0.275 0.0281

(t/c)u Normal 0.07 0.0013

Wfuel Normal 22,500 937.5

Table 4.10: Distribution characteristics of the uncertain design variables.

Benchmark Analysis: Monte Carlo Simulation

The first step is to perform a benchmark analysis using MC. The goal is to obtain the
statistical moments of the performance metrics (range, takeoff length, and approach
speed) for the SBJ, which will later serve as a reference for the ni-PCE method.
The MC simulation is performed using up to 108 samples, ensuring full convergence
of the statistical moments. The results are presented in Figure 4.8 and Table 4.11.

Performance Metric Mean
Standard
Deviation

Range (km) 2,786.6 392.07

Takeoff Length (m) 4,154.8 546.337

Approach Speed (m/s) 87.477 3.8516

Table 4.11: Statistical moments of the performance metrics using MCS.

Regression-based ni-PCE

As in Case 4.2, the large number of uncertain variables makes a regression-based
PCE far more suitable than computing the PCE coefficients via GQ. Specifically, if
we were to use a GQ-based PCE with a chaos order of 2, the number of simulations
would be:

62



Figure 4.8: Statistical moments of the performance metrics using different numbers
of samples.

Total Samples = (2 + 1)12 = 531, 441

In contrast, a regression-based PCE requires significantly fewer samples. Including
an oversampling factor of 2, the number of samples required is given by

Samples = 2×
(
12 + 2

2

)
= 2×

(
14

2

)
= 2× 91 = 182

By sampling the uncertain variables from the distributions in Table 4.10, the PCE
coefficients can be calculated using regression. The results are presented in Table
4.12.

The results in Table 4.12 show that the regression-based ni-PCE method accurately
reproduces the statistical moments of the performance metrics, with relative errors
below 1% for all QoIs.
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Performance Metric Mean Rel. Error (%) STD Rel. Error (%)

Range (km) 2,777.8 -0.31 402.55 2.67

Takeoff Length (m) 4,149.2 -0.13 547.21 0.16

Approach Speed (m/s) 87.4906 0.02 3.8531 -0.04

Table 4.12: Statistical moments of the performance metrics using ni-PCE, including
relative errors with respect to MC.

Gradient-assisted regression-based ni-PCE

To further reduce the total number of samples required for the regression-based ni-
PCE, the gradient-assisted approach presented in Section 2.1.5 is employed. In con-
trast to the previous cases, in which the governing Euler equations were solved and
the adjoint method was used to compute the derivatives of the QoIs w.r.t the uncer-
tain variables, the derivatives of the performance metrics in this case are calculated
using finite differences—and more specifically, central differencing. Consequently,
for each sample, simulations are performed for two additional perturbations of the
uncertain variables to compute all derivatives. Although this approach is more ex-
pensive than the one presented in subsection 4.3, the objective in this case is to
determine whether the gradient information yields accurate results. In typical CFD
cases, such as Cases 4.1 and 4.2, the adjoint method would be used to compute the
gradients, resulting in a total cost for each sample of approximately 2 EFS. For the
needs of the cost comparison, the case will be treated as if the adjoint method was
used.

The results obtained using the gradient-assisted regression-based ni-PCE are pre-
sented in Table 4.13. To achieve the same oversampling factor of 2 as in the previous
case, the total number of samples required is given by

Samples =
oversampling factor× PCE coeffs

1 + Number of Uncertain Variables
=

2× 91

1 + 12
= 14 (4.8)

Performance Metric Mean Rel. Error (%) STD Rel. Error (%)

Range (km) 2,775.6 -0.39 399.34 1.85

Takeoff Length (m) 4,148.2 -0.16 544.24 -0.38

Approach Speed (m/s) 87.4981 0.02 3.8732 0.56

Table 4.13: Statistical moments of the performance metrics using gradient-assisted
ni-PCE, including relative errors.

As shown in Table 4.13, the gradient-assisted regression-based ni-PCE method pro-
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duces highly accurate estimates of the statistical moments for the SBJ performance
metrics. All relative errors — except for the standard deviation of the range — are
within 1%, demonstrating excellent agreement with the benchmark MCS results.
When assuming gradient evaluations are obtained via an adjoint method, the total
computational cost corresponds to 28 EFS, representing an 84.6% reduction in cost
compared to the standard regression-based ni-PCE. This highlights the efficiency
and accuracy of incorporating gradient information into the UQ process.
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Chapter 5

Conclusions

This diploma thesis has presented a comprehensive investigation into advanced
methodologies for UQ in CFD and engineering systems, with a focus on enhancing
efficiency and accuracy through adjoint-assisted regression-based PCE and arbitrary
PCE frameworks. The work systematically addressed the challenges of quantifying
uncertainties in complex high-dimensional systems, particularly those governed by
non-standard input distributions and geometric imperfections, while significantly
reducing computational costs.

The diploma thesis began by revisiting the foundational ni-PCE method, which
treats the computational solver as a black box, avoiding intrusive modifications to
governing equations. To improve the regression process, the adjoint method was
integrated, leveraging gradient information of the QoI with respect to uncertain
inputs. This adjoint-assisted approach formed an overdetermined system using both
QoI evaluations and their sensitivities, drastically reducing the number of required
CFD simulations, especially for high-dimensional problems. The effectiveness of
this method was demonstrated through benchmark problems, such as the Borehole
function, where it achieved accurate estimates of stochastic moments with far fewer
samples than traditional Monte Carlo simulations.

Recognizing the limitations of classical PCE in handling non-standard input distri-
butions, the thesis adopted,programmed and assesed the aPCE framework. This
data-driven approach constructs custom orthogonal polynomial bases tailored to
unknown input distributions, utilizing the Mysovskikh theorem and moment-based
orthogonalization. The aPCE methodology was rigorously validated, showing its
capability to handle arbitrary probability distributions with high accuracy. Specifi-
cally, the projection-based aPCE quadrature rule was constructed and validated for
up to third-order expansions, using k + 1 = 4 nodes per input variable. The gen-
erated orthonormal polynomials were verified against known Hermite polynomials
in the Gaussian case, with relative errors of the nodes and polynomial coefficients
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below 10−3. The accuracy of the constructed quadrature was assessed using a 2-D
benchmark function for which the aPCE quadrature computed a mean and a stan-
dard deviation with relative errors on the order of 10−4. Also, the same framework
was applied to a 2-D problem with unknown input distributions, yielding similar
accuracy. These results confirm the robustness and precision of the aPCE method-
ology, making it suitable for a wide range of real-world UQ problems involving non-
standard inputs. Additionally, the KLE was employed to model geometric shape
imperfections, providing a compact and mathematically consistent representation of
random fields such as manufacturing deviations.

A comprehensive comparison is summarized in Table 5.1, presenting statistical
metrics—mean and standard deviation—along with relative errors and computa-
tional costs (expressed in equivalent flow solutions, EFS). The results demonstrate
that the adjoint-assisted regression-based PCE significantly outperforms traditional
regression-based PCE and Monte Carlo Simulation (MCS) in terms of cost-efficiency,
especially in high-dimensional settings.

Method QoI Mean
Error

Mean (%)
Std. Dev.

Error
Std. Dev. (%)

Cost
(EFS)

Case Study 1: NACA 4415 (2 Uncertain Variables)

GQ-PCE Lift 336.54131 - 8.40852 - 9

GQ-PCE Drag 20.21745 - 1.42208 - 9

Reg-PCE (order 2) Lift 336.55 0.0025 8.41011 0.0189 15

Reg-PCE (order 2) Drag 20.2197 0.0111 1.42251 0.0304 15

Adjoint-Reg-PCE Lift 336.55 0.003 8.411 0.03 4

Adjoint-Reg-PCE Drag 20.22 0.0126 1.4282 0.0523 4

Case Study 2: n16103 (18 Uncertain Variables)

Reg-PCE Lift 2262.2 - 93.52 - 600

Reg-PCE Drag 46.58 - 1.07 - 600

Adjoint-PCE (50 samples) Lift 2263.5 0.06 91.4 -2.27 100

Adjoint-PCE (50 samples) Drag 46.52 -0.13 1.10 2.80 100

Adjoint-PCE (30 samples) Lift 2264.7 0.11 89.1 -4.73 60

Adjoint-PCE (30 samples) Drag 46.45 -0.28 1.13 5.60 60

Case Study 3: SBJ (12 Uncertain Variables)

MCS Range 2786.6 - 392.1 - 108

MCS Takeoff 4154.8 - 546.3 - 108

MCS Approach 87.477 - 3.852 - 108

Reg-PCE Range 2777.8 -0.31 402.6 2.67 182

Reg-PCE Takeoff 4149.2 -0.13 547.2 0.16 182

Reg-PCE Approach 87.491 0.02 3.853 -0.04 182

Grad-Reg-PCE Range 2775.6 -0.39 399.3 1.85 28

Grad-Reg-PCE Takeoff 4148.2 -0.16 544.2 -0.38 28

Grad-Reg-PCE Approach 87.498 0.02 3.873 0.56 28

Table 5.1: Quantitative comparison of UQ methods for the studied case studies.

In the 2D airfoil problem (NACA 4415), the adjoint-regression method reduced the
cost by more than 70% (from 15 to 4 EFS) while maintaining sub-0.05% errors in
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mean and standard deviation compared to GQ-based PCE.

In the 18-dimensional case (n16103 airfoil), the adjoint-assisted PCE achieved sim-
ilar or better accuracy than classical regression PCE, with only 50 or even 30 sam-
ples. This corresponds to an 83%–90% reduction in cost, at the expense of only
0.06%–0.11% error in the mean and up to 5.6% in standard deviation.

For the Supersonic Business Jet case (12 uncertain variables and chaos order 2),
where full Monte Carlo simulation required 100 million calls to the evaluation soft-
ware, the gradient- assisted PCE achieved comparable accuracy (within ±0.5% in
both mean and standard deviation) at a cost that is 6 orders of magnitude lower
(28 EFS vs. 108).

In conclusion, this thesis explored the integration of adjoint sensitivity informa-
tion and unknown distribution in handling polynomial chaos methods, as well as
the aPCE framework for unknowwn distributions, extending their applicability to
a broader range of real-world CFD problems. The methodologies developed herein
provide a scalable and efficient framework for UQ, balancing accuracy with compu-
tational feasibility.
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Appendix A

Supersonic Business Jet

Mathematical Framework

The SBJ can be divided into seven main disciplines, each with its own set of inputs
and outputs. The outputs of one discipline may serve as the inputs of another,
forming a coupled system that must be solved iteratively. These kinds of problems
are referred to as Multi-Disciplinary Analysis (MDA) problems.

This first discipline addresses the operational conditions during flight. Its inputs are
the cruise altitude zcr and cruise Mach number Mcr, while the outputs consist of the
ambient pressure pcr, air density ρcr, temperature Tcr, and the aircraft’s flight speed
Vcr.

To compute these outputs, a standard (piecewise) atmospheric model is used. First,
the temperature at the flight altitude is approximated by:

Tcr =

T0 − B zcr, for zcr ≤ 11,000m

216.65, for 11,000 < zcr ≤ 10,000m
(A.1)

where T0 is the sea-level temperature, and B = −dT
dz

= 0.0065K/m is the atmo-
spheric lapse rate.

Next, the pressure at altitude is computed by a corresponding piecewise function:
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pcr =


p0

(
1− B zcr

T0

) g
RB

, for zcr ≤ 11,000m

p11 exp
(
− g

RTcr

( zcr − z11

)
, for 11,000 < zcr ≤ 10,000m

(A.2)

where g = 9.81m/s2 is the gravitational acceleration, R = 287.04 J/(kg·K) is the
specific gas constant for air, p0 is the known pressure at sea level, and p11 is the
pressure at 11,000m.

The air density at altitude is then obtained via the ideal-gas law:

ρcr =


ρ0

(
Tcr

T0

) g
RB

−1

, zcr ≤ 11000,

pcr
RTcr

, 11000 < zcr ≤ 10000,

(A.3)

where ρ0 is the air density at ground level.

Finally, the flight speed Vcr can be computed from the Mach number and the tem-
perature as:

Vcr = Mcr

√
γ RTcr, (A.4)

where γ = 1.4 is the ratio of specific heats for air.

The second aspect regards the fuselage geometry, which is idealized as a cylindrical
body capped with cones at both ends. The diameter of the fuselage is fixed at
Df = 2.15m. The front cone is assumed to lie within the Mach cone, while the rear
cone has a known half-angle of 12◦.

The two input parameters to this discipline are the cruise Mach number Mcr and
the takeoff fuel weight Wfuel, while the outputs are the total fuselage length Lf and
its outer surface area Sf .

The overall fuselage length is expressed as the sum of four sections:

Lf = Lf1 + Lf2 + Lf3 + Lf4 (A.5)

where:

- Lf1 is the front cone length,

- Lf2 is the rear cone length,

- Lf3 is the cabin/passenger section length,

- Lf4 is the fuel section length.
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The front cone length depends on the Mach number and is given by:

Lf1 = 0.5Df

(
tan

(
0.3 arcsin

(
1

Mcr

)))−1

, (A.6)

while the rear cone length is based on its fixed cone angle:

Lf2 = 0.5Df (tan(12
◦))−1 . (A.7)

The passenger section is assumed to be a fixed length:

Lf3 = 10m. (A.8)

The fuel section length is computed from the fuel volume at takeoff, which is deter-
mined from the fuel weight and density:

Lf4 =
Vfuel
π
4
D2

f

, where Vfuel =
Wfuel

ρfuel
, (A.9)

with ρfuel = 807.5 kg/m3.

Finally, the total surface area of the fuselage is given by:

Sf = πDf

Lf3 + Lf4 + 0.5

√D2
f

4
+ L2

f1 +

√
D2

f

4
+ L2

f2

 . (A.10)

The next discipline focuses on modeling the geometry of the aircraft’s wing. The
input parameters for this discipline include the wing surface area Sw, the leading-
edge sweep angle Λw,LE, the trailing-edge sweep angle Λw,TE, the thickness-to-chord
ratio

(
t
c

)
w
, and the tip-to-root chord ratio λw.

The outputs from this model are the mean wing chord crw, the span bw, the aspect
ratio ARw, the sweep angle at the quarter-chord location Λw,25, the exposed wing
surface area Sw,exp, and the wetted wing surface area Sw,wet.

The mean aerodynamic chord is calculated using the following equation:

crw =

√
Sw (tanΛw,LE − tanΛw,TE)

1− λ2
w

(A.11)

The wing span is then given by:
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bw =
2Sw

crw(1 + λw)
(A.12)

From the span and surface area, the aspect ratio is computed as:

ARw =
b2w
Sw

(A.13)

The exposed surface area is calculated by removing the fuselage-interfered portion
of the wing planform:

Sw,exp = Sw −
Df

2

(
2crw −

Df

2
tanΛw,LE +

Df

2
tanΛw,TE

)
(A.14)

The discipline of th vertical stabilizer geometry closely resembles the wing geometry
model. The input variables for this discipline are: the wing surface area Sw, the
sweep angle at the leading edge Λv,LE, the sweep angle at the trailing edge Λv,TE,
the thickness-to-chord ratio

(
t
c

)
v
, and the tip-to-root chord ratio λv.

The outputs of the discipline include the surface area of the vertical stabilizer Sv,
the height bv, the mean aerodynamic chord crv, the sweep angle at the 25% chord
line Λv,25, and the wetted area Sv,wet.

The vertical stabilizer surface area is assumed to be 10% of the wing surface area:

Sv = 0.1Sw (A.15)

The mean chord of the vertical stabilizer is computed similarly to the wing:

crv =

√
Sv (tanΛv,LE − tanΛv,TE)

1− λ2
v

(A.16)

The height of the vertical stabilizer is derived from:

bv =
2Sv

crv(1− λv)
(A.17)

Finally, the wetted surface area of the vertical stabilizer is estimated as:

Sv,wet = 2

(
1 + 0.2

(
t

c

)
v

)
Sv (A.18)
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The next discipline addresses both the operation and geometric sizing of the air-
craft’s engines. The input parameters include all relevant flight condition vari-
ables—namely, cruise altitude zcr, Mach number Mcr, temperature Tcr, pressure pcr,
density ρcr, and velocity Vcr. Additional inputs include the wing surface area Sw

and the drag coefficient CD.

The outputs from this discipline are the engine power during flight P , the engine
power at ground level P0, the specific fuel consumption sfc, the nacelle length Lnac,
and the nacelle diameter Dnac.

The power produced by the engine in flight is given by:

P =
1

Nengine

· 1
2
ρcrV

2
crCDSw (A.19)

where Nengine = 2 is the number of engines on the aircraft.

If the flight power P is known, the power at sea level is estimated using:

P0 = P

(
0.6

pcr
p0

(
1 +

γ − 1

2
M2

cr

) γ
γ−1

)
(A.20)

The specific fuel consumption is calculated using:

sfc = 2.8310−5(0.9 + 0.3Mcr)

√
Tcr

T0

, (A.21)

To determine nacelle size, the engine diameter and length must be calculated first.
These depend on the power at ground level P0 as follows:

Dengine = c1P
k1
0 , Lengine = c2P

k2
0 (A.22)

where the constants are:

c1 = 0.0062, k1 = 0.67, c2 = 0.025, k2 = 0.46

The nacelle length is then determined by:

Lnac = 4Dengine + Lengine (A.23)

and the nacelle diameter is:
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Dnac = 1.1Dengine (A.24)

The next discipline is responsible for computing the aircraft’s total weight. The
required input variables include: the wing geometry parameters Sw,

(
t
c

)
w
, Λw,25, bw,

λw, and Sw,exp; the vertical stabilizer parameters Sv, bv,
(
t
c

)
v
, and Λv,25; fuselage

parameters Sf and Lf ; atmospheric pressure at cruise altitude pcr; engine power at
sea level P0; and the fuel weight at takeoff Wfuel.

The two outputs from this discipline are the total takeoff weight TOW and the
zero-fuel weight ZFW .

The total weight is calculated as the sum of the zero-fuel weight and the takeoff fuel
weight:

TOW = ZFW +Wfuel (A.25)

The zero-fuel weight is composed of payload and crew weight, operational weight,
and the empty aircraft weight:

ZFW = Wpayload +Wcrew +Woperational +Wempty (A.26)

The payload and crew weights are approximated by:

Wpayload +Wcrew = (Npassengers +Ncrew)Wperson = (12 + 3)× 100 = 1500 (A.27)

A fixed value is assumed for operational weight:

Wop = 210kg (A.28)

The empty weight is the sum of individual components:

Wempty = Ww +Wv +Wf +Wgear +Wfe +NengineWengine (A.29)

The wing weight is given by:

Ww = 20.6Sw + 5.387× 10−6 ×
4.5 b3w

√
TOW ZFW

(
1 + 2λw

)(
t

c

)
w

cos2
(
Λw,25

)
Sw,exp

(
1 + λw

) (A.30)

74



Similarly, the vertical stabilizer weight is estimated as:

Wv = 12.8Sv + 24× 10−6
b3v

(
8 + 0.09 TOW

Sw,exp

)
(
t
c

)
v
cos Λv,25

2 (A.31)

The fuselage weight is calculated using:

Wf = (5.1314 + 0.498 If )Sf , (A.32)

where the index If is computed as:

If =

{
Ip if Ip > Ib,
Ip+Ib

2
if Ip ≤ Ib,

(A.33)

with the pressure index given by:

Ip = 10−4(pcr − pcabin)Df (A.34)

and the buckling index defined as:

Ib = 1.3× 10−44.5Wf Lf

D2
f

(A.35)

The remaining terms are calculated as follows:

Wt = ZFW −Ww −Nengine,wWengine (A.36)

where Nengine,w is the number of engines attached to the wing. The engine weight is
estimated via:

Wengine = 3.5× 10−2P 0.9255
0 (A.37)

and the weights of the gear and flight electronics are modeled as fractions of the
takeoff weight:

Wgear = 0.04TOW, Wfe = 0.08TOW (A.38)
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The aerodynamics discipline is responsible for evaluating the aircraft’s aerodynamic
performance, specifically by computing the lift and drag coefficients.

The input parameters to this discipline include the wing geometry variables Sw,
Sw,wet, crw,

(
t
c

)
w
, bw, λw, Λw,LE, and ARw; the vertical stabilizer geometry variables

Sv, Sv,wet, crv,
(
t
c

)
v
, bv, and λv; the fuselage geometry parameters Lf and Sf ; the

nacelle length and diameter Lnac, Dnac; the flight condition variables Mcr, Tcr, ρcr,
Vcr; and the total weight at takeoff TOW .

The outputs of this discipline are the lift coefficient CL and drag coefficient CD.

The lift force is calculated from:

L = 0.5 ρcr V
2
cr Sw (A.39)

Assuming that the lift equals 95% of the total aircraft weight in flight:

CL =
0.95 g TOW

0.5 ρcr V 2
cr Sw

(A.40)

The drag coefficient is the sum of parasitic drag and lift-induced drag:

CD = CD,0 + CD,i (A.41)

The induced drag is calculated using:

CD,i = K C2
L (A.42)

The value of K depends on the Mach number and is defined as:

K =

{
1

π ARw e
Mcr < 1

ARw (M2
cr−1)

4ARw+(M2
cr−1) cosΛw,LE

Mcr ≥ 1
(A.43)

where e is the Oswald efficiency factor given by:

e = 4.61
(
1− 0.045AR0.68

w

)
(cos Λw,LE)

0.15 − 3.1 (A.44)

The parasitic drag coefficient depends on Mach number:

CD,0 =

{
CD,visc + CD,gear Mcr < 1

CD,visc + CD,wave Mcr ≥ 1
(A.45)
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The wave drag coefficient is calculated by:

CD,wave =
9π

2Sw

(
Amax

Lf

)2

Ewd

(
1− 0.386(Mcr − 1.2)0.57

(
1− πΛw,LE

100

))
(A.46)

where Ewd = 2 and Amax is the maximum frontal area.

The viscous drag is the sum of the friction drag over all wetted surfaces:

CD,visc =
∑
i

Si,wet

Si

cf,i (A.47)

Each surface friction coefficient cf,i is computed as:

cf,i =
0.074

Re0.2t,i

r2t
rR

(A.48)

The ”wall” temperature is calculated:

Tw = Tcr(1 + 0.178M2
cr) (A.49)

Air viscosity is computed using:

µ = 17.15× 10−6

(
Tw

273.0

)1.5
273 + 110.4

Tw + 110.4
(A.50)

The correction factors are:

rR = 1.0 + 0.1151M2
cr (A.51)

rT = 0.5(1.0 + rT )r
1.5
R (A.52)

The Reynolds number is given by:

Ret,i =
ρcrVcrLchar

µ
(A.53)

The characteristic length Lchar for each surface is:
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� Lnac for the nacelle,

� Lf for the fuselage,

� ci,mean for the wing and vertical stabilizer.

The mean chord for surface i is calculated as:

ci,mean =
2 cr,i (1 + λi + λ2

i )

3 (1 + λi)
(A.54)

In Figure A.1, a flowchart of the MDA process is presented.

Figure A.1: Flowchart of the MDA process for the Supersonic Business Jet.
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Κεφάλαιο 1

Εισαγωγή

Η Ποσοτικοποίηση Αβεβαιοτήτων (Uncertainty Quantification - UQ) αποτελεί βα-
σικό πεδίο της υπολογιστικής επιστήμης, καθώς επικεντρώνεται στη διάδοση των α-

βεβαιοτήτων εισόδου μέσα από μη-γραμμικά συστήματα με σκοπό την αποτίμηση της

επίδρασής τους στην έξοδο. Οι αβεβαιότητες αυτές μπορεί να προέρχονται από φυσική

μεταβλητότητα, σφάλματα μέτρησης ή προσεγγίσεις μοντελοποίησης. Οι έξοδοι των

συστημάτων αυτών ονομάζονται Ποσότητες Ενδιαφέροντος (Quantities of Interest -
QoIs).

Μία από τις βασικές τεχνικές στην ποσοτικοποίηση αβεβαιοτήτων είναι η προσομοίωση

Monte Carlo [5], μια στατιστική μέθοδος που βασίζεται στη δειγματοληψία για την
εκτίμηση της κατανομής του QoI. Ωστόσο, η μέθοδος αυτή απαιτεί μεγάλο πλήθος
δειγμάτων για αξιόπιστα αποτελέσματα. Για τον σκοπό αυτό, εφαρμόζονται παραλλαγές

του Πολυωνυμικού Αναπτύγματος Χάους (Polynomial Chaos Expansion - PCE) [2],
το οποίο εκφράζει τις QoIs ως ανάπτυγμα ορθοκανονικών πολυωνύμων επί των τυχαίων
εισόδων.

Ιδιαίτερο ενδιαφέρον παρουσιάζει το μη επεμβατικό PCE (ni-PCE) [1], το οποίο μετα-
χειρίζεται το υπολογιστικό μοντέλο ως μαύρο κουτί. Επιπλέον, στη μέθοδο γραμμικής

παλινδρόμησης [4], ενσωματώνονται και οι ευαισθησίες των ποσοτήτων ενδιαφέροντος

μέσω της συζυγούς μεθόδου, μειώνοντας σημαντικά τον απαιτούμενο αριθμό δειγ-

μάτων. Πέραν των τυποποιημένων κατανομών εισόδου, το Arbitrary PCE (aPCE) [3]
επιτρέπει την κατασκευή πολυωνυμικής βάσης προσαρμοσμένης σε εμπειρικές ή άγνω-

στες κατανομές, ενισχύοντας την ευελιξία και ακρίβεια της μεθόδου.

Η διπλωματική αυτή εργασία επικεντρώνεται στην ανάπτυξη και αξιολόγηση αποδοτι-

κών τεχνικών UQ στο πλαίσιο της Υπολογιστικής Ρευστοδυναμικής (Computational
Fluid Dynamics - CFD), με εφαρμογή σε προβλήματα με αβεβαιότητες στη ροή γύρω
από αεροτομές, ατέλειες σχήματος και επιδόσεις υπερηχητικού αεροσκάφους, καταδει-

κνύοντας τη μείωση κόστους χωρίς απώλεια ακρίβειας.
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Κεφάλαιο 2

Πολυωνυμικό Ανάπτυγμα Χάους

Το Πολυωνυμικό Ανάπτυγμα Χάους εκφράζει στοχαστικές ποσότητες ενδιαφέροντος

ως ανάπτυγμα:

J(c⃗) ≈
Q−1∑
i=0

αiHi(c⃗), (2.1)

όπου c⃗ είναι οι αβέβαιες μεταβλητές εισόδου, Hi ορθογωνικά πολυώνυμα βάσης και αi

οι συντελεστές του αναπτύγματος. Το πλήθος των όρων Q ορίζεται συναρτήσει των
αβέβαιων μεταβλητών M και της τάξης k του αναπτύγματος ως:

Q =
(M + k)!

M !k!
(2.2)

Η τάξη χάους k προσδιορίζει το μέγιστο βαθμό των πολυωνύμων βάσης.

2.1 Μη Επεμβατικό PCE

Το μη επεμβατικό Πολυνωνυμικό Ανάπτυγμα Χάους ni-PCE επιτρέπει την προσεγγι-
στική αναπαράσταση της ποσότητας ενδιαφέροντος, χωρίς παρέμβαση στις μαθηματικές

εξισώσεις που διέπουν το σύστημα.

2.1.1 Γραμμική Παλινδρόμηση (Regression)

Στη μέθοδο της γραμμικής παλινδρόμησης, αρχικά επιλέγεται ένα σύνολο N δειγμάτων
από το πεδίο ορισμού των αβέβαιων μεταβλητών c⃗ με μεθόδους όπως η LHS. Στο
σύνολο αυτό, υπολογίζεται αναλυτικά η ποσότητα ενδιαφέροντος J, με αποτέλεσμα και
με τη βοήθεια της εξίσωσης 2.1 να προκύψει το γραμμικό σύστημα:

H α⃗ = J⃗ (2.3)

Το σύστημα 2.3 είναι υπερκαθορισμένο, καθώς το πλήθος των δειγμάτων N είναι με-
γαλύτερο του πλήθους των αγνώστων Q. Η λύση του συστήματος επιτυγχάνεται με
χρήση ελαχίστων τετραγώνων (Least Squares). Η ορθολανονική βάση για κάθε αβέβαι-
η μεταβλητή επιλέγεται σύμφωνα με την κατανομή της: Hermite (Normal), Legendre
(Uniform) κ.λπ.
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Η μέση τιμή και η τυπική απόκλιση της ποσότητας ενδιαφέροντος υπολογίζονται από

τις σχέσεις:

µJ = α0, σ2
J ≈

Q−1∑
i=1

α2
i ⟨Hi(c⃗)

2⟩ (2.4)

2.1.2 Γραμμική Παλινδρόμηση με χρήση παραγώγων

Η ενσωμάτωση πληροφοριών ευαισθησίας των ποσοτήτων ενδιαφέροντος ως προς τηςς

αβέβαιες μεταβλητές στο σύστημα 2.3 οδηγεί σε δραστική μείωση του απαιτούμενου

αριθμού δειγμάτων. Για κάθε δείγμα, πλέον οι πληροφορίες που συμμετέχουν στο

σύστημα είναι:

[J(c),
∂J

∂c1
, . . . ,

∂J

∂cM
] (2.5)

Προφανώς, όσο περισσότερες είναι οι αβέβαιες μεταβλητές, τόσο περισσότερες είναι

και οι πληροφορίες που λαμβάνονται. Μάλιστα, με τεχνικές όπως η συζυγής μέθοδος,

το σύνολο όλων των παραγώγων μπορεί να υπολογιστεί με κόστος ανάλογο αυτού της

επίλυσης του πρωτεύοντος συστήματος. Επομένως, ανεξάρτητα από το πλήθος των

αβέβαιων μεταβλητών, το κόστος υπολογισμού για κάθε δείγμα προσεγγίζεται ίσο με

το διπλάσιο του κόστους υπολογισμού της ποσότητας ενδιαφέροντος.

2.2 Αυθαίρετο PCE (aPCE)

Το aPCE επιτρέπει επέκταση της παραπάνω θεωρίας για μη-τυπικές κατανομές, κατα-
σκευάζοντας ορθοκανονική πολυωνυμική βάση προσαρμοσμένη στην εκάστοτε κατα-

νομή της αβέβαιης μεταβλητής.

Η πολυωνυμική βάση P (k)(ξ) =
∑k

i=0 p
(k)
i ξi προκύπτει από το μητρώο Hankel M που

εξαρτάται αμιγώς από τις στοχαστικές ροπές του δείγματος της μεταβλητής (βλ. Πλήρες

Κείμενο). Μετά τη παραγοντοποίηση του M με τη μέθοδο Cholesky, M = RTR,
οι συντελεστές της βάσης αποτελούν τα μη μηδενικά στοιχεία του άνω τριγωνικού

μητρώου R−1
.

Μετά την κατασκευή της βάσης, οι συντελεστές του αναπύγματος μπορούν να υπο-

λογιστούν είτε με γραμμική παλινδρόμηση, όπως παρουσιάστηκε στην ενότητα 2, είτε

αναλυτικά με προβολή της ποσότητας ενδιαφέροντος στην πολυωνυμική βάση. Στη

περίπτωση αυτή, τα απαιτούμενα δείγματα υπολογίζονται από τη σχέση Q = (1 + k)M

, ενώ τα σημεία δειγματοληψίας ( Collocation Points ή GQ nodes ) ταυτίζονται με τις
ιδιοτιμές του Ιακωβιανού μητρώου του πίνακαM. Τέλος, τα αντίστοιχα βάρη ολοκλήρω-
σης για κάθε τέτοιο σημείο εξαρτώνται αμιγώ από τα ιδιοδιανύσματα του Ιακωβιανού

πίνακα καθώς και από τις στοχαστικές ροπές του δείγματος (βλ. Πλήρες Κείμενο).
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Κεφάλαιο 3

Ανάπτυγμα Karhunen-Loève

Το κεφάλαιο αυτό παρουσιάζει συνοπτικά το μαθηματικό πλαίσιο του ανάπτυγματος

Karhunen-Loève (KL) για τη μοντελοποίηση γεωμετρικών ατελειών. Το ανάπτυγμα
KL αποσυνθέτει μια τυχαία διαδικασία w(x, θ) σε μια σειρά ορθογώνικών ιδιοδιανυ-
σμάτων:

w(x, θ) = w̄(x) +
∞∑
n=0

ξn(θ)
√

λnfn(x), (3.1)

όπου τα {ξn(θ)} είναι τυχαίες μεταβλητές που πρέπει να προσδιοριστούν, τα λn είναι

σταθερές, και οι {fn(x)} είναι ορθοκανονικές ντετερμινιστικές συναρτήσεις. Επίσης,
η w̄(x) εκφράζει την μέση τιμή όλων των πραγματοποιήσεων της διαδικασίας. Τα λn

και fn(x) αποτελούν τις ιδιοτιμές και τις ιδιοσυναρτήσεις της συνάρτησης συσχέτισης
C(x1, x2) και προκύπτουν από την επίλυση της εξίσωσης 3.2.∫

D

C(x1, x2)fn(x2) dx2 = λnfn(x1). (3.2)

Η σειρά της εξίσωσης 3.2 αποκόπτεται στους πρώτους M όρους, με αποτέλεσμα να

προκύπτουν και M αβέβαιες μεταβλητές, τα ξn. Η συνάρτηση συσχέτιση που χρη-
σιμοποιείται στη παρούσα διπλωματική εργασία για τη μοντελοποίηση γεωμετρικών

ατελειών σε αεροτομή, είναι η εκθετική: C(s1, s2) = σ2e−|s1−s2|/l, με l = smax το

μήκος συσχέτισης. Οι ιδιοσυναρτήσεις fn(s) προκύπτουν από τη λύση της διαφορικής
εξίσωσης:

f ′′(s) + ω2f(s) = 0, (3.3)
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Κεφάλαιο 4

Εφαρμογές στη Ποσοτικοποίηση

Αβεβαιότητας

Στο πλαίσιο της διπλωματικής εργασίας, επιλέχθηκαν τρεις περιπτώσεις μελέτης προ-

κειμένου να αξιολογηθεί η αποτελεσματικότητα των μεθόδων ποσοτικοποίησης αβε-

βαιότητας που αναπτύχθηκαν. Κάθε περίπτωση αντιπροσωπεύει ένα μοναδικό σενάριο

αβεβαιότητας σε προβλήματα αεροδυναμικής, με στόχο τη συστηματική σύγκριση μετα-

ξύ των κλασικών μεθόδων Πολυωνυμικού Αναπτύγματος Χάους και των παραλλαγών

τους.

Η πρώτη περίπτωση μελέτης εστιάζει σε αβεβαιότητες των συνθηκών ροής γύρω από

μια αεροτομή NACA 4415. Συγκεκριμένα, εξετάζονται αβεβαιότητες στην επ΄άπειρο
ταχύτητα ροής, η οποία ακολουθεί κανονική κατανομή με μέση τιμή 240 μ/ς και τυπική

απόκλιση 0.33 μ/ς, καθώς και στη γωνία πρόσπτωσης που ακολουθεί Beta κατανομή
με όρια μεταξύ 1.6° και 2.5°. Το αεροδυναμικό μοντέλο βασίζεται στις εξισώσεις Euler,
ενώ οι ποσότητες ενδιαφέροντος περιλαμβάνουν την άνωση και την οπισθέλκουσα.

Η δεύτερη περίπτωση εισάγει μια πιο πολύπλοκη πηγή αβεβαιότητας, μελετώντας γεω-

μετρικές ατελείες σε μια αεροτομή n16103 που προκύπτουν κατά την κατασκευή. Οι
αβεβαιότητες μοντελοποιούνται μέσω της μεθόδου Karhunen-Loève, με 18 ανεξάρτη-
τες τυχαίες μεταβλητές να περιγράφουν τις αποκλίσεις. Το μοντέλο βασίζεται στις

εξισώσεις RANS με το μοντέλο τύρβης Spalart-Allmaras.

Η τρίτη περίπτωση αφορά την ποσοτικοποίηση αβεβαιότητας σε σχεδιαστικές παρα-

μέτρους ενός υπερηχητικού επιχειρηματικού αεροσκάφους (SBJ). Δώδεκα κανονικά
κατανεμημένες μεταβλητές περιγράφουν πτυχές όπως η επιφάνεια πτέρυγας, οι γωνίες

σάρωσης, και το βάρος καυσίμου. Οι μετρικές απόδοσης περιλαμβάνουν την εμβέλεια,

το μήκος απογείωσης και την ταχύτητα προσέγγισης.
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Για κάθε περίπτωση μελέτης εφαρμόστηκαν τρεις προσεγγίσεις: αρχικά μια μέθοδος

αναφοράς (είτεMCS είτεGQ-PCE), στη συνέχεια η μέθοδος γραμμικής παλινδρόμησης
(regression-based PCE), και τέλος η εκδοχή με χρήση πληροφορίας παραγώγων μέσω
αδθοιντ ή πεπερασμένων διαφορών.

Οι επιδόσεις αξιολογούνται ως προς ακρίβεια (σχετικό σφάλμα) και υπολογιστικό

κόστος (Equivalent Flow Solutions - EFS). Τα πλήρη αποτελέσματα συνοψίζονται
στον εκτενή Πίνακα 4.1.

Μέθοδος
Ποσότητα

Ενδιαφέροντος

Μέση

Τιμή

Σφάλμα

ΜΤ (%)

Τυπική

Απόκλιση

Σφάλμα

ΤΑ (%)
Κόστος

Περίπτωση Μελέτης 1: NACA 4415 (2 αβέβαιες μεταβλητές)

GQ-PCE ΄Ανωση 336.54131 - 8.40852 - 9

GQ-PCE Οπισθέλκουσα 20.21745 - 1.42208 - 9

Reg-PCE (order 2) ΄Ανωση 336.55 0.0025 8.41011 0.0189 15

Reg-PCE (order 2) Οπισθέλκουσα 20.2197 0.0111 1.42251 0.0304 15

Adjoint-Reg-PCE ΄Ανωση 336.55 0.003 8.411 0.03 4

Adjoint-Reg-PCE Οπισθέλκουσα 20.22 0.0126 1.4282 0.0523 4

Περίπτωση Μελέτης 2: n16103 (18 αβέβαιες μεταβλητές)

Reg-PCE ΄Ανωση 2,262.2 - 93.52 - 600

Reg-PCE Οπισθέλκουσα 46.58 - 1.07 - 600

Adjoint-PCE (50 δείγματα) ΄Ανωση 2,263.5 0.06 91.4 -2.27 100

Adjoint-PCE (50 δείγματα) Οπισθέλκουσα 46.52 -0.13 1.10 2.80 100

Adjoint-PCE (30 δείγματα) ΄Ανωση 2,264.7 0.11 89.1 -4.73 60

Adjoint-PCE (30 δείγματα) Οπισθέλκουσα 46.45 -0.28 1.13 5.60 60

Περίπτωση Μελέτης 3: SBJ (12 αβέβαιες μεταβλητές)

MCS Εμβέλεια 2,786.6 - 392.1 - 108

MCS Απογείωση 4,154.8 - 546.3 - 108

MCS Προσέγγιση 87.477 - 3.852 - 108

Reg-PCE Εμβέλεια 2,777.8 -0.31 402.6 2.67 182

Reg-PCE Απογείωση 4,149.2 -0.13 547.2 0.16 182

Reg-PCE Προσέγγιση 87.491 0.02 3.853 -0.04 182

Grad-Reg-PCE Εμβέλεια 2,775.6 -0.39 399.3 1.85 28

Grad-Reg-PCE Απογείωση 4,148.2 -0.16 544.2 -0.38 28

Grad-Reg-PCE Προσέγγιση 87.498 0.02 3.873 0.56 28

Πίνακας 4.1: Αποτελέσματα περιπτώσεων μελέτης ποσοτικοποίησης αβεβαιότητας.

΄Οπως φαίνεται από τον Πίνακα 4.1, η μέθοδος Adjoint-assisted PCE παρέχει καλή
ακρίβεια ακόμα και με ελάχιστα δείγματα. Είναι ιδιαίτερα χρήσιμη σε προβλήματα υ-

ψηλής διάστασης, καθώς μειώνει δραστικά τα απαιτούμενα δείγματα ενσωματώνοντας

πληροφορίες ευαισθησίας ως προς όλες τις αβέβεαιες μεταβλητές, επιτρέποντας την

αποδοτική ενσωμάτωση της αβεβαιότητας στον αεροδυναμικό σχεδιασμό.
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